National Library of Energy BETA

Sample records for oil wells na

  1. Indiana Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's NA NA NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Indiana Natural Gas Summary

  2. Tennessee Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Tennessee Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 52 75 NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Tennessee Natural Gas Summ

  3. Oil well standing valve

    SciTech Connect

    Holland, R. A.; Brennan, J. R.; Christ, F. C.; Petrie, H. L.

    1985-05-28

    A standing valve which may be retrievably mounted in a well production tubing and will allow the maximum possible fluid flow and also allow the valve to be easily drained and retrieved through the well production tubing. The seal between the standing valve and the bottom hole assembly is located at or below the level of the seat and fluid from the top of the valve into the well is drained through the seat.

  4. Kentucky Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Kentucky Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 317 358 340 NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Kentucky Natural Gas Su

  5. Missouri Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Missouri Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1 1 1 1 NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Missouri Natural Gas Summary

  6. Oil and Gas Well Drilling | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Drilling Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Oil and Gas Well Drilling Author Jeff Tester Published NA, 2011 DOI Not Provided Check for...

  7. Table 5.2 Crude Oil Production and Crude Oil Well Productivity, 1954-2011

    Energy Information Administration (EIA) (indexed site)

    Crude Oil Production and Crude Oil Well Productivity, 1954-2011 Year Crude Oil Production Crude Oil Well 1 Productivity 48 States 2 Alaska 3 Total Onshore Offshore Total Producing Wells 4 Average Productivity 5 Federal State Total Thousand Barrels Thousand Barrels Thousands Barrels per Well 1954 2,314,988 0 2,314,988 2,266,387 NA NA 48,601 2,314,988 511 4,530 1955 2,484,428 0 2,484,428 2,425,289 NA NA 59,139 2,484,428 524 4,741 1956 2,617,283 0 2,617,283 2,543,889 NA NA 73,394 2,617,283 551

  8. Natural Gas Gross Withdrawals from Oil Wells

    Energy Information Administration (EIA) (indexed site)

    1-2016 Illinois NA NA NA NA NA NA 1991-2016 Indiana NA NA NA NA NA NA 1991-2016 Kentucky NA NA NA NA NA NA 1991-2016 Maryland NA NA NA NA NA NA 1991-2016 Michigan NA NA NA NA NA NA ...

  9. Natural Gas Gross Withdrawals from Oil Wells

    Annual Energy Outlook

    NA NA NA NA NA NA 1991-2016 Missouri NA NA NA NA NA NA 1991-2016 Nebraska NA NA NA NA NA NA 1991-2016 Nevada NA NA NA NA NA NA 1991-2016 New York NA NA NA NA NA NA 1991-2016 Oregon ...

  10. Texas Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Texas Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 85,030 94,203 96,949 104,205 105,159 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Texas Natural

  11. Pennsylvania Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Pennsylvania Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7,046 7,627 7,164 8,481 7,557 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Pennsylvania

  12. Louisiana Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Louisiana Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,201 5,057 5,078 5,285 4,968 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Louisiana Natural

  13. Michigan Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Michigan Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 510 514 537 584 532 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Michigan Natural Gas Summary

  14. Mississippi Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Mississippi Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 561 618 581 540 501 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Mississippi Natural Gas

  15. Montana Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Montana Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,956 2,147 2,268 2,377 2,277 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Montana Natural Gas

  16. Nebraska Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Nebraska Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 84 73 54 51 51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Nebraska Natural Gas Summar

  17. Nevada Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Nevada Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 4 4 4 4 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Nevada Natural Gas Summary

  18. Ohio Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Ohio Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,775 6,745 7,038 7,257 5,941 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Ohio Natural Gas

  19. Oklahoma Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Oklahoma Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,723 7,360 8,744 7,105 8,368 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Oklahoma Natural

  20. Alabama Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Alabama Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 346 367 402 436 414 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Alabama Natural Gas Sum

  1. Alaska Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Alaska Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,040 1,981 2,006 2,042 2,096 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Alaska Natural Gas

  2. Arizona Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Arizona Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1 1 1 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Arizona Natural Gas Summary

  3. Arkansas Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Arkansas Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 165 174 218 233 240 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Arkansas Natural Gas

  4. California Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) California Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 25,958 26,061 26,542 26,835 27,075 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) California

  5. Colorado Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Colorado Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,963 6,456 6,799 7,771 7,733 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Colorado Natural

  6. Utah Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Utah Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,119 3,520 3,946 4,249 3,966 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Utah Natural Gas

  7. Virginia Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Virginia Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2 1 1 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Virginia Natural Gas Summary

  8. Wyoming Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Wyoming Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 4,430 4,563 4,391 4,538 4,603 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Wyoming Natural Gas

  9. Florida Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Florida Natural Gas Number of Oil Wells (Number of ... Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Florida ...

  10. Bottom hole oil well pump

    SciTech Connect

    Hansen, J.E.; Hinds, W.E.; Oldershaw, P.V.

    1982-09-21

    A bottom hole well pump is disclosed comprising a pump housing supported by a control cable for raising and lowering the housing within tubing in a well, a linear motor within the housing causing reciprocation of a plunger extending into a pumping chamber formed by the housing with inlet and outlet check valves for controlling flow of oil or other liquid into the pumping chamber and from the pumping chamber into the tubing above the pump housing. In one embodiment, belleville-type springs are employed for storing energy as the plunger approaches its opposite limits of travel in order to initiate movement of the plunger in the opposite direction. In this embodiment, a single pumping chamber is formed above the linear motor with a single-valve block arranged above the pumping chamber and including inlet check valve means for controlling liquid flow into the pumping chamber and outlet check valve means for controlling liquid flow from the pumping chamber into the tubing interior above the pump housing. In another embodiment, pumping chambers are formed above and below the linear motor with a tubular plunger extending into both pumping chambers, in order to achieve pumping during both directions of travel of the plunger.

  11. Maryland Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Maryland Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Maryland Natural Gas Summary

  12. Oregon Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oregon Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Oregon Natural Gas Summary

  13. Kansas Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Kansas Natural Gas Summary

  14. SW New Mexico Oil Well Formation Tops

    SciTech Connect

    Shari Kelley

    2015-10-21

    Rock formation top picks from oil wells from southwestern New Mexico from scout cards and other sources. There are differing formation tops interpretations for some wells, so for those wells duplicate formation top data are presented in this file.

  15. Marginal Expense Oil Well Wireless Surveillance (MEOWWS)

    SciTech Connect

    Nelson, Donald G.

    2002-03-11

    The objective of this study was to identify and field test a new, low cost, wireless oil well surveillance system. A variety of suppliers and technologies were considered. One supplier and system was chosen that was low cost, new to the oil field, and successfully field tested.

  16. Jet pump for oil wells

    SciTech Connect

    Binks, R. H.; Christ, F. C.

    1985-03-12

    A fluid operated pump system which includes power fluid supply means comprising either the annulus between well casing and production tubing, or a secondary tubing, and a production tubing, set in a well, the production tubing having a housing at the lower end with which the power fluid supply means communicates. A pump unit, including a fluid operated jet pump, is movable downwardly through the production tubing into the housing to a fixed location and maintained at the fixed location by the forces of gravity and friction. The pump is operable in the housing by operating fluid under pressure supplied through the power fluid supply means to pump fluid from the well into the production tubing. A cavity is provided at the lower end of the pump unit between two balanced seals. The cavity communicates with the power fluid supply means and with the fluid operated jet pump. Power fluid introduced into the cavity causes no net force to be exerted on the pump unit. When pumping action takes place, produced fluids are taken from a lower pressure area below the pump unit and boosted to a higher pressure area above the pump unit by the fluid operated jet pump, resulting in a net downward force on the pump unit to cause the pump unit to be restrained against its fixed location without the need of latch means.

  17. MARGINAL EXPENSE OIL WELL WIRELESS SURVEILLANCE MEOWS

    SciTech Connect

    Mason M. Medizade; John R. Ridgely; Donald G. Nelson

    2004-11-01

    A marginal expense oil well wireless surveillance system to monitor system performance and production from rod-pumped wells in real time from wells operated by Vaquero Energy in the Edison Field, Main Area of Kern County in California has been successfully designed and field tested. The surveillance system includes a proprietary flow sensor, a programmable transmitting unit, a base receiver and receiving antenna, and a base station computer equipped with software to interpret the data. First, the system design is presented. Second, field data obtained from three wells is shown. Results of the study show that an effective, cost competitive, real-time wireless surveillance system can be introduced to oil fields across the United States and the world.

  18. US--Federal Offshore Natural Gas Withdrawals from Oil Wells ...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) US--Federal Offshore Natural Gas Withdrawals from Oil Wells ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  19. Alaska--State Offshore Natural Gas Withdrawals from Oil Wells...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Alaska--State Offshore Natural Gas Withdrawals from Oil ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  20. Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Oil ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  1. Texas--State Offshore Natural Gas Withdrawals from Oil Wells...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Texas--State Offshore Natural Gas Withdrawals from Oil ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  2. Louisiana--State Offshore Natural Gas Withdrawals from Oil Wells...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Louisiana--State Offshore Natural Gas Withdrawals from Oil ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  3. Federal Offshore--Texas Natural Gas Withdrawals from Oil Wells...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Federal Offshore--Texas Natural Gas Withdrawals from Oil ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  4. U.S. Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) U.S. Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 181,241 195,869 203,990 215,815 215,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) U.S. Natural

  5. South Dakota Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) South Dakota Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 72 69 74 68 65 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) South Dakota Natural Gas

  6. New Mexico Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) New Mexico Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 12,887 13,791 14,171 14,814 14,580 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) New Mexico

  7. New York Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) New York Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 988 1,170 1,589 1,731 1,697 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) New York Natural Gas

  8. North Dakota Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) North Dakota Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,561 7,379 9,363 11,532 12,799 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) North Dakota

  9. West Virginia Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) West Virginia Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,373 2,509 2,675 2,606 2,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) West Virginia

  10. Oil/gas separator for installation at burning wells

    DOEpatents

    Alonso, Carol T.; Bender, Donald A.; Bowman, Barry R.; Burnham, Alan K.; Chesnut, Dwayne A.; Comfort, III, William J.; Guymon, Lloyd G.; Henning, Carl D.; Pedersen, Knud B.; Sefcik, Joseph A.; Smith, Joseph A.; Strauch, Mark S.

    1993-01-01

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  11. Oil/gas separator for installation at burning wells

    DOEpatents

    Alonso, C.T.; Bender, D.A.; Bowman, B.R.; Burnham, A.K.; Chesnut, D.A.; Comfort, W.J. III; Guymon, L.G.; Henning, C.D.; Pedersen, K.B.; Sefcik, J.A.; Smith, J.A.; Strauch, M.S.

    1993-03-09

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  12. Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep ... Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Indiana Natural Gas Gross ...

  13. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 ... Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Missouri Natural Gas Gross ...

  14. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million...

    Gasoline and Diesel Fuel Update

    from Oil Wells (Million Cubic Feet) Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  15. Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic...

    Gasoline and Diesel Fuel Update

    Oil Wells (Million Cubic Feet) Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

  16. Other States Natural Gas Gross Withdrawals from Oil Wells (Million...

    Annual Energy Outlook

    Oil Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 3,459 3,117 ...

  17. Illinois Natural Gas Withdrawals from Oil Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Illinois Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1 1 1 1 1 1 2 1 1 1 1...

  18. Number of Gas Producing Oil Wells (Summary)

    Energy Information Administration (EIA) (indexed site)

    2011 2012 2013 2014 2015 View History U.S. 181,241 195,869 203,990 215,815 215,867 2011-2015 Federal Offshore Gulf of Mexico 3,046 3,012 3,022 3,038 2,965 2011-2015 Alabama 346 367 402 436 414 2011-2015 Alaska 2,040 1,981 2,006 2,042 2,096 2011-2015 Arizona 1 1 1 0 1 2011-2015 Arkansas 165 174 218 233 240 2011-2015 California 25,958 26,061 26,542 26,835 27,075 2011-2015 Colorado 5,963 6,456 6,799 7,771 7,733 2011-2015 Florida 30 33 32 30 29 2011-2015 Illinois NA NA NA NA NA 2011-2015 Indiana NA

  19. How gelation affects oil well cements

    SciTech Connect

    Kieffer, J.; Rae, P.

    1987-05-01

    One of the most common problems seen in the oil industry is that of cement gelation. Gelation can be defined as a premature viscosification or a gel-strength buildup of the cement slurry. This can have important consequences in field operations and may be so severe as to cause job failure. One of the principal difficulties encountered in dealing with cement gelation is the unpredictable nature of the phenomenon and the fact that it may manifest itself under a variety of field conditions. Thus, it may occur immediately after mixing or during the displacement when the slurry has reached circulating temperature; it occasionally is seen only during shutdowns, when the slurry is in static condition, but may appear during pumping when the slurry is under continual shear. The fact that the physico-chemical bases of gelation are complex probably accounts for the broad spectrum of conditions under which gelation can occur. Factors involved include the chemical composition of the cement powder itself, its fineness, its microstructure, the mixwater quality, the types (if any) of additive used, the rate of heat flux into the slurry as well as the final temperature to which the slurry is exposed.

  20. Alcorn wells bolster Philippines oil production

    SciTech Connect

    Not Available

    1992-09-21

    This paper reports that Alcorn International Inc., Houston, is producing about 16,500 b/d of oil from West Linapacan A field in the South China Sea off the Philippines. The field's current production alone is more than fivefold the Philippines' total average oil flow of 3,000 b/d in 1991. It's part of a string of oil and gas strikes off Palawan Island that has made the region one of the hottest exploration/development plays in the Asia-Pacific theater.

  1. Program calculates economic limit for oil and gas wells

    SciTech Connect

    Juran, K.P.

    1986-10-01

    A program written for the HP-41 CV/CX computer may be used to make a quick evaluation of when an oil or gas well's production rate will cease to be economical. The article lists data necessary for performing the calculation, equations used and the programs's steps. In addition, user instructions and three sample problems are included.

  2. Dalhart's only Permian field gets best oil well

    SciTech Connect

    Not Available

    1992-07-20

    This paper reports that activity is picking up in Proctor Ranch oil field in the northwestern Texas panhandle, the only Permian producing field in the lightly drilled Dalhart basin. During the last 2 1/2 months, the field has a new operator and a new producing well, the best of five drilled since discovery in 1990. Corlena Oil Co., Amarillo, acquired the field from McKinney Oil Co. in May and tested its first well in early July. The 1-64 Proctor, 18 miles west of Channing, pumped at rates as high as 178 bd of oil and 6 b/d of water from Permian Wolfcamp dolomite perforations at 4,016-29 ft. Corlena plans to drill another well south of the field soon. The lease requires that the next well be spudded by early November. The field appears to be combination structural-stratigraphic trap in which the dolomite pinches out against the Bravo Domes-Oldham nose to the west.

  3. 9000 wells planned for heavy oil field. [Canada

    SciTech Connect

    Not Available

    1981-05-01

    Beginning in 1983, Esso Resources Canada Ltd. will begin drilling the first of an estimated 9000 directional crude bitumen wells in the tar sands at Cold Lake, Alberta, Canada, the final wells being drilled in the year 2008. The area, covering 50 sq miles of extreme E. Alberta along the Saskatchewan border, contains one of the richest deposits of heavy oil sands in Canada. The company and future partners will drill the bitumen wells directionally into the shallow clearwater formation, which can be reached at approx. 100 m (330 ft). The formation contains an estimated 80 billion bbl of crude bitumen at a rate of 60,000 bpd for 25 yr. This volume of crude will be refined in an upgrading plant to 140,000 bpd of synthetic crude oil. When completed, the Cold Lake project will be one of the largest facilities for producing crude bitumen from wells in the world.

  4. Serviceability of coiled tubing for sour oil and gas wells

    SciTech Connect

    Cayard, M.S.; Kane, R.D.

    1996-08-01

    Coiled tubing is an extremely useful tool in many well logging and workover applications in oil and gas production operations. Several important concerns regarding its use include the need for improved guidelines for the assessment of mechanical integrity, fatigue damage, and the effects of hydrogen sulfide in sour oil and gas production environments. This paper provides information regarding the use of coiled tubing in sour environments with particular emphasis on sulfide stress cracking, hydrogen induced cracking and stress-oriented hydrogen induced cracking and how they work synergistically with cyclic cold working of the steel tubing.

  5. US--State Offshore Natural Gas Withdrawals from Oil Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) US--State Offshore Natural Gas Withdrawals from Oil Wells ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  6. Downhole seal for low profile oil well pumping installations

    SciTech Connect

    James, R.G.

    1984-02-14

    Set out herein is a seal arrangement for sealing an oil well rod string below ground surface. More specifically a polished cylinder is inserted into the casing of an oil well and is supported at the well head by a flange radially extending from the upper end thereof. Received in the cylinder is a piston assembly connected at the upper surface to a flexible string or chain articulated by a pump and supporting at the lower surface a polished rod sealably extending through a lower seal fitting received in the bottom end of the polished cylinder. The cavity formed between the piston and the polished cylinder is aspirated into the well casing through a one-way check valve on the upward stroke of the piston and any oil residue that may pass through the lower sealing assembly is forced back into the well casing by another check valve opened during the downward piston stroke. Both the piston and the seal assembly may include sealing rings to improve edge contact which thus render the downhole seal less vulnerable to hot gases and abrasive impurities commonly found in the course of secondary recovery.

  7. Onsite-generated nitrogen for oil and gas well drilling

    SciTech Connect

    1995-08-01

    New equipment that can generate gaseous nitrogen at the well site has been used successfully in a variety of oil and gas well drilling applications in the US and Canada, affording the many benefits of drilling with gas or air, while also eliminating the danger of downhole fires, and/or providing significant savings over delivered liquid nitrogen. The technology involves the use of a hollow fiber membrane polymer incorporated into a skid-mounted nitrogen production unit (NPU) designed for use in oilfield conditions. Generon Systems, Inc., a wholly owned subsidiary of The Dow Chemical Co., fabricates the membrane fiber and other equipment for the NPUs. The equipment is exclusively marketed for Generon, for oil and gas applications, by Energy Technology Services Corp., of Englewood, Colorado. This paper reviews this equipment and its application to horizontal drilling. It also reviews the safety advantage of nitrogen in lost circulation zones.

  8. Federal Offshore California Natural Gas Withdrawals from Oil Wells (Million

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Oil Wells (Million Cubic Feet) Federal Offshore California Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,417 5,166 5,431 1980's 5,900 12,763 17,751 20,182 27,443 33,331 31,799 31,380 31,236 38,545 1990's 34,332 35,391 41,284 41,532 42,497 46,916 61,276 69,084 71,019 75,034 2000's 68,752 67,034 64,735 56,363 53,805 53,404 38,313 43,379 43,300 40,023 2010's 39,444 35,020 12,703

  9. OIL WELL REMEDIATION IN CLAY AND WAYNE COUNTIES, IL

    SciTech Connect

    Peter L. Dakuras; Larry Stieber; Dick Young

    2003-02-01

    This is the first technical progress report of the remediation of two wells and a water injection well in Clay County, Illinois. The location is identified as the Routt lease and the wells will be identified as the Routt No.3 and Routt No.4 respectively throughout this report. The Clay County portion of this project has met all legal, financial, and environmental requirements to drill and /or pump oil at this lease. We have also obtained all available information about this site and have taken the necessary steps to improve access roads, dig the necessary pits and build the necessary firewalls. Both wells have been drilled to the Salem formation. Gas gun technology was used to stimulate the reservoir of the Routt No.3. This report will address the technical aspects of the remediation.

  10. Horizontal oil well applications and oil recovery assessment. Volume 1: Success of horizontal well technology, Final report

    SciTech Connect

    Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

    1995-03-01

    Horizontal technology has been applied in over 110 formations in the USA. Volume I of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA. and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA. and 88 in Canada. Operators responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

  11. Successful test of new ESP technology for gassy oil wells

    SciTech Connect

    Castro, E. M.; Kalas, P.

    1998-07-01

    Problems producing high free-gas fractions through electric-submersible-pump (ESP) systems have been well-documented. When fluid flows through an ESP, gas bubbles tend to lag behind the liquid in the lower-pressure area of the impeller and gas accumulates in that area over a period of time. When the gas forms a long continuous column, the pump no longer generates a discharge pressure and the equipment shuts down because of amperage underload. The amount of gas a pump can handle without gas locking depends on stage designs and sizes. Smaller pumps with radial stages have been known to handle 10 to 15 vol% free gas, and larger pumps with mixed-flow staging can tolerate 20 to 25 vol%. Today many ESP applications require smaller pumps to handle 30 to 50 vol% free gas and larger pumps to handle 40 to 60 vol%. Wells in Lake Maracaibo have high gas/oil ratios, and their production by use of a standard ESP configuration was not considered a feasible option. The wells are currently on gas lift, but their production is declining and gas for gas lift is expensive. If a newly developed advanced gas-handling (AGH) system can enable an ESP to handle at least 40 vol% free gas, it would be a production option for these wells.

  12. Nevada Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead Value Nevada Natural Gas Wellhead Value and Marketed Production

    Year Jan Feb Mar Apr May Jun Jul Aug Sep

  13. Portable water filtration system for oil well fractionation

    SciTech Connect

    Seibert, D. L.

    1985-08-13

    The invention comprises a portable, multi-stage filtration system utilized in filtering water for an oil and gas stimulation process commonly known as fracking. Three stages are used, the first being a straining operation reducing the size of particulate matter in the water to about three-eighths of an inch. The second stage is a centrifugal separator, reducing the particle size to about 50 microns. The final stage utilizes a cartridge-type filter giving a final particle size in the water of about 5 microns. In this manner, water which is injected into the well head during the fracking process and which is obtained from readily available sources such as ponds, streams and the like is relatively free of particulate matter which can foul the fracking process. The invention, by virtue of being mounted on a trailer, is portable and thus can be easily moved from site to site. Water flow rates obtained using the invention are between 250 and 300 gallons per minute, sufficient for processing a small to medium sized well.

  14. U.S. Average Depth of Crude Oil Exploratory Wells Drilled (Feet per Well)

    Gasoline and Diesel Fuel Update

    Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 4,232 1950's 4,335 4,609 4,781 4,761 4,740 4,819 4,901 5,036 4,993 5,021 1960's 5,170 5,099 5,124 4,878 5,509 5,672 5,700 5,758 5,914 6,054 1970's 6,247 5,745 5,880 6,243 5,855 5,913 6,010 5,902 6,067 6,011 1980's 5,727 5,853 5,504 5,141 5,565 5,865 6,069 6,104 6,182 6,028 1990's 6,838 6,641 6,930 6,627 6,671

  15. DOE - Fossil Energy: An Introduction to Oil Well Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    use each day? To find out... READ ON.... FORWARD Dr. H. Carbon asks: Which state produces the most crude oil? ALASKA Alaska TEXAS Texas LOUISIANA Louisiana CALIFORNIA California

  16. Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0

  17. Fiber optic penetrator for offshore oil well exploration and production

    SciTech Connect

    Collins, J.C.; Warner, C.P.; Henkener, J.A.; Glauser, R.

