National Library of Energy BETA

Sample records for oil distillation units

  1. Distillate Fuel Oil Sales for Residential Use

    Energy Information Administration (EIA) (indexed site)

    End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2

  2. Adjusted Distillate Fuel Oil Sales for Residential Use

    Energy Information Administration (EIA) (indexed site)

    End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate ...

  3. Apparatus for distilling shale oil from oil shale

    SciTech Connect

    Shishido, T.; Sato, Y.

    1984-02-14

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  4. Crude oil steam distillation in steam flooding. Final report

    SciTech Connect

    Wu, C.H.; Elder, R.B.

    1980-08-01

    Steam distillation yields of sixteen crude oils from various parts of the United States have been determined at a saturated steam pressure of 200 psig. Study made to investigate the effect of steam pressure (200 to 500 psig) on steam distillation yields indicates that the maximum yields of a crude oil may be obtained at 200 psig. At a steam distillation correlation factor (V/sub w//V/sub oi/) of 15, the determined steam distillation yields range from 12 to 56% of initial oil volume for the sixteen crude oils with gravity ranging from 12 to 40/sup 0/API. Regression analysis of experimental steam distillation yields shows that the boiling temperature (simulated distillation temperature) at 20% simulated distillation yield can predict the steam distillation yields reasonably well: the standard error ranges from 2.8 to 3.5% (in yield) for V/sub w//V/sub oi/ < 5 and from 3.5 to 4.5% for V/sub w//V/sub oi/ > 5. The oil viscosity (cs) at 100/sup 0/F can predict the steam distillation yields with standard error from 3.1 to 4.3%. The API gravity can predict the steam distillation yields with standard error from 4.4 to 5.7%. Characterization factor is an unsatisfactory correlation independent variable for correlation purpose.

  5. Distillate Fuel Oil Refinery, Bulk Terminal, and Natural Gas Plant Stocks

    Gasoline and Diesel Fuel Update

    Product: Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater 500 ppm Residual Fuel Oil Propane/Propylene Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources &

  6. Table 10.24 Reasons that Made Distillate Fuel Oil Unswitchable...

    Annual Energy Outlook

    4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006; Level: National Data; Row: ... Combinations of NAICS Distillate Fuel Oil Unswitchable Distillate Capable of ...

  7. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    Gasoline and Diesel Fuel Update

    Marketing Annual 1997 401 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  8. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    Energy Information Administration (EIA) (indexed site)

    Marketing Annual 1999 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  9. Distillate Fuel Oil Assessment for Winter 1996-1997

    Reports and Publications

    1997-01-01

    This article describes findings of an analysis of the current low level of distillate stocks which are available to help meet the demand for heating fuel this winter, and presents a summary of the Energy Information Administration's distillate fuel oil outlook for the current heating season under two weather scenarios.

  10. East Coast (PADD 1) Distillate Fuel Oil Imports

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 942 1,260 1,471 1,990 2000's 2,114 1,896 1,914 1,969 2,258 2,132 2,118 1,955 1,695 1,237 2010's 1,471 2,114 2,970 2,608 3,801 4,282

    Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending

  11. ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable"

    Energy Information Administration (EIA) (indexed site)

    4 Relative Standard Errors for Table 10.24;" " Unit: Percents." ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Distillate Fuel Oil","Unswitchable

  12. Total Adjusted Sales of Distillate Fuel Oil

    Gasoline and Diesel Fuel Update

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series ...

  13. Total Sales of Distillate Fuel Oil

    Energy Information Administration (EIA) (indexed site)

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series ...

  14. Process for converting heavy oil deposited on coal to distillable oil in a low severity process

    DOEpatents

    Ignasiak, Teresa; Strausz, Otto; Ignasiak, Boleslaw; Janiak, Jerzy; Pawlak, Wanda; Szymocha, Kazimierz; Turak, Ali A.

    1994-01-01

    A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

  15. Atmospheric Crude Oil Distillation Operable Capacity

    Gasoline and Diesel Fuel Update

    4 Arizona - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S3. Summary statistics for natural gas - Arizona, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 1 1 1 0 1 Gas Wells 5 R 4 R 3 R 6 6 Production (million cubic feet) Gross

  16. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook

    Petroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  17. ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"

    Energy Information Administration (EIA) (indexed site)

    ...med(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)" ,,"Total United States" 311,"Food",20,42,22,70,30,52,0,58,0,70 311221," Wet Corn ...

  18. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    Energy Information Administration (EIA) (indexed site)

    ...med(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)" ,,"Total United States" 311,"Food",8,15,9,21,19,18,0,27,0,41 311221," Wet Corn ...

  19. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    Energy Information Administration (EIA) (indexed site)

    ...med(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)" ,,"Total United States" 311,"Food",9,24,10.6,52.6,26.8,32,"X",28.4,"X",32.7 3112," ...

  20. U.S. Distillate Fuel Oil and Kerosene Sales by End Use

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Distillate Fuel Oil and Kerosene Sales by End Use (Thousand Gallons) Area: U.S. East Coast ... Residential Distillate Fuel Oil 4,103,881 3,930,517 3,625,747 3,473,310 3,536,111 ...

  1. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook

    839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration ...

  2. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    Energy Information Administration (EIA) (indexed site)

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  3. ,"New Mexico Sales of Distillate Fuel Oil by End Use"

    Energy Information Administration (EIA) (indexed site)

    Sales of Distillate Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Sales of Distillate Fuel Oil by End Use",13,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel

  4. ,"U.S. Adjusted Sales of Distillate Fuel Oil by End Use"

    Energy Information Administration (EIA) (indexed site)

    Distillate Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Distillate Fuel Oil by End Use",13,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel File

  5. United Oil Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Oil Company Jump to: navigation, search Name: United Oil Company Place: Pittsburgh, Pennsylvania Product: Vegetable-Oil producer Biodiesel producer based in Pittsburgh, PA...

  6. Effect of Narrow Cut Oil Shale Distillates on HCCI Engine Performance

    SciTech Connect

    Eaton, Scott J; Bunting, Bruce G; Lewis Sr, Samuel Arthur; Fairbridge, Craig

    2009-01-01

    In this investigation, oil shale crude obtained from the Green River Formation in Colorado using Paraho Direct retorting was mildly hydrotreated and distilled to produce 7 narrow boiling point fuels of equal volumes. The resulting derived cetane numbers ranged between 38.3 and 43.9. Fuel chemistry and bulk properties strongly correlated with boiling point.

  7. U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use

    Energy Information Administration (EIA) (indexed site)

    Show Data By: End Use Product Area 2009 2010 2011 2012 2013 2014 View History Residential Distillate Fuel Oil 4,328,840 3,897,937 3,713,883 3,223,851 3,714,150 4,041,766 1984-2014 ...

  8. DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate

    Office of Energy Efficiency and Renewable Energy (EERE)

    The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy said today.

  9. Texas Sales of Distillate Fuel Oil by End Use

    Energy Information Administration (EIA) (indexed site)

    ,329,790 5,693,270 6,373,078 6,688,629 6,914,481 7,837,118 1984-2014 Residential 67 28 127 102 16 59 1984-2014 Commercial 136,419 100,886 184,312 173,303 142,268 132,601 1984-2014 Industrial 189,981 197,024 233,292 241,601 240,179 270,760 1984-2014 Oil Company 210,865 316,523 541,640 736,186 679,737 886,957 1984-2014 Farm 201,769 207,183 243,170 216,915 190,572 222,849 1984-2014 Electric Power 19,495 15,646 23,156 20,022 20,706 24,700 1984-2014 Railroad 429,026 467,128 498,006 483,096 504,823

  10. Louisiana Sales of Distillate Fuel Oil by End Use

    Energy Information Administration (EIA) (indexed site)

    514,474 1,744,771 1,873,769 1,488,986 1,405,392 1,375,580 1984-2014 Residential 1,036 140 34 53 84 89 1984-2014 Commercial 59,689 38,695 39,659 36,840 17,590 21,197 1984-2014 Industrial 21,826 26,063 20,770 33,052 31,744 33,670 1984-2014 Oil Company 243,789 319,394 364,261 245,303 183,801 178,810 1984-2014 Farm 42,624 44,027 49,985 48,462 40,785 46,134 1984-2014 Electric Power 4,321 4,775 5,464 2,733 4,610 4,826 1984-2014 Railroad 18,345 25,425 32,515 28,110 39,578 45,790 1984-2014 Vessel

  11. Mississippi Sales of Distillate Fuel Oil by End Use

    Energy Information Administration (EIA) (indexed site)

    835,855 800,065 771,577 830,756 806,396 819,763 1984-2014 Residential 5 5 4 7 7 8 1984-2014 Commercial 26,641 23,713 26,383 26,386 24,019 28,803 1984-2014 Industrial 21,853 18,362 15,450 20,153 21,186 19,595 1984-2014 Oil Company 3,955 4,262 4,058 6,226 7,450 6,419 1984-2014 Farm 41,080 57,087 52,559 81,878 84,753 79,443 1984-2014 Electric Power 3,796 3,393 2,019 1,674 2,223 1,921 1984-2014 Railroad 24,727 17,936 37,741 29,848 32,550 35,578 1984-2014 Vessel Bunkering 141,302 93,384 58,285 58,505

  12. ,"U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"

    Energy Information Administration (EIA) (indexed site)

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2014,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2014,"6/30/1984" ,"Data

  13. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    Energy Information Administration (EIA) (indexed site)

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2014,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2014,"6/30/1984" ,"Data

  14. "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural...

    Energy Information Administration (EIA) (indexed site)

    " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal

  15. Gross Input to Atmospheric Crude Oil Distillation Units

    Energy Information Administration (EIA) (indexed site)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S. 16,394 15,690 16,673 16,848 16,365 16,167 1985-2016 PADD 1 1,063 1,133 1,190 1,136 1,136 1,080 1985-2016 East Coast 965 ...

  16. "Table A2. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    Energy Information Administration (EIA) (indexed site)

    . Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in Barrels per Day) " ,,,,," Input for Heat,",,," Primary" " ",," Consumption for All Purposes",,,"Power, and Generation of Electricity",,," Consumption for Nonfuel Purposes ",,,"RSE" "SIC",,"

  17. Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions

    SciTech Connect

    Christensen, Earl D.; Chupka, Gina; Luecke, Jon; Smurthwaite, Tricia D.; Alleman, Teresa L.; Iisa, Kristiina; Franz, James A.; Elliott, Douglas C.; McCormick, Robert L.

    2011-10-06

    Three hydrotreated bio-oils with different oxygen contents (8.2, 4.9, and 0.4 w/w) were distilled to produce Light, Naphtha, Jet, Diesel, and Gasoil boiling range fractions that were characterized for oxygen containing species by a variety of analytical methods. The bio-oils were originally generated from lignocellulosic biomass in an entrained-flow fast pyrolysis reactor. Analyses included elemental composition, carbon type distribution by {sup 13}C NMR, acid number, GC-MS, volatile organic acids by LC, and carbonyl compounds by DNPH derivatization and LC. Acid number titrations employed an improved titrant-electrode combination with faster response that allowed detection of multiple endpoints in many samples and for acid values attributable to carboxylic acids and to phenols to be distinguished. Results of these analyses showed that the highest oxygen content bio-oil fractions contained oxygen as carboxylic acids, carbonyls, aryl ethers, phenols, and alcohols. Carboxylic acids and carbonyl compounds detected in this sample were concentrated in the Light, Naphtha, and Jet fractions (<260 C boiling point). Carboxylic acid content of all of the high oxygen content fractions was likely too high for these materials to be considered as fuel blendstocks although potential for blending with crude oil or refinery intermediate streams may exist for the Diesel and Gasoil fractions. The 4.9 % oxygen sample contained almost exclusively phenolic compounds found to be present throughout the boiling range of this sample, but imparting measurable acidity primarily in the Light, Naphtha and Jet fractions. Additional study is required to understand what levels of the weakly acidic phenols could be tolerated in a refinery feedstock. The Diesel and Gasoil fractions from this upgraded oil had low acidity but still contained 3 to 4 wt% oxygen present as phenols that could not be specifically identified. These materials appear to have excellent potential as refinery feedstocks and some

  18. Oil Shale Research in the United States | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research in the United States Oil Shale Research in the United States Profiles of Oil Shale Research and Development Activities In Universities, National Laboratories, and Public Agencies Oil Shale Research in the United States (7.2 MB) More Documents & Publications Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Applicability of a Hybrid Retorting Technology in the Green River Formation National Strategic Unconventional Resource Model

  19. Distributive Distillation Enabled by Microchannel Process Technology...

    Office of Scientific and Technical Information (OSTI)

    distillation for new plants. A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated...

  20. "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural...

    Energy Information Administration (EIA) (indexed site)

    Errors for Table 5.8;" " Unit: Percents." ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for ...

  1. "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...

    Energy Information Administration (EIA) (indexed site)

    Unit: Percents." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for ...

  2. Design of heavy oil upgrading units

    SciTech Connect

    Farrell, W.D.; Phodes, R.P.; Zeno, D.Y.

    1985-01-01

    Heavy oil upgrading has become an increasingly important aspect of ER and E's research. Due to high costs of experimental catalysts, small catalyst charges are used (20-150cc). Tubular design and tree-stage stirred design are discussed with emphasis on the techniques and equipment used to handle heavy oil. Mechanical design and fluid mechanics are discussed.

  3. Advanced Distillation Final Report

    SciTech Connect

    Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode

    2010-03-24

    The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were

  4. Taxation of oil and gas revenues: the United Kingdom

    SciTech Connect

    Mitchell, J.

    1982-04-01

    Three factors helped make the United Kingdom (UK) upstream energy taxation what it is: (1) the physical conditions and real economies of oil and gas projects, (2) the role of oil and gas development in the UK economy up to now, and (3) the history of company and government interaction on petroleum tax and price matters, the two differing over how today's proceeds should be shared. Analysis of present tax policy shows it to be at a stage where the nation, the government, and the oil companies will separately and jointly get less from the North Sea than they could. To correct this requires a better understanding by the government of the operational prospects facing oil companies, and a better understanding by the companies of what the government is trying to do. 3 references, 2 tables.

  5. Magnetic survey of D-Area oil basin waste unit

    SciTech Connect

    Cumbest, R.J.; Marcy, D.; Hango, J.; Bently, S.; Hunter, B.; Cain, B.

    1994-10-01

    The D-Area Oil Basin RCRA Waste Unit is located north of D-Area on Savannah River Site. This Waste Unit was known, based on aerial photography and other historical data, to be the location for one or more trenches used for disposal of oil in steel drums and other refuse. In order to define the location of possible trenches on the site and to assess the possibility of the presence of additional buried objects a magnetic survey was conducted by the Environmental Monitoring Section/Groundwater Group during July, 1993, at the request of the Environmental Restoration Department. Prior to the conduct of the magnetic survey a Ground Penetrating Radar survey of the site consisting of several lines identified several areas of disturbed soil. Based on these data and other historical information the general orientation of the trenches could be inferred. The magnetic survey consists of a rectangular grid over the waste unit designed to maximize resolution of the trench edges. This report describes the magnetic survey of the D-Area Oil Basin Waste Unit.

  6. Vacuum Distillation

    Energy Information Administration (EIA) (indexed site)

    Thermal Cracking: OtherGas Oil Thermal Cracking: Coking (BarrelsCalendar Day) Catalytic Cracking Fresh Feed Catalytic Cracking Fresh Feed (BarrelsCalendar Day) Catalytic ...

  7. Controlling vanadium from high metals crude oils

    SciTech Connect

    Golden, S.W.; Martin, G.R.

    1995-09-01

    Processing heavier high metals crude oils continues to be an objective of many refiners. Refiners manage the vanadium and other contaminants with hydroprocessing and FCC catalysts that are more tolerant to metals. Although hydroprocessing and FCC catalyst formulations are critical and will be required for the bulk of the metals removal, many times primary distillation impacts on vanadium are ignored. Distillation system designs can significantly impact the metals content of the gas oil pool or the total gas yields for a targeted metals level. Commercial experience shows that total gas oil metals to the hydroprocessing unit can be reduced by 20 to 40% for a given gas yield or the total gas oil yield can be increased for a given metals target by optimizing primary distillation system performance. Total gas oil vanadium content has varied from 5 to 2 weight ppm depending on crude oil metals level, unit process design, distillation unit operation, and equipment design. An actual example using a 22.0 API Bochequero Field blend will be used to illustrate the points covered. The source of the vanadium in the various gas oil pool components will be evaluated and show potential gas oil quality improvements based on primary distillation system design and operation modifications. In the example, the refiner processes 145,000 bpd of crude oil through a conventional integrated atmospheric/vacuum unit and processes the vacuum residue in a delayed coker. The gas oil blend streams consists of atmospheric gas oil, light vacuum gas oil, and heavy vacuum gas oil from the crude unit and heavy coker gas oil from the delayed coker. All the modifications which will be discussed have been operating successfully for several years.

  8. Distributive Distillation Enabled by Microchannel Process Technology

    SciTech Connect

    Arora, Ravi

    2013-01-22

    The application of microchannel technology for distributive distillation was studied to achieve the Grand Challenge goals of 25% energy savings and 10% return on investment. In Task 1, a detailed study was conducted and two distillation systems were identified that would meet the Grand Challenge goals if the microchannel distillation technology was used. Material and heat balance calculations were performed to develop process flow sheet designs for the two distillation systems in Task 2. The process designs were focused on two methods of integrating the microchannel technology 1) Integrating microchannel distillation to an existing conventional column, 2) Microchannel distillation for new plants. A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated as a manufacturing method for microchannel distillation units. However, it was found that a significant development work would be required to develop process parameters to use UAM for commercial distillation manufacturing. Two alternate manufacturing methods were explored. Both manufacturing approaches were experimentally tested to confirm their validity. The conceptual design of the microchannel distillation unit (Task 3) was combined with the manufacturing methods developed in Task 4 and flowsheet designs in Task 2 to estimate the cost of the microchannel distillation unit and this was compared to a conventional distillation column. The best results were for a methanol-water separation unit for the use in a biodiesel facility. For this application microchannel distillation was found to be more cost effective than conventional system and capable of meeting the DOE Grand Challenge performance requirements.

  9. Commercial application of process for hydrotreating vacuum distillate in G-43-107 unit at the Moscow petroleum refinery

    SciTech Connect

    Kurganov, V.M.; Samokhvalov, A.I.; Osipov, L.N.; Lebedev, B.L.; Chagovets, A.N.; Melik-Akhnazarov, T.K.; Kruglova, T.F.; Imarov, A.K.

    1987-05-01

    The authors present results obtained during the shakedown run on the hydrotreating section of the title catalytic cracking unit. The flow plan of the unit is shown. The characteristics of the hydrotreater feed and the product are given. Changes in hydrotreating process parameters during unit operation are shown, as are changes in the raw and hydrotreated feed quality during the periods before and after a shutdown.

  10. Floating oil production unit slated in small field off Gabon

    SciTech Connect

    Not Available

    1991-10-14

    This paper reports on the first U.S. tanker converted to a floating production, storage, and offloading (FPSO) unit which takes up station in Gombe-Beta field off Gabon by Dec. 1. FPSO Ocean Producer will work under a 3 year, day rate contract let late in 1990 by Amoco-Gabon Bombe Marin co., a unit of Amoco Production Co. (OGJ, Dec. 24, 1990, p. 27). Gombe-Beta field is in the Atlantic Ocean about 70 miles south of Port Gentil, Gabon. Ocean Producer will be moored in 50 ft of water 3.7 miles off Gabon, with Bombe-Beta's unmanned production platform about 820 ft astern. The vessel will be held in position by a disconnectable, asymmetric, six point, spread mooring system, It is owned and operated by Oceaneering International Services Ltd. (OISL). Affiliate Oceaneering Production Systems (OPS) converted the 78,061 dwt oil tanker MT Baltimore Sea at a capital cost of $25 million at Gulf Copper Manufacturing Corp.'s Port Arthur, Tex., shipyard. Both companies are units of Oceaneering International Inc., Houston. OPS the Ocean Producer's use in Gombe-Beta field is the shallowest water FPSO application in the world. Amoco-Gabon chose an FPSO production system for Gombe-Beta because it expects the remote field to have a short economic life, and the oil requires extensive processing.

  11. Optimizing Co-Processing of Bio-Oil in Refinery Unit Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Optimizing Co-Processing of Bio-Oil in Refinery Unit Operations Using a Davison Circulating Riser (DCR) 2.4.2.402 March 25, 2015 Bio-Oil Technology Area Alan Zacher Pacific ...

  12. Catalytic distillation structure

    DOEpatents

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  13. Stocks of Distillate Fuel Oil

    Energy Information Administration (EIA) (indexed site)

    156,972 155,732 152,378 150,550 148,602 148,912 1982-2016 PADD 1 67,073 66,391 64,764 65,721 64,801 64,939 1990-2016 New England 12,875 12,828 12,753 12,790 13,008 12,791 1990-2016 Central Atlantic 40,330 40,422 39,313 40,033 39,994 39,737 1990-2016 Lower Atlantic 13,868 13,141 12,699 12,898 11,800 12,411 1990-2016 PADD 2 33,149 31,751 32,827 32,393 31,107 30,589 1990-2016 PADD 3 38,605 40,303 38,538 37,081 37,451 38,580 1990-2016 PADD 4 3,830 3,492 3,151 3,304 3,676 3,687 1990-2016 PADD 5

  14. Imports of Distillate Fuel Oil

    Annual Energy Outlook

    175 90 207 126 118 52 1982-2016 East Coast (PADD 1) 173 81 199 120 107 48 2004-2016 Midwest (PADD 2) 2 1 2 3 2 1 2004-2016 Gulf Coast (PADD 3) 0 0 0 0 0 0 2004-2016 Rocky Mountain ...

  15. Catalytic distillation structure

    DOEpatents

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  16. Table A3. Refiner/Reseller Prices of Distillate and Residual...

    Energy Information Administration (EIA) (indexed site)

    A3. RefinerReseller Prices of Distillate and Residual Fuel Oils, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) Geographic Area Year No. 1 Distillate No. 2...

  17. Technical Options for Processing Additional Light Tight Oil Volumes within the United States

    Energy Information Administration (EIA) (indexed site)

    Technical Options for Processing Additional Light Tight Oil Volumes within the United States April 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Technical Options for Processing Additional Light Tight Oil Volumes within the United States i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law,

  18. Oil spill response capabilities in the United States

    SciTech Connect

    Westermeyer, W.E. )

    1991-02-01

    The Exxon Valdez incident has been a catalyst for the US to reexamine its technology and policies for fighting oil spills. Many organizations are now at work on the problems highlighted by this sill, including federal and state agencies and the oil industry. It is hoped that the attention generated by the Exxon Valdez will result in fewer spills and a greatly improved capability to fight the ones that will still occur. Cleaning up a discharge of millions of gallons of oil at sea under even moderate environmental conditions is an extraordinary problem. Current national capabilities to respond effectively to such an accident are marginal at best. Response technologies must and will improve, but in addition and perhaps more importantly, many improvements can be made in the way the country has organized itself to fight major spills. Nonetheless, prevention is still the best medicine.

  19. Crude oil resource appraisal in the United States

    SciTech Connect

    Uri, N.D.

    1980-07-01

    Past experience supported an optimistic view of US oil resources prior to the Arab embargo of 1973, although some were aware that exploration and production were declining. An approach to estimating producible reserves, combining the engineering and econometric techniques, uses geologic estimates and a structural model to project when production will peak, the quantity that will be produced, and the time distribution of production. The results indicate that aggregate production will increase with the real price of oil. At $45 per barrel, 20 to 30 billion more barrels will be produced. 18 references. (DCK)

  20. Oil Shale RD&D Leases in the United States | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    RD&D Leases in the United States Oil Shale RD&D Leases in the United States This paper describes the original plans, progress and accomplishments, and future plans for nine oil shale research, development and demonstration (RD&D) projects on six existing RD&D leases awarded in 2006 and 2007 by the United States Department of the Interior, Bureau of Land Management (BLM) to Shell, Chevron, EGL (now AMSO), and OSEC (now Enefit American, respectively); as well as three pending

  1. Catalytic distillation process

    DOEpatents

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  2. Catalytic distillation process

    DOEpatents

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  3. New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes

    SciTech Connect

    Agrawal, Rakesh

    2013-11-21

    This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

  4. Low Temperature Geothermal Resource Assessment for Membrane Distillation

    Office of Scientific and Technical Information (OSTI)

    Desalination in the United States: Preprint (Conference) | SciTech Connect Low Temperature Geothermal Resource Assessment for Membrane Distillation Desalination in the United States: Preprint Citation Details In-Document Search Title: Low Temperature Geothermal Resource Assessment for Membrane Distillation Desalination in the United States: Preprint Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water.

  5. Distillation Column Flooding Predictor

    SciTech Connect

    2002-02-01

    This factsheet describes a research project whose goal is to develop the flooding predictor, an advanced process control strategy, into a universally useable tool that will maximize the separation yield of a distillation column.

  6. Rocky Mountain (PADD 4) Total Crude Oil and Products Imports

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm ...

  7. Refiner/marketer targets production of transportation fuels and distillates

    SciTech Connect

    Thompson, J.E.

    1997-01-01

    Citgo Petroleum Corp., the wholly owned subsidiary of Petroleos de Venezuela, S.A. (PDVSA), the Venezuelan national oil company, owns two gasoline producing refineries, a 305,000-b/d system in Lake Charles, La., and a 130,000-b/d facility in Corpus Christi, Texas. Each is considered a deep conversion facility capable of converting heavy, sour crudes into a high percentage of transportation fuels and distillates. Two smaller refineries, one in Paulsboro, N.J., and one in Savannah, GA., have the capacity to process 40,000 b/d and 28,000 b/d of crude, respectively, for asphalt products. In the past two years, Citgo`s light oils refineries operated safely and reliably with a minimum of unscheduled shutdowns. An ongoing emphasis to increase reliability has resulted in extended run lengths at the refineries. Citgo has invested $314 million at its facilities in 1995, much of this toward environmental and regulatory projects, such as the new waste water treatment unit at the Lake Charles refinery. Over the next few years, Citgo expects to complete $1.5 billion in capital spending for major processing units such as a 60,000-b/d FCC feed hydrotreater unit at the Lake Charles refinery and crude expansion at the Corpus Christi refinery. Product exchanges and expanded transport agreements are allowing Citgo to extend its marketing reach.

  8. Taxation of oil and gas revenues: the United States

    SciTech Connect

    Verleger, P.K. Jr.

    1982-04-01

    The taxation of producers of natural resources in the United States is accomplished by a combination of ordinary-income taxation and ad valorem or severence taxes on the removal price of the resource. Taxes are imposed by both the federal and local governments. The federal government imposes both income and ad valorem taxes on the production of resources. State governments generally impose severance taxes based on the value of the resource removed. In addition, some states impose income taxes on the portion of income earned by a producer in the specific state. Recently, there have been serious disputes between resource-producing states and resource-consuming states over changes in state severance taxes. 3 references.

  9. DISTILLATION OF CALCIUM

    DOEpatents

    Barton, J.

    1954-07-27

    This invention relates to an improvement in the process for the purification of caicium or magnesium containing an alkali metal as impurity, which comprises distiiling a batch of the mixture in two stages, the first stage distillation being carried out in the presence of an inert gas at an absolute pressure substantially greater than the vapor pressure of calcium or maguesium at the temperature of distillation, but less than the vaper pressure at that temperature of the alkali metal impurity so that only the alkali metal is vaporized and condensed on a condensing surface. A second stage distilso that substantially only the calcium or magnesium distills under its own vapor pressure only and condenses in solid form on a lower condensing surface.

  10. DISTRIBUTED GENERATION POWER UNITS AT MARGINAL OIL WELL SITES

    SciTech Connect

    Mark A. Carl

    2003-10-29

    The CEC approved funding on April 9, 2003 for $1,000,000.00 instead of the $1,500,000.00 COPE requested for the project. A kickoff meeting with the California Energy Commission (CEC) was held on Monday, April 14, 2003, in their Sacramento, CA offices. Mark Carl, IOGCC project manager for the DOE grant, attended this meeting, along with Bob Fickes with COPE, Edan Prabhu, Mike Merlo and CEC officials. The change in funding by the CEC required a modification in the scope of work and an amended form DOE F 4600.1. The modifications were completed and the IOGCC received approval to commence work on the project on May 9, 2003. On May 29, 2003, Virginia Weyland with DOE/NETL, Mark Carl with IOGCC, and Bob Fickes with COPE, Edan Prabhu and Mike Merlo, consultants with COPE, participated in a teleconference kick-off meeting. During May, 2003, COPE canvassed its membership for potential locations for the four test sites. They received a very good response and have identified at least two potential sites for each of the four test sites. COPE has been obtaining gas samples from the various potential lease sites for analyses to verify the chemical properties analyses which the oil and gas producers provided during the initial contact period. The St. James project located at 814 W. 23 rd Street in Los Angeles, California, was selected as the first test site for the project. A Project Advisory Committee (PAC) was established in May, 2003. The following representatives from each of the following areas of expertise comprise the PAC membership. Acquisition of permits for the initial test site has required drawn out negotiations with CEC which has hindered progress on the technical aspects of the project. The technical aspects will begin aggressively beginning in October, 2003. The Southern California Air Quality Management District (SCAQMD) donated three Capstone micro-turbines to the project. These micro-turbines will be utilized at the St. James Project site located in Los Angeles

  11. Correlations estimate volume distilled using gravity, boiling point

    SciTech Connect

    Moreno, A.; Consuelo Perez de Alba, M. del; Manriquez, L.; Guardia Mendoz, P. de la

    1995-10-23

    Mathematical nd graphic correlations have been developed for estimating cumulative volume distilled as a function of crude API gravity and true boiling point (TBP). The correlations can be used for crudes with gravities of 21--34{degree} API and boiling points of 150--540 C. In distillation predictions for several mexican and Iraqi crude oils, the correlations have exhibited accuracy comparable to that of laboratory measurements. The paper discusses the need for such a correlation and the testing of the correlation.

  12. Heat Integrated Distillation through Use of Microchannel Technology

    Energy.gov [DOE]

    This factsheet describes a research project whose goal is to develop a breakthrough distillation process using Microchannel Process Technology to integrate heat transfer and separation into a single unit operation.

  13. "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural...

    Energy Information Administration (EIA) (indexed site)

    ... oil converted to residual and distillate fuel oils) are excluded." " NFNo applicable ... for any table cell, multiply the cell's" "corresponding RSE column and RSE row factors. ...

  14. An evaluation of known remaining oil resources in the United States. Appendix, Project on Advanced Oil Recovery and the States

    SciTech Connect

    Not Available

    1994-10-01

    This volume contains appendices for the following: Overview of improved oil recovery methods (enhanced oil recovery methods and advanced secondary recovery methods); Benefits of improved oil recovery, selected data for the analyzed states; and List of TORIS fields and reservoirs.

  15. Catalytic hydroprocessing of petroleum and distillates

    SciTech Connect

    Oballa, M.C.; Shih, S.S.

    1994-12-31

    There is a strong push for the processing of heavy oils, bitumen and/or residue, which carries with it some problems. These are connected with obtaining state-of-the-art technologies at reasonable capital and operating costs to the refiner. Then there are problems associated with choosing the best catalyst--one specially designed to lower considerably the high content of heteroatoms (S, N, O) and metals (V, Ni, Fe). To address the above considerations, engineers and scientists working in the processing of petroleum and distillates from different parts of the world presented papers covering different facets of residue upgrading and distillate hydrotreating. This book is a compilation of most of the papers presented in the five sessions of the symposium. The editors have broadly classified the papers in terms of content into the following four categories: catalyst deactivation; upgrading of heavy oils and residue; hydrotreating of distillates; and general papers. All papers have been processed separately for inclusion on the data base.

  16. Technical constraints limiting application of enhanced oil recovery techniques to petroleum production in the United States

    SciTech Connect

    Not Available

    1984-01-01

    In the interval since the publication in September 1980 of the technical constraints that inhibit the application of enhanced oil recovery techniques in the United States, there has been a large number of successful field trials of enhanced oil recovery (EOR) techniques. The Department of Energy has shared the costs of 28 field demonstrations of EOR with industry, and the results have been made available to the public through DOE documents, symposiums and the technical literature. This report reexamines the constraints listed in 1980, evaluates the state-of-the-art and outlines the areas where more research is needed. Comparison of the 1980 constraints with the present state-of-the-art indicates that most of the constraints have remained the same; however, the constraints have become more specific. 26 references, 6 tables.

  17. Economic impacts of oil spills: Spill unit costs for tankers, pipelines, refineries, and offshore facilities. [Task 1, Final report

    SciTech Connect

    Not Available

    1993-10-15

    The impacts of oil spills -- ranging from the large, widely publicized Exxon Valdez tanker incident to smaller pipeline and refinery spills -- have been costly to both the oil industry and the public. For example, the estimated costs to Exxon of the Valdez tanker spill are on the order of $4 billion, including $2.8 billion (in 1993 dollars) for direct cleanup costs and $1.125 billion (in 1992 dollars) for settlement of damages claims caused by the spill. Application of contingent valuation costs and civil lawsuits pending in the State of Alaska could raise these costs appreciably. Even the costs of the much smaller 1991 oil spill at Texaco`s refinery near Anacortes, Washington led to costs of $8 to 9 million. As a result, inexpensive waming, response and remediation technologies could lower oil spin costs, helping both the oil industry, the associated marine industries, and the environment. One means for reducing the impact and costs of oil spills is to undertake research and development on key aspects of the oil spill prevention, warming, and response and remediation systems. To target these funds to their best use, it is important to have sound data on the nature and size of spills, their likely occurrence and their unit costs. This information could then allow scarce R&D dollars to be spent on areas and activities having the largest impact. This report is intended to provide the ``unit cost`` portion of this crucial information. The report examines the three key components of the US oil supply system, namely, tankers and barges; pipelines and refineries; and offshore production facilities. The specific purpose of the study was to establish the unit costs of oil spills. By manipulating this key information into a larger matrix that includes the size and frequency of occurrence of oil spills, it will be possible` to estimate the likely future impacts, costs, and sources of oil spills.

  18. Crude Oil

    Energy Information Administration (EIA) (indexed site)

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 0 0 0 0 0 0 1986-2015 East Coast (PADD 1) 0 0 0 0

  19. Atmospheric Crude Oil Distillation Operable Capacity

    Annual Energy Outlook

    Charge Capacity (BSD) Catalytic Hydrotreating NaphthaReformer Feed Charge Cap (BSD) Catalytic Hydrotreating Gasoline Charge Capacity (BSD) Catalytic Hydrotreating...

