National Library of Energy BETA

Sample records for ocean power technologies

  1. Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7 8 System) - Reedsport PB150 Deployment and Ocean Test Project Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and Ocean Test Project Ocean Power ...

  2. Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Advanced, High Power, Next Scale, Wave Energy Conversion Device Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and Ocean Test ...

  3. MHK Technologies/Turbo Ocean Power Generator MadaTech 17 | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Turbo Ocean Power Generator MadaTech 17 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Turbo Ocean Power Generator MadaTech 17.jpg Technology...

  4. MHK Technologies/Ocean Powered Compressed Air Stations | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Description The Ocean Powered Compressed Air Station is a point absorber that uses an air pump to force air to a landbased generator The device only needs 4m water depth and...

  5. ocean energy technologies

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Tribal Energy Program Intellectual Property Current EC Partnerships How to Partner Small ... SunShot Grand Challenge: Regional Test Centers ocean energy technologies HomeTag:ocean ...

  6. Ocean Energy Technology Overview

    SciTech Connect (OSTI)

    none,

    2009-08-05

    Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

  7. Ocean Power (4 Activities)

    Education Teach & Learn

    Areas of the country that have an available coastline but are limited in other renewable resources can use the oceans to produce energy. We are familiar with the large hydroelectric dams that dot our nation, creating large reservoirs and flooding millions of acres of land. By turning to the restless seas we can find a source of energy that is not affected by clouds and the scarcity of wind. By using ocean power we can increase our need for power without having to deplete our existing non-renewable resources.

  8. NREL and Sandia National Laboratories (SNL) Support of Ocean Renewable Power Company's TidGen™ Power System Technology Readiness Advancement Initiative Project

    SciTech Connect (OSTI)

    LiVecchi, Al

    2015-05-07

    This document summarizes the tasks identified for National Laboratory technical support of Ocean Renewable Power Corporation (ORPC) DOE grant awarded under the FY10 Industry Solicitation DE-FOA-0000293: Technology Readiness Advancement Initiative. The system ORPC will deploy in Cobscook Bay, ME is known as the TidGen™ Power System. The Turbine Generator Unit (TGU) each have a rated capacity of 150 to 175 kW, and they are mounted on bottom support frames and connected to an onshore substation using an underwater power and control cable. This system is designed for tidal energy applications in water depths from 60 to 150 feet. In funding provided separately by DOE, National Laboratory partners NREL and SNL will provide in-kind resources and technical expertise to help ensure that industry projects meet DOE WWPP (Wind and Water Power Program) objectives by reducing risk to these high value projects.

  9. MHK Technologies/Ocean Wave Power Spar Buoy Engine | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    that power take off can efficiently take place Power can be taken off as high pressure water crankshaft torque or directly as DC electricity Mooring Configuration The most...

  10. Coupling Ocean Thermal Energy Conversion technology (OTEC) with nuclear power plants

    SciTech Connect (OSTI)

    Goldstein, M.K.; Rezachek, D.; Chen, C.S.

    1981-01-01

    The prospects of utilizing an OTEC Related Bottoming Cycle to recover waste heat generated by a large nuclear (or fossil) power plant are examined. With such improvements, OTEC can become a major energy contributor. 12 refs.

  11. Hawaii Oceanic Technology Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Oceanic Technology Inc Jump to: navigation, search Name: Hawaii Oceanic Technology Inc Region: United States Sector: Marine and Hydrokinetic Website: www.hioceanictech.com This...

  12. NREL: Water Power Research - Marine and Hydrokinetic Technology...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Renewable Energy Laboratory An Empirical Demonstration of Deterministic Sea Wave Prediction on Power Output: Jim Eder, Ocean Power Technologies Sea Wave Prediction Using Upstream ...

  13. Ocean Electric Power | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Ocean Electric Power Place: United Kingdom Sector: Renewable Energy Product: UK-based offshore project developer. The firm is actively engaged in the development of offshore...

  14. Indian National Institute of Ocean Technology | Open Energy Informatio...

    Open Energy Information (Open El) [EERE & EIA]

    of Ocean Technology Jump to: navigation, search Name: Indian National Institute of Ocean Technology Place: Chennai, Tamil Nadu, India Sector: Ocean Product: Research institute...

  15. MHK Technologies/Ocean Treader floating | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    homepage Ocean Treader floating.jpg Technology Profile Primary Organization Green Ocean Energy Ltd Project(s) where this technology is utilized *MHK ProjectsDevelopment of Ocean...

  16. Pelamis Wave Power Ocean Power Delivery Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Sector: Ocean Product: Scotland-based company specialising in the use of ocean power for electricity generation via its Pelamis convertor, which has been demonstrated up to 750kW....

  17. Ocean energy technologies: The state of the art: Final report

    SciTech Connect (OSTI)

    Carmichael, A.D.; Adams, E.E.; Glucksman, M.A.

    1986-11-01

    A state-of-the-art study of ocean energy technologies has been conducted to evaluate their potential use for the generation of electrical power. The more developed technologies are tidal energy, ocean thermal energy conversion (OTEC), and wave energy. In addition there has been a demonstration of a small ocean current turbine, and proposals have been made for salinity gradient devices and ocean wind turbines. Energy costs were estimated for representative base case systems for tidal, OTEC, and wave energy projects. The tidal energy scheme was predicted to have the lowest energy costs.

  18. Hawaii Ocean Science and Technology Park

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Tribal Energy Program Intellectual Property Current EC Partnerships How to Partner Small ... SunShot Grand Challenge: Regional Test Centers Hawaii Ocean Science and Technology Park ...

  19. MHK Technologies/Ocean | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    the MHK database homepage Ocean.jpg Technology Profile Primary Organization Hydro Green Energy LLC Project(s) where this technology is utilized *MHK ProjectsAlaska 35 *MHK...

  20. MHK Technologies/Ocean Wave Air Piston | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Ocean Wave Air Piston.jpg Technology Profile Primary Organization Green Ocean Wave Energy Technology Resource Click here Wave Technology Type Click here Attenuator...

  1. MHK Technologies/Ocean Energy Rig | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    the MHK database homepage Ocean Energy Rig.jpg Technology Profile Primary Organization Free Flow 69 Technology Type Click here Axial Flow Turbine Technology Description The Ocean...

  2. The Subcommittee on Water, Power, and Oceans House Committee...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources Testimony of ...

  3. Before the Subcommittee on Water, Power, and Oceans - House Natural...

    Energy Savers

    Water, Power, and Oceans - House Natural Resources Committee Before the Subcommittee on Water, Power, and Oceans - House Natural Resources Committee Testimony of Kenneth E. Legg, ...

  4. Energy Department Releases New Energy 101 Video on Ocean Power | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power April 30, 2013 - 12:40pm Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy FIND OUT MORE Read about the Energy Department's assessments of wave and

  5. Sandia Energy - Conventional Water Power: Technology Development

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Technology Development Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Technology Development Conventional Water Power: Technology...

  6. Voith Hydro Ocean Current Technologies | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Ocean Current Technologies Jump to: navigation, search Name: Voith Hydro Ocean Current Technologies Place: Germany Sector: Hydro Product: Germany-based JV between Voith Hydro and...

  7. MHK Technologies/THOR Ocean Current Turbine | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    THOR Ocean Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage THOR Ocean Current Turbine.jpg Technology Profile Primary...

  8. Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 January 27, 2012 - 11:30am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database

  9. MHK Technologies/The Ocean Hydro Electricity Generator Plant...

    Open Energy Information (Open El) [EERE & EIA]

    The Ocean Hydro Electricity Generator Plant.jpg Technology Profile Primary Organization Free Flow 69 Technology Type Click here Axial Flow Turbine Technology Description The O H E...

  10. Before the Subcommittee on Water, Power, and Oceans - House Natural

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resources Committee | Department of Energy Water, Power, and Oceans - House Natural Resources Committee Before the Subcommittee on Water, Power, and Oceans - House Natural Resources Committee Testimony of Kenneth E. Legg, Administrator Southeastern Power Administration Before the Subcommittee on Water, Power, and Oceans - House Natural Resources Committee 3-24-15_Kenneth_Legg FT HNR.pdf (31.41 KB) More Documents & Publications Before The Subcommittee on Water and Power - House Energy and

  11. MHK Technologies/Ocean Current Linear Turbine | Open Energy Informatio...

    Open Energy Information (Open El) [EERE & EIA]

    Current Linear Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Current Linear Turbine.jpg Technology Profile Primary...

  12. Ocean Energy Program Overview, Fiscal years 1990--1991. Programs in utility technologies

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The oceans are the world`s largest solar energy collector and storage system. Covering 71% of the earth`s surface, the oceans collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the US Department of Energy`s (DOE) Ocean Energy Program is to develop techniques that harness ocean energy cost effectively and in ways that do not harm the environment. The program seeks to develop ocean energy technology to a point at which industry can accurately assess whether the applications of the technology are viable energy conversion alternatives, or supplements to current power-generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the Ocean Energy Program has concentrated research that advances OTEC technology. The program also monitored developments in wave energy, ocean current, and salinity gradient concepts. It is not actively developing these technologies now. The mission of the Ocean Energy Program is to develop techniques to harness the vast solar energy stored in the oceans` waves, currents, and thermal and salinity gradients.

  13. Turner Hunt Ocean Renewable (TRL 4 System) - THOR's Power Method...

    Energy Savers

    More Documents & Publications CX-004722: Categorical Exclusion Determination Vortex Hydro Energy (TRL 5 6 System) - Advanced Integration of Power Take-Off in VIVACE Ocean...

  14. Before the Subcommittee on Water, Power, and Oceans House Natural...

    Office of Environmental Management (EM)

    House Natural Resources Committee Before the Subcommittee on Water, Power, and Oceans House Natural Resources Committee Testimony of Elliot E. Mainzer, Administrator, Bonneville...

  15. Ocean Power: Science Projects in Renewable Energy and Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    These links, product descriptions, and prices may change over time. Ocean Power For the Teacher The discussion of renewable energy sometimes focuses on what happens when the sun ...

  16. Ocean Energy Technology Basics | Department of Energy

    Energy.gov (indexed) [DOE]

    As the world's largest solar collectors, oceans contain thermal energy from the sun and produce mechanical energy from tides and waves. Even though the sun affects all ocean ...

  17. Ocean Energy Technology Overview: Federal Energy Management Program (FEMP)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

  18. Gaia Power Technologies | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Power Technologies Jump to: navigation, search Name: Gaia Power Technologies Place: New York, New York Zip: 10038 Sector: Efficiency Product: Provides distributed electrical power...

  19. Water Power Technologies

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  20. Federal Ocean Energy Technology: Program summary for fiscal year 1986

    SciTech Connect (OSTI)

    Not Available

    1987-10-01

    The Department of Energy's (DOE) Ocean Energy Technology (OET) Program is looking for cost-effective ways to harness ocean energy to help power tomorrow's world. Federally sponsored researchers are studying methods to transform the solar heat stored in the ocean's surface waters into electricity as well as new ways to convert wave energy into mechanical energy or electricity. This report provides a summary of research completed during FY 1986. Four major research areas are addressed in the work covered by this report: Thermodynamic Research and Analysis addresses the process and system analyses which provide the underlying understanding of physical effects which constitute the energy conversion processes, Experimental Verification and Testing provides confirmation of the analytical projections and empirical relationships, Materials and Structural Research addresses special materials compatibility issues related to operation in the sea. Much of its focus is on concepts for the system CWP which is a major technology cost driver, and Oceanographic, Environmental, and Geotechnical Research addresss those unique design requirements imposed by construction in steep slope coastal areas.

  1. Ocean Renewable Power Company | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    LLC was founded in 2004 for the purpose of generating reliable, competitive, emission-free electricity from the energy resources of the oceans. Coordinates: 45.511795,...

  2. Current practices and new technology in ocean engineering

    SciTech Connect (OSTI)

    McGuinness, T.; Shih, H.H.

    1986-01-01

    This book presents the papers given at a conference on wave power and marine engineering. Topics considered at the conference included remote sensing, ocean current measurement, air and spaceborne instrumentation, marine dynamics, real-time measurements, telemetry systems, seafloor measurement, computer-based data acquisition, materials and devices for underwater work systems, ocean system design analysis and reliability, ocean structure fatigue life prediction, underwater life support systems, sensor design, ocean thermal energy conversion, and wave energy converters.

  3. New Airborne Technology Measures Ocean Surface Currents for Offshore Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Production and Emergency Rescue Missions | Department of Energy Airborne Technology Measures Ocean Surface Currents for Offshore Energy Production and Emergency Rescue Missions New Airborne Technology Measures Ocean Surface Currents for Offshore Energy Production and Emergency Rescue Missions April 11, 2016 - 10:40am Addthis Ocean surface current velocities on image of sea surface temperatures, March 29, 2015. Figure from “Real Time Observing and Forecasting of Loop Currents in

  4. Director, Water Power Technologies Office

    Energy.gov [DOE]

    This position is located in the Water Power Technologies Office (WPTO) in the Office of Energy Efficiency and Renewable Energy (EERE). The mission of EERE is to create and sustain American...

  5. Argus Power Technology | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Argus Power Technology Jump to: navigation, search Name: Argus Power Technology Place: Zhengzhou, Henan Province, China Zip: 450001 Product: China-based company that manufactures...

  6. World Power Technologies | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Power Technologies Jump to: navigation, search Name: World Power Technologies Place: Edison, NJ Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

  7. Ocean Renewable Power Co (ORPC) (TRL 7 8 System)- TidGen (TM) Power System Commercialization Project

    Energy.gov [DOE]

    Ocean Renewable Power Co (ORPC) (TRL 7 8 System) - TidGen (TM) Power System Commercialization Project

  8. DOE Wind and Water Power Technologies Office

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wind and Water Power Technologies Office - Sandia Energy Energy Search Icon Sandia Home ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  9. Microturbine Power Conversion Technology Review

    SciTech Connect (OSTI)

    Staunton, R.H.

    2003-07-21

    In this study, the Oak Ridge National Laboratory (ORNL) is performing a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how versatile the designs are for potentially providing different services to the grid based on changes in market direction, new industry standards, and the critical needs of the local service provider. The project includes data gathering efforts and documentation of the state-of-the-art design approaches that are being used by microturbine manufacturers in their power conversion electronics development and refinement. This project task entails a review of power converters used in microturbines sized between 20 kW and 1 MW. The power converters permit microturbine generators, with their non-synchronous, high frequency output, to interface with the grid or local loads. The power converters produce 50- to 60-Hz power that can be used for local loads or, using interface electronics, synchronized for connection to the local feeder and/or microgrid. The power electronics enable operation in a stand-alone mode as a voltage source or in grid-connect mode as a current source. Some microturbines are designed to automatically switch between the two modes. The information obtained in this data gathering effort will provide a basis for determining how close the microturbine industry is to providing services such as voltage regulation, combined control of both voltage and current, fast/seamless mode transfers, enhanced reliability, reduced cost converters, reactive power supply, power quality, and other ancillary services. Some power quality improvements will require the addition of storage devices; therefore, the task should also determine what must be done to enable the power conversion circuits to

  10. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    SciTech Connect (OSTI)

    Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R

    2010-02-19

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.

  11. Turbines Off NYC East River Will Provide Power to 9,500 Residents...

    Energy.gov (indexed) [DOE]

    ... Addthis Related Articles Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Ocean Energy ...

  12. Ocean Power Technologies | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    1590 Reed Road Place: Pennington, New Jersey Zip: 08534 Region: Northeast - NY NJ CT PA Area Year Founded: 1994 Website: www.oceanpowertechnologies.com Coordinates:...

  13. MHK Technologies/Sea Solar Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Technology Profile Technology Resource Click here Ocean Thermal Energy Conversion (OTEC) Technology Type Click here Closed-cycle Technology Description A stationary floating...

  14. Vehicle Technologies Office: 2008 Advanced Power Electronics...

    Energy Savers

    Power Electronics and Electric Machinery R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual Progress Report ...

  15. Vehicle Technologies Office: 2013 Advanced Power Electronics...

    Energy Savers

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The ...

  16. Vehicle Technologies Office: 2011 Advanced Power Electronics...

    Energy Savers

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The ...

  17. Vehicle Technologies Office: 2009 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power Electronics R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report Annual report focusing on understanding and ...

  18. Fuel Cycle Comparison for Distributed Power Technologies

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microtur

  19. NREL: Concentrating Solar Power Research - Technology Basics

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Technology Basics Concentrating solar power (CSP) technologies can be a major contributor to our nation's future need for new, clean sources of energy, particularly in the Western...

  20. Chapter 4: Advancing Clean Electric Power Technologies | Biopower Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  1. EERE Success Story-Columbia Power Technologies, Inc. Deploys its Direct

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Drive Wave Energy Buoy | Department of Energy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy EERE Success Story-Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy April 9, 2013 - 12:00am Addthis In preparation for a full-scale bay/ocean demonstration and with EERE support, Columbia Power Technologies, Inc. (CPT) deployed an intermediate-scale wave energy converter to demonstrate and validate its direct drive wave energy Buoy technology,

  2. Advancing Concentrating Solar Power Technology, Performance, and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dispatchability | Department of Energy Advancing Concentrating Solar Power Technology, Performance, and Dispatchability Advancing Concentrating Solar Power Technology, Performance, and Dispatchability Advancing Concentrating Solar Power Technology, Performance, and Dispatchability Energy storage will help enable CSP compete by adding flexibility value to a high-variable-generation (solar plus wind) power system (see Mehos et al. 2016). Compared with PV, CSP systems are more complex to

  3. Chapter 4: Advancing Clean Electric Power Technologies | Solar Power Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Solar Power Technologies Chapter 4: Technology Assessments Introduction Solar energy

  4. Ocean Energy Projects Developing On and Off America's Shores | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores January 22, 2013 - 1:14pm Addthis Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Verdant testing its tidal energy device in New York's East

  5. Power Technologies Energy Data Book - Fourth Edition

    SciTech Connect (OSTI)

    Aabakken, J.

    2006-08-01

    This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  6. Power Technologies Energy Data Book - Third Edition

    SciTech Connect (OSTI)

    Aabakken, J.

    2005-04-01

    This report, prepared by NREL's Energy Analysis Office, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  7. Ocean Motion International LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    LLC Place: Saulsbury, Tennessee Zip: 38067 Sector: Ocean Product: Marine energy technology firm developing ocean wave powered generators. Coordinates: 35.052242,...

  8. Fuel Cycle Comparison for Distributed Power Technologies

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.

    2008-11-15

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  9. Concentrating Solar Power Projects by Technology | Concentrating...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Technology In this section, you can select a concentrating solar power (CSP) technology from the list below. You can then select a specific project and review a profile covering ...

  10. Cyclone Power Technologies Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Power Technologies Inc Place: Pompano Beach, Florida Zip: 33064 Product: Florida-based research and development company. The Company holds exclusive commercial rights to the...

  11. Power Tagging Technologies | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Superior, Colorado Zip: 80027 Product: Colorado-based developer of advanced digital signal processing technologies that enable real-time "power tagging" on the grid....

  12. Emerging Technologies: Energy Storage for PV Power

    SciTech Connect (OSTI)

    Ponoum, Ratcharit; Rutberg, Michael; Bouza, Antonio

    2013-11-30

    The article discusses available technologies for energy storage for photovoltaic power systems, and also addresses the efficiency levels and market potential of these strategies.

  13. Solar Energy Technologies Program: Concentrating Solar Power

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  14. Photon Power Technologies PPT | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    PPT Jump to: navigation, search Name: Photon Power Technologies (PPT) Place: Ecully, France Product: French PV system installer for residential and commercial systems. Coordinates:...

  15. WIND AND WATER POWER TECHNOLOGIES OFFICE

    Energy.gov (indexed) [DOE]

    available annual report summarizing key trends in the U.S. wind power market, with a ... 3 Report Contents * Installation trends * Industry trends * Technology trends * ...

  16. Nuclear power high technology colloquium: proceedings

    SciTech Connect (OSTI)

    Not Available

    1984-12-10

    Reports presenting information on technology advancements in the nuclear industry and nuclear power plant functions have been abstracted and are available on the energy data base.

  17. Controlled Power Technologies Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Technologies Ltd Place: Essex, United Kingdom Zip: SS15 6TP Product: Essex-based automotive component supply company involved in powertrain engineering, power electronics and...

  18. Surface Power Technologies | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    to: navigation, search Name: Surface Power Technologies Place: Ireland Sector: Solar, Wind energy Product: An Irish company supplying solar and micro-wind energy systems and...

  19. Vehicle Technologies Office: 2012 Advanced Power Electronics...

    Energy.gov (indexed) [DOE]

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive ...

  20. Vehicle Technologies Office: 2010 Advanced Power Electronics...

    Energy.gov (indexed) [DOE]

    More Documents & Publications Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report High Temperature, High Voltage Fully ...

  1. Fuel Cell Backup Power Technology Validation (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.

    2012-10-01

    Presentation about fuel cell backup power technology validation activities at the U.S. Department of Energy's National Renewable Energy Laboratory.

  2. Chapter 4: Advancing Clean Electric Power Technologies | Wind Power Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Wind Power Chapter 4: Technology Assessments NOTE: The 2015 U.S. Department of Energy

  3. HVDC power transmission technology assessment

    SciTech Connect (OSTI)

    Hauth, R.L.; Tatro, P.J.; Railing, B.D.; Johnson, B.K.; Stewart, J.R.; Fink, J.L.

    1997-04-01

    The purpose of this study was to develop an assessment of the national utility system`s needs for electric transmission during the period 1995-2020 that could be met by future reduced-cost HVDC systems. The assessment was to include an economic evaluation of HVDC as a means for meeting those needs as well as a comparison with competing technologies such as ac transmission with and without Flexible AC Transmission System (FACTS) controllers. The role of force commutated dc converters was to be assumed where appropriate. The assessment begins by identifying the general needs for transmission in the U.S. in the context of a future deregulated power industry. The possible roles for direct current transmission are then postulated in terms of representative scenarios. A few of the scenarios are illustrated with the help of actual U.S. system examples. non-traditional applications as well as traditional applications such as long lines and asynchronous interconnections are discussed. The classical ``break-even distance`` concept for comparing HVDC and ac lines is used to assess the selected scenarios. The impact of reduced-cost converters is reflected in terms of the break-even distance. This report presents a comprehensive review of the functional benefits of HVDC transmission and updated cost data for both ac and dc system components. It also provides some provocative thoughts on how direct current transmission might be applied to better utilize and expand our nation`s increasingly stressed transmission assets.

  4. Component technology for Stirling power converters

    SciTech Connect (OSTI)

    Thieme, L.G.

    1994-09-01

    NASA Lewis Research Center has organized a component technology program as part of the efforts to develop Stirling converter technology for space power applications. The Stirling space power program is part of the NASA High Capacity Power Project of the Civil Space Technology Initiative (CSTI). NASA Lewis is also providing technical management for a DOE/Sandia program to develop Stirling converters for solar terrestrial power producing electricity for the utility grid. The primary contractors for the space power and solar terrestrial programs develop component technologies directly related to their program goals. This Lewis component technology effort, while coordinated with the main programs, aims at longer term issues, advanced technologies, and independent assessments. This paper will present an overview of work on linear alternators, engine/alternator/load interactions and controls, heat exchangers, materials, life and reliability, and bearings.

  5. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Capture Technologies Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015

  6. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Storage Technologies Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Carbon Dioxide Storage Technologies

  7. Water Power Technologies Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Power Technologies Office Water Power Technologies Office Direct Current: From Water to Wattage Podcast Direct Current: From Water to Wattage Podcast Hydropower is America's oldest and largest source of clean, renewable energy. But can it grow to meet our changing needs? Follow our hosts on a journey from hydropower's origins to the new wave of technologies that could shape its future. Read more Amped Up for Water Amped Up for Water The Office of Energy Efficiency and Renewable Energy

  8. Concentrating Solar Power Tower Technology

    Energy.gov [DOE]

    In this b-roll, solar power towers' are systems that use an array of mirrors to focus the sun's energy on a tower-mounted heat exchanger to generate electricity.

  9. Chapter 4: Advancing Clean Electric Power Technologies | Marine and Hydrokinetic Power Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Value-Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power

  10. Power sources manufactures association : power technology roadmap workshop - 2006.

    SciTech Connect (OSTI)

    Bowers, John S.