    1986-07-01

    A fiber optic penetrator arrangement is described for an undersea wall structure of offshore oil well production apparatus, comprising: a. a generally cylindrical housing; b. a cofferdam associated with the undersea production apparatus and defining a generally cylindrical entrance port into which the penetrator is designed to be inserted and mounted; c. a sealing means for sealing the penetrator relative to the entrance port after insertion of the penetrator therein; d. an external bulkhead; e. a second bulkhead positioned internally of the external bulkead; f. a compression spring normally retaining the second bulkhead in a sealed position with the penetrator, the compressing spring being compressed between the second bulkhead and the external bulkhead; g. a breakaway connection affixed to the external bulkhead for coupling an optical fiber transmission cable to the external bulkhead, such that if the transmission cable is snagged or pulled, the external bulkhead will sever along with the breakaway connection so that the penetrator is not pulled from the cofferdam entrance port, the second bulkhead being held in position by ambient water pressure to become the primary bulkhead after the external bulkhead is severed.

  18. Horizontal oil well applications and oil recovery assessment. Volume 2: Applications overview, Final report

    SciTech Connect

    Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

    1995-03-01

    Horizontal technology has been applied in over 110 formations in the USA. Volume 1 of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA and 88 in Canada. Operators` responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

  19. Missouri Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    NA NA NA 9 3 1 1967-2015 From Gas Wells NA NA NA 8 3 1 1967-2015 From Oil Wells NA NA NA 1 * 0 2007-2015 From Shale Gas Wells NA NA NA 0 0 0 2007-2015 From Coalbed Wells NA NA NA 0 0 0 2007-2015 Repressuring NA NA NA 0 0 0 2007-2015 Vented and Flared NA NA NA 0 0 0 2007-2015 Nonhydrocarbon Gases Removed NA NA NA 0 0 0 2007-2015 Marketed Production NA NA NA 9 3 1 1967-2015 Dry Production NA NA NA 9 3 Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0

  20. Laser Oil and Gas Well Drilling Demonstration Videos

    DOE Data Explorer

    ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into

  1. Acoustic Energy: An Innovative Technology for Stimulating Oil Wells

    SciTech Connect

    Edgar, Dorland E.; Peters, Robert W.; Johnson, Donald O.; Paulsen, P. David; Roberts, Wayne

    2006-04-30

    The objective of this investigation was to demonstrate the effectiveness of sonication in reducing the viscosity of heavy crude oils. Sonication is the use of acoustic or sound energy to produce physical and/or chemical changes in materials, usually fluids. The goal of the first project phase was to demonstrate a proof of concept for the project objective. Batch tests of three commercially available, single-weight oils (30-, 90-, and 120-wt) were performed in the laboratory. Several observations and conclusions were made from this series of experiments. These include the following: (1) In general, the lower the acoustic frequency, the greater the efficiency in reducing the viscosity of the oils; (2) Sonication treatment of the three oils resulted in reductions in viscosity that ranged from a low of 31% to a high of 75%; and (3) The results of the first phase of the project successfully demonstrated that sonication could reduce the viscosity of oils of differing viscosity. The goal of the second project phase was to demonstrate the ability of sonication to reduce the viscosity of three crude oils ranging from a light crude to a heavy crude. The experiments also were designed to examine the benefits of two proprietary chemical additives used in conjunction with sonication. Acoustic frequencies ranging from 800 Hz to 1.6 kHz were used in these tests, and a reactor chamber was designed for flow-through operation with a capacity of one gallon (3.8 liters). The three crude oils selected for use in the testing program were: (1) a heavy crude from California with a viscosity of approximately 65,000 cP (API gravity about 12{sup o}), (2) a crude from Alabama with a significant water content and a viscosity of approximately 6,000 cP (API gravity about 22 {sup o}), and (3) a light crude from the Middle East with a viscosity of approximately 700 cP (API gravity about 32{sup o}). The principal conclusions derived from the second project phase include the following: (1) The

  2. Wetland treatment of oil and gas well waste waters. Final report

    SciTech Connect

    Kadlec, R.; Srinivasan, K.

    1995-08-01

    Constructed wetlands are small on-site systems that possess three of the most desirable components of an industrial waste water treatment scheme: low cost, low maintenance and upset resistance. The main objective of the present study is to extend the knowledge base of wetland treatment systems to include processes and substances of particular importance to small, on-site systems receiving oil and gas well wastewaters. A list of the most relevant and comprehensive publications on the design of wetlands for water quality improvement was compiled and critically reviewed. Based on our literature search and conversations with researchers in the private sector, toxic organics such as Phenolics and b-naphthoic acid, (NA), and metals such as CU(II) and CR(VI) were selected as target adsorbates. A total of 90 lysimeters equivalent to a laboratory-scale wetland were designed and built to monitor the uptake and transformation of toxic organics and the immobilization of metal ions. Studies on the uptake of toxic organics such as phenol and b-naphthoic acid (NA) and heavy metals such as Cu(II) and Cr(VI), the latter two singly or as non-stoichiometric mixtures by laboratory-type wetlands (LWs) were conducted. These LWs were designed and built during the first year of this study. A road map and guidelines for a field-scale implementation of a wetland system for the treatment of oil and gas wastewaters have been suggested. Two types of wetlands, surface flow (SF) and sub surface flow (SSF), have been considered, and the relative merits of each configuration have been reviewed.

  3. Wireless technology collects real-time information from oil and gas wells

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wireless technology collects real-time information from oil and gas wells Wireless technology collects real-time information from oil and gas wells The patented system delivers continuous electromagnetic data on the reservoir conditions, enabling economical and effective monitoring and analysis. April 3, 2012 One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas

  4. Serviceability of coiled tubing for sour oil and gas wells

    SciTech Connect

    1997-06-01

    Hydrogen sulfide (H{sub 2}S) can reduce useful coiled-tubing (CT) life by strength degradation through a combination of hydrogen blistering, hydrogen-induced cracking (HIC), stress-oriented hydrogen-induced cracking (SOHIC), sulfide-stress cracking (SSC), and possible weight-loss corrosion. These effects may work synergistically with the cyclic cold working of the steel that takes place during spooling and running. Prior studies on carbon steels have shown that cold work may significantly reduce the SSC threshold stresses. To develop a CT performance database, CLI Intl. Inc. conducted a multiclient program to increase understanding of the combined effects of strain cycling and resistance of CT to cracking in H{sub 2}S environments. The program was supported by 14 sponsors consisting of major oil and gas companies, service companies, CT manufacturers, and materials suppliers.

  5. Illinois Natural Gas Number of Oil Wells (Number of Elements)

    Gasoline and Diesel Fuel Update

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 295,869 - = No Data Reported; -- = Not Applicable; NA =

  6. SMOOTH OIL & GAS FIELD OUTLINES MADE FROM BUFFERED WELLS

    Energy Information Administration (EIA) (indexed site)

    The VBA code provided at the bottom of this document is an updated version (from ArcGIS ... but with "smu" suffix added to name. The first layer must contain the well points ...

  7. DISTRIBUTED GENERATION POWER UNITS AT MARGINAL OIL WELL SITES

    SciTech Connect

    Mark A. Carl

    2003-10-29

    The CEC approved funding on April 9, 2003 for $1,000,000.00 instead of the $1,500,000.00 COPE requested for the project. A kickoff meeting with the California Energy Commission (CEC) was held on Monday, April 14, 2003, in their Sacramento, CA offices. Mark Carl, IOGCC project manager for the DOE grant, attended this meeting, along with Bob Fickes with COPE, Edan Prabhu, Mike Merlo and CEC officials. The change in funding by the CEC required a modification in the scope of work and an amended form DOE F 4600.1. The modifications were completed and the IOGCC received approval to commence work on the project on May 9, 2003. On May 29, 2003, Virginia Weyland with DOE/NETL, Mark Carl with IOGCC, and Bob Fickes with COPE, Edan Prabhu and Mike Merlo, consultants with COPE, participated in a teleconference kick-off meeting. During May, 2003, COPE canvassed its membership for potential locations for the four test sites. They received a very good response and have identified at least two potential sites for each of the four test sites. COPE has been obtaining gas samples from the various potential lease sites for analyses to verify the chemical properties analyses which the oil and gas producers provided during the initial contact period. The St. James project located at 814 W. 23 rd Street in Los Angeles, California, was selected as the first test site for the project. A Project Advisory Committee (PAC) was established in May, 2003. The following representatives from each of the following areas of expertise comprise the PAC membership. Acquisition of permits for the initial test site has required drawn out negotiations with CEC which has hindered progress on the technical aspects of the project. The technical aspects will begin aggressively beginning in October, 2003. The Southern California Air Quality Management District (SCAQMD) donated three Capstone micro-turbines to the project. These micro-turbines will be utilized at the St. James Project site located in Los Angeles

  8. Drilling and operating oil, gas, and geothermal wells in an H/sub 2/S environment

    SciTech Connect

    Dosch, M.W.; Hodgson, S.F.

    1981-01-01

    The following subjects are covered: facts about hydrogen sulfides; drilling and operating oil, gas, and geothermal wells; detection devices and protective equipment; hazard levels and safety procedures; first aid; and H/sub 2/S in California oil, gas, and geothermal fields. (MHR)

  9. Method and apparatus for stimulating oil well production

    SciTech Connect

    Brieger, E.F.

    1981-08-25

    A system for cleaning perforations in a well bore where the perforations are located below a packer means on a production tubing. A tool on a string of pipe has packer means for sealing off the cross-section of the production tubing and the pressure in the annulus between the string of pipe and production tubing is reduced. The tool has a bypass passage across the packer means which opens upon the reaching of a predetermined pressure across the packer means and the high volume pressure from the earth formations suddenly flows through the tool and cleaning of the perforations is effected.

  10. Packer arrangements for oil wells and the like

    DOEpatents

    Harvey, Andrew C.; McFadden, David H.

    1981-11-24

    The packer includes an elongated tubular casing, and a metal ring is disposed in its entirety within an annular recess in the casing. The recess has a circumferential opening extending entirely around the peripheral outer surface of the casing. Hydraulic fluid is flowed into the recess to apply pressure to the inner peripheral surface of the metal ring to expand the ring radially outwardly and force its outer peripheral surface through the circumferential opening and into annular sealing engagement with the opposed surface of the well casing.

  11. Table 4.6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010

    Energy Information Administration (EIA) (indexed site)

    6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010 Year Wells Drilled Successful Wells Footage Drilled 1 Average Footage Drilled Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Number Percent Thousand Feet Feet per Well 1949 1,406 424 7,228 9,058 20.2 5,950 2,409 26,439 34,798 4,232 5,682 3,658 3,842 1950 1,583 431 8,292 10,306 19.5 6,862 2,356 30,957 40,175 4,335 5,466 3,733 3,898 1951 1,763 454 9,539

  12. The drilling of a horizontal well in a mature oil field

    SciTech Connect

    Rougeot, J.E.; Lauterbach, K.A.

    1991-01-01

    This report documents the drilling of a medium radius horizontal well in the Bartlesville Sand of the Flatrock Field, Osage County, Oklahoma by Rougeot Oil and Gas Corporation (Rougeot) of Sperry, Oklahoma. The report includes the rationale for selecting the particular site, the details of drilling the well, the production response, conclusions reached, and recommendations made for the future drilling of horizontal wells. 11 figs., 2 tabs.

  13. Federal Offshore--Gulf of Mexico Natural Gas Number of Oil Wells (Number of

    Gasoline and Diesel Fuel Update

    Condensate Wells (Number of Elements) Gas and Gas Condensate Wells (Number of Elements) Federal Offshore--Gulf of Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 NA 2000's NA 3,271 3,245 3,039 2,781 2,123 2,419 2,552 1,527 1,984 2010's 1,852 2,226 1,892 1,588 1,377 1,163 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  14. Impacts of an oil well blowout near Trecate, Italy on ecological resources

    SciTech Connect

    Brandt, C.; Becker, J.; Dauble, D.

    1995-12-31

    An ecological risk assessment (ERA) was conducted after the February 1995 blowout of an oil well near Trecate, Italy to quantify injuries to terrestrial and aquatic biological resources from effects of oil and habitat changes. Avian surveys were conducted on a surrogate area near Varallino to estimate species and numbers potentially exposed to oil and displaced by habitat alteration in the affected area. Of the 43 avian species observed, 20 are considered protected by European Community laws. The most abundant species were passero domestico, fringuello, cornacchia grigia, rondine, piccione torraiolo, and cardellino. These species likely suffered the greatest losses due to inhalation of volatile aromatics, dermal loading of oil, and/or habitat loss in the affected area. Based on CHARM model outputs, inhalation exposures to volatile aromatics and oil aerosols occurred above LOELs for all receptors within 2 km of the blowout. The most significant exposure pathway to large birds was dermal loading, which likely exceeded LC50 levels within 900m of the well. Terrestrial insects seldom contained detectable levels of PAHs, consistent with their shorter life span and residence time in the contaminated area. The highest concentrations of PAHs were found in dike vegetation, frogs, and benthic invertebrates. Ingestion exposures of woodmice to PAHs exceeded toxic reference levels at one site and mice had EHQ = >1 at soil PAH concentrations >4.2 mg/kg. Based on known body burdens causing narcotic response, neither fish nor benthic invertebrates experienced toxic consequences from exposure to PAHs in irrigation canal sediments.

  15. Pompano subsea development -- TFL well design for deepwater unconsolidated waxy oil reservoirs

    SciTech Connect

    Holt, J.; Black, J.W.; Meader, A.; Whitehead, N.

    1996-12-31

    BP Exploration`s Pompano subsea development, in 1,865 ft of water uses a subsea production system to produce oil to a host platform 4.5 miles away. This paper describes the well construction and completion design for a template/manifold Through Flowline (TFL) subsea oil production system. Included are an outline of the rig upgrade requirements, casing design, completion design, and simultaneous operations strategy. It will provide a useful guide for drilling staff involved in planning and execution of a subsea development.

  16. Reducing or stopping the uncontrolled flow of fluid such as oil from a well

    DOEpatents

    Hermes, Robert E

    2014-02-18

    The uncontrolled flow of fluid from an oil or gas well may be reduced or stopped by injecting a composition including 2-cyanoacrylate ester monomer into the fluid stream. Injection of the monomer results in a rapid, perhaps instantaneous, polymerization of the monomer within the flow stream of the fluid. This polymerization results in formation of a solid plug that reduces or stops the flow of additional fluid from the well.

  17. U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled

    Gasoline and Diesel Fuel Update

    (Dollars per Foot) Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 61.83 60.39 61.71 58.22 58.11 59.64 64.51 66.84 67.56 67.15 1970's 68.42 65.82 68.82 70.65 83.31 97.34 100.66 109.49 123.76 136.64 1980's 142.52 159.51 173.34 127.81 106.27 108.09 107.90 80.21 92.78 93.63 1990's 93.23 97.86

  18. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOEpatents

    Vail, III, William B.

    1997-01-01

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation.

  19. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOEpatents

    Vail, W.B. III

    1997-05-27

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie`s Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. 7 figs.

  20. U.S. Crude Oil and Natural Gas Active Well Service Rigs in operation

    Gasoline and Diesel Fuel Update

    Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Ethylene Propane/Propylene Propylene (Nonfuel Use) Normal Butane/Butylene Refinery Grade Butane Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils,

  1. U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled

    Gasoline and Diesel Fuel Update

    (Thousand Dollars per Well) Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 54.9 54.5 58.6 55.0 55.8 60.6 68.4 72.9 81.5 88.6 1970's 94.9 94.7 106.4 117.2 138.7 177.8 191.6 227.2 280.0 331.4 1980's 367.7 453.7 514.4 371.7 326.5 349.4 364.6 279.6 354.7 362.2 1990's 383.6 421.5 382.6 426.8 483.2

  2. Transient aspects of unloading oil and gas wells with coiled tubing

    SciTech Connect

    Gu, H.

    1995-12-31

    Unloading oil and gas wells with coiled tubing (CT) conveyed nitrogen circulation is a transient process in which the original heavier fluid in a wellbore is displaced by nitrogen and lighter reservoir fluid. The transient aspects need to be considered when determining nitrogen volume and operation time for unloading a well. A computer wellbore simulator has been developed and used to study the transient effects. The simulator includes transient multiphase mass transport and takes into account the different fluids in the wellbore and from the reservoir. The simulator also includes the gas rise in the wellbore liquid below the CT and can be used for gas well unloading. The transient results of oil and gas well unloading are presented. The effects of CT size and depth, workover fluid, and nitrogen rate and volume on unloading are discussed. Unlike continuous gas lift, the total gas volume needed and the operation time in an unloading process can only be determined and optimized based on a transient analysis.

  3. Production optimization of sucker rod pumping wells producing viscous oil in Boscan field, Venezuela

    SciTech Connect

    Guirados, C.; Sandoval, J.; Rivas, O.; Troconis, H.

    1995-12-31

    Boscan field is located in the western coast of Maracaibo lake and is operated by Maraven S.A., affiliate of Petroleos de Venezuela S.A. It has 315 active wells, 252 of which are produced with sucker rod pumping. Other artificial lift methods currently applied in this field are hydraulic (piston) pumping (39 wells) and ESP (24 wells). This paper presents the results of the production optimization of two sucker rod pumping wells of Boscan field producing viscous oil. This optimization has been possible due to the development of a new production scheme and the application of system analysis in completion design. The new production scheme involves the utilization of a subsurface stuffing box assembly and a slotted housing, both designed and patented by Intevep S.A., affiliate of Petroleos de Venezuela S.A. The completion design method and software used in the optimization study were also developed by Intevep S.A. The new production scheme and design method proved to be effective in preventing the causes of the above mentioned problems, allowing the increase of oil production under better operating conditions.

  4. California--State Offshore Natural Gas Withdrawals from Oil Wells (Million

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Oil Wells (Million Cubic Feet) California--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11,226 12,829 1980's 11,634 11,759 12,222 12,117 12,525 13,378 12,935 10,962 9,728 8,243 1990's 7,743 7,610 7,242 6,484 7,204 5,904 6,309 7,171 6,883 6,738 2000's 7,808 7,262 7,068 6,866 6,966 6,685 6,654 6,977 6,764 5,470 2010's 5,483 4,904 4,411 5,057 5,395 4,692 - = No Data

  5. U.S. Nominal Cost per Foot of Crude Oil Wells Drilled (Dollars per Foot)

    Gasoline and Diesel Fuel Update

    Oil Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 13.22 13.11 13.41 13.20 13.12 13.94 15.04 16.61 18.63 19.28 1970's 19.29 18.41 20.77 22.54 27.82 34.17 37.35 41.16 49.72 58.29 1980's 66.36 80.40 86.34 72.65 66.32 66.78 68.35 58.35 62.28 64.92 1990's 69.17 73.75 69.50 67.52 70.57 78.09 70.60 90.48 108.88 156.45 2000's 125.96 153.72 194.55 221.13 298.45

  6. U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled

    Gasoline and Diesel Fuel Update

    (Dollars per Foot) Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 13.01 12.85 13.31 12.69 12.86 13.44 14.95 15.97 16.83 17.56 1970's 18.84 19.03 20.76 22.50 28.93 36.99 40.46 46.81 56.63 67.70 1980's 77.02 94.30 108.73 83.34 71.90 75.35 76.88 58.71 70.23 73.55 1990's 76.07 82.64 70.27 75.30 79.49 87.22

  7. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOEpatents

    Vail, III, William Banning

    2000-01-01

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. Resistivity measurements are obtained from within the cased well by conducting A.C. current from within the cased well to a remote electrode at a frequency that is within the frequency range of 0.1 Hz to 20 Hz.

  8. Dual-completion design for HP/HT corrosive oil well, Villafortuna-Trecate Italy

    SciTech Connect

    Cerruti, S.E.

    1994-12-31

    Villafortuna-Trecate (Italy) oil field is one of the deepest hydrocarbon deposit in production with a reservoir pressure over 15 Ksi, bottom hole temperature in the range of 380 F and corrosive environment due the presence of carbon dioxide and hydrogen sulfide in the production fluids. The design of Villafortuna-Trecate completions requested effort in the selection of appropriate equipment and materials that would enhance the safety, longevity and production capacity of the wells. The paper will discuss the dual completion design outlining the supporting logic and concepts together with the equipment innovations utilized. It includes discussion on tubing material and design, tubing connection, wellhead equipment, completion schemes and related equipment, annulus fluid and displacement technique. Quality control aspects are also discussed. It should serve as a general example of conditions unique to deep, high pressure, high temperature corrosive wells and should be of interest to engineers facing a similar task.

  9. U.S. Footage Drilled for Crude Oil Exploratory and Developmental Wells

    Gasoline and Diesel Fuel Update

    (Thousand Feet) and Developmental Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil Exploratory and Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 79,428 1950's 92,695 95,106 98,148 102,136 113,362 121,148 120,352 110,043 93,105 94,611 1960's 86,568 85,626 88,431 81,809 80,463 73,322 67,340 58,634 59,517 61,582 1970's 56,859 49,109 49,269 44,416 52,025 66,819 68,892 75,451 77,041 82,688 1980's 125,262 172,167

  10. U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory Wells

    Gasoline and Diesel Fuel Update

    (Thousand Feet) Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 34,798 1950's 40,175 49,344 55,615 60,664 59,601 69,206 74,337 69,181 61,484 63,253 1960's 55,831 54,442 53,616 53,485 55,497 49,204 55,709 47,839 50,958 57,466 1970's 43,530 41,895 44,956 45,618 51,315 54,677 53,617 57,949 65,197 63,096 1980's 74,288 101,808 88,856 69,690 80,853

  11. Well blowout rates in California Oil and Gas District 4--Update and Trends

    SciTech Connect

    Jordan, Preston D.; Benson, Sally M.

    2009-10-01

    Well blowouts are one type of event in hydrocarbon exploration and production that generates health, safety, environmental and financial risk. Well blowouts are variously defined as 'uncontrolled flow of well fluids and/or formation fluids from the wellbore' or 'uncontrolled flow of reservoir fluids into the wellbore'. Theoretically this is irrespective of flux rate and so would include low fluxes, often termed 'leakage'. In practice, such low-flux events are not considered well blowouts. Rather, the term well blowout applies to higher fluxes that rise to attention more acutely, typically in the order of seconds to days after the event commences. It is not unusual for insurance claims for well blowouts to exceed US$10 million. This does not imply that all blowouts are this costly, as it is likely claims are filed only for the most catastrophic events. Still, insuring against the risk of loss of well control is the costliest in the industry. The risk of well blowouts was recently quantified from an assembled database of 102 events occurring in California Oil and Gas District 4 during the period 1991 to 2005, inclusive. This article reviews those findings, updates them to a certain extent and compares them with other well blowout risk study results. It also provides an improved perspective on some of the findings. In short, this update finds that blowout rates have remained constant from 2005 to 2008 within the limits of resolution and that the decline in blowout rates from 1991 to 2005 was likely due to improved industry practice.