  20. Product Supplied for Distillate Fuel Oil

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4.77 2.81 3.07 2.74 2.51 1990's 3.10 2.59 2.25 2.59 2.50 2.39 2.97 3.02 2.45 2.61 2000's 4.10 4.19 3.41 5.54 6.09 7.59 6.83 6.92 8.58 4.47 2010's 5.02 4.64 3.25 4.08 5.51 3.07

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2.69 2.40 2.40 2.33 2.44 2.57 2.54 2.48 2.41 2.56 2.71 2.79 1990 3.11 2.94 2.42 2.95 2.51 2.75 2.95 2.79 2.82 2.71 2.74 4.23 1991 3.61 3.08 2.76 2.87 2.14 2.19 2.36 2.53 2.32 2.27

  1. Distillate Fuel Oil Days of Supply

    Gasoline and Diesel Fuel Update

    Changes to proved reserves of U.S. natural gas by source, 2013-14 trillion cubic feet Year-end 2013 2014 Year-end 2014 proved 2014 revisions and 2014 proved Source of natural gas reserves Discoveries other changes production reserves Coalbed methane 12.4 0.4 4.3 -1.4 15.7 Shale 159.1 37.8 16.2 -13.4 199.7 Other U.S. natural gas Lower 48 onshore 166.0 11.4 -8.4 -11.7 157.2 Lower 48 offshore 9.1 0.8 0.8 -1.3 9.4 Alaska 7.4 0.1 -0.4 -0.3 6.8 U.S. TOTAL 354.0 50.5 12.4 -28.1 388.8 Note: Lower 48

  2. Distillate Fuel Oil Sales for Military Use

    Gasoline and Diesel Fuel Update

    Maine 1,487 2,852 1,506 1,071 1,058 2,482 1984-2014 Massachusetts 500 343 3,101 466 329 453 1984-2014 New Hampshire 1,480 490 253 104 90 257 1984-2014 Rhode Island 1,643 903 900 ...

  3. Distillate Fuel Oil Sales for Residential Use

    Energy Information Administration (EIA) (indexed site)

    4,103,881 3,930,517 3,625,747 3,473,310 3,536,111 3,802,848 1984-2014 East Coast (PADD 1) 3,670,994 3,545,676 3,274,963 3,183,878 3,240,215 3,501,957 1984-2014 New England (PADD...

  4. Distillate Fuel Oil Sales for Farm Use

    Energy Information Administration (EIA) (indexed site)

    660,024 2,928,175 2,942,436 3,031,878 3,026,611 3,209,391 1984-2014 East Coast (PADD 1) 333,748 454,160 375,262 382,639 404,799 401,686 1984-2014 New England (PADD 1A) 13,909...

  5. Distillate Fuel Oil Sales for Railroad Use

    Energy Information Administration (EIA) (indexed site)

    2,759,140 2,974,641 3,121,150 3,118,150 3,369,781 3,670,338 1984-2014 East Coast (PADD 1) 459,324 482,929 514,418 492,156 460,066 480,024 1984-2014 New England (PADD 1A) 43,763...

  6. Distillate Fuel Oil Sales for Industrial Use

    Energy Information Administration (EIA) (indexed site)

    2,159,428 2,045,164 2,179,953 2,325,503 2,271,056 2,417,898 1984-2014 East Coast (PADD 1) 597,048 560,403 568,024 568,997 559,886 600,949 1984-2014 New England (PADD 1A) 60,994...

  7. Distillate Fuel Oil Sales for Commercial Use

    Energy Information Administration (EIA) (indexed site)

    785,246 2,738,304 2,715,335 2,557,543 2,471,897 2,543,778 1984-2014 East Coast (PADD 1) 1,565,353 1,528,778 1,433,828 1,286,053 1,295,125 1,348,704 1984-2014 New England (PADD 1A)...

  8. Oil

    Energy.gov [DOE]

    The Energy Department works to ensure domestic and global oil supplies are environmentally sustainable and invests in research and technology to make oil drilling cleaner and more efficient.

  9. Oil and power: an analysis of United States economic interests and strategies in the Middle East. Study project

    SciTech Connect

    Poche, C.D.

    1988-05-31

    The United States met virtually all of its oil needs from domestic sources until the early 1970s. This self-sufficiency gradually eroded as our internal production failed to keep pace with rising levels of energy consumption. As a result, our new energy needs have been satisfied primarily by petroleum imports. The 1973 Arab oil embargo and supply curtailments associated with the Iranian Revolution in 1979 were painful experiences for the nation. By 1980, the United States was importing 8.5 million barrels of oil per day at a cost many times higher than the going rate in earlier years. Dependence on Middle East oil had become a frightening reality. During the same period, trade deficits, inflation, interest rates, and balance of payment problems were increasing at an alarming rate. Since that point in time, the United States has made progress in building a strong foundation for energy security. Despite these gains the United States is rapidly approaching another critical juncture in its battle to reduce dependency on imported oil. It also suggests national economic strategies that could be employed to improve America's energy prospects for the future.

  10. American Distillation Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Distillation Inc Jump to: navigation, search Name: American Distillation Inc. Place: Leland, North Carolina Zip: 28451 Product: Biodiesel producer in North Carolina. References:...

  11. West Coast (PADD 5) Total Crude Oil and Products Imports

    Energy Information Administration (EIA) (indexed site)

    Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed.

  12. Distillation process using microchannel technology

    DOEpatents

    Tonkovich, Anna Lee; Simmons, Wayne W.; Silva, Laura J.; Qiu, Dongming; Perry, Steven T.; Yuschak, Thomas; Hickey, Thomas P.; Arora, Ravi; Smith, Amanda; Litt, Robert Dwayne; Neagle, Paul

    2009-11-03

    The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

  13. Distillation Column Flooding Predictor

    SciTech Connect

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  14. Increased reserves through horizontal drilling in a mature waterflood, Long Beach unit, Wilmington Oil Field, California

    SciTech Connect

    Berman, B.H.

    1996-12-31

    Ranger Zone development started in 1965. A waterflood was initiated from the start using a staggered line-drive pattern. Infill drilling in the early 1980s and again in the 1990s revealed bypassed oil in the upper Ranger Fo sand. Detailed studies of the aerial extent of the remaining oil resulted in drilling 17 horizontal wells to recover these reserves. The Fo target sand thickness is 20 to 50 feet. Well courses are between 10 and 15 feet below the top of the Fo with lengths varying from 800 to 1,000 feet. The success of the Fo drilling program has prompted expansion of horizontal drilling into thin-bedded sand units. Well lengths have increased to between 1,500 and 1,800 feet with structural trend used to advantage. Where needed, probes are designed to penetrate the target sand before setting intermediate casing. The drilling program has been extended into bilateral horizontal completions. Geosteering with MWD/GR and a 2 MHz dual propagation resistivity tool is used to the casing point. In the completion interval, only the MWD/GR tool is used and a drillpipe conveyed E-log is run afterward to confirm expected resistivities. Despite the many well penetrations in the Ranger Zone, structural control is only fair. Accuracy of MWD data is generally low and geosteering is done by TVD log correlation. With a recovery factor of over 30 percent in Ranger West, from approximately 800 wells drilled in the last 30 years, the horizontal drilling program targeting bypassed reserves has brought new life to this mature reservoir.

  15. Increased reserves through horizontal drilling in a mature waterflood, Long Beach unit, Wilmington Oil Field, California

    SciTech Connect

    Berman, B.H. )

    1996-01-01

    Ranger Zone development started in 1965. A waterflood was initiated from the start using a staggered line-drive pattern. Infill drilling in the early 1980s and again in the 1990s revealed bypassed oil in the upper Ranger Fo sand. Detailed studies of the aerial extent of the remaining oil resulted in drilling 17 horizontal wells to recover these reserves. The Fo target sand thickness is 20 to 50 feet. Well courses are between 10 and 15 feet below the top of the Fo with lengths varying from 800 to 1,000 feet. The success of the Fo drilling program has prompted expansion of horizontal drilling into thin-bedded sand units. Well lengths have increased to between 1,500 and 1,800 feet with structural trend used to advantage. Where needed, probes are designed to penetrate the target sand before setting intermediate casing. The drilling program has been extended into bilateral horizontal completions. Geosteering with MWD/GR and a 2 MHz dual propagation resistivity tool is used to the casing point. In the completion interval, only the MWD/GR tool is used and a drillpipe conveyed E-log is run afterward to confirm expected resistivities. Despite the many well penetrations in the Ranger Zone, structural control is only fair. Accuracy of MWD data is generally low and geosteering is done by TVD log correlation. With a recovery factor of over 30 percent in Ranger West, from approximately 800 wells drilled in the last 30 years, the horizontal drilling program targeting bypassed reserves has brought new life to this mature reservoir.

  16. Process for preparing lubricating oil from used waste lubricating oil

    DOEpatents

    Whisman, Marvin L.; Reynolds, James W.; Goetzinger, John W.; Cotton, Faye O.

    1978-01-01

    A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.

  17. Oil and Gas Development in the United States in the Early 1990's

    Reports and Publications

    1995-01-01

    An analysis of the growing prominence of smaller energy companies in U.S. oil and natural gas production.

  18. An evaluation of known remaining oil resources in the United States: Appendix. Volume 10

    SciTech Connect

    1993-11-01

    Volume ten contains the following appendices: overview of improved oil recovery methods which covers enhanced oil recovery methods and advanced secondary recovery methods; the benefits of improved oil recovery, selected data for the analyzed states; and list of TORIS fields and reservoirs.

  19. United States Producing and Nonproducing Crude Oil and Natural Gas Reserves From 1985 Through 2004

    Reports and Publications

    2006-01-01

    This report discusses the regional and temporal trends in producing and nonproducing crude oil and natural gas reserves using the Energy Information Administration's (EIA) categorization of reserves. The report first focuses on EIA's collection and reporting of crude oil and natural gas reserves data, followed by a discussion of the natural gas reserve trends, and then the crude oil reserve trends.

  20. "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel...

    Energy Information Administration (EIA) (indexed site)

    ... oil converted to residual and distillate fuel oils) are excluded." " NFNo applicable ... for any table cell, multiply the cell's" "corresponding RSE column and RSE row factors. ...

  1. Omniphobic Membrane for Robust Membrane Distillation

    SciTech Connect

    Lin, SH; Nejati, S; Boo, C; Hu, YX; Osuji, CO; Ehmelech, M

    2014-11-01

    In this work, we fabricate an omniphobic microporous membrane for membrane distillation (MD) by modifying a hydrophilic glass fiber membrane with silica nanoparticles followed by surface fluorination and polymer coating. The modified glass fiber membrane exhibits an anti-wetting property not only against water but also against low surface tension organic solvents that easily wet a hydrophobic polytetrafluoroethylene (PTFE) membrane that is commonly used in MD applications. By comparing the performance of the PTFE and omniphobic membranes in direct contact MD experiments in the presence of a surfactant (sodium dodecyl sulfate, SDS), we show that SDS wets the hydrophobic PTFE membrane but not the omniphobic membrane. Our results suggest that omniphobic membranes are critical for MD applications with feed waters containing surface active species, such as oil and gas produced water, to prevent membrane pore wetting.

  2. Fractional distillation as a strategy for reducing the genotoxic potential of SRC-II coal liquids: a status report

    SciTech Connect

    Pelroy, R.A.; Wilson, B.W.

    1981-09-01

    This report presents results of studies on the effects of fractional distillation on the genotoxic potential of Solvent Refined Coal (SRC-II) liquids. SRC-II source materials and distilled liquids were provided by Pittsburg and Midway Coal Mining Co. Fractional distillations were conducted on products from the P-99 process development unit operating under conditions approximating those anticipated at the SRC-II demonstration facility. Distillation cuts were subjected to chemical fractionation, in vitro bioassay and initial chemical analysis. Findings are discussed as they relate to the temperature at which various distillate cuts were produced. This document is the first of two status reports scheduled for 1981 describing these studies.

  3. Method for controlling boiling point distribution of coal liquefaction oil product

    DOEpatents

    Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.

    1982-12-21

    The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships.

  4. Method for controlling boiling point distribution of coal liquefaction oil product

    DOEpatents

    Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

    1982-12-21

    The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships. 3 figs.

  5. Total Crude Oil and Products Imports from All Countries

    Energy Information Administration (EIA) (indexed site)

    Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other

  6. Evaluation of Exxon donor solvent full-range distillate as a utility boiler fuel. Final report

    SciTech Connect

    Reese, J.; Folsom, B.; Jones, F.

    1984-03-01

    The use of Exxon Donor Solvent (EDS) as a utility boiler fuel was evaluated at Southern California Edison Company's Highgrove Unit 4, a Combustion Engineering 44.5 net Mw wall-fired boiler. The EDS evaluated was a full range solvent oil produced at the Exxon Coal-Liquefaction Pilot Plant in Baytown, Texas. This evaluation involved modifying the boiler equipment and operating procedures for EDS, and then firing 4500 barrels of EDS in the boiler. The resulting boiler performance and emissions with EDS were compared to those with a blended low-sulfur petroleum distillate similar to No. 4 fuel oil and with natural gas. The boiler was operated over a range of load and excess air conditions during the tests. The potential for NO/sub x/ reduction with a burner out of service (BOOS) was also evaluated. Boiler performance, including excess air requirements, maximum load, thermal efficiency and heat rate efficiency was similar to that with oil. The NO/sub x/ emissions with EDS were about 12 percent higher than with oil. NO/sub x/ reduction with BOOS was about 20 percent with both oil and EDS. EDS use did not result in an increase in particulate emissions. Submicron particulate, however, was increased with EDS. Required equipment modifications at Highgrove primarily involved material compatibility with EDS, fuel system capacity, and the burner nozzles. The use of EDS required the implementation of health and safety procedures due to the adverse health effects that could result from prolonged exposure to the fuel. The results of the evaluation demostrated that EDS can be used in a utility boiler designed for oil with only minor modifications.

  7. Corrosion inhibition for distillation apparatus

    DOEpatents

    Baumert, Kenneth L.; Sagues, Alberto A.; Davis, Burtron H.; Schweighardt, Frank K.

    1985-01-01

    Tower material corrosion in an atmospheric or sub-atmospheric distillation tower in a coal liquefaction process is reduced or eliminated by subjecting chloride-containing tray contents to an appropriate ion-exchange resin to remove chloride from such tray contents materials.

  8. Distillate Fuel Oil Sales for Oil Company Use

    Annual Energy Outlook

    Connecticut 12 2 0 3 4 0 1984-2014 Maine 0 438 238 0 0 0 1984-2014 Massachusetts 0 871 965 887 0 0 1984-2014 New Hampshire 0 997 0 2 0 27 1984-2014 Rhode Island 0 0 0 0 0 0 ...

  9. Method of removing polychlorinated biphenyl from oil

    DOEpatents

    Cook, Gus T.; Holshouser, Stephen K.; Coleman, Richard M.; Harless, Charles E.; Whinnery, III, Walter N.

    1983-01-01

    Polychlorinated biphenyls are removed from oil by extracting the biphenyls into methanol. The mixture of methanol and extracted biphenyls is distilled to separate methanol therefrom, and the methanol is recycled for further use in extraction of biphenyls from oil.

  10. Method of removing polychlorinated biphenyl from oil

    DOEpatents

    Cook, G.T.; Holshouser, S.K.; Coleman, R.M.; Harless, C.E.; Whinnery, W.N. III

    1982-03-17

    Polychlorinated biphenyls are removed from oil by extracting the biphenyls into methanol. The mixture of methanol and extracted biphenyls is distilled to separate methanol therefrom, and the methanol is recycled for further use in extraction of biphenyls from oil.

  11. Distributive Distillation Enabled by Microchannel Process Technology

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Distributive Distillation Enabled by Microchannel Process Technology Citation Details In-Document Search Title: Distributive Distillation Enabled by Microchannel Process Technology The application of microchannel technology for distributive distillation was studied to achieve the Grand Challenge goals of 25% energy savings and 10% return on investment. In Task 1, a detailed study was conducted and two distillation systems were identified that would meet

  12. SRC residual fuel oils

    SciTech Connect

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  13. SRC Residual fuel oils

    DOEpatents

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  14. Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State

    SciTech Connect

    Krishna, C.R.; McDonald, R.

    2009-05-01

    There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in

  15. ITP Chemicals: Hybripd Separations/Distillation Technology. Research...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hybripd SeparationsDistillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybripd SeparationsDistillation Technology. Research ...

  16. ITP Chemicals: Hybrid Separations/Distillation Technology. Research...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hybrid SeparationsDistillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybrid SeparationsDistillation Technology. Research ...

  17. Used oil and its regulation in the United States. Master's thesis

    SciTech Connect

    Ledbetter, G.H.

    1988-09-30

    The Environmental Protection Agency (EPA) took the first significant steps toward the federal regulation of waste and used oil by: (1) promulgating the final rule for the Burning of Waste Fuel and Used Oil Fuel in Boilers and Industrial Furnaces; (2) proposing a rule to establish standards for used oil which is recycled; and (3) proposing a rule to amend the regulations for hazardous waste management under Subtitle C of the Resource Conservation and Recovery Act (hereafter referred to as RCRA) by listing used oil as a hazardous waste. These efforts by EPA are particularly interesting because of both the nature of the prodding from Congress it took to obtain EPA action and the unprecedented volume, degree, and breadth of public opposition these actions generated once taken.

  18. Oil atlas: National Petroleum Technology Office activities across the United States

    SciTech Connect

    Tiedemann, H.A.

    1998-03-01

    Petroleum imports account for the largest share of the US trade deficit. Over one-third of the 1996 merchandise trade deficit is attributed to imported oil. The good news is that substantial domestic oil resources, both existing and yet-to-be-discovered, can be recovered using advanced petroleum technologies. The Energy Information Agency estimates that advanced technologies can yield 10 billion additional barrels, equal to $240 billion in import offsets. The US Department of Energy`s National Petroleum Technology Office works with industry to develop advanced petroleum technologies and to transfer successful technologies to domestic oil producers. This publication shows the locations of these important technology development efforts and lists DOE`s partners in this critical venture. The National Petroleum Technology Office has 369 active technology development projects grouped into six product lines: Advanced Diagnostics and Imaging Systems; Advanced Drilling, Completion, and Stimulation; Reservoir Life Extension and Management; Emerging Processing Technology Applications; Effective Environmental Protection; and Crosscutting Program Areas.

  19. Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels

    SciTech Connect

    Elliott, Douglas C.

    2006-02-14

    The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOP and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.

  20. Fuel Oil and Kerosene Sales

    Reports and Publications

    2015-01-01

    Provides information, illustrations and state-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off-highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses.

  1. Closure Report for Corrective Action Unit 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect

    Mark Krauss and Catherine Birney

    2011-05-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 544 are located within Areas 2, 7, 9, 10, 12, 19, and 20 of the Nevada National Security Site. Corrective Action Unit 544 comprises the following CASs: • 02-37-08, Cellar & Mud Pit • 02-37-09, Cellar & Mud Pit • 07-09-01, Mud Pit • 09-09-46, U-9itsx20 PS #1A Mud Pit • 10-09-01, Mud Pit • 12-09-03, Mud Pit • 19-09-01, Mud Pits (2) • 19-09-03, Mud Pit • 19-09-04, Mud Pit • 19-25-01, Oil Spill • 19-99-06, Waste Spill • 20-09-01, Mud Pits (2) • 20-09-02, Mud Pit • 20-09-03, Mud Pit • 20-09-04, Mud Pits (2) • 20-09-06, Mud Pit • 20-09-07, Mud Pit • 20-09-10, Mud Pit • 20-25-04, Oil Spills • 20-25-05, Oil Spills The purpose of this CR is to provide documentation supporting the completed corrective actions and data confirming that the closure objectives for CASs within CAU 544 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 544 issued by the Nevada Division of Environmental Protection.

  2. Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Final report

    SciTech Connect

    1995-11-01

    The National Energy Strategy Plan (NES) has called for 900,000 barrels/day production of heavy oil in the mid-1990s to meet our national needs. To achieve this goal, it is important that the Alaskan heavy oil fields be brought to production. Alaska has more than 25 billion barrels of heavy oil deposits. Conoco, and now BP Exploration have been producing from Schrader Bluff Pool, which is part of the super heavy oil field known as West Sak Field. Schrader Bluff reservoir, located in the Milne Point Unit, North Slope of Alaska, is estimated to contain up to 1.5 billion barrels of (14 to 21{degrees}API) oil in place. The field is currently under production by primary depletion; however, the primary recovery will be much smaller than expected. Hence, waterflooding will be implemented earlier than anticipated. The eventual use of enhanced oil recovery (EOR) techniques, such as hydrocarbon miscible solvent slug injection process, is vital for recovery of additional oil from this reservoir. The purpose of this research project was to determine the nature of miscible solvent slug which would be commercially feasible, to evaluate the performance of the hydrocarbon miscible solvent slug process, and to assess the feasibility of this process for improved recovery of heavy oil from Schrader Bluff reservoir. The laboratory experimental work includes: slim tube displacement experiments and coreflood experiments. The components of solvent slug includes only those which are available on the North Slope of Alaska.

  3. VEBA-cracking-processes for upgrading heavy oils and refinery residues

    SciTech Connect

    Graeser, U.; Niemann, K.

    1983-03-01

    More than 20 different heavy oils and residues have been processed by the VEBA-Combi-Cracking and VEBA-LQ-Cracking high pressure hydrocracking processes, in a bench scale unit. Conversions up to 99 wt % of to a syncrude, consisting of naphtha middle distillate and vacuum gas oil were obtained. Conversions correlate with space velocity at a given temperature and product pattern depends upon degree of conversion. The VEBA-LQ-Cracking process produces a stable syncrude whereas the products of the VEBA-Combi process are very low in sulfur and nitrogen.

  4. The Influence of Molecular Structure of Distillate Fuels on HFRR...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity Presentation given at 2007 ...

  5. New Design Methods and Algorithms for Multi-component Distillation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Design Methods and Algorithms for Multi-component Distillation Processes New Design Methods and Algorithms for Multi-component Distillation Processes multicomponent.pdf (517.32 KB) ...

  6. Method for reclaiming waste lubricating oils

    DOEpatents

    Whisman, Marvin L.; Goetzinger, John W.; Cotton, Faye O.

    1978-01-01

    A method for purifying and reclaiming used lubricating oils containing additives such as detergents, antioxidants, corrosion inhibitors, extreme pressure agents and the like and other solid and liquid contaminants by preferably first vacuum distilling the used oil to remove water and low-boiling contaminants, and treating the dried oil with a solvent mixture of butanol, isopropanol and methylethyl ketone which causes the separation of a layer of sludge containing contaminants, unspent additives and oxidation products. After solvent recovery, the desludged oil is then subjected to conventional lubricating oil refining steps such as distillation followed by decolorization and deodorization.

  7. Fuel oil and kerosene sales 1997

    SciTech Connect

    1998-08-01

    The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

  8. Distillation: Still towering over other options

    SciTech Connect

    Kunesh, J.G.; Kister, H.Z.; Lockett, M.J.; Fair, J.R.

    1995-10-01

    Distillation dominates separations in the chemical process industries (CPI), at least for mixtures that normally are processed as liquids. The authors fully expect that distillation will continue to be the method of choice for many separations, and the method against which other options must be compared. So, in this article, they will put into some perspective just why distillation continues to reign as the king of separations, and what steps are being taken to improve its applicability and performance, as well as basic understanding of the technique.

  9. Minimizing corrosion in coal liquid distillation

    DOEpatents

    Baumert, Kenneth L.; Sagues, Alberto A.; Davis, Burtron H.

    1985-01-01

    In an atmospheric distillation tower of a coal liquefaction process, tower materials corrosion is reduced or eliminated by introduction of boiling point differentiated streams to boiling point differentiated tower regions.

  10. The United States remains unprepared for oil import disruptions. Volume I. summary: includes conclusions and recommendations. Report to the Congress

    SciTech Connect

    Not Available

    1981-09-29

    The U.S. Government is almost totally unprepared to deal with disruptions in oil imports. Oil import disruptions--such as the 1973 oil embargo and the 1979 Iranian shortfall--pose a significant threat to national security, and the lack of effective contingency planning and program development to data is serious and requires immediate attention. The Government must make a determined commitment to emergency preparedness now, while oil markets are slack, to prepare for any future disruption.

  11. "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal"

    Energy Information Administration (EIA) (indexed site)

    4 Relative Standard Errors for Table 7.4;" " Unit: Percents." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu

  12. Advancing strategic environmental assessment in the offshore oil and gas sector: Lessons from Norway, Canada, and the United Kingdom

    SciTech Connect

    Fidler, Courtney; Noble, Bram

    2012-04-15

    Abstract: Strategic environmental assessment (SEA) for offshore oil and gas planning and development is utilized in select international jurisdictions, but the sector has received limited attention in the SEA literature. While the potential benefits of and rationale for SEA are well argued, there have been few empirical studies of SEA processes for the offshore sector. Hence, little is known about the efficacy of SEA offshore, in particular its influence on planning and development decisions. This paper examines SEA practice and influence in three international offshore systems: Norway, Atlantic Canada and the United Kingdom, with the intent to identify the challenges, lessons and opportunities for advancing SEA in offshore planning and impact assessment. Results demonstrate that SEA can help inform and improve the efficacy and efficiency of project-based assessment in the offshore sector, however weak coordination between higher and lower tiers limit SEA's ability to influence planning and development decisions in a broad regional environmental and socioeconomic context. - Highlights: Black-Right-Pointing-Pointer SEA can inform and improve the efficacy and efficiency of project EA offshore Black-Right-Pointing-Pointer Scope and deliverables of SEA offshore often differ from stakeholder expectations Black-Right-Pointing-Pointer Considerable variability in influence of SEA output beyond licensing decisions Black-Right-Pointing-Pointer Sector-based SEA offshore is often too restrictive to generate expected benefits.

  13. Deepwater Oil & Gas Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

  14. Deepwater Oil & Gas Resources | Department of Energy

    Office of Environmental Management (EM)

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to ...

  15. CO2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana

    SciTech Connect

    Frailey, Scott M.; Krapac, Ivan G.; Damico, James R.; Okwen, Roland T.; McKaskle, Ray W.

    2012-03-30

    The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO2 flooding.

  16. Classic papers in Solar Energy: Solar distillation

    SciTech Connect

    Howe, E.D.

    1990-06-01

    The following Classic Paper was presented by Professor Howe at the first international Conference on Solar Energy at Tucson, Arizona, USA in 1955. That conference was sponsored by the Association of Applied solar Energy (AFASE), the precursor of ISES. Although this paper does not represent the many developments in solar distillation later applied by Professor Howe in the South Pacific, it is a classic paper because it presents Professor Howe's pioneering work in setting up the Seawater Conversion Laboratory in Richmond for the University of California at Berkeley, US. The research of Professor Howe and his colleagues at the Seawater Conversion Laboratory formed the foundation of contemporary solar energy desalination and distillation systems.

  17. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    Energy Information Administration (EIA) (indexed site)

    3,856.4 26,071.0 56,502.9 1,351.8 60,057.4 April ... 1,030.8 157.5 20,855.8 21,528.9 3,655.2 25,184.0 46,039.8 817.2 48,045.3 May...

  18. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    Energy Information Administration (EIA) (indexed site)

    165,833.6 February ... 7,190.5 4,192.4 55,685.0 76,234.8 22,030.8 98,265.6 153,950.6 2,265.8 167,599.4 March ... 3,741.4...

  19. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    Energy Information Administration (EIA) (indexed site)

    December ... 3,872.6 4,684.1 35,790.4 88,601.0 20,217.6 108,818.6 144,609.0 1,089.2 154,255.0 1998 Average ... 2,643.4 1,854.8...

  20. Stocks of Distillate Fuel Oil 15 ppm Sulfur and Under

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    128,930 135,683 2004-2016 PADD 1 48,011 47,644 49,624 47,947 48,127 49,490 2004-2016 New England 3,841 4,379 4,534 4,438 5,029 5,888 2004-2016 Central Atlantic 31,859 30,793...

  1. Stocks of Distillate Fuel Oil Greater Than 500 ppm Sulfur

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    15,747 15,675 15,436 1993-2016 PADD 1 9,594 10,156 10,022 10,045 9,893 9,629 1993-2016 New England 3,108 3,131 2,948 3,290 3,055 3,284 1993-2016 Central Atlantic 5,474 5,933...

  2. Florida Sales of Distillate Fuel Oil by End Use

    Energy Information Administration (EIA) (indexed site)

    840,100 2,027,012 1,914,621 1,918,039 2,023,650 2,038,923 1984-2014 Residential 1,551 1,820 1,085 572 451 728 1984-2014 Commercial 126,292 113,313 100,791 104,860 113,873 110,082 ...

  3. New Mexico Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update

    Vessel Bunkering 0 0 0 0 0 0 1984-2014 On-Highway 432,794 472,924 495,600 495,026 484,394 504,615 1984-2014 Military 582 306 859 572 405 682 1984-2014 Off-Highway 5,729 24,907 ...

  4. Alabama Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update

    Vessel Bunkering 61,852 65,017 41,339 25,542 24,650 20,222 1984-2014 On-Highway 657,070 711,371 717,466 705,904 754,337 768,994 1984-2014 Military 2,014 2,203 2,135 1,649 1,326 ...

  5. Refiner and Blender Net Production of Distillate Fuel Oil

    Gasoline and Diesel Fuel Update

    496 4,599 4,536 4,662 4,784 4,984 1982-2016 PADD 1 378 373 373 393 398 374 1990-2016 PADD 2 995 1,094 1,084 1,112 1,092 1,118 1990-2016 PADD 3 2,412 2,455 2,424 2,505 2,588 2,731 1990-2016 PADD 4 209 189 185 207 220 225 1990-2016 PADD 5 502 489 470 446 486 538 1990

  6. "Table A10. Total Consumption of LPG, Distillate Fuel Oil...

    Energy Information Administration (EIA) (indexed site)

    ... Form EIA-846, '1991" "Manufacturing Energy Consumption Survey,' and the Bureau of the Census, Industry" "Division, data files for the '1991 Annual Survey of Manufactures.'

  7. Distillate Fuel Oil Sales for All Other Uses

    Gasoline and Diesel Fuel Update

    Connecticut 0 0 0 0 0 0 1984-2014 Maine 0 0 0 0 0 0 1984-2014 Massachusetts 0 0 0 0 0 0 1984-2014 New Hampshire 0 0 0 0 0 0 1984-2014 Rhode Island 0 0 0 0 0 0 1984-2014 Vermont 0 0 ...

  8. Distillate Fuel Oil Sales for Off-Highway Use

    Energy Information Administration (EIA) (indexed site)

    1,985,592 2,148,677 2,070,260 2,088,157 2,063,319 2,014,184 1984-2014 East Coast (PADD 1) 605,884 615,812 634,470 621,261 584,856 604,093 1984-2014 New England (PADD 1A) 81,453...

  9. Distillate Fuel Oil Sales for Vessel Bunkering Use

    Energy Information Administration (EIA) (indexed site)

    1,912,984 2,002,834 2,133,395 1,768,324 1,675,521 1,593,398 1984-2014 East Coast (PADD 1) 276,013 259,319 296,947 283,254 274,142 289,674 1984-2014 New England (PADD 1A) 45,147...

  10. Conversion of lpg hydrocarbons to distillate fuels or lubes using integration of lpg dehydrogenation and mogdl

    SciTech Connect

    Chang, C. D.; Penick, J. E.; Socha, R. F.

    1985-09-17

    Disclosed is a method and apparatus for producing distillate and/or lubes which employ integrating catalytic (or thermal) dehydrogenation of paraffins with MOGDL. The process feeds the product from a low temperature propane and/or butane dehydrogenation zone into a first catalytic reactor zone, which operates at low pressure and contains zeolite oligomerization catalysts, where the low molecular weight olefins are reacted to primarily gasoline range materials. These gasoline range materials can then be pressurized to the pressure required for reacting to distillate in a second catalytic reactor zone operating at high pressure and containing a zeolite oligomerization catalyst. The distillate is subsequently sent to a hydrotreating unit and product separation zone to form lubes and other finished products.

  11. ,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million"

    Energy Information Administration (EIA) (indexed site)

    7 Relative Standard Errors for Table 5.7;" " Unit: Percents." ,,,"Distillate",,,"Coal" ,,,"Fuel Oil",,,"(excluding Coal" ,"Net Demand","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)" ,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million" "End Use","(million

  12. Four different shale oils processed into jet fuel

    SciTech Connect

    Not Available

    1987-03-01

    Crude shale oils produced by (a) Geokinetics, (b) Occidental, (c) Paraho, and (d) Tosco II processes have each been catalytically hydroprocessed to produce jet fuel fractions. The shale oil hydroprocessing was performed at low, medium and high hydroprocessing severities. Hydroprocessing severity was changed mainly by varying the temperature. Full boiling range (121-300/sup 0/C) jet fuel was produced from the hydroprocessed product of the raw oil distillates boiling below 343/sup 0/C. This paper describes the shale oil properties and hydroprocessing, gives the results of sulfur removal and hydrogenated shale oil distillation, and lists the physical and chemical properties of the jet fuels. 2 figures, 3 tables.

  13. Fuel oil and kerosene sales 1996

    SciTech Connect

    1997-08-01

    The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.

  14. Process for upgrading heavy hydrocarbonaceous oils

    SciTech Connect

    Fisher, I.P.; Souhrada, F.; Woods, H.J.

    1981-10-13

    An integrated upgrading process is disclosed which can be used to lower the specific gravity, viscosity and boiling range of heavy, viscous hydrocarbonaceous oil . The process consists of fractionally distilling the oil, treating its residuum with a hydrogen donor material under hydrocracking conditions, fractionally distilling the effluent from the hydrocracking zone and rehydrogenating that portion boiling from about 180/sup 0/ C to 350/sup 0/ C for recycling to the hydrocracking zone. The liquid portion of the oil not recycled can be recombined into a reconstituted crude suitable for transporting by normal crude pipelines.

  15. Contact structure for use in catalytic distillation

    DOEpatents

    Jones, E.M. Jr.

    1985-08-20

    A method and apparatus are disclosed for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  16. Contact structure for use in catalytic distillation

    DOEpatents

    Jones, Jr., Edward M.