    2006-03-01

    The Power Sources Manufacturers Association (PSMA) is pleased to announce the release of the latest Power Technology Roadmap Workshop Report. This Fifth Edition Workshop Report includes presentations and discussions from the workshop as seen by the participants that included many of the industry's most influential members representing end-users, power supply manufacturers, component suppliers, consultants and academia. This report provides detailed projections for the next three to four years of various technologies in a quantitative form. There was special emphasis on how the increasing use of digital technologies will affect the industry in the next four years. The technology trend analysis and the roadmap is provided for the following specific product families expected to be the areas of largest market growth: (1) Ac-dc front end power supplies--1 kW from a single phase ac source; (2) External ac-dc power supplies; (3) Dc-dc bus converters; and (4) Non-isolated dc-dc converters. Bruce Miller, Chairman of PSMA, stated that 'the Power Technology Roadmap Workshop Report is an extensive document that analyzes and provides projections for most major technical parameters for a specific power supply. It is a unique document as it contains technology/parametric trends in a roadmap fashion from a variety of diverse sources, giving significant depth to its content. No such information is available from any other source'. The Power Technology Roadmap Workshop Report is available at no cost as to PSMA Regular and Associate members and at a reduced price to Affiliate members as a benefit of membership. The report will be offered to non-members at a price of $2490. For further information or to buy a copy of the report, please visit the publications page or the PSMA website or contact the Association Office.

  11. Columbia Power Technologies Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    company is involved in the following MHK Technologies: Direct Drive Power Generation Buoy This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:...

  12. Microsoft PowerPoint - The DOE Bioenergy Technologies Office

    Office of Environmental Management (EM)

    Vehicle Technologies Office (VTO) Bioenergy Technologies Office (BETO) Fuel Cell Technologies Office (FCTO) Office of Renewable Power Solar Energy Technologies Office (SETO) ...

  13. Integration of ocean thermal energy conversion power plants with existing power systems

    SciTech Connect (OSTI)

    Arunasalam, N.

    1986-01-01

    The problem of integrating an Ocean Thermal Energy Conversion (OTEC) power plant with existing power systems is studied. A nonlinear model of an OTEC power system is developed. The dynamics of the large local induction motor load, and the coaxial cable connection to the mainland are included in the model. The effect of the motor load and the coaxial cable on the steady-state stability of the OTEC power plant is investigated using linearized analysis. The transient stability of the OTEC system is investigated through simulation. The contribution made by the motor load and the coaxial cable to the transient stability is studied. The occurrence of self excitation phenomena is analyzed using linear methods and simulation. The effects of wave and vessel motion on the electrical power output of the OTEC plant is investigated.

  14. New Technology and Lunar Power Option for Power Beaming Propulsion

    SciTech Connect (OSTI)

    Kare, J; Early, J; Krupke, W; Beach, R

    2004-10-11

    Orbit raising missions (LEO to GEO or beyond) are the only missions with enough current traffic to be seriously considered for near-term power beaming propulsion. Even these missions cannot justify the development expenditures required to deploy the required new laser, optical and propulsion technologies or the programmatic risks. To be deployed, the laser and optics technologies must be spin-offs of other funded programs. The manned lunar base nighttime power requirements may justify a major power beaming program with 2MW lasers and large optical systems. New laser and optical technologies may now make this mission plausible. If deployed these systems could be diverted for power beaming propulsion applications. Propulsion options include a thermal system with an Isp near 1000 sec., a new optical coupled thermal system with an Isp over 2000 sec. photovoltaic-ion propulsion systems with an Isp near 3000 sec., and a possible new optical coupled thermal system with an Isp over 2000 sec.

  15. Wireless Technologies Implications for Power Systems

    SciTech Connect (OSTI)

    Fuhr, Peter L; Manges, Wayne W; Schweitzer, Patrick; Kagan, Hesh

    2010-01-01

    Wireless technologies have advanced well beyond simple SCADA radio systems and point-to-point links. The current applications supported by industrial-grade wireless sensors and systems range from field measurements (classic I/O) to voice, video, asset tracking, mobile operators, etc. Which such a wide array of supported applications, the belief that wireless technology will only impact power systems in terms of wireless sensors is shortsighted. This paper, coauthored by a group of individuals intimately involved in the general realm of industrial wireless , presents a simple snapshot of current radio technologies that are used (or seriously contemplated for use) in power systems.

  16. Water Power Technologies Office Contacts and Organization | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy About the Program » Water Power Technologies Office Contacts and Organization Water Power Technologies Office Contacts and Organization The Water Power Technologies Office within the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy supports the development, deployment, and commercialization of water power technologies. Formerly part of the integrated Wind and Water Power Technologies Office, the Water Power Technologies Office was created as a stand-alone

  17. Design and analysis of a vertical axis ocean current power plant

    SciTech Connect (OSTI)

    Richard, C.C.; Hartzog, J.R.; Sorge, R.V.; Quigley, J.V.; Adams, G.R.

    1981-01-01

    This paper discusses a calculation of the power generated by a vertical axis ocean current power plant. An analytical model is presented and a computer solution described. Results of the calculation show the optimum angles of the blades about the vertical axis to maximize power output, as well as the total extractable power of the plant for various ocean current velocities. Tow tank tests are described for a scale model of the plant.

  18. Before the Subcommittee on Water, Power, and Oceans House Natural Resources

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Committee | Department of Energy House Natural Resources Committee Before the Subcommittee on Water, Power, and Oceans House Natural Resources Committee Testimony of Elliot E. Mainzer, Administrator, Bonneville Power Administration Before the Subcommittee on Water, Power, and Oceans House Natural Resources Committee 3-24-15_Elliot_Mainzer FT HNR.pdf (99.46 KB) More Documents & Publications Before The Subcommittee on Water and Power - House Committee on Natural Resources Before the

  19. Novel Manufacturing Technologies for High Power Induction and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Permanent Magnet Electric Motors Novel Manufacturing Technologies for High Power ... More Documents & Publications Novel Manufacturing Technologies for High Power Induction ...

  20. Wind and Water Power Technologies Office Position Available:...

    Energy Savers

    Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer Wind and Water Power Technologies Office Position Available: Marine and ...

  1. MHK Technologies/PowerBuoy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    that are electrically connected to provide the desired power capacity. OPT's "smart" PowerBuoy utilizes computer-based, proprietary technologies. Technological...

  2. Air Cooling Technology for Advanced Power Electronics and Electric...

    Energy.gov (indexed) [DOE]

    More Documents & Publications Air Cooling Technology for Power Electronic Thermal Control Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D ...

  3. Guangdong Mingyang Wind Power Technology Co Ltd | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Mingyang Wind Power Technology Co Ltd Jump to: navigation, search Name: Guangdong Mingyang Wind Power Technology Co Ltd Place: Zhongshan City, Guangdong Province, China Sector:...

  4. Beijing Wende Xingye Wind Power Technology Co Ltd | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Wende Xingye Wind Power Technology Co Ltd Jump to: navigation, search Name: Beijing Wende Xingye Wind Power Technology Co Ltd Place: Beijing, China Sector: Wind energy Product:...

  5. Shenyang Huaren Wind Power Technology Development Co Ltd | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Huaren Wind Power Technology Development Co Ltd Jump to: navigation, search Name: Shenyang Huaren Wind Power Technology Development Co Ltd Place: Shenyang, Liaoning Province, China...

  6. MHK Technologies/Sihwa tidal barrage power plant | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Sihwa tidal barrage power plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sihwa tidal barrage power plant.jpg Technology Profile...

  7. MHK Technologies/Jiangxia Tidal Power Station | Open Energy Informatio...

    Open Energy Information (Open El) [EERE & EIA]

    Jiangxia Tidal Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Jiangxia Tidal Power Station.jpg Technology Profile Primary...

  8. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Environmental Management (EM)

    Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US ...

  9. Wind Power Technologies Program At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    TECHNOLOGIES WIND POWER TECHNOLOGIES FY 2017 BUDGET AT-A-GLANCE The Wind Program accelerates U.S. deployment of clean, affordable, and reliable domestic wind power through ...

  10. Beijing Four Seasons Solar Power Technology Co Ltd | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Beijing Four Seasons Solar Power Technology Co Ltd Jump to: navigation, search Name: Beijing Four Seasons Solar Power Technology Co Ltd Place: Beijing, Beijing Municipality, China...

  11. Guodian Longyuan Power Technology Engineering Co Ltd | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Longyuan Power Technology Engineering Co Ltd Jump to: navigation, search Name: Guodian Longyuan Power Technology Engineering Co Ltd Place: Beijing Municipality, China Sector:...

  12. Assessment of Parabolic Trough and Power Tower Solar Technology...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts ... of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts ...

  13. Overview of Thermoelectric Power Generation Technologies in Japan...

    Energy.gov (indexed) [DOE]

    Discusses thermoelectric power generation technologies as applied to waste heat recovery, ... More Documents & Publications Overview of Thermoelectric Power Generation Technologies in ...

  14. Software Tools for Analysis of Concentrated Solar Power Technologies

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and Codes for Analysis of Concentrating Solar Power Technologies Clifford K. Ho Prepared ... and Codes for Analysis of Concentrating Solar Power Technologies Clifford K. Ho Solar ...

  15. Jiuquan Xinmao Science and Technology Wind Power | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Science and Technology Wind Power Jump to: navigation, search Name: Jiuquan Xinmao Science and Technology Wind Power Place: Gansu Province, China Sector: Wind energy Product: Gansu...

  16. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Information (Open El) [EERE & EIA]

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  17. Shanghai Pearl Hydrogen Power Source Technology | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Hydrogen Power Source Technology Jump to: navigation, search Name: Shanghai Pearl Hydrogen Power Source Technology Place: Shanghai, Shanghai Municipality, China Product: Chinese...

  18. Aker Wade Power Technologies LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Aker Wade Power Technologies LLC Jump to: navigation, search Name: Aker Wade Power Technologies LLC Place: Charlottesville, Virginia Zip: 22911 Sector: Services, Vehicles Product:...

  19. Quadrennial Technology Review 2015: Technology Assessments--Marine and Hydrokinetic Power

    SciTech Connect (OSTI)

    Sam Baldwin, Gilbert Bindewald, Austin Brown, Charles Chen, Kerry Cheung, Corrie Clark, Joe Cresko,

    2015-10-07

    Marine and hydrokinetic (MHK) technologies convert the energy of waves, tides, and river and ocean currents into electricity. With more than 50% of the U.S. population living within 50 miles of the nation’s coasts, MHK technologies hold significant potential to supply renewable electricity to consumers in coastal load centers, particularly in the near term in areas with high costs of electricity and longer term in high resource areas in close proximity to major coastal load centers. MHK resource assessments identify a total U.S. technical resource potential of approximately 1250–1850 terawatt-hours (TWh) of generation per year from ocean wave, ocean current, ocean tidal, and river current energy. Of this, the U.S. continental technical resource potential is approximately 500–750 TWh/year. For context, roughly 90,000 homes can be powered by 1 TWh of electricity generation each year. A cost-effective MHK industry could provide a substantial amount of electricity for the nation owing in large part to its unique advantages as a source of energy, including its vast resource potential, its close proximity to major coastal load centers, and its long-term predictability and near-term forecastability.

  20. Chapter 4: Advancing Clean Electric Power Technologies | Hydropower Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydropower Technology Chapter 4: Technology Assessments Introduction Hydropower has provided reliable and flexible base and peaking power generation in the United States for more than a century, contributing on average 10.5% of cumulative U.S. power sector net generation over the past six and one-half decades (1949-2013). 1 It is the nation's largest source of renewable electricity, with 79 GW of generating assets and 22 GW of pumped-storage assets in service, with hydropower providing half of

  1. Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)

    SciTech Connect (OSTI)

    Rabas, T.; Panchal, C.; Genens, L.

    1990-01-01

    There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

  2. Chapter 4: Advancing Clean Electric Power Technologies | Carbon...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High ...

  3. Chapter 4: Advancing Clean Electric Power Technologies | Advanced Plant Technologies Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Plant Technologies Chapter 4: Technology Assessments Overview of Advanced Plant Technologies for Solid Fuels Integral to management of carbon emissions from fossil and biomass power generation are efforts to improve base plant costs and efficiencies. The advanced plant technologies are combined with carbon capture and storage (CCS) technologies to minimize both emissions and costs. The non-capture components of a power plant offer opportunity for improving fuel conversion efficiencies,

  4. ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT

    SciTech Connect (OSTI)

    Ronald Bischoff; Stephen Doyle

    2005-01-20

    Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

  5. Water Power Program: Marine and Hydrokinetic Technologies

    Energy.gov [DOE]

    Pamphlet that describes the Office of EERE's Water Power Program in fiscal year 2009, including the fiscal year 2009 funding opportunities, the Small Business Innovation Research and Small Business Technology Transfer Programs, the U.S. hydrodynamic testing facilities, and the fiscal year 2008 Advanced Water Projects awards.

  6. Fuel Cycle Comparison of Distributed Power Generation Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Cycle Comparison of Distributed Power Generation Technologies Fuel Cycle Comparison of Distributed Power Generation Technologies This 2008 report by Argonne National Laboratory examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines. Fuel Cycle Comparison of Distributed Power Generation Technologies

  7. Backup Power Cost of Ownership Analysis and Incumbent Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    power and presents the estimated annualized cost of ownership for fuel cell backup power systems compared with the incumbent technologies of battery and diesel generator systems. ...

  8. DOE FreedomCAR and Vehicle Technologies Program Advanced Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FreedomCAR and Vehicle Technologies Program Advanced Power Electronics and Electrical ... Of Advanced Power Electronics and Electrical Machines May 3-5, 2005: Attendees, RSVP ...

  9. 2010 DOE EERE Vehicle Technologies Program Merit Review - Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power Electronics and Electrical Machines 2010 DOE EERE Vehicle Technologies Program Merit Review - Power Electronics and Electrical Machines APEEM research and development merit ...

  10. MHK Technologies/Uldolmok Pilot Tidal Current Power Plant | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Uldolmok Pilot Tidal Current Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uldolmok Pilot Tidal Current Power Plant.jpg...

  11. BurstPower Technologies Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    BurstPower Technologies Inc is a venture-backed start-up dedicated to developing and manufacturing ultracapacitors for the wireless communications and power quality...

  12. China Technology Solar Power Holdings Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Solar Power Holdings Ltd Jump to: navigation, search Name: China Technology Solar Power Holdings Ltd Place: Hong Kong Sector: Solar Product: China-based solar project developer,...

  13. DOE Vehicle Technologies Program 2009 Merit Review Report - Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power Electronics and Electric Motors DOE Vehicle Technologies Program 2009 Merit Review Report - Power Electronics and Electric Motors 2009meritreview3.pdf (747.75 KB) More ...

  14. Fuel Cell Comparison of Distributed Power Generation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Fuel Cycle Comparison of Distributed Power Generation Technologies Energy Systems ... or UChicago Argonne, LLC. ANLESD08-4 Fuel Cycle Comparison of Distributed Power ...

  15. Two-Phase Cooling Technology for Power Electronics with Novel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electronics with Novel Coolants Two-Phase Cooling Technology for Power Electronics with Novel Coolants 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program ...

  16. State Nuclear Power Technology Corporation SNPTC | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Technology Corporation SNPTC Jump to: navigation, search Name: State Nuclear Power Technology Corporation (SNPTC) Place: Beijing, Beijing Municipality, China Zip: 100032 Product:...

  17. Shenzhen Power Source Technology Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Technology Co., Ltd Place: China Product: China-based manufacturer and researcher of lithium rechargeable batteries. References: Shenzhen Power Source Technology Co., Ltd1 This...

  18. Power Electronics and Balance of System Hardware Technologies

    Energy.gov [DOE]

    DOE is targeting solar technology improvements related to power electronics and balance of system (BOS) hardware technologies to reduce the installed cost of solar photovoltaic (PV) electricity and...

  19. MHK Technologies/OceanStar | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    energy efficient process to smooth out the pulse characteristics common to wave energy in order to be electrical grid friendly The OceanStars high level of scalability is...

  20. Columbia Power Technologies, Inc. Deploys its Direct Drive Wave...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy April 9, 2013 - 12:00am ...

  1. EERE 2014 Wind Technologies Market Report Finds Wind Power at...

    Energy Savers

    2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices EERE 2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices August 10, 2015 - 11:00am ...

  2. Technological challenges associated with the sequestration of CO{sub 2} in the ocean

    SciTech Connect (OSTI)

    Nihous, G.C.

    1998-07-01

    The specific technological challenges associated with the delivery of CO{sub 2} into the deep ocean are qualitatively discussed. Since the projected effectiveness of CO{sub 2} oceanic sequestration so far requires ocean depths of kilometer(s) and large flow rates, the necessary pipelines bear some similarities with the cold seawater conduits of Ocean Thermal Energy Conversion (OTEC). A unique perspective is thus provided by examining the history of OTEC seawater systems. Design criteria specific to CO{sub 2} delivery pipelines are also mentioned, as well as their impact on future design work.

  3. Microturbine Power Conversion Technology Review, April 2003 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Microturbine Power Conversion Technology Review, April 2003 Microturbine Power Conversion Technology Review, April 2003 Oak Ridge National Laboratory (ORNL) performed a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how

  4. Innovative Hydropower Technology Now Powering an Apple Data Center |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Hydropower Technology Now Powering an Apple Data Center Innovative Hydropower Technology Now Powering an Apple Data Center November 24, 2015 - 9:43am Addthis Innovative Hydropower Technology Now Powering an Apple Data Center Sarah Wagoner Sarah Wagoner Communications Specialist, Wind and Water Power Technologies Office Above: Completed Intake Structure. Water from the irrigation canal is divided in two as it approaches the plant. The existing drop structure (foreground)

  5. Overview of Thermoelectric Power Generation Technologies in Japan

    Energy.gov [DOE]

    Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

  6. An assessment of research and development leadership in ocean energy technologies

    SciTech Connect (OSTI)

    Bruch, V.L.

    1994-04-01

    Japan is clearly the leader in ocean energy technologies. The United Kingdom also has had many ocean energy research projects, but unlike Japan, most of the British projects have not progressed from the feasibility study stage to the demonstration stage. Federally funded ocean energy research in the US was stopped because it was perceived the technologies could not compete with conventional sources of fuel. Despite the probable small market for ocean energy technologies, the short sighted viewpoint of the US government regarding funding of these technologies may be harmful to US economic competitiveness. The technologies may have important uses in other applications, such as offshore construction and oil and gas drilling. Discontinuing the research and development of these technologies may cause the US to lose knowledge and miss market opportunities. If the US wishes to maintain its knowledge base and a market presence for ocean energy technologies, it may wish to consider entering into a cooperative agreement with Japan and/or the United Kingdom. Cooperative agreements are beneficial not only for technology transfer but also for cost-sharing.

  7. SunLab: Advancing Concentrating Solar Power Technology

    SciTech Connect (OSTI)

    1998-11-24

    Concentrating solar power (CSP) technologies, including parabolic troughs, power towers, and dish/engines, have the potential to provide the world with tens of thousands of megawatts of clean, renewable, cost-competitive power.

  8. Chapter 4: Advancing Clean Electric Power Technologies | Geothermal Power Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal Power Chapter 4: Technology Assessments Introduction Geothermal power taps into earth's internal heat as an energy source. While geothermal currently constitutes less than 1% of total U.S. electricity generation, 1 it is regionally much more significant in the western United States. Vast amounts of heat are contained in the interior of the earth from the slow decay of radioactive elements and the heat remaining from earth's formation. This heat flows to the surface at low rates

  9. Chapter 4: Advancing Clean Electric Power Technologies | Fast-Spectrum Reactors Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Fast-spectrum Reactors Chapter 4:

  10. Smart Technology Brings Power to the People

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.; Gephart, Julie M.

    2006-12-01

    Imagine youre at home one Saturday morning on the computer, as your son takes a shower, your daughter is watching TV, and a load of laundry is in your washer and dryer. Meanwhile, the fragrance of fresh-brewed coffee fills the house. You hear a momentary beep from the dryer that tells you that if you were to look, a high-energy price indicator would be displayed on the front panels of some of your favorite appliances. This tells you that you could save money right now by using less energy. (Youve agreed to this arrangement to help your utility avoid a substation upgrade. In return, you get a lower rate most of the time.) So you turn off some of the unneeded lights in your home and opt to wait until evening to run the dishwasher. Meanwhile, some of your largest appliances have automatically responded to this signal and have already reduced your homes energy consumption, saving you money. On January 11, 2006, demonstration projects were launched in 200 homes in the Pacific Northwest region of the United States to test and speed adoption of new smart grid technologies that can make the power grid more resilient and efficient. Pacific Northwest National Laboratory, a U.S. Department of Energy national laboratory in Richland, Washington, is managing the yearlong study called the Pacific Northwest GridWise Testbed Demonstration, a project funded primarily by DOE. Through the GridWise Demonstration projects, researchers are gaining insight into energy consumers behavior while testing new technologies designed to bring the electric transmission system into the information age. Northwest utilities, appliance manufacturers and technology companies are also supporting this effort to demonstrate the devices and assess the resulting consumer response. A combination of devices, software and advanced analytical tools will give homeowners more information about their energy use and cost, and we want to know if this will modify their behavior. Approximately 100 homes on the

  11. Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison This cost of ownership analysis identifies the factors impacting the value proposition for fuel cell backup power and presents the estimated annualized cost of ownership for fuel cell backup power systems compared with the incumbent technologies of battery and diesel generator systems. The analysis compares three

  12. Chapter 4 - Advancing Clean Electric Power Technologies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Chapter 4 - Advancing Clean Electric Power Technologies Chapter 4 - Advancing Clean Electric Power Technologies Chapter 4 - Advancing Clean Electric Power Technologies Clean electric power is paramount to today's mission to meet our interdependent security, economic, and environmental goals. While supporting aggressive emission reductions, the traditional market drivers such as reliability, safety, and affordability must be maintained and enhanced. The current portfolio of electric

  13. New High-Power Laser Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High-Power Laser Technology New High-Power Laser Technology December 10, 2013 - 10:38am Addthis Foro Energy partners with Dept of Energy to commercialize high power lasers for the oil, natural gas, geothermal, and mining industries. photo courtesy of Foro Energy. Foro Energy partners with Dept of Energy to commercialize high power lasers for the oil, natural gas, geothermal, and mining industries. photo courtesy of Foro Energy. The Geothermal Technologies Office (GTO) partners with cutting- edge

  14. DOE Awards $20 Million to Develop Geothermal Power Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Awards $20 Million to Develop Geothermal Power Technologies DOE Awards $20 Million to Develop Geothermal Power Technologies September 22, 2010 - 10:48am Addthis Power of geothermal power units. DOE announced on September 15 its selection of seven projects to research, develop, and demonstrate cutting-edge geothermal energy technologies involving low-temperature fluids, geothermal fluids recovered from oil and gas wells, and highly pressurized geothermal fluids. Today's

  15. Novel Manufacturing Technologies for High Power Induction and Permanent

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Magnet Electric Motors | Department of Energy Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting pm004_grant_2012_o.pdf (1.3 MB) More Documents & Publications Novel Manufacturing Technologies for High Power Induction and Permanent Magnet

  16. Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Motors R&D Annual Progress Report | Department of Energy Advanced Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on

  17. New Technologies Power Wearable Devices through Body Power or...

    Open Energy Information (Open El) [EERE & EIA]

    Power Wearable Devices through Body Power or the Environment Home > Groups > No Battery Wearables WikiSysop's picture Submitted by WikiSysop(15) Member 12 August, 2014 -...

  18. Chapter 4: Advancing Clean Electric Power Technologies | Hybrid Nuclear-Renewable Energy Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Hybrid Nuclear-Renewable Energy Systems Chapter 4: Technology Assessments Introduction and Background This Technology Assessment summarizes the current state of knowledge of nuclear-renewable hybrid

  19. Chapter 4: Advancing Clean Electric Power Technologies | Stationary Fuel Cells Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Stationary Fuel Cells Chapter 4: Technology Assessments Introduction to

  20. Chapter 4: Advancing Clean Electric Power Technologies | Supercritical Carbon Dioxide Brayton Cycle Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Supercritical Carbon Dioxide Brayton Cycle Chapter 4: Technology Assessments Introduction The

  1. EIS-0140: Ocean State Power Project, Tennessee Gas Pipeline Company

    Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to evaluate potential impacts of construction and operation of a new natural gas-fired, combined-cycle power plant which would be located on a 40.6-acre parcel in the town of Burrillville, Rhode Island, as well as construction of a 10-mile pipeline to transport process and cooling water to the plant from the Blackstone River and a 7.5-mile pipeline to deliver No. 2 fuel oil to the site for emergency use when natural gas may not be available. The Economic Regulatory Administration adopted the EIS on 7/15/1988.