  12. U.S. Average Depth of Crude Oil Exploratory and Developmental Wells Drilled

    Gasoline and Diesel Fuel Update

    (Feet per Well) and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,720 1950's 3,893 4,103 4,214 4,033 4,028 3,981 3,942 4,021 3,916 3,935 1960's 3,889 3,994 4,070 4,063 4,042 4,059 4,013 3,825 4,153 4,286 1970's 4,385 4,126 4,330 4,369 3,812 3,943 3,895 4,025 4,017 3,966 1980's 3,801 3,923 3,793 3,662 3,791 3,906 3,999

  13. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental Wells

    Gasoline and Diesel Fuel Update

    Drilled (Feet per Well) Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,568 1950's 3,691 3,851 3,999 3,880 3,905 3,904 3,880 3,966 3,907 3,999 1960's 4,020 4,064 4,227 4,193 4,179 4,288 4,112 4,004 4,328 4,431 1970's 4,610 4,480 4,590 4,687 4,249 4,285 4,214 4,404 4,421 4,374 1980's 4,166 4,209 4,225 4,004 4,125

  14. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory Wells

    Gasoline and Diesel Fuel Update

    Drilled (Feet per Well) Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,842 1950's 3,898 4,197 4,476 4,557 4,550 4,632 4,587 4,702 4,658 4,795 1960's 4,770 4,953 4,966 5,016 5,174 5,198 5,402 5,388 5,739 5,924 1970's 5,885 5,915 6,015 5,955 5,777 5,842 5,825 5,798 5,978 5,916 1980's 5,733 5,793 5,597 5,035 5,369 5,544 5,680 5,563

  15. Well-to-Wheels Greenhouse Gas Emissions of Canadian Oil Sands...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    This range can be compared to 4.4 g CO2eMJ for U.S. conventional crude oil recovery. Depending on the extraction technology and product type output of oil sands projects, the ...

  16. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOEpatents

    Vail, W.B. III.

    1993-02-16

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  17. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOEpatents

    Vail, III, William B.

    1993-01-01

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  18. Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Using Geothermal Fluid Coproduced from Oil and/or Gas Wells PI - Bernie Karl Chena Hot Springs Resort Track 1 Project Officer: Eric Hass Total Project Funding: $724,000 April 22, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research Project Objectives * Design, build, and operate low temperature, mobile, geothermal power plant capable of co-producing off oil/gas wells *

  19. Economic Recovery of Oil Trapped at Fan Margins Using Hig Angle Wells Multiple Hydraulic Fractures

    SciTech Connect

    Laue, M.L.

    1997-11-21

    The Yowlumne field is a giant field in the southern San Joaquin basin, Kern County, California. It is a deep (13,000 ft) waterflood operation that produces from the Miocene- aged Stevens Sand. The reservoir is interpreted as a layered, fan-shaped, prograding turbidite complex containing several lobe-shaped sand bodies that represent distinct flow units. A high ultimate recovery factor is expected, yet significant quantities of undrained oil remain at the fan margins. The fan margins are not economic to develop using vertical wells because of thinning pay, deteriorating rock quality, and depth. This project attempts to demonstrate the effectiveness of exploiting the northeast distal fan margin through the use of a high- angle well completed with multiple hydraulic- fracture treatments. A high-angle well offers greater pay exposure than can be achieved with a vertical well. Hydraulic-fracture treatments will establish vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at a cost of approximately two vertical wells. The near-horizontal well penetrated the Yowlumne sand; a Stevens sand equivalent, in the distal fan margin in the northeast area of the field. The well was drilled in a predominately westerly direction towards the interior of the field, in the direction of improving rock quality. Drilling and completion operations proved to be very challenging, leading to a number of adjustments to original plans. Hole conditions resulted in obtaining less core material than desired and setting intermediate casing 1200 ft too high. The 7 in. production liner stuck 1000 ft off bottom, requiring a 5 in. liner to be run the rest of the way. The cement job on the 5 in. liner resulted in a very poor bond, which precluded one of three hydraulic fracture treatments originally planned for the well. Openhole logs confirmed most expectations going into the project about basic

  20. H.R. 577: A Bill to amend the Internal Revenue Code of 1986 to provide a tax credit for the production of oil and gas from existing marginal oil and gas wells and from new oil and gas wells. Introduced in the House of Representatives, One Hundred Fourth Congress, First session

    SciTech Connect

    1995-12-31

    This document contains H.R. 577, A Bill to amend the Internal Revenue Code of 1986 to provide a tax credit for the production of oil and gas from existing marginal oil and gas wells and from new oil and gas wells. This Bill was introduced in the House of Representatives, 104th Congress, First Session, January 19, 1995.

  1. S.32: A Bill to amend the Internal Revenue Code of 1986 to provide a tax credit for the production of oil and gas from existing marginal oil and gas wells and from new oil and gas wells. Introduced in the Senate of the United States, One Hundred Fourth Congress, First session

    SciTech Connect

    1995-12-31

    This bill would establish tax credits for the production of oil and natural gas from existing marginal oil or gas wells, and from new oil and gas wells. It does so by adding a section to the Internal Revenue Code of 1986 which spells out the rules, the credit amounts, the scope of the terms used to define such facilities, and other rules.

  2. U.S. Footage Drilled for Crude Oil Exploratory Wells (Thousand Feet)

    Gasoline and Diesel Fuel Update

    Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 5,950 1950's 6,862 8,125 8,491 9,432 9,409 10,774 11,111 9,794 8,712 8,545 1960's 6,829 5,900 6,205 6,409 6,715 5,366 6,817 5,678 5,642 6,563 1970's 4,729 3,786 4,028 4,008 5,029 5,806 6,527 6,870 7,105 7,941 1980's 10,177 15,515 13,413 10,437 12,294 9,854 6,579 5,652 5,286 3,659 1990's 5,320 4,469 3,957 3,572 3,970 3,934

  3. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0

  4. Electric Power Generation from Coproduced Fluids from Oil and Gas Wells

    Energy.gov [DOE]

    The primary objective of this project is to demonstrate the technical and economic feasibility of generating electricity from non-conventional low temperature (150 to 300º F) geothermal resources in oil and gas settings.

  5. Table 4.7 Crude Oil and Natural Gas Development Wells, 1949-2010

    Energy Information Administration (EIA) (indexed site)

    ... and Table 4.6 for exploratory wells only. * Service wells, stratigraphic tests, and core tests are excluded. * For 19491959, data represent wells completed in a given year. ...

  6. Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas

    Energy.gov [DOE]

    Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas.

  7. Geological reasons for rapid water encroachment in wells at Sutorma oil field

    SciTech Connect

    Arkhipov, S.V.; Dvorak, S.V.; Sonich, V.P.; Nikolayeva, Ye.V.

    1987-12-01

    The Sutorma oil field on the northern Surgut dome is one of the new fields in West Siberia. It came into production in 1982, but already by 1983 it was found that the water contents in the fluids produced were much greater than the design values. The adverse effects are particularly pronounced for the main reservoir at the deposit, the BS/sub 10//sup 2/ stratum. Later, similar problems occurred at other fields in the Noyarbr and Purpey regions. It is therefore particularly important to elucidate the geological reasons for water encroachment.

  8. Nano-chemo-mechanical signature of conventional oil-well cement systems: Effects of elevated temperature and curing time

    SciTech Connect

    Krakowiak, Konrad J.; Thomas, Jeffrey J.; Musso, Simone; James, Simon; Akono, Ange-Therese; Ulm, Franz-Josef

    2015-01-15

    With ever more challenging (T,p) environments for cementing applications in oil and gas wells, there is a need to identify the fundamental mechanisms of fracture resistant oil well cements. We report results from a multi-technique investigation of behavior and properties of API class G cement and silica-enriched cement systems subjected to hydrothermal curing from 30 °C to 200 °C; including electron probe microanalysis, X-ray diffraction, thermogravimetry analysis, electron microscopy, neutron scattering (SANS), and fracture scratch testing. The results provide a new insight into the link between system chemistry, micro-texture and micro-fracture toughness. We suggest that the strong correlation found between chemically modulated specific surface and fracture resistance can explain the drop in fracture properties of neat oil-well cements at elevated temperatures; the fracture property enhancement in silica-rich cement systems, between 110° and 175 °C; and the drop in fracture properties of such systems through prolonged curing over 1 year at 200 °C.

  9. U.S. Crude Oil Developmental Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update

    Wet (Billion Cubic Feet) Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,289 5,631 5,477 5,639 2000's 5,195 6,628 6,573 5,903 5,416 6,271 6,045 6,890 6,680 7,615 2010's 9,099 13,260 19,550 22,218 27,240 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. U.S. Crude Oil Developmental Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) U.S. Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 91 1990's 196 348 539 752 851 956 1,003 1,090 1,194 1,252 2000's 1,379 1,562 1,614 1,600 1,720 1,732 1,758 1,753 1,966 1,914 2010's 1,886 1,763 1,655 1,466 1,404 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  11. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures

    SciTech Connect

    Mike L. Laue

    1997-05-30

    The distal fan margin in the northeast portion of the Yowlumne field contains significant reserves but is not economical to develop using vertical wells. Numerous interbedded shales and deteriorating rock properties limit producibility. In addition, extreme depths (13,000 ft) present a challenging environment for hydraulic fracturing and artificial lift. Lastly, a mature waterflood increases risk because of the uncertainty with size and location of flood fronts. This project attempts to demonstrate the effectiveness of exploiting the distal fan margin of this slope-basin clastic reservoir through the use of a high-angle well completed with multiple hydraulic-fracture treatments. The combination of a high-angle (or horizontal) well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at one-half to two-thirds the cost.

  12. Oil

    Energy.gov [DOE]

    The Energy Department works to ensure domestic and global oil supplies are environmentally sustainable and invests in research and technology to make oil drilling cleaner and more efficient.

  13. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic fractures.

    SciTech Connect

    Laue, M.L.

    1997-08-31

    The long radius, near-horizontal well has been drilled and completion operations are in progress. Upon initial review of log data, two hydraulic fracture treatments were planned. However, the probability of the lower frac growing into thick sands previously swept by waterflood has called for additional information to be obtained prior to proceeding with hydraulic fracture treatments. Should permeabilities prove to be as favorable as some data indicate, produced water volumes could be excessively high. Prior to pumping the first frac, the well will be perforated and produced from lower pay intervals. These perfs will not impact future frac work. Rate data and pressure transient analysis will dictate the need for the lower frac.

  14. Characterization study of lower Lagunillas member, Block IV, Lake Maracaibo. Application of horizontal well to revive a mature oil field

    SciTech Connect

    Coll, C.; Gamero, H.; Jimenez, Z. )

    1996-01-01

    The Lower Lagunillas is one of the largest reservoirs in Venezuela located in Block IV in the Lake Maracaibo Basin in Zulia State in Western Venezuela. The estimated remaining reserves are 270 MMSTB. A multidisciplinary, integrated reservoir characterization study was performed to evaluate reservoir heterogeneity and fluid flow dynamics in fine scale. The majority of the remaining reserves are in the form of oil bypassed in the low resistivity pay zones. These zones were identified by the now core-log calibration performed in this area. Significant pressure decline from the initial 4200 psi to 1400 psi has prompted us to explore new development strategy of selective drilling of horizontal wells. A key step in the study was acquisition and integration of new geoscience, well log and pressure data. The available geology, geophysics, sedimentology and petrophysics were integrated and loaded on to a 3-D visualization package for correlating and validating the various lithofacies with petrophysics and sedimentology. The resulting reservoir model was exported to a flow simulator for developing a dynamic simulation model. A target layer was selected based on the results of the characterization study and risk assessment strategy. A pilot well was drilled in the reservoir to acquire new data and information. These information were processed to evaluate the borehole stability, petrophysical properties, location of the fluid phases, pressure behavior and target zone. The processed data were utilized to confirm the location and to develop the completion diagram of the horizontal well.

  15. Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide

    SciTech Connect

    Jordan, Preston; Jordan, Preston D.; Benson, Sally M.

    2008-05-15

    Well blowout rates in oil fields undergoing thermally enhanced recovery (via steam injection) in California Oil and Gas District 4 from 1991 to 2005 were on the order of 1 per 1,000 well construction operations, 1 per 10,000 active wells per year, and 1 per 100,000 shut-in/idle and plugged/abandoned wells per year. This allows some initial inferences about leakage of CO2 via wells, which is considered perhaps the greatest leakage risk for geological storage of CO2. During the study period, 9% of the oil produced in the United States was from District 4, and 59% of this production was via thermally enhanced recovery. There was only one possible blowout from an unknown or poorly located well, despite over a century of well drilling and production activities in the district. The blowout rate declined dramatically during the study period, most likely as a result of increasing experience, improved technology, and/or changes in safety culture. If so, this decline indicates the blowout rate in CO2-storage fields can be significantly minimized both initially and with increasing experience over time. Comparable studies should be conducted in other areas. These studies would be particularly valuable in regions with CO2-enhanced oil recovery (EOR) and natural gas storage.

  16. Use of Biostratigraphy to Increase Production, Reduce Operating Costs and Risks and Reduce Environmental Concerns in Oil Well Drilling

    SciTech Connect

    Edward Marks

    2005-09-09

    In the Santa Maria Basin, Santa Barbara County, California, four wells were processed and examined to determine the age and environment parameters in the oil producing sections. From west to east, we examined Cabot No. 1 Ferrero-Hopkins,from 3917.7 m (12850 ft) to 4032 m (13225 ft); Sun No. 5 Blair, from 3412 m (11190 ft) to 3722.5 m (12210 ft); Triton No. 10 Blair, from 1552 m (5090 ft) to 1863 m (6110 ft); and OTEC No. 1 Boyne, from 2058 m (6750 ft) to 2528 m (8293 ft). Lithic reports with lithic charts were prepared and submitted on each well. These tested for Sisquoc Fm lithology to be found in the Santa Maria area. This was noted in the OTEC No. 1 Boyne interval studied. The wells also tested for Monterey Fm. lithology, which was noted in all four wells examined. Composite samples of those intervals [combined into 9.15 m (30 foot) intervals] were processed for paleontology. Although the samples were very refractory and siliceous, all but one (Sun 5 Blair) yielded index fossil specimens, and as Sun 5 Blair samples below 3686 m (12090 ft) were processed previously, we were able to make identifications that would aid this study. The intervals examined were of the Sisquoc Formation, the Low Resistivity and the High Resistivity sections of the Monterey Formation. The Lower Sisquoc and the top of the late Miocene were identified by six index fossils: Bolivina barbarana, Gyroidina soldanii rotundimargo, Bulimina montereyana, Prunopyle titan, Axoprunum angelinum and Glyphodiscus stellatus. The Low Resistivity Monterey Fm. was identified by eight index fossils, all of which died out at the top of the late Miocene, late Mohnian: Nonion goudkoffi, Brizalina girardensis, Cibicides illingi, Siphocampe nodosaria, Stephanogonia hanzawai, Uvigerina modeloensis, Buliminella brevior, Tytthodiscus sp.and the wide geographic ranging index pelagic fossil, Sphaeroidinellopsis subdehiscens. The High Resistivity Monterey Fm. was identified by eight index fossils, all of which died

  17. Montana Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    93,266 79,506 66,954 63,242 59,160 57,421 1967-2015 From Gas Wells 51,117 37,937 27,518 19,831 17,015 13,571 1967-2015 From Oil Wells 19,292 21,777 20,085 23,152 22,757 23,065 1967-2015 From Shale Gas Wells 12,937 13,101 15,619 18,636 18,910 20,428 2007-2015 From Coalbed Wells 9,920 6,691 3,731 1,623 478 357 2002-2015 Repressuring 5 4 0 0 NA 0 1967-2015 Vented and Flared 5,722 4,878 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed NA NA 0 0 NA 0 1996-2015 Marketed Production 87,539 74,624 66,954

  18. Evaluations of Radionuclides of Uranium, Thorium, and Radium Associated with Produced Fluids, Precipitates, and Sludges from Oil, Gas, and Oilfield Brine Injection Wells in Mississippi

    SciTech Connect

    Ericksen, R.L.

    1999-10-28

    There is an unsurpassed lack of scientific data with respect to the concentrations and isotopic compositions of uranium, thorium, and radium in the produced formation fluids (brine), precipitates, and sludges generated with the operation of oil and gas wells in Mississippi. These radioactive elements when contained in the formation fluids have been given the term NORM, which is an acronym for naturally occurring radioactive materials. When they are technologically enhanced during oil and gas production activities resulting in the formation of scale (precipitates) and sludges they are termed TENORM (technologically enhanced naturally occurring radioactive materials). As used in this document, NORM and TENORM will be considered equivalent terms and the occurrence of NORM in the oilfield will be considered the result of production operations. As a result of the lack of data no scientifically sound theses may be developed concerning the presence of these radionuclides in the fluid brine, precipitate (scale), or sludge phases. Over the period of just one year, 1997 for example, Mississippi produced over 39,372,963,584 liters (10,402,368,186 gallons or 247,675,433 barrels) of formation water associated with hydrocarbon production from 41 counties across the state.

  19. South Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Gasoline and Diesel Fuel Update

    12,540 12,449 15,085 16,205 15,305 14,531 1967-2015 From Gas Wells 1,300 933 14,396 15,693 15,006 14,196 1967-2015 From Oil Wells 11,240 11,516 689 512 299 335 1967-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 NA 0 1967-2015 Vented and Flared 2,136 2,120 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 8,543 8,480 0 0 NA 0 1997-2015 Marketed Production 1,862 1,848 15,085 16,205 15,305 14,531 1970-2015 Dry Production 1,862 1,848

  20. Virginia Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    147,255 151,094 146,405 139,382 133,661 127,584 1967-2015 From Gas Wells 23,086 20,375 21,802 26,815 10,143 10,679 1967-2015 From Oil Wells 0 0 9 9 12 8 2006-2015 From Shale Gas Wells 16,433 18,501 17,212 13,016 12,309 11,059 2007-2015 From Coalbed Wells 107,736 112,219 107,383 99,542 111,197 105,838 2006-2015 Repressuring 0 0 0 0 0 0 2003-2015 Vented and Flared NA NA 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2015 Marketed Production 147,255 151,094 146,405 139,382 133,661

  1. West Virginia Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Gasoline and Diesel Fuel Update

    265,174 394,125 539,860 741,853 1,067,114 1,318,822 1967-2015 From Gas Wells 151,401 167,113 193,537 167,118 185,005 174,090 1967-2015 From Oil Wells 0 0 1,477 2,660 1,687 2,018 1967-2015 From Shale Gas Wells 113,773 227,012 344,847 572,076 880,422 1,142,714 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 NA 0 1967-2015 Vented and Flared 0 0 0 0 NA 0 2006-2015 Nonhydrocarbon Gases Removed 0 0 0 0 NA 0 2006-2015 Marketed Production 265,174 394,125 539,860 741,853 1,067,114

  2. California Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    319,891 279,130 246,822 252,310 238,988 231,060 1967-2015 From Gas Wells 73,017 63,902 91,904 88,203 60,936 57,031 1967-2015 From Oil Wells 151,369 120,880 67,065 69,839 70,475 66,065 1967-2015 From Shale Gas Wells 95,505 94,349 87,854 94,268 107,577 107,964 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2002-2015 Repressuring 27,240 23,905 0 0 NA 0 1967-2015 Vented and Flared 2,790 2,424 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 3,019 2,624 0 0 NA 0 1980-2015 Marketed Production 286,841 250,177

  3. Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    135,330 124,243 106,122 94,665 93,091 85,775 1967-2015 From Gas Wells 133,521 122,578 106,122 94,665 93,091 85,775 1967-2015 From Oil Wells 1,809 1,665 0 0 0 0 1967-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 NA 0 2006-2015 Vented and Flared 0 0 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 NA 0 2006-2015 Marketed Production 135,330 124,243 106,122 94,665 93,091 85,775 1967-2015 Dry Production 130,754 119,559 99,551

  4. Venezuelan oil

    SciTech Connect

    Martinez, A.R. )

    1989-01-01

    Oil reserves have been known to exist in Venezuela since early historical records, however, it was not until the 20th century that the extensive search for new reserves began. The 1950's marked the height of oil exploration when 200 new oil fields were discovered, as well as over 60{percent} of proven reserves. Venezuela now produces one tone in seven of crude oil consumption and the country's abundant reserves such as the Bolivar Coastal field in the West of the country and the Orinoco Belt field in the East, will ensure it's continuing importance as an oil producer well into the 21st century. This book charts the historical development of Venezuela oil and provides a chronology of all the significant events which have shaped the oil industry of today. It covers all the technical, legal, economic and political factors which have contributed to the evolution of the industry and also gives information on current oil resources and production. Those events significant to the development of the industry, those which were influential in shaping future policy and those which precipitated further action are included. The book provides a source of reference to oil companies, oil economists and petroleum geologists.

  5. EVALUATIONS OF RADIONUCLIDES OF URANIUM, THORIUM, AND RADIUM ASSOCIATED WITH PRODUCED FLUIDS, PRECIPITATES, AND SLUDGES FROM OIL, GAS, AND OILFIELD BRINE INJECTION WELLS IN MISSISSIPPI

    SciTech Connect

    Charles Swann; John Matthews; Rick Ericksen; Joel Kuszmaul

    2004-03-01

    Naturally occurring radioactive materials (NORM) are known to be produced as a byproduct of hydrocarbon production in Mississippi. The presence of NORM has resulted in financial losses to the industry and continues to be a liability as the NORM-enriched scales and scale encrusted equipment is typically stored rather than disposed of. Although the NORM problem is well known, there is little publically available data characterizing the hazard. This investigation has produced base line data to fill this informational gap. A total of 329 NORM-related samples were collected with 275 of these samples consisting of brine samples. The samples were derived from 37 oil and gas reservoirs from all major producing areas of the state. The analyses of these data indicate that two isotopes of radium ({sup 226}Ra and {sup 228}Ra) are the ultimate source of the radiation. The radium contained in these co-produced brines is low and so the radiation hazard posed by the brines is also low. Existing regulations dictate the manner in which these salt-enriched brines may be disposed of and proper implementation of the rules will also protect the environment from the brine radiation hazard. Geostatistical analyses of the brine components suggest relationships between the concentrations of {sup 226}Ra and {sup 228}Ra, between the Cl concentration and {sup 226}Ra content, and relationships exist between total dissolved solids, BaSO{sub 4} saturation and concentration of the Cl ion. Principal component analysis points to geological controls on brine chemistry, but the nature of the geologic controls could not be determined. The NORM-enriched barite (BaSO{sub 4}) scales are significantly more radioactive than the brines. Leaching studies suggest that the barite scales, which were thought to be nearly insoluble in the natural environment, can be acted on by soil microorganisms and the enclosed radium can become bioavailable. This result suggests that the landspreading means of scale disposal

  6. Natural Gas Gross Withdrawals from Gas Wells

    Energy Information Administration (EIA) (indexed site)

    6-2016 Illinois NA NA NA NA NA NA 1991-2016 Indiana NA NA NA NA NA NA 1991-2016 Kentucky NA NA NA NA NA NA 1991-2016 Maryland NA NA NA NA NA NA 1991-2016 Michigan NA NA NA NA NA NA ...

  7. Natural Gas Gross Withdrawals from Gas Wells

    Gasoline and Diesel Fuel Update

    NA NA NA NA NA NA 1991-2016 Missouri NA NA NA NA NA NA 1991-2016 Nebraska NA NA NA NA NA NA 1991-2016 Nevada NA NA NA NA NA NA 1991-2016 New York NA NA NA NA NA NA 1991-2016 Oregon ...

  8. Penrose Well Temperatures

    DOE Data Explorer

    Christopherson, Karen

    2013-03-15

    Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

  9. DOE - Fossil Energy: Squeezing Oil Out of Rock

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2-Squeezing Out Oil An Energy Lesson Looking Down an Oil Well Looking Down an Oil Well Squeezing Oil out of Rocks Imagine trying to force oil through a rock. Can't be done, you ...