    1984-01-01

    A method for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catatlyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  17. Contact structure for use in catalytic distillation

    DOEpatents

    Jones, Jr., Edward M.

    1985-01-01

    A method and apparatus for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  18. Contact structure for use in catalytic distillation

    DOEpatents

    Jones, E.M. Jr.

    1984-03-27

    A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  19. Oil and gas development in the United States in the early 1990`s: An expanded role for independent producers

    SciTech Connect

    1995-10-01

    Since 1991, the major petroleum companies` foreign exploration and development expenditures have exceeded their US exploration and development expenditures. The increasing dependence of US oil and gas development on the typically much smaller nonmajor companies raises a number of issues. Did those companies gain increased prominence largely through the reduced commitments of the majors or have they been significantly adding to the US reserve base? What are the characteristics of surviving and growing producers compared with companies exiting the US oil and gas business? Differences between majors` development strategies and those of other US oil and gas producers appear considerable. As the mix of exploration and development strategies in US oil and gas increasingly reflects the decisions of smaller, typically more specialized producers, what consequences can be seen regarding the costs of adding to US reserves? How are capital markets accessed? Are US oil and gas investments by the nonmajors likely to be undertaken only with higher costs of capital? This report analyzes these issues. 20 figs., 6 tabs.

  20. Supply and Disposition of Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update

    distillate fuel oil with sulfur content 15 ppm and under due to product detail limitations in exports data received from the U.S. Census Bureau. LRG Liquefied Refinery Gas. ...

  1. Co-processing of carbonaceous solids and petroleum oil

    DOEpatents

    Gupta, Avinash; Greene, Marvin I.

    1992-01-01

    In a process for producing distillates from coal by a first stage thermal liquefaction followed by a catalytic hydrogenation, liquefaction solvent is added at points spaced over the length of the thermal liquefaction heater. Coal may be co-processed with petroleum oil by adding pre-hydrogenated oil to the first stage or unhydrogenated oil to the second stage.

  2. Combined process for heavy oil, upgrading and synthetic fuel production

    SciTech Connect

    Polomski, R.E.

    1984-06-05

    A process for upgrading heavy oil to fuel products comprises deasphalting the heavy oil with an oxygenated solvent and simultaneously converting the oxygenated solvent and deasphalted oil over a ZSM-5 type catalyst to produce gasoline and distillate boiling range hydrocarbons.

  3. New short contact time processes upgrade residual oils and heavy crudes

    SciTech Connect

    Not Available

    1991-08-12

    This paper reports on new short contact time carbon rejection technology developed for upgrading residual oils and converting heavier crudes into high-quality synthetic crudes. The process, called discriminatory destructive distillation, or 3D, has been demonstrated in a Kansas refinery on feedstocks ranging from 13.5 to 30.6{degrees} API. For the past year, Coastal Derby Refining Co. has been operating a revolutionary, according to Bartholic, circulating fluid solids processing apparatus that can be run as either a 3D process unit, to virtually eliminate the residual oil component of crude, or as an MSCC process unit, to upgrade VGO residual oils. Because both of these processes circulate a fluid solid in a manner similar to the well known and commercially accepted fluid catalytic cracking (FCC) process, existing FCC-type units can be easily and economically converted to either 3D or MSCC operation. The 3D process is a low-pressure, carbon-rejection residual oil treating process for preparation of gas oils for fluid catalytic cracking (or MSCC), hydrotreating, mild hydrocracking, or full hydrocracking, says Bartholic. The process is also applicable, he says to upgrading heavy crudes or tar sands bitumen to high-quality reconstituted crudes for world markets.

  4. Oil-futures markets

    SciTech Connect

    Prast, W.G.; Lax, H.L.

    1983-01-01

    This book on oil futures trading takes a look at a market and its various hedging strategies. Growing interest in trading of commodity futures has spread to petroleum, including crude oil, and key refined products such as gasoline and heating oil. This book describes how the international petroleum trade is structured, examines the working of oil futures markets in the United States and the United Kingdom, and assesses the possible courses of further developments.

  5. Conversion of LPG hydrocarbons into distillate fuels using an integral LPG dehydrogenation-MOGD process

    SciTech Connect

    Owen, H.; Zahner, J.C.

    1987-06-23

    This patent describes a process for converting lower paraffinic hydrocarbon feedstock comprising propane and/or butane into heavier hydrocarbons comprising gasoline and distillate, comprising the steps of: feeding the paraffinic feedstock to a dehydrogenation zone under conversion conditions for dehydrogenating at least a portion of the feedstock; recovering a first dehydrogenation gaseous effluent stream comprising propene and/or butene; contacting the first gaseous effluent steam with a liquid lean oil sorbent stream comprising C/sub 5//sup +/ hydrocarbons under sorption conditions to produce a C/sub 3//sup +/ rich liquid absorber stream and a light gas stream; sequentially pressurizing, heating and passing the C/sub 3//sup +/ rich liquid absorber stream to an oligomerization reactor zone at elevated temperature and pressure; contacting the C/sub 3//sup +/ rich stream with oligomerization catalyst in the oligomerization reactor zone for conversion of at least a portion of lower olefins to heavier hydrocarbons under oligomerization reaction conditions to provide a second reactor effluent stream comprising gasoline and distillate boiling range hydrocarbons; flash separating the second reactor effluent stream into a separator vapor stream comprising a major portion of the hydrocarbons which later form the lean oil stream, and a major portion of the C/sub 4//sup -/ hydrocarbons and a separator liquid stream comprising the gasoline and distillate boiling range materials produced in the oligomerization reactor zone; fractionating the separator liquid stream in a first product debutanizer tower into a first debutanizer overhead vapor stream comprising C/sub 4//sup -/ hydrocarbons and a product debutanizer liquid bottoms stream comprising C/sub 5//sup +/ gasoline and distillate boiling range hydrocarbons.

  6. U.S. oil imports to decline with rising oil production through...

    Gasoline and Diesel Fuel Update

    oil imports to decline with rising oil production through 2014 The United States will need fewer oil imports over the next two years because of rising U.S. oil production. The new ...

  7. Integrated hydroprocessing scheme for production of premium quality distillates and lubricants

    SciTech Connect

    Chen, N.Y.; LaPierre, R.B.; Partridge, R.D.; Wong, S.S.

    1989-07-25

    This patent describes a method of upgrading a gas oil hydrocarbon feedstock into a naphtha product and a distillate product having a boiling range above that of the naptha product and below that of the gas oil and also having content of iso-paraffins. The method comprises hydrocracking the gas oil feedstock over a large pore size, aromatic selective hydrocracking catalyst having acidic functionality and hydrogenation-deydrogenation functionality, at a hydrogen pressure up to about 10,000 kPa and at a conversion below 50 percent to 650{sup 0}F.-products, to effects a removal of aromatic components by hydrocracking and to form the naptha product and a product boiling above the naptha product which is enriched in paraffinic components; separating the naptha product from the product enriched in paraffinic components; and hydroprocessing the product enriched in paraffinic components over a hydroprocessing catalyst comprising zeolite beta as an acidic component and a hydrogenation-dehydrogenation component, to produce a distillate boiling range product having an enhanced content of isoparaffinic components.

  8. South American oil

    SciTech Connect

    Not Available

    1992-06-01

    GAO reviewed the petroleum industries of the following eight South American Countries that produce petroleum but are not major exporters: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, and Trinidad and Tobago. This report discusses the amount of crude oil the United States imports from the eight countries, expected crude oil production for these countries through the year 2010, and investment reforms that these countries have recently made in their petroleum industries. In general, although the United States imports some oil from these countries, as a group, the eight countries are currently net oil importers because combined domestic oil consumption exceeds oil production. Furthermore, the net oil imports are expected to continue to increase through the year 2010, making it unlikely that the United States will obtain increased oil shipments from these countries.

  9. New Design Methods and Algorithms for Multi-component Distillation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Processes | Department of Energy Design Methods and Algorithms for Multi-component Distillation Processes New Design Methods and Algorithms for Multi-component Distillation Processes multicomponent.pdf (517.32 KB) More Documents & Publications Development of Method and Algorithms To Identify Easily Implementable Energy-Efficient Low-Cost Multicomponent Distillation Column Trains With Large Energy Savings For Wide Number of Separations CX-100137 Categorical Exclusion Determination ITP

  10. Increasing Distillate Production at U.S. Refineries

    Reports and Publications

    2010-01-01

    Paper explores the potential for U.S. refiners to create more distillate and less gasoline without major additional investments beyond those already planned.

  11. Design, start up, and three years operating experience of an ammonia scrubbing, distillation, and destruction plant

    SciTech Connect

    Gambert, G.

    1996-12-31

    When the rebuilt Coke Plant started operations in November of 1992, it featured a completely new closed circuit secondary cooler, ammonia scrubbing, ammonia distillation, and ammonia destruction plants. This is the second plant of this type to be built in North America. To remove the ammonia from the gas, it is scrubbed with three liquids: Approximately 185 gallons/minute of cooled stripped liquor from the ammonia stills; Light oil plant condensate; and Optionally, excess flushing liquor. These scrubbers typically reduce ammonia content in the gas from 270 Grains/100 standard cubic feet to 0.2 Grains/100 standard cubic feet.

  12. Assessment of environmental problems associated with increased enhanced oil recovery in the United States: 1980-2000

    SciTech Connect

    Kaplan, E.; Garrell, M.; Royce, B.; Riedel, E.F.; Sathaye, J.

    1983-01-01

    Water requirements and uncontrolled air emissions from well vents and steam generators were estimated for each technology based upon available literature. Estimates of best air emission control technologies were made using data for EOR steam generators actually in use, as well as control technologies presently available but used by other industries. Amounts of solid wastes were calculated for each air emission control technology. Estimates were also made of the heavy metal content of these solid wastes. The study also included environmental residuals which may be expected should coal be used instead of lean crude to produce steam for thermal EOR. It was concluded that from an environmental prospective tertiary oil is preferable in many respects to shale oil, coal and synfuels. Alternative sources of oil such as syncrude, new exploration, and primary production could cause far more environmental damage than incremental EOR. Future EOR in specific regions may be constrained because of environmental issues: air emissions, solid waste disposal, water availability, and aquifer contaminators. Competition for water and the scarcity of surface water or groundwater which are low in total diminutive solids will impede some EOR projects. Risks of groundwater contamination should be minimized particularly because of requirements of the Environmental Protection Agency's new underground injection control program. A quantitative environmental assessment will require a complete and consistent data base for all fields for which EOR is planned out in which tertiary production is taking place. This is particularly true for EOR which will occur in Alaska or in offshore areas, where environments are fragile and where operating conditions are severe. 147 references, 29 figures, 46 tables.

  13. Conversion of LPG hydrocarbons to distillate fuels or lubes using integration of LPG dehydrogenation and mogdl

    SciTech Connect

    Chang, C.D.; Penick, J.E.; Socha, R.F.

    1987-07-07

    This patent describes an apparatus for producing distillates of lubes from paraffins, which comprise: (a) a dehydrogenation reactor including means for passing a paraffinic feedstock stream into a dehydrogenation zone at conditions of pressure and temperature selected to convert the paraffins to an olefin rich effluent stream comprising at least one of the group consisting of propylene and butylene; (b) a low pressure oligomerization catalytic reactor including means for contacting the olefin rich effluent stream in a low pressure oligomerization catalytic reactor zone with a crystalline zeolite oligomerization catalyst at conditions of pressure and temperature selected to convert olefins to a first reactor effluent stream rich in liquid olefinic gasoline range hydrocarbons; (c) a first means for separating the first reactor effluent stream to form a substantially liquid C/sub 5/+ rich stream and a C/sub 4/- rich stream; (d) means for passing the C/sub 5/+ rich stream to a high pressure oligomerization catalytic reactor zone; (e) a high pressure oligomerization catalytic reactor including means for contacting the substantially liquid C/sub 5/+ rich stream in the high pressure oligomerization catalytic reactor zone with a crystalline zeolite oligomerization catalyst at conditions of temperature and pressure selected to produce a second reactor effluent stream which is rich in distillate; (f) second means for separating the second reactor effluent stream to recover an olefinic gasoline stream and a distillate stream; and (g) a hydrotreating reactor including means for contacting the distillate stream with hydrogen in a hydrotreating unit to produce a hydrotreated distillate stream comprising lube range hydrocarbons.

  14. Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Annual report, January 1, 1994--December 31, 1994

    SciTech Connect

    Sharma, G.D.

    1995-07-01

    Alaska is the second largest oil producing state in the nation and currently contributes nearly 24% of the nations oil production. It is imperative that Alaskan heavy oil fields be brought into production. Schrader Bluff reservoir, located in the Milne Point Unit, which is part of the heavy oil field known as West Sak is estimated to contain 1.5 billion barrels of (14 to 21 degree API) oil-in-place. The field is currently under production by primary depletion. The eventual implementation of enhanced oil recovery (EOR) techniques will be vital for the recovery of additional oil from this reservoir. The availability of hydrocarbon gases (solvents) on the Alaska North Slope make the hydrocarbon miscible solvent injection process an important consideration for the EOR project in Schrader Bluff reservoir. Since Schrader Bluff oil is heavy and viscous, a water-alternating-gas (WAG) type of process for oil recovery is appropriate since such a process tends to derive synergetic benefits from both water injection (which provides mobility control and improvement in sweep efficiency) and miscible gas injection (which provides improved displacement efficiency). A miscible solvent slug injection process rather than continuous solvent injection is considered appropriate. Slim tube displacement studies, PVT data and asphaltene precipitation studies are needed for Schrader bluff heavy oil to define possible hydrocarbon solvent suitable for miscible solvent slug displacement process. Coreflood experiments are also needed to determine the effect of solvent slug size, WAG ratio and solvent composition on the recovery and solvent breakthrough. A compositional reservoir simulation study will be conducted later to evaluate the complete performance of the hydrocarbon solvent slug process and to assess the feasibility of this process for improving recovery of heavy oil from Schrader Bluff reservoir.

  15. This Week In Petroleum Distillate Section

    Gasoline and Diesel Fuel Update

    Residential heating oil prices (dollars per gallon) Average Regional U.S. residential heating oil prices graph Regional residential heating oil prices graph Residential heating oil prices (dollars per gallon) more price data › Year ago Most recent 11/16/15 11/14/16 11/07/16 10/31/16 10/24/16 10/17/16 10/10/16 10/03/16 Average 2.398 2.375 2.386 2.399 2.394 2.380 2.366 2.301 East Coast (PADD 1) 2.402 2.382 2.393 2.404 2.399 2.385 2.370 2.306 New England (PADD 1A) 2.347 2.331 2.336 2.334 2.328

  16. Fuel-blending stocks from the hydrotreatment of a distillate formed by direct coal liquefaction

    SciTech Connect

    Andile B. Mzinyati

    2007-09-15

    The direct liquefaction of coal in the iron-catalyzed Suplex process was evaluated as a technology complementary to Fischer-Tropsch synthesis. A distinguishing feature of the Suplex process, from other direct liquefaction processes, is the use of a combination of light- and heavy-oil fractions as the slurrying solvent. This results in a product slate with a small residue fraction, a distillate/naphtha mass ratio of 6, and a 65.8 mass % yield of liquid fuel product on a dry, ash-free coal basis. The densities of the resulting naphtha (C{sub 5}-200{sup o}C) and distillate (200-400{sup o}C) fractions from the hydroprocessing of the straight-run Suplex distillate fraction were high (0.86 and 1.04 kg/L, respectively). The aromaticity of the distillate fraction was found to be typical of coal liquefaction liquids, at 60-65%, with a Ramsbottom carbon residue content of 0.38 mass %. Hydrotreatment of the distillate fraction under severe conditions (200{sup o}C, 20.3 MPa, and 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1}) with a NiMo/Al{sub 2}O{sub 3} catalyst gave a product with a phenol content of {lt}1 ppm, a nitrogen content {lt}200 ppm, and a sulfur content {lt}25 ppm. The temperature was found to be the main factor affecting diesel fraction selectivity when operating at conditions of WHSV = 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1} and PH{sub 2} = 20.3 MPa, with excessively high temperatures (T {gt} 420{sup o}C) leading to a decrease in diesel selectivity. The fuels produced by the hydroprocessing of the straight-run Suplex distillate fraction have properties that make them desirable as blending components, with the diesel fraction having a cetane number of 48 and a density of 0.90 kg/L. The gasoline fraction was found to have a research octane number (RON) of 66 and (N + 2A) value of 100, making it ideal as a feedstock for catalytic reforming and further blending with Fischer-Tropsch liquids. 44 refs., 9 figs., 12 tabs.

  17. Northeast Home Heating Oil Reserve (NEHHOR) Guidelines for Release |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Heating Oil Reserve » Northeast Home Heating Oil Reserve (NEHHOR) Guidelines for Release Northeast Home Heating Oil Reserve (NEHHOR) Guidelines for Release The Energy Policy and Conservation Act, as amended, sets conditions for the release of the Northeast Home Heating Oil Reserve. The Secretary of Energy has the authority to sell, exchange, or otherwise dispose of petroleum distillate from the Reserve in order to maintain the quality or quantity of the petroleum

  18. Oil supply increase due in 1996`s second half

    SciTech Connect

    Beck, R.J.

    1996-07-29

    The crucial oil-market issue for this year`s second half is new supply. Production will increase again outside the Organization of Petroleum Exporting Countries. And Iraq has general approval to resume exports under limits set by the United Nations, although start of the exports has been delayed by at least 60 days. The big question is the market`s ability to absorb the supply gains. As usual, the market`s need for oil in the second half will depend on economies. So far in 1996, economic growth has pushed consumption to levels unexpected a year ago. Demand the rest of the year depends heavily on economic performances of the industrialized nations that make up the organization for Economic Cooperation and Development (OECD) and the rapidly growing nations of the Asia-Pacific region. Growth in countries elsewhere in the developing world, especially Latin America, remains a wild card. The paper discusses the worldwide outlook, crude oil prices, US product prices, natural gas prices, US economy, US energy demand, natural gas in the US, US oil demand, gasoline prices, distillate gains, resid slumps, LPG, ethane, US supply, production patterns, rise in refinery capacity, imports, stocks, and stock coverage.

  19. "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)"

    Energy Information Administration (EIA) (indexed site)

    2 Relative Standard Errors for Table 5.2;" " Unit: Percents." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)&

  20. "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

    Energy Information Administration (EIA) (indexed site)

    6 Relative Standard Errors for Table 5.6;" " Unit: Percents." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel

  1. Future perspectives of using hollow fibers as structured packings in light hydrocarbon distillation

    SciTech Connect

    Yang, Dali; Orler, Bruce; Tornga, Stephanie; Welch, Cindy

    2011-01-26

    Olefin and paraffin are the largest chemical commodities. Furthermore, they are major building blocks for the petrochemical industry. Each year, petroleum refining, consumes 4,500 TBtu/yr in separation energy, making it one of the most energy-intensive industries in the United States). Just considering liquefied petroleum gas (ethane/propane/butane) and olefins (ethylene and propylene) alone, the distillation energy consumption is about 400 TBtu/yr in the US. Since petroleum distillation is a mature technology, incremental improvements in column/tray design will only provide a few percent improvements in the performance. However, each percent saving in net energy use amounts to savings of 10 TBtu/yr and reduces CO{sub 2} emissions by 0.2 MTon/yr. In practice, distillation columns require 100 to 200 trays to achieve the desired separation. The height of a transfer unit (HTU) of conventional packings is typical in the range of 36-60 inch. Since 2006, we had explored using several non-selective membranes as the structured packings to replace the conventional packing materials used in propane and propylene distillation. We obtained the lowest HTU of < 8 inch for the hollow fiber column, which was >5 times shorter than that of the conventional packing materials. In 2008, we also investigated this type of packing materials in iso-/n-butane distillation. Because of a slightly larger relative volatility of iso-/n-butane than that of propane/propylene, a wider and a more stable operational range was obtained for the iso-/n-butane pair. However, all of the experiments were conducted on a small scale with flowrate of < 25 gram/min. Recently, we demonstrated this technology on a larger scale (<250 gram/min). Within the loading range of F-factor < 2.2 Pa{sup 0.5}, a pressure drop on the vapor side is below 50 mbar/m, which suggests that the pressure drop of hollow fibers packings is not an engineering barrier for the applications in distillations. The thermal stability study

  2. Iran Oil and Gas | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Iran Oil and Gas Jump to: navigation, search Logo: Iran Oil and Gas Name: Iran Oil and Gas Address: Unit 16, 3rd Fl., Bldg. No. 2, 9th Narenjestan St., North Pasdaran Ave. Place:...

  3. Distributive Distillation Enabled by Microchannel Process Technology...

    Office of Scientific and Technical Information (OSTI)

    In Task 1, a detailed study was conducted and two ... were focused on two methods of integrating the ... Country of Publication: United States Language: English ...

  4. Upgrading petroleum residues and heavy oils

    SciTech Connect

    Gray, M.R.

    1994-01-01

    Here is an in-depth look at current techniques for converting heavy oils and residues into more valuable distillates. It examines the chemistry of heavy hydrocarbon feeds and their properties which are important to engineering design, including phase behavior, reaction kinetics, and thermodynamic and transport characteristics.

  5. AEO Early Release 2013 - oil

    Energy Information Administration (EIA) (indexed site)

    Growing U.S. oil output and rising vehicle fuel economy to cut U.S. reliance on foreign oil The United States is expected to continue cutting its dependence on petroleum and liquid ...

  6. A Method to Distill Hydrogen Isotopes from Lithium | Princeton...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to Distill Hydrogen Isotopes from Lithium This white paper outlines a method for the removal of tritium and deuterium from liquid lithium. The method is based on rapid or flash ...

  7. Membrane augmented distillation to separate solvents from water

    DOEpatents

    Huang, Yu; Baker, Richard W.; Daniels, Rami; Aldajani, Tiem; Ly, Jennifer H.; Alvarez, Franklin R.; Vane, Leland M.

    2012-09-11

    Processes for removing water from organic solvents, such as ethanol. The processes include distillation to form a rectified overhead vapor, compression of the rectified vapor, and treatment of the compressed vapor by two sequential membrane separation steps.

  8. Fuel oil and kerosene sales 1994

    SciTech Connect

    1995-09-27

    This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

  9. Thermally-enhanced oil recovery method and apparatus

    DOEpatents

    Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  10. Deliveries of fuel oil and kerosene in 1980

    SciTech Connect

    Not Available

    1982-02-11

    This report contains numerical data on deliveries of distillate fuel oil, residual fuel oil, and kerosene which will be helpful to federal and state agencies, industry, and trade associations in trend analysis, policy/decision making, and forecasting. The data for 1979 and 1980 are tabulated under the following headings: all uses, residential, commercial, industrial, oil companies, electric utilities, transportation, military, and farm use. The appendix contains product and end-use descriptions. (DMC)

  11. Distillation efficiencies of an industrial-scale i-butane/n-butane fractionator

    SciTech Connect

    Klemola, K.T.; Ilme, J.K.

    1996-12-01

    Rarely published industrial-scale distillation efficiency data are presented. The Murphree tray efficiencies are determined from the i-butane/n-butane fractionator performance data. Point efficiencies, numbers of overall vapor phase transfer units, numbers of vapor and liquid phase transfer units, and liquid phase resistances of mass transfer are backcalculated from the Murphree tray efficiencies. Various efficiency prediction and scale-up methods have been tested against experimental results. A new model for the prediction of the numbers of vapor and liquid phase transfer units has been developed. The model can be applied to hydrocarbon systems at high pressure. The influence of the mass-transfer coefficients, the interfacial area, and the vapor and liquid residence times on mass transfer has been analyzed separately, and as a result the NTU correlations for vapor and liquid phases are obtained. The constants of the model can be obtained by fitting the model to experimental efficiency data from a similar system.

  12. Crude Oil Movements of Crude Oil by Rail

    Gasoline and Diesel Fuel Update

    Product: Crude Oil Fuel Ethanol Biodiesel Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels Download Series History Download Series History Definitions, Sources & Notes ...

  13. S. 1461: Oil Tanker Navigation Safety Act of 1989. Introduced in the Senate of the United States, One Hundredth First Congress, First Session, August 1, 1989

    SciTech Connect

    Not Available

    1989-01-01

    This bill would enhance the navigation safety of oil tankers. Title I, Provisions applicable to nationally licensed personnel, explains provisions relating to motor vehicle driving records of vessel personnel; dangerous drugs and other grounds for suspension or revocation; alcohol testing and alcohol rehabilitation; prohibition on service; vessel traffic services; oil tanker construction and size; oil spill contingency plans and approval; international inventory of equipment and contractors; national council on oil spill technology research and development; oil spill disaster assistance; impact on other laws; penalties; and a report on user fees. Title II, Provisions applicable with respect to Alaska pilotage at Port of Valdez, includes explanations of Bligh reef light; Prince William Sound VTS; oil spill recovery institute; and the Trans-Alaska pipeline liability fund. Title III, Provisions applicable to Mississippi River radio communications on Mississippi River, is also included.

  14. Oil shale, tar sands, and related materials

    SciTech Connect

    Stauffer, H.C.

    1981-01-01

    This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

  15. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 544: Cellars, Mud Pits, and Oil Spills, Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Mark Krauss

    2010-07-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 544, Cellars, Mud Pits, and Oil Spills, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 544 comprises the following 20 corrective action sites (CASs) located in Areas 2, 7, 9, 10, 12, 19, and 20 of the Nevada Test Site (NTS): • 02-37-08, Cellar & Mud Pit • 02-37-09, Cellar & Mud Pit • 07-09-01, Mud Pit • 09-09-46, U-9itsx20 PS #1A Mud Pit • 10-09-01, Mud Pit • 12-09-03, Mud Pit • 19-09-01, Mud Pits (2) • 19-09-03, Mud Pit • 19-09-04, Mud Pit • 19-25-01, Oil Spill • 19-99-06, Waste Spill • 20-09-01, Mud Pits (2) • 20-09-02, Mud Pit • 20-09-03, Mud Pit • 20-09-04, Mud Pits (2) • 20-09-06, Mud Pit • 20-09-07, Mud Pit • 20-09-10, Mud Pit • 20-25-04, Oil Spills • 20-25-05, Oil Spills This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 544 using the SAFER process. Using the approach approved for previous mud pit investigations (CAUs 530–535), 14 mud pits have been identified that • are either a single mud pit or a system of mud pits, • are not located in a radiologically posted area, and • have no evident biasing factors based on visual inspections. These 14 mud pits are recommended for no further action (NFA), and further field investigations will not be conducted. For the sites that do not meet the previously approved closure criteria, additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible

  16. Specific heavy oil processing market study. Final report

    SciTech Connect

    Not Available

    1984-06-01

    The market potential for two not-yet-commercialized, proprietary processes for upgrading heavy oil was evaluated. Dynacracking (TM) of Hydrocarbon Research Inc. (HRI) and Aurabon of UOP Process Division (UOP), including an integrated commercial hydrotreating unit were the processes studied. The report concludes that while a large market for Heavy Oil Processing (HOP) units was originally forecast as the result of the shift to heavier crudes by US refiners under a given demand slate and refinery configuration, this market has either eroded due to massive demand shifts (both in volumetric and relative product mix terms) or largely been satisfied on an accelerated basis (due to downstream restructuring pressures) by units already constructed or under firm commitment utilizing other HOP technology. Dynacracking or Aurabon does not appear to offer the substantial economic advantage needed to replace other HOP units already committed. However, additional demands for HOP units couold arise, particularly on a regional basis, if significant additional foreign or domestic sources of heavy crude are introduced into the supply picture or the demand structure moves dramatically away from that currently foreseen by the EIA. Expected profit margins were calculated for both processes, allowing $2/barrel extra credit to the Aurabon products because of their higher quality. Both processes appear to produce about the same fraction of vacuum bottoms when processing the same crude. Dynacracking produces a higher proportion of naphtha and Aurabon produces substantially more heavy distillate. This report is not intended to serve as a basis of selecting either process for a particular installation. 10 references, 7 figures, 29 tables.

  17. FRACTIONAL DISTILLATION SEPARATION OF PLUTONIUM VALUES FROM LIGHT ELEMENT VALUES

    DOEpatents

    Cunningham, B.B.

    1957-12-17

    A process is described for removing light element impurities from plutonium. It has been found that plutonium contaminated with impurities may be purified by converting the plutonium to a halide and purifying the halide by a fractional distillation whereby impurities may be distilled from the plutonium halide. A particularly effective method includes the step of forming a lower halide such as the trior tetrahalide and distilling the halide under conditions such that no decomposition of the halide occurs. Molecular distillation methods are particularly suitable for this process. The apparatus may comprise an evaporation plate with means for heating it and a condenser surface with means for cooling it. The condenser surface is placed at a distance from the evaporating surface less than the mean free path of molecular travel of the material being distilled at the pressure and temperature used. The entire evaporating system is evacuated until the pressure is about 10/sup -4/ millimeters of mercury. A high temperuture method is presented for sealing porous materials such as carbon or graphite that may be used as a support or a moderator in a nuclear reactor. The carbon body is subjected to two surface heats simultaneously in an inert atmosphere; the surface to be sealed is heated to 1500 degrees centigrade; and another surface is heated to 300 degrees centigrade, whereupon the carbon vaporizes and flows to the cooler surface where it is deposited to seal that surface. This method may be used to seal a nuclear fuel in the carbon structure.

  18. Synthetic crude oils carcinogenicity screening tests. Progress report, September 15, 1979-March 15, 1980

    SciTech Connect

    Calkins, W.H.; Deye, J.F.; King, C.F.; Hartgrove, R.W.; Krahn, D.F.

    1980-01-01

    Four crude oils (H Coal-Fuel Oil Mode, Occidental in situ Shale Oil, Exxon Donor Solvent Liquid, and SRC II) which were distilled into four fractions (naphtha, mid-distillate, gas oil and residue) for analysis and biological screening testing during the last report period were tested for mutagenicity by the Ames test and for tumor initiating activity by an initiation/promotion (skin painting) test. Substantial agreement exists between Ames and skin painting results. Low boiling naphtha fractions of the 4 crude oils showed little or no mutagenicity or tumor initiating activity by the two tests used. The higher boiling fractions (gas oils and residues) and the crude oils themselves were mutagenic and exhibited tumor initiation activity. The coal derived fractions were more active by both tests than the shale oil fractions.

  19. Extraction of El-Lajjun oil shale

    SciTech Connect

    Anabtawi, M.Z.; Uysal, B.Z.

    1995-10-01

    Extraction of the bitumen fraction of El-Lajjun oil shale was carried out using 17 different solvents, pure and combined. Out of all the solvents used, toluene and chlorform were found to be the most efficient for extraction of the bitumen to perform the major part of the experiments. This selectivity was based on the quality and quantity of the yield and on the quantity of solvent recovered. Extraction was carried out using a Soxhlet extractor. For complete recovery of solvent the extract phase was subjected to two stages of distillation, simple distillation followed by fractional distillation, where different cuts of oil were obtained. It was found that an optimum shale size of 1.0 mm offered better solvent recovery. One hour was the optimum time needed for complete extraction. The yield of oil was determined from the material balance gained from fractional distillation after testing for the existence of any traces of solvent trapped in the different cuts by using a gas chromotography technique. When chloroform was used, it was found that the average amount of bitumen extracted was 0.037 g/g of shale, which corresponds to 98% of the actual bitumen trapped in the oil shale (by assuming the bitumen represents 15% of the organic matter) and 84.1% of solvent recovered. When toluene was used, it was found that the average amount of oil extracted was 0.0293 g/g/ of shale, which corresponds to 78% of the actual bitumen trapped in the oil shale (by assuming bitumen represents 15% of the organic matter) and 89.9% of solvent for extraction with toluene.

  20. Crude Oil and Petroleum Products Movements by Tanker and Barge...

    Gasoline and Diesel Fuel Update

    Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand ...

  1. Unconventional Oil and Gas Projects Help Reduce Environmental...

    Energy.gov [DOE] (indexed site)

    Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development Since the first commercial oil well was drilled in the United States in 1859, most of the ...

  2. Utah Heavy Oil Program

    SciTech Connect

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  3. ,"No. 2 Distillate Sales to End Users Refiner Sales Volumes"

    Energy Information Administration (EIA) (indexed site)

    ... Refiners (Thousand Gallons per Day)","New Mexico No 2 Distillate Retail Sales by Refiners ...57.7,6018.7,64.6,101.5,691.5,1553.8,1576.9,2030.5,4320.3,1350.4,683.2,792.4,316.4,804.3,37...

  4. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOEpatents

    Baker, Eddie G. (Richland, WA); Elliott, Douglas C. (Richland, WA)

    1993-01-01

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compouns as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  5. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOEpatents

    Baker, E.G.; Elliott, D.C.

    1993-01-19

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compounds as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  6. Characterization of DOE reference oil shales: Mahogany Zone, Parachute Creek Member, Green River Formation Oil Shale, and Clegg Creek Member, New Albany Shale

    SciTech Connect

    Miknis, F. P.; Robertson, R. E.