  2. Pulsed Power Technology at Sandia National Laboratories

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    are some specific sites on Pulsed Power MAGPIE Pulsed Power Facility, Imperial College NIF Naval Research Laboratory, Plasma Physics Division Reviews of U.S. Fusion Policy UKAEA...

  3. Sentry Power Technology | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Place: New Castle, Delaware Zip: 19720 Product: The company develop and sell battery-driven back up uninterrupted power supply power supply systems. References: Sentry...

  4. thermo-electric power conversion technology

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal ... carbon dioxide (sCO2)Brayton-cycle power conversion as ... By ...

  5. MHK Technologies/Oregon State University Columbia Power Technologies...

    Open Energy Information (Open El) [EERE & EIA]

    here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition Early Stage Development & Design & Engineering Technology Description When...

  6. EERE Success Story-Tennessee, Pennsylvania: Porous Power Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Improves Lithium Ion Battery, Wins R&D 100 Award | Department of Energy Tennessee, Pennsylvania: Porous Power Technologies Improves Lithium Ion Battery, Wins R&D 100 Award EERE Success Story-Tennessee, Pennsylvania: Porous Power Technologies Improves Lithium Ion Battery, Wins R&D 100 Award August 19, 2013 - 2:16pm Addthis Porous Power Technologies, partnered with Oak Ridge National Laboratory (ORNL), developed SYMMETRIX HPX-F, a nanocomposite separator for improved lithium-ion

  7. Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Motors R&D Annual Progress Report | Department of Energy Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The APEEM subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and

  8. Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Motors R&D Annual Progress Report | Department of Energy Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing

  9. Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Motors R&D Annual Progress Report | Department of Energy Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing

  10. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Field Workers | Department of Energy Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC)

  11. Pulsed Power Technology at Sandia National Laboratories

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Technology Programs and Capabilities Experimental and Theoretical Programs Electromagnetic Technology at Sandia National Laboratories HEDP & ICF Simulation Codes ALEGRA Spect3D--A...

  12. Fuel Cell Comparison of Distributed Power Generation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  13. PowerPlus Technologies GmbH | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    GmbH Jump to: navigation, search Name: PowerPlus Technologies GmbH Place: Gera, Germany Zip: 7548 Product: Micro combined heat and power plant manufacturer (4.7 kWe)....

  14. Baoding Tianwei Wind Power Technology Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Co Ltd Jump to: navigation, search Name: Baoding Tianwei Wind Power Technology Co Ltd Place: Baoding, Hebei Province, China Zip: 71051 Sector: Wind energy Product: A subsidary...

  15. IEA-Technology Roadmap: Concentrating Solar Power | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Power Screenshot References: IEA-CSP Roadmap1 "This roadmap identifies technology, economy and policy goals and milestones needed to support the development and deployment of...

  16. Vehicle Technologies Office Merit Review 2014: Power Electronics Packaging

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Power...

  17. Concentrating Solar Power: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  18. Rapid Modeling of Power Electronics Thermal Management Technologies: Preprint

    SciTech Connect (OSTI)

    Bennion, K.; Kelly, K.

    2009-08-01

    Describes a method of rapidly evaluating trade-offs associated with alternative packaging configurations and thermal management technologies for power electronics packaging.

  19. 2014 Water Power Program Peer Review Compiled Presentations: Hydropower Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document contains the compiled hydropower technologies presentations from the U.S. Department of Energy 2014 Water Power Program Peer Review, held February 25-27, 2014.

  20. Vehicle Technologies Office: Power Electronics Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Power Electronics Research and Development Vehicle Technologies Office: Power Electronics Research and Development To reach the EV Everywhere Grand Challenge goal, the Vehicle Technologies Office (VTO) is supporting research and development (R&D) to lower the cost and improve the performance of power electronics in electric drive vehicles. Vehicle power electronics primarily process and control the flow of electrical energy in hybrid and plug-in electric vehicles,

  1. Geothermal Power Generation Plant; 2010 Geothermal Technology Program Peer

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Review Report | Department of Energy Power Generation Plant; 2010 Geothermal Technology Program Peer Review Report Geothermal Power Generation Plant; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review adse_003_lund.pdf (189.07 KB) More Documents & Publications Feasibility of EGS Development at Bradys Hot Springs, Nevada Concept Testing and Development at the Raft River Geothermal Field, Idaho Detecting Fractures Using Technology

  2. Chapter 4: Advancing Clean Electric Power Technologies | Crosscutting Technologies in Carbon Dioxide Capture and Storage Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  3. Sandia National Laboratories: Pulsed-Power Science and Technology

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Facebook Twitter YouTube Flickr RSS Pulsed Power Pulsed-Power Science and Technology Advanced Pulsed Power Concepts SNL Remains One of the World's Premier Pulsed-Power Research and Applications Center Advanced Pulsed Power Concepts Planetary Research High Energy Density Physics Planetary Research Astrophysics SNL experiments may force revision of astrophysical models of the universe Astrophysics Inertial Confinement Fusion Innovative concepts could lead to "break-even" fusion in the

  4. Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison

    SciTech Connect (OSTI)

    Kurtz, J.; Saur, G.; Sprik, S.; Ainscough, C.

    2014-09-01

    This cost of ownership analysis identifies the factors impacting the value proposition for fuel cell backup power and presents the estimated annualized cost of ownership for fuel cell backup power systems compared with the incumbent technologies of battery and diesel generator systems. The analysis compares three different backup power technologies (diesel, battery, and fuel cell) operating in similar circumstances in four run time scenarios (8, 52, 72, and 176 hours).

  5. Solar Technology Acceleration Center is Powering Up - News Releases | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Solar Technology Acceleration Center is Powering Up October 21, 2009 Members of the Solar Technology Acceleration Center (SolarTAC) and supporters convened in Aurora, Colo., today, to mark a milestone in "Powering Up" one of the world's largest solar test and demonstration facilities. Since announcing the initial launch of SolarTAC one year ago, the site infrastructure development has progressed to the point where members can now break ground for their planned solar technology

  6. Energy Department Announces New Concentrating Solar Power Technology

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Investments to American Industry, Universities | Department of Energy Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces New Concentrating Solar Power Technology Investments to American Industry, Universities June 13, 2012 - 2:28pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Building off investments in innovative solar photovoltaic technologies announced at the SunShot Grand Challenge Summit in Denver, Colorado earlier

  7. Porous Power Technologies | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    80026 Product: Porous Power is a Colorado-based developer of microporous, laminatable battery separators. Coordinates: 42.706102, -88.48126 Show Map Loading map......

  8. 2011 Water Power Technologies Peer Review Report

    SciTech Connect (OSTI)

    Zayas, Jose; Reed, Michael

    2012-06-01

    This report provides findings from the peer review meeting held in November 2011 to review the progress and accomplishments of the Energy Department Water Power Program.

  9. Chapter 4: Advancing Clean Electric Power Technologies

    Energy.gov (indexed) [DOE]

    dioxide power cycles, hybrid systems matching renewables with nuclear or fossil, and energy storage. Advanced capabilities in materials, computing, and manufacturing can...

  10. Power Generation Asset Management Technology Roadmap M

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    conditions degrade, and the likelihood of equipment damage or failure increases. Such failures can result in forced outages of units that can hamper BPA's ability to meet power...

  11. Novel Dry Cooling Technology for Power Plants

    Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  12. Power Tower Technology Roadmap and cost reduction plan.

    SciTech Connect (OSTI)

    Mancini, Thomas R.; Gary, Jesse A.; Kolb, Gregory J.; Ho, Clifford Kuofei

    2011-04-01

    Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

  13. Chapter 4 — Advancing Clean Electric Power Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This chapter describes the current status and future outlook for power generation technologies, and identifies RDD&D directions that will contribute to a portfolio of technology options that can meet future regional demands. A combination of flexible technology options will be required to meet increasing power needs in the U.S. and globally. The QTR focuses on technological advances to meet U.S. energy needs and challenges, recognizing that these also offer opportunities for cooperative research that will expedite the international deployment of these technologies.

  14. NREL SBV Pilot Water Power Technologies

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    performance and reliability and lower the cost of energy of marine energy and hydropower technologies. With NREL, partners can: * Collaborate with experts to develop...

  15. Power Technology Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Inc Place: Houston, Texas Zip: 77024 Product: R&D company focused on alternative battery technology. Coordinates: 29.76045, -95.369784 Show Map Loading map......

  16. FMC high power density electric drive technology

    SciTech Connect (OSTI)

    Shafer, G.A.

    1994-12-31

    FMC has developed a unique capability in energy-efficient, high-performance AC induction electric drive systems for electric and hybrid vehicles. These drives will not only be important to future military ground combat vehicles, but will also provide significant competitive advantages to industrial and commercial machinery and vehicles. The product line under development includes drive motors and associated power converters directed at three power/vehicle weight classes. These drive systems cover a broad spectrum of potential vehicle applications, ranging from light pickup trucks to full-size transit buses. The drive motors and power converters are described.

  17. The Industrialization of Thermoelectric Power Generation Technology

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presents module and system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost scalability, raw material availability and module reliability

  18. Quadrennial Technology Review 2015: Technology Assessments--Wind Power

    SciTech Connect (OSTI)

    none,

    2015-10-07

    Wind power has become a mainstream power source in the U.S. electricity portfolio, supplying 4.9% of the nation’s electricity demand in 2014. With more than 65 GW installed across 39 states at the end of 2014, utility-scale wind power is a cost-effective source of low-emissions power generation throughout much of the nation. The United States has significant sustainable land-based and offshore wind resource potential, greater than 10 times current total U.S. electricity consumption. A technical wind resource assessment conducted by the Department of Energy (DOE) in 2009 estimated that the land-based wind energy potential for the contiguous United States is equivalent to 10,500 GW capacity at 80 meters (m) hub and 12,000 GW capacity at 100 meters (m) hub heights, assuming a capacity factor of at least 30%. A subsequent 2010 DOE report estimated the technical offshore wind energy potential to be 4,150 GW. The estimate was calculated from the total offshore area within 50 nautical miles of shore in areas where average annual wind speeds are at least 7 m per second at a hub height of 90 m.

  19. Chapter 4 - Advancing Clean Electric Power Technologies | Department...

    Office of Environmental Management (EM)

    Crosscutting Technologies in Carbon Dioxide Capture and Storage (942.79 KB) 4H Fast-spectrum Reactors (904.92 KB) 4I Geothermal Power (1.04 MB) 4J High Temperature Reactors (1.17 ...

  20. Conventional Hydropower Technologies, Wind And Water Power Program...

    Energy.gov (indexed) [DOE]

    ... For example, the program is creating a database of Conventional Hydropower Technologies WIND AND WATER POWER PROGRAM C L E A N C I T I E S Grant County Public Utility District ...

  1. Motion-to-Energy (M2E) Power Generation Technology

    ScienceCinema (OSTI)

    INL

    2016-07-12

    INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking.

  2. MHK Technologies/Direct Drive Power Generation Buoy | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    license agreement with Columbia Power Technologies to jointly develop a direct drive wave energy conversion device Designed to be anchored 2 5 miles off the Oregon coast in 130...

  3. Combined Heat & Power Technology Overview and Federal Sector Deployment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation covers the Combined Heat & Power Technology Overview and Federal Sector Deployment from Oakridge National Laboratory. The presentation is from the FUPWG Spring Meeting, held on May 22, 2013 in San Francisco, California.

  4. Testimonials - Partnerships in Combined Heat and Power Technologies...

    Office of Environmental Management (EM)

    We've implemented a number of solutions around controls technologies specific to CHP systems that can be rolled out to a number of combined heat and power systems as well as ...

  5. Argonne Lab's Breakthrough Cathode Technology Powers Electric Vehicles of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Today | Department of Energy Argonne Lab's Breakthrough Cathode Technology Powers Electric Vehicles of Today Argonne Lab's Breakthrough Cathode Technology Powers Electric Vehicles of Today February 14, 2011 - 6:15pm Addthis Jeff Chamberlain Speaks at Brookings Battery Forum | Photo Courtesy of Audra Capas, 5StarPR Jeff Chamberlain Speaks at Brookings Battery Forum | Photo Courtesy of Audra Capas, 5StarPR David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable

  6. Prediction of Technological Failures in Nuclear Power Plant Operation

    SciTech Connect (OSTI)

    Salnykov, A. A.

    2015-01-15

    A method for predicting operating technological failures in nuclear power plants which makes it possible to reduce the unloading of the generator unit during the onset and development of an anomalous engineering state of the equipment by detecting a change in state earlier and taking suitable measures. With the circulating water supply loop of a nuclear power plant as an example, scenarios and algorithms for predicting technological failures in the operation of equipment long before their actual occurrence are discussed.

  7. Testimonials - Partnerships in Combined Heat and Power Technologies -

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cummins Inc. | Department of Energy Combined Heat and Power Technologies - Cummins Inc. Testimonials - Partnerships in Combined Heat and Power Technologies - Cummins Inc. Addthis Text Version The words "Office of Energy Efficiency & Renewable Energy, U.S. Department of Energy, EERE Partnership Testimonials," appear on the screen, followed by "Kevin Keene, Project Director, Cummins" and footage of a man. Kevin Keene: Working with the Department of Energy has been

  8. Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Machinery R&D Annual Progress Report | Department of Energy Power Electronics and Electric Machinery R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual Progress Report 2008_apeem_report.pdf (6.95 MB) More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices

  9. Vehicle Technologies Office Merit Review 2014: Thermal Control of Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electronics of Electric Vehicles with Small Channel Coolant Boiling | Department of Energy Thermal Control of Power Electronics of Electric Vehicles with Small Channel Coolant Boiling Vehicle Technologies Office Merit Review 2014: Thermal Control of Power Electronics of Electric Vehicles with Small Channel Coolant Boiling Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation

  10. Combined Heat and Power (CHP) Technology Development

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    John Storey and Tim Theiss Oak Ridge National Laboratory U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Objective of the ORNL CHP R&D program The project objectives are to improve the efficiency and viability of Combined Heat and Power systems and high-efficiency electrical generation systems, while supporting the U.S. manufacturing base. 

  11. Advanced maintenance, inspection & repair technology for nuclear power plants

    SciTech Connect (OSTI)

    Hinton, B.M.

    1994-12-31

    Maintenance, inspection, and repair technology for nuclear power plants is outlined. The following topics are discussed: technology for reactor systems, reactor refueling bridge, fuel inspection system, fuel shuffling software, fuel reconstitution, CEA/RCCA/CRA inspection, vessel inspection capabilities, CRDM inspection and repair, reactor internals inspection and repair, stud tensioning system, stud/nut cleaning system, EDM machining technology, MI Cable systems, core exit T/C nozzle assemblies, technology for steam generators, genesis manipulator systems, ECT, UT penetrant inspections, steam generator repair and cleaning systems, technology for balance of plant, heat exchangers, piping and weld inspections, and turbogenerators.

  12. Ocean energy program summary

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71% of the earth's surface, they collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the US Department of Energy's (DOE) Ocean Energy Technology (OET) Program is to develop techniques that harness this ocean energy cost-effectively and in a way that does not harm the environment. The program seeks to develop ocean energy technology to a point where industry can accurately assess whether the technology is a viable energy conversion alternative, or supplement, to current power-generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the OET Program is concentrating on research that advances the OTEC technology. The program also continues to monitor and study developments in wave energy, ocean current, and salinity gradient concepts; but it is not actively developing these technologies now. 13 figs.

  13. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect (OSTI)

    Janos Beer; Karen Obenshain

    2006-07-15

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  14. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect (OSTI)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  15. Combined Heat and Power Technology Fact Sheets Series: Steam Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Turbines Steam turbines are a mature technology and have been used since the 1880s for electricity production. Most of the electricity generated in the United States is produced by steam turbines integrated in central station power plants. In addition to central station power, steam turbines are also commonly used for combined heat and power (CHP) instal- lations (see Table 1 for summary of CHP attributes). Applications Based on data from the CHP Installation Database, 1 there are 699 sites in

  16. Chapter 4: Advancing Clean Electric Power Technologies | Light Water Reactors Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Light Water Reactors Chapter 4: Technology Assessments Past, Present, and Future of the Technology The world's first full-scale nuclear power plant (NPP) devoted exclusively to peacetime uses came online in 1957. Light water reactors (LWRs) are now a mature technology, with over 350 operational LWRs worldwide (Figure 4.M.1) and over 60 under construction (Figure 4.M.2). 1 Note that the Fukushima accident adversely affected nuclear power operations in Japan (and other countries throughout the

  17. Space nuclear power, propulsion, and related technologies.

    SciTech Connect (OSTI)

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already

  18. Vehicle Technologies Office Merit Review 2015: Technology Requirements for High Power Applications of Wireless Power Transfer

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about technology...

  19. Klamath Falls: High-Power Acoustic Well Stimulation Technology

    SciTech Connect (OSTI)

    Black, Brian

    2006-07-24

    Acoustic well stimulation (AWS) technology uses high-power sonic waves from specific frequency spectra in an attempt to stimulate production in a damaged or low-production wellbore. AWS technology is one of the most promising technologies in the oil and gas industry, but it has proven difficult for the industry to develop an effective downhole prototype. This collaboration between Klamath Falls Inc. and the Rocky Mountain Oilfield Testing Center (RMOTC) included a series of tests using high-power ultrasonic tools to stimulate oil and gas production. Phase I testing was designed and implemented to verify tool functionality, power requirements, and capacity of high-power AWS tools. The purpose of Phase II testing was to validate the production response of wells with marginal production rates to AWS stimulation and to capture and identify any changes in the downhole environment after tool deployment. This final report presents methodology and results.

  20. Magnet Technology for Power Converters: Nanocomposite Magnet Technology for High Frequency MW-Scale Power Converters

    SciTech Connect (OSTI)

    2012-02-27

    Solar ADEPT Project: CMU is developing a new nanoscale magnetic material that will reduce the size, weight, and cost of utility-scale PV solar power conversion systems that connect directly to the grid. Power converters are required to turn the energy that solar power systems create into useable energy for the grid. The power conversion systems made with CMUs nanoscale magnetic material have the potential to be 150 times lighter and significantly smaller than conventional power conversion systems that produce similar amounts of power.

  1. Thermal Management of Power Semiconductor Packages - Matching Cooling Technologies with Packaging Technologies (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.; Moreno, G.

    2010-04-27

    Heat removal for power semiconductor devices is critical for robust operation. Because there are different packaging options, different thermal management technologies, and a range of applications, there is a need for a methodology to match cooling technologies and package configurations to target applications. To meet this need, a methodology was developed to compare the sensitivity of cooling technologies on the overall package thermal performance over a range of power semiconductor packaging configurations. The results provide insight into the trade-offs associated with cooling technologies and package configurations. The approach provides a method for comparing new developments in power semiconductor packages and identifying potential thermal control technologies for the package. The results can help users select the appropriate combination of packaging configuration and cooling technology for the desired application.

  2. Aquantis Ocean Current Turbine Development Project Report

    SciTech Connect (OSTI)

    Fleming, Alex J.

    2014-08-23

    The Aquantis® Current Plane (“C-Plane”) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  3. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  4. Important technology considerations for space nuclear power systems

    SciTech Connect (OSTI)

    Kuspa, J.P.; Wahlquist, E.J.; Bitz, D.A.

    1988-03-01

    This paper discusses the technology considerations that guide the development of space nuclear power sources (NPS) by the Department of Energy (DOE) to meet a wide variety of applications. The Department and its predecessor agencies have been developing NPS since the 1950s and producing NPS for spacecraft for the National Aeronautics and Space Administration (NASA) and the Department of Defense (DOD) since the early 1960s. No one nuclear power type, isotope or reactor, will suffice over the entire range of mission power required. Nor is one type of power conversion system, be it static or dynamic, the optimum choice of all space nuclear power system applications. There is a need for DOE, in partnership with its users, NASA and DOD, to develop a variety of types of space nuclear power sources -- isotope-static, isotope-dynamic, reactor-static, and reactor-dynamic -- to meet mission requirements well into the next century. 2 figs., 1 tab.

  5. Software and codes for analysis of concentrating solar power technologies.

    SciTech Connect (OSTI)

    Ho, Clifford Kuofei

    2008-12-01

    This report presents a review and evaluation of software and codes that have been used to support Sandia National Laboratories concentrating solar power (CSP) program. Additional software packages developed by other institutions and companies that can potentially improve Sandia's analysis capabilities in the CSP program are also evaluated. The software and codes are grouped according to specific CSP technologies: power tower systems, linear concentrator systems, and dish/engine systems. A description of each code is presented with regard to each specific CSP technology, along with details regarding availability, maintenance, and references. A summary of all the codes is then presented with recommendations regarding the use and retention of the codes. A description of probabilistic methods for uncertainty and sensitivity analyses of concentrating solar power technologies is also provided.

  6. Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)

    SciTech Connect (OSTI)

    Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

    1990-07-01

    This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

  7. Technology requirements for high-power Lithium Lorentz Force accelerators

    SciTech Connect (OSTI)

    Polk, J.; Frisbee, R.; Krauthamer, S.; Tikhonov, V.; Semenikhin, S.; Kim, V.

    1997-01-01

    Lithium Lorentz Force Accelerators (LFA{close_quote}s) are capable of processing very high power levels and are therefore applicable to a wide range of challenging missions. An analysis of a reusable orbit transfer vehicle with a solar or nuclear electric power source was performed to assess the applicability of high-power LFA{close_quote}s to this mission and to define engine performance and lifetime goals to help guide the technology development program. For this class of missions, the emphasis must be on achieving high efficiency at an Isp of 4000{endash}5000 s at power levels of 200{endash}250 kWe. The engines must demonstrate very reliable operation for a service life of about 3000 hours. These goals appear to be achievable with engine technologies currently under development. {copyright} {ital 1997 American Institute of Physics.}

  8. Toward integrated PV panels and power electronics using printing technologies

    SciTech Connect (OSTI)

    Ababei, Cristinel; Yuvarajan, Subbaraya; Schulz, Douglas L.

    2010-07-15

    In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)

  9. Combined Heat and Power Technology Fact Sheets Series: Reciprocating Engines

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power Technology Fact Sheet Series Reciprocating Engines Reciprocating internal combustion engines are a mature tech- nology used for power generation, transportation, and many other purposes. Worldwide production of reciprocating internal combustion engines exceeds 200 million units per year. 1 For CHP installations, reciprocating engines have capacities that range from 10 kW to 10 MW. Multiple engines can be inte- grated to deliver capacities exceeding 10 MW in a single plant. Several

  10. MHK Technologies/Small power take off module | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    module.jpg Technology Profile Primary Organization Wavegen subsidiary of Voith Siemens Hydro Power Generation Technology Resource Click here Wave Technology Description The 18...

  11. Free-piston Stirling technology for space power

    SciTech Connect (OSTI)

    Slaby, J.G.

    1994-09-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA`s new Civil Space Technology Initiative (CSTI). The overall goal of CSTI`s High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed in this paper is the completion of the Space Power Demonstrator Engine (SPDE) testing - culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engines (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding. The success of the SPDE at 650 K has resulted in a more ambitious Stirling endeavor - the design, fabrication, test and evaluation of a designed-for-space 25 kW per cylinder Stirling Space Engine (SSE). The SSE will operate at a hot metal temperature of 1050 K using superalloy materials. This design is a low temperature confirmation of the 1300 K design. It is the 1300 K free-piston Stirling power conversion system that is the ultimate goal; to be used in conjunction with the SP-100 reactor. The approach to this goal is in three temperature steps. However, this paper concentrates on the first two phases of this program - the 650 K SPDE and the 1050 K SSE.

  12. Deregulation, technology bringing opportunities for power cost reduction

    SciTech Connect (OSTI)

    Harris, B.; Ennis, P.

    1999-09-01

    Operators in the oil and gas industry have many opportunities to improve their production costs through better management of their mechanical and electrical power equipment. Simple and available equipment such as capacitors can be installed to save money. In California and Canada and soon in other states, decentralized power gives operators the freedom to enter into contracts for electricity services tailored to the needs of the load. These contracts may be less straightforward and involve more risk than in the past. In addition, new opportunities exist and more are coming in the form of distributed power equipment such as microturbines that can be installed and operated at low costs to make many marginal fields economical. For diligent operators, cost savings and new technologies promise to improve profitability and mitigate risk. Part 2 of this 2-part series describes how soon oilfield operators will be able to make better deals for power -- or disconnect from the power grid entirely and install small generating units.

  13. Innovative applications of technology for nuclear power plant productivity improvements

    SciTech Connect (OSTI)

    Naser, J. A.

    2012-07-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  14. Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy

    Energy.gov [DOE]

    Columbia Power Technologies, Inc. is working to advance their wave energy buoy to commercial readiness.