  10. Nebraska Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    2,255 1,980 1,328 1,032 417 477 1967-2015 From Gas Wells 2,092 1,854 1,317 1,027 353 399 1967-2015 From Oil Wells 163 126 11 5 63 78 1967-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 0 0 1967-2015 Vented and Flared 24 21 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 NA 0 2006-2015 Marketed Production 2,231 1,959 1,328 1,032 417 477 1967-2015 Dry Production 2,231 1,959 1,328 1,032 417 477 Feet)

    Year Jan Feb Mar Apr

  11. Colorado Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    ,589,664 1,649,306 1,709,376 1,604,860 1,643,487 1,704,836 1967-2015 From Gas Wells 526,077 563,750 1,036,572 801,749 728,978 761,886 1967-2015 From Oil Wells 338,565 359,537 67,466 106,784 178,657 236,009 1967-2015 From Shale Gas Wells 195,131 211,488 228,796 247,046 315,469 308,642 2007-2015 From Coalbed Wells 529,891 514,531 376,543 449,281 420,383 398,298 2002-2015 Repressuring 10,043 10,439 0 0 NA 0 1967-2015 Vented and Flared 1,242 1,291 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 0 0

  12. Florida Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    3,938 17,129 18,681 18,011 3,178 5,790 1971-2015 From Gas Wells 0 0 17,182 16,459 43 69 1996-2015 From Oil Wells 13,938 17,129 1,500 1,551 3,135 5,720 1971-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2002-2015 Repressuring 0 0 17,909 17,718 2,682 5,291 1976-2015 Vented and Flared 0 0 0 0 NA 0 1971-2015 Nonhydrocarbon Gases Removed 1,529 2,004 0 0 NA 0 1980-2015 Marketed Production 12,409 15,125 773 292 496 499 1967-2015 Dry Production 12,409 15,125 773 292 263

  13. Kansas Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    325,591 309,952 296,299 292,467 286,480 285,236 1967-2015 From Gas Wells 247,651 236,834 264,610 264,223 261,093 261,877 1967-2015 From Oil Wells 39,071 37,194 0 0 0 0 1967-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 38,869 35,924 31,689 28,244 25,387 23,359 2002-2015 Repressuring 548 521 0 0 NA 0 1967-2015 Vented and Flared 323 307 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2002-2015 Marketed Production 324,720 309,124 296,299 292,467 286,480 285,236

  14. Michigan Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    136,782 143,826 129,333 123,622 115,065 107,634 1967-2015 From Gas Wells 7,345 18,470 17,041 17,502 14,139 12,329 1967-2015 From Oil Wells 9,453 11,620 4,470 4,912 5,560 4,796 1967-2015 From Shale Gas Wells 119,984 113,736 107,822 101,208 95,366 90,509 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2002-2015 Repressuring 2,340 2,340 0 0 NA 0 1967-2015 Vented and Flared 3,324 3,324 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1996-2015 Marketed Production 131,118 138,162 129,333 123,622

  15. Table 5.18 Crude Oil Domestic First Purchase Prices, 1949-2011 (Dollars per Barrel)

    Energy Information Administration (EIA) (indexed site)

    8 Crude Oil Domestic First Purchase Prices, 1949-2011 (Dollars per Barrel) Year Alaska North Slope California Texas U.S. Average Nominal 1 Real 2 Nominal 1 Real 2 Nominal 1 Real 2 Nominal 1 Real 2 1949 – – – – NA NA NA NA 2.54 17.52 [R] 1950 – – – – NA NA NA NA 2.51 17.13 [R] 1951 – – – – NA NA NA NA 2.53 16.10 [R] 1952 – – – – NA NA NA NA 2.53 15.83 [R] 1953 – – – – NA NA NA NA 2.68 16.57 [R] 1954 – – – – NA NA NA NA 2.78 17.03 [R] 1955 – – – – NA NA NA NA 2.77 16.69

  16. Productivity and injectivity of horizontal wells. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    99 MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS; OIL WELLS; DAMAGE; WELL DRILLING; WELL COMPLETION; EQUATIONS; PROGRESS REPORT This report...

  17. Economic recovery of oil trapped at fan margins using high angle wells and multiple hydraulic fractures. Annual report, September 28, 1995--September 27, 1996

    SciTech Connect

    Niemeyer, B.L.

    1997-09-01

    The digital fan margin in the northeast portion of the Yowlumne field contains significant reserves but is not economic to develop using verticle wells. Numerous interbedded shales and deteriorating rock properties limit producibility. In addition, extreme depths (13,000 ft) present a challenging environment for hydraulic fracturing and artificial lift. Lastly, a mature waterflood increases risk because of the uncertainty with size and location of flood fronts. This project attempts to demonstrate the effectiveness of exploiting the distal fan margin of this slope-basin clastic reservoir through the use of a high-angle well completed with multiple hydraulic-fracture treatments. The combination of a high-angle (or horizontal) well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional verticle wells while maintaining verticle communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three verticle wells are anticipated at one-half to two-thirds the cost.

  18. Economic recovery of oil trapped at fan margins using high angle wells and multiple hydraulic fractures. Quarterly report, Apr 1--June 30, 1997

    SciTech Connect

    Laue, M.L.

    1997-08-31

    This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically-fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan-margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic-fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation will be used to select the well location and orientation. Design parameters for the hydraulic-fracture treatments will be determined, in part, by fracturing an existing test well. Fracture azimuth will be predicted by passive seismic monitoring of a fracture-stimulation treatment in the test well using logging tools in an offset well. The long radius, near-horizontal well has been drilled and completion operations are in progress. Upon initial review of log data, two hydraulic fracture treatments were planned. However, the probability of the lower frac growing into thick sands previously swept by waterflood has called for additional information to be obtained prior to proceeding with hydraulic fracture treatments. Should permeabilities prove to be as favorable as some data indicate, produced water volumes could be excessively high. Prior to pumping the first frac, the well will be perforated and produced from lower pay intervals. These perfs will not impact future frac work. Rate data and pressure transient analysis will dictate the need for the lower frac.

  19. 20Na

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1969MAZT: 20Na; measured T12, -spectrum; deduced -branching. 20Ne deduced ... E, I, -coin; deduced neutrino spectrum. 2004MI51: 20Na(+), (EC); measured ...

  20. Well Placement

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Well Placement Well Placement LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Finished groundwater well head with solar...

  1. Natural Gas Gross Withdrawals from Coalbed Wells

    Energy Information Administration (EIA) (indexed site)

    2002-2016 Alaska NA NA NA NA NA NA 2002-2016 Arkansas NA NA NA NA NA NA 2006-2016 California NA NA NA NA NA NA 2002-2016 Colorado NA NA NA NA NA NA 2002-2016 Federal Offshore Gulf ...

  2. Natural Gas Gross Withdrawals from Coalbed Wells

    Annual Energy Outlook

    2002-2015 Alaska NA NA NA NA NA NA 2002-2015 Arkansas NA NA NA NA NA NA 2006-2015 California NA NA NA NA NA NA 2002-2015 Colorado NA NA NA NA NA NA 2002-2015 Federal Offshore Gulf...

  3. Final report on Technical Demonstration and Economic Validation of Geothermally-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas

    SciTech Connect

    Luchini, Chris B.

    2015-06-01

    The initial geothermal brine flow rate and temperature from the re-worked well were insufficient, after 2.5 days of flow testing, to justify advancing past Phase I of this project. The flow test was terminated less than 4 hours from the Phase I deadline for activity, and as such, additional flow tests of 2+ months may be undertaken in the future, without government support.

  4. Well Placement

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Well Placement Well Placement LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Finished groundwater well head with solar power Finished groundwater well head with solar power How does LANL determine where to put a monitoring well? Project teams routinely review groundwater monitoring data to verify adequate placement of wells and to plan the siting of additional wells as needed. RELATED IMAGES

  5. Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies

    SciTech Connect

    Elgowainy, Mr. Amgad; Rousseau, Mr. Aymeric; Wang, Mr. Michael; Ruth, Mr. Mark; Andress, Mr. David; Ward, Jacob; Joseck, Fred; Nguyen, Tien; Das, Sujit

    2013-01-01

    The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

  6. Utah Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    436,885 461,507 490,393 470,863 454,545 423,300 1967-2015 From Gas Wells 328,135 351,168 402,899 383,216 361,474 333,232 1967-2015 From Oil Wells 42,526 49,947 31,440 36,737 45,513 45,781 1967-2015 From Shale Gas Wells 0 0 1,333 992 877 676 2007-2015 From Coalbed Wells 66,223 60,392 54,722 49,918 46,680 43,612 2002-2015 Repressuring 1,187 1,449 0 0 NA 0 1967-2015 Vented and Flared 2,080 1,755 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 1,573 778 0 0 NA 0 1996-2015 Marketed Production 432,045

  7. 18Na

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Na Ground-State Decay Evaluated Data Measured Ground-State Γcm(T1/2) for 18Na Adopted value: < 200 keV (2012MU05) Measured Mass Excess for 18Na Adopted value: 25040 ± 110 keV (2012WA38) Measurements 2004ZE05: 9Be(20Mg, 18NaX), E = 43 MeV/nucleon; measured particle spectra, angular correlations, invariant mass following fragment proton decay. 18Na; deduced excited states proton decay features. 2011AS07: 1H(17Ne, 17Ne), 1H(17Ne, X)18Na, E = 4 MeV/nucleon; measured reaction products, proton

  8. Abu Dhabi National Oil Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    oil companies in the world. Abu Dhabi National Oil Company oversees many phases of oil and gas exploration and production, as well as other business activities. References...

  9. Number of Gas Producing Oil Wells

    Energy Information Administration (EIA) (indexed site)

    & Notes Definitions, Sources & Notes Area 2011 2012 2013 2014 2015 View History U.S. ... Louisiana 5,201 5,057 5,078 5,285 4,968 2011-2015 Maryland 0 0 0 0 0 2011-2015 Michigan 51...

  10. Viscous heavy brine completion fluids. [Oil wells

    SciTech Connect

    Darlington, R.K.; Hunter, D.V.

    1982-01-01

    An activated hydroxyethyl cellulose (HEC) has been developed which will viscosify brines of any density up to 19.2 lb/gal containing calcium chloride, calcium bromide and/or zinc bromide. The use of activated hydroxyethyl cellulose allows preparation of viscosified brines at ambient emperature and without undissolved polymer solids. The time required to prepare a viscosified brine is greatly reduced. In addition, the rheology of brines viscosified with activated HEC can be accurately predicted allowing brines with equivalent solution rheology properties to be prepared batch after batch. 29 refs.

  11. Natural Gas Gross Withdrawals from Oil Wells

    Energy Information Administration (EIA) (indexed site)

    355,472 1978-2014 Federal Offshore U.S. 606,403 598,679 512,003 526,664 522,515 583,058 1977-2014 Alaska 3,174,747 3,069,683 3,050,654 3,056,918 3,123,671 3,064,346 1967-2014...

  12. Number of Gas Producing Oil Wells

    Gasoline and Diesel Fuel Update

    73 0 1 2 3 4 5 6 7 8 9 10 11 12 Number of Consumers Eligible Participating Table 26. Number of consumers eligible and participating in a customer choice program in the residential sector, 2015 Figure 26. Top Five States with Participants in a Residential Customer Choice Program, 2015 California 10,969,597 6,712,311 441,523 Colorado 1,712,153 1,254,056 0 Connecticut 531,380 1,121 340 District of Columbia 147,895 147,867 17,167 Florida 701,981 17,626 16,363 Georgia 1,777,558 1,468,084 1,468,084

  13. Natural Gas Gross Withdrawals from Oil Wells

    Energy Information Administration (EIA) (indexed site)

    Federal Offshore Gulf of Mexico 566,380 559,235 476,984 513,961 509,357 568,801 1997-2014 ... Montana 21,522 19,292 21,777 20,085 23,152 23,479 1967-2014 New Mexico 223,493 238,580 ...

  14. 19Na

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Na Ground-State Decay Evaluated Data Measured Ground-State Γcm(T1/2) for 19Na Adopted value: < 40 ns (2003AU02) Measured Mass Excess for 19Na Adopted value: 12927 ± 12 keV (2003AU02) Measurements 1969CE01: 24Mg(p, 6He), E = 54.7 MeV; measured σ(E(6He)); deduced Q. 19Na deduced nuclear mass. 1975BE38: 24Mg(3He, 8Li), E = 76.8 MeV; measured σ(E(8Li)); deduced Q. 19Na deduced mass excess. 19Na deduced level. 1975BEZD: 24Mg(3He, 8Li), E = 76.3 MeV; measured σ(E(8Li)). 19Na deduced mass

  15. H.R.3688: A bill to amend the Internal Revenue Code of 1986 to provide a tax credit for marginal oil and natural gas well production, introduced in the House of Representatives, One Hundred Fifth Congress, Second Session, April 1, 1998

    SciTech Connect

    1998-12-31

    This bill proposes a new section to be added to the Internal Revenue Code of 1986. The credit proposed is $3 per barrel of qualified crude oil production and 50 cents per 1,000 cubic feet of qualified natural gas production. In this case qualified production means domestic crude oil or natural gas which is produced from a marginal well. Marginal production is defined within the Internal Revenue Code Section 613A(c)(6).

  16. Mississippi Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    401,660 443,351 452,915 59,272 54,446 58,207 1967-2015 From Gas Wells 387,026 429,829 404,457 47,385 43,020 44,868 1967-2015 From Oil Wells 8,714 8,159 43,421 7,256 7,136 9,220 1967-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 5,921 5,363 5,036 4,630 4,289 4,119 2002-2015 Repressuring 3,480 3,788 0 0 NA 0 1967-2015 Vented and Flared 8,685 9,593 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 315,775 348,482 389,072 0 NA 0 1980-2015 Marketed Production 73,721 81,487 63,843

  17. Oil and Gas Gateway | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    States, oil and gas boards and commissions are the place for finding data related to oil and gas activities. These activities include well records, permitting, and production...

  18. H. R. 4564: a bill to amend the Internal Revenue Code of 1954 to provide a deduction and special net operating loss rules with respect to certain losses on domestic crude oil, to increase tariffs on petroleum and petroleum products, to require the Strategic Petroleum Reserve to be filled with stripper well oil, and to eliminate certain restrictions on the sale of natural gas and on the use of natural gas and oil. Introduced in the House of Representatives, Ninety-Ninth Congress, Second Session, April 10, 1986

    SciTech Connect

    Not Available

    1986-01-01

    The Secure Energy Supply Act of 1986 amends the Internal Revenue Code of 1954. Title I provides a deduction and special net operating loss treatment for certain losses on crude oil. Title II increases tariffs on petroleum and petroleum products, the revenues of which will cover authorized refunds. Title III provides that only stripper well oil or oil exchanged for stripper well oil will be used to fill the Strategic Petroleum Reserve. Title IV removes wellhead price controls and repeals Natural Gas Act jurisdiction over certain first sales of natural gas. Later titles repeal certain restrictions on the use of natural gas and petroleum, repeal incremental pricing requirements, and promote flexibility in rescheduling or marking down troubled loans. The bill was referred to the House Committees on Ways and Means, Energy and Commerce, and Banking, Finance, and Urban Affairs.

  19. U.S. Crude Oil Rotary Rigs in Operation (Number of Elements)

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA NA 1974 NA NA NA NA NA NA NA NA NA NA NA NA 1975 NA NA NA NA NA NA NA NA NA NA NA NA 1976 NA NA NA NA NA NA NA NA NA NA NA NA 1977 NA NA NA NA NA NA NA NA NA NA NA NA 1978 NA NA NA NA NA NA NA NA NA NA NA NA 1979 NA NA NA NA NA NA NA NA NA NA NA NA 1980 NA NA NA NA NA NA NA NA NA NA NA NA 1981 NA NA NA NA NA NA NA NA NA NA NA NA 1982 NA NA NA NA NA NA NA NA NA NA NA NA 1983 NA NA NA NA NA NA NA NA NA NA NA

  20. Monitoring well

    DOEpatents

    Hubbell, J.M.; Sisson, J.B.

    1999-06-29

    A monitoring well is described which includes: a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto. 8 figs.

  1. Monitoring well

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    1999-01-01

    A monitoring well including a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto.

  2. Arizona Natural Gas Gross Withdrawals and Production

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA ...

  3. Colorado Natural Gas Gross Withdrawals and Production

    Energy Information Administration (EIA) (indexed site)

    From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA ...

  4. Louisiana Natural Gas Gross Withdrawals and Production

    Energy Information Administration (EIA) (indexed site)

    From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA ...

  5. West Virginia Natural Gas Gross Withdrawals and Production

    Energy Information Administration (EIA) (indexed site)

    From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA ...

  6. Utah Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook

    From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA ...

  7. U.S. Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook

    Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015...

  8. Productivity and injectivity of horizontal wells. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    Subject: 02 PETROLEUM; 99 MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS; OIL WELLS; DAMAGE; WELL DRILLING; WELL COMPLETION; EQUATIONS; PROGRESS REPORT ...

  9. Monitoring well

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2002-01-01

    The present invention relates to a monitoring well which includes an enclosure defining a cavity and a water reservoir enclosed within the cavity and wherein the reservoir has an inlet and an outlet. The monitoring well further includes a porous housing borne by the enclosure and which defines a fluid chamber which is oriented in fluid communication with the outlet of the reservoir, and wherein the porous housing is positioned in an earthen soil location below-grade. A geophysical monitoring device is provided and mounted in sensing relation relative to the fluid chamber of the porous housing; and a coupler is selectively moveable relative to the outlet of reservoir to couple the porous housing and water reservoir in fluid communication. An actuator is coupled in force transmitting relation relative to the coupler to selectively position the coupler in a location to allow fluid communication between the reservoir and the fluid chamber defined by the porous housing.

  10. Enhanced Oil Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary

  11. Oil/gas collector/separator for underwater oil leaks

    DOEpatents

    Henning, Carl D.

    1993-01-01

    An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  12. Well pump

    DOEpatents

    Ames, Kenneth R.; Doesburg, James M.

    1987-01-01

    A well pump includes a piston and an inlet and/or outlet valve assembly of special structure. Each is formed of a body of organic polymer, preferably PTFE. Each includes a cavity in its upper portion and at least one passage leading from the cavity to the bottom of the block. A screen covers each cavity and a valve disk covers each screen. Flexible sealing flanges extend upwardly and downwardly from the periphery of the piston block. The outlet valve block has a sliding block and sealing fit with the piston rod.

  13. Missouri Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 NA NA NA NA NA NA NA NA NA NA NA NA 2009 NA NA NA NA NA NA NA NA NA NA NA NA 2010 NA NA NA NA NA NA NA NA NA NA NA NA 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 2016 NA NA NA NA NA NA NA NA

  14. Geothermal well stimulation program

    SciTech Connect

    Hanold, R.J.

    1982-01-01

    The stimulation of geothermal production wells presents some new and challenging problems. Formation temperatures in the 275 to 550/sup 0/F range can be expected and the behavior of fracturing fluids and fracture proppants at these temperatures in a hostile brine environment must be carefully evaluated in laboratory tests. To avoid possible damage to the producing horizon of the formation, the high-temperature chemical compatibility between the in situ materials and the fracturing fluids, fluid loss additives, and proppants must be verified. In geothermal wells, the necessary stimulation techniques are required to be capable of initiating and maintaining the flow of very large amounts of fluid. This necessity for high flow rates represents a significant departure from conventional oil field stimulation. The objective of well stimulation is to initiate and maintain additional fluid production from existing wells at a lower cost than either drilling new replacement wells or multiply redrilling existing wells. The economics of well stimulation will be vastly enhanced when proven stimulation techniques can be implemented as part of the well completion (while the drilling rig is still over the hole) on all new wells exhibiting some form of flow impairment. Results from 7 stimulation tests are presented and planned tests are described.

  15. Crude Oil Analysis Database

    DOE Data Explorer

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  16. Oil Production

    Energy Science and Technology Software Center

    1989-07-01

    A horizontal and slanted well model was developed and incorporated into BOAST, a black oil simulator, to predict the potential production rates for such wells. The HORIZONTAL/SLANTED WELL MODEL can be used to calculate the productivity index, based on the length and location of the wellbore within the block, for each reservoir grid block penetrated by the horizontal/slanted wellbore. The well model can be run under either pressure or rate constraints in which wellbore pressuresmore » can be calculated as an option of infinite-conductivity. The model can simulate the performance of multiple horizontal/slanted wells in any geometric combination within reservoirs.« less

  17. Illinois Natural Gas Gross Withdrawals and Production

    Energy Information Administration (EIA) (indexed site)

    1-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2006-2016 Repressuring NA NA NA NA NA NA ...

  18. Oregon Natural Gas Gross Withdrawals and Production

    Energy Information Administration (EIA) (indexed site)

    NA NA NA NA NA NA 1996-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1996-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed ...

  19. Michigan Natural Gas Gross Withdrawals and Production

    Energy Information Administration (EIA) (indexed site)

    NA NA NA NA NA NA 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed ...

  20. Florida Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update

    6-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA ...

  1. Hot Oiling Spreadsheet

    Energy Science and Technology Software Center

    1993-10-22

    One of the most common oil-field treatments is hot oiling to remove paraffin from wells. Even though the practice is common, the thermal effectiveness of the process is not commonly understood. In order for producers to easily understand the thermodynamics of hot oiling, a simple tool is needed for estimating downhole temperatures. Such a tool has been developed that can be distributed as a compiled spreadsheet.

  2. Electric Power Generation from Coproduced Fluids from Oil and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Principal ... Electric Power Generation from Coproduced Fluids from Oil and Gas Wells 3 | US DOE ...

  3. Wireless technology collects real-time information from oil and...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wireless technology collects real-time information from oil and gas wells Wireless technology collects real-time information from oil and gas wells The patented system delivers ...

  4. Alaska Oil and Gas Conservation Commission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    The AOGCC website has Alaska state oil and gas data related to monthly drilling and production reports, oil and gas databases, well history, and well information, along with...

  5. Electric Power Generation from Coproduced Fluids from Oil and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Electric Power Generation from Coproduced Fluids from Oil and Gas Wells The primary objective of this ...

  6. H. R. 4670: a bill to amend the Internal Revenue Code of 1954 to increase the depletion allowance for oil and natural gas, and to allow percentage depletion for stripper well production of integrated producers. Introduced in the House of Representatives, Ninety-Ninth Congress, Second Session, April 23, 1986

    SciTech Connect

    Not Available

    1986-01-01

    An amendment to the Internal Revenue Code of 1954 increases the depletion allowance for oil and natural gas and allows percentage depletion for stripper well production of integrated producers. The bill was referred to the House Committee on Ways and Means after its introduction.

  7. DOE - Fossil Energy: Washing More Oil from Rocks

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    That's exactly what oil producers do in an oil reservoir. They drill wells called "injection wells" and use them like gigantic hoses to pump water into an oil reservoir. The water ...

  8. Natural Gas Gross Withdrawals from Shale Gas Wells

    Annual Energy Outlook

    2007-2016 Arkansas NA NA NA NA NA NA 2007-2016 California NA NA NA NA NA NA 2007-2016 Colorado NA NA NA NA NA NA 2007-2016 Federal Offshore Gulf of Mexico NA NA NA NA NA NA ...