    1987-09-01

    Measurements have been made on the chemical and physical properties of two oil shales designated as reference oil shales by the Department of Energy. One oil shale is a Green River Formation, Parachute Creek Member, Mahogany Zone Colorado oil shale from the Exxon Colony mine and the other is a Clegg Creek Member, New Albany shale from Kentucky. Material balance Fischer assays, carbon aromaticities, thermal properties, and bulk mineralogic properties have been determined for the oil shales. Kerogen concentrates were prepared from both shales. The measured properties of the reference shales are comparable to results obtained from previous studies on similar shales. The western reference shale has a low carbon aromaticity, high Fischer assay conversion to oil, and a dominant carbonate mineralogy. The eastern reference shale has a high carbon aromaticity, low Fischer assay conversion to oil, and a dominant silicate mineralogy. Chemical and physical properties, including ASTM distillations, have been determined for shale oils produced from the reference shales. The distillation data were used in conjunction with API correlations to calculate a large number of shale oil properties that are required for computer models such as ASPEN. There was poor agreement between measured and calculated molecular weights for the total shale oil produced from each shale. However, measured and calculated molecular weights agreed reasonably well for true boiling point distillate fractions in the temperature range of 204 to 399/sup 0/C (400 to 750/sup 0/F). Similarly, measured and calculated viscosities of the total shale oils were in disagreement, whereas good agreement was obtained on distillate fractions for a boiling range up to 315/sup 0/C (600/sup 0/F). Thermal and dielectric properties were determined for the shales and shale oils. The dielectric properties of the reference shales and shale oils decreased with increasing frequency of the applied frequency. 42 refs., 34 figs., 24

  7. The Use of TaBoRR as a Heavy Oil Upgrader

    SciTech Connect

    Lee Brecher; Charles Mones

    2009-02-05

    Preliminary testing has shown that Western Research Institute's (WRI) Tank Bottom Recovery and Remediation (TaBoRR{reg_sign}) technology shows promise for heavy oil upgrading. Approximately 70 to 75 wt% of a Canadian Cold Lake bitumen feed was converted to a partially upgraded overhead product that could be transported directly by pipeline or blended with the parent bitumen to produce transportable crude. TaBoRR{reg_sign} was originally developed to remediate tank bottom wastes by producing a distillate product and solid waste. TaBoRR{reg_sign}'s processing steps include breaking a water-oil emulsion, recovering a light hydrocarbon fraction by distillation in a stripper unit, and pyrolyzing the residua reducing it to additional overhead and a benign coke for disposal. Cold Lake bitumen was tested in WRI's bench-scale equipment to evaluate the potential use of TaBoRR{reg_sign} technology for heavy oil upgrading to produce a stable, partially (or fully) upgraded product that will allow diluent-reduced or diluent-free transportation of bitumen or ultra-heavy crudes to market. Runs were conducted at temperatures of low, intermediate and high severity in the stripper to produce stripper overhead and bottoms. The bottoms from each of these runs were processed further in a 6-inch screw pyrolyzer to produce pyrolyzer overhead for blending with the corresponding stripper overheads. Proceeding in this fashion yielded three partially upgraded crudes. The products from TaBoRR{reg_sign} processing, the parent bitumen, and bitumen blends were subjected to stability and compatibility testing at the National Centre for Upgrading Technology (NCUT). Chemical analyses of the overhead product blends have met pipeline specifications for viscosity and density; however the bromine number does not, which might indicate the need for mild hydrotreating. Storage stability tests showed the blends to be stable. The blends were also soluble and compatible with most other Alberta crudes.

  8. New Design Methods and Algorithms for Multi-component Distillation Processes

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Methods and Algorithms for Multi-component Distillation Processes Improved Energy Efficiency through the Determination of Optimal Distillation Configuration The ability to apply low-energy distillation confgurations can allow chemical manufacturers to reduce energy consumption of both existing and grassroots plants. However, the determina- tion of an appropriate confguration is limited by an incomplete knowledge of the 'search space' for a proper distillation network. Currently, no systematic

  9. Crude Oil Analysis Database

    DOE Data Explorer

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  10. Hydroprocessing Bio-oil and Products Separation for Coke Production

    SciTech Connect

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2013-04-01

    Fast pyrolysis of biomass can be used to produce a raw bio-oil product, which can be upgraded by catalytic hydroprocessing to hydrocarbon liquid products. In this study the upgraded products were distilled to recover light naphtha and oils and to produce a distillation resid with useful properties for coker processing and production of renewable, low-sulfur electrode carbon. For this hydroprocessing work, phase separation of the bio-oil was applied as a preparatory step to concentrate the heavier, more phenolic components thus generating a more amenable feedstock for resid production. Low residual oxygen content products were produced by continuous-flow, catalytic hydroprocessing of the phase separated bio-oil.

  11. Oil and Gas

    Energy Saver

    RD&D Leases in the United States Oil Shale RD&D Leases in the United States This paper describes the original plans, progress and accomplishments, and future plans for nine oil shale research, development and demonstration (RD&D) projects on six existing RD&D leases awarded in 2006 and 2007 by the United States Department of the Interior, Bureau of Land Management (BLM) to Shell, Chevron, EGL (now AMSO), and OSEC (now Enefit American, respectively); as well as three pending

  12. Geothermal Energy Market Study on the Atlantic Coastal Plain: Technical Feasibility of use of Eastern Geothermal Energy in Vacuum Distillation of Ethanol Fuel

    SciTech Connect

    1981-04-01

    The DOE is studying availability, economics, and uses of geothermal energy. These studies are being conducted to assure maximum cost-effective use of geothermal resources. The DOE is also aiding development of a viable ethanol fuel industry. One important point of the ethanol program is to encourage use of non-fossil fuels, such as geothermal energy, as process heat to manufacture ethanol. Geothermal waters available in the eastern US tend to be lower in temperature (180 F or less) than those available in the western states (above 250 F). Technically feasible use of eastern geothermal energy for ethanol process heat requires use of technology that lowers ethanol process temperature requirements. Vacuum (subatmospheric) distillation is one such technology. This study, then, addresses technical feasibility of use of geothermal energy to provide process heat to ethanol distillation units operated at vacuum pressures. They conducted this study by performing energy balances on conventional and vacuum ethanol processes of ten million gallons per year size. Energy and temperature requirements for these processes were obtained from the literature or were estimated (for process units or technologies not covered in available literature). Data on available temperature and energy of eastern geothermal resources was obtained from the literature. These data were compared to ethanol process requirements, assuming a 150 F geothermal resource temperature. Conventional ethanol processes require temperatures of 221 F for mash cooking to 240 F for stripping. Fermentation, conducted at 90 F, is exothermic and requires no process heat. All temperature requirements except those for fermentation exceed assumed geothermal temperatures of 150 F. They assumed a 130 millimeter distillation pressure for the vacuum process. It requires temperatures of 221 F for mash cooking and 140 F for distillation. Data indicate lower energy requirements for the vacuum ethanol process (30 million BTUs per

  13. S.32: A Bill to amend the Internal Revenue Code of 1986 to provide a tax credit for the production of oil and gas from existing marginal oil and gas wells and from new oil and gas wells. Introduced in the Senate of the United States, One Hundred Fourth Congress, First session

    SciTech Connect

    1995-12-31

    This bill would establish tax credits for the production of oil and natural gas from existing marginal oil or gas wells, and from new oil and gas wells. It does so by adding a section to the Internal Revenue Code of 1986 which spells out the rules, the credit amounts, the scope of the terms used to define such facilities, and other rules.

  14. Integrated process of distillation with side reactors for synthesis of organic acid esters

    DOEpatents

    Panchal, Chandrakant B; Prindle, John C; Kolah, Aspri; Miller, Dennis J; Lira, Carl T

    2015-11-04

    An integrated process and system for synthesis of organic-acid esters is provided. The method of synthesizing combines reaction and distillation where an organic acid and alcohol composition are passed through a distillation chamber having a plurality of zones. Side reactors are used for drawing off portions of the composition and then recycling them to the distillation column for further purification. Water is removed from a pre-reactor prior to insertion into the distillation column. An integrated heat integration system is contained within the distillation column for further purification and optimizing efficiency in the obtaining of the final product.

  15. Enhanced Separation Efficiency in Olefin/Paraffin Distillation

    Energy.gov [DOE]

    This factsheet describes a research project whose main objective is to develop technologies to enhance separation efficiencies by replacing the conventional packing materials with hollow fiber membranes, which have a high specific area and separated channels for both liquid and vapor phases. The use of hollow fibers in distillation columns can help refineries decrease operating costs, reduce greenhouse gas emissions through reduced heating costs, and help expand U.S. refining capacity through improvements to existing sites, without large scale capital investment.

  16. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  17. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    SciTech Connect

    McInerney, M.J.; Mouttaki, H.; Folmsbee, M.; Knapp, R.; Nagle, D.

    2003-01-24

    The overall goal of this research was to develop effective biosurfactant production for enhanced oil recovery in the United States.

  18. Enhanced Oil Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enhanced Oil Recovery Enhanced Oil Recovery Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory over the past 30 years, the United States is a world leader in the number of EOR projects and volume of oil production from this method. Fossil Energy Research Benefits - Enhanced Oil Recovery (708.07 KB) More Documents & Publications Oil Study Guide - High School Fossil Energy Today - Fourth Quarter, 2011 Fossil Energy Today - First

  19. Gulf Canada donor refined bitumen heavy oil upgrading process

    SciTech Connect

    Fisher, I.P.; Souhrada, F.; Woods, H.J.

    1982-09-01

    The method is a moderate-pressure, noncatalytic alternative which has been shown to be applicable to a wide range of bitumens and heavy oils. It offers the potential of efficiency and reliability at a low capitalized investment and operating cost. The raw distillates are separated from the bitumen or heavy oil and the vacuum residuum is blended with an efficient hydrogen donor stream containing a high proportion of substituted tetralins, and is thermally cracking in the liquid phase. The exhausted donor is recovered from the middle distillate reactor product, reactivated by fixed bed hydrogenation before being recycled to the reactor. The process can be self-sufficient in donor and is independent of the metal content of the feed. The products are blanded with the raw distillates and further hydrogenated to high quality petroleum products. While the primary hydrogen consumption is low, the reconstituted naphtha, distillate and gas oil fractions require less hydrogen than the coker liquids to achieve acceptable refinery feed quality. 1 figure, 9 tables.

  20. History of western oil shale

    SciTech Connect

    Russell, P.L.

    1980-01-01

    The history of oil shale in the United States since the early 1900's is detailed. Research on western oil shale probably began with the work of Robert Catlin in 1915. During the next 15 years there was considerable interest in the oil shales, and oil shale claims were located, and a few recovery plants were erected in Colorado, Nevada, Utah, Wyoming, and Montana. Little shale soil was produced, however, and the major oil companies showed little interest in producing shale oil. The early boom in shale oil saw less than 15 plants produce a total of less than 15,000 barrels of shale oil, all but about 500 barrels of which was produced by the Catlin Operation in Nevada and by the US Bureau of Mines Rulison, Colorado operation. Between 1930 and 1944 plentiful petroleum supplies at reasonable prices prevent any significant interest in shale oil, but oil shortages during World War II caused a resurgence of interest in oil shale. Between 1940 and 1969, the first large-scale mining and retorting operations in soil shale, and the first attempts at true in situ recovery of shale oil began. Only 75,000 barrels of shale oil were produced, but major advancements were made in developing mine designs and technology, and in retort design and technology. The oil embargo of 1973 together with a new offering of oil shale leases by the Government in 1974 resulted in the most concentrated efforts for shale oil production to date. These efforts and the future prospects for shale oil as an energy source in the US are discussed.

  1. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  2. Heavy oil upgrading using an integrated gasification process

    SciTech Connect

    Quintana, M.E.; Falsetti, J.S.

    1995-12-31

    The value of abundant, low-grade heavy crude oil reserves can be enhanced by appropriate upgrade processing at the production site to yield marketable refinery feedstocks or ultimate products. One of the upgrading process sequences most commonly considered involves vacuum distillation followed by a bottoms processing step such as solvent deasphalting or coking. These schemes can be further enhanced with the addition of a gasification step to convert the unsaleable, bottom-of-the-barrel residues into useful products, such as high-purity hydrogen for hydrotreating, electrical power, steam for enhanced oil recovery and distillation, etc. This paper describes the Texaco Gasification Process and the T-STARs hydrotreating process, and their application in an integrated upgrade processing scheme in which an optimal, virtually bottomless oil utilization can be achieved. Illustrative examples of this integration are provided with comparative economic information.

  3. Oil shale: Technology status report

    SciTech Connect

    Not Available

    1986-10-01

    This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

  4. Update of distillers grains displacement ratios for corn ethanol life-cycle analysis.

    SciTech Connect

    Arora, S.; Wu, M.; Wang, M.; Energy Systems

    2011-02-01

    Production of corn-based ethanol (either by wet milling or by dry milling) yields the following coproducts: distillers grains with solubles (DGS), corn gluten meal (CGM), corn gluten feed (CGF), and corn oil. Of these coproducts, all except corn oil can replace conventional animal feeds, such as corn, soybean meal, and urea. Displacement ratios of corn-ethanol coproducts including DGS, CGM, and CGF were last updated in 1998 at a workshop at Argonne National Laboratory on the basis of input from a group of experts on animal feeds, including Prof. Klopfenstein (University of Nebraska, Lincoln), Prof. Berger (University of Illinois, Urbana-Champaign), Mr. Madson (Rapheal Katzen International Associates, Inc.), and Prof. Trenkle (Iowa State University) (Wang 1999). Table 1 presents current dry milling coproduct displacement ratios being used in the GREET model. The current effort focuses on updating displacement ratios of dry milling corn-ethanol coproducts used in the animal feed industry. Because of the increased availability and use of these coproducts as animal feeds, more information is available on how these coproducts replace conventional animal feeds. To glean this information, it is also important to understand how industry selects feed. Because of the wide variety of available feeds, animal nutritionists use commercial software (such as Brill Formulation{trademark}) for feed formulation. The software recommends feed for the animal on the basis of the nutritional characteristics, availability, and price of various animal feeds, as well as on the nutritional requirements of the animal (Corn Refiners Association 2006). Therefore, feed formulation considers both the economic and the nutritional characteristics of feed products.

  5. New Design Methods and Algorithms for Energy Efficient Multicomponent Distillation Column Trains

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Methods and Algorithms for Energy Efficient Multicomponent Distillation Column Trains Enabling optimal configurations for high volume chemical separations Distillation is a ubiquitous method in the chemical and petrochemical industries to separate mixtures into their individual components and accounts for a large percentage of all separations in chemical and petrochemical plants. A large fraction of the separations are mixtures containing four or more components requiring multiple distillation

  6. New Design Methods and Algorithms for Energy Efficient Multicomponent Distillation Column Trains

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rakesh Agrawal, School of Chemical Engineering, Purdue University U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 14-15, 2016 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective Distillation: Essential to Meet Human Needs Courtesy: static.squarespace.com/ Courtesy: ths.talawanda.org Project Objective Distillation: Essential to Meet Human Needs  Multicomponent distillation: ubiquitous in

  7. DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Storage Contracts for Northeast Home Heating Oil Reserve DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve August 18, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today announced that new contracts have been awarded for commercial storage of 650,000 barrels of ultra low sulfur distillate (ULSD) for the Northeast Home Heating Oil Reserve (NEHHOR). Awards were made to two companies for storage in New England--Hess Corporation

  8. Lime addition to heavy crude oils prior to coking

    SciTech Connect

    Kessick, M. A.; George, Z. M.; Schneider, L. G.

    1985-06-04

    The sulphur emissive capability, on combustion, of coke which is formed during upgrading of sulphur-containing heavy crude oils, including oil sands bitumen, or residua is decreased by the addition of slaked lime or calcium oxide to the heavy crude oil prior to coking. The presence of the slaked lime or calcium oxide leads to an increased yield of liquid distillates at coking temperatures of about 450/sup 0/ to about 500/sup 0/ C. Ash remaining after combustion of the coke may be leached to recover nickel and vanadium values therefrom.

  9. Fractional distillation of C/sub 2//C/sub 3/ hydrocarbons at optimum pressures

    SciTech Connect

    Tedder, D.W.

    1984-08-07

    A method of recovering by distillation the separate components of a hydrocarbon gas mixture comprising ethylene, ethane, propylene and propane which comprises separating the ethylene and ethane as an overhead from a propylene and propane bottom in a first distillation tower at from about 400 to about 600 psia, separating ethylene and ethane as an ethylene overhead and an ethane bottom in a second distillation tower at from about 600 to about 700 psia, and separating propylene as an overhead from a propane bottom in a third distillation tower at from about 280 to about 300 psia is disclosed.

  10. T-534: Vulnerability in the PDF distiller of the BlackBerry Attachment...

    Energy.gov [DOE] (indexed site)

    PROBLEM: Vulnerability in the PDF distiller of the BlackBerry Attachment Service for the BlackBerry Enterprise Server. PLATFORM: * BlackBerry Enterprise Server Express version...

  11. Middle East oil and gas

    SciTech Connect

    Not Available

    1984-12-01

    The following subjects are covered in this publication: (1) position of preeminence of the Middle East; (2) history of area's oil operations for Iran, Iraq, Bahrain, Kuwait, Saudi Arabia, neutral zone, Qatar, United Arab Emirates, Oman and Egypt; (3) gas operations of Saudi Arabia, Iran, Kuwait, Qatar, Iraq and United Arab Emirates; (4) changing relationships with producing countries; (5) a new oil pricing environment; (6) refining and other industrial activities; and (7) change and progress. 10 figs., 12 tabs.

  12. Fact #578: July 6, 2009 World Oil Reserves, Production, and Consumptio...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    8: July 6, 2009 World Oil Reserves, Production, and Consumption, 2007 Fact 578: July 6, 2009 World Oil Reserves, Production, and Consumption, 2007 The United States was ...

  13. World oil trends

    SciTech Connect

    Anderson, A. )

    1991-01-01

    This book provides data on many facets of the world oil industry topics include; oil consumption; oils share of energy consumption; crude oil production; natural gas production; oil reserves; prices of oil; world refining capacity; and oil tankers.

  14. Microsoft PowerPoint - GlobalOilEcon.ppt

    Energy Information Administration (EIA) (indexed site)

    Globalization, Oil Prices and U.S. Economic Activity Stephen Brown Federal Reserve Bank of Dallas 2008 Energy Conference U.S. Energy Information Administration Globalization, Oil Price Shocks and U.S. Economic Activity Nathan Balke, Stephen Brown, Mine Yücel March 31, 2008 I. Introduction. What are the economic consequences to the United States of an increase in the oil price? Conventional thinking: oil supply shock * Higher oil price * Slower GDP growth * Increased price level Real oil price

  15. U.S. Adjusted Sales of Distillate Fuel Oil by End Use

    Energy Information Administration (EIA) (indexed site)

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  16. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Energy Information Administration (EIA) (indexed site)

    October ... 14,752.6 69,758.6 7,217.1 15,271.7 21,969.7 85,030.3 3,137.2 25,623.2 25,106.9 110,653.4 November ... 14,904.2...

  17. Stocks of Distillate Fuel Oil Greater Than 15 ppm to 500 ppm...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    7,736 8,385 8,505 8,299 1993-2016 PADD 1 5,695 5,241 5,102 5,162 5,289 5,069 1993-2016 New England 3,839 3,354 3,250 3,424 3,460 3,335 1993-2016 Central Atlantic 1,426 1,524...

  18. ,"U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End...

    Energy Information Administration (EIA) (indexed site)

    worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2013,"6301984" ,"Data...

  19. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook

    25,794.3 125,232.3 November ... 14,453.5 66,101.3 8,392.5 14,607.4 22,846.0 80,708.7 3,071.6 38,342.1 25,917.7 119,050.8 December ......

  20. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook

    I January ... 3,767.8 15,166.2 1,271.9 3,441.5 5,039.7 18,607.8 1,103.3 23,611.9 6,143.0 42,219.7 February ... 4,023.0 15,858.8...

  1. Refiner and Blender Net Production of Distillate Fuel Oil 15 ppm Sulfur and

    Gasoline and Diesel Fuel Update

    Under 4,159 4,271 4,245 4,219 4,421 4,654 2004-2016 PADD 1 331 323 347 299 363 349 2004-2016 PADD 2 1,017 1,110 1,101 1,109 1,099 1,111 2004-2016 PADD 3 2,131 2,182 2,158 2,205 2,287 2,465 2004-2016 PADD 4 211 189 186 203 209 224 2004-2016 PADD 5 469 468 454 403 462 505 2004

  2. Refiner and Blender Net Production of Distillate Fuel Oil > 15 pmm to 500

    Gasoline and Diesel Fuel Update

    ppm Sulfur 67 99 8 104 81 77 1993-2016 PADD 1 15 22 5 50 8 5 1993-2016 PADD 2 -9 -2 -4 -3 5 0 1993-2016 PADD 3 53 75 12 40 50 56 1993-2016 PADD 4 0 1 0 5 11 1 1993-2016 PADD 5 7 2 -5 13 7 15 1993

  3. Refiner and Blender Net Production of Distillate Fuel Oil > 500 ppm Sulfur

    Gasoline and Diesel Fuel Update

    Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 10/07/16 10/14/16 10/21/16 10/28/16 11/04/16 11/11/16 View History U.S. 270 229 282 338 282 253 1993-2016 PADD 1 31 28 21 44 27 19 1993-2016 PADD 2 -13 -14 -12 6 -13 7 1993-2016 PADD 3 228 197 254 260 251 210 1993-2016 PADD 4 -2 -1 0 -1 -1 -1 1993-2016 PADD 5 26 19 20 29 18 18 1993

  4. U.S. Sales of Distillate Fuel Oil by End Use

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia ...

  5. U.S. crude oil production expected to exceed oil imports later this year

    Energy Information Administration (EIA) (indexed site)

    crude oil production expected to exceed oil imports later this year U.S. crude oil production is expected to surpass U.S. crude oil imports by the fourth quarter of this year. That would mark the first time since February 1995 that domestic crude oil output exceeds imports, according to the latest monthly energy outlook from the U.S. Energy Information Administration. The United States will still need to import crude oil to help meet domestic demand. However, total crude oil imports this year

  6. Oil market outlook and drivers

    Gasoline and Diesel Fuel Update

    Oil inventories in industrialized countries to reach record high at end of 2015 The amount of year-end oil inventories held in industrialized countries is expected to be the highest on record in 2015. In its monthly forecast, the U.S. Energy Information Administration said it expects commercial oil inventories in the United States and other industrialized countries to total 2.83 billion barrels at the end of this year almost 90 million barrels more than at the end of 2014. Global oil production

  7. Comparison of advanced distillation control methods. Third annual report

    SciTech Connect

    Riggs, J.B.

    1997-07-01

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to study the issue of configuration selection for diagonal PI dual composition controls, feedforward from a feed composition analyzer, and decouplers. Auto Tune Variation (ATV) identification with on-line detuning for setpoint changes was used for tuning the diagonal proportional integral (PI) composition controls. In addition, robustness tests were conducted by inducting reboiler duty upsets. For single composition control, the (L, V) configuration was found to be best. For dual composition control, the optimum configuration changes from one column to another. Moreover, the use of analysis tools, such as RGA, appears to be of little value in identifying the optimum configuration for dual composition control. Using feedforward from a feed composition analyzer and using decouplers are shown to offer significant advantages for certain specific cases.

  8. Low capital implementation of distributed distillation in ethylene recovery

    DOEpatents

    Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung

    2006-10-31

    An apparatus for recovering ethylene from a hydrocarbon feed stream, where the apparatus is a single distillation column pressure shell encasing an upper region and a lower region. The upper region houses an ethylene distributor rectifying section and the lower region houses a C2 distributor section and an ethylene distributor stripping section. Vapor passes from the lower region into the upper region, and liquid passes from the upper region to the lower region. The process for recovering the ethylene is also disclosed. The hydrocarbon feed stream is introduced into the C2 distributor section, and after a series of stripping and refluxing steps, distinct hydrocarbon products are recovered from the C2 distributor section, the ethylene distributor stripping section, and the ethylene distributor rectifying section, respectively.

  9. UV resonance Raman characterization of polycyclic aromatic hydrocarbons in coal liquid distillates

    SciTech Connect

    Rumelfanger, R.; Asher, S.A.; Perry, M.B.

    1988-02-01

    Ultraviolet resonance Raman spectroscopy has been used to characterize the polycyclic aromatic hydrocarbon composition of a series of distillates of coal-derived liquids. The UV Raman spectra easily monitor changes in the polycyclic aromatic hydrocarbon composition as a function of distillation temperature. Specific species, such as pyrene, can be determined by judicious choice of excitation wavelength.

  10. Crude oil and shale oil

    SciTech Connect

    Mehrotra, A.K.

    1995-06-15

    This year`s review on crude oil and shale oil has been prepared by classifying the references into the following main headings: Hydrocarbon Identification and Characterization, Trace Element Determination, Physical and Thermodynamic Properties, Viscosity, and Miscellaneous Topics. In the two-year review period, the references on shale oils were considerably less in number than those dealing with crude oils. Several new analytical methodologies and applications were reported for hydrocarbon characterization and trace element determination of crude oils and shale oils. Also included in this review are nine U.S., Canadian British and European patents. 12 refs.

  11. Kinetics of heavy oil/coal coprocessing

    SciTech Connect

    Szladow, A.J.; Chan, R.K. ); Foudu, S.; Kelly, J.F. )

    1988-06-01

    A number of studies have been reported on coprocessing of coal and oil sand bitumen, petroleum residues and distillate fractions in catalytic and non-catalytic processes. The studies described the effects of feedstock characteristics, process chemistry and operating variables on the product yield and distribution; however, very few kinetic data were reported in these investigations. This paper presents the kinetic data and modelling of the CANMET coal/heavy oil coprocessing process. CANMET has been conducting research and process development work on coprocessing of Canadian heavy oil/bitumen and coal since 1979 including studies of the kinetics and mechanisms of coprocessing. As a continuation of the program, CANMET and Lobbe Technologies undertook a project on mathematical modelling of coprocessing kinetics with emphasis on the development of reaction engineering models for improved process performance and operation.

  12. The role of interruptible natural gas customers in New England heating oil markets: A preliminary examination of events in January-February 2000

    SciTech Connect

    2000-11-01

    This report provides an analysis of data collected from gas service providers and end-use customers in the six New England States and offers a preliminary assessment of the impact of interruptible gas customers on the distillate fuel oil market this past winter. Based on information collected and analyzed as of October 2000, the main findings areas follows: (1) For interruptible gas customers with distillate fuel oil as a backup fuel, their volume of interruptions was equivalent to about 1 to 2 percent of the total sales of distillate fuel oil in New England during January-February 2000. For the two peak weeks of gas supply interruptions, however, the equivalent volume of distillate fuel oil amounted to an estimated 3 to 6 percent of total sales in New England. There were no interruptions of the natural gas service during the 2-month period. (2) Purchases of distillate fuel oil by interruptible gas customers may have contributed somewhat to the spike in the price of distillate fuel oil in January-February 2000, especially during the peak weeks of gas interruptions. Nevertheless, other factors--a sudden drop in temperatures, low regional stocks of distillate fuels, and weather-related supply problems during a period of high customer demand--appear to have played a significant role in this price spike, as they have in previous spikes. (3) While this preliminary analysis suggests that interruptible natural gas service does not threaten the stability of the home heating oil market, several steps might be taken-without undermining the benefits of interruptible service--to reduce the potential adverse impacts of gas supply interruptions in times of market stress. Regardless of the magnitude of the impact of distillate fuel oil purchases by interruptible gas customers on Northeast heating oil markets, the threat of future heating oil price spikes and supply problems still remains. To help counter the threat, President Clinton in July 2000 directed Secretary Richardson to

  13. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    SciTech Connect

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  14. Residual Fuel Oil Sales to End Users Refiner Sales Volumes

    Gasoline and Diesel Fuel Update

    Product: Residual Fuel Oil Residual F.O., Sulfur < 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Period-Unit: Monthly - Thousand Gallons per Day Annual - Thousand Gallons per Day ...

  15. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Saver

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  16. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) ...

  17. Ashland oil, Inc. v. Sonford Products Corp., Kelley v. Tiscornia, and United States v. Fleet Factors Corp.: Upholding EPA`s lender liability rule

    SciTech Connect

    Evans, W.D. Jr.

    1993-12-31

    John Grisham`s novel The Firm relates the story of Mitchell McDeere, a young law school graduate who believes that he is joining a {open_quotes}white shoe{close_quotes} Memphis, Tennessee, firm but discovers that the firm is controlled by the Mob. A similar, but different, {open_quotes}surprise{close_quotes} has befallen banks as a result of toxic waste cleanup cost claims. When the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund) was passed in 1980, banks had no cause for alarm because the Act provided an exemption from its ownership-based liability for any lender holding {open_quotes}indicia of ownership primarily to protect his security interest{close_quotes} in a hazardous waste facility. Based on the statutory language, it seemed reasonably clear that Congress did not intend to impose liability on secured creditors merely for securing a debt with a deed of trust or mortgage. Unfortunately, lender liability for CERCLA claims arose in the mid-1980s out of two lower federal court decisions and the Eleventh Circuit`s controversial, to say the least, 1990 decision in United States v. Fleet Factors Corp (Fleet Factors II). The major issues currently confronting lenders under CERCLA are (1) the extent to which a secured creditor may involve itself in the debtor`s operations, especially during a loan workout program, without becoming liable for cleanup costs as a CERCLA {open_quotes}owner or operator{close_quotes} and (2) whether a lender who forecloses on collateral and takes title is liable under CERCLA. 94 refs.

  18. Venezuelan oil

    SciTech Connect

    Martinez, A.R. )

    1989-01-01

    Oil reserves have been known to exist in Venezuela since early historical records, however, it was not until the 20th century that the extensive search for new reserves began. The 1950's marked the height of oil exploration when 200 new oil fields were discovered, as well as over 60{percent} of proven reserves. Venezuela now produces one tone in seven of crude oil consumption and the country's abundant reserves such as the Bolivar Coastal field in the West of the country and the Orinoco Belt field in the East, will ensure it's continuing importance as an oil producer well into the 21st century. This book charts the historical development of Venezuela oil and provides a chronology of all the significant events which have shaped the oil industry of today. It covers all the technical, legal, economic and political factors which have contributed to the evolution of the industry and also gives information on current oil resources and production. Those events significant to the development of the industry, those which were influential in shaping future policy and those which precipitated further action are included. The book provides a source of reference to oil companies, oil economists and petroleum geologists.

  19. Tri-State Synfuels Project Review: Volume 8. Commercial status of licensed process units. [Proposed Henderson, Kentucky coal to gasoline plant; licensed commercial processes

    SciTech Connect

    Not Available

    1982-06-01

    This document demonstrates the commercial status of the process units to be used in the Tri-State Synfuels Project at Henderson, Kentucky. The basic design philosophy as established in October, 1979, was to use the commercial SASOL II/III plants as a basis. This was changed in January 1982 to a plant configuration to produce gasoline via a methanol and methanol to gasoline process. To accomplish this change the Synthol, Oil workup and Chemical Workup Units were eliminated and replaced by Methanol Synthesis and Methanol to Gasoline Units. Certain other changes to optimize the Lurgi liquids processing eliminated the Tar Distillation and Naphtha Hydrotreater Units which were replaced by the Partial Oxidation Unit. The coals to be gasified are moderately caking which necessitates the installation of stirring mechanism in the Lurgi Dry Bottom gasifier. This work is in the demonstration phase. Process licenses either have been obtained or must be obtained for a number of processes to be used in the plant. The commercial nature of these processes is discussed in detail in the tabbed sections of this document. In many cases there is a list of commercial installations at which the licensed equipment is used.

  20. Kinetic and reactor models for HDT of middle distillates

    SciTech Connect

    Cotta, R.M.; Filho, R.M.

    1996-12-31

    Hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) of middle distillates over a commercial Ni-Mo/y-Al{sub 2}O{sub 3} has been studied under wide operating conditions just as 340 to 380{degrees}C and 38 to 98 atm. A Power Law model was presented to each one of those reactions. The parameters of kinetic equations were estimated solving the ordinary differential equations by the 4 order Runge-Kutta-Gill algorithm and Marquardt method for searching of set of kinetic parameters (kinetic constants as well as the orders of reactions). An adiabatic diesel hydrotreating trickle-bed reactor packed with the same catalyst was simulated numerically in order to check up the behavior of this specific reaction system. One dimensional pseudo-homogeneous model was used in this work. For each feed, the mass and energy balance equations were integrated along the length of the catalytic bed using the 4th Runge-Kutta-Gill method. The performance of two industrial reactors was checked. 5 refs., 2 tabs.

  1. Simple rules help select best hydrocarbon distillation scheme

    SciTech Connect

    Sanchezllanes, M.T.; Perez, A.L.; Martinez, M.P.; Aguilar-Rodriguez, E.; Rosal, R. del )

    1993-12-06

    Separation economics depend mainly on investment for major equipment and energy consumption. This relationship, together with the fact that, in most cases, many alternative schemes will be proposed, make it essential to find an optimum scheme that minimizes overall costs. Practical solutions are found by applying heuristics -- exploratory problem-solving techniques that eliminate alternatives without applying rigorous mathematical procedures. These techniques have been applied to a case study. In the case study, a hydrocarbon mixture will be transported through a pipeline to a fractionation plant, where it will be separated into commercial products for distribution. The fractionation will consist of a simple train of distillation columns, the sequence of which will be defined by applying heuristic rules and determining the required thermal duties for each column. The facility must separate ethane, propane and mixed butanes, natural gasoline (light straight-run, or LSR, gasoline), and condensate (heavy naphtha). The ethane will be delivered to an ethylene plant as a gaseous stream, the propane and butanes will be stored in cryogenic tanks, and the gasoline and heavy naphtha also will be stored.

  2. Use of extractive distillation to produce concentrated nitric acid

    SciTech Connect

    Campbell, P.C.; Griffin, T.P.; Irwin, C.F.

    1981-04-01

    Concentrated nitric acid (> 95 wt %) is needed for the treatment of off-gases from a fuels-reprocessing plant. The production of concentrated nitric acid by means of extractive distillation in the two-pot apparatus was studied to determine the steady-state behavior of the system. Four parameters, EDP volume (V/sub EDP/) and temperature (T/sub EDP/), acid feed rate, and solvent recycle, were independently varied. The major response factors were percent recovery (CPRR) and product purity (CCP). Stage efficiencies also provided information about the system response. Correlations developed for the response parameters are: CPRR = 0.02(V/sub EDP/ - 800 cc) + 53.5; CCP = -0.87 (T/sub EDP/ - 140/sup 0/C) + 81; eta/sub V,EDP/ = 9.1(F/sub feed/ - 11.5 cc/min) - 0.047(V/sub EDP/ - 800 cc) - 2.8(F/sub Mg(NO/sub 3/)/sub 2// - 50 cc/min) + 390; and eta/sub L,EDP/ = 1.9(T/sub EDP/ - 140/sup 0/C) + 79. A computer simulation of the process capable of predicting steady-state conditions was developed, but it requires further work.

  3. Comparison of advanced distillation control methods. Second annual report

    SciTech Connect

    1996-11-01

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to study the issue of configuration selection for diagonal PI dual composition controls. ATV identification with on-line detuning was used for tuning the diagonal PI composition controllers. Each configuration was evaluated with respect to steady-state RGA values, sensitivity to feed composition changes, and open loop dynamic performance. Each configuration was tuned using setpoint changes over a wider range of operation for robustness and tested for feed composition upsets. Overall, configuration selection was shown to have a dominant effect upon control performance. Configuration analysis tools (e.g., RGA, condition number, disturbance sensitivity), were found to reject configuration choices that are obviously poor choices, but were unable to critically differentiate between the remaining viable choices. Configuration selection guidelines are given although it is demonstrated that the most reliable configuration selection approach is based upon testing the viable configurations using dynamic column simulators.