  15. Modeling The Potential For Thermal Concentrating Solar Power Technologies

    SciTech Connect (OSTI)

    Zhang, Yabei; Smith, Steven J.; Kyle, G. Page; Stackhouse, Jr., Paul W.

    2010-10-25

    In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal Concen-trating Solar Power (CSP) technologies. A representation of CSP performance that is suit-able for incorporation into economic modeling tools is developed. We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The representation of CSP cost and performance developed here was implemented in the ObjECTS MiniCAM long-term integrated assessment model. Datasets for global solar resource characteristics as applied to CSP technology were also developed. The regional and global potential of thermal CSP technologies is examined.

  16. Development of a demonstration power plant by ocean thermal energy conversion (OTEC)

    SciTech Connect (OSTI)

    Ito, F.; Takazawa, K.; Terayama, T.

    1984-01-01

    At the opening ceremony, the system was praised by leading figures invited from the Oceanic non-oil-producing countries. The power generation test of the OTEC demonstration plant was completed with many new records attained. As engineers who have participated in this project, the authors believe that they have gained confidence in their ability to construct a first-stage commercial OTEC plant of the built-on-land type, though admitting that there still remain some points to be improved. Subjects requiring further study are improvements of material and installation methods enabling the use of water intake piping with larger diameters, further improvement of heat transfer performance at the seawater side (tube inside) of the heat transfer tubes, etc. Since the commercialization of an OTEC system depends mainly on the economical level of the system, cost reduction in the manufacture of equipment and construction is also required.

  17. MHK Technologies/FRI El Sea Power System | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    FRI El Sea Power System.jpg Technology Profile Primary Organization FRI EL Sea Power S r l Technology Type Click here Axial Flow Turbine Technology Description The device is...

  18. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Capture for Natural Gas and Industrial Applications Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  19. Ocean Thermal Energy Conversion: An overview

    SciTech Connect (OSTI)

    Not Available

    1989-11-01

    Ocean thermal energy conversion, or OTEC is a technology that extracts power from the ocean's natural thermal gradient. This technology is being pursued by researchers from many nations; in the United States, OTEC research is funded by the US Department of Energy's Ocean Energy Technology program. The program's goal is to develop the technology so that industry can make a competent assessment of its potential -- either as an alternative or as a supplement to conventional energy sources. Federally funded research in components and systems will help OTEC to the threshold of commercialization. This publication provides an overview of the OTEC technology. 47 refs., 25 figs.

  20. Ocean energy resources: the impact of OTEC

    SciTech Connect (OSTI)

    Ditmars, J.D.

    1980-01-01

    The status of OTEC technological development is summarized with emphasis on the potential impacts of OTEC power production on the ocean environment, including implications for impacts to climate. (MHR)

  1. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Wide Bandgap Semiconductors for Power Electronics Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wide Bandgap Semiconductors for Power Electronics Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Wide Bandgap Semiconductors for Power Electronics is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR

  2. Combined Heat and Power Technology Fact Sheets Series: Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel cells use an electrochemical process to convert the chemical energy in a fuel to electricity. In contrast to recipro- cating engines and gas turbines, fuel cells generate electric- ity without combusting the fuel. The first practical applica- tion for fuel cells emerged in the 1950s when fuel cells were used to provide onboard power for spacecraft. Fuel cells continue to be used in space exploration, but over the past few decades the technology has migrated to other applica- tions,

  3. Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison J. Kurtz, G. Saur, S. Sprik, and C. Ainscough National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-5400-60732 September 2014

  4. Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison J. Kurtz, G. Saur, S. Sprik, and C. Ainscough National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-5400-60732 September 2014

  5. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Combined Heat and Power Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Platforms and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial

  6. Technology status and project development risks of advanced coal power generation technologies in APEC developing economies

    SciTech Connect (OSTI)

    Lusica, N.; Xie, T.; Lu, T.

    2008-10-15

    The report reviews the current status of IGCC and supercritical/ultrasupercritical pulverized-coal power plants and summarizes risks associated with project development, construction and operation. The report includes an economic analysis using three case studies of Chinese projects; a supercritical PC, an ultrasupercritical PC, and an IGCC plant. The analysis discusses barriers to clean coal technologies and ways to encourage their adoption for new power plants. 25 figs., 25 tabs.

  7. Two-Phase Cooling Technology for Power Electronics with Novel Coolants |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Two-Phase Cooling Technology for Power Electronics with Novel Coolants Two-Phase Cooling Technology for Power Electronics with Novel Coolants 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ape037_moreno_2011_o.pdf (1.45 MB) More Documents & Publications Two-Phase Cooling Technology for Power Electronics Two-Phase Cooling of Power Electronics Vehicle Technologies Office Merit Review 2014: Two-Phase

  8. MHK Technologies/Seadov | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Click here Axial Flow Turbine Technology Description 3 wind turbines power the reverse osmosis plant on board to desalinate the ocean water into potable water Subject to site...

  9. Perfect Power Prototype for Illinois Institute of Technology

    SciTech Connect (OSTI)

    Shahidehpour, Mohammad

    2014-09-30

    Starting in October 2008, Illinois Institute of Technology (IIT), in collaboration with over 20 participating members, led an extensive effort to develop, demonstrate, promote, and commercialize a microgrid system and offer supporting technologies that will achieve Perfect Power at the main campus of IIT. A Perfect Power system, as defined by the Galvin Electricity Initiative (GEI), is a system that cannot fail to meet the electric needs of the individual end-user. The Principle Investigator of this Perfect Power project was Dr. Mohammad Shahidehpour, Director of the Robert W. Galvin Center for Electricity Innovation at IIT. There were six overall objectives of the Perfect Power project: (1) Demonstrate the higher reliability introduced by the microgrid system at IIT; (2) Demonstrate the economics of microgrid operations; (3) Allow for a decrease of fifty percent (50%) of grid electricity load; (4) Create a permanent twenty percent (20%) decrease in peak load from 2007 level; (5) Defer planned substation through load reduction; (6) Offer a distribution system design that can be replicated in urban communities.

  10. Technology Development Plan: Geotechnical survey systems for OTEC (Ocean Thermal Energy Conversion) cold water pipes: Final subcontract report

    SciTech Connect (OSTI)

    Valent, P.J.; Riggins, M.

    1989-04-01

    This report provides an overview of current and developing technologies and techniques for performing geotechnical investigations for siting and designing Cold Water Pipes (CWP) for shelf-resting Ocean Thermal Energy Conversion (OTEC) power plants. The geotechnical in situ tools used to measure the required parameters and the equipment/systems used to deploy these tools are identified. The capabilities of these geotechnical tools and deployment systems are compared to the data requirements for the CWP foundation/anchor design, and shortfalls are identified. For the last phase of geotechnical data gathering for design, a drillship will be required to perform soil boring work, to obtain required high-quality sediment samples for laboratory dynamic testing, and to perform deep-penetration in situ tests. To remedy shortfalls and to reduce the future OTEC CWP geotechnical survey costs, it is recommended that a seafloor-resting machine be developed to advance the friction cone penetrometer, and also probably a pressuremeter, to provide geotechnical parameters to shallow subseafloor penetrations on slopes of 35/degree/ and in water depths to 1300 m. 74 refs., 19 figs., 6 tabs.

  11. Tennessee, Pennsylvania: Porous Power Technologies Improves Lithium Ion Battery, Wins R&D 100 Award

    Office of Energy Efficiency and Renewable Energy (EERE)

    Porous Power Technologies, partnered with Oak Ridge National Laboratory (ORNL), developed SYMMETRIX HPX-F, a nanocomposite separator for improved lithium-ion battery technology.

  12. Status of Wave and Tidal Power Technologies for the United States

    SciTech Connect (OSTI)

    Musial, W.

    2008-08-01

    This paper presents the status of marine applications for renewable energy as of 2008 from a U.S. perspective. Technologies examined include wave, tidal, and ocean current energy extraction devices.

  13. Sustainable solar thermal power generation (STPG) technologies in Indian context

    SciTech Connect (OSTI)

    Sharma, R.S.

    1996-12-31

    India is a fast developing country. Some of the factors like population growth, industrialization, liberalization in economic policies, green revolution and awareness toward the environment, are increasing the electricity demand rapidly. As per the 14th Power Survey Report, an energy deficit of (+) 9% and peak demand deficit of (+) 18% have been estimated. Keeping in view the liberalization in economic policies, this deficit may be higher by the year 2000 AD. An estimation indicates that India is blessed with solar energy to the tune of 5 x 10{sup 15} kWh/yr. Being clean and inexhaustible source of energy, it can be used for large-scale power generation in the country. Keeping in view the present state-of-art technologies for STPG in MW range, best possible efforts are required to be made by all the concerned, to develop sustainable STPG technology of the future, specially for tropical regions. Standardization of vital equipment is an important aspect. There are a few required criteria like simple and robust technology, its transfer and adaptation in tropical climate conditions; high plant load factor without fossil-fired backup; availability of plant during evening peak and night hours; least use of fragile components, and capacity optimization for MW plants as per solar irradiance and environmental factors. In this paper, efforts have been made to compare the different STPG technologies. On the basis, of literature surveyed and studies carried out by the author, it may be stated that Central Receiver System technologies using molten salt and volumetric air receiver, along with molten salt and ceramic thermal storage respectively seems to be suitable and comparable in Indian context. Performance of SOLAR-TWO and PHOEBUS plants may be decisive.

  14. Emerging Two-Phase Cooling Technologies for Power Electronic Inverters

    SciTech Connect (OSTI)

    Hsu, J.S.

    2005-08-17

    In order to meet the Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FVCT) goals for volume, weight, efficiency, reliability, and cost, the cooling of the power electronic devices, traction motors, and generators is critical. Currently the power electronic devices, traction motors, and generators in a hybrid electric vehicle (HEV) are primarily cooled by water-ethylene glycol (WEG) mixture. The cooling fluid operates as a single-phase coolant as the liquid phase of the WEG does not change to its vapor phase during the cooling process. In these single-phase systems, two cooling loops of WEG produce a low temperature (around 70 C) cooling loop for the power electronics and motor/generator, and higher temperature loop (around 105 C) for the internal combustion engine. There is another coolant option currently available in automobiles. It is possible to use the transmission oil as a coolant. The oil temperature exists at approximately 85 C which can be utilized to cool the power electronic and electrical devices. Because heat flux is proportional to the temperature difference between the device's hot surface and the coolant, a device that can tolerate higher temperatures enables the device to be smaller while dissipating the same amount of heat. Presently, new silicon carbide (SiC) devices and high temperature direct current (dc)-link capacitors, such as Teflon capacitors, are available but at significantly higher costs. Higher junction temperature (175 C) silicon (Si) dies are gradually emerging in the market, which will eventually help to lower hardware costs for cooling. The development of high-temperature devices is not the only way to reduce device size. Two-phase cooling that utilizes the vaporization of the liquid to dissipate heat is expected to be a very effective cooling method. Among two-phase cooling methods, different technologies such as spray, jet impingement, pool boiling and submersion, etc. are being developed. The Oak Ridge

  15. Wind Power Technologies FY 2017 Budget At-A-Glance () | SciTech...

    Office of Scientific and Technical Information (OSTI)

    : Wind Power Technologies FY 2017 Budget At-A-Glance Citation Details In-Document Search Title: Wind Power Technologies FY 2017 Budget At-A-Glance You are accessing a document ...

  16. Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants

    SciTech Connect (OSTI)

    O'Connell, J. Michael

    2002-01-01

    OAK-B135 Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants

  17. Executive Summary: Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Sargent& Lundy LLC conducted an independent analysis of parabolic trough and power tower solar technology cost and performance.

  18. Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Sargent and Lundy LLC conducted an independent analysis of parabolic trough and power tower solar technology cost and performance.

  19. Refractory alloy technology for space nuclear power applications

    SciTech Connect (OSTI)

    Cooper, R.H. Jr.; Hoffman, E.E.

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  20. MHK Technologies/Canal Power | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description...

  1. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide and Storage Value-Added Options Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Storage Value-Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle

  2. HEMP emergency planning and operating procedures for electric power systems. Power Systems Technology Program

    SciTech Connect (OSTI)

    Reddoch, T.W.; Markel, L.C.

    1991-12-31

    Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E{sub 1} (steep-front pulse) component and the late time E{sub 3} (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council`s regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

  3. Modeling the Benefits of Storage Technologies to Wind Power

    SciTech Connect (OSTI)

    Sullivan, P.; Short, W.; Blair, N.

    2008-06-01

    Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

  4. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

  5. Water Power Research | Water Power | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Research NREL conducts water power research; develops design tools; and evaluates, validates, and supports the demonstration of innovative water power technologies. Photo of a buoy designed around the oscillating water column principle wherein the turbine captures the wave energy and the generator converts it into electrical power. Marine and Hydrokinetic Research Marine and hydrokinetic renewable energy technologies extract power from moving water-whether waves, tidal flow, or ocean and river

  6. Notice of Intent: Innovative Technologies to Advance Non-Powered Dams and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pumped-Storage Hydropower Development | Department of Energy Innovative Technologies to Advance Non-Powered Dams and Pumped-Storage Hydropower Development Notice of Intent: Innovative Technologies to Advance Non-Powered Dams and Pumped-Storage Hydropower Development July 11, 2016 - 2:39pm Addthis Notice of Intent: Innovative Technologies to Advance Non-Powered Dams and Pumped-Storage Hydropower Development The Energy Department's Water Power Program intends to issue a Funding Opportunity

  7. Wind and Water Power Technologies FY'14 Budget At-a-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 WIND & WATER POWER TECHNOLOGIES WIND POWER PROGRAM FY14 BUDGET AT-A-GLANCE Wind and Water Power Technologies accelerates U.S. deployment of clean, affordable and reliable domestic wind power through research, development and demonstration. These advanced technology investments directly contribute to the President's goals for the United States to double renewable electricity generation again by 2020 and to achieve 80 percent of its electricity from clean, carbon-free energy sources by 2035

  8. Water Power Technologies Office FY 2015 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Power Technologies Office leads efforts in developing innovative water power technologies to help the United States meet its growing energy demand. The Office is pioneering research and development efforts in marine and hydrokinetic and hydropower technologies, which hold the promise of clean, affordable electricity, and will move our nation toward energy independence. What We Do The Water Power Technologies Office supports a cutting- edge research portfolio aimed at producing the next

  9. Chapter 4: Advancing Clean Electric Power Technologies | Wind...

    Energy.gov (indexed) [DOE]

    Technologies Carbon Dioxide Storage Technologies Carbon Dioxide Capture for Natural Gas and Industrial Applications Crosscutting Technologies in Carbon Dioxide Capture and...

  10. MHK Technologies/Yongsoo Wave Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    here Axial Flow Turbine Technology Description Oscillating water column type with turbines and generators Technology Dimensions Technology Nameplate Capacity (MW) 5 Device...

  11. Ocean energy program summary

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71{percent} of the earth's surface, this stored energy is realized as waves, currents, and thermal salinity gradients. The purpose of the federal Ocean Energy Technology (OET) Program is to develop techniques that harness this ocean energy in a cost-effective and environmentally acceptable manner. The OET Program seeks to develop ocean energy technology to a point where the commercial sector can assess whether applications of the technology are viable energy conversion alternatives or supplements to systems. Past studies conducted by the US Department of Energy (DOE) have identified ocean thermal energy conversion (OTEC) as the largest potential contributor to United States energy supplies from the ocean resource. As a result, the OET Program concentrates on research to advance OTEC technology. Current program emphasis has shifted to open-cycle OTEC power system research because the closed-cycle OTEC system is at a more advanced stage of development and has already attracted industrial interest. During FY 1989, the OET Program focused primarily on the technical uncertainties associated with near-shore open-cycle OTEC systems ranging in size from 2 to 15 MW{sub e}. Activities were performed under three major program elements: thermodynamic research and analysis, experimental verification and testing, and materials and structures research. These efforts addressed a variety of technical problems whose resolution is crucial to demonstrating the viability of open-cycle OTEC technology. This publications is one of a series of documents on the Renewable Energy programs sponsored by the US Department of Energy. An overview of all the programs is available, entitled Programs in Renewable Energy.

  12. Remote power systems with advanced storage technologies for Alaskan villages

    SciTech Connect (OSTI)

    Isherwood, W.; Smith, R.; Aceves, S.; Berry, G.; Clark, W.; Johnson, R.; Das, D.; Goering, D.; Seifert, R.

    1997-12-01

    Remote Alaskan communities pay economic and environmental penalties for electricity, because they must import diesel as their primary fuel for electric power production, paying heavy transportation costs and potentially causing environmental damage with empty drums, leakage, and spills. For these reasons, remote villages offer a viable niche market where sustainable energy systems based on renewable resources and advanced energy storage technologies can compete favorably on purely economic grounds, while providing environmental benefits. These villages can also serve as a robust proving ground for systematic analysis, study, improvement, and optimization of sustainable energy systems with advanced technologies. This paper presents an analytical optimization of a remote power system for a hypothetical Alaskan village. The analysis considers the potential of generating renewable energy (e.g., wind and solar), along with the possibility of using energy storage to take full advantage of the intermittent renewable sources available to these villages. Storage in the form of either compressed hydrogen or zinc pellets can then provide electricity from hydrogen or zinc-air fuel cells when renewable sources are unavailable.The analytical results show a great potential to reduce fossil fuel consumption and costs basing renewable energy combined with advanced energy storage devices. The best solution for our hypothetical village appears to be a hybrid energy system, which can reduce consumption of diesel fuel by over 50% with annualized cost savings by over 30% by adding wind turbines to the existing diesel generators. When energy storage devices are added, diesel fuel consumption and costs can be reduced substantially more. With optimized energy storage, use of the diesel generatorss can be reduced to almost zero, with the existing equipment only maintained for added reliability. However about one quarter of the original diesel consumption is still used for heating purposes

  13. Advanced Power Electronics for LED Drivers: Advanced Technologies for integrated Power Electronics

    SciTech Connect (OSTI)

    2010-09-01

    ADEPT Project: MIT is teaming with Georgia Institute of Technology, Dartmouth College, and the University of Pennsylvania (UPenn) to create more efficient power circuits for energy-efficient light-emitting diodes (LEDs) through advances in 3 related areas. First, the team is using semiconductors made of high-performing gallium nitride grown on a low-cost silicon base (GaN-on-Si). These GaN-on-Si semiconductors conduct electricity more efficiently than traditional silicon semiconductors. Second, the team is developing new magnetic materials and structures to reduce the size and increase the efficiency of an important LED power component, the inductor. This advancement is important because magnetics are the largest and most expensive part of a circuit. Finally, the team is creating an entirely new circuit design to optimize the performance of the new semiconductors and magnetic devices it is using.

  14. Advancing Concentrating Solar Power Technology, Performance, and Dispatchability

    Energy.gov [DOE]

    Energy storage will help enable CSP compete by adding flexibility value to a high-variable-generation (solar plus wind) power system (see Mehos et al. 2016). Compared with PV, CSP systems are more complex to develop, design, construct, and operate, and they require a much larger minimum effective scale—typically at least 50 MW, compared with PV systems that can be as small as a few kilowatts. In recent years, PV’s greater modularity and lower LCOE have made it more attractive to many solar project developers, and some large projects that were originally planned for CSP have switched to PV. However, the ability of CSP to use thermal energy storage—and thus provide continuous power for long periods when the sun is not shining—could give CSP a vital role in evolving electricity systems. Because CSP with storage can store energy when net demand is low and release that energy when demand is high, it increases the electricity system’s ability to balance supply and demand over multiple time scales. Such flexibility becomes increasingly important as more variable-generation renewable energy is added to the system. For example, one analysis suggests that, under a 40% renewable portfolio standard in California, CSP with storage could provide more than twice as much value to the electricity system as variable-generation PV. For this reason, enhanced thermal energy storage is a critical component of the SunShot Initiative’s 2020 CSP technology-improvement roadmap.

  15. Technology verification phase. Dynamic isotope power system. Final report

    SciTech Connect (OSTI)

    Halsey, D.G.

    1982-03-10

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)

  16. SeaVolt Technologies formerly Sea Power Associates | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    The company's Wave Rider system, which is still in prototype stages, uses buoys and hydraulic pumps to convert the movement of ocean waves into electricity. References: SeaVolt...

  17. MHK Technologies/Morild Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents....

  18. MHK Technologies/MORILD 2 Floating Tidal Power System | Open...

    Open Energy Information (Open El) [EERE & EIA]

    based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents....

  19. Wind and Water Power Technologies FY'14 Budget At-a-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy and Water Power Technologies FY'14 Budget At-a-Glance Wind and Water Power Technologies FY'14 Budget At-a-Glance Wind and Water Power Technologies FY'14 Budget At-a-Glance, a publication of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. windwater_ataglance_2014.pdf (211.12 KB) More Documents & Publications Water Power Program FY 2017 Budget At-A-Glance Water Power Program FY 2015 Budget At-A-Glance Water Power

  20. MHK Technologies/SyncWave Power Resonator | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    power take off which drives a variable speed generator Power outputs conditioned by modern power electronics from several SyncWave Units in a wave farm will be collected and...

  1. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Environmental Impacts of Increased Hydroelectric Development at Existing Dams Hydropower ...

  2. Chapter 4: Advancing Clean Electric Power Technologies | Hybrid...

    Energy.gov (indexed) [DOE]

    ... Centralized or Distributed Energy Storage * Pumped Hydro Power * Compressed Air * Refrigerant cooling * Gas separation units Power Gen Set Tightly Coupled * Distributed Hydrogen ...

  3. Summary of the NASA Lewis component technology program for Stirling power converters

    SciTech Connect (OSTI)

    Thieme, L.G.; Swec, D.M.

    1992-10-01

    An update is presented on the NASA Lewis Stirling component technology program. The component technology program has been organized as part of the NASA Lewis effort to develop Stirling converter technology for space power applications. The Stirling space power project is part of the High Capacity Power element of the NASA Civil Space Technology Initiative (CSTI). Lewis is also providing technical management of a DOE funded project to develop Stirling converter systems for distributed dish solar terrestrial power applications. The primary contractors for the space power and solar terrestrial projects develop component technologies directly related to their project goals. This Lewis component technology program, while coordinated with these main projects, is aimed at longer term issues, advanced technologies, and independent assessments. Topics to be discussed include bearings, linear alternators, controls and load interaction, materials/life assessment, and heat exchangers.

  4. The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources

    Energy.gov [DOE]

    Subject: Proposed FY 2016 Spending, Priorities, and Mission of the Southwestern Power Administration BY; Christopher M. Turner, Administrator

  5. Advanced coal technologies in Czech heat and power systems

    SciTech Connect (OSTI)

    Noskievic, P. Ochodek, T.

    1998-07-01

    Coal is the only domestic source of fossil fuel in the Czech Republic. The coal reserves are substantial and their share in total energy use is about 60%. Presently, necessary steps in making coal utilization more friendly towards the environment have been taken and fairly well established, and an interest to develop and build advanced coal units has been observed. One IGCC system has been put into operation, and circa 10 AFBC units are in operation or under construction. preparatory steps have been taken in building an advanced combustion unit fueled by pulverized coal and retrofit action is taking place in many heating plants. An actual experience has shown two basic problems: (1) Different characteristic of domestic lignite, especially high content of ash, cause problems applying well-tried foreign technologies and apparently a more focused attention shall have to be paid to the quality of coal combusted. (2) Low prices of lignite (regarding energy, lignite is four times cheaper than coal) do not result in an increased efficiency of the standing equipment by applying advanced technologies. It will be of high interest to observe the effect of the effort of the European Union to establish a kind of carbon tax. It could dramatically change the existing scene in clean coal power generation by the logical pressure to increase the efficiency of energy transformation. In like manner the gradual liberalization of energy prices might have similar consequences and it is a warranted expectation that, up to now not the best, energy balance will improve in the near future.

  6. Vehicle Technologies Office Merit Review 2014: Two-Phase Cooling of Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electronics | Department of Energy Two-Phase Cooling of Power Electronics Vehicle Technologies Office Merit Review 2014: Two-Phase Cooling of Power Electronics Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about two-phase cooling of power electronics. ape037_moreno_2014_p .pdf (1.91 MB) More Documents & Publications Two-Phase Cooling Technology for

  7. Microsoft PowerPoint - [4] HVDC Technology Workshop Arlington...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of HVDC Technologies US DOE Grid Tech Applications for High-Voltage Direct Current Transmission Technologies GRID Neil Kirby Arlington, VA April 22 nd , 2013 Agenda * HVDC ...