  9. Natural Gas Gross Withdrawals from Shale Gas Wells

    Energy Information Administration (EIA) (indexed site)

    2007-2015 Arkansas NA NA NA NA NA NA 2007-2015 California NA NA NA NA NA NA 2007-2015 Colorado NA NA NA NA NA NA 2007-2015 Federal Offshore Gulf of Mexico NA NA NA NA NA NA...

  10. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  11. Oil shale technology

    SciTech Connect

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  12. For oil spills, no slick solutions

    SciTech Connect

    Not Available

    1984-12-01

    Oil spills from tankers and offshore wells are getting bigger and more numerous. Oil spill cleanup technology is hard-pressed to keep up with the problem. The use of skimming devices, sorbents and chemical agents, and microorganisms to control oil spills is described. The environmental effects of oil spills are briefly discussed.

  13. International Oil and Gas Exploration and Development

    Reports and Publications

    1993-01-01

    Presents country level data on oil reserves, oil production, active drilling rigs, seismic crews, wells drilled, oil reserve additions, and oil reserve to production ratios (R/P ratios) for about 85 countries, where available, from 1970 through 1991. World and regional summaries are given in both tabular and graphical form.

  14. World oil trends

    SciTech Connect

    Anderson, A. )

    1991-01-01

    This book provides data on many facets of the world oil industry topics include; oil consumption; oils share of energy consumption; crude oil production; natural gas production; oil reserves; prices of oil; world refining capacity; and oil tankers.

  15. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions which are needed for formation evaluation by NMR well logging. NMR well logging is finding wide use in formation evaluation. The formation parameters commonly estimated were porosity, permeability, and capillary bound water. Special cases include estimation of oil viscosity, residual oil saturation, location of oil/water contact, and interpretation on whether the hydrocarbon is oil or gas.

  16. Texas Water Code 27A General Provisions for Injection Wells ...

    OpenEI (Open Energy Information) [EERE & EIA]

    WellsLegal Abstract These rules outline the requirements for construction and maintenance of injection wells in Texas. Published NA Year Signed or Took Effect 1977 Legal...

  17. Unconventional Oil and Gas Projects Help Reduce Environmental...

    Energy.gov [DOE] (indexed site)

    Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development Since the first commercial oil well was drilled in the United States in 1859, most of the ...

  18. New Mexico Oil Conservation Division | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    is located in Santa Fe, New Mexico. About The Oil Conservation Division regulates oil, gas and geothermal activity in New Mexico. We gather well production data, permit new...

  19. Illinois DNR oil and gas division | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    is the regulatory authority in Illinois for permitting, drilling, operating, and plugging oil and gas production wells. The Division implements the Illinois Oil and Gas Act and...

  20. Construction progresses at GE's Oil & Gas Technology Center ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the Oil & Gas Technology Center in Oklahoma City Click to email this to a friend ... the Oil & Gas Technology Center in Oklahoma City Construction is well underway on ...

  1. Indiana Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 0 0 2000's 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude Oil

  2. Crude oil and shale oil

    SciTech Connect

    Mehrotra, A.K.

    1995-06-15

    This year`s review on crude oil and shale oil has been prepared by classifying the references into the following main headings: Hydrocarbon Identification and Characterization, Trace Element Determination, Physical and Thermodynamic Properties, Viscosity, and Miscellaneous Topics. In the two-year review period, the references on shale oils were considerably less in number than those dealing with crude oils. Several new analytical methodologies and applications were reported for hydrocarbon characterization and trace element determination of crude oils and shale oils. Also included in this review are nine U.S., Canadian British and European patents. 12 refs.

  3. Nevada Na onal Security Site U.S. Department of Energy, Na ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wells Sampled On and Near the Nevada Na onal Security Site U.S. Department of Energy, Na onal Nuclear Security Administra on Nevada Field Office Stages of an Underground Nuclear ...

  4. Corrosivity Of Pyrolysis Oils

    SciTech Connect

    Keiser, James R; Bestor, Michael A; Lewis Sr, Samuel Arthur; Storey, John Morse

    2011-01-01

    Pyrolysis oils from several sources have been analyzed and used in corrosion studies which have consisted of exposing corrosion coupons and stress corrosion cracking U-bend samples. The chemical analyses have identified the carboxylic acid compounds as well as the other organic components which are primarily aromatic hydrocarbons. The corrosion studies have shown that raw pyrolysis oil is very corrosive to carbon steel and other alloys with relatively low chromium content. Stress corrosion cracking samples of carbon steel and several low alloy steels developed through-wall cracks after a few hundred hours of exposure at 50 C. Thermochemical processing of biomass can produce solid, liquid and/or gaseous products depending on the temperature and exposure time used for processing. The liquid product, known as pyrolysis oil or bio-oil, as produced contains a significant amount of oxygen, primarily as components of water, carboxylic acids, phenols, ketones and aldehydes. As a result of these constituents, these oils are generally quite acidic with a Total Acid Number (TAN) that can be around 100. Because of this acidity, bio-oil is reported to be corrosive to many common structural materials. Despite this corrosive nature, these oils have the potential to replace some imported petroleum. If the more acidic components can be removed from this bio-oil, it is expected that the oil could be blended with crude oil and then processed in existing petroleum refineries. The refinery products could be transported using customary routes - pipelines, barges, tanker trucks and rail cars - without a need for modification of existing hardware or construction of new infrastructure components - a feature not shared by ethanol.

  5. California Water Well Standards | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Well StandardsLegal Published NA Year Signed or Took Effect 2104 Legal Citation Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online...

  6. Well Record or History | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Record or History Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Well Record or HistoryLegal Published NA Year Signed or Took...

  7. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  8. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Saver

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  9. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) ...

  10. Hostile wells: the borehole seismic challenge | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Web Site: Hostile wells: the borehole seismic challenge Author William Wills Published Oil and Gas Engineer - Subsea & Seismic, 2013 DOI Not Provided Check for DOI availability:...

  11. Heavy oil expansions gather momentum worldwide

    SciTech Connect

    Moritis, G.

    1995-08-14

    Cold production, wormholes, foamy oil mechanism, improvements in thermal methods, and horizontal wells are some of the processes and technologies enabling expansion of the world`s heavy oil/bitumen production. Such processes were the focus of the International Heavy Oil Symposium in Calgary, June 19--21. Unlike conventional oil production, heavy oil/bitumen extraction is more a manufacturing process where technology enables the business and does not just add value. The current low price spreads between heavy oil/light oil indicate that demand for heavy oil is high. The paper first discusses the price difference between heavy and light oils, then describes heavy oil production activities in Canada at Cold Lake, in Venezuela in the Orinoco belt, and at Kern River in California.

  12. RAPID/Geothermal/Well Field/Alaska | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    At a Glance Jurisdiction: Alaska Drilling & Well Field Permit Agency: Alaska Division of Oil and Gas Drilling & Well Field Permit All wells drilled in support or in search of the...

  13. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. [Jurassic Smackover Formation

    SciTech Connect

    Kopasaka-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D; Hall, D.R.

    1992-06-01

    This volume contains maps, well log correlated to lithology, porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plots; detailed core log, porosity vs. natural permeability plot for one lithofacies, paragenetic sequence and reservoir characterization sheet for the following fields in southwest Alabama: Stave Creek oil field; Sugar Ridge oil field; Toxey oil field, Turkey Creed oil field; Turnerville oil field, Uriah oil field; Vocation oil field; Wallace oil field; Wallers Creek oil field; West Appleton oil field; West Barrytown oil field; West Bend oil field; West Okatuppa Creed oil field; Wild Fork Creek oil field; Wimberly oil field; Womack Hill oil field; and Zion Chapel oil field. (AT)

  14. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. Appendix 1, Volume 4

    SciTech Connect

    Kopasaka-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D; Hall, D.R.

    1992-06-01

    This volume contains maps, well log correlated to lithology, porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plots; detailed core log, porosity vs. natural permeability plot for one lithofacies, paragenetic sequence and reservoir characterization sheet for the following fields in southwest Alabama: Stave Creek oil field; Sugar Ridge oil field; Toxey oil field, Turkey Creed oil field; Turnerville oil field, Uriah oil field; Vocation oil field; Wallace oil field; Wallers Creek oil field; West Appleton oil field; West Barrytown oil field; West Bend oil field; West Okatuppa Creed oil field; Wild Fork Creek oil field; Wimberly oil field; Womack Hill oil field; and Zion Chapel oil field. (AT)

  15. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  16. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  17. Crude Oil

    Energy Information Administration (EIA) (indexed site)

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 0 0 0 0 0 0 1986-2015 East Coast (PADD 1) 0 0 0 0

  18. Microbial enhanced oil recovery and compositions therefor

    DOEpatents

    Bryant, Rebecca S.

    1990-01-01

    A method is provided for microbial enhanced oil recovery, wherein a combination of microorganisms is empirically formulated based on survivability under reservoir conditions and oil recovery efficiency, such that injection of the microbial combination may be made, in the presence of essentially only nutrient solution, directly into an injection well of an oil bearing reservoir having oil present at waterflood residual oil saturation concentration. The microbial combination is capable of displacing residual oil from reservoir rock, which oil may be recovered by waterflooding without causing plugging of the reservoir rock. Further, the microorganisms are capable of being transported through the pores of the reservoir rock between said injection well and associated production wells, during waterflooding, which results in a larger area of the reservoir being covered by the oil-mobilizing microorganisms.

  19. North Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Gasoline and Diesel Fuel Update

    113,867 157,025 258,568 345,787 463,216 584,743 1967-2015 From Gas Wells 10,501 14,287 22,261 24,313 21,956 25,969 1967-2015 From Oil Wells 38,306 27,739 17,434 12,854 13,973 11,515 1967-2015 From Shale Gas Wells 65,060 114,998 218,873 308,620 427,287 547,258 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2002-2015 Repressuring 0 0 0 0 NA 0 1981-2015 Vented and Flared 24,582 49,652 79,564 102,855 129,717 106,590 1967-2015 Nonhydrocarbon Gases Removed 7,448 10,271 6,762 7,221 7,008 6,650 1984-2015

  20. Missouri Natural Gas Gross Withdrawals and Production

    Energy Information Administration (EIA) (indexed site)

    NA NA NA NA 9 9 1967-2014 From Gas Wells NA NA NA NA 8 8 1967-2014 From Oil Wells NA NA NA NA 1 * 2007-2014 From Shale Gas Wells NA NA NA NA 0 0 2007-2014 From Coalbed Wells NA NA ...

  1. Low oil prices cut less into U.S. oil production

    Energy Information Administration (EIA) (indexed site)

    Low oil prices cut less into U.S. oil production U.S. crude oil production has been more resilient to lower oil prices since mid-2014 than many had expected. In its new forecast, the U.S. Energy Information Administration estimates domestic oil production averaged 9.6 million barrels per day in May the highest monthly output since 1972 despite a 60% drop in the number of rigs drilling for oil since last October. Output is up because producers are completing wells already drilled and those wells

  2. Kansas Natural Gas Gross Withdrawals and Production

    Energy Information Administration (EIA) (indexed site)

    23,819 23,559 22,451 22,896 22,535 20,900 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA ...

  3. Other States Total Natural Gas Gross Withdrawals and Production

    Energy Information Administration (EIA) (indexed site)

    51,181 51,756 49,472 49,484 49,405 46,128 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA ...

  4. Adsorption of phenol from aqueous systems onto spent oil shale

    SciTech Connect

    Darwish, N.A.; Halhouli, K.A.; Al-Dhoon, N.M. [Jordan Univ. of Science and Technology, Irbid (Jordan)

    1996-03-01

    To evaluate its ability to remove phenol from aqueous solution, Jordanian {open_quotes}spent{close_quotes} oil shale, an abundant natural resource, has been used in an experimental adsorption study. Equilibrium of the system has been determined at three temperatures: 30, 40, and 55{degrees}C. The resulting experimental equilibrium isotherms are well represented by Frendlich, Langmuir, and Redlich-Peterson isotherms. The relevant parameters for these isotherms, as regressed from the experimental equilibrium data, are presented. Effects of solution pH (in the range of 3-11), in addition to effects of three inorganic salts (Kl, KCl, and NaCl), on the equilibrium isotherms were also investigated. The effects of pH in the presence of KI and NaCl were also investigated for a possible interaction between salts and solution pH. The initial concentration of phenol in the aqueous system studied ranges from 10 to 200 ppm. Experimental results show that while an acidic solution has no effect on the adsorption capacity of spent oil shale to phenol, a highly basic solution reduces its adsorbability. No sound effect was observed for the inorganic salts studied on the adsorption of phenol on spent oil shale. The experimental results show that there is no interaction between the pH of solution and the presence of salts. In spite of its ability to remove phenol, spent oil shale showed a very low equilibrium capacity (of an order of magnitude of 1 mg/g). Should the adsorption capacity of the shale be improved (by different treatment processes, such as grafting, surface conditioning), results of this study will find a direct practical implication in serving as {open_quotes}raw{close_quotes} reference data for comparison purposes.

  5. Oil and Gas

    Energy Saver

    RD&D Leases in the United States Oil Shale RD&D Leases in the United States This paper describes the original plans, progress and accomplishments, and future plans for nine oil shale research, development and demonstration (RD&D) projects on six existing RD&D leases awarded in 2006 and 2007 by the United States Department of the Interior, Bureau of Land Management (BLM) to Shell, Chevron, EGL (now AMSO), and OSEC (now Enefit American, respectively); as well as three pending

  6. Monitoring Well Placement

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Monitoring Well Placement Monitoring Well Placement Monitoring wells are designed and placed to define groundwater flow and water quality below the surface. August 1, 2013 Topographic map showing placement of monitoring wells Topographic map showing placement of monitoring wells

  7. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. [Jurassic Smackover Formation

    SciTech Connect

    Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

    1992-06-01

    This volume contains maps, well logging, structural cross section, graph of production history, porosity vs. natural log permeability plots, detailed core log, paragenetic sequence, and reservoir characterization sheet for the following fields in southwest Alabama: North Smiths Church oil field; North Wallers Creek oil field; Northeast Barnett oil field; Northwest Range oil field; Pace Creek oil field; Palmers Crossroads oil field; Perdido oil field; Puss Cuss Creek oil field; Red Creek gas condensate field; Robinson Creek oil field; Silas oil field; Sizemore Creek gas condensate field; Smiths Church gas condensate field; South Burnt Corn Creek oil field; South Cold Creek oil field; South Vocation oil field; South Wild Fork Creek gas condensate field; South Womack Hill oil field; Southeast Chatom gas condensate field; Southwest Barrytown oil field; and Souwilpa Creek gas condensate field.

  8. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. Appendix 1, Volume 3

    SciTech Connect

    Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

    1992-06-01

    This volume contains maps, well logging, structural cross section, graph of production history, porosity vs. natural log permeability plots, detailed core log, paragenetic sequence, and reservoir characterization sheet for the following fields in southwest Alabama: North Smiths Church oil field; North Wallers Creek oil field; Northeast Barnett oil field; Northwest Range oil field; Pace Creek oil field; Palmers Crossroads oil field; Perdido oil field; Puss Cuss Creek oil field; Red Creek gas condensate field; Robinson Creek oil field; Silas oil field; Sizemore Creek gas condensate field; Smiths Church gas condensate field; South Burnt Corn Creek oil field; South Cold Creek oil field; South Vocation oil field; South Wild Fork Creek gas condensate field; South Womack Hill oil field; Southeast Chatom gas condensate field; Southwest Barrytown oil field; and Souwilpa Creek gas condensate field.

  9. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. Appendix 1, Volume 1

    SciTech Connect

    Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

    1992-06-01

    This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

  10. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. [Jurassic Smackover Formation

    SciTech Connect

    Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

    1992-06-01

    This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

  11. Well casing-based geophysical sensor apparatus, system and method

    DOEpatents

    Daily, William D.

    2010-03-09

    A geophysical sensor apparatus, system, and method for use in, for example, oil well operations, and in particular using a network of sensors emplaced along and outside oil well casings to monitor critical parameters in an oil reservoir and provide geophysical data remote from the wells. Centralizers are affixed to the well casings and the sensors are located in the protective spheres afforded by the centralizers to keep from being damaged during casing emplacement. In this manner, geophysical data may be detected of a sub-surface volume, e.g. an oil reservoir, and transmitted for analysis. Preferably, data from multiple sensor types, such as ERT and seismic data are combined to provide real time knowledge of the reservoir and processes such as primary and secondary oil recovery.

  12. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  13. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  14. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  15. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  16. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  17. Monitoring Well Placement

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Monitoring Well Placement Monitoring Well Placement Monitoring wells are designed and placed to define groundwater flow and water quality below the surface. August 1, 2013...

  18. Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals...

    Energy Information Administration (EIA) (indexed site)

    106,086 112,137 108,752 101,117 111,581 102,289 1997-2016 From Gas Wells NA NA NA NA NA NA 1997-2016 From Oil Wells NA NA NA NA NA NA 1997-2016 From Shale Gas Wells NA NA NA NA NA ...

  19. New Mexico Natural Gas Gross Withdrawals and Production

    Energy Information Administration (EIA) (indexed site)

    107,683 102,059 100,031 99,889 109,060 106,692 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA ...

  20. Alabama Natural Gas Summary

    Energy Information Administration (EIA) (indexed site)

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  1. Indiana Natural Gas Summary

    Energy Information Administration (EIA) (indexed site)

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  2. South Dakota Natural Gas Summary

    Energy Information Administration (EIA) (indexed site)

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  3. Maryland Natural Gas Summary

    Energy Information Administration (EIA) (indexed site)

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  4. Illinois Natural Gas Summary

    Energy Information Administration (EIA) (indexed site)

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  5. New York Natural Gas Summary

    Energy Information Administration (EIA) (indexed site)

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  6. Kentucky Natural Gas Summary

    Energy Information Administration (EIA) (indexed site)

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  7. Missouri Natural Gas Summary

    Energy Information Administration (EIA) (indexed site)

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  8. Well Placement Decision Process

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Well Placement Decision Process Well Placement Decision Process Determining where to place a well is a multi-step process. August 1, 2013 Investigation process for determining where to place a sentinel well Investigation process for determining where

  9. Impact and future of heavy oil produciton

    SciTech Connect

    Olsen, D.K, )

    1996-01-01

    Heavy oil resources are becoming increaingly important in meeting world oil demand. Heavy oil accounts for 10% of the worlds current oil production and is anticipated to grow significantly. Recent narrowing of the price margins between light and heavy oil and the development of regional heavy oil markets (production, refining and marketing) have prompted renewed investment in heavy oil. Production of well known heavy oil resources of Canada, Venezuela, United States, and elsewhere throughout the world will be expanded on a project-by-project basis. Custom refineries designed to process these heavy crudes are being expanded. Refined products from these crudes will be cleaner than ever before because of the huge investment. However, heavy oil still remains at a competitive disadvantage due to higher production, transportation and refining have to compete with other investment opportunities available in the industry. Expansion of the U.S. heavy oil industry is no exception. Relaxation of export restrictions on Alaskan North Slope crude has prompted renewed development of California's heavy oil resources. The location, resource volume, and oil properties of the more than 80-billion barrel U.S. heavy oil resource are well known. Our recent studies summarize the constraints on production, define the anticipated impact (volume, location and time frame) of development of U.S. heavy oil resources, and examines the $7-billion investment in refining units (bottoms conversion capacity) required to accommodate increased U.S. heavy oil production. Expansion of Canadian and Venezuelan heavy oil and tar sands production are anticipated to dramatically impact the U.S. petroleum market while displacing some imported Mideast crude.

  10. Impact and future of heavy oil produciton

    SciTech Connect

    Olsen, D.K,

    1996-12-31

    Heavy oil resources are becoming increaingly important in meeting world oil demand. Heavy oil accounts for 10% of the worlds current oil production and is anticipated to grow significantly. Recent narrowing of the price margins between light and heavy oil and the development of regional heavy oil markets (production, refining and marketing) have prompted renewed investment in heavy oil. Production of well known heavy oil resources of Canada, Venezuela, United States, and elsewhere throughout the world will be expanded on a project-by-project basis. Custom refineries designed to process these heavy crudes are being expanded. Refined products from these crudes will be cleaner than ever before because of the huge investment. However, heavy oil still remains at a competitive disadvantage due to higher production, transportation and refining have to compete with other investment opportunities available in the industry. Expansion of the U.S. heavy oil industry is no exception. Relaxation of export restrictions on Alaskan North Slope crude has prompted renewed development of California`s heavy oil resources. The location, resource volume, and oil properties of the more than 80-billion barrel U.S. heavy oil resource are well known. Our recent studies summarize the constraints on production, define the anticipated impact (volume, location and time frame) of development of U.S. heavy oil resources, and examines the $7-billion investment in refining units (bottoms conversion capacity) required to accommodate increased U.S. heavy oil production. Expansion of Canadian and Venezuelan heavy oil and tar sands production are anticipated to dramatically impact the U.S. petroleum market while displacing some imported Mideast crude.

  11. Nebraska Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 0 0 2000's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude Oil Nebraska Proved Nonproducing

  12. Benin: World Oil Report 1991

    SciTech Connect

    Not Available

    1991-08-01

    This paper reports Ashland discovered additional oil reserves deeper than current production in Seme, Benin's only oil field. The field is on a steep decline, producing as little as 2,500 bopd, down from 7,671 bopd in 1984. In an effort to restart offshore exploration, three offshore blocks have been designated. Hardy Oil and Gas (UK) Ltd. has since acquired 20% interest in Blocks 1 and 2 from International Petroleum Ltd. (IPL). IPL completed seismic work during 1990 that identified two large channel prospects similar to those that produce offshore elsewhere in West Africa. The first well is expected in 1991.

  13. Alaska Natural Gas Gross Withdrawals from Oil Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    224,465 251,565 233,399 236,410 214,717 212,760 232,507 223,031 261,025 274,702 290,992 1995 274,804 247,021 277,758 257,212 260,177 235,728 232,612 254,927 244,310 287,014 ...

  14. Tennessee Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 398 180 165 376 585 485 592 1,014 664 1980's 763 1,198 2,976 3,950 5,022 4,686 3,464 2,707 2,100 1,900 1990's 2,067 1,856 1,770 1,660 1,990 1,820 1,690 1,510 1,420 1,230 2000's 1,150 2,000 2,050 1,803 2,100 2,200 2,663 3,942 0 0 2010's 0 0 0 0 0 0

  15. Texas Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,011,361 2,088,647 2,113,912 1970's 2,233,138 2,191,458 2,140,575 2,007,141 1,829,171 1,525,678 1,452,537 1,405,839 1,375,507 1,330,901 1980's 1,333,881 1,365,878 1,409,147 1,440,840 1,515,689 1,517,238 1,466,649 1,382,247 1,400,362 1,357,343 1990's 1,332,316 1,306,851 1,301,756 1,342,368 1,268,127 1,212,503 1,184,565 1,056,344 967,770 883,849 2000's 869,584 855,081 832,816 843,735 659,851 675,061 676,649

  16. Texas Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 106,431 100,309 111,016 108,119 109,053 109,003 115,881 112,222 110,834 115,159 103,949 104,875 1992 107,337 100,925 110,629 104,777 110,071 107,851 109,535 110,282 111,779 113,481 108,583 106,506 1993 111,597 102,386 115,201 111,341 114,588 111,458 115,308 116,160 111,320 114,969 108,006 110,034 1994 106,720 96,991 109,067 105,076 105,339 105,518 109,079 109,278 106,428 107,691 102,744 104,196 1995 101,465 93,314 105,025 101,321 103,325

  17. Pennsylvania Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 590 680 78,683 1970's 398 2,370 2,460 2,280 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 5,861 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 3,456 2,987 3,527 2,629

  18. Pennsylvania Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  19. Alaska Natural Gas Gross Withdrawals from Oil Wells (Million...