  4. Comparison of advanced distillation control methods. Second annual report

    SciTech Connect

    Riggs, J.B.

    1996-11-01

    Detailed dynamic simulations of two industrial distillation columns (a propylene/propane splitter and a xylene/toluene column) have been used to study the issue of configuration selection for diagonal PI dual composition controls. Auto Tune Variation (ATV) identification with on-line detuning was used for tuning the diagonal proportional integral (PI) composition controls. Each configuration was evaluated with respect to steady-state relative gain array (RGA) values, sensitivity to feed composition changes, and open loop dynamic performance. Each configuration was tuned using setpoint changes over a wider range of operation for robustness and tested for feed composition upsets. Overall, configuration selection was shown to have a dominant effect upon control performance. Configuration analysis tools (e.g., RGA, condition number, disturbance sensitivity) were found to reject configuration choices that are obviously poor choices, but were unable to critically differentiate between the remaining viable choices. Configuration selection guidelines are given although it is demonstrated that the most reliable configuration selection approach is based upon testing the viable configurations using dynamic column simulators.

  5. Distillation sequence for the purification and recovery of hydrocarbons

    DOEpatents

    Reyneke, Rian; Foral, Michael; Papadopoulos, Christos G.; Logsdon, Jeffrey S.; Eng, Wayne W. Y.; Lee, Guang-Chung; Sinclair, Ian

    2007-12-25

    This invention is an improved distillation sequence for the separation and purification of ethylene from a cracked gas. A hydrocarbon feed enters a C2 distributor column. The top of the C2 distributor column is thermally coupled to an ethylene distributor column, and the bottoms liquid of a C2 distributor column feeds a deethanizer column. The C2 distributor column utilizes a conventional reboiler. The top of the ethylene distributor is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor feeds a C2 splitter column. The ethylene distributor column utilizes a conventional reboiler. The deethanizer and C2 splitter columns are also thermally coupled and operated at a substantially lower pressure than the C2 distributor column, the ethylene distributor column, and the demethanizer column. Alternatively, a hydrocarbon feed enters a deethanizer column. The top of the deethanizer is thermally coupled to an ethylene distributor column, and the ethylene distributor column utilizes a conventional reboiler. The top of the ethylene distributor column is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor column feeds a C2 splitter column. The C2 splitter column operates at a pressure substantially lower than the ethylene distributor column, the demethanizer column, and the deethanizer column.

  6. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  7. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  8. Brushing up on oil recovery

    SciTech Connect

    Mackey, J.

    1995-12-01

    To be prepared for a range of oil spills, emergency response organizations must have an arsenal of powerful and adaptable equipment. Around the coastal United States, a network of oil spill cooperatives and emergency response organizations stand ready with the technology and the know-how to respond to the first sign of an oil spill. When the telephone rings, they may be required to mop up 200 gallons of oil that leaked off the deck of a ship or to contain and skim 2,000 gallons of oil from a broken hose at a loading terminal. In a few cases each year, they may find themselves responding to a major pollution incident, one that involves hundreds of people and tons of equipment. To clean an oil spill at a New Jersey marine terminal, the local cooperative used the Lundin Oil Recovery Inc. (LORI) skimming system to separate the oil and water and the lift the oil out of the river. The LORI skimming technology is based on sound principles of fluid management - using the natural movement of water instead of trying to fight against it. A natural feeding mechanism delivers oily water through the separation process, and a simple mechanical separation and recovery device - a brush conveyor - removes the pollutants from the water.

  9. U.S. Total No. 2 Distillate Prices by Sales Type

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History No. 2 Distillate Sales to End Users, Average 2.449 - - - - - 1983-2015 Residential 2.798 - - - - - 1978-2015 CommercialInstitutional ...

  10. New Design Methods and Algorithms for Multi-component Distillation Processes

    SciTech Connect

    2009-02-01

    This factsheet describes a research project whose main goal is to develop methods and software tools for the identification and analysis of optimal multi-component distillation configurations for reduced energy consumption in industrial processes.

  11. A heat & mass integration approach to reduce capital and operating costs of a distillation configuration

    SciTech Connect

    Madenoor Ramapriya, Gautham; Jiang, Zheyu; Tawarmalani, Mohit; Agrawal, Rakesh

    2015-11-11

    We propose a general method to consolidate distillation columns of a distillation configuration using heat and mass integration. The proposed method encompasses all heat and mass integrations known till date, and includes many more. Each heat and mass integration eliminates a distillation column, a condenser, a reboiler and the heat duty associated with a reboiler. Thus, heat and mass integration can potentially offer significant capital and operating cost benefits. In this talk, we will study the various possible heat and mass integrations in detail, and demonstrate their benefits using case studies. This work will lay out a framework to synthesize an entire new class of useful configurations based on heat and mass integration of distillation columns.

  12. Impact and future of heavy oil produciton

    SciTech Connect

    Olsen, D.K, )

    1996-01-01

    Heavy oil resources are becoming increaingly important in meeting world oil demand. Heavy oil accounts for 10% of the worlds current oil production and is anticipated to grow significantly. Recent narrowing of the price margins between light and heavy oil and the development of regional heavy oil markets (production, refining and marketing) have prompted renewed investment in heavy oil. Production of well known heavy oil resources of Canada, Venezuela, United States, and elsewhere throughout the world will be expanded on a project-by-project basis. Custom refineries designed to process these heavy crudes are being expanded. Refined products from these crudes will be cleaner than ever before because of the huge investment. However, heavy oil still remains at a competitive disadvantage due to higher production, transportation and refining have to compete with other investment opportunities available in the industry. Expansion of the U.S. heavy oil industry is no exception. Relaxation of export restrictions on Alaskan North Slope crude has prompted renewed development of California's heavy oil resources. The location, resource volume, and oil properties of the more than 80-billion barrel U.S. heavy oil resource are well known. Our recent studies summarize the constraints on production, define the anticipated impact (volume, location and time frame) of development of U.S. heavy oil resources, and examines the $7-billion investment in refining units (bottoms conversion capacity) required to accommodate increased U.S. heavy oil production. Expansion of Canadian and Venezuelan heavy oil and tar sands production are anticipated to dramatically impact the U.S. petroleum market while displacing some imported Mideast crude.

  13. Impact and future of heavy oil produciton

    SciTech Connect

    Olsen, D.K,

    1996-12-31

    Heavy oil resources are becoming increaingly important in meeting world oil demand. Heavy oil accounts for 10% of the worlds current oil production and is anticipated to grow significantly. Recent narrowing of the price margins between light and heavy oil and the development of regional heavy oil markets (production, refining and marketing) have prompted renewed investment in heavy oil. Production of well known heavy oil resources of Canada, Venezuela, United States, and elsewhere throughout the world will be expanded on a project-by-project basis. Custom refineries designed to process these heavy crudes are being expanded. Refined products from these crudes will be cleaner than ever before because of the huge investment. However, heavy oil still remains at a competitive disadvantage due to higher production, transportation and refining have to compete with other investment opportunities available in the industry. Expansion of the U.S. heavy oil industry is no exception. Relaxation of export restrictions on Alaskan North Slope crude has prompted renewed development of California`s heavy oil resources. The location, resource volume, and oil properties of the more than 80-billion barrel U.S. heavy oil resource are well known. Our recent studies summarize the constraints on production, define the anticipated impact (volume, location and time frame) of development of U.S. heavy oil resources, and examines the $7-billion investment in refining units (bottoms conversion capacity) required to accommodate increased U.S. heavy oil production. Expansion of Canadian and Venezuelan heavy oil and tar sands production are anticipated to dramatically impact the U.S. petroleum market while displacing some imported Mideast crude.

  14. Retrofitting heavy oil processes

    SciTech Connect

    Hamilton, G.L.; Fitzgerald, M.; D'Amico, V.

    1986-01-01

    Refiners, faced with the need to process the bottom end of the heavy high sulfur crude oil barrel in today's uncertain economic environment, are reluctant to commit large amounts of money to expensive upgrading processes. In order to conserve scarce capital while improving operating margins, additional valuable products can be produced by retrofits such as conversion of an idle crude unit to visbreaking, delayed coking or deasphalting service, or conversion of hydrodesulfurizers to mild hydrocracking.

  15. Do-it-yourself guideline for constructing a solar alcohol distillation system

    SciTech Connect

    Kennedy, B.W.

    1982-07-27

    The development and testing of a solar powered distillation system are described. The system consists of a parabolic dish collector, a two axis sun tracking stand, sun tracking solar cell system, condenser, fermentation tanks, and continuous distillation still. The assembly instructions for the parabolic dish are included as well as the basic steps to follow in mashing and fermenting of corn meal. 15 figures. (DMC)

  16. Quantum tomographic cryptography with Bell diagonal states: Nonequivalence of classical and quantum distillation protocols

    SciTech Connect

    Kaszlikowski, Dagomir; Lim, J.Y.; Willeboordse, Frederick H.; Oi, D.K.L.; Gopinathan, Ajay; Kwek, L.C.

    2005-01-01

    We present a generalized tomographic quantum key distribution protocol in which the two parties share a Bell diagonal mixed state of two qubits. We show that if an eavesdropper performs a coherent measurement on many quantum ancilla states simultaneously, classical methods of secure key distillation are less effective than quantum entanglement distillation protocols. We also show that certain classes of Bell diagonal states are resistant to any attempt at incoherent eavesdropping.

  17. Comparison of Advanced Distillation Control Methods, Final Technical Report

    SciTech Connect

    Dr. James B. Riggs

    2000-11-30

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selections for single-ended and dual-composition control, as well as to compare conventional and advanced control approaches. In addition, a simulator of a main fractionator was used to compare the control performance of conventional and advanced control. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that the use of dynamic simulations is required in order to identify the optimum configuration from among the nine possible choices. The optimum configurations were used to evaluate the relative control performance of conventional PI controllers, MPC (Model Predictive Control), PMBC (Process Model-Based Control), and ANN (Artificial Neural Networks) control. It was determined that MPC works best when one product is much more important than the other, while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and MPC. MPC was found to outperform conventional PI control for the main fractionator. MPC was applied to three industrial columns: one at Phillips Petroleum and two at Union Carbide. In each case, MPC was found to significantly outperform PI controls. The major advantage of the MPC controller is its ability to effectively handle a complex set of constraints and control objectives.

  18. PILOT-SCALE REMOVAL OF FLUORIDE FROM LEGACY PLUTONIUM MATERIALS USING VACUUM SALT DISTILLATION

    SciTech Connect

    Pierce, R. A.; Pak, D. J.

    2012-09-11

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. In 2011, SRNL adapted the technology for the removal of fluoride from fluoride-bearing salts. The method involved an in situ reaction between potassium hydroxide (KOH) and the fluoride salt to yield potassium fluoride (KF) and the corresponding oxide. The KF and excess KOH can be distilled below 1000{deg}C using vacuum salt distillation (VSD). The apparatus for vacuum distillation contains a zone heated by a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attaned, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile material in the feed boat. Studies discussed in this report were performed involving the use of non-radioactive simulants in small-scale and pilot-scale systems as well as radioactive testing of a small-scale system with plutonium-bearing materials. Aspects of interest include removable liner design considerations, boat materials, in-line moisture absorption, and salt deposition.

  19. Oil and gas resources remaining in the Permian Basin

    SciTech Connect

    Not Available

    1989-01-01

    In this book the authors present a reevaluation of the oil and gas resource base remaining in existing Permian Basin reservoirs. The Permian Basin is one of the nation's premier sources of oil production, accounting for almost one quarter of the total domestic oil resource. The distribution and magnitude of oil and gas resources discovered in the basin are documented at the play and reservoir levels. Data on reservoir geology and volumetric analysis come from the oil and gas atlases published by the Bureau of Economic Geology, the Bureau's oil-reservoir data base, and NRG Associates Significant Oil and Gas Fields of the United States.

  20. Kinetics of heavy oil/coal coprocessing

    SciTech Connect

    Szladow, A.J.; Chan, R.K.; Fouda, S.; Kelly, J.F. )

    1988-01-01

    A number of studies have been reported on coprocessing of coal and oil sand bitumen, petroleum residues and distillate fractions in catalytic and non-catalytic processes. The studies described the effects of feedstock characteristics, process chemistry and operating variables on the product yield and distribution; however, very few kinetic data were reported in these investigations. This paper presents the kinetic data and modeling of the CANMET coal/heavy oil coprocessing process. A number of reaction networks were evaluated for CANMET coprocessing. The final choice of model was a parallel model with some sequential characteristics. The model explained 90.0 percent of the total variance, which was considered satisfactory in view of the difficulties of modeling preasphaltenes. The models which were evaluated showed that the kinetic approach successfully applied to coal liquefaction and heavy oil upgrading can be also applied to coprocessing. The coal conversion networks and heavy oil upgrading networks are interrelated via the forward reaction paths of preasphaltenes, asphaltenes, and THFI and via the reverse kinetic paths of an adduct formation between preasphaltenes and heavy oil.

  1. United States

    Office of Legacy Management (LM)

    ... Oil Company, Tonawanda, New York Bay0 Canyon Area, Los Alamos, New Mexico Chupadera Mesa Area, White Sands ... acid, (2) solvent extraction of uranium, (3) ...

  2. TRW utility demonstration unit

    SciTech Connect

    Not Available

    1990-01-01

    The TRW Advanced Entrained Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/oil unit to fire 2.5% sulfur coal. The slagging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Environmental Standards. During this report period, activity continued to address the total program funding shortfall. Ideas and responsibilities for further evaluation have been put forward to reduce the shortfall. In addition, an effort aimed at gaining additional program sponsorships, was initiated.

  3. S. 341: A bill to reduce the Nation's dependence on imported oil, to provide for the energy security of the Nation and for other purposes, introduced in the United States Senate, One Hundred Second Congress, First Session, February 5, 1991

    SciTech Connect

    Not Available

    1991-01-01

    This bill would reduce the nation's dependence on imported oil to provide for the energy security of the nation. The purposes are to significantly reduce the nation's oil dependency; encourage more efficient use of energy; encourage development and deployment of renewable energy sources; streamline the hydroelectric licensing process; enhance the role of coal and clean coal technologies; establish priorities for Federal energy research, development, demonstration, and commercialization; encourage development of domestic energy resources on the Outer Continental Shelf; provide for oil and gas exploration, production, and development in the Arctic National Wildlife Refuge in Alaska; encourage increased utilization of natural gas and other domestic energy resources to displace imported oil; reduce the consumption of oil in the transportation sector and encourage use of alternative energy sources for transportation; and encourage production and use of nuclear power by providing for the commercialization of advanced nuclear reactor technologies.

  4. Formation of coke from heavy crude oils in the presence of calcium carbonate

    SciTech Connect

    Kessick, M. A.; George, Z. M.; Schneider, L. G.

    1985-06-04

    The sulphur emissive capability, on combustion, of coke which is formed during upgrading of sulphur-containing heavy crude oils, including oil sands bitumen, and residua, is decreased by the addition of calcium carbonate, preferably in the form of limestone, to the heavy crude oil prior to coking. The presence of the limestone leads to an increased yield of liquid distillates from the coking process under preferred coking conditions. Ash remaining after combustion of the coke may be leached to recover nickel and vanadium values therefrom.

  5. SPR - Historical Oil Sales and Exchanges | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - Historical Oil Sales and Exchanges SPR - Historical Oil Sales and Exchanges Historical SPR Oil Sales and Exchanges (97.97 KB) More Documents & Publications Long-Term Strategic Review (LTSR) of the U.S. Strategic Petroleum Reserve (SPR) Report to Congress United States Fuel Resiliency: US Fuels Supply Infrastructure Better Buildings: Workforce, Spotlight on Maine: Contractor Sales Training Boosts Energy Upgrade Conversions

  6. RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS

    SciTech Connect

    Anthony R. Kovscek; William E. Brigham

    1999-06-01

    The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

  7. The cough response to ultrasonically nebulized distilled water in heart-lung transplantation patients

    SciTech Connect

    Higenbottam, T.; Jackson, M.; Woolman, P.; Lowry, R.; Wallwork, J.

    1989-07-01

    As a result of clinical heart-lung transplantation, the lungs are denervated below the level of the tracheal anastomosis. It has been questioned whether afferent vagal reinnervation occurs after surgery. Here we report the cough frequency, during inhalation of ultrasonically nebulized distilled water, of 15 heart-lung transplant patients studied 6 wk to 36 months after surgery. They were compared with 15 normal subjects of a similar age and sex. The distribution of the aerosol was studied in five normal subjects using /sup 99m/technetium diethylene triamine pentaacetate (/sup 99m/Tc-DTPA) in saline. In seven patients, the sensitivity of the laryngeal mucosa to instilled distilled water (0.2 ml) was tested at the time of fiberoptic bronchoscopy by recording the cough response. Ten percent of the aerosol was deposited onto the larynx and trachea, 56% on the central airways, and 34% in the periphery of the lung. The cough response to the aerosol was strikingly diminished in the patients compared with normal subjects (p less than 0.001), but all seven patients coughed when distilled water was instilled onto the larynx. As expected, the laryngeal mucosa of heart-lung transplant patients remains sensitive to distilled water. However, the diminished coughing when the distilled water is distributed by aerosol to the central airways supports the view that vagal afferent nerves do not reinnervate the lungs after heart-lung transplantation, up to 36 months after surgery.

  8. Experimental investigation on hydrogen cryogenic distillation equipped with package made by ICIT

    SciTech Connect

    Bornea, A.; Zamfirache, M.; Stefan, L.; Stefanescu, I.; Preda, A.

    2015-03-15

    ICIT (Institute for Cryogenics and Isotopic Technologies) has used its experience in cryogenic water distillation process to propose a similar process for hydrogen distillation that can be used in detritiation technologies. This process relies on the same packages but a stainless filling is tested instead of the phosphorous bronze filling used for water distillation. This paper presents two types of packages developed for hydrogen distillation, both have a stainless filling but it differs in terms of density, exchange surface and specific volume. Performance data have been obtained on laboratory scale. In order to determine the characteristics of the package, the installation was operated in the total reflux mode, for different flow rate for the liquid. There were made several experiments considering different operating conditions. Samples extracted at the top and bottom of cryogenic distillation column allowed mathematical processing to determine the separation performance. The experiments show a better efficiency for the package whose exchange surface was higher and there were no relevant differences between both packages as the operating pressure of the cryogenic column was increasing. For a complete characterization of the packages, future experiments will be considered to determine performance at various velocities in the column and their correlation with the pressure in the column. We plan further experiments to separate tritium from the mixture of isotopes DT, having in view that our goal is to apply this results to a detritiation plant.

  9. Investigation and development of alternative methods for shale oil processing and analysis. Final technical report, October 1979--April 1983

    SciTech Connect

    Evans, R.A.

    1998-06-01

    Oil shale, a carbonaceous rock which occurs abundantly in the earth`s crust, has been investigated for many years as an alternate source of fuel oil. The insoluble organic matter contained in such shales is termed {open_quotes}Kerogen{close_quotes} from the Greek meaning oil or oil forming. The kerogen in oil shale breaks down into oil-like products when subjected to conditions simulating destructive distillation. These products have been the subject of extensive investigations by several researchers and many of the constituents of shale oil have been identified. (1) Forsman (2) estimates that the kerogen content of the earth is roughly 3 {times} 10{sup 15} tons as compared to total coal reserves of about 5 {times} 10{sup 12}. Although the current cost per barrel estimate for commercial production of shale oil is higher than that of fossil oil, as our oil reserves continue to dwindle, shale oil technology will become more and more important. When oil shale is heated, kerogen is said to undergo chemical transformation to usable oil in two steps (3): Kerogen (in oil shale) 300-500{degrees}C bitumen. Crude shale oil and other products. The crude shale oil so obtained differs from fossil oil in that: (1) kerogen is thought to have been produced from the aging of plant matter over many years; (2) shale oil has a higher nitrogen content than fossil oil; (3) non-hydrocarbons are present to a much greater extent in shale oil; and (4) the hydrocarbons in shale oil are much more unsaturated than those in fossil oil (petroleum).

  10. Top 100 Oil and Gas Fields of 2009

    Energy Information Administration (EIA) (indexed site)

    Top 100 Oil and Gas Fields of 2009 Introduction This supplement to the Energy Information Administration's summary of U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves, 2009 ranks the United States' largest oil and gas fields by their estimated 2009 proved reserves. The Top 100's Share of U.S. Proved Reserves in 2009 The Top 100 oil fields and Top 100 gas fields each accounted for about 60 percent of the respective total proved reserves of the United States. The Top 100 oil

  11. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  12. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  13. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  14. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  15. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  16. Oil shale technology. Final report

    SciTech Connect

    NONE

    1995-03-01

    This collaborative project with industrial participants studied oil shale retorting through an integrated program of fundamental research, mathematical model development and operation of a 4-tonne-per-day solid recirculation oil shale test unit. Quarterly, project personnel presented progress and findings to a Project Guidance Committee consisting of company representatives and DOE program management. We successfully operated the test unit, developed the oil shale process (OSP) mathematical model, evaluated technical plans for process scale up and determined economics for a successful small scale commercial deployment, producing premium motor fuel, specility chemicals along with electricity co-production. In budget negotiations, DOE funding for this three year CRADA was terminated, 17 months prematurely, as of October 1993. Funds to restore the project and continue the partnership have not been secured.

  17. Low-temperature distillation plants: a comparison with seawater reverse osmosis

    SciTech Connect

    Hoffman, D.

    1981-07-01

    Low-temperature distillation plants using large aluminum-alloy heat-transfer surfaces have reduced energy requirements to levels projected today for second-generation seawater reverse-osmosis (SWRO) plants. Less sensitive to feed contamination, and totally free from maintenance associated with a complex and critical feed-pretreatment system and periodic membrane replacements, the low-temperature distillation plants out-perform SWRO plants also by their higher-quality product, 2-10 ppM TDS versus 300 to 1000 ppM TDS. Energy requirements and operating costs for Low Temperature Vapor Compression (LT-VC) and Multi-Effect-Distillation (LT-MED) plants, in dual-purpose and various waste-heat-utilization schemes, are compared with those of SWRO plants. 10 references, 14 figures, 8 tables.

  18. Global optimization of multicomponent distillation configurations: 2. Enumeration based global minimization algorithm

    DOE PAGES [OSTI]

    Nallasivam, Ulaganathan; Shah, Vishesh H.; Shenvi, Anirudh A.; Huff, Joshua; Tawarmalani, Mohit; Agrawal, Rakesh

    2016-02-10

    We present a general Global Minimization Algorithm (GMA) to identify basic or thermally coupled distillation configurations that require the least vapor duty under minimum reflux conditions for separating any ideal or near-ideal multicomponent mixture into a desired number of product streams. In this algorithm, global optimality is guaranteed by modeling the system using Underwood equations and reformulating the resulting constraints to bilinear inequalities. The speed of convergence to the globally optimal solution is increased by using appropriate feasibility and optimality based variable-range reduction techniques and by developing valid inequalities. As a result, the GMA can be coupled with already developedmore » techniques that enumerate basic and thermally coupled distillation configurations, to provide for the first time, a global optimization based rank-list of distillation configurations.« less

  19. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    SciTech Connect

    Reed, S.A.

    1981-02-01

    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode.

  20. Emulsified industrial oils recycling

    SciTech Connect

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  1. Systems and methods for reactive distillation with recirculation of light components

    DOEpatents

    Stickney, Michael J. (Nassau Bay, TX); Jones, Jr., Edward M. (Friendswood, TX)

    2011-07-26

    Systems and methods for producing gas-to-liquids products using reactive distillation are provided. The method for producing gas-to-liquids products can include reacting a feedstock in a column having a distillation zone and a reaction zone to provide a bottoms stream and an overhead stream. A first portion of the overhead stream can be recycled to the column at the top of the reaction zone and second portion of the overhead stream can be recycled to the column at the bottom of the reaction zone.

  2. High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale

    SciTech Connect

    Forsberg, Charles W.

    2006-07-01

    The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

  3. Figure 8. Technically Recoverable and Commercially Developable Oil

    Energy Information Administration (EIA) (indexed site)

    8. Technically Recoverable and Commercially Developable Oil at 95 Percent, Mean, and 5 Percent Probabilities for Given Oil Prices as a Percentage of Technically Recoverable Oil for the ANWR 1002 Area of the Alaska North Slope fig8.jpg (38547 bytes) Source: United States Geological Survey, "Economics of Undiscovered Oil in the 1002 Area of the Arctic National Wildlife Refuge," 1998

  4. Upgrading of Biomass Fast Pyrolysis Oil (Bio-oil) Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Upgrading of Biomass Fast Pyrolysis Oil (Bio-oil) March 22, 2015 Bio-Oil Technology Area Review Principal Investigator : Zia Abdullah Organization: Battelle Memorial Institute 1 Goal Statement * 1,000 hrs. TOS * H/C product 30% blendable with ASTM petroleum fuels * Compatibility with petroleum refining unit operations * Fast Pyrolysis * In-situ catalytic fast pyrolysis * Ex-situ catalytic fast pyrolysis * Hydropyrolysis * Hydrothermal liquefaction * Solvent liquefaction Addresses all FOA-

  5. Shale oil value enhancement research. Quarterly report, July 1, 1994--September 30, 1994

    SciTech Connect

    1997-05-01

    Activities during this quarter focused on using the phase-I results to define process sequence alternatives for phase-II. Two process alternatives have been devised while obtaining the desired marketable product slate. The status of required process units has been evaluated. While there are some units that need to be designed and fabricated, the upstream process units are in place to proceed with the process plan. Separations have been completed and analyzed on three of the four shale oil fractions. The extraction work on the heaviest fraction has run into difficulties due to equipment design limitations. Modifications are in progress to rectify this problem and to complete the planned work. The separations and analytical work on the middle distillate fraction (275-400 C) have been completed. The solvent system has performed as expected and will be used in the pilot system in phase-II. The work on conversions task has steered in the direction of using thermal hydrodealkylation (THD) process to dealkylate polar fractions. The THD process is expected to yield low molecular weight polar compounds/concentrates that are suitable for market needs. The design and fabrication will be initiated in the next quarter. The analytical procedures and characterization task is in the final stages of refinement to complete the software as expected. The Z-BASIC software, eventually, will be used to monitor separations by tracking compound types or z-types. Present modifications are expected to provide z-type distributions. The decision-making routines need further refinement. The progress of the development work slowed a little during this quarter due to work load demand from other projects. However, serious efforts will be made to meet the original project schedule.

  6. Maximize revenue by analyzing crude oil treating parameters

    SciTech Connect

    Pellegrino, V.L.; Crane, T.L.; Heiman, M.S.; Pantermuhl, L.

    1983-10-01

    In the past the Chemshare Design 2000 program has been utilized to model gas processing plant streams. This paper describes how the Chemshare Design 2000 program may be used to maximize lease revenues by modeling a crude oil treating system and presents a technique of recombining an ASTM Distillation and a gas sample to arrive at the original composition of the inlet oil stream for use with the Chemshare Program. Next the treating facility operations are evaluated in order to maximize revenues which depending on the crude could mean an increase or decrease in the treating temperatures and pressures. For a lease producing 21,000 BOPD the losses can easily surpass $2 MM per year due to oil shrinkage and gravity differential.

  7. Maximize revenue by analyzing crude oil treating parameters

    SciTech Connect

    Heiman, M.S.; Pellegrino, V.L.; Pantermuehl, L.A.; Crane, T.L.

    1983-01-01

    In the past, the Chemshare Design 2000 program has been utilized to model gas processing plant streams. This study describes how the Chemshare Design 2000 program may be used to maximize lease revenues by modeling a crude oil treating system and presents a technique of recombining an ASTM distillation and a gas sample to arrive at the original composition of the inlet oil stream for use with the Chemshare Program. Next the treating facility operations are evaluated in order to maximize revenues which, depending on the crude, could mean an increase or decrease in the treating temperatures and pressures. For a lease producing 21,000 bopd the losses can easily surpass $2.0 MM/yr due to oil shrinkage and gravity differential.

  8. Oil products distribution in Iran: a planning approach

    SciTech Connect

    Abrishami, H.

    1986-01-01

    The significance of this study is that it examines the functions of the most important element in the public sector of the economy of Iran - the Ministry of Oil. Oil is the main source of Iran's foreign earnings and the commodity most crucial to the country's economy as its prime export. Furthermore, it plays a vital role in meeting domestic energy demands. The distribution of oil products affects, on the one hand, households, small businesses, and larger industries while, on the other, it affects the allocation, in general of other national resources. Accordingly, the effects of the Ministry of Oil's policies with regard to its production-distribution system cannot be overemphasized. The research entailed has elicited certain factors: The Ministry of Oil's present system suffers from a number of weaknesses in its production-distribution design. These deficiencies involved, among others, terminal location, number of terminals, assignment of terminals to customers, substitution of other major sources of energy for major oil products, the middle distillates problem, and an outmoded distribution method and techniques. This dissertation addresses alternatives that will eliminate faults in the present system. The approach and conclusions of this research have the potential of application to any type of industry in Iran - oil or otherwise, whether in the private or public sector - that has a similar intricate distribution-system design subject to similar variables.

  9. Commercialization of oil shale with the Petrosix process

    SciTech Connect

    Batista, A.R.D.; Ivo, S.C.; Piper, E.M.

    1985-02-01

    Brazil, because of domestic crude oil shortage, took an interest in oil shale between 1940 and 1950. Petrobras, created in 1954, included in its charter the responsibility to develop a modern oil shale industry. An outgrowth has been the Petrosix process incorporated in a commercial unit in the State of Parana that has operated successfully more than 65,000 hours. Because of the maturity of the Petrosix process in this plant and the similarity of the Brazilian Irati oil shale to many other shales, interest has developed to apply the Petrosix process to producing shale oil and high BTU gas from these oil shales. A comparison of the characteristics has been developed between Irati and other oil shales. An evaluation of a commercial plant design has been completed for Irati, Kentucky, and Indiana oil shale projects. The technological and commercial aspects of producing shale oil using the Petrosix technology are discussed.

  10. Comparison between continuous stirred tank reactor extractor and soxhlet extractor for extraction of El-Lajjun oil shale

    SciTech Connect

    Anabtawi, M.Z.

    1996-02-01

    Extraction on El-Lajjun oil shale in a continuous stirred tank reactor extractor (CSTRE) and a Soxhlet extractor was carried out using toluene and chloroform as solvents. Solvents were recovered using two distillation stages, a simple distillation followed by a fractional distillation. Gas chromotography was used to test for the existence of trapped solvent in the yield. It was found that extraction using a CSTRE gave a 12% increase in yield on average compared with the Soxhlet extractor, and an optimum shale size of 1.0mm offered a better yield and solvent recovery for both techniques. It was also found that an optimum ratio of solvent to oil shale of 2:1 gave the best oil yield. The Soxhlet extractor was found to offer an extraction rate of 1 hour to complete extraction compared with 4 hours in a CSTRE. The yield in a CSTRE was found to increase on increase of stirring. When extraction was carried out at the boiling point of the solvents in a CSTRE, the yield was found to increase by 30% on average compared to that of extraction when the solvent was at room temperature. When toluene was used for extraction, the average amount of bitumen extracted was 0.032 g/g of oil shale and 76.4% of the solvent recovered, compared with 0.037 g/g of oil shale and 84.1% of the solvent recovered using a Soxhlet extractor.

  11. Corrosion and protection of mild steel in petroleum distillates electrolyte mixtures

    SciTech Connect

    Groysman, A.; Erdman, N.

    1999-11-01

    The purpose of this study is to examine the influence of water and salts present on the corrosion process in petroleum distillate electrolyte mixtures and evaluation of inorganic inhibitors efficiency for protection of mild steel in these mixtures. Most of the research in this area until now was done with hydrocarbon water mixtures with relatively high concentrations of water (above 5 % volume). This study was conducted using mixtures of light petroleum distillates (naphtha and gasoline) and water with water concentrations in the mixture below 5% volume. The study confirmed the electrochemical origin of the corrosion mechanism and showed that the main cause of the corrosion in the petroleum distillate water mixtures is the presence of water and dissolved oxygen. Critical added water concentrations were evaluated for naphtha-water and gasoline-water mixtures. The most efficient concentrations of inorganic inhibitors were determined and the inhibition mechanism was confirmed. Valuable data regarding different types of corrosion attack (pitting or uniform corrosion) on mild steel in petroleum distillate electrolyte mixtures was acquired during the study.

  12. Hybrid Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction

    SciTech Connect

    Eldridge, R. Bruce; Seibert, A. Frank; Robinson, Sharon; Rogers, Jo

    2005-04-01

    This report focuses on improving the existing separations systems for the two largest energy-consuming sectors: the chemicals and petroleum refining industries. It identifies the technical challenges and research needs for improving the efficiency of distillation systems. Areas of growth are also highlighted.

  13. Table A13. Selected Combustible Inputs of Energy for Heat...

    Energy Information Administration (EIA) (indexed site)

    Use, 1994: Part 1" " (Estimates in Btu or Physical Units)" ,,,,,,"Coal" ,,,"Distillate",,,"(excluding" ,"Net Demand",,"Fuel Oil",,,"Coal Coke" ,"for","Residual","and","Natural ...

  14. Oil & Natural Gas Technology

    Office of Scientific and Technical Information (OSTI)

    Oil & Natural Gas Technology DOE A ward N o.: D E---FE0001243 Topical R eport DEVELOPMENT OF CFD-BASED SIMULATION TOOLS FOR IN SITU THERMAL PROCESSING OF OIL SHALE/SANDS Submitted b y: University of Utah Institute f or C lean a nd S ecure E nergy 155 S outh 1 452 E ast, R oom 3 80 Salt L ake C ity, U tah 8 4112 Prepared for: United S tates D epartment o f E nergy National E nergy T echnology L aboratory February 2012 Office of Fossil Energy TOPICAL REPORT: DEVELOPMENT OF CFD-BASED

  15. Analysis of heavy oils: Method development and application to Cerro Negro heavy petroleum

    SciTech Connect

    Carbognani, L.; Hazos, M.; Sanchez, V. ); Green, J.A.; Green, J.B.; Grigsby, R.D.; Pearson, C.D.; Reynolds, J.W.; Shay, J.Y.; Sturm, G.P. Jr.; Thomson, J.S.; Vogh, J.W.; Vrana, R.P.; Yu, S.K.T.; Diehl, B.H.; Grizzle, P.L.; Hirsch, D.E; Hornung, K.W.; Tang, S.Y.

