National Library of Energy BETA

Sample records for objective transparent analyses

  1. System of and method for transparent management of data objects in containers across distributed heterogenous resources

    DOE Patents [OSTI]

    Moore, Reagan W.; Rajasekar, Arcot; Wan, Michael Y.

    2007-09-11

    A system of and method for maintaining data objects in containers across a network of distributed heterogeneous resources in a manner which is transparent to a client. A client request pertaining to containers is resolved by querying meta data for the container, processing the request through one or more copies of the container maintained on the system, updating the meta data for the container to reflect any changes made to the container as a result processing the re quest, and, if a copy of the container has changed, changing the status of the copy to indicate dirty status or synchronizing the copy to one or more other copies that may be present on the system.

  2. System of and method for transparent management of data objects in containers across distributed heterogenous resources

    DOE Patents [OSTI]

    Moore, Reagan W.; Rajasekar, Arcot; Wan, Michael Y.

    2010-09-21

    A system of and method for maintaining data objects in containers across a network of distributed heterogeneous resources in a manner which is transparent to a client. A client request pertaining to containers is resolved by querying meta data for the container, processing the request through one or more copies of the container maintained on the system, updating the meta data for the container to reflect any changes made to the container as a result processing the request, and, if a copy of the container has changed, changing the status of the copy to indicate dirty status or synchronizing the copy to one or more other copies that may be present on the system.

  3. System of and method for transparent management of data objects in containers across distributed heterogenous resources

    DOE Patents [OSTI]

    Moore, Reagan W.; Rajasekar, Arcot; Wan, Michael Y.

    2004-01-13

    A system of and method for maintaining data objects in containers across a network of distributed heterogeneous resources in a manner which is transparent to a client. A client request pertaining to containers is resolved by querying meta data for the container, processing the request through one or more copies of the container maintained on the system, updating the meta data for the container to reflect any changes made to the container as a result processing the request, and, if a copy of the container has changed, changing the status of the copy to indicate dirty status or synchronizing the copy to one or more other copies that may be present on the system.

  4. WIPP Nuclear Facilities Transparency

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Nuclear Facilities Transparency Resources Transparency Home Purpose of Transparency Stakeholders Transparency Implementation Transparency Risks Transparency Technologies Other ...

  5. Site-Specific Analyses for Demonstrating Compliance with 10 CFR 61 Performance Objectives - 12179

    SciTech Connect (OSTI)

    Grossman, C.J.; Esh, D.W.; Yadav, P.; Carrera, A.G.

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) is proposing to amend its regulations at 10 CFR Part 61 to require low-level radioactive waste disposal facilities to conduct site-specific analyses to demonstrate compliance with the performance objectives in Subpart C. The amendments would require licensees to conduct site-specific analyses for protection of the public and inadvertent intruders as well as analyses for long-lived waste. The amendments would ensure protection of public health and safety, while providing flexibility to demonstrate compliance with the performance objectives, for current and potential future waste streams. NRC staff intends to submit proposed rule language and associated regulatory basis to the Commission for its approval in early 2012. The NRC staff also intends to develop associated guidance to accompany any proposed amendments. The guidance is intended to supplement existing low-level radioactive waste guidance on issues pertinent to conducting site-specific analyses to demonstrate compliance with the performance objectives. The guidance will facilitate implementation of the proposed amendments by licensees and assist competent regulatory authorities in reviewing the site-specific analyses. Specifically, the guidance provides staff recommendations on general considerations for the site-specific analyses, modeling issues for assessments to demonstrate compliance with the performance objectives including the performance assessment, intruder assessment, stability assessment, and analyses for long-lived waste. This paper describes the technical basis for changes to the rule language and the proposed guidance associated with implementation of the rule language. The NRC staff, per Commission direction, intends to propose amendments to 10 CFR Part 61 to require licensees to conduct site-specific analyses to demonstrate compliance with performance objectives for the protection of public health and the environment. The amendments would require a

  6. Remote Monitoring Transparency Program

    SciTech Connect (OSTI)

    Sukhoruchkin, V.K.; Shmelev, V.M.; Roumiantsev, A.N.; Croessmann, C.D.; Horton, R.D.; Matter, J.C.; Czajkowski, A.F.; Sheely, K.B.; Bieniawski, A.J.

    1996-12-31

    The objective of the Remote Monitoring Transparency Program is to evaluate and demonstrate the use of remote monitoring technologies to advance nonproliferation and transparency efforts that are currently being developed by Russia and the US without compromising the national security of the participating parties. Under a lab-to-lab transparency contract between Sandia National Laboratories (SNL) and the Kurchatov Institute (KI RRC), the Kurchatov Institute will analyze technical and procedural aspects of the application of remote monitoring as a transparency measure to monitor inventories of direct-use HEU and plutonium (e.g., material recovered from dismantled nuclear weapons). A goal of this program is to assist a broad range of political and technical experts in learning more about remote monitoring technologies that could be used to implement nonproliferation, arms control, and other security and confidence building measures. Specifically, this program will: (1) begin integrating Russian technologies into remote monitoring systems; (2) develop remote monitoring procedures that will assist in the application of remote monitoring techniques to monitor inventories of HEU and Pu from dismantled nuclear weapons; and (3) conduct a workshop to review remote monitoring fundamentals, demonstrate an integrated US/Russian remote monitoring will have on the national security of participating countries.

  7. A Dictionary for Transparency

    SciTech Connect (OSTI)

    Kouzes, Richard T.

    2001-11-15

    There are many terms that are used in association with the U.S. Defense Threat Reduction Agency (DTRA) Transparency Project associated with the Mayak Fissile Materials Storage Facility. This is a collection of proposed definitions of these terms.

  8. A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0

    SciTech Connect (OSTI)

    Hartin, Corinne A.; Patel, Pralit L.; Schwarber, Adria; Link, Robert P.; Bond-Lamberty, Benjamin

    2015-04-01

    Simple climate models play an integral role in the policy and scientific communities. They are used for climate mitigation scenarios within integrated assessment models, complex climate model emulation, and uncertainty analyses. Here we describe Hector v1.0, an open source, object-oriented, simple global climate carbon-cycle model. This model runs essentially instantaneously while still representing the most critical global-scale earth system processes. Hector has a three-part main carbon cycle: a one-pool atmosphere, land, and ocean. The model's terrestrial carbon cycle includes primary production and respiration fluxes, accommodating arbitrary geographic divisions into, e.g., ecological biomes or political units. Hector actively solves the inorganic carbon system in the surface ocean, directly calculating air–sea fluxes of carbon and ocean pH. Hector reproduces the global historical trends of atmospheric [CO2], radiative forcing, and surface temperatures. The model simulates all four Representative Concentration Pathways (RCPs) with equivalent rates of change of key variables over time compared to current observations, MAGICC (a well-known simple climate model), and models from the 5th Coupled Model Intercomparison Project. Hector's flexibility, open-source nature, and modular design will facilitate a broad range of research in various areas.

  9. A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0

    DOE PAGES-Beta [OSTI]

    Hartin, Corinne A.; Patel, Pralit L.; Schwarber, Adria; Link, Robert P.; Bond-Lamberty, Benjamin

    2015-04-01

    Simple climate models play an integral role in the policy and scientific communities. They are used for climate mitigation scenarios within integrated assessment models, complex climate model emulation, and uncertainty analyses. Here we describe Hector v1.0, an open source, object-oriented, simple global climate carbon-cycle model. This model runs essentially instantaneously while still representing the most critical global-scale earth system processes. Hector has a three-part main carbon cycle: a one-pool atmosphere, land, and ocean. The model's terrestrial carbon cycle includes primary production and respiration fluxes, accommodating arbitrary geographic divisions into, e.g., ecological biomes or political units. Hector actively solves the inorganicmore » carbon system in the surface ocean, directly calculating air–sea fluxes of carbon and ocean pH. Hector reproduces the global historical trends of atmospheric [CO2], radiative forcing, and surface temperatures. The model simulates all four Representative Concentration Pathways (RCPs) with equivalent rates of change of key variables over time compared to current observations, MAGICC (a well-known simple climate model), and models from the 5th Coupled Model Intercomparison Project. Hector's flexibility, open-source nature, and modular design will facilitate a broad range of research in various areas.« less

  10. Zinc oxyfluoride transparent conductor

    DOE Patents [OSTI]

    Gordon, Roy G.

    1991-02-05

    Transparent, electrically conductive and infrared-reflective films of zinc oxyfluoride are produced by chemical vapor deposition from vapor mixtures of zinc, oxygen and fluorine-containing compounds. The substitution of fluorine for some of the oxygen in zinc oxide results in dramatic increases in the electrical conductivity. For example, diethyl zinc, ethyl alcohol and hexafluoropropene vapors are reacted over a glass surface at 400.degree. C. to form a visibly transparent, electrically conductive, infrared reflective and ultraviolet absorptive film of zinc oxyfluoride. Such films are useful in liquid crystal display devices, solar cells, electrochromic absorbers and reflectors, energy-conserving heat mirrors, and antistatic coatings.

  11. Overview of Russian HEU transparency issues

    SciTech Connect (OSTI)

    Kempf, C.R.; Bieniawski, A.