  8. MHK Technologies/Current Power | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition Early Stage Development & Design & Engineering Technology Description The...

  9. Wind Power Technologies Office FY 2016 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind power currently provides approximately 4.5% of the nation's electricity. What We Do The Wind Power Technologies Office uses an integrated, three-pronged approach to drive ...

  10. High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Key technologies and system approaches to excellent record of thermoelectric power sources in deep space missions and development of higher performance TE materials for the next generation systems

  11. Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer

    Energy.gov [DOE]

    The Wind and Water Power Technologies Office is seeking applicants for a new position available within the office. See below for more information.

  12. Vehicle Technologies Office Merit Review 2014: North American Power Electronics Supply Chain Analysis

    Energy.gov [DOE]

    Presentation given by Synthesis Partners at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American power...

  13. Hawaiis EVolution: Hawaii Powered. Technology Driven. ...

    Energy.gov (indexed) [DOE]

    Powered. Technology Driven. Table of Contents Charting the Course Toward a Clean Energy Future 4 Forging a New Path for Island Transportation 5 Embracing New Alternatives 6...

  14. Vehicle Technologies Office Merit Review 2015: Power Electronics Thermal Management R&D

    Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about power...

  15. 2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy Water Power Program conducted the 2014 peer review meeting on marine and hydrokinetic technologies February 24–27.

  16. Harnessing the Power of Data, Technology and Innovation for a Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Economy | Department of Energy Harnessing the Power of Data, Technology and Innovation for a Clean Energy Economy Harnessing the Power of Data, Technology and Innovation for a Clean Energy Economy May 28, 2014 - 10:06am Addthis Applications powered by open energy data were on display at a previous Energy Datapalooza in June 2012. | Photo by Sarah Gerrity, Energy Department. Applications powered by open energy data were on display at a previous Energy Datapalooza in June 2012. | Photo by

  17. Ocean Energy Program Overview, Fiscal years 1990--1991

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71% of the earth's surface, the oceans collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the US Department of Energy's (DOE) Ocean Energy Program is to develop techniques that harness ocean energy cost effectively and in ways that do not harm the environment. The program seeks to develop ocean energy technology to a point at which industry can accurately assess whether the applications of the technology are viable energy conversion alternatives, or supplements to current power-generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the Ocean Energy Program has concentrated research that advances OTEC technology. The program also monitored developments in wave energy, ocean current, and salinity gradient concepts. It is not actively developing these technologies now. The mission of the Ocean Energy Program is to develop techniques to harness the vast solar energy stored in the oceans' waves, currents, and thermal and salinity gradients.

  18. Air Cooling Technology for Power Electronic Thermal Control

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  19. Backup Power Cost of Ownership Analysis and Incumbent Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology Validation Manufacturing Safety, Codes & Standards Education Market Transformation Systems Analysis Information Resources Financial Opportunities News Events Contact Us

  20. Air Cooling Technology for Power Electronic Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Two-Phase Cooling Technology for Power Electronics

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Aquantis C-Plane Ocean Current Turbine Project

    SciTech Connect (OSTI)

    Fleming, Alex

    2015-09-16

    The Aquantis 2.5 MW Ocean Current Generation Device technology developed by Dehlsen Associates, LLC (DA) is a derivation of wind power generating technology (a means of harnessing a slow moving fluid) adapted to the ocean environment. The Aquantis Project provides an opportunity for accelerated technological development and early commercialization, since it involves the joining of two mature disciplines: ocean engineering and wind turbine design. The Aquantis Current Plane (C-Plane) technology is an ocean current turbine designed to extract kinetic energy from a current flow. The technology is capable of achieving competitively priced, continuous, base-load, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  3. EERE Water Power Technologies FY 2016 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program is committed to developing and deploying a portfolio of innovative technologies and market solutions for clean, domestic power generation from water resources across the United States (hydropower and marine and hydrokinetics). What We Do The Water Power Program strives to produce the next generation of water power technologies and jump-start private-sector innovation critical to the country's long-term economic growth, energy security, and international competitiveness by accelerating

  4. Ocean thermal energy conversion power system development. Final design report: PSD-I, Phase II

    SciTech Connect (OSTI)

    1980-06-30

    The PSD-I program provides a heat exchanger sytem consisting of an evaporator, condenser and various ancillaries with ammonia used as a working fluid in a closed simulated Rankine cycle. It is to be installed on the Chepachet Research Vessel for test and evaluation of a number of OTEC concepts in a true ocean environment. It is one of several test articles to be tested. Primary design concerns include control of biofouling, corrosion and erosion of aluminum tubes, selection of materials, and the development of a basis for scale-up to large heat exchangers so as to ultimately demonstrate economic feasibility on a commercial scale. The PSD-I test article is devised to verify thermodynamic, environmental, and mechanical performance of basic design concepts. The detailed design, development, fabrication, checklist, delivery, installation support, and operation support for the Test Article Heat Exchangers are described. (WHK)

  5. Chapter 4: Advancing Clean Electric Power Technologies | Geothermal...

    Energy.gov (indexed) [DOE]

    Assessments Introduction Geothermal power taps into earth's internal heat as an energy source. While geothermal currently constitutes less than 1% of total U.S....

  6. Guidance for Deployment of Mobile Technologies for Nuclear Power...

    Energy.gov (indexed) [DOE]

    This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking ...

  7. Guodian United Power Technology Co Ltd formerly Guodian Union...

    Open Energy Information (Open El) [EERE & EIA]

    Beijing Municipality, China Zip: 100044 Sector: Wind energy Product: China-based wind turbine maker and daughter company of state-owned power generator China Guodian. References:...

  8. Resource Planning for Power Systems: Integrating Renewables and New Technologies

    Energy.gov [DOE]

    Become Kinetic is hosting a course to review resource planning issues and how they are being addressed to provide reliable and economic operation of the bulk power system.

  9. Chapter 4: Advancing Clean Electric Power Technologies | Carbon...

    Energy.gov (indexed) [DOE]

    Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar ... O2 content (10% for NGCC vs 4% for coal) lower ... Refining. Refining includes petroleum for transport fuels, ...

  10. 2014 WIND POWER PROGRAM PEER REVIEW-ACCELERATE TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Accelerate Technology Transfer March 24-27, 2014 Wind Energy Technologies PR-5000-62152 2 Contents Accelerate Technology Transfer Development of On-Site Conical Spiral Welders for Large Turbine Towers-Eric Smith, Keystone Tower Systems, Inc. High Performance Hollow Fiber Membranes for Lubricating Fluid Dehydration and Stabilization Systems-Stuart Nemster, Compact Membrane Systems Advanced Manufacturing Initiative-Daniel Laird, Sandia National Laboratories Manufacturing and Supply Chain R&D,

  11. Helping Ensure High-Quality Installation of Solar Power Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology Maximizes Taxpayer's Investment Mercer Island celebrates the 500th Solarize installation in the state of Washington with a ribbon cutting at the Auto-Spa car wash. ...

  12. Air Cooling Technology for Advanced Power Electronics and Electric Machines

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  13. Chapter 4: Advancing Clean Electric Power Technologies | Carbon...

    Energy.gov (indexed) [DOE]

    consistent with expected deployment timelines. EOR and other Technology Options Crude oil development and production in U.S. oil reservoirs can include up to three distinct...

  14. EERE Success Story-Tennessee, Pennsylvania: Porous Power Technologies...

    Energy.gov (indexed) [DOE]

    Works to Cut Battery Costs in Half EERE Success Story-California: Conducting Polymer Binder Boosts Storage Capacity, ... Project Overview Positive Impact Breakthrough technology ...

  15. Energy Department Announces New Concentrating Solar Power Technology...

    Energy Savers

    NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Building off investments in innovative solar photovoltaic technologies announced at the SunShot Grand Challenge Summit in Denver, ...

  16. MHK Technologies/Hydrokinetic Power Barge | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    design and assembly mounted on a horizontal shaft on a twin hull pontoon or barge CAT or SWATH combines reaction and impulse technologies which can efficiently harvest...

  17. Air Cooling Technology for Power Electronic Thermal Control

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  18. Fuel Cell Comparison of Distributed Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines. ...

  19. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect (OSTI)

    Hart, Philip R.

    2011-09-27

    This presentation from the Water Peer Review highlights one of the program's marine and hyrokinetics device design projects to scale up the current Ocean Power Technology PowerBuoy from 150kW to 500kW.

  20. Conceptual design of ocean thermal energy conversion (OTEC) power plants in the Philippines

    SciTech Connect (OSTI)

    Haruo Uehara; Dilao, C.O.; Tsutomu Nakaoka )

    1988-01-01

    Extensive temperature readings were obtained to determine suitable OTEC power plant sites in the Philippines. An analysis of temperature profiles reveals that surface seawater is in the range of 25 to 29{degree}C throughout the year while seawater at 500 to 700 m depth remains at a low temperature of 8 to 4{degree}C, respectively. In this article, 14 suitable sites within the Philippine seas are suggested. Conceptual designs for a 5-MW onland-type and a 25-MW floating-type OTEC power plant are proposed. Optimum conditions are determined and plant specifications are computed. Cost estimates show that a floating-type 25-MW OTEC power plant can generate electricity at a busbar power cost of 5.33 to 7.57 cents/kW {times} h while an onshore type 5-MW plant can generate electricity at a busbar cost of 14.71 to 18.09 cents/kW {times} h.

  1. Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project 13_aquantismhk_da_alexfleming.pptx (2.33 MB) More Documents & Publications Aquantis 2.5MW Ocean Current Generation Device 2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies CX-005670: Categorical

  2. Aquantis 2.5MW Ocean Current Generation Device | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Aquantis 2.5MW Ocean Current Generation Device Aquantis 2.5MW Ocean Current Generation Device Aquantis 2.5MW Ocean Current Generation Device 12_aquantisawp_da_alexfleming.pptx (2.06 MB) More Documents & Publications Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project 2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies 2014 Wind Program Peer Review Compiled Presentations

  3. DOE Awards $20 Million to Develop Geothermal Power Technologies...

    Office of Environmental Management (EM)

    The three remaining projects seek to tap unconventional sources of geothermal energy. In one case, ElectraTherm, Inc. will aim to draw power from the hot geothermal fluids that oil ...

  4. Chapter 4: Advancing Clean Electric Power Technologies | Supercritical...

    Energy.gov (indexed) [DOE]

    ... to lower fuel cost, lower water usage, and in the case of ... differences between the hot and cold sides of the ... Brayton Cycles based on CO 2 as the working fluid Power ...

  5. Vehicle Technologies Office: Power Electronics Research and Developmen...

    Energy Savers

    energy from a battery to AC power to drive the motor. An inverter also acts as a motor controller and as a filter to isolate the battery from potential damage from stray currents. ...

  6. Overview of Progress in Thermoelectric Power Generation Technologies...

    Energy.gov (indexed) [DOE]

    Presents progress in government- and private-funded thermoelectric power generation R&D in Japan kajikawa.pdf (8.88 MB) More Documents & Publications Overview of Thermoelectric ...

  7. Chapter 3: Enabling Modernization of the Electric Power System Technology Assessment | Flexible and Distributed Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resources Measurements, Communications, and Controls Transmission and Distribution Components ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Flexible and Distributed Energy Resources Chapter 3: Technology Assessments Introduction The U.S. electric power system is undergoing significant changes. The reliance on large thermal generators of the past is giving way to a much more dynamic paradigm. In recent years, many new technologies have been

  8. Coal-fired power generation: Proven technologies and pollution control systems

    SciTech Connect (OSTI)

    Balat, M.

    2008-07-01

    During the last two decades, significant advances have been made in the reduction of emissions from coal-fired power generating plants. New technologies include better understanding of the fundamentals of the formation and destruction of criteria pollutants in combustion processes (low nitrogen oxides burners) and improved methods for separating criteria pollutants from stack gases (FGD technology), as well as efficiency improvements in power plants (clean coal technologies). Future demand for more environmentally benign electric power, however, will lead to even more stringent controls of pollutants (sulphur dioxide and nitrogen oxides) and greenhouse gases such as carbon dioxide.

  9. MHK Technologies/W2 POWER | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Type Click here Axial Flow Turbine Technology Description Point absorbers for waves pump water to a Peltor turbine But on the same platform we also combine this with offshore...

  10. MHK Technologies/Wave Power Desalination | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    in water depths of 40 44m and uses a two point mooring system with four lines Its methodology for Technology Dimensions Device Testing Date Submitted 18:50.2 << Return to the...

  11. MHK Technologies/Submergible Power Generator | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Type Click here Axial Flow Turbine Technology Description The design of the SPG leverages water flows in varying scenarios to generate electricity While the focus of the C2C...

  12. MHK Technologies/IVEC Floating Wave Power Plant | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Resource Click here Wave Technology Description FWP design is based on an array of linked OWC s or chambers Similar to the cylinders of a combustion engine each FWP chamber has...

  13. Natural Energy Laboratory of Hawaii Authority (NELHA): Hawaii Ocean Science & Technology Park; Kailua-Kona, Hawaii

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Olson, K.; Andreas, A.

    A partnership with the Natural Energy Laboratory of Hawaii Authority and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  14. Natural Energy Laboratory of Hawaii Authority (NELHA): Hawaii Ocean Science & Technology Park; Kailua-Kona, Hawaii

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Olson, K.; Andreas, A.

    2012-11-01

    A partnership with the Natural Energy Laboratory of Hawaii Authority and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  15. Ocean thermal energy conversion gas desorption studies. Volume 1. Design of experiments. [Open-cycle power systems

    SciTech Connect (OSTI)

    Golshani, A.; Chen, F.C.

    1980-10-01

    Seawater deaeration is a process affecting almost all proposed Ocean Thermal Energy Conversion (OTEC) open-cycle power systems. If the noncondensable dissolved air is not removed from a power system, it will accumulate in thecondenser, reduce the effectiveness of condensation, and result in deterioration of system performance. A gas desorption study is being conducted at Oak Ridge National Laboratory (ORNL) with the goal of mitigating these effects; this study is designed to investigate the vacuum deaeration process for low-temperature OTEC conditions where conventional steam stripping deaeration may not be applicable. The first in a series describing the ORNL studies, this report (1) considers the design of experiments and discusses theories of gas desorption, (2) reviews previous relevant studies, (3) describes the design of a gas desorption test loop, and (4) presents the test plan for achieving program objectives. Results of the first series of verification tests and the uncertainties encountered are also discussed. A packed column was employed in these verification tests and test data generally behaved as in previous similar studies. Results expressed as the height of transfer unit (HTU) can be correlated with the liquid flow rate by HTU = 4.93L/sup 0/ /sup 25/. End effects were appreciable for the vacuum deaeration system, and a correlation of them to applied vacuum pressure was derived.

  16. Nuclear power program and technology development in Korea

    SciTech Connect (OSTI)

    Cho, Byung-Oke

    1994-12-31

    KEPCO has successfully implemented the construction and operation of nuclear power plants since the early 1970s, and will continue to build safer and more efficient nuclear plants in the future in accordance with the nuclear power development plan previously established. KEPCO will also make every effort to enhance nuclear safety and obtain the public`s acceptance for nuclear power. We are, however, facing the same difficulties, as United States and other countries have, in strengthened regulatory requirements, public acceptance, radwaste disposal, and acquisition of new plant sites despite an active nuclear power program. Story of Ted Turner, CNN; {open_quotes}It ain`t as easy as it looks.{close_quotes} Yes! It is difficult. But we will cope with these issues so that we can promote the nuclear power development and continue to supply a highly economical and clean energy to the world. In this regard, it is my sincere wish that each organization participating in the nuclear industry, especially Korea and United States strengthen their ties and help each other so that we together can successfully accomplish our goals.

  17. Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water...

    Energy.gov (indexed) [DOE]

    ... Marine & Hydrokinetic Technologies WIND AND WATER POWER PROGRAM C L E A N C I T I E S Marine and hydrokinetic devices include (clockwise from the top) Ocean Renewable Power ...

  18. (Safety and reliability of nuclear power plant technology)

    SciTech Connect (OSTI)

    Dickson, T.L.

    1990-10-22

    The traveler attended the 16th MPA Seminar on the Safety and Reliability of Plant Technology with Special Emphasis on Nuclear Technology. The objective of the trip was to gather information and data that could prove useful to the US Nuclear Regulatory Commission (USNRC) sponsored Heavy-Section Steel Irradiation (HSSI) and Heavy-Section Steel Technology (HSST) Programs and to present a paper entitled, Effects of Irradiation on Initiation and Crack-Arrest Toughness of Two High-Copper Welds and on Stainless Steel Cladding. This paper summarizes results from the 5th, 6th, and 7th Irradiation Series of experiments performed within the HSSI Program by the Metals and Ceramics Division at Oak Ridge National Laboratory (ORNL).

  19. Wind Power Today: Building a New Energy Future, Wind and Hydropower Technologies Program 2009 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  20. Vehicle Technologies Office Merit Review 2015: High Energy High Power Battery Exceeding PHEV-40 Requirements

    Energy.gov [DOE]

    Presentation given by TIAX LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy high power battery...

  1. Vehicle Technologies Office Merit Review 2014: High Energy High Power Battery Exceeding PHEV-40 Requirements

    Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy high power battery...

  2. Lumileds Develops Patterned Sapphire Substrate Technology for High-Power LEDs

    Energy.gov [DOE]

    Patterned sapphire substrate (PSS) technology is an effective approach to improving efficacy and reducing cost of LEDs and has gained wide use in mid-power LEDs. With the help of DOE funding,...

  3. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect (OSTI)

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  4. Comprehensive Report to Congress Clean Coal Technology Program: Clean power from integrated coal/ore reduction

    SciTech Connect (OSTI)

    1996-10-01

    This report describes a clean coal program in which an iron making technology is paired with combined cycle power generation to produce 3300 tons per day of hot metal and 195 MWe of electricity. The COREX technology consists of a metal-pyrolyzer connected to a reduction shaft, in which the reducing gas comes directly from coal pyrolysis. The offgas is utilized to fuel a combined cycle power plant.

  5. Concentrating Solar Power Program Technology Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2001-04-01

    Concentrating solar power systems use the heat from the sun's rays to generate electricity. Reflective surfaces concentrate the sun's rays up to 10,000 times to heat a receiver filled with a heat-exchange fluid, such as oil. The heated fluid is then used to generate electricity in a steam turbine or heat engine. Mechanical drives slowly turn the reflective surfaces during the day to keep the solar radiation focused on the receiver.

  6. Combined Heat and Power Technology Fact Sheets Series: Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Turbines Gas turbines are available in sizes ranging from approxi- mately one to more than 300 megawatts (MW) and are used to meet diverse power needs, including propulsion (e.g., aircraft, ships, and trains), direct drive (e.g., pumps and com- pressors) and stationary electricity generation. For electric- ity generation, gas turbines are available in a wide range of capacities and configurations, ranging from relatively small microturbines (described in a separate fact sheet 1 ) to very large

  7. IQ Power AG formerly iQ Power Technology Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    is a developer and manufacturer of advanced, intelligent systems for optimising the performance of car batteries, independent of the specific battery technology. References: iQ...

  8. Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  9. Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  10. Application of Molten Salt Reactor Technology to MMW In-Space NEP and Surface Power Missions

    SciTech Connect (OSTI)

    Patton, Bruce; Sorensen, Kirk

    2002-07-01

    Anticipated manned nuclear electric propulsion (NEP) and planetary surface power missions will require multi-megawatt nuclear reactors that are lightweight, operationally robust, and sealable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional multi-megawatt gas-cooled and liquid metal concepts. (authors)

  11. Distributed generation technology in a newly competitive electric power industry

    SciTech Connect (OSTI)

    Pfeifenberger, J.P.; Ammann, P.R.; Taylor, G.A.

    1996-10-01

    The electric utility industry is in the midst of enormous changes in market structure. While the generation sector faces increasing competition, the utilities` transmission and distribution function is undergoing a transition to more unbundled services and prices. This article discusses the extent to which these changes will affect the relative advantage of distributed generation technology. Although the ultimate market potential for distributed generation may be significant, the authors find that the market will be very heterogeneous with many small and only a few medium-sized market segments narrowly defined by operating requirements. The largest market segment is likely to develop for distributed generation technology with operational and economical characteristics suitable for peak-shaving. Unbundling of utility costs and prices will make base- and intermediate-load equipment, such as fuel cells, significantly less attractive in main market segments unless capital costs fall significantly below $1,000/kW.

  12. Testing Active Power Control from Wind Power at the National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Ela, E.

    2011-05-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  13. Argonne technology puts solar power to work all night long | Argonne

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    National Laboratory Energy storage is crucial for taking full advantage of solar power, which otherwise suffers interruptions from cloudy skies and nightfall. (Art by Robert Horn/Argonne National Laboratory.) Energy storage is crucial for taking full advantage of solar power, which otherwise suffers interruptions from cloudy skies and nightfall. (Art by Robert Horn/Argonne National Laboratory.) Argonne technology puts solar power to work all night long By Katie Elyce Jones * September 12,

  14. Chapter 3: Enabling Modernization of the Electric Power System Technology Assessment | Electric Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Energy Storage Chapter 3: Technology Assessments Introduction Electric energy storage technologies (EESTs) have the potential to significantly improve the operating capabilities of the grid as well as mitigate infrastructure investments. The key characteristic of energy storage technologies is their ability to store electricity produced at one time for use at another time, balancing supply and demand. This capability can be used to address a number of challenges facing the power sector

  15. Chapter 3: Enabling Modernization of the Electric Power System Technology Assessment | Measurements, Communications, and Controls

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Controls Transmission and Distribution Components ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Measurements, Communications, and Controls Chapter 3: Technology Assessments Introduction Grid operators are tasked with maintaining the generation-load balance and ensuring the safe, reliable, and cost-effective delivery of electric power. This role is of critical importance today and will continue to be so in the future. However, this task is

  16. The role of advanced technology in the future of the power generation industry

    SciTech Connect (OSTI)

    Bechtel, T.F.

    1994-10-01

    This presentation reviews the directions that technology has given the power generation industry in the past and how advanced technology will be the key for the future of the industry. The topics of the presentation include how the industry`s history has defined its culture, how today`s economic and regulatory climate has constrained its strategy, and how certain technology options might give some of the players an unfair advantage.

  17. Chapter 3: Enabling Modernization of the Electric Power System Technology Assessment | Transmission and Distribution Components

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Components ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Transmission and Distribution Components Chapter 3: Technology Assessments Introduction Today's electric power system was designed for efficiency, reliability, ease of operation, and to meet consumer needs at minimum cost. The grid of the future must maintain these characteristics while meeting a number of new requirements: supporting the integration of various clean and distributed

  18. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers

    SciTech Connect (OSTI)

    Heather D. Medema; Ronald K. Farris

    2012-09-01

    This report is a guidance document prepared for the benefit of commercial nuclear power plants (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making, planning, and preparation of a business case.

  19. Application of membrane technology to power generation waters

    SciTech Connect (OSTI)

    Tang, T.L.D.; Chu, T.J.; Boroughs, R.D.

    1980-03-01

    Three membrane technlogies (reverse osmosis, ultrafiltration, and electrodialysis) for wastewater treatment and reuse at electric generating power plants were examined. Recirculating condenser water, ash sluice water, coal pile drainage, boiler blowdown and makeup treatment wastes, chemical cleaning wastes, wet SO/sub 2/ scrubber wastes, and miscellaneous wastes were studied. In addition, membrane separation of toxic substances in wastewater was also addressed. Waste characteristics, applicable regulations, feasible membrane processes, and cost information were analyzed for each waste stream. A users' guide to reverse osmosis was developed and is provided in an appendix.

  20. 5. annual clean coal technology conference: powering the next millennium. Volume 2

    SciTech Connect (OSTI)

    1997-06-01

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.

  1. EA-1890: Reedsport PB150 Deployment and Ocean Test Project, Oregon

    Energy.gov [DOE]

    The U.S. Department of Energy has selected Ocean Power Technologies (OPT) for approximately $2.4 million in financial assistance and proposes to authorize the expenditure of federal funding to OPT...

  2. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  3. High energy density capacitors for power electronic applications using nano-structure multilayer technology

    SciTech Connect (OSTI)

    Barbee, T.W. Jr.; Johnson, G.W.