    1989-12-01

    On March 6, 1980, the US Department of Energy (DOE) and the Ministry of Energy and Mines of Venezuela (MEMV) entered into a joint agreement which included analysis of heavy crude oils from the Venezuelan Orinoco oil belt.The purpose of this report is to present compositional data and describe new analytical methods obtained from work on the Cerro Negro Orinoco belt crude oil since 1980. Most of the chapters focus on the methods rather than the resulting data on Cerro Negro oil, and results from other oils obtained during the verification of the method are included. In addition, published work on analysis of heavy oils, tar sand bitumens, and like materials is reviewed, and the overall state of the art in analytical methodology for heavy fossil liquids is assessed. The various phases of the work included: distillation and determination of routine'' physical/chemical properties (Chapter 1); preliminary separation of >200{degree}C distillates and the residue into acid, base, neutral, saturated hydrocarbon and neutral-aromatic concentrates (Chapter 2); further separation of acid, base, and neutral concentrates into subtypes (Chapters 3-5); and determination of the distribution of metal-containing compounds in all fractions (Chapter 6).

  16. FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds Breakout Session 2: Frontiers and Horizons ...

  17. DOE to Issue Second Solicitation for Purchase of Crude Oil for...

    Energy.gov [DOE] (indexed site)

    (DOE) today announced that it has issued the second of several solicitations planned to purchase up to four million barrels of crude oil for the United States' crude oil reserve. ...

  18. U.S. net oil and petroleum product imports expected to fall to...

    Gasoline and Diesel Fuel Update

    of demand in 2014 With rising domestic crude oil production, the United States will rely less on imports of crude oil and petroleum products to meet domestic demand next year. ...

  19. Chemistry of hydrotreating heavy crudes: II. Detailed analysis of polar compounds in Wilmington 650-1000 degree F distillate and hydrotreated products

    SciTech Connect

    Sturm, G.P. Jr.; Green, J.B.; Tang, S.Y.; Reynolds, J.W.; Yu, S.K.T. )

    1987-04-01

    Notwithstanding the current oversupply of crude oil, the future importance of heavy crude as a primary energy resource is widely recognized. In addition, with the market for resid declining, refiners are facing an increasing challenge to convert more of the bottom of the barrel to transportation fuels. The problems that have been predicted for refinery products made from heavier feedstocks are now beginning to surface. State-of-the-art upgrading procedures have proven to be inadequate for removal of many of the chemical compound types that cause problems in the processing sequence or adversely affect the quality of the end products. These problems include instability or incompatibility of process streams or products, corrosiveness and catalyst poisoning. Before new approaches can be intelligently developed to remove the problem components, it is necessary to know what compound types are causing the observed problems. This study is focused on determination of polar compounds in the feedstock and products from hydrotreating a distillate of a representative heavy crude, Wilmington. The ultimate objective is to acquire an understanding of the compound types and reaction mechanisms contributing to instability, incompatibility, corrosiveness, catalyst poisoning and other problems exhibited by some crude oil feedstocks, intermediate process streams and final products resulting from the processing of lower quality fossil fuel feedstocks.

  20. Case Studies of the ROZ CO2 Flood and the Combined ROZ/MPZ CO2 Flood at the Goldsmith Landreth Unit, Ector County, Texas. Using ''Next Generation'' CO2 EOR Technologies to Optimize the Residual Oil Zone CO2 Flood

    SciTech Connect

    Trentham, Robert C.; Melzer, L. Stephen; Kuuskraa, Vello; Koperna, George

    2015-06-30

    preferred mode of producing the two intervals. Finally, the project attempted to document for the first time the production performance of commingled MPZ and ROZ CO2 EOR project at the nearby Seminole San Andres Unit. The analysis shows that over 10,000 bopd can be shown to be coming from the ROZ interval, a zone that would have produced no oil under primary or water flood phases. A similar analysis was done for the GLSAU project illustrating that 2000 bopd of incremental EOR oil is currently being produced. The results of the modeling work would suggest that 800 bopd can be attributed to the ROZ alone at GLSAU.

  1. APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE

    SciTech Connect

    Pierce, R.; Pak, D.

    2011-08-10

    Vacuum distillation of chloride salts from plutonium oxide (PuO{sub 2}) and simulant PuO{sub 2} has been previously demonstrated at Department of Energy (DOE) sites using kilogram quantities of chloride salt. The apparatus for vacuum distillation contains a zone heated using a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attained, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile materials in the feed boat. The application of vacuum salt distillation (VSD) is of interest to the HB-Line Facility and the MOX Fuel Fabrication Facility (MFFF) at the Savannah River Site (SRS). Both facilities are involved in efforts to disposition excess fissile materials. Many of these materials contain chloride and fluoride salt concentrations which make them unsuitable for dissolution without prior removal of the chloride and fluoride salts. Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. Subsequent efforts are attempting to adapt the technology for the removal of fluoride. Fluoride salts of interest are less-volatile than the corresponding chloride salts. Consequently, an alternate approach is required for the removal of fluoride without significantly increasing the operating temperature. HB-Line Engineering requested SRNL to evaluate and demonstrate the feasibility of an alternate approach using both non-radioactive simulants and plutonium-bearing materials. Whereas the earlier developments targeted the removal of sodium chloride (NaCl) and potassium chloride (KCl), the current

  2. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    Energy Information Administration (EIA) (indexed site)

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  3. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    Energy Information Administration (EIA) (indexed site)

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  4. Development of the Write Process for Pipeline-Ready Heavy Oil

    SciTech Connect

    Lee Brecher; Charles Mones; Frank Guffey

    2009-03-07

    Work completed under this program advances the goal of demonstrating Western Research Institute's (WRI's) WRITE{trademark} process for upgrading heavy oil at field scale. MEG Energy Corporation (MEG) located in Calgary, Alberta, Canada supported efforts at WRI to develop the WRITE{trademark} process as an oil sands, field-upgrading technology through this Task 51 Jointly Sponsored Research project. The project consisted of 6 tasks: (1) optimization of the distillate recovery unit (DRU), (2) demonstration and design of a continuous coker, (3) conceptual design and cost estimate for a commercial facility, (4) design of a WRITE{trademark} pilot plant, (5) hydrotreating studies, and (6) establish a petroleum analysis laboratory. WRITE{trademark} is a heavy oil and bitumen upgrading process that produces residuum-free, pipeline ready oil from heavy material with undiluted density and viscosity that exceed prevailing pipeline specifications. WRITE{trademark} uses two processing stages to achieve low and high temperature conversion of heavy oil or bitumen. The first stage DRU operates at mild thermal cracking conditions, yielding a light overhead product and a heavy residuum or bottoms material. These bottoms flow to the second stage continuous coker that operates at severe pyrolysis conditions, yielding light pyrolyzate and coke. The combined pyrolyzate and mildly cracked overhead streams form WRITE{trademark}'s synthetic crude oil (SCO) production. The main objectives of this project were to (1) complete testing and analysis at bench scale with the DRU and continuous coker reactors and provide results to MEG for process evaluation and scale-up determinations and (2) complete a technical and economic assessment of WRITE{trademark} technology to determine its viability. The DRU test program was completed and a processing envelope developed. These results were used for process assessment and for scaleup. Tests in the continuous coker were intended to determine the

  5. Residuum and heavy oil upgrading with the CANMET hydrocracking process

    SciTech Connect

    Patmore, D.J.; Khulbe, C.P.; Belinko, K.

    1981-03-01

    The advantages of the CANMET hydrocracking process are: Feed Flexibility - high levels of the main feed contaminants, sulfur, nitrogen and metals do not have a deleterious effect on the process. Hence, a wide range of feedstocks can be upgraded by this process including residuum from conventional crudes; Operability - extended runs indicate that the process will operate continuously with little sensitivity to operational problems even with difficult feedstocks such as Cold Lake and Boscan heavy oil. During extended operation nearly constant pitch conversion and product yields and qualities are obtained; High Distillate Yields - the CANMET Process can produce over 100 vol % distillate, compared to 83 vol % for coking process; Flexibility of Operation - the amount of pitch converted can easily be controlled by adjusting reactor temperature and liquid feed rate. Thus, the required product slate can be obtained by simply changing the operating conditions; Thermal Stability - because the process does not employ an active catalyst, the potential for thermal run-away and development of hot spots is considerably reduced; High Pitch Conversion - the CANMET additive permits sustained controlled and repeatable operation at pitch conversions higher than 90 wt % on a wide range of feedstocks; Reduced Operating Pressure - the action of the additive as a processing aid allows substantial reduction in operating pressure below that for competitive commercial technology; and Efficient Hydrogen Utilization - Since CANMET does not employ an active desulfurizing catalyst, overall hydrogen consumption for a given conversion is low. Almost all of the hydrogen goes to distillate product.

  6. S. 2506: A Bill to provide for liability for transfers of oil between a vessel and a facility. Introduced in the Senate of the United States, One Hundredth First Congress, Second Session, April 24, 1990

    SciTech Connect

    Not Available

    1990-01-01

    The bill would provide for liability for transfers of oil between a vessel and a facility. The bill would hold the responsible party for the vessel and for the onshore facility liable for the removal costs and damages for any discharge or substantial threat of discharge of oil upon navigable waters or the adjoining shorelines. The damage refers to damage to natural resources, real or personal property, loss of subsistence use of natural resources, loss of revenues due to damage to real or personal property, and losses of profits or earning capacity. There would be no liability to the responsible parties if it is established that the incident resulted from an act of God, act of war, or act of persons other than the responsible party, an employee or agent of the responsible party, or a person in contractual relationship with the responsible party.

  7. Hydrofining of Athabasca derived heavy gas oil over Ni-W and Co-Mo catalysts

    SciTech Connect

    Mann, R.S.; Diaz-real, R.

    1987-01-01

    The hydrotreatment of heavy gas oil derived from Athabasca bitumen was studied in a trickle bed reactor over Ni-W and Co-Mo zeolite catalyst at 350-425/sup 0/C, 3.55 to 10.44 MPa, and LHSV of 1-4. The effects of temperature and liquid flow rates on the product were investigated. ASTM distillation, aniline point, viscosities and densities of the product oil were measured and correlated with various parameters. Activity of the catalysts for hydrodenitrogenation is compared.

  8. CONVERT 15 WELLS TO BORS PUMPING UNITS AND TEST/COMPARE TO CONVENTIONAL UNITS

    SciTech Connect

    Walter B. North

    2003-02-04

    A new type of fluid lifting equipment called Balanced Oil Recovery System (trade named BORS Lift{trademark}) was installed on several idle oil wells to demonstrate the operating efficiency of this innovative equipment technology. The BORS Lift system is designed to bring oil to the surface without the accompanying formation water. The BORS Lift system uses an innovative strap mechanism that takes oil from the top of the downhole oilwater column and lifts it to the surface, eliminating production of the formation water. Eliminating salt water production could potentially increase oil production, reduce operational costs, benefit the environment, and cut salt water disposal costs. Although the BORS Lift units did not function as intended, lessons learned during the course of the field demonstration project resulted in improvements in the technology and redesign of subsequent generation BORS Lift units which are reported to have significantly improved their performance characteristics. BORS Lift units were installed on 15 temporarily abandoned wells which had been shut down due to low oil production, high water production, and uneconomic operating conditions. The wells had been producing with artificial lift at a high watercut from a shallow (850-900 feet), pressure depleted oil sand reservoir prior to being shut down. The electrical motor driven BORS Lift units provided a possible approach for economically returning the shallow, low-volume oil wells to production. The BORS Lift units used in this field demonstration were designed to recover up to roughly 22 barrels of fluid per day from depths ranging to 1,700 feet, ideal for many marginal stripper well operations. The BORS units were first-production-model test units, operated under oil field conditions for the first time, and were naturally expected to experience some design problems. From the onset, the operator experienced mechanical, design, and operational problems with the BORS Lift units and was unable to

  9. Crude Oil | NISAC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NISACCrude Oil content top National Transportation Fuels Model Posted by tmanzan on Oct 3, ... by the network model (see figure) spans from oil fields to fuel distribution terminals. ...

  10. Oil Security Metrics Model

    SciTech Connect

    Greene, David L.; Leiby, Paul N.

    2005-03-06

    A presentation to the IWG GPRA USDOE, March 6, 2005, Washington, DC. OSMM estimates oil security benefits of changes in the U.S. oil market.

  11. Crude Oil Domestic Production

    Energy Information Administration (EIA) (indexed site)

    Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net ...

  12. Oil and Gas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil and Gas Oil and Gas R&D focus on the use of conventional and unconventional fossil fuels, including associated environmental challenges Contact thumbnail of Business ...

  13. NETL: Oil & Gas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil & Gas Efficient recovery of our nation's fossil fuel resources in an environmentally ... and challenging locations of many of our remaining oil and natural gas accumulations. ...

  14. Crude Oil Movements of Crude of by Rail between PAD Districts

    Annual Energy Outlook

    Product: Crude Oil Fuel Ethanol Biodiesel Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels Download Series History Download Series History Definitions, Sources & Notes ...

  15. A Novel Approach in Determining Oil Dilution Level on a DPF Equipped...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications The Advanced Collaborative Emissions Study (ACES):Phase 3 Biodiesel Impact on Engine Lubricant Oil Dilution Light Duty Diesels in the United States - ...

  16. Crude Oil Movements of Crude of by Rail between PAD Districts

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Product: Crude Oil Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources &...

  17. Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050

    SciTech Connect

    Greene, D.L.

    2003-11-14

    This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at

  18. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  19. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  20. Composition-explicit distillation curves of aviation fuel JP-8 and a coal-based jet fuel

    SciTech Connect

    Beverly L. Smith; Thomas J. Bruno

    2007-09-15

    We have recently introduced several important improvements in the measurement of distillation curves for complex fluids. The modifications to the classical measurement provide for (1) a composition explicit data channel for each distillate fraction (for both qualitative and quantitative analysis); (2) temperature measurements that are true thermodynamic state points; (3) temperature, volume, and pressure measurements of low uncertainty suitable for an equation of state development; (4) consistency with a century of historical data; (5) an assessment of the energy content of each distillate fraction; (6) a trace chemical analysis of each distillate fraction; and (7) a corrosivity assessment of each distillate fraction. The most significant modification is achieved with a new sampling approach that allows precise qualitative as well as quantitative analyses of each fraction, on the fly. We have applied the new method to the measurement of rocket propellant, gasoline, and jet fuels. In this paper, we present the application of the technique to representative batches of the military aviation fuel JP-8, and also to a coal-derived fuel developed as a potential substitute. We present not only the distillation curves but also a chemical characterization of each fraction and discuss the contrasts between the two fluids. 26 refs., 5 figs., 6 tabs.

  1. Crude oil and finished fuel storage stability: An annotated review

    SciTech Connect

    Whisman, M.L.; Anderson, R.P.; Woodward, P.W.; Giles, H.N.

    1991-01-01

    A state-of-the-art review and assessment of storage effects on crude oil and product quality was undertaken through a literature search by computer accessing several data base sources. Pertinent citations from that literature search are tabulated for the years 1980 to the present. This 1990 revision supplements earlier reviews by Brinkman and others which covered stability publications through 1979 and an update in 1983 by Goetzinger and others that covered the period 1952--1982. For purposes of organization, citations are listed in the current revision chronologically starting with the earliest 1980 publications. The citations have also been divided according to primary subject matter. Consequently 11 sections appear including: alternate fuels, gasoline, distillate fuel, jet fuel, residual fuel, crude oil, biodegradation, analyses, reaction mechanisms, containment, and handling and storage. Each section contains a brief narrative followed by all the citations for that category.

  2. A new hydrocracking catalyst for heavy oil upgrading

    SciTech Connect

    Itoh, T. )

    1987-04-01

    In comparison with ordinary oil, tar sands bitumen and vacuum residue contain large quantities of impurities such as asphaltene, heavy metal compounds, sulfur, and nitrogen, which are obstacles to upgrading the refining process. Therefore, these types of materials are extremely difficult to treat with existing refining technologies. In order to upgrade oil feedstocks that are of poor quality, such as tar sands bitumen, new upgrading technologies must be established. In this paper, the author discusses first, the results of catalyst screening, second, the factors of the active catalyst, and finally, the performance of a semi-industrially produced catalyst. The catalyst has high middle-distillate yield, coke plus gum (coke precursors) suppressing ability, low hydrogen consumption and mechanical strength and high temperature stability in slurry reactors.

  3. Research and information needs for management of oil shale development

    SciTech Connect

    Not Available

    1983-05-01

    This report presents information and analysis to assist BLM in clarifying oil shale research needs. It provides technical guidance on research needs in support of their regulatory responsibilities for onshore mineral activities involving oil shale. It provides an assessment of research needed to support the regulatory and managerial role of the BLM as well as others involved in the development of oil shale resources on public and Indian lands in the western United States.

  4. Oil and gas field code master list, 1993

    SciTech Connect

    Not Available

    1993-12-16

    This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.

  5. Oil Production

    Energy Science and Technology Software Center

    1989-07-01

    A horizontal and slanted well model was developed and incorporated into BOAST, a black oil simulator, to predict the potential production rates for such wells. The HORIZONTAL/SLANTED WELL MODEL can be used to calculate the productivity index, based on the length and location of the wellbore within the block, for each reservoir grid block penetrated by the horizontal/slanted wellbore. The well model can be run under either pressure or rate constraints in which wellbore pressuresmore » can be calculated as an option of infinite-conductivity. The model can simulate the performance of multiple horizontal/slanted wells in any geometric combination within reservoirs.« less

  6. United States

    Office of Legacy Management (LM)

    Office of Research and EPA 600/R-941209 Environmental Protection Development January 1993 Agency Washington, DC 20460 Offsite Environmental 57,,7 Monitoring Report Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1992 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT ENVIRONMENTAL MONITORING SYSTEMS LABORATORY-LAS VEGAS P.O. BOX 93478 LAS VEGAS. NEVADA 891 93-3478 702/798-2100 Dear Reader: Since 1954, the U.S. Environmental Protection

  7. World Crude Oil Prices

    Energy Information Administration (EIA) (indexed site)

    World Crude Oil Prices (Dollars per Barrel) The data on this page are no longer available.

  8. Eco Oil 4

    SciTech Connect

    Brett Earl; Brenda Clark

    2009-10-26

    This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

  9. Preliminary evaluation of shale-oil resources in Missouri

    SciTech Connect

    Nuelle, L.M.; Sumner, H.S.

    1981-02-01

    This report is a preliminary overview of oil-shale potential in Missouri. Two types of oil shales occur in Missouri: (1) the platform marine type, represented by the Devonian Chattanooga Shale, and (2) black shales in Pennsylvanian cyclothems, many of which overlie currently mined coal beds. The Chattanooga Shale contains black, fissile, carbonaceous shales and reaches a thickness of around 70 ft in southwestern Missouri. Oil-yield data from Missouri are not available, but based on yields from other states, the Chattanooga of southwest Missouri is estimated to contain between 2.6 and 15.8 billion barrels of oil. Preliminary estimates of the black, hard, fissile, carbonaceous Pennsylvanian shales indicate they contain between 100 and 200 billion barrels of shale oil. Many of these units directly overlie currently mined coal seams and could be recovered with the coal, but they are now discarded as overburden. These shales also contain significant amounts of phosphates and uranium. Other Paleozoic units with limited oil-shale potential are the Ordovician Decorah and Maquoketa Formations and the Upper Devonian Grassy Creek Shale. Ambitious research programs are needed to evaluate Missouri oil-shale resources. Further investigations should include economic and technological studies and the drilling, mapping, and sampling of potential oil-shale units. Shrinking supplies of crude oil make such studies desirable.

  10. Oil shale as an energy source in Israel

    SciTech Connect

    Fainberg, V.; Hetsroni, G.

    1996-01-01

    Reserves, characteristics, energetics, chemistry, and technology of Israeli oil shales are described. Oil shale is the only source of energy and the only organic natural resource in Israel. Its reserves of about 12 billion tons will be enough to meet Israel`s requirements for about 80 years. The heating value of the oil shale is 1,150 kcal/kg, oil yield is 6%, and sulfur content of the oil is 5--7%. A method of oil shale processing, providing exhaustive utilization of its energy and chemical potential, developed in the Technion, is described. The principal feature of the method is a two-stage pyrolysis of the oil shale. As a result, gas and aromatic liquids are obtained. The gas may be used for energy production in a high-efficiency power unit, or as a source for chemical synthesis. The liquid products can be an excellent source for production of chemicals.

  11. Life-Cycle Assessment of Pyrolysis Bio-Oil Production*

    SciTech Connect

    Steele, Philip; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-07-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  12. Unit Process Library

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Water use for cyclic steam injection, steam flood, and water flood processes for enhanced oil recovery. DS DF Canadian Oil Sands Synthetic, Extraction and Post-processing, ...

  13. Proposed purchase of Marathon Oil Co. by Mobil Oil Corp. Joint hearings before the Committee on Commerce, Science, and Transportation, United States Senate and the Committee on Energy and Commerce, House of Representatives, Ninety-Seventh Congress, First Session, November 23 and December 14, 1981

    SciTech Connect

    Not Available

    1981-01-01

    These hearings on Mobil Oil's proposal to buy Marathon explored industry competition and antitrust implications. The committee confined its investigation to public-policy concerns and avoided pressure on the Federal Trade Commission. The principal witnesses were Charles H. Barre of Marathon, Jack A. Blum of the Independent Gasoline Marketers Council, Attorney General William J. Brown of Ohio, and William F. Baxter of the Justice Department's Antitrust Division. Their testimony is followed by additional articles, letters, and statements submitted for the record. (DCK)

  14. Evaluating oil quality and monitoring production from heavy oil reservoirs using geochemical methods: Application to the Boscan Field, Venezuela

    SciTech Connect

    Kaufman, R.L.; Noguera, V.H.; Bantz, D.M.; Rodriguez, R.

    1996-08-01

    Many oil fields worldwide contain heavy oil in one or more reservoir units. The low gravity of these oils is most frequently due to biodegradation and/or low maturity. The challenge is to find ways to economically recover this oil. Methods which reduce the operating costs of producing heavy oil add significant value to such projects. Geochemical techniques which use the composition of the reservoir fluids as natural tracers offer cost effective methods to assist with reservoir management. The low viscosity and gravity of heavy oil, combined with frequent high water cuts, low flow rates, and the presence of downhole artificial lift equipment, make many conventional production logging methods difficult to apply. Therefore, monitoring production, especially if the produced oil is commingled from multiple reservoirs, can be difficult. Geochemical methods can be used to identify oil/water contacts, tubing string leaks and to allocate production to individual zones from commingled production. An example of a giant heavy oil field where geochemical methods may be applicable is the Boscan Field in Venezuela. Low maturity oil, averaging 10{degrees} API gravity, is produced from the Eocene Upper and Lower Boscan (Miosa) Sands. Geochemical, stratigraphic and engineering data have helped to better define the controls on oil quality within the field, identified new reservoir compartments and defined unique characteristics of the Upper and Lower Boscan oils. This information can be used to identify existing wells in need of workovers due to mechanical problems and to monitor production from new infill wells.

  15. Report to Congress on the feasibility of establishing a heating oil component to the Strategic Petroleum Reserve. Volume 2: Appendices

    SciTech Connect

    1998-06-01

    Nine appendices to the main report are included in this volume. They are: Northeastern US distillate supply systems; New England fuel oil storage capacities and inventories; Characteristics of the northeast natural gas market; Documentation of statistical models and calculation of benefits; Regional product reserve study; Other countries` experience with refined product storage; Global refining supply demand appraisal; Summary of federal authorities relevant to the establishment of petroleum product reserves; Product stability and turnover requirements.

  16. Legislation affecting oil-merger proposals. Hearing before the Subcommittee on Energy and Mineral Resources of the Committee on Energy and Natural Resources, United States Senate, Ninety-Eighth Congress, Second Session on S. 2362, April 10, 1984

    SciTech Connect

    Not Available

    1984-01-01

    Statements by 34 witnesses on S. 2362 examine the need for and possible impact of legislation calling for a study of mergers among oil companies. The focus of the study would be on the implications for US energy policy and energy independence, national security, and the economy. The witnesses represented investors, various sectors of the petroleum industry, economists, and various departments and agencies of the federal government. Their testimony follows the text of S. 2362, which amends the Mineral Lands Leasing Act of 1920 by limiting the authority to lease land when a merger is involved. Discussion on the relative merits of the legislation included antitrust and securities law issues and the exploration record following merger.

  17. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  18. Oil coking propensity under hydroprocessing conditions

    SciTech Connect

    Kriz, J.F. )

    1991-01-01

    If the processability of heavy or residual oil is assessed in terms of conversion to distillate oils, the tendency to form carbonaceous (coke) deposits in the reactor would impose limits on the operating conditions, since any significant coke accumulation on a continuing basis would be prohibitive. Experimentally, one can evaluate the feedstock coking propensity in a bench-scale reactor for a set of typical hydroprocessing conditions by varying the temperature near the threshold of coking. For a number of different feedstocks examined by this method, an empirical function can be found correlating the coking propensity with some of the characteristic properties determined by routine analyses. The present approach used a combination of physical and chemical properties including density and contents of Conradson Carbon residue, pentane and toluene insolubles, fraction of high-boiling pitch, and carbon, hydrogen, nitrogen, sulfur and ash. Feedstocks were chosen to cover a wide but practical range of properties to establish their impact on the coking propensity. Although these relationships apply to thermal hydroprocessing, the role of catalysts is also indicated.

  19. Portable brine evaporator unit, process, and system

    DOEpatents

    Hart, Paul John; Miller, Bruce G.; Wincek, Ronald T.; Decker, Glenn E.; Johnson, David K.

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  20. Oilwell Power Controller (OPC Unit). Technical report

    SciTech Connect

    Not Available

    1993-09-01

    Double M Electric, Inc. in Watford City, ND is finalizing the testing of its Oilwell Power Controller (OPC) Prototype Unit. This device can be used as a rod pump controller and it can also monitor, record and store power usage, temperature and pressure data. The unit also has the capability to measure the rod string weight, therefore it can be used as a dynamometer. A total of 10 OPC Units were assembled and installed on oilwells pumped with rod pumps in the Central and Western United States. Data from these wells was analyzed and forwarded to the participating oil companies.

  1. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  2. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  3. ,,,"Residual Fuel Oil(b)",,,," Alternative...

    Energy Information Administration (EIA) (indexed site)

    ...med(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)" ,,"Total United States" 311,"Food",19.4,28.7,19.1,"X",32.8,53,"X",53.4,"X",92.3 ...

  4. Synthesis of zeolite from Italian coal fly ash: Differences in crystallization temperature using seawater instead of distilled water

    SciTech Connect

    Belviso, Claudia; Cavalcante, Francesco; Fiore, Saverio

    2010-05-15

    In this study Italian coal fly ash was converted into several types of zeolite in laboratory experiments with temperatures of crystallization ranging from 35 up to 90 deg. C. Distilled and seawater were used during the hydrothermal synthesis process in separate experiments, after a pre-treatment fusion with NaOH. The results indicate that zeolites could be formed from different kind of Italian coal fly ash at low temperature of crystallization using both distilled and seawater. SEM data and the powder patterns of X-ray diffraction analysis show that faujasite, zeolite ZK-5 and sodalite were synthesized when using both distilled and seawater; zeolite A crystallized only using distilled water. In particular the experiments indicate that the synthesis of zeolite X and zeolite ZK-5 takes place at lower temperatures when using seawater (35 and 45 deg. C, respectively). The formation of sodalite is always competitive with zeolite X which shows a metastable behaviour at higher temperatures (70-90 deg. C). The chemical composition of the fly ash source could be responsible of the differences on the starting time of synthesized zeolite with distilled water, in any case our data show that the formation of specific zeolites takes place always at lower temperatures when using seawater.

  5. Plans to revive oil fields in Venezuela on track

    SciTech Connect

    Not Available

    1992-02-24

    This paper reports on the three operating units of Venezuela's state owned oil company Petroleos de Venezuela SA which will begin receiving bids Feb. 28 from companies interested in operating 55 inactive oil fields in nine producing areas of Venezuela. Francisco Pradas, Pdvsa executive in charge of the program, the the company expects 88 companies or combines of foreign and domestic private companies to participate in the bidding. The program, announced last year, aims to reactivate production in marginal oil fields. It will involve the first direct participation by private companies in Venezuela's oil production since nationalization in 1976.

  6. Report to Congress on the feasibility of establishing a heating oil component to the Strategic Petroleum Reserve. Volume 1

    SciTech Connect

    1998-06-01

    In the Autumn of 1996, consumers and Members of Congress from the Northeast expressed concern about high prices for heating oil and historically low levels of inventories. Some Members of Congress advocated building a Federal inventory of heating oil as part of the Strategic Petroleum Reserve (SPR). Regional reserves are authorized as part of the SPR for import dependent regions by the Energy Policy and Conservation Act. In response, the Department of Energy (DOE) proposed a series of studies related to heating fuels, including a study of the desirability, feasibility, and cost of creating a Federal reserve containing distillate fuel. This report documents that study.

  7. Conceptual design and optimization for JET water detritiation system cryo-distillation facility

    SciTech Connect

    Lefebvre, X.; Hollingsworth, A.; Parracho, A.; Dalgliesh, P.; Butler, B.; Smith, R.

    2015-03-15

    The aim of the Exhaust Detritiation System (EDS) of the JET Active Gas Handling System (AGHS) is to convert all Q-based species (Q{sub 2}, Q-hydrocarbons) into Q{sub 2}O (Q being indifferently H, D or T) which is then trapped on molecular sieve beds (MSB). Regenerating the saturated MSBs leads to the production of tritiated water which is stored in Briggs drums. An alternative disposal solution to offsite shipping, is to process the tritiated water onsite via the implementation of a Water Detritiation System (WDS) based, in part, on the combination of an electrolyser and a cryo-distillation (CD) facility. The CD system will separate a Q{sub 2} mixture into a de-tritiated hydrogen stream for safe release and a tritiated stream for further processing on existing AGHS subsystems. A sensitivity study of the Souers' model using the simulation program ProSimPlus (edited by ProSim S.A.) has then been undertaken in order to perform an optimised dimensioning of the cryo-distillation system in terms of available cooling technologies, cost of investment, cost of operations, process performance and safety. (authors)

  8. Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles

    SciTech Connect

    Haihua Zhao; Per F. Peterson

    2012-10-01

    Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cycles can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.

  9. Fire flood recovery process effects upon heavy oil properties

    SciTech Connect

    Reichert, C.; Fuhr, B.; Sawatzky, H.; Lefleur, R.; Verkoczy, B.; Soveran, D.; Jha, K.

    1988-06-01

    The steady decline in proven conventional oil deposits world wide has increased the emphasis on the use of heavy oil and bitumen. Most of the heavy oil and oil sand deposits share the common problem of providing very little or no primary production. They require a reduction in viscosity of the oil to make it flow. The oil in place and the reservoir characteristics are generally studied carefully to determine the design of the recovery process most applicable to the deposit and to evaluate its potential. Many of these same characteristics are also used to evaluate the oil with respect to upgrading, refining and final usage in the form of products. A variety of processes have been developed most of which utilize heat either in the form of steam or combustion to mobolize the oil in the reservoir. These processes vary considerably from rather mild conditions for steam stimulation to quite severe for combustion recovery. Figure 1 shows a typical schematic of an insitu combustion process. Many variations of forward combustion are used in the field to produce oil. Depending upon the severity of the recovery process in the recovered oil may be similar to the oil in the deposit or may be highly modified (oxidized, polymerized or upgraded). A memorandum of Understanding was signed by the Governments of the United States of America, Canada and the Provinces of Saskatchewan and Alberta to study different aspects of the problems related to the recovery of oil from heavy oil and sand deposits. One phase of the study is to determine the effects of different methods of in-situ recovery on the composition of recovered bitumen and heavy oils. This paper describes the findings from a study of fireflood process in a heavy oil deposit located in the Cummings formation of the Eyehill Field in Saskatchewan, Canada.

  10. Crude Oil Characteristics Research

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SAE Plan June 29, 2015 Page 1 Crude Oil Characteristics Research Sampling, Analysis and Experiment (SAE) Plan The U.S. is experiencing a renaissance in oil and gas production. The Energy Information Administration projects that U.S. oil production will reach 9.3 million barrels per day in 2015 - the highest annual average level of oil production since 1972. This domestic energy boom is due primarily to new unconventional production of light sweet crude oil from tight-oil formations like the

  11. Level: National and Regional Data; Row: End Uses; Column: Energy...

    Annual Energy Outlook

    including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel ...

  12. Fact #632: July 19, 2010 The Costs of Oil Dependence | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2: July 19, 2010 The Costs of Oil Dependence Fact #632: July 19, 2010 The Costs of Oil Dependence The United States has long recognized the problem of oil dependence and the economic problems that arise from it. According to Oak Ridge National Laboratory (ORNL) researchers Greene and Hopson, oil dependence is a combination of four factors: (1) a noncompetitive world oil market strongly influenced by the OPEC cartel, (2) high levels of U.S. imports, (3) the importance of oil to the U.S. economy,

  13. Fact #742: August 27, 2012 Oil Price and Economic Growth | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 2: August 27, 2012 Oil Price and Economic Growth Fact #742: August 27, 2012 Oil Price and Economic Growth Major oil price shocks have disrupted world energy markets five times in the past 30 years (1973-74, 1979-80, 1990-91, 1999-2000, and 2008). Most of the oil price shocks were followed by an economic recession in the United States. Oil Price and Gross Domestic Product Growth Rate, 1970-2011 Graphic showing oil prices compared to the gross domestic product growth rate from 1970 to

  14. Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels | Unconventional Oil and Gas Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Infrastructure Offshore Safety and Spill Prevention Unconventional Oil and Gas ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Unconventional Oil and Gas Chapter 7: Technology Assessments Executive Summary The United States will, for the foreseeable future, continue to rely heavily upon oil and natural gas to support our economy, national security, and energy security. Given the increasing reliance on unconventional oil and gas (UOG) resources,

  15. Fact #578: July 6, 2009 World Oil Reserves, Production, and Consumption,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2007 | Department of Energy 8: July 6, 2009 World Oil Reserves, Production, and Consumption, 2007 Fact #578: July 6, 2009 World Oil Reserves, Production, and Consumption, 2007 The United States was responsible for 8% of the world's petroleum production, held 2% of the world's crude oil reserves, and consumed 24% of the world's petroleum consumption in 2007. The Organization for Petroleum Exporting Countries (OPEC) held 69% of the world's crude oil reserves and produced 41% of world

  16. Fact #780: May 20, 2013 Crude Oil Reserve to Production Ratio | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 0: May 20, 2013 Crude Oil Reserve to Production Ratio Fact #780: May 20, 2013 Crude Oil Reserve to Production Ratio The ratio of reserves to production gives a relative measure of the resources available in different oil producing countries. Assuming 2011 crude oil production rates and holding reserves constant, the reserves in Venezuela would last another 258 years, while Canada's reserves would last 165 years and the United States reserves would last 11 years. Saudi Arabia, which

  17. Fuel Oil Use in Manufacturing

    Energy Information Administration (EIA) (indexed site)

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  18. Sound Oil Company

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Ward Oil Co., 24 DOE 81,002 (1994); see also Belcher Oil Co., 15 DOE 81,018 (1987) ... months relief because of flood); Utilities Bd. of Citronelle-Gas, 4 DOE 81,205 (1979) ...