    1993-09-01

    The U.S. has signed an agreement with the Russian Federation for the purchase of 500 metric tons of highly-enriched uranium (HEU) taken from dismantled nuclear weapons. The HEU will be blended down to low-enriched uranium and will be transported to the U.S. to be used by fuel fabricators to make fuel for commercial nuclear power plants. Both the U.S. and Russia have been preparing to institute transparency measures to provide assurance that nonproliferation and arms control objectives specified in the agreement are met. This paper provides background information on the original agreement and on subsequent negotiations with the Russians, as well as discussion of technical aspects of developing transparency measures suited to the facilities and processes which are expected to be involved. Transparency has been defined as those agreed-upon measures which build confidence that arms control and non-proliferation objectives shared by the parties are met. Transparency is a departure from exhaustive, detailed arms control verification regimes of past agreements, which were based on a presumption of detecting transgressions as opposed to confirming compliance.

  12. Correlation effects in nuclear transparency

    SciTech Connect (OSTI)

    Frankfurt, L. L.; Moniz, Ernest J.; Sargsyan, M. M.; Strikman, M. I.

    1995-06-01

    The Glauber approximation is used to calculate the contribution of nucleon correlations in high-energy A(e,e'N) reactions. When the excitation energy of the residual nucleus is small, the increase of the nuclear transparency due to correlations between the struck nucleon and the other nucleons is mostly compensated by a decrease of the transparency due to the correlations between nondetected nucleons. We derive Glauber model predictions for nuclear transparency for the differential cross section when nuclear shell level excitations are measured. The role of correlations in color transparency is briefly discussed.

  13. Air transparent soundproof window

    SciTech Connect (OSTI)

    Kim, Sang-Hoon; Lee, Seong-Hyun

    2014-11-15

    A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

  14. Building Energy Transparency Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transparency Report Building Energy Transparency Report This report discusses best practices in implementing benchmarking policies. It includes policy profiles from several cities ...

  15. Scientists produce transparent, light-harvesting material

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Scientists produce transparent, light-harvesting material The material could be used in development of transparent solar panels. November 3, 2010 Los Alamos National Laboratory ...

  16. Precise Application of Transparent Conductive Oxide Coatings...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Precise Application of Transparent Conductive Oxide Coatings for Flat Panel Displays and Photovoltaic Cells Technology available for licensing: New transparent conducting oxide ...

  17. Measuring the Impact of Benchmarking & Transparency - Methodologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Measuring the Impact of Benchmarking & Transparency - Methodologies and the NYC Example Measuring the Impact of Benchmarking & Transparency - Methodologies and the NYC Example ...

  18. TRANSPARENT COATINGS FOR SOLAR CELLS RESEARCH

    SciTech Connect (OSTI)

    Glatkowski, P.J.; Landis, D.A.

    2013-04-16

    Todays solar cells are fabricated using metal oxide based transparent conductive coatings (TCC) or metal wires with optoelectronic performance exceeding that currently possible with Carbon Nanotube (CNT) based TCCs. The motivation for replacing current TCC is their inherent brittleness, high deposition cost, and high deposition temperatures; leading to reduced performance on thin substrates. With improved processing, application and characterization techniques Nanofiber and/or CNT based TCCs can overcome these shortcomings while offering the ability to be applied in atmospheric conditions using low cost coating processes At todays level of development, CNT based TCC are nearing commercial use in touch screens, some types of information displays (i.e. electronic paper), and certain military applications. However, the resistivity and transparency requirements for use in current commercial solar cells are more stringent than in many of these applications. Therefore, significant research on fundamental nanotube composition, dispersion and deposition are required to reach the required performance commanded by photovoltaic devices. The objective of this project was to research and develop transparent conductive coatings based on novel nanomaterial composite coatings, which comprise nanotubes, nanofibers, and other nanostructured materials along with binder materials. One objective was to show that these new nanomaterials perform at an electrical resistivity and optical transparency suitable for use in solar cells and other energy-related applications. A second objective was to generate new structures and chemistries with improved resistivity and transparency performance. The materials also included the binders and surface treatments that facilitate the utility of the electrically conductive portion of these composites in solar photovoltaic devices. Performance enhancement venues included: CNT purification and metallic tube separation techniques, chemical doping, CNT

  19. Transparent electrode for optical switch

    DOE Patents [OSTI]

    Goldhar, Julius; Henesian, Mark A.

    1986-01-01

    A low pressure gas electrode utilizing ionized gas in a glow discharge regime forms a transparent electrode for electro-optical switches. The transparent electrode comprises a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the electrode is a transparent electrode. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. The plasma can be created either by the main high voltage pulser used to charge up the crystal or by auxiliary discharges or external sources of ionization. A typical configuration utilizes 10 torr argon in the discharge region adjacent to each crystal face.

  20. Transparent Conductive Nanostructures

    SciTech Connect (OSTI)

    2008-06-22

    The objectives of this program between UT-Battelle, LLC (the ''Contractor'') and (Battelle Memorial Institute) (the "Participant") were directed towards achieving significant improvement: in the electrical conductivity and optical/infrared transmission of single-wall carbon nanotube (SWNT)-based composite materials. These materials will be used in coating applications that range from aircraft canopies to display applications. The goal of the project was to obtain supported mats of SWNTs with sheet conductivities approaching 10 ohms/square combined with high optical transmission (>85% transmission at 550 nm), thereby permitting their application as a replacement for indium tin oxide (ITO) in a variety of applications such as flexible displays.

  1. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    SciTech Connect (OSTI)

    BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

    2000-01-27

    repository, the Waste Isolation Pilot Plant (WIPP) offers a unique opportunity to serve as an international cooperative test bed for developing and demonstrating technologies and processes in a fully operational repository system setting. To address the substantial national security implications for the US resulting from the lack of integrated, transparent management and disposition of nuclear materials at the back-end of the nuclear fuel and weapons cycles, it is proposed that WIPP be used as a test bed to develop and demonstrate technologies that will enable the transparent and proliferation-resistant geologic isolation of nuclear materials. The objectives of this initiative are to: (1) enhance public confidence in safe, secure geologic isolation of nuclear materials; (2) develop, test, and demonstrate transparency measures and technologies for the back-end of nuclear fuel cycle; and (3) foster international collaborations leading to workable, effective, globally-accepted standards for the transparent monitoring of geological repositories for nuclear materials. Test-bed activities include: development and testing of monitoring measures and technologies; international demonstration experiments; transparency workshops; visiting scientist exchanges; and educational outreach. These activities are proposed to be managed by the Department of Energy/Carlsbad Area Office (DOE/CAO) as part of The Center for Applied Repository and Underground Studies (CARUS).

  2. Transparent electrode for optical switch

    DOE Patents [OSTI]

    Goldhar, J.; Henesian, M.A.

    1984-10-19

    The invention relates generally to optical switches and techniques for applying a voltage to an electro-optical crystal, and more particularly, to transparent electodes for an optical switch. System architectures for very large inertial confinement fusion (ICF) lasers require active optical elements with apertures on the order of one meter. Large aperture optical switches are needed for isolation of stages, switch-out from regenerative amplifier cavities and protection from target retroreflections.

  3. Transparent communications permit unmanned operations

    SciTech Connect (OSTI)

    1995-07-01

    Not-normally-manned platforms are not a new development. However, their use in harsher environments has until recently, been limited. Development of reliable communications networks capable of handling the large amounts of data required for process control in real time with distributed control systems (DCSs) has been a key factor in making the concept viable for harsher, more remote environments. The article below examines the transparent communications network and DCS installed on Pickerill field, offshore UK, by Fisher-Rosemount Systems and its operational parameters. Pickerill field, some 50 mi off the Lincolnshire coast, comprises two small unmanned platforms producing gas under remote control from Arco`s operations base at Great Yarmouth about 60 mi south. Reliable communication is required both with the two platforms offshore and with Conoco`s gas processing operators at Theddlethorpe. Fundamental to project success was the ability of the process control system to provide entirely secure and transparent communication with equipment offshore and thus enable operators at Great Yarmouth to interact with the process as if it were local to their control center.

  4. Scientists produce transparent, light-harvesting material

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transparent, light-harvesting material Scientists produce transparent, light-harvesting material The material could be used in development of transparent solar panels. November 3, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a

  5. Optically transparent and environmentally durable superhydrophobic...

    Office of Scientific and Technical Information (OSTI)

    nanoparticles Citation Details In-Document Search Title: Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO2 nanoparticles ...

  6. Transparent Conducting Oxide - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    have varying optical and electrical qualities. The optimal TCO for photovoltaic applications is one that maximizes both optical transparency and electrical conductivity as both of ...

  7. Precise Application of Transparent Conductive Oxide Coatings...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Argonne has developed a new method for applying thin film coatings of transparent conducting oxides (TCOs) to large panel displays and photovoltaic (PV) cells. Description Atomic Layer ...

  8. Enhanced durability transparent superhydrophobic anti-soiling...

    Office of Scientific and Technical Information (OSTI)

    Title: Enhanced durability transparent superhydrophobic anti-soiling coatings for CSP applications Authors: Polyzos, Georgios 1 ; Schaeffer, Daniel A 1 ; Smith, Barton Barton ...

  9. Transparency: it's not just for windows

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transparency: it's not just for windows Los Alamos National Laboratory's database of environmental monitoring data is now directly viewable by the public. March 20, 2012...