    1995-09-01

    Power electronics applications are currently limited by capacitor size and performance. Only incremental improvements are anticipated in existing capacitor technologies, while significant performance advances are required in energy density and overall performance to meet the technical needs of the applications which are important for U.S. economic competitiveness. One application, the Power Electronic Building Block (PEBB), promises a second electronics revolution in power electronic design. High energy density capacitors with excellent electrical thermal and mechanical performance represent an enabling technology in the PEBB concept. We propose a continuing program to research and develop LLNL`s nano-structure multilayer technologies for making high voltage, high energy density capacitors. Our controlled deposition techniques are capable of synthesizing extraordinarily smooth sub-micron thick layers of dielectric and conductor materials. We have demonstrated that, with this technology, high voltage capacitors with an order of magnitude improvement in energy density are achievable.

  4. Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators

    SciTech Connect (OSTI)

    McDermott, K.A.; Bailey, K.A.; South, D.W.

    1993-08-01

    Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

  5. Electromagnetic pulse research on electric power systems: Program summary and recommendations. Power Systems Technology Program

    SciTech Connect (OSTI)

    Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W.; Tesche, F.M.; Vance, E.F.

    1993-01-01

    A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation`s power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation`s electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

  6. New Technologies for Repairing Aging Cables in Nuclear Power Plants

    SciTech Connect (OSTI)

    Simmons, Kevin L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westman, Matthew P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-11

    The goal of this project is to demonstrate a proof-of-concept for a technique to repair aging cables that have been subjected to degradation associated with long-term thermal and radiation exposure in nuclear power plants. The physical degradation of the aging cables manifests itself primarily as cracking and increased brittleness of the polymeric electrical insulation. Therefore, the proposed cable-repair concept comprises development of techniques to impart a softening agent within the deteriorated polymer insulation jacket so as to regain the ability of the insulation to stretch without failing and possibly to heal existing cracks in the insulation. Our approach is to use commercially available ethylene-propylene rubber (EPR) as the relevant test material, demonstrate the adsorption of chemical treatments in the EPR and quantify changes in resulting physical and mechanical properties. EPR cable samples have been thermally treated in air to produce specimens corresponding to the full range of cable age-performance points from new (>350% elongation at break) to end-of-life (<50% elongation at break). The current focus is on two chemical treatments selected as candidates for restoring age-related cable elasticity loss: a rubber plasticizer and a reactive silane molecule. EPR specimens of 200, 150, 100, and 50% elongation at break have been soaked in the candidate chemical treatments and the kinetics of chemical uptake, measured by change in mass of the samples, has been determined. Mechanical properties as a function of aging and chemical treatment have been measured including ultimate tensile strength, tensile modulus at 50% strain, elongation at break, and storage modulus. Dimensional changes with treatment and changes in glass transition temperature were also investigated. These ongoing experiments are expected to provide insight into the physical-chemical nature of the effect of thermal degradation on EPR rejuvenation limits and to advance novel methods for

  7. PB500, 500kW Utility-Scale PowerBuoy Project

    SciTech Connect (OSTI)

    Hart, Philip R.

    2011-09-27

    This presentation from the Water Peer Review highlights one of the program's marine and hyrokinetics device development projects in which Ocean Power Technologies will advance the current PowerBuoy design for commercial readiness.

  8. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over several years, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana.

  9. Power-Gen `95. Book III: Generation trends. Volume 1 - current fossil fuel technologies. Volume 2 - advanced fossil fuel technologies. Volume 3 - gas turbine technologies I

    SciTech Connect (OSTI)

    1995-12-31

    This document is Book III of Power-Gen 1995 for the Americas. I contains papers on the following subjects: (1) Coal technologies, (2) atmospheric fluidized bed combustion, (3) repowering, (4) pressurized fluidized bed combustion, (5) combined cycle facilities, and (6) aeroderivitive and small gas turbines.

  10. The Development of EAGLE-I: the First-Ever Technology to Track Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Outages Nationwide | Department of Energy The Development of EAGLE-I: the First-Ever Technology to Track Power Outages Nationwide The Development of EAGLE-I: the First-Ever Technology to Track Power Outages Nationwide May 12, 2014 - 3:58pm Addthis Hurricane Sandy -- shown here via satellite on the night of November 2, 2012 -- was the first real test of EAGLE-I's capabilities | Photo courtesy of CIMSS/University Wisconsin-Madison/NASA/NOAA. Hurricane Sandy -- shown here via satellite on the

  11. 1987 Overview of the free-piston Stirling technology for space power application

    SciTech Connect (OSTI)

    Slaby, J.G.; Alger, D.L.

    1994-09-01

    An overview is presented of the National Aeronautics and Space Administration (NASA) Lewis Research Center free-piston Stirling engine activities directed toward space-power application. Free-piston Stirling technology is applicable for both solar and nuclear powered systems. As such, NASA Lewis serves as the project office to manage the newly initiated NASA SP-100 Advanced Technology Program. This 5-yr program provides the technology thrust for providing significant component and subsystem options for increased efficiency, reliability and survivability, and power output growth at reduced specific mass. One of the major elements of the program is the development of advanced power conversion concepts of which the Stirling cycle is a viable growth candidate. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Included in the SPDE discussion are comparisons between predicted and experimental engine performance, enhanced performance resulting from regenerator modification, increased operating stroke brought about by isolating the gas bearing flow between the displacer and power piston, identifying excessive energy losses and recommending corrective action, and a better understanding of linear alternator design and operation. Technology work is also conducted on heat exchanger concepts, both design and fabrication, to minimize the number of joints as well as to enhance performance. Design parameters and conceptual design features are also presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. A cursory comparison is presented showing the mass benefits that a Stirling system has over a Brayton system for the same peak temperature and output power.

  12. Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Progress Report | Department of Energy Power Electronics R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report Annual report focusing on understanding and improving the way various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. 2009_apeem_report.pdf (10.35 MB) More Documents & Publications Thermal Performance and Reliability of Bonded Interfaces Vehicle

  13. NNSA-lab-created new magnets will power renewable technology | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) NNSA-lab-created new magnets will power renewable technology Wednesday, June 1, 2016 - 10:05am Los Alamos National Laboratory's researchers created a powerful magnet out of iron and nitrogen as part of a program to reduce dependency on rare earth metals. The Ion Beam Materials Laboratory at NNSA's Los Alamos National Laboratory (LANL) works to characterize and modify surfaces through the use of ion beams. Its purpose is to advance materials science

  14. Development of molten carbonate fuel cell technology at M-C Power Corporation

    SciTech Connect (OSTI)

    Dilger, D.

    1996-04-01

    M-C Power Corporation was founded in 1987 with the mission to further develop and subsequently commercialize molten carbonate fuel cells (MCFC). The technology chosen for commercialization was initially developed by the Institute of Gas technology (IGT). At the center of this MCFC technology is the Internally Manifolded Heat EXchange (IMHEX) separator plate design. The IMHEX technology design provides several functions within one component assembly. These functions include integrating the gas manifold structure into the fuel cell stack, separating the fuel gas stream from the oxidant gas stream, providing the required electrical contact between cells to achieve desired power output, and removing excess heat generated in the electrochemical process. Development of this MCFC technology from lab-scale sizes too a commercial area size of 1m{sup 2} has focused our efforts an demonstrating feasibility and evolutionary progress. The development effort will culminate in a proof-of-concept- 250kW power plant demonstration in 1996. The remainder of our commercialization program focuses upon lowering the costs associated with the MCFC power plant system in low production volumes.

  15. Chapter 3: Enabling Modernization of the Electric Power System Technology Assessment | Designs, Architectures, and Concepts

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Designs, Architectures, and Concepts Chapter 3: Technology Assessments Introduction Society's growing dependence on the electric infrastructure, along with rapid changes in generation-side and demand-side technologies, is forcing a reconsideration of the fundamental design principles and operational concepts of the grid. Currently, the grid is characterized by monolithic central generation interconnected by high voltage transmission lines, with one-way power flows on distribution feeders,

  16. Two-Phase Cooling Technology for Power Electronics with Novel Coolants

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Two-Phase Cooling Technology for Power Electronics with Novel Coolants 2011 DOE Vehicle Technologies Program Review Presentation PI: Gilbert Moreno May 10, 2011 Project ID: APE037 This presentation does not contain any proprietary, confidential, or otherwise restricted information. NATIONAL RENEWABLE ENERGY LABORATORY Overview Timeline Budget Barriers Partners / Collaboration * Project Start: FY 2011 * Project End: FY 2013 * Percent Complete: 10% * FY11: $550 K * 3M * DuPont * General Electric

  17. Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants

    Energy.gov [DOE]

    "This PowerPoint presentation was originally given by Dylan Grogan, principal investigator at Abengoa Solar, during a SunShot Initiative Concentrating Solar Power program review on April 24, 2013. The project, Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants, seeks to determine whether the inorganic fluids (molten salts) offer a sufficient reduction in levelized energy costs to pursue further development, and to develop the components required for their use. The presentation focuses on presenting conclusions from Phase 1 of the program and looks ahead to review Phase 2 activities."

  18. Breakdown voltage improvement of standard MOS technologies targeted at smart power

    SciTech Connect (OSTI)

    Santos, P.M.; Simas, M.I.C.; Lanca, M.; Finco, S.; Behrens, F.H.

    1995-12-31

    This paper presents and discusses trade-offs of three different design techniques intended to improve the breakdown voltage of n-type lateral medium power transistors to be fabricated in a conventional low cost CMOS technology. A thorough analysis of the static and dynamic characteristics of the modified structures was carried out with the support of a two-dimensional device simulator. The motivation behind this work was the construction of a low cost smart power microsystem, including control, sensing and protection circuitries, targeted at an electronic ballast for efficient control of the power delivered to fluorescent lamps.

  19. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    SciTech Connect (OSTI)

    Hansen, James Gerald

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  20. Chapter 4: Advancing Clean Electric Power Technologies | Nuclear Fuel Cycles Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nuclear Fuel Cycles Chapter 4: Technology Assessments Introduction and Background The Nuclear Fuel Cycle (NFC) is defined as the total set of operations required to produce fission energy and manage the associated nuclear materials. It can have different attributes, including the extension of natural resources, or the minimization of waste disposal requirements. The NFC, as depicted in Figure 4.O.1, is comprised of a set of operations that include the extraction of uranium (U) resources from the

  1. Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    SciTech Connect (OSTI)

    Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.; Hines, Wes; Upadhyaya, Belle

    2012-07-17

    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Light Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.

  2. NREL's Hydrogen-Powered Bus Serves as Showcase for Advanced Vehicle Technologies (AVT) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    Brochure describes the hydrogen-powered internal combustion engine (H2ICE) shuttle bus at NREL. The U.S. Department of Energy (DOE) is funding the lease of the bus from Ford to demonstrate market-ready advanced technology vehicles to visitors at NREL.

  3. Emerging Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Emerging Technologies Emerging Technologies Last January, we took a look at how ARPA-E performer, 1366 Technologies is working to dramatically reduce the cost of solar energy. A year later, we revisited their headquarters in Lexington, MA to see the progress they've made. Featured Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power

  4. Chapter 4: Advancing Clean Electric Power Technologies | High Temperature Reactors Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Reactors Chapter 4: Technology Assessments Introduction High temperature reactor (HTR) systems (i.e., reactors with core outlet temperatures between 700°C and 950°C) offer higher thermodynamic efficiency of converting the heat generated in the reactor to electricity (e.g., ~50% at 950°C or 47% at 850°C) than light water reactors (LWRs); this could greatly improve the economics of reactor systems. 1,2 However, the higher temperature also limits the number of fuel, coolant,

  5. Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies

    SciTech Connect (OSTI)

    Zhang, Yabei; Smith, Steven J.

    2007-08-16

    This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

  6. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Thomas Lynch

    2004-01-07

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and

  7. Economic evaluation of solar-only and hybrid power towers using molten salt technology

    SciTech Connect (OSTI)

    Kolb, G.J.

    1996-12-01

    Several hybrid and solar-only configurations for molten-salt power towers were evaluated with a simple economic model, appropriate for screening analysis. The solar specific aspects of these plants were highlighted. In general, hybrid power towers were shown to be economically superior to solar-only plants with the same field size. Furthermore, the power-booster hybrid approach was generally preferred over the fuel-saver hybrid approach. Using today`s power tower technology, economic viability for the solar power-boost occurs at fuel costs in the neighborhood of $2.60/MBtu to $4.40/ MBtu (low heating value) depending on whether coal-based or gas-turbine-based technology is being offset. The cost Of CO[sub 2] avoidance was also calculated for solar cases in which the fossil fuel cost was too low for solar to be economically viable. The avoidance costs are competitive with other proposed methods of removing CO[sub 2] from fossil-fired power plants.

  8. Coupling Electric Vehicles and Power Grid through Charging-In-Motion and Connected Vehicle Technology

    SciTech Connect (OSTI)

    Li, Jan-Mou; Jones, Perry T; Onar, Omer C; Starke, Michael R

    2014-01-01

    A traffic-assignment-based framework is proposed to model the coupling of transportation network and power grid for analyzing impacts of energy demand from electric vehicles on the operation of power distribution. Although the reverse can be investigated with the proposed framework as well, electricity flowing from a power grid to electric vehicles is the focus of this paper. Major variables in transportation network (including link flows) and power grid (including electricity transmitted) are introduced for the coupling. Roles of charging-in-motion technology and connected vehicle technology have been identified in the framework of supernetwork. A linkage (i.e. individual energy demand) between the two networks is defined to construct the supernetwork. To determine equilibrium of the supernetwork can also answer how many drivers are going to use the charging-in-motion services, in which locations, and at what time frame. An optimal operation plan of power distribution will be decided along the determination simultaneously by which we have a picture about what level of power demand from the grid is expected in locations during an analyzed period. Caveat of the framework and possible applications have also been discussed.

  9. Overview of free-piston Stirling engine technology for space power application

    SciTech Connect (OSTI)

    Slaby, J.G.

    1987-01-01

    An overview is presented of the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) free-piston Stirling engine activities directed toward space-power application. One of the major elements of the program is the development of advanced power conversion of which the Stirling cycle is a viable candidate. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Technology work is also conducted on heat-exchanger concepts, both design and fabrication, to minimize the number of joints as well as to enhance the heat transfer in the heater. Design parameters and conceptual design features are also presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. Projections are made for future space-power requirements over the next few decades along with a recommendation to consider the use of dynamic power-conversion systems - either solar or nuclear. A description of a study to investigate the feasibility of scaling a single-cylinder free-piston Stirling space-power module to the 150 kWe power range is presented.

  10. Reflector Technology Development and System Design for Concentrating Solar Power Technologies

    SciTech Connect (OSTI)

    Adam Schaut Philip Smith

    2011-12-30

    Alcoa began this program in March of 2008 with the goal of developing and validating an advanced CSP trough design to lower the levelized cost of energy (LCOE) as compared to existing glass based, space-frame trough technology. In addition to showing a pathway to a significant LCOE reduction, Alcoa also desired to create US jobs to support the emerging CSP industry. Alcoa's objective during Phase I: Concept Feasibility was to provide the DOE with a design approach that demonstrates significant overall system cost savings without sacrificing performance. Phase I consisted of two major tasks; reflector surface development and system concept development. Two specific reflective surface technologies were investigated, silver metallized lamination, and thin film deposition both applied on an aluminum substrate. Alcoa prepared samples; performed test validation internally; and provided samples to the NREL for full-spectrum reflectivity measurements. The final objective was to report reflectivity at t = 0 and the latest durability results as of the completion of Phase 1. The target criteria for reflectance and durability were as follows: (1) initial (t = 0), hemispherical reflectance >93%, (2) initial spectral reflectance >90% for 25-mrad reading and >87% for 7-mrad reading, and (3) predicted 20 year durability of less than 5% optical performance drop. While the results of the reflective development activities were promising, Alcoa was unable to down-select on a reflective technology that met the target criteria. Given the progress and potential of both silver film and thin film technologies, Alcoa continued reflector surface development activities in Phase II. The Phase I concept development activities began with acquiring baseline CSP system information from both CSP Services and the DOE. This information was used as the basis to develop conceptual designs through ideation sessions. The concepts were evaluated based on estimated cost and high-level structural

  11. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    SciTech Connect (OSTI)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  12. Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology

    SciTech Connect (OSTI)

    Darren Hammell; Mark Holveck; DOE Project Officer - Keith Bennett

    2006-08-01

    Grid-tied inverter power electronics have been an Achilles heel of the small wind industry, providing opportunity for new technologies to provide lower costs, greater efficiency, and improved reliability. The small wind turbine market is also moving towards the 50-100kW size range. The unique AC-link power conversion technology provides efficiency, reliability, and power quality advantages over existing technologies, and Princeton Power will adapt prototype designs used for industrial asynchronous motor control to a 50kW small wind turbine design.

  13. Federal strategies to increase the implementation of combined heat and power technologies in the United States

    SciTech Connect (OSTI)

    Laitner, J.; Parks, W.; Schilling, J.; Scheer, R.

    1999-07-01

    Recent interest in combined heat and power (CHP) is providing momentum to efforts aimed at increasing the capacity of this highly-efficient technology. Factors driving this increase in interest include the need to increase the efficiency of the nation's electricity generation infrastructure, DOE Assistant Secretary Dan Reicher's challenge to double the capacity of CHP by 2010, the success of DOE's Advanced Turbine Systems Program in supporting ultra-efficient CHP technologies, and the necessity of finding cost-effective solutions to address climate change and air quality issues. The federal government is committed to increasing the penetration of CHP technologies in the US. The ultimate goal is to build a competitive market for CHP in which policies and regulations support the implementation of a full suite of technologies for multiple applications. Specific actions underway at the federal level include technology strategies to improve CHP data collection and assessment and work with industry to encourage the development of advanced CHP technologies. Policy strategies include changes to federal environmental permitting procedures including CHP-friendly strategies in federal restructuring legislation, supporting tax credits and changes to depreciation requirements as economic incentives to CHP, working with industry to leverage resources in the development of advanced CHP technologies, educating state officials about the things they can do to encourage CHP, and increasing awareness about the benefits of CHP and the barriers limiting its increased implementation.

  14. Electrical Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect (OSTI)

    None, None

    1998-02-18

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the EPRI/ADA Technologies dry sorbent sampling unit and the testing of Hg catalysts/sorbents in this low-flow, temperature controlled system. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future work is identified.

  15. EV Charging Through Wireless Power Transfer: Analysis of Efficiency Optimization and Technology Trends

    SciTech Connect (OSTI)

    Miller, John M; Rakouth, Heri; Suh, In-Soo

    2012-01-01

    This paper is aimed at reviewing the technology trends for wireless power transfer (WPT) for electric vehicles (EV). It also analyzes the factors affecting its efficiency and describes the techniques currently used for its optimization. The review of the technology trends encompasses both stationary and moving vehicle charging systems. The study of the stationary vehicle charging technology is based on current implementations and on-going developments at WiTricity and Oak Ridge National Lab (ORNL). The moving vehicle charging technology is primarily described through the results achieved by the Korean Advanced Institute of Technology (KAIST) along with on-going efforts at Stanford University. The factors affecting the efficiency are determined through the analysis of the equivalent circuit of magnetic resonant coupling. The air gap between both transmitting and receiving coils along with the magnetic field distribution and the relative impedance mismatch between the related circuits are the primary factors affecting the WPT efficiency. Currently the industry is looking at an air gap of 25 cm or below. To control the magnetic field distribution, Kaist has recently developed the Shaped Magnetic Field In Resonance (SMFIR) technology that uses conveniently shaped ferrite material to provide low reluctance path. The efficiency can be further increased by means of impedance matching. As a result, Delphi's implementation of the WiTricity's technology exhibits a WPT efficiency above 90% for stationary charging while KAIST has demonstrated a maximum efficiency of 83% for moving vehicle with its On Line Vehicle (OLEV) project. This study is restricted to near-field applications (short and mid-range) and does not address long-range technology such as microwave power transfer that has low efficiency as it is based on radiating electromagnetic waves. This paper exemplifies Delphi's work in powertrain electrification as part of its innovation for the real world program geared

  16. Ocean thermal energy conversion

    SciTech Connect (OSTI)

    Avery, W.H.

    1983-03-17

    A brief explanation of the Ocean Thermal Energy Conversion (OTEC) concept and an estimate of the amount of energy that can be produced from the ocean resource without introducing environmental concerns are presented. Use of the OTEC system to generate electric power and products which can replace fossil fuels is shown. The OTEC program status and its prospects for the future are discussed.

  17. Chapter 3: Enabling Modernization of the Electric Power System Technology Assessment | Cyber and Physical Security

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cyber and Physical Security Chapter 3: Technology Assessments Introduction As understanding of the threats facing the operation, components, and subsystems of the electric power system is gained, a need has emerged for improvements in grid security and resilience. The focus on resiliency implies that threats will not go away and that some attacks, in addition to natural events, will be carried out successfully. The objective is for the system and associated subsystems to be designed and operated

  18. WIND AND WATER POWER TECHNOLOGIES OFFICE Pacific Northwest National Laboratory's Tethys:

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste. For more information, visit: water.energy.gov DOE/EE-1166 * January 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE Pacific Northwest National Laboratory's Tethys: A Knowledge Management System Tethys is a knowledge management system that gathers, organizes, and provides access to information pertaining to the potential environmental effects of MHK. Tethys enables access to hundreds of peer

  19. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Gary Harmond; Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the U.S. Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are

  20. Development of ITM oxygen technology for integration in IGCC and other advanced power generation

    SciTech Connect (OSTI)

    Armstrong, Phillip A.

    2015-03-31

    Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under this five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state

  1. Status of an advanced radioisotope space power system using free-piston Stirling technology

    SciTech Connect (OSTI)

    White, M.A,; Qiu, S.; Erbeznik, R.M.; Olan, R.W.; Welty, S.C.

    1998-07-01

    This paper describes a free-piston Stirling engine technology project to demonstrate a high efficiency power system capable of being further developed for deep space missions using a radioisotope (RI) heat source. The key objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for 10 years or longer on deep space missions. Primary issues being addressed for Stirling space power systems are weight and the vibration associated with reciprocating pistons. Similar weight and vibration issues have been successfully addressed with Stirling cryocoolers, which are the accepted standard for cryogenic cooling in space. Integrated long-life Stirling engine-generator (or convertor) operation has been demonstrated by the terrestrial Radioisotope Stirling Generator (RSG) and other Stirling Technology Company (STC) programs. Extensive RSG endurance testing includes more than 40,000 maintenance-free, degradation-free hours for the complete convertor, in addition to several critical component and subsystem endurance tests. The Stirling space power convertor project is being conducted by STC under DOE Contract, and NASA SBIR Phase II contracts. The DOE contract objective is to demonstrate a two-convertor module that represents half of a nominal 150-W(e) power system. Each convertor is referred to as a Technology Demonstration Convertor (TDC). The ultimate Stirling power system would be fueled by three general purpose heat source (GPHS) modules, and is projected to produce substantially more electric power than the 150-watt target. The system is capable of full power output with one failed convertor. One NASA contract, nearing completion, uses existing 350-W(e) RG-350 convertors to evaluate interactivity of two back-to-back balanced convertors with various degrees of electrical and mechanical interaction. This effort has recently provided the first successful synchronization of two convertors by means of parallel

  2. Subtask 5.10 - Testing of an Advanced Dry Cooling Technology for Power Plants

    SciTech Connect (OSTI)

    Martin, Christopher; Pavlish, John

    2013-09-30

    The University of North Dakota’s Energy & Environmental Research Center (EERC) is developing a market-focused dry cooling technology that is intended to address the key shortcomings of conventional dry cooling technologies: high capital cost and degraded cooling performance during daytime temperature peaks. The unique aspect of desiccant dry cooling (DDC) is the use of a hygroscopic working fluid—a liquid desiccant—as a heat-transfer medium between a power plant’s steam condenser and the atmosphere. This configuration enables a number of beneficial features for large-scale heat dissipation to the atmosphere, without the consumptive use of cooling water. The overall goal of this project was to accurately define the performance and cost characteristics of DDC to determine if further development of the concept is warranted. A balanced approach of modeling grounded in applied experimentation was pursued to substantiate DDC-modeling efforts and outline the potential for this technology to cool full-scale power plants. The resulting analysis shows that DDC can be a lower-cost dry cooling alternative to an air-cooled condenser (ACC) and can even be competitive with conventional wet recirculating cooling under certain circumstances. This project has also highlighted the key technological steps that must be taken in order to transfer DDC into the marketplace. To address these issues and to offer an extended demonstration of DDC technology, a next-stage project should include the opportunity for outdoor ambient testing of a small DDC cooling cell. This subtask was funded through the EERC–U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the Wyoming State Legislature under an award made through the Wyoming Clean Coal Technologies Research Program.