  19. Enhanced Oil Recovery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Enhanced Oil Recovery As much as two-thirds of conventional crude oil discovered in U.S. fields remains unproduced, left behind due to the physics of fluid flow. In addition, ...

  20. Table 5.15 Fuel Oil and Kerosene Sales, 1984-2010 (Thousand Gallons)

    Energy Information Administration (EIA) (indexed site)

    5 Fuel Oil and Kerosene Sales, 1984-2010 (Thousand Gallons) Year Distillate Fuel Oil Residential Commercial Industrial Oil Company Farm Electric Power 1 Railroad Vessel Bunkering On-Highway Diesel Military Off-Highway Diesel Other Total 1984 8,215,722 5,538,184 2,555,898 848,083 3,201,600 648,665 2,944,694 1,763,782 16,797,423 700,788 1,756,077 700,864 45,671,779 1985 7,728,057 4,463,226 2,440,661 684,227 3,102,106 523,010 2,786,479 1,698,985 17,279,650 661,644 1,522,041 168,625 43,058,711 1986

  1. A Study of the Use of Jatropha Oil Blends in Boilers

    SciTech Connect

    Krishna, C.R.

    2010-10-01

    Executive Summary: This project investigated the combustion performance of blends of unrefined Jatropha oil and its blends in laboratory boilers. Although a very limited amount of testing blends in distillate oil, ASTM No. 2 oil or heating oil was conducted, the primary interest was in testing the performance of blends with residual ASTM No. 6 oil. The basic idea is to provide a renewable fuel option to residual oil used in space heating and in industrial applications. The intent also was to explore the use of non-edible plant oil and one that might be potentially cheaper than biodiesel. The characteristics of No. 6 oil, such as high viscosity at ambient temperature, which requires it to be kept heated, make the blending with such oils feasible. Jatropha oil is one such oil and there is currently considerable interest building up in its use as a source for making biodiesel and jet fuel. A 10% blend of Jatropha oil with heating oil was burned using a standard burner in a residential boiler. Combustion performance was shown to be comparable with that of burning heating oil by itself with some noticeable differences. Typical heating oil has about 2000 ppm of sulfur, while the Jatropha oil has about 50 ppm leading to lower levels of sulphur dioxide emissions. Stack measurements also showed that the NOx emission was lower with the blend. We have previously reported similar reductions in NOx with blends of biodiesel in heating oil as well as slight reductions in PM2.5, particulates below 2.5 microns in size. Long term tests were not part of this project and hence deleterious effects on pumps, seals etc., if any, were not measured. The majority of the work involved testing blends of Jatropha oil with residual oil in a 1.5 million Btu/hr boiler with a burner modified to burn residual oil. Blends of 20 and 60% Jatropha oil and 100% Jatropha oil were burned in the combustion performance tests. The residual oil used had a sulfur content of over 2000 ppm and hence dramatic

  2. Vegetable oils for tractors

    SciTech Connect

    Moroney, M.

    1981-11-14

    Preliminary tests by the Agricultural Institute, show that tractors can be run on a 50:50 rape oil-diesel mixture or on pure rape oil. In fact, engine power actually increased slightly with the 50:50 blend but decreased fractionally with pure rape oil. Research at the North Dakota State University on using sunflower oil as an alternative to diesel fuel is also noted.

  3. Costs of U.S. Oil Dependence: 2005 Update

    SciTech Connect

    Greene, D.L.

    2005-03-08

    For thirty years, dependence on oil has been a significant problem for the United States. Oil dependence is not simply a matter of how much oil we import. It is a syndrome, a combination of the vulnerability of the U.S. economy to higher oil prices and oil price shocks and a concentration of world oil supplies in a small group of oil producing states that are willing and able to use their market power to influence world oil prices. Although there are vitally important political and military dimensions to the oil dependence problem, this report focuses on its direct economic costs. These costs are the transfer of wealth from the United States to oil producing countries, the loss of economic potential due to oil prices elevated above competitive market levels, and disruption costs caused by sudden and large oil price movements. Several enhancements have been made to methods used in past studies to estimate these costs, and estimates of key parameters have been updated based on the most recent literature. It is estimated that oil dependence has cost the U.S. economy $3.6 trillion (constant 2000 dollars) since 1970, with the bulk of the losses occurring between 1979 and 1986. However, if oil prices in 2005 average $35-$45/bbl, as recently predicted by the U.S. Energy Information Administration, oil dependence costs in 2005 will be in the range of $150-$250 billion. Costs are relatively evenly divided between the three components. A sensitivity analysis reflecting uncertainty about all the key parameters required to estimate oil dependence costs suggests that a reasonable range of uncertainty for the total costs of U.S. oil dependence over the past 30 years is $2-$6 trillion (constant 2000 dollars). Reckoned in terms of present value using a discount rate of 4.5%, the costs of U.S. oil dependence since 1970 are $8 trillion, with a reasonable range of uncertainty of $5 to $13 trillion.

  4. Biochemical upgrading of oils

    DOEpatents

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  5. Biochemical upgrading of oils

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  6. United States

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    E-T Global Energy, LLC OE Docket No. EA-381 Order Authorizing Electricity Exports to Mexico Order No. EA-381 June 10, 2011 I. BACKGROUND E-T Global Energy, LLC Order No. EA-381 Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department ofEnergy Organization Act (42 U.S.C. 7151(b), 7172(f)) and require authorization under section 202(e) ofthe Federal Power Act (FPA) (16 U.S.C.824a(e))

  7. United States

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tenaslta Power Services Co. OE Docket No. EA-243-A Order Authorizing Electricity Exports to Canada Order No. EA-243-A March 1,2007 Tenaska Power Services Co. Order No. EA-243-A I. BACKGROUND Exports of elcctricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30 I(b) and 402(f) of the Departrncnt of' Energy Organizatio~l Act (42 U, S.C. 7 15 1 (b), 7 1 72Cf)) and rcquirc authorization under section 202(e) of the Federal Power Act

  8. United States

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    TexMex Energy, LLC OE Docket No. EA-294-A Order Authorizing Electricity Exports to Mexico Order No. EA-294-A February 22, 2007 TexMex Energy, LLC Order No. EA-294-A I. BACKGROUND Exports of electricity from the United States to a foreign count~y are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 15 1 (b), 71 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16

  9. United States

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BP Energy Company OE Docket No. EA- 3 14 Order Authorizing Electricity Exports to Mexico Order No. EA-3 14 February 22,2007 BP Energy Company Order No. EA-314 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(Q of the Department of Energy Organization Act (42 U.S.C. 7 15 l(b), 7172(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.S24a(e)) .

  10. United States

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CSW Power Marketing OE Docket No. EA-3 1 8 Order Authorizing Electricity Exports to Mexico Order No. EA-3 18 February 22,2007 CSW Power Marketing Order No. EA-318 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30l(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 1 5 1 (b), 7 1 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16

  11. Crude oil and alternate energy production forecasts for the twenty-first century: The end of the hydrocarbon era

    SciTech Connect

    Edwards, J.D.

    1997-08-01

    Predictions of production rates and ultimate recovery of crude oil are needed for intelligent planning and timely action to ensure the continuous flow of energy required by the world`s increasing population and expanding economies. Crude oil will be able to supply increasing demand until peak world production is reached. The energy gap caused by declining conventional oil production must then be filled by expanding production of coal, heavy oil and oil shales, nuclear and hydroelectric power, and renewable energy sources (solar, wind, and geothermal). Declining oil production forecasts are based on current estimated ultimate recoverable conventional crude oil resources of 329 billion barrels for the United States and close to 3 trillion barrels for the world. Peak world crude oil production is forecast to occur in 2020 at 90 million barrels per day. Conventional crude oil production in the United States is forecast to terminate by about 2090, and world production will be close to exhaustion by 2100.

  12. Proceedings of the 1998 oil heat technology conference

    SciTech Connect

    McDonald, R.J.

    1998-04-01

    The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

  13. US Crude oil exports

    Gasoline and Diesel Fuel Update

    2014 EIA Energy Conference U.S. Crude Oil Exports July 14, 2014 By Lynn D. Westfall U.S. Energy Information Administration U.S. crude oil production has grown by almost 50% since 2008 and is up by 1.0 million b/d (14%) since April of 2013 U.S. crude oil production million barrels of oil per day Source: U.S. Energy Information Administration Lynn Westfall, 2014 EIA Energy Conference, U.S. Crude Oil Exports, July 14, 2014 2 0 2 4 6 8 10 12 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990

  14. The Oil Market: From Boom to Gloom

    Energy Information Administration (EIA) (indexed site)

    Federal Reserve Bank of Dallas From Boom to Gloom: Energy States After the Oil Bust Mine Yücel Senior Vice President and Director of Research Federal Reserve Bank of Dallas July 12, 2016 Federal Reserve Bank of Dallas *Natural gas price is multiplied by ten. Oil is priced in $/barrel, while natural gas is priced in $/million British thermal units. Last data points are for the week ending June 24, 2016. 0 20 40 60 80 100 120 140 160 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 Nominal

  15. Attrition and abrasion models for oil shale process modeling

    SciTech Connect

    Aldis, D.F.

    1991-10-25

    As oil shale is processed, fine particles, much smaller than the original shale are created. This process is called attrition or more accurately abrasion. In this paper, models of abrasion are presented for oil shale being processed in several unit operations. Two of these unit operations, a fluidized bed and a lift pipe are used in the Lawrence Livermore National Laboratory Hot-Recycle-Solid (HRS) process being developed for the above ground processing of oil shale. In two reports, studies were conducted on the attrition of oil shale in unit operations which are used in the HRS process. Carley reported results for attrition in a lift pipe for oil shale which had been pre-processed either by retorting or by retorting then burning. The second paper, by Taylor and Beavers, reported results for a fluidized bed processing of oil shale. Taylor and Beavers studied raw, retorted, and shale which had been retorted and then burned. In this paper, empirical models are derived, from the experimental studies conducted on oil shale for the process occurring in the HRS process. The derived models are presented along with comparisons with experimental results.

  16. Primary oil-shale resources of the Green River Formation in the eastern Uinta Basin, Utah

    SciTech Connect

    Trudell, L.G.; Smith, J.W.; Beard, T.N.; Mason, G.M.

    1983-04-01

    Resources of potential oil in place in the Green River Formation are measured and estimated for the primary oil-shale resource area east of the Green River in Utah's Uinta Basin. The area evaluated (Ts 7-14 S, Rs 19-25 E) includes most of, and certainly the best of Utah's oil-shale resource. For resource evaluation the principal oil-shale section is divided into ten stratigraphic units which are equivalent to units previously evaluated in the Piceance Creek Basin of Colorado. Detailed evaluation of individual oil-shale units sampled by cores, plus estimates by extrapolation into uncored areas indicate a total resource of 214 billion barrels of shale oil in place in the eastern Uinta Basin.

  17. Preparation of brightness stabilization agent for lignin containing pulp from biomass pyrolysis oils

    DOEpatents

    Agblevor, Foster A.; Besler-Guran, Serpil

    2001-01-01

    A process for producing a brightness stabilization mixture of water-soluble organic compounds from biomass pyrolysis oils comprising: a) size-reducing biomass material and pyrolyzing the size-reduced biomass material in a fluidized bed reactor; b) separating a char/ash component while maintaining char-pot temperatures to avoid condensation of pyrolysis vapors; c) condensing pyrolysis gases and vapors, and recovering pyrolysis oils by mixing the oils with acetone to obtain an oil-acetone mixture; d) evaporating acetone and recovering pyrolysis oils; e) extracting the pyrolysis oils with water to obtain a water extract; f) slurrying the water extract with carbon while stirring, and filtering the slurry to obtain a colorless filtrate; g) cooling the solution and stabilizing the solution against thermally-induced gelling and solidification by extraction with ethyl acetate to form an aqueous phase lower layer and an organic phase upper layer; h) discarding the upper organic layer and extracting the aqueous layer with ethyl acetate, and discarding the ethyl acetate fraction to obtain a brown-colored solution not susceptible to gelling or solidification upon heating; i) heating the solution to distill off water and other light components and concentrating a bottoms fraction comprising hydroxyacetaldehyde and other non-volatile components having high boiling points; and j) decolorizing the stabilized brown solution with activated carbon to obtain a colorless solution.

  18. Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel

    DOE PAGES [OSTI]

    Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.; Lewis, Samuel A.; Keiser, James R.; Gaston, Katherine

    2016-07-12

    Here we report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 °C, and properties in the wetted and dried states were measured.more » Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less

  19. Crude oil as refinery feed stock

    SciTech Connect

    Boduszynski, M.M.; Farrell, T.R.

    1995-12-31

    This paper gives a brief overview of the integrated oil refinery. It illustrates that crude oil refining involves {open_quotes}molecular tailoring,{close_quotes} where feed stock molecules are {open_quotes}tailored{close_quotes} through catalytic processing to make products with the most desirable composition. Chemical composition of crude oil as refinery feed stock is discussed. The emphasis is on the understanding of molecular transformations which occur in refinery processes to manufacture light transportation fuels. Diesel fuel manufacturing is used as an example. Recent environmental legislation in the United States has necessitated a significant upgrade in the quality of diesel fuel used for highway transportation. Examples are given to illustrate the impact that petroleum chemistry may have on the industry`s response to government regulations.

  20. Innovative filter polishes oil refinery wastewater

    SciTech Connect

    Irwin, J.; Finkler, M.

    1982-07-01

    Describes how, after extensive testing of 4 different treatment techniques, a Hydro Clear rapid sand filter was installed at the Sohio oil refinery in Toledo, Ohio. This filtration system has proven to be more cost-effective than conventional approaches. The system handles the refinery's wastewater flow of 10.3 mgd. With the aid of the polishing filter, readily meets the NPDES permit limitations. The Toledo refinery is a highly integrated petroleum processing complex. It processes 127,000 barrels per day of crude oil, including 40,000 barrels per day of sour crude. Tables give dissolved air flotation performance data; biological system performance data; filter performance data; and refinery waste treatment unit compared with NPDES-BPT limitations. Diagram shows the Sohio refinery wastewater treatment facility. Through a separate backwash treatment system complete control is brought to the suspended solids in the effluent which also tends to control chemical oxygen demand and oil/grease levels.

  1. Chemical Methods for Ugnu Viscous Oils

    SciTech Connect

    Kishore Mohanty

    2012-03-31

    The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing cold heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (< 10%). Improved oil recovery techniques must be developed for these reservoirs. The proximity to the permafrost is an issue for thermal methods; thus nonthermal methods must be considered. The objective of this project is to develop chemical methods for the Ugnu reservoir on the top of Milne Point. An alkaline-surfactant-polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical formulation

  2. Termination unit

    SciTech Connect

    Traeholt, Chresten; Willen, Dag; Roden, Mark; Tolbert, Jerry C; Lindsay, David; Fisher, Paul W; Nielsen, Carsten Thidemann

    2014-01-07

    This invention relates to a termination unit comprising an end-section of a cable. The end section of the cable defines a central longitudinal axis and comprising end-parts of N electrical phases, an end-part of a neutral conductor and a surrounding thermally insulation envelope adapted to comprising a cooling fluid. The end-parts of the N electrical phases and the end-part of the neutral conductor each comprising at least one electrical conductor and being arranged in the cable concentrically around a core former with a phase 1 located relatively innermost, and phase N relatively outermost in the cable, phase N being surrounded by the neutral conductor, electrical insulation being arrange between neighboring electrical phases and between phase N and the neutral conductor, and wherein the end-parts of the neutral conductor and the electrical phases each comprise a contacting surface electrically connected to at least one branch current lead to provide an electrical connection: The contacting surfaces each having a longitudinal extension, and being located sequentially along the longitudinal extension of the end-section of the cable. The branch current leads being individually insulated from said thermally insulation envelope by individual electrical insulators.

  3. Dynacracking process first commerical application for upgrading heavy oils

    SciTech Connect

    Dawson, F.N. Jr.

    1981-01-01

    The Dynacracking process developed by Hydrocarbon Research, Inc., is a non-catalytic process capable of upgrading heavy oil whose sulfur, metal, and carbon contents may be high. It converts residual stocks to distillates with high naphtha yields, and to synthetic fuel gas of high quality (700-800 Btu/ft/sup 3/). It has esentially no air polution emissions and requires a relatively small amount of water and utilities. The process generates sufficient heat internally such that, except for start-up, no boilers, furnaces, or external heaters are required to operate the plant. Several aspects of the process are discussed: chemistry, hardware, feedstock, flexibility in the product mix, product quality, and economics.

  4. New noncatalytic heavy-oil process developed in Canada

    SciTech Connect

    Fisher, I.P.; Souhrada, F.; Woods, H.J.

    1982-11-22

    Describes Gulf Canada's hydrogen addition upgrading process, named Donor Refined Bitumen (DRB), which involves the pyrolysis of the residuum portion of the bitumen or heavy oil in the presence of an efficient hydrogen donor that stabilizes the intermediates from the pyrolyzing bitumen. Advantages are high operability and reliability, low capital and operating costs, high yields and good product quality, feedstock and independence, the use of conventional refinery equipment, and ready availability of high quality donor. Presents a schematic flow sheet of the DRB process showing how bitumen is upgraded sufficiently to allow easy pipelining to a central major upgrading plant. Tables give comparative compositional data on middle distillates; naptha compositions and qualities; and operating costs.

  5. Fuel quality issues in the oil heat industry

    SciTech Connect

    Litzke, Wai-Lin

    1992-12-01

    The quality of fuel oil plays an essential role in combustion performance and efficient operation of residential heating equipment. With the present concerns by the oil-heat industry of declining fuel-oil quality, a study was initiated to identify the factors that have brought about changes in the quality of distillate fuel. A background of information will be provided to the industry, which is necessary to deal with the problems relating to the fuel. The high needs for servicing heating equipment are usually the result of the poor handling characteristics of the fuel during cold weather, the buildup of dirt and water in storage tanks, and microbial growth. A discussion of how to deal with these problems is presented in this paper. The effectiveness of fuel additives to control these problems of quality is also covered to help users better understand the functions and limitations of chemical treatment. Test data have been collected which measure and compare changes in the properties of fuel using selected additives.

  6. Shale oil dearsenation process

    SciTech Connect

    Brickman, F.E.; Degnan, T.F.; Weiss, C.S.

    1984-10-29

    This invention relates to processing shale oil and in particular to processing shale oil to reduce the arsenic content. Specifically, the invention relates to treating shale oil by a combination of processes - coking and water washing. Many shale oils produced by conventional retorting processes contain inorganic materials, such as arsenic, which interfere with subsequent refining or catalytic hydroprocessing operations. Examples of these hydroprocessing operations are hydrogenation, denitrogenation, and desulfurization. From an environmental standpoint, removal of such contaminants may be desirable even if the shale oil is to be used directly as a fuel. Hence, it is desirable that contaminants such as arsenic be removed, or reduced to low levels, prior to further processing of the shale oil or prior to its use as a fuel.

  7. Joint United States-Israel desalination project. General technology report

    SciTech Connect

    Reed, S.A.

    1984-09-01

    In mid-1975, the governments of the United States and Israel signed an agreement to jointly design, construct, and operate, during a period of approximately ten years, an advanced prototype of a multieffect low-temperature distillation plant to convert seawater to high-quality freshwater. The distillation plant was to be built at Ashdod, Israel, adjacent to an existing electrical generating plant which would supply both energy (steam and electricity) and Mediterranean Sea feed-water to the distillation plant. The project objectives were essentially achieved, although its scope was reduced. A 5-Mgd Intermediate Module (INTMO - later renamed Multi-effect Low-Temperature (MELT) Plant) was constructed and operated for over a year, coupled to a 50-MW steam turbine. Dual operation, most of the time in a load-following mode, proved to be stable, flexible, and reliable for both the power plant and the desalination plant. Over 2 x 10/sup 6/ m/sup 3/ of about 50 ppM total-dissolved-solids water was produced from Mediterranean seawater. A calculation, based on an optimized, multiple-unit desalination plant, coupled to a 550-MW, coal-fired, base-loaded power plant, indicates water costs in the order of 55 to 60 cents/m/sup 3/. A complete technology package is being furnished to each of the participating governments. The total expenditure for the project, from its inception in 1976 through March 31, 1984, when the operation for data collection and demonstration purposes was completed, was about $31 million.

  8. Upgrading heavy oil using slurry processes

    SciTech Connect

    Del Bianco, A.; Panariti, N.; Marchionna, M.

    1995-11-01

    There is a growing interest in processes capable of converting heavy feedstocks (petroleum residues and heavy oils) into lower boiling products of high quality. The operational problems of upgrading heavy feeds relate to the presence of sulfur, nitrogen, metals, and considerable amounts of Conradson carbon residue. An efficient residue conversion process must be able to reduce the molecular weight of the feedstocks to material with boiling points below 550 C, increase the H-to-C ratio of the refined product, and remove heteroatoms and metals. Whereas the molecular weight reduction is normally achieved by C-C bond cracking above 400 C, often in the presence of acid catalysts, a higher H-to-C ratio can be obtained by either the rejection of carbon (as in coking) or the addition of hydrogen (as in hydrogenation processes). Slurry processes combine the flexibility of the carbon rejection with the high performance of the hydrogen addition processes. The origin of slurry processes is the Bergius-Pier technology (1920--1930) for the conversion of heavy oils and coal into distillates. Whereas the original Bergius-Pier technology did not use a catalyst, small amounts of inexpensive additives or finely dispersed hydrogenation catalysts can be used to increase the rates of the desired reactions. Catalysts can also inhibit coke formation by physically interfering with the coalescence of mesophase, which is the precursor of solid coke. Catalysts are used to reduce the severity of the process and to improve the quality of the products. Most of the research carried out in the past decade in the field of slurry processes has dealt with the identification of more effective and/or less expensive catalysts and the technological problems related to their use. Here the authors discuss both subjects, describing the path from the fundamental chemistry of dispersed catalytic systems to the development and initial commercialization of slurry processes.

  9. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to $2.97 per gallon. That's down $1.05 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.94 per gallon, down 6.7 cents from last week, and down $1.07

  10. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to $2.91 per gallon. That's down $1.10 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.88 per gallon, down 6.8 cents from last week, and down $1.13

  11. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to $2.84 per gallon. That's down $1.22 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.80 per gallon, down 7.4 cents from last week, and down $1.23

  12. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 4.1 cents from a week ago to $2.89 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.84 per gallon, down 5.4 cents from last week

  13. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to $3.04 per gallon. That's down 99.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.01 per gallon, down 3.6 cents from last week, and down $1.01

  14. Hot Oiling Spreadsheet

    Energy Science and Technology Software Center

    1993-10-22

    One of the most common oil-field treatments is hot oiling to remove paraffin from wells. Even though the practice is common, the thermal effectiveness of the process is not commonly understood. In order for producers to easily understand the thermodynamics of hot oiling, a simple tool is needed for estimating downhole temperatures. Such a tool has been developed that can be distributed as a compiled spreadsheet.

  15. Vegetable oil fuel

    SciTech Connect

    Bartholomew, D.

    1981-04-01

    In this article, the future role of renewable agricultural resources in providing fuel is discussed. it was only during this century that U.S. farmers began to use petroleum as a fuel for tractors as opposed to forage crop as fuel for work animals. Now farmers may again turn to crops as fuel for agricultural production - the possible use of sunflower oil, soybean oil and rapeseed oil as substitutes for diesel fuel is discussed.

  16. Characterization of heavy oil by capillary supercritical fluid chromatography

    SciTech Connect

    Fuhr, B.J.; Holloway, L.R.; Reichert, C.

    1988-06-01

    The characterization of heavy oils and bitumen produced by thermal recovery methods may aid in bringing about the following benefits: improved recovery methods, promotion of upgrading in the reservoir, improved emulsion treatment and optimized use of diluent for transportation. Because of the high proportion of nonvolatile compounds in heavy oils, gas chromatography (GC) is not particularly useful for characterization purposes. High performance liquid chromatography, while capable of analyzing a larger proportion of the nonvolatiles, possesses considerably less resolution than GC. By utilizing mobile phases in their supercritical region it is possible to study compounds that cannot be vaporized for GC analysis, yet still attain the resolution approaching that of GC. Another advantage of supercritical fluid chromatography (SFC) with the commonly used mobile phase CO/sub 2/, is the ability to employ the flame ionization detector (FID) which provides a uniform response over a wide range of compound types. SFC methods used on packed columns are excellent for low resolution separations into hydrocarbon group types and can produce data in about 5 to 15 min. A number of workers have described the use of packed silica columns for the separation and quantitation of saturate and aromatic component types in gasolines and middle distillate fuels, and of saturates, aromatics and polars in high boiling residues. In these studies the mobile phase was CO/sub 2/ and the detector was the FID. Campbell and Lee reported a semi-preparative SFC method using a packed, amino-modified silica column for the separation of aromatics according to the number of rings in a coal tar and a solved refined coal heavy distillate.

  17. Oil & Gas Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil & Gas Research Unconventional Resources NETL's onsite research in unconventional resources is focused on developing the data and modeling tools needed to predict and quantify ...

  18. Crude Oil Production

    Gasoline and Diesel Fuel Update

    Notes: Year-to-date totals include revised monthly production estimates by state published in Petroleum Navigator. Crude oil production quantities are estimated by state and summed ...

  19. Crude Oil Production

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Notes: Year-to-date totals include revised monthly production estimates by state published in Petroleum Navigator. Crude oil production quantities are estimated by state and summed ...

  20. Crude Oil Prices

    Energy Information Administration (EIA) (indexed site)

    Information AdministrationPetroleum Marketing Annual 2001 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  1. Crude Oil Prices

    Energy Information Administration (EIA) (indexed site)

    Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  2. Crude Oil Prices

    Energy Information Administration (EIA) (indexed site)

    Information AdministrationPetroleum Marketing Annual 1999 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  3. Upgrading heavy gas oils

    SciTech Connect

    Ferguson, S.; Reese, D.D.

    1986-05-20

    A method is described of neutralizing the organic acidity in heavy gas oils to produce a neutralization number less than 1.0 whereby they are rendered suitable as lube oil feed stocks which consists essentially of treating the heavy gas oils with a neutralizing amount of monoethanolamine to form an amine salt with the organic acids and then heating the thus-neutralized heavy gas oil at a temperature at least about 25/sup 0/F greater than the boiling point of water and for a time sufficient to convert the amine salts to amides.

  4. Venezuelan projects advance to develop world`s largest heavy oil reserves

    SciTech Connect

    Croft, G.; Stauffer, K.

    1996-07-08

    A number of joint venture projects at varying stages of progress promise to greatly increase Venezuela`s production of extra heavy oil. Units of Conoco, Chevron, Total, Arco, and Mobil have either signed agreements or are pursuing negotiations with affiliates of state-owned Petroleos de Venezuela SA on the development of huge reserves of 8--10{degree} gravity crude. Large heavy oil resources are present in the oil producing areas of eastern and western Venezuela, and the largest are in eastern Venezuela`s Orinoco heavy oil belt. The paper discusses the Orinoco heavy oil belt geology and several joint ventures being implemented.

  5. MARGINAL EXPENSE OIL WELL WIRELESS SURVEILLANCE MEOWS

    SciTech Connect

    Mason M. Medizade; John R. Ridgely; Donald G. Nelson

    2004-11-01

    A marginal expense oil well wireless surveillance system to monitor system performance and production from rod-pumped wells in real time from wells operated by Vaquero Energy in the Edison Field, Main Area of Kern County in California has been successfully designed and field tested. The surveillance system includes a proprietary flow sensor, a programmable transmitting unit, a base receiver and receiving antenna, and a base station computer equipped with software to interpret the data. First, the system design is presented. Second, field data obtained from three wells is shown. Results of the study show that an effective, cost competitive, real-time wireless surveillance system can be introduced to oil fields across the United States and the world.

  6. Sandia National Laboratories Releases Literature Survey of Crude Oil

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Properties Relevant to Handling and Fire Safety in Transport | Department of Energy Sandia National Laboratories Releases Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport Sandia National Laboratories Releases Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport March 24, 2015 - 3:30pm Addthis Paula Gant Paula Gant Principal Deputy Assistant Secretary The United States is in the midst of an energy renaissance,

  7. Field development options for a waterflooded heavy-oil reservoir

    SciTech Connect

    Kasraie, M. ); Sammon, P.H. ); Jespersen, P.J. )

    1993-09-01

    Battrum Unit 4 is a moderately heavy-oil reservoir in Saskatchewan producing under waterflood from a thin sand. This paper describes a history match of previous field behavior and systematically analyzes through the use of numerical simulation the potential benefits to production of further waterflooding (with and without infill drilling), steamflooding, and horizontal drilling. It is found that the remaining oil recovery potential of a steamflood with horizontal well is significantly higher than that of any of the waterflood options.

  8. Testing for market integration crude oil, coal, and natural gas

    SciTech Connect

    Bachmeier, L.J.; Griffin, J.M.

    2006-07-01

    Prompted by the contemporaneous spike in coal, oil, and natural gas prices, this paper evaluates the degree of market integration both within and between crude oil, coal, and natural gas markets. Our approach yields parameters that can be readily tested against a priori conjectures. Using daily price data for five very different crude oils, we conclude that the world oil market is a single, highly integrated economic market. On the other hand, coal prices at five trading locations across the United States are cointegrated, but the degree of market integration is much weaker, particularly between Western and Eastern coals. Finally, we show that crude oil, coal, and natural gas markets are only very weakly integrated. Our results indicate that there is not a primary energy market. Despite current price peaks, it is not useful to think of a primary energy market, except in a very long run context.

  9. Microbial enhanced oil recovery: Entering the log phase

    SciTech Connect

    Bryant, R.S.

    1995-12-31

    Microbial enhanced oil recovery (MEOR) technology has advanced internationally since 1980 from a laboratory-based evaluation of microbial processes to field applications. In order to adequately support the decline in oil production in certain areas, research on cost-effective technologies such as microbial enhanced oil recovery processes must focus on both near-term and long-term applications. Many marginal wells are desperately in need of an inexpensive improved oil recovery technology today that can assist producers in order to prevent their abandonment. Microbial enhanced waterflooding technology has also been shown to be an economically feasible technology in the United States. Complementary environmental research and development will also be required to address any potential environmental impacts of microbial processes. In 1995 at this conference, the goal is to further document and promote microbial processes for improved oil recovery and related technology for solving environmental problems.

  10. Oil Shale and Oil Sands Development Robert Keiter; John Ruple...

    Office of Scientific and Technical Information (OSTI)

    Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development Robert Keiter; John Ruple; Heather Tanana; Rebecca Holt 29 ENERGY...

  11. Oil shale technology

    SciTech Connect

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  12. Recovery of Navy distillate fuel from reclaimed product. Volume II. Literature review

    SciTech Connect

    Brinkman, D.W.; Whisman, M.L.

    1984-11-01

    In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). This first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in which experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 references and abstracts. This appendix, because of its volume, has been published separately as Volume 2.

  13. S. 234: A Bill to amend the Internal Revenue Codes of 1986 to provide incentives for oil and natural gas exploration, and for other purposes. Introduced in the Senate of the United States, One Hundredth First Congress, First Session, January 25, 1989

    SciTech Connect

    Not Available

    1989-01-01

    S. 234 is a bill to amend the Internal Revenue Codes of 1986 to provide incentives for oil and natural gas exploration, and for other purposes.

  14. S. 449: A Bill to amend the Internal Revenue Code of 1986 to provide incentives for oil and natural gas exploration and production, and for other purposes. Introduced in the Senate of the United States, One Hundredth First Congress, First Session, February 23, 1989

    SciTech Connect

    Not Available

    1989-01-01

    S. 449 is a bill to amend the Internal Revenue Code of 1986 to provide incentives for oil and natural gas exploration and production, and for other purposes.

  15. S. 42: A Bill to amend the Internal Revenue Code of 1986 to impose a fee on the importation of crude oil and refined petroleum products. Introduced in the Senate of the United States, One Hundredth First Congress, First Session, January 25, 1989

    SciTech Connect

    Not Available

    1989-01-01

    S. 42 is a bill to amend the Internal Revenue Code of 1986 to impose a fee on the importation of crude oil and refined petroleum products.

  16. Balancing oil and environment... responsibly.

    SciTech Connect

    Weimer, Walter C.; Teske, Lisa

    2007-01-25

    Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

  17. oil and gas portfolio reports

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Natural Gas & Oil Program Research Portfolio Reports The Office of Fossil Energy (FE)... focus areas: Unconventional Oil & Gas Resources; Ultra-Deepwater; and Small Producers. ...

  18. Oil Refund Decisions

    Office of Energy Efficiency and Renewable Energy (EERE)

    During the period 1973 through 1981, the Federal government imposed price and allocation controls of crude oil and refined petroleum products, such as gasoline and heating oil. During that period and for many years afterwards, the DOE had an enforcement program. When a firm was found to have overcharged, the DOE generally required the firm to make refunds to its customers.

  19. Vegetable oil as fuel

    SciTech Connect

    Not Available

    1980-11-01

    A review is presented of various experiments undertaken over the past few years in the U.S. to test the performance of vegetable oils in diesel engines, mainly with a view to on-farm energy self-sufficiency. The USDA Northern Regional Research Center in Peoria, Illinois, is screening native U.S. plant species as potential fuel oil sources.

  20. Catalytic hydroprocessing of SRC-II heavy distillate fractions. 4. Hydrodeoxygenation of phenolic compounds in the acidic fractions

    SciTech Connect

    Li, C.L.