  10. Atomically Bonded Transparent Superhydrophobic Coatings

    SciTech Connect (OSTI)

    Aytug, Tolga

    2015-08-01

    Maintaining clarity and avoiding the accumulation of water and dirt on optically transparent surfaces such as US military vehicle windshields, viewports, periscope optical head windows, and electronic equipment cover glasses are critical to providing a high level of visibility, improved survivability, and much-needed safety for warfighters in the field. Through a combination of physical vapor deposition techniques and the exploitation of metastable phase separation in low-alkali borosilicate, a novel technology was developed for the fabrication of optically transparent, porous nanostructured silica thin film coatings that are strongly bonded to glass platforms. The nanotextured films, initially structurally superhydrophilic, exhibit superior superhydrophobicity, hence antisoiling ability, following a simple but robust modification in surface chemistry. The surfaces yield water droplet contact angles as high as 172°. Moreover, the nanostructured nature of these coatings provides increased light scattering in the UV regime and reduced reflectivity (i.e., enhanced transmission) over a broad range of the visible spectrum. In addition to these functionalities, the coatings exhibit superior mechanical resistance to abrasion and are thermally stable to temperatures approaching 500°C. The overall process technology relies on industry standard equipment and inherently scalable manufacturing processes and demands only nontoxic, naturally abundant, and inexpensive base materials. Such coatings, applied to the optical components of current and future combat equipment and military vehicles will provide a significant strategic advantage for warfighters. The inherent self-cleaning properties of such superhydrophobic coatings will also mitigate biofouling of optical windows exposed to high-humidity conditions and can help decrease repair/replacement costs, reduce maintenance, and increase readiness by limiting equipment downtime.

  11. Mode Analyses

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mode Analyses of Gyrokinetic Simulations of Plasma Microturbulence by David R. Hatch A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) at The University of Wisconsin - Madison 2010 c Copyright by David R. Hatch 2010 All Rights Reserved i For Jen and Owen ii ACKNOWLEDGEMENTS I would like to thank my advisor, Paul Terry, who provided me with a research topic which I have found engaging and challenging, and has also offered an ideal

  12. Transparent conducting oxides and production thereof

    SciTech Connect (OSTI)

    Gessert, Timothy A.; Yoshida, Yuki; Coutts, Timothy J.

    2014-06-10

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber. The method may also comprise depositing a metal oxide on the target in the process chamber to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  13. Transparent conducting oxides and production thereof

    SciTech Connect (OSTI)

    Gessert, Timothy A; Yoshida, Yuki; Coutts, Timothy J

    2014-05-27

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target (110) doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber (100). The method may also comprise depositing a metal oxide on the target (110) to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  14. High quality transparent conducting oxide thin films

    DOE Patents [OSTI]

    Gessert, Timothy A.; Duenow, Joel N.; Barnes, Teresa; Coutts, Timothy J.

    2012-08-28

    A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

  15. Transparency: it's not just for windows

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transparency: it's not just for windows Transparency: it's not just for windows Los Alamos National Laboratory's database of environmental monitoring data is now directly viewable by the public. March 20, 2012 Intellus environmental data The same environmental data used by LANL scientists can be viewed by anyone, anytime. Contact Environmental Communications & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email "The new system contains more than 9 million

  16. Lutetium oxide-based transparent ceramic scintillators

    DOE Patents [OSTI]

    Seeley, Zachary; Cherepy, Nerine; Kuntz, Joshua; Payne, Stephen A.

    2016-01-19

    In one embodiment, a transparent ceramic of sintered nanoparticles includes gadolinium lutetium oxide doped with europium having a chemical composition (Lu.sub.1-xGd.sub.x).sub.2-YEu.sub.YO.sub.3, where X is any value within a range from about 0.05 to about 0.45 and Y is any value within a range from about 0.01 to about 0.2, and where the transparent ceramic exhibits a transparency characterized by a scatter coefficient of less than about 10%/cm. In another embodiment, a transparent ceramic scintillator of sintered nanoparticles, includes a body of sintered nanoparticles including gadolinium lutetium oxide doped with a rare earth activator (RE) having a chemical composition (Lu.sub.1-xGd.sub.x).sub.2-YRE.sub.YO.sub.3, where RE is selected from the group consisting of: Sm, Eu, Tb, and Dy, where the transparent ceramic exhibits a transparency characterized by a scatter coefficient of less than about 10%/cm.

  17. Trusted Objects

    SciTech Connect (OSTI)

    CAMPBELL,PHILIP L.; PIERSON,LYNDON G.; WITZKE,EDWARD L.

    1999-10-27

    In the world of computers a trusted object is a collection of possibly-sensitive data and programs that can be allowed to reside and execute on a computer, even on an adversary's machine. Beyond the scope of one computer we believe that network-based agents in high-consequence and highly reliable applications will depend on this approach, and that the basis for such objects is what we call ''faithful execution.''

  18. Comments on: New report offers best practice for transparent...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    sandia-national-laboratories-report-offers-best-practice-for-transparent-contract-language-of-pv-om-agreements...

  19. Scientific Objective

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Biogenic Aerosols - Effects on Clouds and Climate Scientific Objective Aerosols in the sky are essential to Earth's climate because they can reflect light into space, cooling the atmosphere, or they can combine with other particles to create clouds that have both warming and cooling effects. Biogenic aerosols are emitted by the biosphere directly, or are formed from biogenic volatile gases in gas-to-particle conversion. Examples include dead cells and pollen spores. Boreal forests are among the

  20. Fabrication of transparent ceramics using nanoparticles

    DOE Patents [OSTI]

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  1. Process for forming transparent aerogel insulating arrays

    SciTech Connect (OSTI)

    Tewari, P.H.; Hunt, A.J.

    1986-09-09

    This patent describes a drying process for forming transparent aerogel insulating arrays of the type utilizing the steps of hydrolyzing and condensing alkoxides to form alcogels, and subsequently removing the alcohol therefrom to form aerogels, the improvement comprising the additional step, after alcogels are formed, of substituting a solvent having a critical temperature less than the critical temperature of the alcohol for the alcohol in the alcogels, and drying the resulting gels at a supercritical temperature for the solvent, to thereby provide a transparent aerogel array within a substantially reduced drying time period.

  2. Process for forming transparent aerogel insulating arrays

    DOE Patents [OSTI]

    Tewari, P.H.; Hunt, A.J.

    1985-09-04

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO/sub 2/, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO/sub 2/, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40/sup 0/C instead of at about 270/sup 0/C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementary particles or cosmic rays.

  3. Process for forming transparent aerogel insulating arrays

    DOE Patents [OSTI]

    Tewari, Param H.; Hunt, Arlon J.

    1986-01-01

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO.sub.2, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO.sub.2, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40.degree. C. instead of at about 270.degree. C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementry particles or cosmic rays.

  4. Aerogel: a transparent insulator for solar applications

    SciTech Connect (OSTI)

    Hunt, A.J.; Russo, R.E.; Tewari, P.H.; Lofftus, K.D.

    1985-06-01

    Aerogel is a transparent, low density, insulating material suitable for a variety of solar applications. Significant energy savings can be realized by using aerogel for a window glazing material. Other possible applications include solar collector covers, transparent insulating jackets for direct gain passive solar devices, and situations that require both transparency and good insulation. Because silica aerogel has a low density (2 to 10% solid), it has a thermal conductivity as low as 0.014 W/m/sup 0/K without evacuation, and if evacuated, lower than 0.006 W/m/sup 0/K. It provides a clear view with only slight coloring due to its weak and nearly isotropic scattering of light. This paper describes significant progress made in the past year at our laboratory in the development of aerogel. We have improved the transparency, developed new preparation methods using less toxic materials, and initiated successful experiments in drying alcogels at near ambient temperature. Optical transmission, light scattering, and electron microscopy data show that CO/sub 2/ supercritical drying of alcogels produces aerogels similar in quality to those produced by high temperature supercritical drying. These advances make the commercial production of aerogel much more feasible.

  5. Methods and apparatus for transparent display using scattering nanoparticles

    DOE Patents [OSTI]

    Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin

    2016-05-10

    Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.

  6. Transparent Conductive Nano-Composites - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Transparent ...

  7. Transparent monolithic metal ion containing nanophase aerogels

    SciTech Connect (OSTI)

    Risen, W. M., Jr.; Hu, X.; Ji, S.; Littrell, K.

    1999-12-01

    The formation of monolithic and transparent transition metal containing aerogels has been achieved through cooperative interactions of high molecular weight functionalized carbohydrates and silica precursors, which strongly influence the kinetics of gelation. After initial gelation, subsequent modification of the ligating character of the system, coordination of the group VIII metal ions, and supercritical extraction afford the aerogels. The structures at the nanophase level have been probed by photon and electron transmission and neutron scattering techniques to help elucidate the basis for structural integrity together with the small entity sizes that permit transparency in the visible range. They also help with understanding the chemical reactivities of the metal-containing sites in these very high surface area materials. These results are discussed in connection with new reaction studies.

  8. Transparent ceramics and methods of preparation thereof

    DOE Patents [OSTI]

    Hollingsworth, Joel P. (Oakland, CA); Kuntz, Joshua D. (Livermore, CA); Seeley, Zachary M. (Pullman, WA); Soules, Thomas F. (Livermore, CA)

    2011-10-18

    According to one embodiment, a method for forming a transparent ceramic preform includes forming a suspension of oxide particles in a solvent, adding the suspension to a mold of a desired shape, and uniformly curing the suspension in the mold for forming a preform. The suspension includes a dispersant but does not include a gelling agent. In another embodiment, a method includes creating a mixture without a gelling agent, the mixture including: inorganic particles, a solvent, and a dispersant. The inorganic particles have a mean diameter of less than about 2000 nm. The method also includes agitating the mixture, adding the mixture to a mold, and curing the mixture in the mold at a temperature of less than about 80.degree. C. for forming a preform. Other methods for forming a transparent ceramic preform are also described according to several embodiments.