  3. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are

  4. Revamped Simulation Tool to Power Up Wave Energy Development | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Revamped Simulation Tool to Power Up Wave Energy Development Revamped Simulation Tool to Power Up Wave Energy Development May 21, 2015 - 2:40pm Addthis Revamped Simulation Tool to Power Up Wave Energy Development Alison LaBonte Marine and Hydrokinetic Technology Manager When engineers want to model new technologies, there's often nothing better than simulation tools. Designing technologies to harness energy from ocean waves is especially complex because engineers have to build them

  5. Marine & Hydrokinetic Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    This fact sheet describes the U.S. Department of Energy's Water Power Program. The program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity.

  6. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    SciTech Connect (OSTI)

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-21

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  7. Development of a Kelp-type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology

    SciTech Connect (OSTI)

    Wang, Taiping; Khangaonkar, Tarang; Long, Wen; Gill, Gary A.

    2014-02-07

    In recent years, with the rapid growth of global energy demand, the interest in extracting uranium from seawater for nuclear energy has been renewed. While extracting seawater uranium is not yet commercially viable, it serves as a “backstop” to the conventional uranium resources and provides an essentially unlimited supply of uranium resource. With recent advances in seawater uranium extraction technology, extracting uranium from seawater could be economically feasible when the extraction devices are deployed at a large scale (e.g., several hundred km2). There is concern however that the large scale deployment of adsorbent farms could result in potential impacts to the hydrodynamic flow field in an oceanic setting. In this study, a kelp-type structure module was incorporated into a coastal ocean model to simulate the blockage effect of uranium extraction devices on the flow field. The module was quantitatively validated against laboratory flume experiments for both velocity and turbulence profiles. The model-data comparison showed an overall good agreement and validated the approach of applying the model to assess the potential hydrodynamic impact of uranium extraction devices or other underwater structures in coastal oceans.

  8. Candidate for solar power : a novel desalination technology for coal bed methane produced water.

    SciTech Connect (OSTI)

    Hanley, Charles J.; Andelman, Marc; Hightower, Michael M.; Sattler, Allan Richard

    2005-03-01

    Laboratory and field developments are underway to use solar energy to power a desalination technology - capacitive deionization - for water produced by remote Coal Bed Methane (CBM) natural gas wells. Due to the physical remoteness of many CBM wells throughout the Southwestern U.S., as shown in Figure 1, this approach may offer promise. This promise is not only from its effectiveness in removing salt from CBM water and allowing it to be utilized for various applications, but also for its potentially lower energy consumption compared to other technologies, such as reverse osmosis. This, coupled with the remoteness (Figure 1) of thousands of these wells, makes them more feasible for use with photovoltaic (solar, electric, PV) systems. Concurrent laboratory activities are providing information about the effectiveness and energy requirements of each technology under various produced water qualities and water reuse applications, such as salinity concentrations and water flows. These parameters are being used to driving the design of integrated PV-powered treatment systems. Full-scale field implementations are planned, with data collection and analysis designed to optimize the system design for practical remote applications. Early laboratory studies of capacitive deionization have shown promise that at common CBM salinity levels, the technology may require less energy, is less susceptible to fouling, and is more compact than equivalent reverse osmosis (RO) systems. The technology uses positively and negatively charged electrodes to attract charged ions in a liquid, such as dissolved salts, metals, and some organics, to the electrodes. This concentrates the ions at the electrodes and reduces the ion concentrations in the liquid. This paper discusses the results of these laboratory studies and extends these results to energy consumption and design considerations for field implementation of produced water treatment using photovoltaic systems.

  9. WABASH RIVER IMPPCCT, INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES

    SciTech Connect (OSTI)

    Doug Strickland

    2001-09-28

    In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the Gasification Engineering Corporation and an Industrial Consortium are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an Early Entrance Coproduction Plant located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, financial, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility Study and conceptual design for an integrated demonstration facility and for fence-line commercial plants operated at The Dow Chemical Company or Dow Corning Corporation chemical plant locations (i.e. the Commercial Embodiment Plant or CEP) (2) Research, development, and testing to address any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at

  10. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Albert Tsang

    2003-10-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Two project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment

  11. APEX and ALPS, high power density technology programs in the U.S.

    SciTech Connect (OSTI)

    Wong, C.; Berk, S.; Abdou, M.; Mattas, R.

    1999-02-01

    In fiscal year (FY) 1998 two new fusion technology programs were initiated in the US, with the goal of making marked progress in the scientific understanding of technologies and materials required to withstand high plasma heat flux and neutron wall loads. APEX is exploring new and revolutionary concepts that can provide the capability to extract heat efficiently from a system with high neutron and surface heat loads while satisfying all the fusion power technology requirements and achieving maximum reliability, maintainability, safety, and environmental acceptability. ALPS program is evaluating advanced concepts including liquid surface limiters and divertors on the basis of such factors as their compatibility with fusion plasma, high power density handling capabilities, engineering feasibility, lifetime, safety and R and D requirements. The APEX and ALPS are three-year programs to specify requirements and evaluate criteria for revolutionary approaches in first wall, blanket and high heat flux component applications. Conceptual design and analysis of candidate concepts are being performed with the goal of selecting the most promising first wall, blanket and high heat flux component designs that will provide the technical basis for the initiation of a significant R and D effort beginning in FY2001. These programs are also considering opportunities for international collaborations.

  12. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Doug Strickland; Albert Tsang

    2002-10-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial plants operated at Dow Chemical or Dow Corning chemical plant locations; (2) Research, development, and testing to define any technology gaps or critical design and integration issues; and (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. This report describes management planning, work breakdown structure development, and feasibility study activities by the IMPPCCT consortium in support of the first project phase. Project planning activities have been completed, and a project timeline and task list has been generated. Requirements for an economic model to evaluate the West Terre Haute implementation and for other commercial implementations are being defined. Specifications for methanol product and availability of local feedstocks for potential commercial embodiment plant sites have been defined. The WREL facility is a project selected and co-funded under the fifth phase solicitation of the U.S. Department of Energy's Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas

  13. Cost-effective retrofit technology for reducing peak power demand in small and medium commercial buildings

    DOE PAGES-Beta [OSTI]

    Nutaro, James J.; Fugate, David L.; Kuruganti, Teja; Sanyal, Jibonananda; Starke, Michael R.

    2015-05-27

    We describe a cost-effective retrofit technology that uses collective control of multiple rooftop air conditioning units to reduce the peak power consumption of small and medium commercial buildings. The proposed control uses a model of the building and air conditioning units to select an operating schedule for the air conditioning units that maintains a temperature set point subject to a constraint on the number of units that may operate simultaneously. A prototype of this new control system was built and deployed in a large gymnasium to coordinate four rooftop air conditioning units. Based on data collected while operating this prototype,more » we estimate that the cost savings achieved by reducing peak power consumption is sufficient to repay the cost of the prototype within a year.« less

  14. Cost-effective retrofit technology for reducing peak power demand in small and medium commercial buildings

    SciTech Connect (OSTI)

    Nutaro, James J.; Fugate, David L.; Kuruganti, Teja; Sanyal, Jibonananda; Starke, Michael R.

    2015-05-27

    We describe a cost-effective retrofit technology that uses collective control of multiple rooftop air conditioning units to reduce the peak power consumption of small and medium commercial buildings. The proposed control uses a model of the building and air conditioning units to select an operating schedule for the air conditioning units that maintains a temperature set point subject to a constraint on the number of units that may operate simultaneously. A prototype of this new control system was built and deployed in a large gymnasium to coordinate four rooftop air conditioning units. Based on data collected while operating this prototype, we estimate that the cost savings achieved by reducing peak power consumption is sufficient to repay the cost of the prototype within a year.

  15. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    SciTech Connect (OSTI)

    Ushimaru, Kenji.

    1990-08-01

    Since 1983, technological advances and market growth of inverter- driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries-- microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices--were able to direct the development and market success of inverter-driven heat pumps. As a result, leading US variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales. 54 refs., 47 figs., 1 tab.

  16. Motion-to-Energy (M2Eâ„¢) Power Generation Technology

    ScienceCinema (OSTI)

    Idaho National Laboratory

    2016-07-12

    INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking. To learn more,

  17. DOE FreedomCAR and vehicle technologies program advanced power electronic and electrical machines annual review report

    SciTech Connect (OSTI)

    Olszewski, Mitch

    2006-10-11

    This report is a summary of the Review Panel at the FY06 DOE FreedomCAR and Vehicle Technologies (FCVT) Annual Review of Advanced Power Electronics and Electric Machine (APEEM) research activities held on August 15-17, 2006.

  18. Progress Towards Commercialization of Electrochemical Membrane Technology for CO2 Capture and Power Generation

    SciTech Connect (OSTI)

    Ghezel-Ayagh, Hossein; Jolly, Stephen; DiNitto, M.; Hunt, Jennifer; Patel, Dilip; Steen, William A.; Richardson, C. F.; Marina, Olga A.; Pederson, Larry R.

    2014-03-01

    To address the concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept, as a novel solution for greenhouse gas emission reduction. The CEPACS system utilizes Electrochemical Membrane (ECM) technology derived from the Company’s well established Direct FuelCell® products. The system concept works as two devices in one: it separates the CO2 from the exhaust of other plants and simultaneously, using a supplementary fuel, produces electric power at high efficiency. FCE is currently evaluating the use of ECM to cost effectively separate CO2 from the flue gas of coal fired power plants under a U.S. Department of Energy contract. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from flue gas of a PC plant with no more than 35% increase in the cost of electricity. The specific objectives and related activities presently ongoing for the project include: 1) conduct bench scale tests of ECM and 2) evaluate the effects of impurities present in the coal plant flue gas by laboratory scale performance tests of the membrane.

  19. The Emerging Interdependence of the Electric Power Grid & Information and Communication Technology

    SciTech Connect (OSTI)

    Taft, Jeffrey D.; Becker-Dippmann, Angela S.

    2015-08-01

    This paper examines the implications of emerging interdependencies between the electric power grid and Information and Communication Technology (ICT). Over the past two decades, electricity and ICT infrastructure have become increasingly interdependent, driven by a combination of factors including advances in sensor, network and software technologies and progress in their deployment, the need to provide increasing levels of wide-area situational awareness regarding grid conditions, and the promise of enhanced operational efficiencies. Grid operators’ ability to utilize new and closer-to-real-time data generated by sensors throughout the system is providing early returns, particularly with respect to management of the transmission system for purposes of reliability, coordination, congestion management, and integration of variable electricity resources such as wind generation.

  20. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect (OSTI)

    None, None

    1997-11-01

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. Also, several installation activities were initiated this month for the testing of a new EPRI/ADA Technologies sorbent sampling system in December. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future work is identified.

  1. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee, July 1996

    SciTech Connect (OSTI)

    1996-11-15

    Operations and maintenance continued this month at the Electric Power Research Institute's Environmental Control Technology Center. Testing for the Hazardous Air Pollutant (HAP) test block was conducted using the Carbon Injection System (the 4.0 MW Spray Dryer Absorber System and the Pulse Jet Fabric Filter). Testing also continued across the B and W/CHX Heat Exchanger project. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode. Inspections of these idled systems were conducted this month.

  2. Electric power research institute environmental control technology center report to the steering committee

    SciTech Connect (OSTI)

    1998-08-08

    Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DST) test block with the Carbon Injection System. The 1.0 MW Cold- Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini- Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future project work is identified.

  3. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect (OSTI)

    None, None

    1998-01-12

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini-Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future project work is identified.

  4. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect (OSTI)

    None, None

    1997-10-01

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future work is identified.

  5. Evaluation of the Materials Technology Required for a 760?C Power Steam Boiler

    SciTech Connect (OSTI)

    Shingledecker, John P; Wright, Ian G

    2006-01-01

    The U.S. Ultra-supercritical (USC) Steam Boiler Consortium, funded by the U.S. Department of Energy and the Ohio Coal Development Office, has been working to develop the necessary materials technology to construct a steam power boiler with maximum steam conditions of 760 C and 35MPa. One large component of this work is to evaluate the properties of the materials chosen for such a boiler. While long-term creep strength of base metal is initially used to set temperatures, stresses, and simple design rules, it is clear that base metal creep strength is not always the material property of most importance when selecting an alloy. The fabrication issues (typically weldability), the properties of materials after fabrication, the corrosion resistance of the material, and material cost all need to be considered in addition to baseline mechanical properties. Work is ongoing at Oak Ridge National Laboratory to evaluate the material technologies being developed by the USC Steam Boiler Consortium and perform additional advanced research activities in areas where new materials developments and better fundamental understanding are needed to ensure the long-term success of a 760 C power steam boiler.

  6. Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)

    SciTech Connect (OSTI)

    Conocophillips

    2007-09-30

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator

  7. DOE in the News: Tidal Power in Maine on PBS Newshour | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in the state of Maine with Ocean Renewable Power Corporation ... Zayas, focuses on the deployment of ORPC's TidGen device ... Issues First Renewable Energy Lease for MHK Technology ...

  8. Electric Power Research Institute Environmental Control Technology Center: Report to the Steering Committee, June 1996

    SciTech Connect (OSTI)

    1996-06-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the Hazardous Air Pollutant (HAP) test block was conducted using the 4.0 MW Spray Dryer Absorber System (SDA) and Pulse Jet Fabric Filter (PJFF) - Carbon Injection System. Investigations also continued across the B&W/CHX Heat Exchanger unit, while the 1.0 MW Selective Catalytic Reduction (SCR) unit remained idle this month in a cold-standby mode as monthly inspections were conducted. Pilot Testing Highlights Testing efforts in June were focused on the HAP test block and the Trace Elements Removal (TER) test block. Both programs were conducted on the 4.0 MW wet FGD pilot unit and PJFF unit. The HAP test block was temporarily concluded in June to further review the test data. This program began in March as part of the DOE Advanced Power Systems Program; the mission of this program is to accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. The 1996 HAP test block focuses on three research areas, including: Catalytic oxidation of vapor-phase elemental mercury; Enhanced particulate-phase HAPs removal by electrostatic charging of liquid droplets; and Enhanced mercury removal by addition of additives to FGD process liquor. The TER test block is part of EPRI`s overall program to develop control technology options for reduction of trace element emissions. This experimental program investigates mercury removal and mercury speciation under different operating conditions.

  9. System and method for design and optimization of grid connected photovoltaic power plant with multiple photovoltaic module technologies

    DOE Patents [OSTI]

    Thomas, Bex George; Elasser, Ahmed; Bollapragada, Srinivas; Galbraith, Anthony William; Agamy, Mohammed; Garifullin, Maxim Valeryevich

    2016-03-29

    A system and method of using one or more DC-DC/DC-AC converters and/or alternative devices allows strings of multiple module technologies to coexist within the same PV power plant. A computing (optimization) framework estimates the percentage allocation of PV power plant capacity to selected PV module technologies. The framework and its supporting components considers irradiation, temperature, spectral profiles, cost and other practical constraints to achieve the lowest levelized cost of electricity, maximum output and minimum system cost. The system and method can function using any device enabling distributed maximum power point tracking at the module, string or combiner level.

  10. Survey of technology for hybrid vehicle auxiliary power units. Interim report, April 1994-June 1995

    SciTech Connect (OSTI)

    Widener, S.K.

    1995-10-01

    The state-of-the-art of heat engines for use as auxiliary power units in hybrid vehicles is surveyed. The study considers reciprocating or rotary heat engines, excluding gas turbines and fuel cells. The relative merits of various engine-generator concepts are compared. The concepts are ranked according to criteria tailored for a series-type hybrid drive. The two top APU concepts were the free-piston engine/linear generator (FPELG) and the Wankel rotary` engine. The FPELG is highly ranked primarily because of thermal efficiency cost, producibility. reliability, and transient response advantages; it is a high risk concept because of unproven technology. The Wankel engine is proven. with high power density, low cost and low noise. Four additional competitive concepts include two-stroke spark-ignition engine. two-stroke gas generator with turboalternator, free-piston engine gas generator with turboalternator, and homogeneous charge compression ignition engine. This study recommends additional work, including cycle simulation development and preliminary design to better quantify thermal efficiency and power density. Auxiliary concepts were also considered, including two which warrant further study: electrically actuated valves, and lean turndown of a normally stoichiometric engine. These concepts should be evaluated by retrofitting to existing engines.

  11. ORNL superconducting technology program for electric power systems. Annual report for FY 1993

    SciTech Connect (OSTI)

    Hawsey, R.A.

    1994-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are conductor development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1993 Annual Program Review held July 28--29, 1993. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to industrial competitiveness projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  12. Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Combined Heat and Power Systems Technology Development and Demonstration 370 kW High Efficiency Microturbine

    SciTech Connect (OSTI)

    none,

    2015-10-14

    The C370 Program was awarded in October 2010 with the ambitious goal of designing and testing the most electrically efficient recuperated microturbine engine at a rated power of less than 500 kW. The aggressive targets for electrical efficiency, emission regulatory compliance, and the estimated price point make the system state-of-the-art for microturbine engine systems. These goals will be met by designing a two stage microturbine engine identified as the low pressure spool and high pressure spool that are based on derivative hardware of Capstone’s current commercially available engines. The development and testing of the engine occurred in two phases. Phase I focused on developing a higher power and more efficient engine, that would become the low pressure spool which is based on Capstone’s C200 (200kW) engine architecture. Phase II integrated the low pressure spool created in Phase I with the high pressure spool, which is based on Capstone’s C65 (65 kW) commercially available engine. Integration of the engines, based on preliminary research, would allow the dual spool engine to provide electrical power in excess of 370 kW, with electrical efficiency approaching 42%. If both of these targets were met coupled with the overall CHP target of 85% total combined heating and electrical efficiency California Air Resources Board (CARB) level emissions, and a price target of $600 per kW, the system would represent a step change in the currently available commercial generation technology. Phase I of the C370 program required the development of the C370 low pressure spool. The goal was to increase the C200 engine power by a minimum of 25% — 250 kW — and efficiency from 32% to 37%. These increases in the C200 engine output were imperative to meet the power requirements of the engine when both spools were integrated. An additional benefit of designing and testing the C370 low pressure spool was the possibility of developing a stand-alone product for possible

  14. ocean waves

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    waves - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator ... SunShot Grand Challenge: Regional Test Centers ocean waves HomeTag:ocean waves Sandia's ...

  15. The potential impact of externalities considerations on the market for biomass power technologies

    SciTech Connect (OSTI)

    Swezey, B.G.; Porter, K.L.; Feher, J.S.

    1994-02-01

    This study assesses the current status of externalities considerations--nonmarket costs and benefits--in state and utility electricity resource planning processes and determines how externalities considerations might help or hinder the development of biomass power plants. It provides an overview of biomass resources and technologies, including their market status and environmental impacts; reviews the current treatment of externalities in the states; and documents the perspectives of key utility, regulatory, and industry representatives concerning externalities considerations. The authors make the following recommendations to the biomass industry: (1) the wood and agricultural waste industries should work toward having states and utilities recognize that wood and agricultural waste are greenhouse gas neutral resources because of carbon sequestration during growth; (2) the biomass industry should emphasize nonenvironmental benefits such as economic development and job creation; and (3) the biomass industry should pursue and support efforts to establish renewable energy set-asides or ``green`` requests for proposals.

  16. ARM - Oceans

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ListOceans Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Oceans Water vapor in the air eventually condenses and falls as rain, snow, sleet, or hail. Water that falls on land collects in rivers which carry it back to the ocean. The return of water to the ocean may be slowed when water

  17. Developing Effective Continuous On-Line Monitoring Technologies to Manage Service Degradation of Nuclear Power Plants

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Cumblidge, Stephen E.

    2011-09-30

    Recently, there has been increased interest in using prognostics (i.e, remaining useful life (RUL) prediction) for managing and mitigating aging effects in service-degraded passive nuclear power reactor components. A vital part of this philosophy is the development of tools for detecting and monitoring service-induced degradation. Experience with in-service degradation has shown that rapidly-growing cracks, including several varieties of stress corrosion cracks (SCCs), can grow through a pipe in less than one fuel outage cycle after they initiate. Periodic inspection has limited effectiveness at detecting and managing such degradation requiring a more versatile monitoring philosophy. Acoustic emission testing (AET) and guided wave ultrasonic testing (GUT) are related technologies with potential for on-line monitoring applications. However, harsh operating conditions within NPPs inhibit the widespread implementation of both technologies. For AET, another hurdle is the attenuation of passive degradation signals as they travel though large components, relegating AET to targeted applications. GUT is further hindered by the complexity of GUT signatures limiting its application to the inspection of simple components. The development of sensors that are robust and inexpensive is key to expanding the use of AET and GUT for degradation monitoring in NPPs and improving overall effectiveness. Meanwhile, the effectiveness of AET and GUT in NPPs can be enhanced through thoughtful application of tandem AET-GUT techniques.

  18. Marine and Hydrokinetic Technology Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information Resources » Marine and Hydrokinetic Technology Resources Marine and Hydrokinetic Technology Resources Marine and hydrokinetic (MHK) energy technologies convert the energy of waves, tides, and river and ocean currents into electricity. The Department of Energy's "Marine and Hydrokinetic 101" video explains how these technologies work and highlights some of the Water Power Program's efforts in R&D in this area. Learn where marine and hydrokinetic technology research and

  19. Vehicle Technologies Office Merit Review 2014: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors

    Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel...

  20. Vehicle Technologies Office Merit Review 2016: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors

    Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory (PNNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  1. Vehicle Technologies Office Merit Review 2015: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors

    Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel...

  2. Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for a Clean Energy Future Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most

  3. Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

  4. Portland Company to Receive $1.3 Million to Improve Hydro Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies | Department of Energy Portland Company to Receive $1.3 Million to Improve Hydro Power Technologies Portland Company to Receive $1.3 Million to Improve Hydro Power Technologies September 15, 2009 - 12:00am Addthis Washington, DC - US Energy Secretary Steven Chu today awarded more than $1.3 million to Ocean Renewable Power Company in Portland, Maine to improve the efficiency, flexibility, and environmental performance of hydroelectric energy. The investment will further the

  5. On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy

    SciTech Connect (OSTI)

    Yang, Bo; Makarov, Yuri V.; DeSteese, John G.; Vishwanathan, Vilanyur V.; Nyeng, Preben; McManus, Bart; Pease, John

    2008-05-27

    Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service for the BPA and California ISO systems by using a large energy storage facility. The paper evaluates several utility-scale energy storage technology options for their usage as regulation resources. The regulation service requires a participating resource to quickly vary its power output following the rapidly and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel cadmium batteries as candidate technologies for the WAEMS project. A cost benefit analysis should be conducted to narrow the choice to one technology.

  6. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    SciTech Connect (OSTI)

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Michael J. Holmes; Jason D. Laumb; Jill M. Mackenzie; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang

    2005-02-01

    The overall objective of the project was to develop advanced innovative mercury control technologies to reduce mercury emissions by 50%-90% in flue gases typically found in North Dakota lignite-fired power plants at costs from one-half to three-quarters of current estimated costs. Power plants firing North Dakota lignite produce flue gases that contain >85% elemental mercury, which is difficult to collect. The specific objectives were focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in electrostatic precipitators (ESPs) and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The approach to developing Hg control technologies for North Dakota lignites involved examining the feasibility of the following technologies: Hg capture upstream of an ESP using sorbent enhancement, Hg oxidation and control using dry scrubbers, enhanced oxidation at a full-scale power plant using tire-derived fuel and oxidizing catalysts, and testing of Hg control technologies in the Advanced Hybrid{trademark} filter.

  7. U.S. and Chinese experts perspectives on IGCC technology for Chinese electric power industry

    SciTech Connect (OSTI)

    Hsieh, B.C.B.; Wang Yingshi

    1997-11-01

    Although China is a very large and populous nation, and has one of the longest known histories in the world, it has only lately begun to seek its place among modern industrial nations. This move, precipitated by the government`s relatively recently adopted strategic goals of economic development, societal reform and promotion of engagement with other industrial nations, has brought to the fore the serious situation in which the Chinese electric power industry finds itself. Owing to the advanced average age of generation facilities and the technology used in them, serious expansion and modernization of this industry needs to take place, and soon, if it is to support the rapid industrial development already taking place in China. While China does have some oil and gas, coal constitutes its largest indigenous energy supply, by far. Coal has been mined and utilized for years in China. It is used directly to provide heat for homes, businesses and in industrial applications, and used to raise steam for the generation of electricity. The presently dominant coal utilization methods are characterized by low or marginal efficiencies and an almost universal lack of pollution control equipment. Because there is so much of it, coal is destined to be China`s predominant source of thermal energy for decades to come. Realizing these things--the rapidly increasing demand for more electric power than China presently can produce, the need to raise coal utilization efficiencies, and the corresponding need to preserve the environment--the Chinese government moved to commission several official working organizations to tackle these problems.