    1985-01-01

    Heavy distillate obtained by hydroliquefaction of Powhatan No.5 coal was separated into 9 fractions by liquid chromatography. The very-weak-acid and weak-acid fractions were used as feeds in hydroprocessing experiments with sulphided Ni-Mo/Al/sub 2/O/sub 3/ catalyst at 350 C and 120 atm. The hydrodeoxygenation of the acidic compounds was shown to be rapid in comparison with other hydroprocessing reactions of coal liquids, including hydrogenation of aromatics, hydrodesulphurisation and hydrodenitrogenation.

  1. Corrosivity Of Pyrolysis Oils

    SciTech Connect

    Keiser, James R; Bestor, Michael A; Lewis Sr, Samuel Arthur; Storey, John Morse

    2011-01-01

    Pyrolysis oils from several sources have been analyzed and used in corrosion studies which have consisted of exposing corrosion coupons and stress corrosion cracking U-bend samples. The chemical analyses have identified the carboxylic acid compounds as well as the other organic components which are primarily aromatic hydrocarbons. The corrosion studies have shown that raw pyrolysis oil is very corrosive to carbon steel and other alloys with relatively low chromium content. Stress corrosion cracking samples of carbon steel and several low alloy steels developed through-wall cracks after a few hundred hours of exposure at 50 C. Thermochemical processing of biomass can produce solid, liquid and/or gaseous products depending on the temperature and exposure time used for processing. The liquid product, known as pyrolysis oil or bio-oil, as produced contains a significant amount of oxygen, primarily as components of water, carboxylic acids, phenols, ketones and aldehydes. As a result of these constituents, these oils are generally quite acidic with a Total Acid Number (TAN) that can be around 100. Because of this acidity, bio-oil is reported to be corrosive to many common structural materials. Despite this corrosive nature, these oils have the potential to replace some imported petroleum. If the more acidic components can be removed from this bio-oil, it is expected that the oil could be blended with crude oil and then processed in existing petroleum refineries. The refinery products could be transported using customary routes - pipelines, barges, tanker trucks and rail cars - without a need for modification of existing hardware or construction of new infrastructure components - a feature not shared by ethanol.

  2. Cryogenic distillation: a fuel enrichment system for near-term tokamak-type D-T fusion reactors

    SciTech Connect

    Misra, B.; Davis, J.F.

    1980-02-01

    The successful operation and economic viability of deuterium-tritium- (D-T-) fueled tokamak-type commercial power fusion reactors will depend to a large extent on the development of reliable tritium-containment and fuel-recycle systems. Of the many operating steps in the fuel recycle scheme, separation or enrichment of the isotropic species of hydrogen by cryogenic distillation is one of the most important. A parametric investigation was carried out to study the effects of the various operating conditions and the composition of the spent fuel on the degree of separation. A computer program was developed for the design and analysis of a system of interconnected distillation columns for isotopic separation such that the requirements of near-term D-T-fueled reactors are met. The analytical results show that a distillation cascade consisting of four columns is capable of reprocessing spent fuel varying over a wide range of compositions to yield reinjection-grade fuel with essentially unlimited D/T ratio.

  3. Remedial investigation work plan for Bear Creek Valley Operable Unit 1 (S-3 Ponds, Boneyard/Burnyard, Oil Landfarm, Sanitary Landfill 1, and the Burial Grounds, including Oil Retention Ponds 1 and 2) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text

    SciTech Connect

    Not Available

    1993-09-01

    The intent and scope of the work plan are to assemble all data necessary to facilitate selection of remediation alternatives for the sites in Bear Creek Valley Operable Unit 1 (BCV OU 1) such that the risk to human health and the environment is reduced to acceptable levels based on agreements with regulators. The ultimate goal is to develop a final Record Of Decision (ROD) for all of the OUs in BCV, including the integrator OU. However, the initial aim of the source OUs is to develop a ROD for interim measures. For source OUs such as BCV OU 1, data acquisition will not be carried out in a single event, but will be carried out in three stages that accommodate the schedule for developing a ROD for interim measures and the final site-wide ROD. The three stages are as follows: Stage 1, Assemble sufficient data to support decisions such as the need for removal actions, whether to continue with the remedial investigation (RI) process, or whether no further action is required. If the decision is made to continue the RI/FS process, then: Stage 2, Assemble sufficient data to allow for a ROD for interim measures that reduce risks to the human health and the environment. Stage 3, Provide input from the source OU that allows a final ROD to be issued for all OUs in the BCV hydrologic regime. One goal of the RI work plan will be to ensure that sampling operations required for the initial stage are not repeated at later stages. The overall goals of this RI are to define the nature and extent of contamination so that the impact of leachate, surface water runoff, and sediment from the OU I sites on the integrator OU can be evaluated, the risk to human health and the environment can be defined, and the general physical characteristics of the subsurface can be determined such that remedial alternatives can be screened.

  4. The United States natural gas industry

    SciTech Connect

    Gibson, D.E.

    1988-01-01

    The U.S. natural gas industry can only be understood within the context of the nation's attitudes toward the proper role of government within the U.S. economy. A review of regulatory history provides valuable insights to understanding the unique structure and functioning of the gas industry in the United States, as well as future directions for the industry. Tomorrow's natural gas industry will feature adequate gas supplies, unbundling of services, continuing competition with oil, and changed regulation.

  5. Microbial-enhanced waterflooding; Mink Unit project--

    SciTech Connect

    Bryant, R.S.; Burchfield, T.E. , Bartlesville, OK ); Dennis, M. ); Hitzman, D.O. )

    1990-02-01

    This paper reports on a microbial-enhanced waterflooding field project conducted in the Mink unit of the Delaware-Childers field in Nowata County, OK. A microbial formulation was injected into four injection wells and has been followed by periodic injections of molasses as nutrient. Laboratory and field procedures that were used to design the test are described. Improvements in both oil production rate and WOR's have been observed.

  6. The United States has significant natural gas

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to locate and bring into production. To help meet this challenge, the U.S. Department of Energy's Office of Fossil Energy over the years has amassed wide ranging expertise in areas related to deepwater resource location, production, safety and environmental protection. The goal of these activities has been to not only help overcome production and technical hurdles, but also improve the

  7. Economic model for seaborne oil trade. Master`s thesis

    SciTech Connect

    Kian-Wah, H.

    1996-03-01

    This thesis aims to provide some insights as to how oil prices and oil flows might vary with the carrying capacity of the tanker fleet as affected by political events. It provides an econometric analysis of tanker freight rates in the modern era and proposes a mathematical (quadratic) programming economic model that links the crude oil market to the supply elasticity of the world oil tanker fleet based on a competitive economy. The economic model can be considered as a version of the Walras-Cassel general-equilibrium system which possesses an economically meaningful equilibrium solution in terms of oil prices, freight rates and the pattern of oil distribution. The implementation of the model is completed using the General Algebraic Modeling System (GAMS). The study concludes with a scenario study showing how the model could be used to examine the importance of South East Asia`s sealanes in world seaborne oil trade. The model shows the economic vulnerability of oil importing nations, especially Japan, the United States, and Western Europe, to a possible closure of South East Asian sealanes.

  8. China shows increasing interest in heavy oil and oil sands

    SciTech Connect

    Not Available

    1986-12-01

    China and Canadian and US groups are cooperating in several areas to develop the heavy oil, asphalt, and oil sand deposits of China. The agreements dealing with exploration and upgrading are briefly described. The majority of the paper describes the occurrences of heavy oil, asphalt, and oil sands in China. 1 figure.

  9. Oil Shale Mining Claims Conversion Act. Hearing before the Subcommittee on Mineral Resources Development and Production of the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress, Second Session on S. 2089, H. R. 1039, April 22, 1988

    SciTech Connect

    Not Available

    1988-01-01

    The hearing was called to examine two bills which address the processing of oil shale mining claims and patents by the Department of the Interior under the General Mining Law of 1872. S.2089 would provide for certain requirements relating to the conversion of oil shale mining claims located under the Mining Law of 1872 to leases and H.R.1039 would amend section 37 of the Mineral Lands Leasing Act of 1920 relating to oil shale claims. Under the new bills the owners of oil shale mining claims must make an election within 180 days after enactment as to whether to convert their claims to leases or to maintain their claims by performing 1000 dollars of annual assessment work on the claim, filing annually an affidavit of assessment work performed, and producing oil shale in significant marketable amounts within 10 years from the date of enactment of the legislation.

  10. First joint SPE/DOE symposium on enhanced oil recovery, proceedings supplement

    SciTech Connect

    1980-01-01

    The First Joint Symposium on Enhanced Oil Recovery sponsored by the Society of Petroleum Engineers and the US Department of Energy was held in Tulsa, Oklahoma. Besides the thirty-three technical papers which covered all phases of enhanced oil recovery and were published in the Proceedings, the Symposium included a session on Enhanced Oil Recovery Incentives where ten papers were presented which discussed the status of enhanced oil recovery technology, and included papers on incentive programs of the United States, Canada and Venezuela. These papers are published in this Proceedings Supplement under the following titles: Federal Government Role in enhanced Oil Recovery; Financial Realities of an Adequate Petroleum Supply; Major Technology Constraints in Enhanced Oil Recovery; Decontrol-Opportunities and Dangers; Status of EOR Technology; Impact of Federal Incentives on US Production; Canadian Incentives Program; and Heavy Oil Incentives in Venezuela.

  11. State taxation on the production of crude oil: a comparison of nine states

    SciTech Connect

    Archibald, S.

    1981-06-01

    The purpose of this study is to compare the level of taxation on the production of oil in California to that which currently exists in other major oil-producing states. Two hypothetical oil corporations are constructed, then state and local taxes imposed on these corporations in nine major oil-producing states, including California, are compared and, in addition, a combined state and local tax rate levied on crude oil production in each of these states is determined. The states selected represent nine of the fifteen most oil-productive states in the United States today. The states used in the study ranked in terms of annual oil production are: Texas, Alaska, Louisiana, California, Wyoming, New Mexico, North Dakota, and Montana. (DMC)

  12. EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow

    Office of Energy Efficiency and Renewable Energy (EERE)

    The growth of renewable energy and renewable fuels in the United States will be significantly greater under scenarios involving high oil prices and stricter controls on greenhouse gas (GHG) emissions, according to DOE's Energy Information Administration (EIA).

  13. Oil shale research in China

    SciTech Connect

    Jianqiu, W.; Jialin, Q. (Beijing Graduate School, Petroleum Univ., Beijing (CN))

    1989-01-01

    There have been continued efforts and new emergence in oil shale research in Chine since 1980. In this paper, the studies carried out in universities, academic, research and industrial laboratories in recent years are summarized. The research areas cover the chemical structure of kerogen; thermal behavior of oil shale; drying, pyrolysis and combustion of oil shale; shale oil upgrading; chemical utilization of oil shale; retorting waste water treatment and economic assessment.

  14. Crude Oil Prices

    Energy Information Administration (EIA) (indexed site)

    20.86 20.67 20.47 20.24 20.32 19.57 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

  15. Oil & Natural Gas Technology

    Office of Scientific and Technical Information (OSTI)

    IN SITU THERMAL PROCESSING OF OIL SHALESANDS Authors: Michal Hradisky and Philip J. Smith DOE Award No.: DE-FE0001243 Reporting Period: October 1, 2009 - September 30, 2011 ...

  16. Hydroprocessing hydrocarbon oils

    SciTech Connect

    Simpson, H.D.; Borgens, P.B.

    1990-07-10

    This patent describes a catalytic hydroprocess of a hydrocarbon oil containing nitrogen or sulfur. It comprises: contacting a catalytic composition with the hydrocarbon oil under hydroprocessing conditions so as to produce a product hydrocarbon oil containing less nitrogen or sulfur than the hydrocarbon oil, the catalytic composition prepared by the method comprising the steps of impregnating porous refractory support particles with an aqueous impregnating solution comprising one or more Group VIB metal components, one or more phosphorus components and citric acid, the citric acid in a mole ratio to the Group VIB metal components calculated as the Group VIB metal trioxide of less than 1 to 1. The solution has a pH less than 1.0 and calcining the impregnated support particles to produce a catalytic composition containing a Group VIB metal component and a phosphorous component on the porous refractory oxide support.

  17. Oil Market Assessment

    Reports and Publications

    2001-01-01

    Based on Energy Information Administration (EIA) contacts and trade press reports, overall U.S. and global oil supplies appear to have been minimally impacted by yesterday's terrorist attacks on the World Trade Center and the Pentagon.

  18. Feasibility study of heavy oil recovery in the Midcontinent region (Kansas, Missouri, Oklahoma)

    SciTech Connect

    Olsen, D.K.; Johnson, W.I.

    1993-08-01

    This report is one of a series of publications assessing the feasibility/constraints of increasing domestic heavy oil production. Each report covers a select area of the United States. The Midcontinent (Kansas, Nssouri, Oklahoma) has produced significant oil, but contrary to early reports, the area does not contain the huge volumes of heavy oil that, along with the development of steam and in situ combustion as oil production technologies, sparked the area`s oil boom of the 1960s. Recovery of this heavy oil has proven economically unfeasible for most operators due to the geology of the formations rather than the technology applied to recover the oil. The geology of the southern Midcontinent, as well as results of field projects using thermal enhanced oil recovery (TEOR) methods to produce the heavy oil, was examined based on analysis of data from secondary sources. Analysis of the performance of these projects showed that the technology recovered additional heavy oil above what was produced from primary production from the consolidated, compartmentalized, fluvial dominated deltaic sandstone formations in the Cherokee and Forest City basins. The only projects producing significant economic and environmentally acceptable heavy oil in the Midcontinent are in higher permeability, unconsolidated or friable, thick sands such as those found in south-central Oklahoma. There are domestic heavy oil reservoirs in other sedimentary basins that are in younger formations, are less consolidated, have higher permeability and can be economically produced with current TEOR technology. Heavy oil production from the carbonates of central and wester Kansas has not been adequately tested, but oil production is anticipated to remain low. Significant expansion of Midcontinent heavy oil production is not anticipated because the economics of oil production and processing are not favorable.

  19. enhanced_oil_current_proj | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Enhanced Oil Recovery and Other Oil Resources Enhanced Oil Recovery and Other Oil Resources CO2 EOR | Other EOR & Oil Resources | Environmental | Completed Project Number Project ...

  20. Oil & Gas Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil & Gas Research Unconventional Resources NETL's onsite research in unconventional resources is focused on developing the data and modeling tools needed to predict and quantify potential risks associated with oil and gas resources in shale reservoirs that require hydraulic fracturing or other engineering measures to produce. Fugitive Emissions | Produced Water Management | Subsurface Fluid & Gas Migration | Induced Seismicity Offshore Resources Building the scientific understanding and

  1. " Million Housing Units, Final...

    Energy Information Administration (EIA) (indexed site)

    ... central air conditioning equipment for a business or farm building as well as another ... ,,"RSEs for Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ...

  2. Oil/gas collector/separator for underwater oil leaks

    DOEpatents

    Henning, Carl D.

    1993-01-01

    An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  3. Tonawanda North, New York, Site, Units 1 and 2 Fact Sheet

    Office of Legacy Management (LM)

    In 1974, the Ashland Oil Company constructed a drainage ditch and a bermed area for two petroleum product storage tanks on Tonawanda North, Unit 1. Soil removed during construction ...

  4. World oil - An essay on its spectacular 120-year rise (1859-1979), recent decline, and uncertain future

    SciTech Connect

    Linden, H.R.

    1987-01-01

    An analysis of the evolution of the oil security problems of import-dependent industrialized countries and of the rise and recent erosion of the market power of the major oil exporting countries, particularly those located in the Persian Gulf area. The counterproductive reaction of the United States and other large oil importers to the resulting oil supply and price instability, especially since the 1973-74 oil embargo, is critiqued. In addition, the synergism between the early commercialization of crude oil production and refining in the United States and the development of the automobile industry is discussed, and the long-term outlook for oil-base transportation fuels is assessed. OPEC's role in destabilizing the world oil market during the 1970s and its current efforts to restabilize it are evaluated, as is the likely future course of world oil prices and of U.S. and other non-OPEC production. An important finding of this study is that the share of oil in the world energy mix has peaked and will continue its downward trend and that recurring expectations for a sharp escalation of world oil prices and shortages are based on erroneous assessments of the fundamentals governing the oil business.

  5. Finding Hidden Oil and Gas Reserves

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Finding Hidden Oil and Gas Reserves Finding Hidden Oil and Gas Reserves Key Challenges: Seismic imaging methods, vital in our continuing search for deep offshore oil and gas...

  6. Microsoft Word - Heating Oil Season.docx

    Energy.gov [DOE] (indexed site)

    4-2015 Heating Oil Season Northeast Home Heating Oil Reserve Trigger Mechanism (Cents per Gallon, Except Where Noted) Week Residential Heating Oil Price Average Brent Spot Price ...

  7. Heating Oil Reserve History | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heating Oil Reserve History Heating Oil Reserve History Creation of an emergency reserve of heating oil was directed by President Clinton on July 10, 2000, when he directed ...

  8. Recycled waste oil: A fuel for medium speed diesel engines?

    SciTech Connect

    Cheng, A.B.L.; Poynton, W.A.; Howard, J.G.

    1996-12-31

    This paper describes the exploratory engine trials that Mirrlees Blackstone has undertaken to investigate the effect of fueling an engine using waste oil derived from used lubricants. The effect on the engine`s mechanical components, and thermal performance are examined, and the steps taken to overcome problems are discussed. The proposed engine is sited within the Research and Development facilities, housed separately from the manufacturing plant. The unit is already capable of operating on two different types of fuel with single engine set up. It is a 3 cylinder, 4-stroke turbocharged direct injection engine mounted on an underbase and it operates at 600 rpm, 15.0 bar B.M.E.P. (Brake Mean Effective Pressure). It is a mature engine, built {approximately} 20 years previously, and used for emergency stand-by duties in the company`s powerhouse. The test engine is coupled to an alternator and the electricity generated is fed to the national grid. Initial samples of treated fuel oil, analyzed by an independent oil analysis consultant, indicated that the fuel oil does not correspond to a normal fuel oil. They contained high concentrations of trace elements (i.e. calcium, phosphorus, lead, aluminum and silicon) which was consistent with sourcing from waste lubricating oils. The fuel oil was considered to be too severe for use in an engine.

  9. Residual oil upgrading utilizing fixed bed hydroprocessing technology

    SciTech Connect

    Hohnholt, J.; Fausto, C.

    1985-01-01

    Saber Refinery embarked upon major residual oil upgrading project in an effort to convert heavy atmospheric resids into gasoline and other marketable products. Selection of resid hydroprocessing as an HOC feed preparation unit was necessary for removal of impurities which include organic metallic compounds, nitrogen and sulfur, while enhancing feedstock crackability.

  10. Sludge formation during heavy oil upgrading

    SciTech Connect

    Storm, D.A.; Decanio, S.J.; Edwards, J.C.

    1995-12-31

    A soft coke-like substance often forms in the liquid product of visbreaking and hydrocracking processes for upgrading vacuum residue of heavy crude oil. This material usually limits the severity or conversion of the process because it accumulates in downstream equipment. Although the amount of such material produced depends on the crude oil, it has not been possible to correlate its production rate to chemical characteristics of the vacuum residue in a quantitative manner In this work we show that the amount of sludge produced per unit weight of vacuum residue feed in laboratory hydrotreating experiments can be correlated with four chemical characteristic of the vacuum residue: the degree of condensed polynuclear aromaticity, the average number of alkyl-groups substituting the polynuclear aromatics, the ratio of heptane insolubles to pentane insoluble-heptane solubles, and the H/C ratio of the latter fraction. The correlation coefficient is 0.95.

  11. Microbial enhancement of oil recovery: Recent advances

    SciTech Connect

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J.

    1992-01-01

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between research'' and field applications.'' In addition, several modeling and state-of-the-art'' presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  12. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Energy Information Administration (EIA) (indexed site)

    to account for 91% of the growth in world oil production in 2015 The United States is expected to provide nine out of every 10 barrels of new global oil supplies in 2015. In its new forecast, the U.S. Energy Information Administration said it expects world oil production to rise by 1.3 million barrels per day next year....with U.S. daily oil output alone increasing by 1.2 million barrels. Rising U.S. oil production, along with more fuel-efficient vehicles on America's highways, is expected to

  13. New CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil New CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil March 3, 2006 - 11:40am Addthis WASHINGTON , D.C. - The Department of Energy (DOE) released today reports indicating that state-of-the-art enhanced oil recovery techniques could significantly increase recoverable oil resources of the United States in the future. According to the findings, 89 billion barrels or more could eventually be added to

  14. Options for U.S. Petroleum Refineries to Process Additional Light Tight Oil

    Energy Information Administration (EIA) (indexed site)

    - Energy Information Administration Technical Options for Processing Additional Light Tight Oil Volumes Within the United States Release date: April 6, 2015 Preface U.S. oil production has grown rapidly in recent years. U.S. Energy Information Administration (EIA) data, which reflect combined production of crude oil and lease condensate, show a rise from 5.6 million barrels per day (bbl/d) in 2011 to 8.7 million bbl/d in 2014. Increasing production of light crude oil from low-permeability,

  15. Economic Implementation and Optimization of Secondary Oil Recovery Process: St. Mary West Field, Lafayette County, Arkansas

    SciTech Connect

    Brock P.E., Cary D.

    2003-03-10

    The purpose of this study was to investigate the economic appropriateness of several enhanced oil recovery processes that are available to a small mature oil field located in southwest Arkansas and to implement the most economic efficient process evaluated. The State of Arkansas natural resource laws require that an oilfield is to be unitized before conducting a secondary recovery project. This requires all properties that can reasonably be determined to include the oil productive reservoir must be bound together as one common lease by a legal contract that must be approved to be fair and equitable to all property owners within the proposed unit area.

  16. STEO December 2012 - oil production

    Energy Information Administration (EIA) (indexed site)

    Rise in 2012 U.S. oil production largest since 1859, output in 2013 seen topping 7 million bpd U.S. crude oil production is now expected to rise by about 760,000 barrels per day in 2012, the biggest annual increase in oil output since U.S. commercial crude oil production began in 1859. American oil producers are expected to pump a daily average of 6.4 million barrels of crude oil this year, according to the U.S. Energy Information Administrator's new monthly energy forecast. The annual increase

  17. Going Global: Tight Oil Production

    Gasoline and Diesel Fuel Update

    GOING GLOBAL: TIGHT OIL PRODUCTION Leaping out of North America and onto the World Stage JULY 2014 GOING GLOBAL: TIGHT OIL PRODUCTION Jamie Webster, Senior Director Global Oil Markets Jamie.webster@ihs.com 1 GOING GLOBAL: TIGHT OIL PRODUCTION Key Message: Tight Oil Will Have Unconventional Effects Tight Oil Production will change in the coming decades. It will be:  More global, as it leaps out of North America  More inclusive, as companies come to the US for experience and US companies go

  18. Abandoned Texas oil fields

    SciTech Connect

    Not Available

    1980-12-01

    Data for Texas abandoned oil fields were primarily derived from two sources: (1) Texas Railroad Commission (TRRC), and (2) Dwight's ENERGYDATA. For purposes of this report, abandoned oil fields are defined as those fields that had no production during 1977. The TRRC OILMASTER computer tapes were used to identify these abandoned oil fields. The tapes also provided data on formation depth, gravity of oil production, location (both district and county), discovery date, and the cumulative production of the field since its discovery. In all, the computer tapes identified 9211 abandoned fields, most of which had less than 250,000 barrel cumulative production. This report focuses on the 676 abandoned onshore Texas oil fields that had cumulative production of over 250,000 barrels. The Dwight's ENERGYDATA computer tapes provided production histories for approximately two-thirds of the larger fields abandoned in 1966 and thereafter. Fields which ceased production prior to 1966 will show no production history nor abandonment date in this report. The Department of Energy hopes the general availability of these data will catalyze the private sector recovery of this unproduced resource.

  19. Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Enhanced Oil Recovery to Fuel Future Oil Demands Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) ...

  20. International Oil and Gas Board International Oil and Gas Board...

    OpenEI (Open Energy Information) [EERE & EIA]

    Petroleum Company Syrian Petroleum Company Damascus Syria Syria http www spc sy com en production activities1 en php Yemen Ministry of Oil and Minerals Yemen Ministry of Oil and...

  1. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  2. Completed Enhanced Oil Recovery and Other Oil Resoureces Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Completed Enhanced Oil Recovery and Other Oil Resoureces Projects Active | Completed Projects Completed Enhanced Oil Recovery and Other Oil Resources Projects Project Number Project Name Primary Performer 10122-39 Novel Engineered Osmosis Technology: A Comprehensive Approach to the Treatment and Reuse of Produced Water and Drilling Wastewater Colorado School of Mines 11123-03 Cost-Effective Treatment of Produced Water Using Co-Produced Energy Sources - Phase II: Field Scale Demo and

  3. Oil production history in Albania oil fields and their perspective

    SciTech Connect

    Marko, D.; Moci, A.

    1995-12-31

    In this paper we will make a general presentation for oil fields in Albania, actual state, and their perspective.

  4. Hollow Fibers Structured Packings in Olefin/Paraffin Distillation: Apparatus Scale-Up and Long-Term Stability

    DOE PAGES [OSTI]

    Yang, Dali; Le, Loan; Martinez, Ronald; Morrison, Malcolm

    2013-06-21

    Following the conceptual demonstration of high separation efficiency and column capacity obtained in olefin/paraffin distillation using hollow fiber structured packings (HFSPs) in a bench scale (J. Membr. Sci.2006, 2007, and 2010), we scaled-up this process with a 10-fold increase in the internal flow rate and a 3-fold increase in the module length. We confirmed that the HFSPs technology gives high separation efficiency and column capacity in iso-/n-butane distillation for 18 months. We systematically investigated the effects of packing density, concentration of light component, reflux ratio, and module age on the separation efficiency and operating stability. The comprehensive characterizations using scanningmore » electron microscopy (SEM), Brunauer–Emmett–Teller (BET), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA) were carried out to probe the changes in the morphological, thermal, and mechanical properties of polypropylene (PP) hollow fibers over the aging process. Our results suggest that after a long-term exposure to light hydrocarbon environments at ≤70 °C the morphological and mechanical properties of the PP polymer do not degrade significantly in a propane/propylene and iso-/n-butane environment.« less

  5. Hollow Fibers Structured Packings in Olefin/Paraffin Distillation: Apparatus Scale-Up and Long-Term Stability

    SciTech Connect

    Yang, Dali; Le, Loan; Martinez, Ronald; Morrison, Malcolm

    2013-06-21

    Following the conceptual demonstration of high separation efficiency and column capacity obtained in olefin/paraffin distillation using hollow fiber structured packings (HFSPs) in a bench scale (J. Membr. Sci.2006, 2007, and 2010), we scaled-up this process with a 10-fold increase in the internal flow rate and a 3-fold increase in the module length. We confirmed that the HFSPs technology gives high separation efficiency and column capacity in iso-/n-butane distillation for 18 months. We systematically investigated the effects of packing density, concentration of light component, reflux ratio, and module age on the separation efficiency and operating stability. The comprehensive characterizations using scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA) were carried out to probe the changes in the morphological, thermal, and mechanical properties of polypropylene (PP) hollow fibers over the aging process. Our results suggest that after a long-term exposure to light hydrocarbon environments at ≤70 °C the morphological and mechanical properties of the PP polymer do not degrade significantly in a propane/propylene and iso-/n-butane environment.

  6. Mercury and tritium removal from DOE waste oils

    SciTech Connect

    Klasson, E.T.

    1997-10-01

    This work covers the investigation of vacuum extraction as a means to remove tritiated contamination as well as the removal via sorption of dissolved mercury from contaminated oils. The radiation damage in oils from tritium causes production of hydrogen, methane, and low-molecular-weight hydrocarbons. When tritium gas is present in the oil, the tritium atom is incorporated into the formed hydrocarbons. The transformer industry measures gas content/composition of transformer oils as a diagnostic tool for the transformers` condition. The analytical approach (ASTM D3612-90) used for these measurements is vacuum extraction of all gases (H{sub 2}, N{sub 2}, O{sub 2}, CO, CO{sub 2}, etc.) followed by analysis of the evolved gas mixture. This extraction method will be adapted to remove dissolved gases (including tritium) from the SRS vacuum pump oil. It may be necessary to heat (60{degrees}C to 70{degrees}C) the oil during vacuum extraction to remove tritiated water. A method described in the procedures is a stripper column extraction, in which a carrier gas (argon) is used to remove dissolved gases from oil that is dispersed on high surface area beads. This method appears promising for scale-up as a treatment process, and a modified process is also being used as a dewatering technique by SD Myers, Inc. (a transformer consulting company) for transformers in the field by a mobile unit. Although some mercury may be removed during the vacuum extraction, the most common technique for removing mercury from oil is by using sulfur-impregnated activated carbon (SIAC). SIAC is currently being used by the petroleum industry to remove mercury from hydrocarbon mixtures, but the sorbent has not been previously tested on DOE vacuum oil waste. It is anticipated that a final process will be similar to technologies used by the petroleum industry and is comparable to ion exchange operations in large column-type reactors.

  7. Distributed Bio-Oil Reforming

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Distributed Bio-Oil Reforming R. Evans, S. Czernik, R. French, M. Ratcliff National ... GAS 7 BIOMASS BIO-OIL CHAR For reactor or export Gas recycle For fluidization or export ...

  8. Assessment of heavy oil conversion

    SciTech Connect

    Gleim, W.T.K.

    1983-08-01

    Removal of benzene insoluble asphaltene components greatly facilitates and improves the subsequent upgrading of residual oils, the desulfurization in particular. For the upgrading of Venezualean oils, the Aurobon process is still the only feasible solution.

  9. This Week In Petroleum Summary Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    outage and was forced to reduce production. The BP Whiting refinery has a crude oil distillation unit (CDU) capacity of 413,500 barrels per calendar day (bd), and it is an...

  10. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect

    Not Available

    1991-01-01

    The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

  11. Petroecuador poised for broader oil role

    SciTech Connect

    Not Available

    1991-01-14

    A little more than a year after its restructuring, state owned Petroleos del Ecuador is poised to play a broader role as oil operator in Ecuador. The new Petroecuador, consisting of several independent units and a central governing body, has expanded its involvement in all phases of the industry, from exploration and production to transportation, refining, and marketing. Petroecuador hiked its initial budget for 1990 by about 30% from 1989, with added investment primarily earmarked for exploration and production. However, owing to a need for a general cut in public spending, the state company's budget was trimmed about $80 in second half 1990. This reduction was not expected to affect exploration and production.

  12. Heavy oil upgrading for the future

    SciTech Connect

    Reynolds, B.E.; Johnson, D.R.; Lasher, J.S.; Hung, C. )

    1989-01-01

    The Chevron RDS Hydrotreating Process and the Gulf Resid HDS Process were pioneers in this field, beginning with the startup of the first resid desulfurization unit in 1969. The merger of Chevron Corporation with Gulf Oil Corporation resulted in a versatile new RDS Hydrotreating technology which utilizes the best features of the original Chevron and Gulf processes. Continuing improvements in the catalyst and in process configuration have greatly increased the capability of combined Chevron RDS hydrotreating to provide deeper demetalation (HDM), denitrification (HDN), Ramscarbon removal (HDR), desulfurization (HDAS), and greater cracking conversion (HCR) while processing more difficult feedstocks. future. The process is detailed by the authors.

  13. Explaining EIA Crude Oil and Petroleum Product Price Data and Comparing with Other U.S. Government Data Sources, 2001 to 2010

    Reports and Publications

    2012-01-01

    This article describes the sampling frames and basic data collection methods for petroleum price data reported by Energy Information Administration (EIA) and other Government agencies. In addition, it compares and contrasts annual average prices reported by EIA with comparable prices from the Bureau of Labor Statistics (BLS) CPI (Consumer Price Indexes) for the retail prices of residential No. 2 distillate, on-highway diesel fuel and motor gasoline (all grades.) Further, it compares refiner wholesale/resale prices for No. 2 fuel oil, No. 2 diesel fuel, motor gasoline (all grades,) kerosene-type jet fuel and residual fuel oil reported by EIA with comparable prices from the BLS PPI (Producer Price Index.) A discussion of the various crude oil prices and spot/futures prices published by EIA and other Government agencies is also included in the article.

  14. Lubricant return comparison of naphthenic and polyol ester oils in R-134a household refrigeration applications

    SciTech Connect

    Reyes-Gavilan, J.L.; Flak, G.T.; Tritcak, T.R.

    1996-12-31

    This paper presents mineral oils and polyol esters as possible lubricant options for domestic refrigeration applications employing R-134a as the heat exchange fluid. A performance comparison, based on data presented, is made between the mineral oils and polyol esters evaluated. To more closely examine lubricant return with N-70 and R-134a and ensure that the oil is not contributing to any deterioration in efficiency due to its accumulation in evaporators, a special test unit was designed with a difficult oil return configuration and its performance carefully monitored. Oil return with a hydrofluorocarbon-miscible polyol ester, R-133-O was also evaluated in this setup and its performance results compared to those obtained with the naphthenic refrigeration oil.

  15. Assessment of opportunities to increase the recovery and recycling rates of waste oils

    SciTech Connect

    Graziano, D.J.; Daniels, E.J.

    1995-08-01

    Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

  16. Nineteenth oil shale symposium proceedings

    SciTech Connect

    Gary, J.H.

    1986-01-01

    This book contains 23 selections. Some of the titles are: Effects of maturation on hydrocarbon recoveries from Canadian oil shale deposits; Dust and pressure generated during commercial oil shale mine blasting: Part II; The petrosix project in Brazil - An update; Pathway of some trace elements during fluidized-bed combustion of Israeli Oil Shale; and Decommissioning of the U.S. Department of Energy Anvil Points Oil Shale Research Facility.

  17. Heating Oil and Propane Update

    Annual Energy Outlook

    Maps of states participating in Winter Fuels Survey Residential propane PADD map Residential heating oil PADD map

  18. Summary Max Total Units

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  19. Residential heating oil prices available

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil prices available The average retail price for home heating oil is $2.30 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region currently average $2.23

  20. Residential heating oil prices available

    Energy Information Administration (EIA) (indexed site)

    heating oil prices available The average retail price for home heating oil is $2.41 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region currently average $2.35 per gallon. This is Marcela Rourk with EIA, in Washington.