    Annual Energy Outlook

    71,831 1970's 87,363 103,003 96,707 99,302 104,614 115,074 126,167 223,382 430,891 560,709 1980's 726,152 761,499 894,933 968,015 1,007,161 1,138,304 1,193,928 1,509,528...

  20. Florida Natural Gas Gross Withdrawals from Oil Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,258 15,805 33,857 38,137 44,383 46,513 48,778 51,595 50,190 1980's 46,421 38,539 26,397 23,356 ...

  1. Tennessee Natural Gas Withdrawals from Oil Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    135 137 131 134 134 132 143 144 150 1994 176 157 170 162 164 158 160 161 159 172 172 180 1995 161 143 155 149 150 144 147 147 145 157 157 165 1996 137 122 132 126 128 123 147 148 ...

  2. Mississippi Natural Gas Gross Withdrawals from Oil Wells (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 41,701 34,645 35,609 1970's 33,283 28,809 25,377 26,985 22,700 18,133 16,776 17,162 13,199 12,023 1980's 12,394 12,597 11,822 13,216 13,881 11,685 15,132 14,463 14,640 15,856 1990's 19,983 22,155 20,384 15,631 9,597 6,051 6,210 7,276 8,628 5,750 2000's 5,339 5,132 5,344 4,950 4,414 4,966 4,511 6,203 7,542 8,934 2010's 8,714 8,159 43,421 7,256 7,136 9,220

  3. Mississippi Natural Gas Gross Withdrawals from Oil Wells (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1,891 1,527 1,907 1,923 1,910 2,023 2,113 1,945 1,738 1,757 1,671 1,751 1992 1,519 1,518 1,752 1,625 1,776 1,769 1,699 1,695 1,719 1,810 1,717 1,786 1993 1,353 1,451 1,528 1,396 1,419 1,258 1,400 1,238 1,242 1,186 1,077 1,081 1994 890 892 891 759 720 650 649 1,113 1,295 610 578 551 1995 533 475 545 511 506 427 457 541 518 494 522 524 1996 491 399 577 564 555 536 513 461 457 566 535 554 1997 491 526 573 570 645 655 625 671 657

  4. Utah Natural Gas Gross Withdrawals from Oil Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    7,182 6,975 7,080 1993 6,810 6,155 7,317 7,112 6,691 5,568 5,605 5,459 5,738 6,567 5,471 3,208 1994 3,271 2,974 3,455 3,310 3,667 3,442 3,619 3,951 3,644 3,737 3,720 3,880 1995 ...

  5. Nevada Natural Gas Withdrawals from Oil Wells (Million Cubic...

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 53 30 21 16 13 11 9 9 8 2000's 7 7 6 6 5 5 5 5 4 4 2010's 4 3 4 3

  6. Nevada Natural Gas Withdrawals from Oil Wells (Million Cubic...

    Annual Energy Outlook

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 3 3 5 6 6 5 5 4 4 5 4 3 1992 3 3 3 3 3 2 3 2 2 2 2 2 1993 2 2 2 2 2 2 2 2 2 1 2 2 1994 1 1 1 1 1 1 1 1 1 1 1 1 1995 1 1 1 ...

  7. California Natural Gas Gross Withdrawals from Oil Wells (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 573,639 311,320 473,316 1970's 431,244 385,990 251,343 221,602 204,301 194,154 253,163 215,897 163,128 164,721 1980's 254,710 274,357 321,364 323,370 339,636 353,105 333,317 334,092 326,346 319,722 1990's 299,748 289,594 294,800 285,162 282,227 289,430 313,581 318,852 316,472 342,372 2000's 324,400 320,048 304,972 278,072 269,004 264,445 254,526 116,652 122,345 121,949 2010's 151,369 120,880 67,065

  8. California Natural Gas Gross Withdrawals from Oil Wells (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 23,082 20,676 24,696 23,651 23,781 22,393 24,620 23,743 24,447 27,114 26,171 25,220 1992 26,512 24,291 25,805 25,630 26,086 23,826 24,954 24,226 23,552 24,499 22,632 22,787 1993 25,169 22,470 24,306 23,276 23,517 22,589 22,997 23,037 22,723 24,584 24,673 25,820 1994 24,910 22,238 24,056 23,037 23,275 22,356 22,761 22,800 22,489 24,331 24,419 25,554 1995 25,546 22,806 24,670 23,625 23,869 22,927 23,342 23,381 23,063 24,952 25,043

  9. Colorado Natural Gas Gross Withdrawals from Oil Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    43,402 51,918 52,341 55,607 54,539 1980's 44,533 47,578 48,971 41,572 40,008 57,492 64,454 67,769 69,815 64,704 1990's 68,878 72,209 77,568 93,155 101,379 102,970 95,724 95,960 ...

  10. Wyoming Natural Gas Gross Withdrawals from Oil Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 36,115 46,760 62,426 1970's 64,192 72,914 70,479 71,677 78,637 76,356 74,141 64,454 95,883 ...

  11. Ohio Natural Gas Withdrawals from Oil Wells (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    257 2002 533 476 513 492 495 475 482 483 476 518 519 544 2003 501 447 482 462 466 447 454 454 447 487 488 511 2004 484 432 466 447 450 432 439 439 432 471 472 494 2005 506 452 487 ...

  12. Florida Natural Gas Gross Withdrawals from Oil Wells (Million...

    Annual Energy Outlook

    688 640 657 1994 654 616 768 683 725 684 825 699 656 785 703 671 1995 614 632 664 637 666 590 593 554 559 522 547 554 1996 569 542 505 501 531 552 581 605 605 532 583 600 1997...

  13. Kentucky Natural Gas Withdrawals from Oil Wells (Million Cubic...

    Annual Energy Outlook

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 357 330 218 1970's 197 177 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0...

  14. Arkansas Natural Gas Withdrawals from Oil Wells (Million Cubic...

    Annual Energy Outlook

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 2,729 2,446 2,605 1,061 1,093 1,127 1,087 1,068 1,065 918 461 390 1992 3,488 3,117 3,362 3,241 3,223 3,122 3,179 3,180...

  15. Arkansas Natural Gas Withdrawals from Oil Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 46,038 51,257 56,105 1970's 55,409 54,429 43,852 39,408 33,426 30,248 29,981 36,581 39,082...

  16. Nebraska Natural Gas Withdrawals from Oil Wells (Million Cubic...

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 48 48 55 56 60 57 58 53 53 55 53 60 1992 61 56 61 56 65 61 61 56 54 55 52 53 1993 62 52 60 61 63 62 64 66 63 60 56 55 1994...

  17. Kentucky Natural Gas Withdrawals from Oil Wells (Million Cubic...

    Annual Energy Outlook

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0...

  18. Alabama Natural Gas Gross Withdrawals from Oil Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 902 895 791 1970's 1,581 661 2,009 5,013 5,387 5,261 5,768 6,423 6,987 6,793 1980's 6,389 5,962...

  19. Nebraska Natural Gas Withdrawals from Oil Wells (Million Cubic...

    Annual Energy Outlook

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,902 3,648 2,677 1970's 2,319 2,026 1,962 2,060 2,481 2,358 2,409 2,222 2,116 2,630 1980's...

  20. Ohio Natural Gas Withdrawals from Oil Wells (Million Cubic Feet...

    Annual Energy Outlook

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 7,024 8,931 11,253 1970's 12,419 18,058 17,230 16,679 16,749 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0...

  1. New York Natural Gas Withdrawals from Oil Wells (Million Cubic...

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 81 72 78 75 73 71 73 72 71 78 77 80 1992 73 65 70 68 68 66 67 67 66 71 70 73 1993 54 48 52 50 50 48 49 49 48 53 53 55 1994...

  2. New York Natural Gas Withdrawals from Oil Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 97 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 279 914 1,300 2,733 1,634 1,447 1,044 1,126 1990's...

  3. Virginia Natural Gas Gross Withdrawals from Oil Wells (Million...

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 9 9 9...

  4. Virginia Natural Gas Gross Withdrawals from Oil Wells (Million...

    Annual Energy Outlook

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0...

  5. Well Herb Oils Pvt Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jaipur, Rajasthan, India Zip: 302 001 Product: Rajasthan-based firm focusing on jatropha cultivation. Coordinates: 26.89876, 75.79636 Show Map Loading map......

  6. Footage Drilled for Crude Oil and Natural Gas Wells

    Gasoline and Diesel Fuel Update

    Stocks 2010 2011 2012 2013 2014 2015 View History U.S. 40,534 39,717 37,768 27,121 20,275 18,133 1993-2015 PAD District 1 3,913 3,741 3,513 3,190 1,785 1,901 1993-2015 Connecticut 1993-2004 Delaware 1993-2009 Florida 586 734 747 545 397 652 1993-2015 Georgia 374 251 220 269 235 220 1993-2015 Maine 130 152 254 1993-2013 Maryland 1993-2008 Massachusetts 2 4 3 6 5 5 1993-2015 New Hampshire 1993-2005 New Jersey 667 275 795 489 102 384 1993-2015 New York 194 628 483 394 43 11 1993-2015 North

  7. Kansas Natural Gas Gross Withdrawals from Oil Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 7,775 6,394 6,104 8,014 4,994 6,352 4,901 2,392 5,408 6,145 9,401 12,063 1992 7,811 6,783 6,437 5,708 6,048 5,846 5,902 ...

  8. Kansas Natural Gas Gross Withdrawals from Oil Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 145,591 149,557 142,972 1970's 151,541 160,330 141,815 151,627 141,870 140,418 127,467 105,351 ...

  9. Natural Gas Gross Withdrawals from Oil Wells (Summary)

    Gasoline and Diesel Fuel Update

    & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual Download Series History Download Series History ...

  10. Natural Gas Gross Withdrawals from Oil Wells (Summary)

    Gasoline and Diesel Fuel Update

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 1231 Reserves ...

  11. New Mexico Natural Gas Gross Withdrawals from Oil Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 301,003 297,313 305,073 1970's 309,118 308,880 277,294 268,930 309,784 311,830 300,161 287,139 ...

  12. Mississippi Natural Gas Gross Withdrawals from Oil Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1,891 1,527 1,907 1,923 1,910 2,023 2,113 1,945 1,738 1,757 1,671 1,751 1992 1,519 1,518 1,752 1,625 1,776 1,769 1,699 1,695 1,719 1,810 1,717 1,786 1993 1,353 1,451 1,528 1,396 1,419 1,258 1,400 1,238 1,242 1,186 1,077 1,081 1994 890 892 891 759 720 650 649 1,113 1,295 610 578 551 1995 533 475 545 511 506 427 457 541 518 494 522 524 1996 491 399 577 564 555 536 513 461 457 566 535 554 1997 491 526 573 570 645 655 625 671 657

  13. Nebraska Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 48 48 55 56 60 57 58 53 53 55 53 60 1992 61 56 61 56 65 61 61 56 54 55 52 53 1993 62 52 60 61 63 62 64 66 63 60 56 55 1994 63 61 70 65 71 69 68 71 66 66 65 69 1995 63 56 59 59 60 57 57 56 54 51 55 55 1996 51 48 49 49 48 46 46 46 42 42 42 40 1997 39 37 41 38 39 39 42 40 45 55 55 54 1998 57 55 47 44 42 36 36 37 33 33 30 31 1999 31 26 29 30 31 30 30 31 26 32 30 31 2000 31 30 28 30 31 29 27 31 28 29 27 27 2001 27 26 28 25 26 25 29 29 26 27 26

  14. Ohio Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 580 518 558 535 539 518 526 526 518 565 566 592 1999 529 473 509 489 492 472 480 480 473 515 516 540 2000 583 521 561 538 542 520 528 528 521 567 568 595 2001 251 225 242 232 234 224 228 228 225 245 245 257 2002 533 476 513 492 495 475 482

  15. Pennsylvania Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  16. Tennessee Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 165 148 161 153 152 148 150 150 146 159 159 165 1992 157 141 152 146 145 140 142 143 141 152 152 159 1993 147 131 141 135 137 131 134 134 132 143 144 150 1994 176 157 170 162 164 158 160 161 159 172 172 180 1995 161 143 155 149 150 144 147 147 145 157 157 165 1996 137 122 132 126 128 123 147 148 146 158 158 166 1997 122 109 118 113 114 110 132 132 130 141 142 148 1998 115 102 111 106 107 103 124 124 123 133 133 139 1999 99 89 96 92 93 89

  17. Texas Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 106,431 100,309 111,016 108,119 109,053 109,003 115,881 112,222 110,834 115,159 103,949 104,875 1992 107,337 100,925 110,629 104,777 110,071 107,851 109,535 110,282 111,779 113,481 108,583 106,506 1993 111,597 102,386 115,201 111,341 114,588 111,458 115,308 116,160 111,320 114,969 108,006 110,034 1994 106,720 96,991 109,067 105,076 105,339 105,518 109,079 109,278 106,428 107,691 102,744 104,196 1995 101,465 93,314 105,025 101,321 103,325

  18. Illinois Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,071 4,299 3,735 1970's 4,774 3,997 1,806 0 0 0 0 0 0 0 1980's 240 13 169 172 130 96 441 215 181 209 1990's 24 13 10 10 10 10 9 7 6 6 2000's 6 6 5 5 5 5 5 5 5 5 2010's 5 7 0 0 0 0

  19. Average Depth of Crude Oil and Natural Gas Wells

    Gasoline and Diesel Fuel Update

    University of Tulsa October 26, 2016 | Tulsa, OK by Adam Sieminski, Administrator Mission: EIA collects, analyzes, and disseminates independent and impartial energy information to promote sound policymaking, efficient markets, and public understanding of energy and its interaction with the economy and the environment. EIA is the Nation's official source of energy information and, by law, its data, analyses, and forecasts are independent of approval by any other officer or employee of the United

  20. Costs of Crude Oil and Natural Gas Wells Drilled

    Gasoline and Diesel Fuel Update

    07/21/2016 Next Release Date: 08/31/2016

  1. Crude Oil and Natural Gas Exploratory and Development Wells

    Gasoline and Diesel Fuel Update

    07/21/2016 Next Release Date: 08/31/2016

  2. Footage Drilled for Crude Oil and Natural Gas Wells

    Gasoline and Diesel Fuel Update

    Values shown for the current two months are preliminary. Values shown for the previous two months may be revised to account for late submissions and corrections. Final revisions to monthly and annual values are available upon publication of the June Petroleum Marketing Monthly. Annual averages that precede the release of the June Petroleum Marketing Monthly are calculated from monthly data. Data through 2015 are final. Effective January 2009, selected crude streams were discontinued and new

  3. Average Depth of Crude Oil and Natural Gas Wells

    Gasoline and Diesel Fuel Update

    7.05 6.94 7.35 7.71 8.11 8.25 1973-2016 Alabama 10.20 10.63 10.62 11.31 11.74 11.88 1989-2016 Alaska 7.87 7.90 8.00 8.41 9.07 8.78 1989-2016 Arizona 9.74 9.07 8.78 8.70 8.72 8.62 1989-2016 Arkansas 7.23 6.97 7.23 7.35 7.02 7.28 1989-2016 California 8.18 7.19 7.35 7.44 8.08 8.76 1989-2016 Colorado 5.94 5.98 6.16 7.65 8.39 9.30 1989-2016 Connecticut 7.93 9.37 9.87 11.82 11.16 11.75 1989-2016 Delaware 8.79 9.33 10.03 10.87 11.51 12.11 1989-2016 District of Columbia 10.21 10.24 10.24 11.31 12.12

  4. Costs of Crude Oil and Natural Gas Wells Drilled

    Gasoline and Diesel Fuel Update

    16,220.8 16,658.8 16,651.0 17,047.0 16,981.8 17,079.3 1994-2016 East Coast (PADD 1) W W W W W W 1994-2016 New England (PADD 1A) - - - - - - 1994-2016 Connecticut - - - - - - 1994-2016 Maine - - - - - - 1994-2016 Massachusetts - - - - - - 1994-2016 New Hampshire - - - - - - 1994-2016 Rhode Island - - - - - - 1994-2016 Vermont - - - - - - 1994-2016 Central Atlantic (PADD 1B) W W W W W W 1994-2016 Delaware - - - - - - 1994-2016 District of Columbia - - - - - - 1994-2016 Maryland - - - - - -

  5. Crude Oil and Natural Gas Exploratory and Development Wells

    Gasoline and Diesel Fuel Update

    7/31/2015 Next Release Date: 8/31/2015

  6. Kansas Natural Gas Gross Withdrawals from Oil Wells (Million...

    Annual Energy Outlook

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 145,591 149,557 142,972 1970's 151,541 160,330 141,815 151,627 141,870 140,418 127,467 105,351...

  7. Arizona Natural Gas Gross Withdrawals from Oil Wells (Million...

    Annual Energy Outlook

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 342 378 263 223 251 291 340 286 345 1980's 355 290 252 230 217 197 183 185 179 149 1990's 67 158...

  8. Arizona Natural Gas Gross Withdrawals from Oil Wells (Million...

    Annual Energy Outlook

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5 4 6 6 8 65 20 15 7 5 10 6 1992 5 4 5 5 5 5 5 10 8 9 6 6 1993 11 9 12 9 9 10 10 8 9 10 9 6 1994 7 5 7 6 3 2 2 4 4 3 3 2...

  9. California Natural Gas Gross Withdrawals from Oil Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 23,082 20,676 24,696 23,651 23,781 22,393 24,620 23,743 24,447 27,114 26,171 25,220 1992 26,512 24,291 25,805 25,630 26,086 23,826 24,954 24,226 23,552 24,499 22,632 22,787 1993 25,169 22,470 24,306 23,276 23,517 22,589 22,997 23,037 22,723 24,584 24,673 25,820 1994 24,910 22,238 24,056 23,037 23,275 22,356 22,761 22,800 22,489 24,331 24,419 25,554 1995 25,546 22,806 24,670 23,625 23,869 22,927 23,342 23,381 23,063 24,952 25,043

  10. Kentucky Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  11. SMOOTH OIL & GAS FIELD OUTLINES MADE FROM BUFFERED WELLS

    Energy Information Administration (EIA) (indexed site)

    ... When a trapezoid causes an error, it ' is added to the list and processing starts over at ... Function GetExtent(pGDS As IGeoDataset) As IEnvelope Set GetExtent pGDS.Extent End ...

  12. Alabama Natural Gas Gross Withdrawals from Oil Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    521 504 503 495 490 482 465 475 476 497 2003 478 466 508 434 479 474 467 482 471 429 451 441 2004 465 347 476 459 429 441 463 469 297 401 440 465 2005 502 448 472 487 508 519 ...

  13. Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 4 2 2000's 2 4 1 2 2 2 0 0 0 0 2010's 0 1 2 2 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  14. Alaska (with Total Offshore) Crude Oil Reserves in Nonproducing Reservoirs

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Alaska (with Total Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 806 932 2000's 511 389 546 734 707 595 442 400 529 633 2010's 622 566 802 639 548 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  15. California (with State Offshore) Crude Oil Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) California (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 937 511 2000's 464 508 336 313 267 455 496 335 197 272 2010's 522 542 627 606 588 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  16. California--State Offshore Crude Oil Reserves in Nonproducing Reservoirs

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) California--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 7 0 2000's 32 30 42 25 30 35 34 27 23 46 2010's 47 62 53 52 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  17. Federal Offshore--California Crude Oil Reserves in Nonproducing Reservoirs

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Federal Offshore--California Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 21 15 2000's 42 62 62 93 55 32 37 20 12 12 2010's 13 13 25 17 18 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  18. Illinois Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Million Barrels) Illinois Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 4 11 2000's 4 15 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude Oil Illinois Proved

  19. Louisiana (with State Offshore) Crude Oil Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 198 226 2000's 204 227 185 190 150 193 198 193 144 149 2010's 183 152 157 180 221 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  20. Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 143 146 2000's 123 134 139 150 115 148 162 164 122 129 2010's 126 113 125 155 188 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  1. Mississippi (with State Offshore) Crude Oil Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Mississippi (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 49 68 2000's 38 71 42 68 79 87 79 35 126 117 2010's 94 90 82 73 85 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  2. Ohio Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Million Barrels) Ohio Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 0 17 2000's 10 6 8 8 7 7 8 8 7 5 2010's 1 1 2 7 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude Oil

  3. Texas (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 448 565 2000's 750 719 753 613 625 828 1,077 1,186 1,186 1,455 2010's 1,883 2,456 4,293 4,065 5,060 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  4. Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 0 0 2000's 0 0 0 2 0 1 0 0 0 0 2010's 0 1 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  5. High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale

    SciTech Connect

    Forsberg, Charles W.

    2006-07-01

    The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

  6. FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds Breakout Session 2: Frontiers and Horizons ...

  7. U.S. Average Depth of Crude Oil Developmental Wells Drilled (Feet per Well)

    Gasoline and Diesel Fuel Update

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,405 1980's 3,405 3,316 3,248 3,355 3,518 3,454 3,443 3,351 3,192 3,099 1990's 2,936 2,968 3,031 2,868 2,907 2,886 2,938 3,022 3,136 3,313 2000's 3,299 3,193 2,988 2,855 2,742

  8. U.S. Nominal Cost per Crude Oil Well Drilled (Thousand Dollars per Well)

    Gasoline and Diesel Fuel Update

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 142,243 194,185 258,468 267,309 296,968 259,652 2000's 295,916 341,084 358,397 356,964 340,537 378,485 370,756 400,244 440,262 459,330 2010's 510,691 532,893 465,005 492,143 634,045 607,148

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's -19,376 5,419 -12,622 6,367 -21,639 -569 2000's 24,200 -47,490 4,864 -25,973 22,970 -33,755 -18,935 20,001 -42,044 -56,010 2010's

  9. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity.

  10. Geological model for oil gravity variations in Oriente Basin, Ecuador

    SciTech Connect

    Dashwood, M.F.; Abbotts, I.L.

    1988-01-01

    The Oriente basin is one of the major productive Subandean basins. Most of the fields produce 29/sup 0/-33/sup 0/ API paraffinic oils, but oils have been discovered with gravities ranging from 10/sup 0/to 35/sup 0/ API. All the oils have been recovered from multiple middle to Late Cretaceous sandstone reservoirs (Hollin and Napo Formations). Wells display a variety of oil gravities by reservoir. The origin of the Oriente oils is problematical and controversial, but structural, geochemical, and well evidence suggest a vast oil kitchen west of the present Andean foothills that was mature for oil generation by at least early Tertiary. Oil analyses indicate a single family of oils is present. Oil gravity variations can be explained systematically in terms of the various alteration processes suffered by the oil in each reservoir. Intermittent early Andean uplift (latest Cretaceous to Mid-Eocene) resulted in biodegradation and water-washing of oils, particularly in the uppermost Napo reservoirs. The main Andean orogeny (Pliocene) uplifted the Hollin reservoir to outcrop in the west, and tilted the basin down to the south. This movement resulted in water washing or flushing of the Hollin aquifer and a phase of northward remigration of oil. Late Andean structures postdated primary oil migration. Almost all structures displaying growth during the Late Cretaceous to early Eocene have been oil bearing, but some, particularly those located on the present-day basin flanks, were later severely biodegraded or breached.