  9. Transparent heat-spreader for optoelectronic applications

    SciTech Connect (OSTI)

    Minano, Juan Carlos; Benitez, Pablo

    2014-11-04

    An optoelectronic cooling system is equally applicable to an LED collimator or a photovoltaic solar concentrator. A transparent fluid conveys heat from the optoelectronic chip to a hollow cover over the system aperture. The cooling system can keep a solar concentrator chip at the same temperature as found for a one-sun flat-plate solar cell. Natural convection or forced circulation can operate to convey heat from the chip to the cover.

  10. Method of forming macro-structured high surface area transparent conductive oxide electrodes

    DOE Patents [OSTI]

    Forman, Arnold J.; Chen, Zhebo; Jaramillo, Thomas F.

    2016-01-05

    A method of forming a high surface area transparent conducting electrode is provided that includes depositing a transparent conducting thin film on a conductive substrate, where the transparent conducting thin film includes transparent conductive particles and a solution-based transparent conducting adhesive layer which serves to coat and bind together the transparent conducting particles, and heat treating the transparent conducting adhesion layer on the conductive substrate, where an increased surface area transparent conducting electrode is formed.

  11. Nanostructured transparent conducting oxide electrochromic device

    DOE Patents [OSTI]

    Milliron, Delia; Tangirala, Ravisubhash; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2016-05-17

    The embodiments described herein provide an electrochromic device. In an exemplary embodiment, the electrochromic device includes (1) a substrate and (2) a film supported by the substrate, where the film includes transparent conducting oxide (TCO) nanostructures. In a further embodiment, the electrochromic device further includes (a) an electrolyte, where the nanostructures are embedded in the electrolyte, resulting in an electrolyte, nanostructure mixture positioned above the substrate and (b) a counter electrode positioned above the mixture. In a further embodiment, the electrochromic device further includes a conductive coating deposited on the substrate between the substrate and the mixture. In a further embodiment, the electrochromic device further includes a second substrate positioned above the mixture.

  12. Subtask 5: Functional nanostructured transparent electrode materials |

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Center for Bio-Inspired Solar Fuel Production 5: Functional nanostructured transparent electrode materials All papers by year Subtask 1 Subtask 2 Subtask 3 Subtask 4 Subtask 5 Jeon, K.-W. and Seo, D.-K. (2014) Concomitant thionation and reduction of graphene oxide through solid/gas metathetical sulfidation reactions at high temperatures, Phosphorus, Sulfur, and Silicon and the Related Elements, Published online Mar 3, 2014, , Medpelli, D., Seo, J.-M., and Seo, D.-K. (2014) Geopolymer with

  13. Transparent self-cleaning dust shield

    DOE Patents [OSTI]

    Mazumder, Malay K.; Sims, Robert A.; Wilson, James D.

    2005-06-28

    A transparent electromagnetic shield to protect solar panels and the like from dust deposition. The shield is a panel of clear non-conducting (dielectric) material with embedded parallel electrodes. The panel is coated with a semiconducting film. Desirably the electrodes are transparent. The electrodes are connected to a single-phase AC signal or to a multi-phase AC signal that produces a travelling electromagnetic wave. The electromagnetic field produced by the electrodes lifts dust particles away from the shield and repels charged particles. Deposited dust particles are removed when the electrodes are activated, regardless of the resistivity of the dust. Electrostatic charges on the panel are discharged by the semiconducting film. When used in conjunction with photovoltaic cells, the power for the device may be obtained from the cells themselves. For other surfaces, such as windshields, optical windows and the like, the power must be derived from an external source. One embodiment of the invention employs monitoring and detection devices to determine when the level of obscuration of the screen by dust has reached a threshold level requiring activation of the dust removal feature.

  14. TRANSPARENT HELIUM IN STRIPPED ENVELOPE SUPERNOVAE

    SciTech Connect (OSTI)

    Piro, Anthony L.; Morozova, Viktoriya S., E-mail: piro@caltech.edu [Theoretical Astrophysics, California Institute of Technology, 1200 E. California Blvd., M/C 350-17, Pasadena, CA 91125 (United States)

    2014-09-01

    Using simple arguments based on photometric light curves and velocity evolution, we propose that some stripped envelope supernovae (SNe) show signs that a significant fraction of their helium is effectively transparent. The main pieces of evidence are the relatively low velocities with little velocity evolution, as are expected deep inside an exploding star, along with temperatures that are too low to ionize helium. This means that the helium should not contribute to the shaping of the main SN light curve, and thus the total helium mass may be difficult to measure from simple light curve modeling. Conversely, such modeling may be more useful for constraining the mass of the carbon/oxygen core of the SN progenitor. Other stripped envelope SNe show higher velocities and larger velocity gradients, which require an additional opacity source (perhaps the mixing of heavier elements or radioactive nickel) to prevent the helium from being transparent. We discuss ways in which similar analysis can provide insights into the differences and similarities between SNe Ib and Ic, which will lead to a better understanding of their respective formation mechanisms.

  15. Powerpedia - Using Technology to Increase Transparency | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Powerpedia - Using Technology to Increase Transparency Powerpedia - Using Technology to Increase Transparency May 18, 2011 - 4:42pm Addthis The OCIO established a Department-wide wiki, Powerpedia, in early 2010 to facilitate knowledge capture and collaboration, and to increase efficiency. Leveraging lessons learned from the intelligence community's Intellipedia effort, the Department established Powerpedia to increase transparency and connect people and information together. Built on

  16. 15.02.10 RH Transparent Catalytic - JCAP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transparent Catalytic Nickel Oxide Protecting Films for Photoanodes Sun, K. et al. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films. PNAS 112 ( 12), 3612-3617, DOI: 10.1073/ pnas . 1423034112 (2015). Scientific Achievement Reactively sputtered NiOx layer provides a transparent, anti-reflective, conductive, chemically stable, inherently catalytic coating that stabilizes many efficient and technologically important

  17. NEPA Process Transparency and Openness (DOE, 2009) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Process Transparency and Openness (DOE, 2009) NEPA Process Transparency and Openness (DOE, 2009) This memorandum describes the U.S. Department of Energy's (DOE's) policy for posting online the categorical exclusion determinations made by DOE NEPA Compliance Officers. Download Document NEPA Process Transparency and Openness (59.69 KB) More Documents & Publications Recommendations for the Preparation of Environmental Assessments and Environmental Impact Statements Second Edition (DOE, 2004) 10

  18. Benchmarking and Transparency Policy and Program Impact Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Benchmarking and Transparency Policy and Program Impact Evaluation Handbook Prepared for by the U.S. Department of Energy, this Handbook provides both a strategic planning ...

  19. Improving Data Transparency for the Distributed PV Interconnection...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    June 3, 2015 "Improving Data Transparency for the Distributed PV Interconnection Process: ... how data reporting requirements for interconnection vary across States, how tracking and ...

  20. Net Requirements Transparency Process for Slice/Block Customers

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    4, 2012 Net Requirements Transparency Process for SliceBlock Customers Description of Changes and a Response to Comments September 24, 2012 Background and Description of Changes:...

  1. Flexible transparent conductors based on metal nanowire networks

    DOE PAGES-Beta [OSTI]

    Guo, Chuan Fei; Ren, Zhifeng

    2015-04-01

    Few conductors are transparent and flexible. Metals have the best electrical conductivity, but they are opaque and stiff in bulk form. However, metals can be transparent and flexible when they are very thin or properly arranged on the nanoscale. This review focuses on the flexible transparent conductors based on percolating networks of metal. Specifically, we discuss the fabrication, the means to improve the electrical conductivity, the large stretchability and its mechanism, and the applications of these metal networks. We also suggest some criteria for evaluating flexible transparent conductors and propose some new research directions in this emerging field.

  2. New report offers best practice for transparent contract language...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... that must be addressed to improve communication of equipment operational states and ... and equations for more transparent communication about the reliability of the PV system ...

  3. New York City Benchmarking and Transparency Policy Impact Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    New York City's benchmarking and transparency policy, Local Law 84, and the results of the application of those methodologies to the early period of the policy's implementation. ...

  4. 15.07.10 RH P-type Transparent - JCAP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    for Efficient and Stable Solar Water Oxidation Chen, L. et al. p -Type Transparent Conducting Oxide n-Type Semiconductor Heterojunctions for Efficient and Stable ...

  5. Sorted Single-Walled Carbon Nanotube Films for Transparent Electrodes...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Sorted Single-Walled Carbon Nanotube Films for Transparent Electrodes in Organic Solar Cells Home > Research > ANSER Research Highlights > Sorted Single-Walled Carbon Nanotube...

  6. High Aspect Ratio Metallic Structures for Use as Transparent...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search High Aspect Ratio Metallic Structures for Use as Transparent Electrodes Ames Laboratory Contact AMES ...

  7. Researchers Create Transparent Lithium-Ion Battery - Joint Center...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Stanford and SLAC National Accelerator Laboratory researchers have invented a transparent lithium-ion battery that is also highly flexible. It is comparable in cost to regular ...

  8. Transparent ceramics and methods of preparation thereof

    DOE Patents [OSTI]

    Hollingsworth, Joel P.; Kuntz, Joshua D.; Seeley, Zachary M.; Soules, Thomas F.

    2012-12-25

    A method for forming a transparent ceramic preform in one embodiment includes forming a suspension of oxide particles in a solvent, wherein the suspension includes a dispersant, with the proviso that the suspension does not include a gelling agent; and uniformly curing the suspension for forming a preform of gelled suspension. A method according to another embodiment includes creating a mixture of inorganic particles, a solvent and a dispersant, the inorganic particles having a mean diameter of less than about 2000 nm; agitating the mixture; adding the mixture to a mold; and curing the mixture in the mold for gelling the mixture, with the proviso that no gelling agent is added to the mixture.