  8. Advanced component development of MCFC technology at M-C Power

    SciTech Connect (OSTI)

    Erickson, D.S.; Haugh, E.J.; Benjamin, T.G.

    1996-12-31

    M-C Power Corporation (MCP) was founded in 1987 to commercialize Molten Carbonate Fuel Cell (MCFC) stacks. The first generation of active area cell components were successfully scaled-up from the 100-cm{sup 2} area laboratory scale to continuous production of commercial-area (1-m) components. These components have been tested in five commercial-area subscale (20-kW) stacks and one commercial-scale (250-kW) stack. The second 250 kW stack is being installed in the power plant for operation in late 1996 and components have already been manufactured for the third 250-kW stack which is scheduled to go on-line in the middle of 1997. Concurrent with commercial-area (1-m{sup 2}) active component manufacturing has been an ongoing effort to develop and test advanced component technologies that will enable MCP to meet its future cost and performance goals. The primary goal is to lower the total cell package cost, while attaining improvements in cell performance and endurance. This work is being completed through analysis of the cost drivers for raw materials and manufacturing techniques. A program is in place to verify the performance of the lower cost materials through pressurized (3 atm) bench scale (100-cm{sup 2}) cell tests. Bench-scale cell testing of advanced active area components has shown that simultaneous cost reduction and improvements in the performance and endurance are attainable. Following performance verification at the bench scale level, scale-up of the advanced component manufacturing processes to commercial-area has been ongoing in the past year. The following sections discuss some of the performance improvements and reductions in cost that have been realized.

  9. Data Movement Dominates: Advanced Memory Technology to Address the Real Exascale Power Problem

    SciTech Connect (OSTI)

    Bergman, Keren

    2014-08-28

    Energy is the fundamental barrier to Exascale supercomputing and is dominated by the cost of moving data from one point to another, not computation. Similarly, performance is dominated by data movement, not computation. The solution to this problem requires three critical technologies: 3D integration, optical chip-to-chip communication, and a new communication model. The central goal of the Sandia led "Data Movement Dominates" project aimed to develop memory systems and new architectures based on these technologies that have the potential to lower the cost of local memory accesses by orders of magnitude and provide substantially more bandwidth. Only through these transformational advances can future systems reach the goals of Exascale computing with a manageable power budgets. The Sandia led team included co-PIs from Columbia University, Lawrence Berkeley Lab, and the University of Maryland. The Columbia effort of Data Movement Dominates focused on developing a physically accurate simulation environment and experimental verification for optically-connected memory (OCM) systems that can enable continued performance scaling through high-bandwidth capacity, energy-efficient bit-rate transparency, and time-of-flight latency. With OCM, memory device parallelism and total capacity can scale to match future high-performance computing requirements without sacrificing data-movement efficiency. When we consider systems with integrated photonics, links to memory can be seamlessly integrated with the interconnection network-in a sense, memory becomes a primary aspect of the interconnection network. At the core of the Columbia effort, toward expanding our understanding of OCM enabled computing we have created an integrated modeling and simulation environment that uniquely integrates the physical behavior of the optical layer. The PhoenxSim suite of design and software tools developed under this effort has enabled the co-design of and performance evaluation photonics-enabled OCM

  10. MHK Technologies/Deep Water Pipelines | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Makai Ocean Engineering Inc Project(s) where this technology is utilized *MHK ProjectsOTEC Technology Resource Click here Ocean Thermal Energy Conversion (OTEC) Technology Type...

  11. Mitigation of magnetohydrodynamic electromagnetic pulse (MHD-EMP) effects from commerical electric power systems. Power Systems Technology Program

    SciTech Connect (OSTI)

    Barnes, P.R.; Tesche, F.M.; Vance, E.F.

    1992-03-01

    A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth`s magnetic field and produces a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). This can adversely affect electrical power systems. In this report, the effects of this nuclear environment on critical facilities connected to the commercial power system are considered. Methods of mitigating the MHD-EMP impacts are investigated, and recommended protection schemes are presented. Guidelines for testing facilities to determine the effects of MHD-EMP and to validate the mitigation methods also are discussed.

  12. The DOE Wide Area Measurement System (WAMS) Project: Demonstration of dynamic information technology for the future power system

    SciTech Connect (OSTI)

    Mittelstadt, W.A.; Krause, P.E.; Wilson, R.E.; Overholt, P.N.; Sobajic, D.J.; Hauer, J.F.; Rizy, D.T.

    1996-07-01

    In 1989 the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) joined the US Department of Energy (DOE) in an assessment of longer-term research and development needs for future electric power system operation. The effort produced a progressively sharper vision of a future power system in which enhanced control and operation are the primary means for serving new customer demands, in an environment where increased competition, a wider range of services and vendors, and much narrower operating margins all contribute to increased system efficiencies and capacity. Technology and infrastructure for real time access to wide area dynamic information were identified as critical path elements in realizing that vision. In 1995 the DOE accordingly launched the Wide Area Measurement System (WAMS) Project jointly with the two Power Marketing Administrations (PMAs) to address these issues in a practical operating environment--the western North America power system. The Project draws upon many years of PMA effort and related collaboration among the western utilities, plus an expanding infrastructure that includes regionally involved contractors, universities, and National Laboratories plus linkages to the Electric Power Research Institute (EPRI). The WAMS project also brings added focus and resources to the evolving Western System Dynamic Information Network, or WesDINet. This is a collective response of the Western Systems Coordinating Council (WSCC) member utilities to their shared needs for direct information about power system characteristics, model fidelity, and operational performance. The WAMS project is a key source of the technology and backbone communications needed to make WesDINet a well integrated, cost effective enterprise network demonstrating the role of dynamic information technology in the emerging utility environment.

  13. Electric Power Research Institute Environmental Control Technology Center final monthly technical report, August 1995

    SciTech Connect (OSTI)

    1995-08-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit this month involved the Trace Element Removal (TER) test block, and the simultaneous testing of the Lime Forced Oxidation process with DBA addition (LDG). Additionally, the second phase of the 1995 Carbon Injection test block began this month with the SDA/PJFF test configuration. At the end of the LDG testing this month, a one-week baseline test was conducted to generate approximately 200 lbs. of magnesium-lime FGD solids for analysis. On the 1.0 MW Post-FGD Selective Catalytic Reduction (SCR) unit, performance testing was continued this month as measurements were taken for NO{sub x} removal efficiency, residual ammonia slip, and S0{sub 3} generation across the catalysts installed in the reactor. As a result of new directions received from EPRI, this will be the last scheduled month of testing for the SCR unit in 1995. At the completion of this month, the unit will be isolated from the flue gas path and placed in a cold-standby mode for future test activities. This report describes the status of facilities and test facilities at the pilot and mini-pilot plants.

  14. Electric Power Research Institute, Environmental Control Technology Center report to the steering committee. Final technical report

    SciTech Connect (OSTI)

    1995-12-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued with the Pilot High Velocity FGD (PHV) and the Trace Element Removal (TER) test blocks. In the High Velocity test block, SO{sub 2} removal and mist eliminator carryover rates were investigated while operating the absorber unit with various spray nozzle types and vertical mist eliminator sections. During the Trace Element Removal test block, the mercury measurements and control studies involving the EPA Method 29 continued with testing of several impinger capture solutions, and the use of activated carbon injection across the Pulse-Jet Fabric Filter (PJFF) unit. The 4.0 MW Spray Dryer Absorber System was utilized this month in the TER test configuration to inject and transfer activated carbon to the PJFF bags for downstream mercury capture. Work also began in December to prepare the 0.4 MW Mini-Pilot Absorber system for receipt of the B and W Condensing Heat Exchanger (CHX) unit to be used in the 1996 DOE/PRDA testing. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit remained in cold-standby this month.

  15. Photo of the Week: Improving Power Plant Technology... in 3-D | Department

    Energy.gov (indexed) [DOE]

    Concentrated solar panels are getting a power boost. This summer, Pacific Northwest National Laboratory (PNNL) will be testing a new concentrated solar power system -- one that can help natural gas power plants reduce their fuel usage by up to 20 percent. PNNL has developed a system that uses a thermochemical conversion device to convert natural gas and sunlight into a more energy-rich fuel called syngas. By installing the pictured device in front of a concentrating solar power dish, power

  16. Wave Power Demonstration Project at Reedsport, Oregon

    SciTech Connect (OSTI)

    Mekhiche, Mike; Downie, Bruce

    2013-10-21

    Ocean wave power can be a significant source of large‐scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high‐voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon‐based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take‐off subsystem are complete; additionally the power take‐off subsystem has been successfully integrated into the spar.

  17. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant acccrmplishments in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power within this decade with subsequent large scale commercialization following by the turn of the century. Under U.S. Department of Energy funding, the Oceanic Engineering Operations of Interstate Electronics Corporation has prepared several OTEC Environmental Assessments over the past years, in particular, the OTEC Programmatic Environmental Assessment. The Programmatic EA considers several technological designs (open- and closed-cycle), plant configuratlons (land-based, moored, and plant-ship), and power usages (baseload electricity, ammonia and aluminum production). Potential environmental impacts, health and safetv issues and a status update of the institutional issues as they influence OTEC deployments, are included.

  18. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    SciTech Connect (OSTI)

    BLanc, Katya Le; Powers, David; Joe, Jeffrey; Spielman, Zachary; Rice, Brandon; Fitzgerald, Kirk

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.

  19. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant achievements in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power in this decade with subsequent large-scale commercialization to follow by the turn of the century. Under U.S. Department of Energy funding, Interstate Electronics has prepared an OTEC Programmatic Environmental Assessment (EA) that considers tne development, demonstration, and commercialization of OTEC power systems. The EA considers several tecnnological designs (open cycle and closed cycle), plant configurations (land-based, moored, and plantship), and power usages (baseload electricity and production of ammonia and aluminum). Potencial environmental impacts, health and safety issues, and a status update of international, federal, and state plans and policies, as they may influence OTEC deployments, are included.

  20. Exploring links between innovation and diffusion: adoption of NOx control technologies at U.S. coal-fired power plants

    SciTech Connect (OSTI)

    Popp, D.

    2006-03-15

    While many studies have looked at innovation and adoption of technologies separately, the two processes are linked. Advances (and expected advances) in a single technology should affect both its adoption rate and the adoption of alternative technologies. Moreover, advances made abroad may affect adoption differently than improvements developed domestically. This paper combines plant-level data on US coal-fired electric power plants with patent data pertaining to NOx pollution control techniques to study these links. It is shown that technological advances, particularly those made abroad, are important for the adoption of newer post-combustion treatment technologies, but have little effect on the adoption of older combustion modification techniques. Moreover, it provides evidence that adaptive R&D by US firms is necessary before foreign innovations are adopted in the US. Expectations of future technological advances delay adoption. Nonetheless, as in other studies of environmental technologies, the effect of other explanatory variables is dominated by the effect of environmental regulations, demonstrating that the mere presence of environmental technologies is not enough to encourage its usage.

  1. MHK technology developments include...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    for example, hydrokinetic turbines that extract power from water currents (riverine, tidal, and ocean) and wave energy conversion (WEC) devices that extract power from wave motion. ...

  2. Wind Power Technologies Office FY 2015 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind power currently provides more than 4% of the nation's electricity, and more wind-powered electricity generation capacity was installed in the United States in 2012 than that ...

  3. Technology Solutions Case Study: Photovoltaic Systems with Module-Level Power Electronics

    SciTech Connect (OSTI)

    Tim Merrigan

    2015-09-01

    This guide will show how DC power optimizers and microinverters (both known as module-level power electronics) are being used in new and/or retrofit, single and multifamily homes.

  4. Building America Technology Solutions Case Study: Photovoltaic Systems with Module-Level Power Electronics

    Energy.gov [DOE]

    This guide will show how DC power optimizers and microinverters (both known as module-level power electronics) are being used in new and/or retrofit, single and multifamily homes.

  5. Ocean Thermal Extractable Energy Visualization

    SciTech Connect (OSTI)

    Ascari, Matthew

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  6. Solar Powering Your Community: A Guide for Local Governments; Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    DOE/EERE Solar America Cities Fact Sheet - Solar Powering Your Community: A Guide for Local Governments, July 2009.

  7. Power Beamed Photon Sails: New Capabilities Resulting From Recent Maturation Of Key Solar Sail And High Power Laser Technologies

    SciTech Connect (OSTI)

    Montgomery, Edward E. IV

    2010-05-06

    This paper revisits some content in the First International Symposium on Beamed Energy Propulsion in 2002 related to the concept of propellantless in-space propulsion utilizing an external high energy laser to provide momentum to an ultralightweight (gossamer) spacecraft. The design and construction of the NanoSail-D solar sail demonstration spacecraft has demonstrated in space flight hardware the concept of small, very light--yet capable--spacecraft. The results of the Joint High Power Solid State Laser (JHPSSL) have also increased the effectiveness and reduced the cost of an entry level laser source. This paper identifies the impact from improved system parameters on current mission applications.

  8. Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors (Agreement ID:23726)

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Appendix M - GPRA06 estimate of penetration of generating technologies into green power markets

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The Green Power Market Model (GPMM or the model) identifies and analyzes the potential electric-generating capacity additions that will result from green power programs, which are not captured in the least-cost analyses performed by the National Energy Modeling System (NEMS) and the Market Allocation (MARKAL) model. The term "green power" is used to define power generated from renewable energy sources, such as wind, solar, geothermal, and various forms of biomass. The Green Power market is an increasingly important element of the national renewable energy contribution, with changes in the regulatory and legislative environment and the recent dramatic changes in natural gas prices slowly altering the size of this opportunity.

  10. Control of SO{sub 2} emissions from power plants: A case of induced technological innovation in the US

    SciTech Connect (OSTI)

    Taylor, M.R.; Rubin, E.S.; Hounshell, D.A.

    2005-07-01

    This paper investigates how the details of government actions induce innovation-the overlapping activities of invention, adoption and diffusion, and learning by doing-in 'environmental technology,' products and processes that either control pollutant emissions or prevent emissions altogether. It applies multiple quantitative and qualitative measures of innovation to a case subject to several 'technology - push' and 'demand-pull', instruments: sulfur dioxide control technology for power plants. The study employs analyses of public R&D funding, patents, expert interviews, learning curves, conference proceedings, and experience curves. Results indicate that: regulation and the anticipation of regulation stimulate invention; technology-push instruments appear to be less effective at prompting invention than demand-pull instruments; and regulatory stringency focuses inventive activity along certain technology pathways. Increased diffusion of the technology results in significant and predictable operating cost reductions in existing systems, as well as notable efficiency improvements and capital cost reductions in new systems. Government plays an important role in fostering knowledge transfer via technical conferences, as well as affecting the pattern of collaborative relationships within the technical research community via regulatory changes that affect the market for the technology. Finally, the case provides little evidence for the claim that cap-and-trade instruments induce innovation more effectively than other instruments.

  11. Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants

    SciTech Connect (OSTI)

    Balat, M.; Balat, H.; Oz, C.

    2009-07-01

    The aim of this paper is to investigate the global contribution of carbon capture and storage technologies to mitigating climate change. Carbon capture and storage is a technology that comprises the separation of from carbon dioxide industrial- and energy-related sources, transport to a storage location (e.g., saline aquifers and depleted hydrocarbon fields), and long-term isolation from the atmosphere. The carbon dioxides emitted directly at the power stations are reduced by 80 to 90%. In contrast, the life cycle assessment shows substantially lower reductions of greenhouse gases in total (minus 65 to 79%).

  12. Sandia Energy - High-Fidelity Hydrostructural Analysis of Ocean...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Hydrostructural Analysis of Ocean Renewable Power Company's (ORPC's) TidGen Turbine Home Renewable Energy Energy Water Power Partnership News News & Events Computational...

  13. Global Assessment of Hydrogen Technologies – Task 5 Report Use of Fuel Cell Technology in Electric Power Generation

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

    2007-12-01

    The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a “solar hydrogen economy” has been projected

  14. Perovskite Power

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Perovskite Power 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues submit Perovskite Power A breakthrough in the production of...

  15. Nano-structure multilayer technology fabrication of high energy density capacitors for the power electronic building book

    SciTech Connect (OSTI)

    Barbee, T.W.; Johnson, G.W.; Wagner, A.V.

    1997-10-21

    Commercially available capacitors do not meet the specifications of the Power Electronic Building Block (PEBB) concept. We have applied our propriety nanostructure multilayer materials technology to the fabrication of high density capacitors designed to remove this impediment to PEBB progress. Our nanostructure multilayer capacitors will also be enabling technology in many industrial and military applications. Examples include transient suppression (snubber capacitors), resonant circuits, and DC filtering in PEBB modules. Additionally, weapon applications require compact energy storage for detonators and pulsed-power systems. Commercial applications run the gamut from computers to lighting to communications. Steady progress over the last five years has brought us to the threshold of commercial manufacturability. We have demonstrated a working dielectric energy density of > 11 J/cm3 in 20 nF devices designed for 1 kV operation.

  16. Air Cooling Technology for Advanced Power Electronics and Electric Machines (Presentation)

    SciTech Connect (OSTI)

    Bharathan, D.

    2009-05-01

    This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Air Cooling for Power Electronics'.

  17. Impacts of Cooling Technology on Solder Fatigue for Power Modules in Electric Traction Drive Vehicles: Preprint

    SciTech Connect (OSTI)

    O'Keefe, M.; Vlahinos, A.

    2009-08-01

    Describes three power module cooling topologies for electric traction drive vehicles: two advanced options using jet impingement cooling and one option using pin-fin liquid cooling.

  18. Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  19. Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    This is a presentation by Yiping Liu from Sporian Microsystems at the 2013 SunShot Concentrating Solar Power Program Review.

  20. Estimating the Performance and Economic Value of Multiple Concentrating Solar Power Technologies in a Production Cost Model

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Estimating the Performance and Economic Value of Multiple Concentrating Solar Power Technologies in a Production Cost Model Jennie Jorgenson, Paul Denholm, Mark Mehos, and Craig Turchi Technical Report NREL/TP-6A20-58645 December 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  1. Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications

    SciTech Connect (OSTI)

    Amy, Fabrice; Hufton, Jeffrey; Bhadra, Shubhra; Weist, Edward; Lau, Garret; Jonas, Gordon

    2015-06-30

    Air Products has developed an acid gas removal technology based on adsorption (Sour PSA) that favorably compares with incumbent AGR technologies. During this DOE-sponsored study, Air Products has been able to increase the Sour PSA technology readiness level by successfully operating a two-bed test system on coal-derived sour syngas at the NCCC, validating the lifetime and performance of the adsorbent material. Both proprietary simulation and data obtained during the testing at NCCC were used to further refine the estimate of the performance of the Sour PSA technology when expanded to a commercial scale. In-house experiments on sweet syngas combined with simulation work allowed Air Products to develop new PSA cycles that allowed for further reduction in capital expenditure. Finally our techno economic analysis of the use the Sour PSA technology for both IGCC and coal-to-methanol applications suggests significant improvement of the unit cost of electricity and methanol compared to incumbent AGR technologies.

  2. Technologies

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Technologies Technologies Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate-affect, detect, and neutralize & mitigate all types of explosive threats. v Technologies Since its inception in 1943, Los Alamos National Laboratory has been a driving force in explosives science. Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate, detect, and mitigate all types of explosive threats. ANDE:

  3. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  4. Defining the “proven technology” technical criterion in the reactor technology assessment for Malaysia’s nuclear power program

    SciTech Connect (OSTI)

    Anuar, Nuraslinda; Kahar, Wan Shakirah Wan Abdul Manan, Jamal Abdul Nasir Abd

    2015-04-29

    Developing countries that are considering the deployment of nuclear power plants (NPPs) in the near future need to perform reactor technology assessment (RTA) in order to select the most suitable reactor design. The International Atomic Energy Agency (IAEA) reported in the Common User Considerations (CUC) document that “proven technology” is one of the most important technical criteria for newcomer countries in performing the RTA. The qualitative description of five desired features for “proven technology” is relatively broad and only provides a general guideline to its characterization. This paper proposes a methodology to define the “proven technology” term according to a specific country’s requirements using a three-stage evaluation process. The first evaluation stage screens the available technologies in the market against a predefined minimum Technology Readiness Level (TRL) derived as a condition based on national needs and policy objectives. The result is a list of technology options, which are then assessed in the second evaluation stage against quantitative definitions of CUC desired features for proven technology. The potential technology candidates produced from this evaluation is further narrowed down to obtain a list of proven technology candidates by assessing them against selected risk criteria and the established maximum allowable total score using a scoring matrix. The outcome of this methodology is the proven technology candidates selected using an accurate definition of “proven technology” that fulfills the policy objectives, national needs and risk, and country-specific CUC desired features of the country that performs this assessment. A simplified assessment for Malaysia is carried out to demonstrate and suggest the use of the proposed methodology. In this exercise, ABWR, AP1000, APR1400 and EPR designs assumed the top-ranks of proven technology candidates according to Malaysia’s definition of “proven technology”.

  5. Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs

    SciTech Connect (OSTI)

    Yoder, G.L.

    2005-10-03

    This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

  6. Oceans: our last resource

    SciTech Connect (OSTI)

    Marx, W.

    1981-01-01

    It is widely believed that oceans are vast storehouses of untapped food, energy, minerals, and even living space, but the author warns of a critical turning point in our stewardship of marine resources. The book opens with a history of thoughtless abuse and past mistakes which have eroded and polluted shorelines. Blind hopes for recovery of mineral wealth involve technology that may be prohibitively expensive or logistically impossible, and may have obscured real opportunities, notably the careful management and cultivation of valuable marine resources such as kelp, fish, and shellfish species. The author explores a broad spectrum of alternatives for safeguarding the oceans themselves by following wiser practices on land: methods of using biomass energy to lessen our dependence on offshore mineral development, and possibilities for recycling sewage rather than perceiving the ocean as the ultimate garbage dump. Two appendices present selected information on world fisheries and aquaculture and on the hazards of offshore oil. 319 references.

  7. Vehicle Technologies Office Merit Review 2014: High-Temperature Air-Cooled Power Electronics Thermal Design

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  8. Vehicle Technologies Office Merit Review 2014: Advanced Wireless Power Transfer and Infrastructure Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  9. Vehicle Technologies Office Merit Review 2015: Enabling Materials for High Temperature Power Electronics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about enabling...

  10. Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet)

    Energy.gov [DOE]

    The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity.

  11. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Test Procedure Development: Hybrid System Power Rating

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle...

  12. Vehicle Technologies Office Merit Review 2015: Development of High Power Density Driveline for Vehicles

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about development of...

  13. Vehicle Technologies Office Merit Review 2016: High Energy High Power Battery Exceeding PHEV-40 Requirements

    Energy.gov [DOE]

    Presentation given by TIAX at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  14. Vehicle Technologies Office Merit Review 2016: Power Electronics Thermal Management R&D

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory (NREL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  15. Vehicle Technologies Office Merit Review 2014: Development of High Power Density Driveline for Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development...

  16. NiSource Energy Technologies Inc.: System Integration of Distributed Power for Complete Building Systems

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

  17. Concentrating Solar Power: Power Towers

    Office of Energy Efficiency and Renewable Energy (EERE)

    This video provides an overview of the principles, applications, and benefits of generating electricity using power towers, a concentrating solar power (CSP) technology. A brief animation explains...

  18. Turbines in the ocean

    SciTech Connect (OSTI)

    Smith, F.G.W.; Charlier, R.H.

    1981-09-01

    It is noted that the relatively high-speed ocean currents flowing northward along the east coast of the U.S. may be able to supply a significant proportion of the future electric power requirements of urban areas. The Gulf Stream core lies only about 20 miles east of Miami here its near-surface water reaches velocities of 4.3 miles per hour. Attention is called to the estimate that the energy available in the current of the Gulf Stream adjacent to Florida is approximately equivalent to that generated by 25 1,000-megawatt power plants. It is also contended that this power could be produced at competitive prices during the 1980s using large turbines moored below the ocean surface near the center of the Stream. Assuming an average ocean-current speed between 4 and 5 knots at the current core, the power density of a hydroturbine could reach 410 watts per square foot, about 100 times that of a wind-driven device of similar scale operating in an airflow of approximately 11 knots.

  19. 2014 Water Power Program Peer Review: Hydropower Technologies, Compiled Presentations (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Hydropower Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  20. Active Power Control Testing at the U.S. National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Ela, E.

    2011-01-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.