  11. Dipole Well Location

    Energy Science and Technology Software Center

    1998-08-03

    The problem here is to model the three-dimensional response of an electromagnetic logging tool to a practical situation which is often encountered in oil and gas exploration. The DWELL code provide the electromagnetic fields on the axis of a borehole due to either an electric or a magnetic dipole located on the same axis. The borehole is cylindrical, and is located within a stratified formation in which the bedding planes are not horizontal. The anglemore » between the normal to the bedding planes and the axis of the borehole may assume any value, or in other words, the borehole axis may be tilted with respect to the bedding planes. Additionally, all of the formation layers may have invasive zones of drilling mud. The operating frequency of the source dipole(s) extends from a few Hertz to hundreds of Megahertz.« less

  12. Turkmenistan test encouraging oil strike

    SciTech Connect

    Not Available

    1992-07-27

    This paper reports that another former Soviet central Asian republic has reported a highly encouraging oil strike that provides hope for halting or even reversing a long decline in its oil production. Turkmenistan reported it completed a well flowing more than 1,300 b/d in the central part of the Kara-Kum desert. Saparmurad Niyazov, the republic's president, recently predicted black gold will become one of our nation's main riches. The Turkmenistan discovery follows a huge oil strike in neighboring Uzbekistan's sector of the Fergana Valley. A blowout last march near the Uzbek town of Mingbulak reportedly flowed 62,000 b/d to as much as 146,000 b/d from about 17,000 ft with a pressure of 10,300 psi. Uzbekistan is counting on that discovery to improve its oil production prospects immensely.

  13. Rising U.S. oil output leads world oil supply growth

    Energy Information Administration (EIA) (indexed site)

    Rising U.S. oil output leads world oil supply growth U.S. crude oil production reached 7 million barrels per day at the end of 2012 for the first time in two decades and is well on its way to topping 8 million barrels per day by 2014. In its new monthly forecast, the U.S. Energy Information Administration expects daily oil output will average 7.3 million barrels this year and then increase to 8.1 million barrels next year. The increase in U.S. and other North American oil production will account

  14. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    Energy Information Administration (EIA) (indexed site)

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  15. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    Energy Information Administration (EIA) (indexed site)

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  16. Guatemala: World Oil Report 1991

    SciTech Connect

    Not Available

    1991-08-01

    This paper reports that government officials have been working on changes to the hydrocarbon law to make it easier for operators to explore. In a reform effort, Minister of Energy and Mines Carlos Hutarte brought a new staff dedicated to spurring oil development into office with him. This includes the Directorate of Hydrocarbons, which held a three-day seminar in Dallas, Texas, to acquaint U.S. firms with new policies. Only one company, Basic Resources International, has been operating in Guatemala over the last year. The firm drilled three onshore wells in 1990 for 16,499 ft, including one oil producer. Two further onshore wells are slated this year. Oil production from 14 active wells out of 16 capable averaged 3,943 bpd, up 8.4% from 1989. Reserves are 191 MMbbl.

  17. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect

    John K. Godwin

    2005-12-01

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  18. Oil taxation and risks

    SciTech Connect

    Rodriguez-Padilla, V. )

    1992-01-01

    The relationship between the taxation system and the division of risks between the host country governments and the international companies is discussed. The analysis underscores the effect of taxation on the geological and political risks. These two cases are evaluated in two West-African oil-producing countries. It emerges from this that too heavy and regressive taxes greatly increase the risks supported by the two partners. The progressive character of the taxation is a necessary but not a sufficient condition for the reduction of public and private risks. A taxation burden well-balanced among small and large deposits is the best way to reduce the risk due to taxation. The oil-producing countries of this region had made great advances in developing neutral taxation systems but in most cases they must progress further. 15 refs., 3 figs., 1 tab.

  19. DOCUMENTS REQUIRED FOR THE PROCESSING OF STATE HEATING OIL AND PROPRANE PROGRAM (SHOPP)

    Gasoline and Diesel Fuel Update

    Heating Oil and Propane Program (SHOPP) Cooperative Agreement Package Checklist Attachment Estimated OMB* Burden Actions Required SHOPP Project Description NA Review - FYI Statement of Substantial Involvement NA Review - FYI, State listing still subject to change SF-424A, Budget Page 3.0 hours Research and complete form DOE F 1600, Assurance of Compliance 0.25 hours Review, complete and sign Drug-free workplace certification NA Review and sign Intellectual Property Provisions (NRD- 1003) NA

  20. Well Log ETL tool

    Energy Science and Technology Software Center

    2013-08-01

    This is an executable python script which offers two different conversions for well log data: 1) Conversion from a BoreholeLASLogData.xls model to a LAS version 2.0 formatted XML file. 2) Conversion from a LAS 2.0 formatted XML file to an entry in the WellLog Content Model. Example templates for BoreholeLASLogData.xls and WellLogsTemplate.xls can be found in the package after download.

  1. Well Logging Security Initiatives | Y-12 National Security Complex

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Well Logging Security ... Well Logging Security Initiatives The mp4 video format is not supported by this browser. Download video Captions: On Watch as GTRI demonstrates the threat to the security of (oil) well logging systems and outlines the initiatives that are enhancing the security of these sources worldwide

  2. Oil field management system

    DOEpatents

    Fincke, James R.

    2003-09-23

    Oil field management systems and methods for managing operation of one or more wells producing a high void fraction multiphase flow. The system includes a differential pressure flow meter which samples pressure readings at various points of interest throughout the system and uses pressure differentials derived from the pressure readings to determine gas and liquid phase mass flow rates of the high void fraction multiphase flow. One or both of the gas and liquid phase mass flow rates are then compared with predetermined criteria. In the event such mass flow rates satisfy the predetermined criteria, a well control system implements a correlating adjustment action respecting the multiphase flow. In this way, various parameters regarding the high void fraction multiphase flow are used as control inputs to the well control system and thus facilitate management of well operations.

  3. ARM 36-21-810 - Well Abandonment | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    36-21-810 - Well AbandonmentLegal Published NA Year Signed or Took Effect 2010 Legal Citation ARM 36.21.810 DOI Not Provided Check for DOI availability: http:crossref.org Online...

  4. NMOSE Artesian Well Plan of Operations | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Well Plan of OperationsLegal Published NA Year Signed or Took Effect 2011 Legal Citation Not provided DOI Not Provided Check for DOI availability: http:crossref.org...

  5. Crude Oil | NISAC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NISACCrude Oil content top National Transportation Fuels Model Posted by tmanzan on Oct 3, ... by the network model (see figure) spans from oil fields to fuel distribution terminals. ...

  6. Oil Security Metrics Model

    SciTech Connect

    Greene, David L.; Leiby, Paul N.

    2005-03-06

    A presentation to the IWG GPRA USDOE, March 6, 2005, Washington, DC. OSMM estimates oil security benefits of changes in the U.S. oil market.

  7. Crude Oil Domestic Production

    Energy Information Administration (EIA) (indexed site)

    Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net ...

  8. Oil and Gas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil and Gas Oil and Gas R&D focus on the use of conventional and unconventional fossil fuels, including associated environmental challenges Contact thumbnail of Business ...

  9. NETL: Oil & Gas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil & Gas Efficient recovery of our nation's fossil fuel resources in an environmentally ... and challenging locations of many of our remaining oil and natural gas accumulations. ...

  10. Corona processing of insulating oil

    SciTech Connect

    Rohwein, G.J.

    1996-07-01

    It is well known that sustained corona discharge in insulating oil lowers its dielectric strength and simultaneously reduces its corona resistance. Therefore, for operating stresses in the corona regime, activity typically increases with time and, if allowed to continue, eventually leads to breakdown of the oil and failure of the component or system. It is, therefore, common practice to periodically replace oil in devices such as large power transformers and switch gear before breakdown occurs. Sealed components such as capacitors are typically replaced. Recent experiments have demonstrated that the dielectric properties of corona weakened oil can not only be restored, but actually improved by a simple regeneration process. These experiments were carried out on high voltage pulse transformer windings which were operated at high rep rates until partial discharges formed. Reprocessing the oil after each operating cycle resulted in successively longer operational periods before partial discharges appeared. In a separate experiment, a process was developed to precondition transformer oil to raise its corona inception voltage before using it to insulate a high voltage component, thus giving it a longer initial service life for a given operating stress or permitting higher stress operation for limited operating times.

  11. Review of NMR characterization of pyrolysis oils

    DOE PAGES [OSTI]

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; Adhikari, Sushil; Ragauskas, Arthur J.

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  12. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  13. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  14. Isobaric groundwater well

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    1999-01-01

    A method of measuring a parameter in a well, under isobaric conditions, including such parameters as hydraulic gradient, pressure, water level, soil moisture content and/or aquifer properties the method as presented comprising providing a casing having first and second opposite ends, and a length between the ends, the casing supporting a transducer having a reference port; placing the casing lengthwise into the well, second end first, with the reference port vented above the water table in the well; and sealing the first end. A system is presented for measuring a parameter in a well, the system comprising a casing having first and second opposite ends, and a length between the ends and being configured to be placed lengthwise into a well second end first; a transducer, the transducer having a reference port, the reference port being vented in the well above the water table, the casing being screened across and above the water table; and a sealing member sealing the first end. In one embodiment, the transducer is a tensiometer transducer and in other described embodiments, another type transducer is used in addition to a tensiometer.

  15. STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS

    SciTech Connect

    Stephen Wolhart

    2003-06-01

    The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

  16. Testing geopressured geothermal reservoirs in existing wells. Wells of Opportunity Program final contract report, 1980-1981

    SciTech Connect

    Not Available

    1982-01-01

    The geopressured-geothermal candidates for the Wells of Opportunity program were located by the screening of published information on oil industry activity and through direct contact with the oil and gas operators. This process resulted in the recommendation to the DOE of 33 candidate wells for the program. Seven of the 33 recommended wells were accepted for testing. Of these seven wells, six were actually tested. The first well, the No. 1 Kennedy, was acquired but not tested. The seventh well, the No. 1 Godchaux, was abandoned due to mechanical problems during re-entry. The well search activities, which culminated in the acceptance by the DOE of 7 recommended wells, were substantial. A total of 90,270 well reports were reviewed, leading to 1990 wells selected for thorough geological analysis. All of the reservoirs tested in this program have been restricted by one or more faults or permeability barriers. A comprehensive discussion of test results is presented.

  17. Consortium for Petroleum & Natural Gas Stripper Wells

    SciTech Connect

    Morrison, Joel

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industry-driven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings

  18. Geothermal Well Stimulation

    SciTech Connect

    Campbell, D. A.; Morris, C. W.; Sinclair, A. R.; Hanold, R. J.; Vetter, O. J.

    1981-03-01

    The stimulation of geothermal wells presents some new and challenging problems. Formation temperatures in the 300-600 F range can be expected. The behavior of stimulation fluids, frac proppants, and equipment at these temperatures in a hostile brine environment must be carefully evaluated before performance expectations can be determined. In order to avoid possible damage to the producing horizon of the formation, high temperature chemical compatibility between the in situ materials and the stimulation materials must be verified. Perhaps most significant of all, in geothermal wells the required techniques must be capable of bringing about the production of very large amounts of fluid. This necessity for high flow rates represents a significant departure from conventional petroleum well stimulation and demands the creation of very high near-wellbore permeability and/or fractures with very high flow conductivity.

  19. Aqueous flooding methods for tertiary oil recovery

    DOEpatents

    Peru, Deborah A.

    1989-01-01

    A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

  20. Horizontal well planning

    SciTech Connect

    Schuh, F.J. )

    1991-03-01

    Interest in horizontal drilling has exploded at a rate well above even the most optimistic projections. Certainly, this technique will not end with the Bakken and Austin Chalk plays. However, future reservoirs will undoubtedly require much more complicated well designs and multi-disciplined technical interaction than has been used so far. The horizontal drilling costs are too high to permit resolving of all the technical issues by trial and error. A multi-disciplinary team approach will be required in order for horizontal drilling to achieve its economic potential.

  1. Thermal indicator for wells

    DOEpatents

    Gaven, Jr., Joseph V.; Bak, Chan S.

    1983-01-01

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  2. World Crude Oil Prices

    Energy Information Administration (EIA) (indexed site)

    World Crude Oil Prices (Dollars per Barrel) The data on this page are no longer available.

  3. Eco Oil 4

    SciTech Connect

    Brett Earl; Brenda Clark

    2009-10-26

    This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

  4. Louisiana Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Louisiana Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 9 2010's 23 63 21 9 68 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  5. Mississippi Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Mississippi Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 4 2010's 8 0 9 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  6. Montana Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Million Barrels) Montana Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 21 2010's -4 3 -7 -10 -1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves

  7. Montana Crude Oil + Lease Condensate Reserves Extensions (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Million Barrels) Montana Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 5 2010's 41 23 55 48 89 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Extensions

  8. Montana Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Montana Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 2010's 115 46 7 14 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  9. Nebraska Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Nebraska Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 2 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  10. Alabama Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Million Barrels) Alabama Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 2010's 12 2 6 -12 11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves

  11. Alabama Crude Oil + Lease Condensate Reserves Extensions (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Million Barrels) Alabama Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Extensions

  12. Alabama Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Alabama Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 3 11 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  13. Alaska Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Million Barrels) Alaska Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 79 0 2 187 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Acquisitions

  14. Alaska Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Million Barrels) Alaska Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 1 -1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves

  15. Alaska Crude Oil + Lease Condensate Reserves Extensions (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Million Barrels) Alaska Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 25 2010's 30 40 59 34 35 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Extensions

  16. Alaska Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Alaska Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 7 2010's 0 17 0 0 125 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  17. Arkansas Crude Oil + Lease Condensate Reserves Extensions (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Million Barrels) Arkansas Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 6 0 5 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Extensions

  18. Arkansas Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Arkansas Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 2010's 3 28 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  19. California Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) California Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 2010's 1 7 1 322 537 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  20. Colorado Crude Oil + Lease Condensate Reserves Extensions (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Million Barrels) Colorado Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 37 2010's 80 96 205 239 144 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Extensions

  1. Colorado Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Colorado Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 17 2010's 3 19 31 48 12 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  2. Wyoming Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Million Barrels) Wyoming Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 19 2010's 25 21 -18 -10 109 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves

  3. Wyoming Crude Oil + Lease Condensate Reserves Extensions (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Million Barrels) Wyoming Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 35 2010's 32 55 93 107 189 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Extensions

  4. Wyoming Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Wyoming Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6 2010's 81 46 7 30 71 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  5. New Mexico Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 16 2010's 22 59 45 12 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  6. North Dakota Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) North Dakota Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 4 2010's 63 124 236 44 567 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  7. Ohio Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Million Barrels) Ohio Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 2010's 22 0 3 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Acquisitions

  8. Ohio Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Million Barrels) Ohio Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 8 2010's 22 3 -8 -14 -21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves

  9. Ohio Crude Oil + Lease Condensate Reserves Extensions (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Million Barrels) Ohio Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 2 11 41 101 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Extensions

  10. Ohio Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Ohio Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 5 2010's 37 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  11. Oklahoma Crude Oil + Lease Condensate Reserves Extensions (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Million Barrels) Oklahoma Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 64 2010's 146 338 316 316 372 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Extensions

  12. Oklahoma Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Oklahoma Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 31 2010's 56 105 18 81 41 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  13. Pennsylvania Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Pennsylvania Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 23 0 0 0 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  14. Texas Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Million Barrels) Texas Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 21 2010's -72 145 239 -51 173 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves

  15. Texas Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Texas Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 111 2010's 252 424 240 640 891 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  16. Utah Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Million Barrels) Utah Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 26 2010's 3 10 26 42 18 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Acquisitions

  17. Utah Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Million Barrels) Utah Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2010's 13 -16 36 -17 -10 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves

  18. Utah Crude Oil + Lease Condensate Reserves Extensions (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Million Barrels) Utah Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 25 2010's 13 65 59 46 47 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Extensions

  19. Utah Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Utah Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 8 2010's 24 9 2 28 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  20. West Virginia Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) West Virginia Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 1 13 0 0 26 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  1. Florida Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Million Barrels) Florida Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -1 2010's 2 -2 2 -1 -1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves

  2. Florida Crude Oil + Lease Condensate Reserves Extensions (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Million Barrels) Florida Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 5 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Extensions

  3. Florida Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Florida Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 20 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  4. Illinois Crude Oil + Lease Condensate Reserves Extensions (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Million Barrels) Illinois Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 2010's 2 0 3 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Extensions

  5. Illinois Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Illinois Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 15 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  6. Indiana Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Million Barrels) Indiana Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -7 2010's 1 0 3 -4 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves

  7. Indiana Crude Oil + Lease Condensate Reserves Extensions (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Million Barrels) Indiana Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 3 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Extensions

  8. Indiana Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Indiana Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 2 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  9. Kansas Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Million Barrels) Kansas Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2010's 8 19 8 2 37 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Acquisitions

  10. Kansas Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Million Barrels) Kansas Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 20 2010's 61 22 7 -35 -5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves

  11. Kansas Crude Oil + Lease Condensate Reserves Extensions (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Million Barrels) Kansas Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2010's 5 23 37 79 77 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Extensions

  12. Kansas Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Kansas Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2010's 6 6 8 1 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  13. Kentucky Crude Oil + Lease Condensate Reserves Extensions (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Million Barrels) Kentucky Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Extensions

  14. Kentucky Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Kentucky Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 5 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  15. Federal Offshore--Louisiana Natural Gas Withdrawals from Oil...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Withdrawals from ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  16. ,"Federal Offshore California Natural Gas Withdrawals from Oil...

    Energy Information Administration (EIA) (indexed site)

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Natural Gas Withdrawals from Oil Wells (MMcf)",1,"Annual",2014 ,"Release...

  17. Oil gravity distribution in the diatomite at South Belridge Field, Kern County, CA: Implications for oil sourcing and migration

    SciTech Connect

    Hill, D.W.; Sande, J.J.; Doe, P.H.

    1995-04-01

    Understanding oil gravity distribution in the Belridge Diatomite has led to economic infill development and specific enhanced recovery methods for targeted oil properties. To date more than 100 wells have provided samples used to determining vertical and areal distribution of oil gravity in the field. Detailed geochemical analyses were also conducted on many of the oil samples to establish different oil types, relative maturities, and to identify transformed oils. The geochemical analysis also helped identify source rock expulsion temperatures and depositional environments. The data suggests that the Belridge diatomite has been charged by a single hydrocarbon source rock type and was generated over a relatively wide range of temperatures. Map and statistical data support two distinct oil segregation processes occurring post expulsion. Normal gravity segregation within depositional cycles of diatomite have caused lightest oils to migrate to the crests of individual cycle structures. Some data suggests a loss of the light end oils in the uppermost cycles to the Tulare Formation above, or through early biodegradation. Structural rotation post early oil expulsion has also left older, heavier oils concentrated on the east flank of the structure. With the addition of other samples from the south central San Joaquin area, we have been able to tie the Belridge diatomite hydrocarbon charge into a regional framework. We have also enhanced our ability to predict oil gravity and well primary recovery by unraveling some key components of the diatomite oil source and migration history.

  18. Models for geothermal wells

    SciTech Connect

    Michaelides, E.E.

    1980-06-01

    The problem of two-phase flow pressure loss is examined in order to give an answer to the problem of determination of the wellhead conditions. For this purpose two models have been developed, the first based on the pattern structure of the flow and the second on the mixing length theory. The void fraction correlations and the transition conditions are presented in the first model as a means of estimating the pressure loss. Heat losses, and the effect of impurities are examined in detail. An expression for the critical flow conditions is also derived. The model is used to predict the available power at the wellhead under various conditions and an answer to the problem of well pumping is given. For the second model an outline of the mixing length theory and the boundary layer coordinates is given; a density distribution in the geothermal well is assumed and the equations for the pressure loss are derived by means of the entropy production function. Finally a comparison of the two models is made and their predictive power is tested against known well data. A brief comparison with the Denver Research Institute is also made.

  19. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  20. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    SciTech Connect

    Munroe, Norman

    2009-01-30

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the

  1. Desulfurization of Illinois coals with hydroperoxides of vegetable oils and alkali. Technical report, September 1--November 30, 1995

    SciTech Connect

    Smith, G.V.; Gaston, R.D.; Song, R.; Cheng, J.; Shi, F.; Wang, Y.

    1995-12-31

    Organic sulfur is removed from coals by treatment with aqueous base, air, and vegetable oils with minimal loss of BTU. Such results were revealed during exploratory experiments on an ICCI funded project to remove organic sulfur from Illinois coals with hydroperoxides of vegetable oils. In fact, prewashing IBC-108 coal with dilute alkali prior to treating with linseed oil and air results in 26% removal of sulfur. This new method will be investigated by treating coals with alkali, impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of the solid products. During this first quarter the selection of base for pretreatment and extraction (Task 1) has been completed. NaOH is better than NH{sub 4}OH for the pretreatment and Na{sub 2}CO{sub 3} is better than NaOH for the oil extraction. About 40% of sulfur is removed from IBC-108 coal using 5% NaOH for pretreatment followed by linseed oil oxidation in air and Na{sub 2}CO{sub 3} extraction.

  2. Conductivity heating a subterranean oil shale to create permeability and subsequently produce oil

    SciTech Connect

    Van Meurs, P.; DeRouffignac, E.P.; Vinegar, H.J.; Lucid, M.F.

    1989-12-12

    This patent describes an improvement in a process in which oil is produced from a subterranean oil shale deposit by extending at least one each of heat-injecting and fluid-producing wells into the deposit, establishing a heat-conductive fluid-impermeable barrier between the interior of each heat-injecting well and the adjacent deposit, and then heating the interior of each heat-injecting well at a temperature sufficient to conductively heat oil shale kerogen and cause pyrolysis products to form fractures within the oil shale deposit through which the pyrolysis products are displaced into at least one production well. The improvement is for enhancing the uniformity of the heat fronts moving through the oil shale deposit. Also described is a process for exploiting a target oil shale interval, by progressively expanding a heated treatment zone band from about a geometric center of the target oil shale interval outward, such that the formation or extension of vertical fractures from the heated treatment zone band to the periphery of the target oil shale interval is minimized.

  3. California State Offshore Crude Oil + Lease Condensate Reserves New Field

    Energy Information Administration (EIA) (indexed site)

    Discoveries (Million Barrels) Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate New Field Discoveries CA, State Offshore Crude Oil plus

  4. West Virginia Crude Oil + Lease Condensate Reserves New Field Discoveries

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate New Field Discoveries West Virginia Crude Oil plus Lease Condensate

  5. Geothermal Reservoir Well Stimulation Program: technology transfer

    SciTech Connect

    Not Available

    1980-05-01

    A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

  6. Sedimentological analysis using geophysical well logs

    SciTech Connect

    Izotova, T.S. )

    1993-09-01

    The application of geophysical well logs in sedimentology and stratigraphic prospecting holds great promise in solving a number of geological problems. A suite of logs provides data on a wide range of rock properties: vertical and lateral variation of resistivity, natural polarization, natural and induced radioactivity, shear strength, and acoustic properties. Each of these properties is controlled by the depositional environment of the sediments and their later diagenesis. The attention of geologists and geophysicists is drawn to new techniques in the interpretation of geophysical well logs for exploration, appraisal, and development of oil and gas fields. The relationship between geophysical logs and depositional environments is explored. Bulk composition, rock structure, and texture and facies variation can be quantified by electric log parameters. Also, the possibility of using logs to demonstrate long- and short-period sedimentary cycles is demonstrated. Methods of sedimentological analysis using geophysical well logs are demonstrated. The importance of a genetic approach in the interpretation of geological sequences and paleogeological reconstructions is emphasized using examples taken from oil and gas prospecting operations in the Ukraine.