  9. High carrier concentration p-type transparent conducting oxide films

    DOE Patents [OSTI]

    Yan, Yanfa; Zhang, Shengbai

    2005-06-21

    A p-type transparent conducting oxide film is provided which is consisting essentially of, the transparent conducting oxide and a molecular doping source, the oxide and doping source grown under conditions sufficient to deliver the doping source intact onto the oxide.

  10. Thin Film Electronic Devices with Conductive and Transparent Gas and

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Moisture Permeation Barriers - Energy Innovation Portal Solar Photovoltaic Solar Photovoltaic Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Thin Film Electronic Devices with Conductive and Transparent Gas and Moisture Permeation Barriers National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Transparent conducting (TC) materials are extensively used in electronics and

  11. Fluorogel elastomers with tunable transparency, elasticity, shape-memory,

    Office of Scientific and Technical Information (OSTI)

    and antifouling properties (Journal Article) | DOE PAGES Accepted Manuscript: Fluorogel elastomers with tunable transparency, elasticity, shape-memory, and antifouling properties Title: Fluorogel elastomers with tunable transparency, elasticity, shape-memory, and antifouling properties In this study, omniphobic fluorogel elastomers were prepared by photocuring perfluorinated acrylates and a perfluoropolyether crosslinker. By tuning either the chemical composition or the temperature that

  12. Health and safety considerations for U. S. monitors in the Russian transparency program.

    SciTech Connect (OSTI)

    Boggs, C. J.

    1998-10-22

    In 1993 the US and the Russian Federation signed an agreement allowing the US to purchase highly enriched uranium (HEU) from Russia over a 20-year period. This Highly Enriched Uranium Purchase Agreement permits the purchase of 500 metric tons of HEU from dismantled Russian nuclear weapons in the form of low-enriched uranium (LEU) for use as power reactor fuel in the US. Under the HEU Agreement, the US and Russia are cooperating in a ''Transparency Program'' to ensure that arms control and nonproliferation objectives are being met. The Transparency Program measures, which are a departure from traditional, intrusive measures of verification, include sending individuals from the US to Russia to monitor the processing of the HEU.

  13. Transparent conductor-Si pillars heterojunction photodetector

    SciTech Connect (OSTI)

    Yun, Ju-Hyung; Kim, Joondong; Park, Yun Chang

    2014-08-14

    We report a high-performing heterojunction photodetector by enhanced surface effects. Periodically, patterned Si substrates were used to enlarge the photo-reactive regions and yield proportionally improved photo-responses. An optically transparent indium-tin-oxide (ITO) was deposited on a Si substrate and spontaneously formed an ITO/Si heterojunction. Due to an electrical conductive ITO film, ITO/Si heterojunction device can be operated at zero-bias, which effectively suppresses the dark current, resulting in better performances than those by a positive or a negative bias operation. This zero-bias operating heterojunction device exhibits a short response time (? 22.5?ms) due to the physical reaction to the incident light. We revealed that the location of the space charge region (SCR) is crucial for a specific photon-wavelength response. The SCR space has the highest collection efficiency of the photo-generated carriers. The photo-response can be maximized when we design the photodetector by superposing the SCR space over a corresponding photon-absorption length. The surface enhanced Si pillar devices significantly improved the photo-responses ratios from that of a planar Si device. According to this design scheme, a high photo-response ratio of 5560% was achieved at a wavelength of 600?nm. This surfaced-enhanced heterojunction design scheme would be a promising approach for various photoelectric applications.

  14. Improving the Transparency of IAEA Safeguards Reporting

    SciTech Connect (OSTI)

    Toomey, Christopher; Hayman, Aaron M.; Wyse, Evan T.; Odlaug, Christopher S.

    2011-07-17

    In 2008, the Standing Advisory Group on Safeguards Implementation (SAGSI) indicated that the International Atomic Energy Agency's (IAEA) Safeguards Implementation Report (SIR) has not kept pace with the evolution of safeguards and provided the IAEA with a set of recommendations for improvement. The SIR is the primary mechanism for providing an overview of safeguards implementation in a given year and reporting on the annual safeguards findings and conclusions drawn by the Secretariat. As the IAEA transitions to State-level safeguards approaches, SIR reporting must adapt to reflect these evolutionary changes. This evolved report will better reflect the IAEA's transition to a more qualitative and information-driven approach, based upon State-as-a-whole considerations. This paper applies SAGSI's recommendations to the development of multiple models for an evolved SIR and finds that an SIR repurposed as a 'safeguards portal' could significantly enhance information delivery, clarity, and transparency. In addition, this paper finds that the 'portal concept' also appears to have value as a standardized information presentation and analysis platform for use by Country Officers, for continuity of knowledge purposes, and the IAEA Secretariat in the safeguards conclusion process. Accompanying this paper is a fully functional prototype of the 'portal' concept, built using commercial software and IAEA Annual Report data.

  15. Fabrication of anatase precipitated glass-ceramics possessing high transparency

    SciTech Connect (OSTI)

    Masai, Hirokazu; Toda, Tatsuya; Takahashi, Yoshihiro; Fujiwara, Takumi

    2009-04-13

    Transparent anatase precipitated glass-ceramics were fabricated using ZnO as a component. The particle size of precipitated anatase is several nanometers enough to possess high transparency. The preparation of the Bi-free transparent TiO{sub 2} glass-ceramic was attained by substitution of two different kinds of oxides for bismuth oxide. It is also noteworthy that we have demonstrated the crystallization of metastable anatase in the glass-ceramics as a main phase. The present bulk anatase glass-ceramics will open up an application field for a TiO{sub 2}-containing photocatalyst.

  16. III-V/Si Wafer Bonding Using Transparent, Conductive Oxide Interlayers...

    Office of Scientific and Technical Information (OSTI)

    III-VSi Wafer Bonding Using Transparent, Conductive Oxide Interlayers; Article No. 263904 Citation Details In-Document Search Title: III-VSi Wafer Bonding Using Transparent, ...

  17. Object locating system

    DOE Patents [OSTI]

    Novak, J.L.; Petterson, B.

    1998-06-09

    A sensing system locates an object by sensing the object`s effect on electric fields. The object`s effect on the mutual capacitance of electrode pairs varies according to the distance between the object and the electrodes. A single electrode pair can sense the distance from the object to the electrodes. Multiple electrode pairs can more precisely locate the object in one or more dimensions. 12 figs.

  18. Object locating system

    DOE Patents [OSTI]

    Novak, James L.; Petterson, Ben

    1998-06-09

    A sensing system locates an object by sensing the object's effect on electric fields. The object's effect on the mutual capacitance of electrode pairs varies according to the distance between the object and the electrodes. A single electrode pair can sense the distance from the object to the electrodes. Multiple electrode pairs can more precisely locate the object in one or more dimensions.

  19. Transparent Metal-Organic Framework/Polymer Mixed Matrix Membranes...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transparent Metal-Organic FrameworkPolymer Mixed Matrix Membranes as Water Vapor Barriers Previous Next List Bae, Youn Jue; Cho, Eun Seon; Qu, Fen; Sun, Daniel T.; Williams, ...

  20. Net Requirements Transparency Process for Slice/Block and Block...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    3 As part of its Net Requirements Transparency process, on July 31, 2013 BPA published the SliceBlock and Block customers' FY2012 and forecast FY2014 Total Retail Load (TRL) and...

  1. 15.02.10 RH Transparent Catalytic - JCAP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transparent Catalytic Nickel Oxide Protecting Films for Photoanodes Sun, K. et al. Stable ... of 15-nm metallic Ni on quartz substrates Reprinted with permission from Sun, K. et al. ...

  2. Slip casting nano-particle powders for making transparent ceramics

    DOE Patents [OSTI]

    Kuntz, Joshua D.; Soules, Thomas F.; Landingham, Richard Lee; Hollingsworth, Joel P.

    2011-04-12

    A method of making a transparent ceramic including the steps of providing nano-ceramic powders in a processed or unprocessed form, mixing the powders with de-ionized water, the step of mixing the powders with de-ionized water producing a slurry, sonifing the slurry to completely wet the powder and suspend the powder in the de-ionized water, separating very fine particles from the slurry, molding the slurry, and curing the slurry to produce the transparent ceramic.

  3. Precise Application of Transparent Conductive Oxide Coatings for Flat Panel

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Displays and Photovoltaic Cells | Argonne National Laboratory Precise Application of Transparent Conductive Oxide Coatings for Flat Panel Displays and Photovoltaic Cells Technology available for licensing: New transparent conducting oxide (TCO) coatings are deposited using atomic layer deposition (ALD). Provides uniform coating of complex, 3D nanostructures such as electrodes for next-generation PV cells Improved coating precision uses less material and reduces cost PDF icon

  4. DOE Policy on NEPA Process Transparency and Openness

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2, 2009 MEMORANDUM FOR HEADS OF D E P A R T M m ELEMENTS FROM: DANIEL B. PONE SUBJECT: NEPA Process Transparency and Openness President Obama's memorandum on "Transparency and Open Government," issued in the very first hours of his presidency on January 2 1,2009, announced his commitment to creating an unprecedented level of openness in Government. The President specifically called on executive agency heads to make information about agency operations and decisions available to the

  5. Novel Transparent Phosphor Conversion Matrix with High Thermal Conductivity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Next-Generation Phosphor-Converted LED-based Solid State Lighting | Department of Energy Transparent Phosphor Conversion Matrix with High Thermal Conductivity for Next-Generation Phosphor-Converted LED-based Solid State Lighting Novel Transparent Phosphor Conversion Matrix with High Thermal Conductivity for Next-Generation Phosphor-Converted LED-based Solid State Lighting Lead Performer: Carnegie Mellon University - Pittsburgh, PA Partner: Osram Sylvania - Danvers, MA DOE Total Funding:

  6. UCSB researchers uncover fundamental limits on optical transparency in

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    conducting oxides | Center for Energy Efficient Materials researchers uncover fundamental limits on optical transparency in conducting oxides FOR IMMEDIATE RELEASE Contact information: Hartwin Peelaers, Materials Department, University of California, Santa Barbara, CA 93106-5050 peelaers [at] engineering [dot] ucsb [dot] edu UCSB researchers uncover fundamental limits on optical transparency in conducting oxides Santa Barbara, California, January 8, 2011 Conducting oxides are used as

  7. Transparent Gold as a Platform for Adsorbed Protein

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Spectroelectrochemistry: Investigation of Cytochrome c and Azurin Transparent Gold as a Platform for Adsorbed Protein Spectroelectrochemistry: Investigation of Cytochrome c and Azurin Authors: Ashur, I., Schulz, O., McIntosh, C. L., Pinkas, I., Ros, R., and Jones, A. K. Title: Transparent Gold as a Platform for Adsorbed Protein Spectroelectrochemistry: Investigation of Cytochrome c and Azurin Source: Langmuir Year: 2012 Volume: 28 Pages: 5861-5871 ABSTRACT: The majority of protein

  8. Nanowire-Based Three-Dimensional Transparent Conducting Oxide Electrodes

    Office of Scientific and Technical Information (OSTI)

    for Extremely Fast Charge Collection (Journal Article) | SciTech Connect Nanowire-Based Three-Dimensional Transparent Conducting Oxide Electrodes for Extremely Fast Charge Collection Citation Details In-Document Search Title: Nanowire-Based Three-Dimensional Transparent Conducting Oxide Electrodes for Extremely Fast Charge Collection Authors: Noh, Jun Hong ; Han, Hyun Soo ; Lee, Sangwook ; Kim, Jin Young ; Hong, Kug Sun ; Han, Gil-Sang ; Shin, Hyunjung ; Jung, Hyun Suk Publication Date:

  9. High Aspect Ratio Metallic Structures for Use as Transparent Electrodes -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Energy Innovation Portal Photovoltaic Solar Photovoltaic Advanced Materials Advanced Materials Find More Like This Return to Search High Aspect Ratio Metallic Structures for Use as Transparent Electrodes Ames Laboratory Contact AMES About This Technology Technology Marketing SummaryMetallic structures that can be used as transparent electrodes or to enhance the performance of solar cells or LEDs.DescriptionEfforts to develop new energy sources and more energy efficient devices has lead to

  10. The new geospatial tools: global transparency enhancing safeguards verification

    SciTech Connect (OSTI)

    Pabian, Frank Vincent

    2010-09-16

    This paper focuses on the importance and potential role of the new, freely available, geospatial tools for enhancing IAEA safeguards and how, together with commercial satellite imagery, they can be used to promote 'all-source synergy'. As additional 'open sources', these new geospatial tools have heralded a new era of 'global transparency' and they can be used to substantially augment existing information-driven safeguards gathering techniques, procedures, and analyses in the remote detection of undeclared facilities, as well as support ongoing monitoring and verification of various treaty (e.g., NPT, FMCT) relevant activities and programs. As an illustration of how these new geospatial tools may be applied, an original exemplar case study provides how it is possible to derive value-added follow-up information on some recent public media reporting of a former clandestine underground plutonium production complex (now being converted to a 'Tourist Attraction' given the site's abandonment by China in the early 1980s). That open source media reporting, when combined with subsequent commentary found in various Internet-based Blogs and Wikis, led to independent verification of the reporting with additional ground truth via 'crowdsourcing' (tourist photos as found on 'social networking' venues like Google Earth's Panoramio layer and Twitter). Confirmation of the precise geospatial location of the site (along with a more complete facility characterization incorporating 3-D Modeling and visualization) was only made possible following the acquisition of higher resolution commercial satellite imagery that could be correlated with the reporting, ground photos, and an interior diagram, through original imagery analysis of the overhead imagery.

  11. Nanostructured Transparent Conductors Have Potential for Thin-Film Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01

    Possible alternatives to transparent conductors show promise for enabling new processes and reducing costs.

  12. NEPA Success Stories: Celebrating 40 Years of Transparency and Open Government

    Office of Energy Efficiency and Renewable Energy (EERE)

    NEPA Success Stories: Celebrating 40 Years of Transparency and Open Government, Environmental Law Institute, 2010.

  13. Damp-Heat Induced Degradation of Transparent Conducting Oxides for Thin Film Solar Cells (Presentation)

    SciTech Connect (OSTI)

    Pern, J.; Noufi, R.; Li, X.; DeHart, C.; To, B.

    2008-05-01

    The objectives are: (1) To achieve a high long-term performance reliability for the thin-film CIGS PV modules with more stable materials, device structure designs, and moisture-resistant encapsulation materials and schemes; (2) to evaluate the DH stability of various transparent conducting oxides (TCOs); (3) to identify the degradation mechanisms and quantify degradation rates; (4) to seek chemical and/or physical mitigation methods, and explore new materials. It's important to note that direct exposure to DH represents an extreme condition that a well-encapsulated thin film PV module may never experience.

  14. RTDB: A memory resident real-time object database

    SciTech Connect (OSTI)

    Jerzy M. Nogiec; Eugene Desavouret

    2003-06-04

    RTDB is a fast, memory-resident object database with built-in support for distribution. It constitutes an attractive alternative for architecting real-time solutions with multiple, possibly distributed, processes or agents sharing data. RTDB offers both direct and navigational access to stored objects, with local and remote random access by object identifiers, and immediate direct access via object indices. The database supports transparent access to objects stored in multiple collaborating dispersed databases and includes a built-in cache mechanism that allows for keeping local copies of remote objects, with specifiable invalidation deadlines. Additional features of RTDB include a trigger mechanism on objects that allows for issuing events or activating handlers when objects are accessed or modified and a very fast, attribute based search/query mechanism. The overall architecture and application of RTDB in a control and monitoring system is presented.

  15. Statement of Project Objectives

    Office of Energy Efficiency and Renewable Energy (EERE)

    Statement of Project Objectives, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  16. Object-oriented Geographic Information System Framework

    Energy Science and Technology Software Center (OSTI)

    2003-03-01

    JeoViewer is an intelligent object-oriented geographic information system (GIS) framework written in Java that provides transparent linkage to any object’s data, behaviors, and optimized spatial geometry representation. Tools are provided for typical GIS functionality, data ingestion, data export, and integration with other frameworks. The primary difference between Jeo Viewer and traditional GIS systems is that traditional GIS systems offer static views of geo-spatial data while JeoViewer can be dynamically coupled to models and live datamore » streams which dynamically change the state of the object which can be immediately represented in JeoViewer. Additionally, JeoViewer’s object-oriented paradigm provides a more natural representation of spatial data. A rich layer hierarchy allows arbitrary grouping of objects based on any relationship as well as the traditional GIS vertical ordering of objects. JeoViewer can run as a standalone product, extended with additional analysis functionality, or embedded in another framework.« less

  17. Surface-Plasmon Enhanced Transparent Electrodes in Organic Photovoltaics

    SciTech Connect (OSTI)

    Reilly III, T. H.; van de Lagemaat, J.; Tenent, R. C.; Morfa, A. J.; Rowlen, K. L.

    2008-01-01

    Random silver nanohole films were created through colloidal lithography techniques and metal vapor deposition. The transparent electrodes were characterized by uv-visible spectroscopy and incorporated into an organic solar cell. The test cells were evaluated for solar power-conversion efficiency and incident photon-to-current conversion efficiency. The incident photon-to-current conversion efficiency spectra displayed evidence that a nanohole film with 92 nm diameter holes induces surface-plasmon-enhanced photoconversion. The nanohole silver films demonstrate a promising route to removing the indium tin oxide transparent electrode that is ubiquitous in organic optoelectronics.

  18. Generic Exercise Objectives

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume provides additional detail on preparation of exercise objectives. Canceled by DOE G 151.1-3.

  19. New York City Benchmarking and Transparency Policy Impact Evaluation Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Prepared for the U.S. Department of Energy, this Report provides an understanding of both the approach and methodologies used to evaluate the New York City's benchmarking and transparency policy, Local Law 84, and the results of the application of those methodologies to the early period of the policy's implementation.

  20. Benchmarking and Transparency Policy and Program Impact Evaluation Handbook

    Energy.gov [DOE]

    Prepared for by the U.S. Department of Energy, this Handbook provides both a strategic planning framework and standard methodologies to determined the energy and non-energy benefits of benchmarking and transparency policies and programs that recently began to proliferate in jurisdiction across the United States.

  1. Radiation-transparent windows, method for imaging fluid transfers

    DOE Patents [OSTI]

    Shu, Deming; Wang, Jin

    2011-07-26

    A thin, x-ray-transparent window system for environmental chambers involving pneumatic pressures above 40 bar is presented. The window allows for x-ray access to such phenomena as fuel sprays injected into a pressurized chamber that mimics realistic internal combustion engine cylinder operating conditions.