  7. Remote down-hole well telemetry

    DOEpatents

    Briles, Scott D.; Neagley, Daniel L.; Coates, Don M.; Freund, Samuel M.

    2004-07-20

    The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.

  8. Maximize revenue from gas condensate wells

    SciTech Connect

    Hall, S.R. )

    1988-09-01

    A computerized oil/gas modeling program called C.O.M.P. was used to analyze comparative recovery, losses and revenues from six different producing systems on a given wellstream as tested on initial completion. A multi-stage separation/stabilization/compression system (HERO system) manufactured by U.S. Enertek, Inc., was subsequently installed to produce the well, plus five other wells in the immediate area. This article compares theoretical gains forecast by the modeling program with actual gains recorded during later testing of the same well with a two-stage separation hookup and the multi-stage unit. The test using two-stage separation was run as a basis for comparison. Operating temperatures and pressures for each test are shown.

  9. Waterflooding in a system of horizontal wells

    SciTech Connect

    Bedrikovetsky, P.G.; Magarshak, T.O.; Shapiro, A.A.

    1995-10-01

    An approximate analytical method for the simulation of waterflooding in a system of horizontal wells is developed. The method is based on an advanced stream-line concept. The essence of this new method is the exact solution for the 3D two-phase flow problem in the system of coordinates linked with the stream lines under the only assumption of the immobility of stream lines. A software based on this approach was developed for IBM-compatible PC. It allows one multivariant comparative studies of immiscible displacement in systems of horizontal, vertical and slant wells. The simulator has been used in order to optimize geometrical parameters of a regular well system and to predict recovery in conditions of Prirazlomnoye offshore oil field.

  10. Geology and geochemistry of crude oils, Bolivar coastal fields, Venezuela

    SciTech Connect

    Bockmeulen, H.; Barker, C.; Dickey, P.A.

    1983-02-01

    The Bolivar Coastal Fields (BCF) are located on the eastern margin of Lake Maracaibo, Venezuela. They form the largest oil field outside of the Middle East and contain mostly heavy oil with a gravity less than 22/sup 0/ API. Thirty crude oils from the BCF were collected along two parallel and generally southwest-northeast trends. These oils were characterized by their API gravity, percent saturates, aromatics, NSO and asphalitic compounds, gas chromatograms for whole oils, C/sub 4/-C/sub 7/ fractions, and aromatics. Also, 24 associated waters were sampled and analyzed for Ca/sup + +/, Mg/sup + +/, Na/sup +/, HCO/sub 3//sup -/, CO/sub 3//sup - -/, SO/sub 4//sup - -/, pH, and total dissolved solids (TDS). The geological and geochemical significances of these analyses are discussed with particular emphasis on the genesis of the petroleum.

  11. Apparatus for distilling shale oil from oil shale

    SciTech Connect

    Shishido, T.; Sato, Y.

    1984-02-14

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  12. Reservoir visualization for geosteering of horizontal wells

    SciTech Connect

    Bryant, I.D.; Baygun, B.; Frass, M.; Casco, R.

    1996-08-01

    Horizontal infill wells in the Lower Lagunillas reservoir of Bloque IV, Lake Maracaibo are being drilled in thin, oil-bearing zones that have been bypassed by gas. Steering the horizontal sections of these wells requires high resolution reservoir models that can be updated during drilling. An example from well VLD-1152 serves to illustrate how these models are generated and used. Resistivity images collected by wireline and logging-while-drilling (LWD) tools in the pilot well formed the basis of prejob, high resolution modeling of the formation properties. 3-D seismic data and data from an offset vertical seismic profile collected in the pilot well provided the structural model. During drilling information from cuttings and LWD tools was used to continuously update these models. After the well had been drilled, analysis of LWD resistivity images provided a detailed model of the relationship between the well trajectory and the dip of the formation. This information is used to improve interpretation of the LWD logs to provide a petrophysical evaluation of the well.

  13. Crude Oil Characteristics Research

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SAE Plan June 29, 2015 Page 1 Crude Oil Characteristics Research Sampling, Analysis and Experiment (SAE) Plan The U.S. is experiencing a renaissance in oil and gas production. The Energy Information Administration projects that U.S. oil production will reach 9.3 million barrels per day in 2015 - the highest annual average level of oil production since 1972. This domestic energy boom is due primarily to new unconventional production of light sweet crude oil from tight-oil formations like the

  14. Evaluating oil quality and monitoring production from heavy oil reservoirs using geochemical methods: Application to the Boscan Field, Venezuela

    SciTech Connect

    Kaufman, R.L.; Noguera, V.H.; Bantz, D.M.; Rodriguez, R.

    1996-08-01

    Many oil fields worldwide contain heavy oil in one or more reservoir units. The low gravity of these oils is most frequently due to biodegradation and/or low maturity. The challenge is to find ways to economically recover this oil. Methods which reduce the operating costs of producing heavy oil add significant value to such projects. Geochemical techniques which use the composition of the reservoir fluids as natural tracers offer cost effective methods to assist with reservoir management. The low viscosity and gravity of heavy oil, combined with frequent high water cuts, low flow rates, and the presence of downhole artificial lift equipment, make many conventional production logging methods difficult to apply. Therefore, monitoring production, especially if the produced oil is commingled from multiple reservoirs, can be difficult. Geochemical methods can be used to identify oil/water contacts, tubing string leaks and to allocate production to individual zones from commingled production. An example of a giant heavy oil field where geochemical methods may be applicable is the Boscan Field in Venezuela. Low maturity oil, averaging 10{degrees} API gravity, is produced from the Eocene Upper and Lower Boscan (Miosa) Sands. Geochemical, stratigraphic and engineering data have helped to better define the controls on oil quality within the field, identified new reservoir compartments and defined unique characteristics of the Upper and Lower Boscan oils. This information can be used to identify existing wells in need of workovers due to mechanical problems and to monitor production from new infill wells.

  15. Abandoning wells working group

    SciTech Connect

    1997-03-01

    The primary objective of this working group is to identify major technical, regulatory, and environmental issues that are relevant to the abandonment of offshore wellbores. Once the issues have been identified, the working group also has the objective of making recommendations or providing potential solutions for consideration. Areas for process improvement will be identified and {open_quotes}best practices{close_quotes} will be discussed and compared to {open_quotes}minimum standards.{close_quotes} The working group will primarily focus on wellbore abandonment in the Gulf of Mexico. However, workshop participants are encouraged to discuss international issues which may be relevant to wellbore abandonment practices in the Gulf of Mexico. The Abandoning Wells Group has identified several major areas for discussion that have concerns related to both operators and service companies performing wellbore abandonments in the Gulf of Mexico. The following broad topics were selected for the agenda: (1) MMS minimum requirements and state regulations. (2) Co-existence of best practices, new technology, and P & A economics. (3) Liability and environmental issues relating to wellbore abandonment.

  16. Arkansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Million Barrels) Arkansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2 5 2000's 7 4 5 2 3 2 1 0 0 0 2010's 1 0 11 10 8 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude

  17. Colorado Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Million Barrels) Colorado Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 26 30 2000's 49 44 56 61 62 74 102 122 123 42 2010's 180 208 283 607 765 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved

  18. Kansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Million Barrels) Kansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 11 12 2000's 13 21 23 18 11 16 17 9 11 3 2010's 2 4 6 11 34 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves

  19. Kentucky Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Million Barrels) Kentucky Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 0 0 2000's 0 0 4 4 5 5 0 0 1 3 2010's 0 0 0 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude

  20. Michigan Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Million Barrels) Michigan Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 3 1 2000's 4 6 4 14 10 17 15 2 9 6 2010's 0 0 0 4 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of

  1. Montana Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Million Barrels) Montana Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 6 83 2000's 36 43 65 79 104 88 91 90 50 42 2010's 74 59 95 104 155 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing

  2. Oklahoma Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Million Barrels) Oklahoma Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 98 80 2000's 111 109 105 92 92 101 90 118 129 138 2010's 143 244 279 292 444 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved

  3. Pennsylvania Crude Oil Reserves in Nonproducing Reservoirs (Million

    Energy Information Administration (EIA) (indexed site)

    Barrels) Reserves in Nonproducing Reservoirs (Million Barrels) Pennsylvania Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 0 5 2000's 1 1 1 1 1 0 0 0 1 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing

  4. Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Million Barrels) Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 36 58 2000's 91 100 91 76 61 52 164 174 140 235 2010's 257 258 368 312 261 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved

  5. West Virginia Crude Oil Reserves in Nonproducing Reservoirs (Million

    Energy Information Administration (EIA) (indexed site)

    Barrels) Reserves in Nonproducing Reservoirs (Million Barrels) West Virginia Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 3 3 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 1 1 2 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing

  6. Wyoming Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Million Barrels) Wyoming Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 31 52 2000's 63 74 69 61 45 249 258 208 162 144 2010's 152 188 233 219 362 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved

  7. Method of determining interwell oil field fluid saturation distribution

    DOEpatents

    Donaldson, Erle C.; Sutterfield, F. Dexter

    1981-01-01

    A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

  8. Oil prices in a new light

    SciTech Connect

    Fesharaki, F. )

    1994-05-01

    For a clear picture of how oil prices develop, the author steps away from the price levels to which the world is accustomed, and evaluates scientifically. What makes prices jump from one notch to another The move results from a political or economic shock or the perception of a particular position by the futures market and the media. The shock could range from a war or an assassination to a promise of cooperation among OPEC members (when believed by the market) or to speculation about another failure at an OPEC meeting. In the oil market, only a couple of factual figures can provide a floor to the price of oil. The cost of production of oil in the Gulf is around $2 to $3/bbl, and the cost of production of oil (capital and operating costs) in key non-OPEC areas is well under $10/bbl. With some adjustments for transport and quality, a price range of $13/bbl to $16/bbl would correspond to a reasonable sustainable floor price. The reason for prices above the floor price has been a continuous fear of oil supply interruptions. That fear kept prices above the floor price for many years. The fear factor has now almost fully disappeared. The market has gone through the drama of the Iranian Revolution, the Iran-Iraq war, the tanker war, the invasion of Kuwait, and the expulsions of the Iraqis. And still the oil flowed -- all the time. It has become abundantly clear that fears above the oil market were unjustified. Everyone needs to export oil, and oil will flow under the worst circumstances. The demise of the fear factor means that oil prices tend toward the floor price for a prolonged period.

  9. Fuel Oil Use in Manufacturing

    Energy Information Administration (EIA) (indexed site)

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  10. Nitrogen Monitoring of West Hackberry 117 Cavern Wells.

    SciTech Connect

    Bettin, Giorgia; Lord, David

    2015-02-01

    U.S. Strategic Petroleum Reserve (SPR) oil storage cavern West Hackberry 117 was tested under extended nitrogen monitoring following a successful mechanical integrity test in order to validate a newly developed hydrostatic column model to be used to differentiate between normal "tight" well behavior and small-leak behavior under nitrogen. High resolution wireline pressure and temperature data were collected during the test period and used in conjunction with the hydrostatic column model to predict the nitrogen/oil interface and the pressure along the entire fluid column from the bradenhead flange nominally at ground surface to bottom of brine pool. Results here and for other SPR caverns have shown that wells under long term nitrogen monitoring do not necessarily pressurize with a relative rate (P N2 /P brine) of 1. The theoretical relative pressure rate depends on the well configuration, pressure and the location of the nitrogen-oil interface and varies from well to well. For the case of WH117 the predicted rates were 0.73 for well A and 0.92 for well B. The measured relative pressurization rate for well B was consistent with the model prediction, while well A rate was found to be between 0.58-0.68. A number of possible reasons for the discrepancy between the model and measured rates of well A are possible. These include modeling inaccuracy, measurement inaccuracy or the possibility of the presence of a very small leak (below the latest calculated minimum detectable leak rate).

  11. Sound Oil Company

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Ward Oil Co., 24 DOE 81,002 (1994); see also Belcher Oil Co., 15 DOE 81,018 (1987) ... months relief because of flood); Utilities Bd. of Citronelle-Gas, 4 DOE 81,205 (1979) ...

  12. South American oil

    SciTech Connect

    Not Available

    1992-06-01

    GAO reviewed the petroleum industries of the following eight South American Countries that produce petroleum but are not major exporters: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, and Trinidad and Tobago. This report discusses the amount of crude oil the United States imports from the eight countries, expected crude oil production for these countries through the year 2010, and investment reforms that these countries have recently made in their petroleum industries. In general, although the United States imports some oil from these countries, as a group, the eight countries are currently net oil importers because combined domestic oil consumption exceeds oil production. Furthermore, the net oil imports are expected to continue to increase through the year 2010, making it unlikely that the United States will obtain increased oil shipments from these countries.

  13. Enhanced Oil Recovery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Enhanced Oil Recovery As much as two-thirds of conventional crude oil discovered in U.S. fields remains unproduced, left behind due to the physics of fluid flow. In addition, ...

  14. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  15. Heavy oil production from Alaska

    SciTech Connect

    Mahmood, S.M.; Olsen, D.K.

    1995-12-31

    North Slope of Alaska has an estimated 40 billion barrels of heavy oil and bitumen in the shallow formations of West Sak and Ugnu. Recovering this resource economically is a technical challenge for two reasons: (1) the geophysical environment is unique, and (2) the expected recovery is a low percentage of the oil in place. The optimum advanced recovery process is still undetermined. Thermal methods would be applicable if the risks of thawing the permafrost can be minimized and the enormous heat losses reduced. Use of enriched natural gas is a probable recovery process for West Sak. Nearby Prudhoe Bay field is using its huge natural gas resources for pressure maintenance and enriched gas improved oil recovery (IOR). Use of carbon dioxide is unlikely because of dynamic miscibility problems. Major concerns for any IOR include close well spacing and its impact on the environment, asphaltene precipitation, sand production, and fines migration, in addition to other more common production problems. Studies have indicated that recovering West Sak and Lower Ugnu heavy oil is technically feasible, but its development has not been economically viable so far. Remoteness from markets and harsh Arctic climate increase production costs relative to California heavy oil or Central/South American heavy crude delivered to the U.S. Gulf Coast. A positive change in any of the key economic factors could provide the impetus for future development. Cooperation between the federal government, state of Alaska, and industry on taxation, leasing, and permitting, and an aggressive support for development of technology to improve economics is needed for these heavy oil resources to be developed.

  16. Vegetable oils for tractors

    SciTech Connect

    Moroney, M.

    1981-11-14

    Preliminary tests by the Agricultural Institute, show that tractors can be run on a 50:50 rape oil-diesel mixture or on pure rape oil. In fact, engine power actually increased slightly with the 50:50 blend but decreased fractionally with pure rape oil. Research at the North Dakota State University on using sunflower oil as an alternative to diesel fuel is also noted.

  17. SRC residual fuel oils

    SciTech Connect

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  18. SRC Residual fuel oils

    DOEpatents

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  19. Oil-futures markets

    SciTech Connect

    Prast, W.G.; Lax, H.L.

    1983-01-01

    This book on oil futures trading takes a look at a market and its various hedging strategies. Growing interest in trading of commodity futures has spread to petroleum, including crude oil, and key refined products such as gasoline and heating oil. This book describes how the international petroleum trade is structured, examines the working of oil futures markets in the United States and the United Kingdom, and assesses the possible courses of further developments.

  20. Third invitational well-testing symposium: well testing in low...

    Office of Scientific and Technical Information (OSTI)

    session, case histories and related phenomena, well test design in low permeability formations, analysis and interpretation of well test data, and instrumentation for well tests. ...

  1. Biochemical upgrading of oils

    DOEpatents

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  2. Biochemical upgrading of oils

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  3. 4 oil firms turn secret on reserves

    SciTech Connect

    Schaffer, P.

    1980-04-14

    US oil companies are complying with Saudi Arabia's and Indonesia's request by not revealing the companies' shares of oil reserves, adding to supply uncertainties and increasing the power of the producing countries. The information blackout reduces the reserve estimates filed by Exxon, Mobil, Standard Oil of California, and Texaco with the Securities and Exchange Commission, which plans to deal with the reporting problem on a case-by-case basis. Unless the companies decide the information can be disclosed to DOE's Financial Reporting System, a legal battle will ensue. A summary of reserve reports indicates a trend in declining production relative to new discoveries as well. (DCK)

  4. Calif--Coastal Region Onshore Crude Oil Reserves in Nonproducing Reservoirs

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Calif--Coastal Region Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 137 134 2000's 130 148 61 61 16 70 85 42 26 51 2010's 199 248 293 280 281 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  5. Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 740 321 2000's 234 233 111 110 158 238 228 168 117 146 2010's 210 163 226 214 216 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  6. Texas--RRC District 1 Crude Oil Reserves in Nonproducing Reservoirs

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 1 Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 4 13 2000's 12 9 11 14 9 15 26 27 34 26 2010's 144 436 1,266 1,324 1,427 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  7. Texas--RRC District 10 Crude Oil Reserves in Nonproducing Reservoirs

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 10 Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 6 5 2000's 7 8 7 6 5 6 9 12 16 29 2010's 35 51 70 70 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  8. Texas--RRC District 2 Onshore Crude Oil Reserves in Nonproducing Reservoirs

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 2 Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 5 7 2000's 9 12 14 12 13 16 16 16 8 14 2010's 53 242 711 615 825 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  9. Texas--RRC District 3 Onshore Crude Oil Reserves in Nonproducing Reservoirs

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 3 Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 24 26 2000's 34 29 41 37 21 19 18 22 18 26 2010's 37 19 118 163 189 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  10. Texas--RRC District 4 Onshore Crude Oil Reserves in Nonproducing Reservoirs

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 4 Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 7 9 2000's 8 8 5 7 4 17 4 2 2 1 2010's 80 3 1 7 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  11. Texas--RRC District 5 Crude Oil Reserves in Nonproducing Reservoirs

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 5 Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 5 5 2000's 6 4 4 2 1 1 1 1 0 1 2010's 0 1 29 12 28 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  12. Texas--RRC District 6 Crude Oil Reserves in Nonproducing Reservoirs

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 6 Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 60 10 2000's 9 20 14 16 15 3 17 18 10 12 2010's 11 16 32 18 40 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  13. Texas--RRC District 7B Crude Oil Reserves in Nonproducing Reservoirs

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 7B Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 12 6 2000's 5 1 2 5 5 3 5 1 9 8 2010's 8 13 19 12 16 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  14. Texas--RRC District 7C Crude Oil Reserves in Nonproducing Reservoirs

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 7C Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 10 33 2000's 34 45 36 12 14 31 120 137 156 221 2010's 286 301 438 400 642 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  15. Texas--RRC District 8 Crude Oil Reserves in Nonproducing Reservoirs

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 8 Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 168 234 2000's 280 237 258 165 218 333 466 454 537 679 2010's 790 934 1,144 1,057 1,441 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  16. Texas--RRC District 8A Crude Oil Reserves in Nonproducing Reservoirs

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 8A Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 143 212 2000's 335 333 345 319 311 374 386 484 388 413 2010's 418 419 433 367 361 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  17. Texas--RRC District 9 Crude Oil Reserves in Nonproducing Reservoirs

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 9 Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 4 4 2000's 11 11 16 16 9 9 9 12 8 25 2010's 21 20 32 20 39 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  18. Probabilistic model better defines development well risks

    SciTech Connect

    Connolly, M.R.

    1996-10-14

    Probabilistic techniques to compare and rank projects, such as the drilling of development wells, often are more representative than decision tree or deterministic approaches. As opposed to traditional deterministic methods, probabilistic analysis gives decision-makers ranges of outcomes with associated probabilities of occurrence. This article analyzes the drilling of a hypothetical development well with actual field data (such as stabilized initial rates, production declines, and gas/oil ratios) to calculate probabilistic reserves, and production flow streams. Analog operating data were included to build distributions for capital and operating costs. Economics from the Monte Carlo simulation include probabilistic production flow streams and cost distributions. Results include single parameter distributions (reserves, net present value, and profitability index) and time function distributions (annual production and net cash flow).

  19. Maximize revenue from gas condensate wells

    SciTech Connect

    Hall, S.R.

    1988-07-01

    A computerized oil/gas modeling program called C.O.M.P. allows operators to select the economically optimum producing equipment for a given gas-condensate well-stream. This article, the first of two, discusses use of the model to analyze performance of six different production system on the same wellstream and at the same wellhead conditions. All producing equipment options are unattended wellhead facilities designed for high volume gas-condensate wells and are not gas plants. A second article to appear in September will discuss operating experience with one of the producing systems analyzed, integrated multi-stage separation with stabilization and compression (the HERO system), which was developed by U.S. Enertek, Inc. This equipment was chosen for the wellstream analyzed because of the potential revenue increase indicated by the model.

  20. Chemical Methods for Ugnu Viscous Oils

    SciTech Connect

    Kishore Mohanty

    2012-03-31

    includes 1.5% of an alkali, 0.4% of a nonionic surfactant, and 0.48% of a polymer. The secondary waterflood in a 1D sand pack had a cumulative recovery of 0.61 PV in about 3 PV injection. The residual oil saturation to waterflood was 0.26. Injection of tertiary alkaline-surfactant-polymer slug followed by tapered polymer slugs could recover almost 100% of the remaining oil. The tertiary alkali-surfactant-polymer flood of the 330 cp oil is stable in three-dimensions; it was verified by a flood in a transparent 5-spot model. A secondary polymer flood is also effective for the 330 cp viscous oil in 1D sand pack. The secondary polymer flood recovered about 0.78 PV of oil in about 1 PV injection. The remaining oil saturation was 0.09. The pressure drops were reasonable (<2 psi/ft) and depended mainly on the viscosity of the polymer slug injected. For the heavy crude oil (of viscosity 10,000 cp), low viscosity (10-100 cp) oil-in-water emulsions can be obtained at salinity up to 20,000 ppm by using a hydrophilic surfactant along with an alkali at a high water-to-oil ratio of 9:1. Very dilute surfactant concentrations (~0.1 wt%) of the synthetic surfactant are required to generate the emulsions. It is much easier to flow the low viscosity emulsion than the original oil of viscosity 10,000 cp. Decreasing the WOR reverses the type of emulsion to water-in-oil type. For a low salinity of 0 ppm NaCl, the emulsion remained O/W even when the WOR was decreased. Hence a low salinity injection water is preferred if an oil-in-water emulsion is to be formed. Secondary waterflood of the 10,000 cp heavy oil followed by tertiary injection of alkaline-surfactants is very effective. Waterflood has early water breakthrough, but recovers a substantial amount of oil beyond breakthrough. Waterflood recovers 20-37% PV of the oil in 1D sand pack in about 3 PV injection. Tertiary alkali-surfactant injection increases the heavy oil recovery to 50-70% PV in 1D sand packs. As the salinity increased, the oil