  2. PERFORMANCE OBJECTIVES FOR TANK FARM CLOSURE PERFORMANCE ASSESSMENTS

    SciTech Connect (OSTI)

    MANN, F.M.; CRUMPLER, J.D.

    2005-09-30

    This report documents the performance objectives (metrics, times of analyses, and times of compliance) to be used in performance assessments of Hanford Site tank farm closure.

  3. Text-Alternative Version of TAP Webinar: Measuring the Impact of Benchmarking & Transparency

    Energy.gov [DOE]

    Transcript of the June TAP webinar, Measuring the Impact of Benchmarking & Transparency - Methodologies and the NYC Example.

  4. Manipulator for hollow objects

    DOE Patents [OSTI]

    Cawley, William E.; Frantz, Charles E.

    1977-01-01

    A device for gripping the interior of a tubular object to pull it out of a body in which it has become stuck includes an expandable rubber tube having a plurality of metal cables lodged in the exterior of the rubber tube so as to protrude slightly therefrom, means for inflating the tube and means for pulling the tube longitudinally of the tubular object.

  5. 2005 Annual Health Physics Report for HEU Transparency Program

    SciTech Connect (OSTI)

    Radev, R

    2006-04-21

    During the 2005 calendar year, LLNL provided health physics support for the Highly Enriched Uranium Transparency Program (HEU-TP) in external and internal radiation protection and technical expertise into matters related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2005, there were 161 person-trips that required dose monitoring of the U.S. monitors. Of the 161 person-trips, 149 person-trips were SMVs and 12 person-trips were Transparency Monitoring Office (TMO) trips. Additionally, there were 11 monitoring visits by TMO monitors to facilities other than UEIE and 3 to UEIE itself. There were two monitoring visits (source changes) that were back to back with 16 monitors. Each of these concurring visits were treated as single person-trips for dosimetry purposes. Counted individually, there were 191 individual person-visits in 2005. The LLNL Safety Laboratories Division provided the dosimetry services for the HEU-TP monitors.

  6. A novel approach to Hugoniot measurements utilizing transparent crystals

    SciTech Connect (OSTI)

    Fratanduono, D. E.; Eggert, J. H.; Akin, M. C.; Chau, R.; Holmes, N. C.

    2013-01-01

    A new absolute equation of state measurement technique is described and demonstrated measuring the shock state and the refractive index of MgO up to 226GPa. This technique utilizes steady shock waves and the high-pressure transparency of MgO under dynamic shock compression and release. Hugoniot measurements performed using this technique are consistent with the previous measurements. A linear dependence of the shocked refractive index and density is observed up to 226GPa, over a magnitude greater in pressure that previous studies. The transparency of MgO along the principal Hugoniot is higher than any other material reported to date. We observe a significant change in the refractive index of MgO as the Hugoniot elastic limit is exceeded due to the transition from uniaxial to hydrostatic strain. Measurements of the elastic-plastic two-wave structure in MgO indicate a nucleation time for plastic deformation.

  7. Compound transparent ceramics and methods of preparation thereof

    DOE Patents [OSTI]

    Hollingsworth, Joel P.; Kuntz, Joshua D.; Soules, Thomas F.; Landingham, Richard L.

    2012-12-11

    According to one embodiment, a method for forming a composite transparent ceramic preform includes forming a first suspension of oxide particles in a first solvent which includes a first dispersant but does not include a gelling agent, adding the first suspension to a first mold of a desired shape, and uniformly curing the first suspension in the first mold until stable. The method also includes forming a second suspension of oxide particles in a second solvent which includes a second dispersant but does not include a gelling agent, adding the second suspension to the stable first suspension in a second mold of a desired shape encompassing the first suspension and the second suspension, and uniformly curing the second suspension in the second mold until stable. Other methods for forming a composite transparent ceramic preform are also described according to several other embodiments. Structures are also disclosed.

  8. Composition for forming an optically transparent, superhydrophobic coating

    DOE Patents [OSTI]

    Simpson, John T.; Lewis, Linda A.

    2015-12-29

    A composition for producing an optically clear, well bonded superhydrophobic coating includes a plurality of hydrophobic particles comprising an average particle size of about 200 nm or less, a binder at a binder concentration of from about 0.1 wt. % to about 0.5 wt. %, and a solvent. The hydrophobic particles may be present in the composition at a particle concentration of from about 0.1 wt. % to about 1 wt. %. An optically transparent, superhydrophobic surface includes a substrate, a plurality of hydrophobic particles having an average particle size of about 200 nm or less dispersed over the substrate, and a discontinuous binder layer bonding the hydrophobic particles to the substrate, where the hydrophobic particles and the binder layer form an optically transparent, superhydrophobic coating.

  9. Superhydrophobic Transparent Glass Thin Films - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Solar Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Early Stage R&D Early Stage R&D Advanced Materials Advanced Materials Find More Like This Return to Search Superhydrophobic Transparent Glass Thin Films Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryGlass used in building materials (curtain walls), windshields, goggles, glasses, optical lenses, and similar applications must be

  10. Electromagnetically induced transparency with a partially standing drive field

    SciTech Connect (OSTI)

    Strekalov, Dmitry V.; Matsko, Andrey B.; Yu, Nan

    2007-11-15

    We study electromagnetically induced transparency in a vacuum rubidium atomic cell and show that reflected drive radiation results in the reshaping and shift of dark resonance. We show that those effects are connected with (i) Bragg reflection of the probe radiation in optically thick atomic coherent medium modulated by the standing-wave drive field, as well as with (ii) quantum interference enhanced absorption of the probe radiation in four-level N-configuration formed due to the reflected drive field.

  11. Benchmarking & Transparency Policy and Program Impact Evaluation Handbook

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    & Transparency Policy and Program Impact Evaluation Handbook May 2015 Prepared for the U.S. Department of Energy by Navigant Consulting, Inc.and Steven Winter Associates, Inc. (This page intentionally left blank) Acknowledgments The authors wish to thank and acknowledge several organizations and individuals for their contributions to this impact evaluation handbook. Thanks are due to the following staff members of New York City's Offce of Long-term Planning and Sustainability and the Seattle

  12. Writing Performance Objectives

    Energy.gov [DOE]

    Couse Description: This course provides the opportunity for supervisors and managers to write performance objectives or performance standards based on the department’s performance management system.

  13. Secure content objects

    DOE Patents [OSTI]

    Evans, William D.

    2009-02-24

    A secure content object protects electronic documents from unauthorized use. The secure content object includes an encrypted electronic document, a multi-key encryption table having at least one multi-key component, an encrypted header and a user interface device. The encrypted document is encrypted using a document encryption key associated with a multi-key encryption method. The encrypted header includes an encryption marker formed by a random number followed by a derivable variation of the same random number. The user interface device enables a user to input a user authorization. The user authorization is combined with each of the multi-key components in the multi-key encryption key table and used to try to decrypt the encrypted header. If the encryption marker is successfully decrypted, the electronic document may be decrypted. Multiple electronic documents or a document and annotations may be protected by the secure content object.

  14. Package for fragile objects

    DOE Patents [OSTI]

    Burgeson, Duane A.

    1977-01-01

    A package for fragile objects such as radioactive fusion pellets of micron size shipped in mounted condition or unmounted condition with a frangible inner container which is supported in a second inner container which in turn is supported in a final outer container, the second inner container having recesses for supporting alternate design inner containers.

  15. Energy Analyses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Science & Innovation » Clean Coal » Crosscutting Research » Energy Analyses Energy Analyses The Office of Fossil Energy conducts energy analyses to assess the economics of advanced process concepts in support of near-zero emissions power plants. Environmental Activities. These analyses include potential environmental impacts (e.g., on water quality, air emissions, solid waste disposal, climate change) of fossil fuel use and large-scale deployment of different generations of CCS. Of

  16. Rapid process for producing transparent, monolithic porous glass

    DOE Patents [OSTI]

    Coronado, Paul R. (Livermore, CA)

    2006-02-14

    A process for making transparent porous glass monoliths from gels. The glass is produced much faster and in much larger sizes than present technology for making porous glass. The process reduces the cost of making large porous glass monoliths because: 1) the process does not require solvent exchange nor additives to the gel to increase the drying rates, 2) only moderate temperatures and pressures are used so relatively inexpensive equipment is needed, an 3) net-shape glass monoliths are possible using this process. The process depends on the use of temperature to control the partial pressure of the gel solvent in a closed vessel, resulting in controlled shrinking during drying.

  17. ALSO: Nuclear Transparency Minirobots Conduct Search & Rescue

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    0 ALSO: Nuclear Transparency Minirobots Conduct Search & Rescue A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 2, NO. 1 PEACE IN AN EDGY WORLD Nonproliferation: Keeping Weapons of Mass Destruction at Bay S A N D I A T E C H N O L O G Y [ ON THE COVER: The Multispectral Thermal Imager (MTI) satellite, designed and built at Sandia National Laboratories, was launched March 12, 2000. The satellite is expected to have a broad range of national defense and civilian applications ranging from

  18. Nuclear transparency from quasielastic 12C(e,e'p)

    SciTech Connect (OSTI)

    D. Rohe; O. Benhar; C.S. Armstrong; R. Asaturyan; O.K. Baker; S. Bueltmann; C. Carasco; D. Day; R. Ent; H.C. Fenker; K. Garrow; A. Gasparian; P. Gueye; M. Hauger; A. Honegger; J. Jourdan; C.E. Keppel; G. Kubon; R. Lindgren; A. Lung; D.J. Mack; J.H. Mitchell; H. Mkrtchyan; D. Mocelj; K. Normand; T. Petitjean; O. Rondon; E. Segbefia; I. Sick; S. Stepanyan; L. Tang; F. Tiefenbacher; W.F. Vulcan; G. Warren; S.A. Wood; L. Yuan; M. Zeier; H. Zhu; B. Zihlmann

    2005-11-01

    We studied the reaction 12C(e,e'p) in quasielastic kinematics at momentum transfers between 0.6 and 1.8 (GeV/c){sup 2} covering the single-particle region. From this the nuclear transparency factors are extracted using two methods. The results are compared to theoretical predictions obtained using a generalization of Glauber theory described in this paper. Furthermore, the momentum distribution in the region of the 1s-state up to momenta of 300 MeV/c is obtained from the data and compared to the Correlated Basis Function theory and the Independent-Particle Shell model.

  19. Transparent ceramic photo-optical semiconductor high power switches

    DOE Patents [OSTI]

    Werne, Roger W.; Sullivan, James S.; Landingham, Richard L.

    2016-01-19

    A photoconductive semiconductor switch according to one embodiment includes a structure of sintered nanoparticles of a high band gap material exhibiting a lower electrical resistance when excited by light relative to an electrical resistance thereof when not exposed to the light. A method according to one embodiment includes creating a mixture comprising particles, at least one dopant, and at least one solvent; adding the mixture to a mold; forming a green structure in the mold; and sintering the green structure to form a transparent ceramic. Additional system, methods and products are also presented.

  20. Electromagnetically induced transparency with quantized fields in optocavity mechanics

    SciTech Connect (OSTI)

    Huang Sumei; Agarwal, G. S.

    2011-04-15

    We report electromagnetically induced transparency (EIT) using quantized fields in optomechanical systems. The weak probe field is a narrowband squeezed field. We present a homodyne detection of EIT in the output quantum field. We find that the EIT dip exists even though the photon number in the squeezed vacuum is at the single-photon level. The EIT with quantized fields can be seen even at temperatures on the order of 100 mK, thus paving the way for using optomechanical systems as memory elements.

  1. Compilation of Quality Assurance Documentation for Analyses Performed for the Resumption of Transient Testing Environmental Assessment

    SciTech Connect (OSTI)

    Annette L. Schafer; A. Jeffrey Sondrup

    2013-11-01

    This is a companion document to the analyses performed in support of the environmental assessment for the Resumption of Transient Fuels and Materials Testing. It is provided to allow transparency of the supporting calculations. It provides computer code input and output. The basis for the calculations is documented separately in INL (2013) and is referenced, as appropriate. Spreadsheets used to manipulate the code output are not provided.

  2. Nanocarbon-copper thin film as transparent electrode

    SciTech Connect (OSTI)

    Isaacs, R. A.; Zhu, H.; Preston, Colin; LeMieux, M.; Jaim, H. M. Iftekhar; Hu, L. Salamanca-Riba, L. G.; Mansour, A.; Zavalij, P. Y.; Rabin, O.

    2015-05-11

    Researchers seeking to enhance the properties of metals have long pursued incorporating carbon in the metallic host lattice in order to combine the strongly bonded electrons in the metal lattice that yield high ampacity and the free electrons available in carbon nanostructures that give rise to high conductivity. The incorporation of carbon nanostructures into the copper lattice has the potential to improve the current density of copper to meet the ever-increasing demands of nanoelectronic devices. We report on the structure and properties of carbon incorporated in concentrations up to 5 wt. % (∼22 at. %) into the crystal structure of copper. Carbon nanoparticles of 5 nm–200 nm in diameter in an interconnecting carbon matrix are formed within the bulk Cu samples. The carbon does not phase separate after subsequent melting and re-solidification despite the absence of a predicted solid solution at such concentrations in the C-Cu binary phase diagram. This material, so-called, Cu covetic, makes deposition of Cu films containing carbon with similar microstructure to the metal possible. Copper covetic films exhibit greater transparency, higher conductivity, and resistance to oxidation than pure copper films of the same thickness, making them a suitable choice for transparent conductors.

  3. Session Introduction and Objectives

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    H 2 USA Breakout Session Introduction and Objectives Washington, DC July 12, 2016 Dr. Sunita Satyapal Director Fuel Cell Technologies Office | 2 Major Administration Energy Goals Reduce GHG emissions by 17% by 2020, 26-28% by 2025 and 83% by 2050 from 2005 baseline Climate Action Plan By 2035, generate 80% of electricity from a diverse set of clean energy resources Blueprint Secure Energy Future Double energy productivity by 2030 Department of Energy Reduce net oil imports by half by 2020 from a

  4. DOE Policy on NEPA Process Transparency and Openness | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Policy on NEPA Process Transparency and Openness DOE Policy on NEPA Process Transparency and Openness Under the new policy, each Program and Field Office (including the National Nuclear Security Administration and the Power Marketing Administrations) will document and post online all categorical exclusion determinations involving classes of actions listed in Appendix B of the Department's NEPA implementing procedures, 10 C.F.R. Part 1021. DOE Policy on NEPA Process Transparency and Openness

  5. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    SciTech Connect (OSTI)

    Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Wang, Mu

    2015-07-15

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.

  6. Analysing

    Office of Scientific and Technical Information (OSTI)

    Varying Alpha Theory Debaprasad Maity 1, 2 and Pisin Chen 1, 2, 3 1 Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei 10617,...

  7. Data quality objectives

    SciTech Connect (OSTI)

    Haeberer, F.

    1993-12-31

    The U.S. Environmental Protection Agency (EPA) spends about $500 million annually in collecting environmental data for scientific research and regulatory decision making. In addition, the regulated community may spend as much as ten times more each year in responding to EPA compliance requirements. Among the EPA and the regulated community there are several important common concerns: both want to make informed decisions using the right type, quality, and quantity of data. Collecting new data is very resource intensive to all parties. Neither EPA nor the regulated community can afford to collect more or {open_quotes}better{close_quotes} data than are really needed; the Data Quality Objectives (DQO) process is a systematic planning tool for ensuring that the right data will be collected for arriving at a decision within the desired confidence constraints. Using the DQO process to plan environmental data collections can help improve their effectiveness and efficiency, and enhance the defensibility of the decisions for which the data are used.

  8. Preparation of transparent conductors ferroelectric memory materials and ferrites

    DOE Patents [OSTI]

    Bhattacharya, R.N.; Ginley, D.S.

    1998-07-28

    A process is described for the preparation by electrodeposition of metal oxide film and powder compounds for ferroelectric memory materials and ferrites wherein the metal oxide includes a plurality of metals. The process comprises providing an electrodeposition bath, providing soluble salts of the metals to this bath, electrically energizing the bath to thereby cause formation of a recoverable film of metal on the electrode, recovering the resultant film as a film or a powder, and recovering powder formed on the floor of the bath. The films and powders so produced are subsequently annealed to thereby produce metal oxide for use in electronic applications. The process can be employed to produce metal-doped metal oxide film and powder compounds for transparent conductors. The process for preparation of these metal-doped metal oxides follows that described above.

  9. Preparation of transparent conductors ferroelectric memory materials and ferrites

    DOE Patents [OSTI]

    Bhattacharya, Raghu Nath; Ginley, David S.

    1998-01-01

    A process for the preparation by electrodeposition of metal oxide film and powder compounds for ferroelectric memory materials and ferrites wherein the metal oxide includes a plurality of metals. The process comprises providing an electrodeposition bath, providing soluble salts of the metals to this bath, electrically energizing the bath to thereby cause formation of a recoverable film of metal on the electrode, recovering the resultant film as a film or a powder, and recovering powder formed on the floor of the bath. The films and powders so produced are subsequently annealed to thereby produce metal oxide for use in electronic applications. The process can be employed to produce metal-doped metal oxide film and powder compounds for transparent conductors. The process for preparation of these metal-doped metal oxides follows that described above.

  10. Transparent electrical conducting films by activated reactive evaporation

    DOE Patents [OSTI]

    Bunshah, Rointan; Nath, Prem

    1982-01-01

    Process and apparatus for producing transparent electrical conducting thin films by activated reactive evaporation. Thin films of low melting point metals and alloys, such as indium oxide and indium oxide doped with tin, are produced by physical vapor deposition. The metal or alloy is vaporized by electrical resistance heating in a vacuum chamber, oxygen and an inert gas such as argon are introduced into the chamber, and vapor and gas are ionized by a beam of low energy electrons in a reaction zone between the resistance heater and the substrate. There is a reaction between the ionized oxygen and the metal vapor resulting in the metal oxide which deposits on the substrate as a thin film which is ready for use without requiring post deposition heat treatment.

  11. Transparent bulk-size nanocomposites with high inorganic loading

    SciTech Connect (OSTI)

    Chen, Shi; Gaume, Romain

    2015-12-14

    With relatively high nanoparticle loading in polymer matrices, hybrid nanocomposites made by colloidal dispersion routes suffer from severe inhomogeneous agglomeration, a phenomenon that deteriorates light transmission even when the refractive indices of the inorganic and organic phases are closely matched. The dispersion of particles in a matrix is of paramount importance to obtain composites of high optical quality. Here, we describe an innovative, yet straightforward method to fabricate monolithic transparent hybrid nanocomposites with very high particle loading and high refractive index mismatch tolerance between the inorganic and organic constituents. We demonstrate 77% transmission at 800 nm in a 2 mm-thick acrylate polymer nanocomposite containing 61 vol. % CaF{sub 2} nanoparticles. Modeling shows that similar performance could easily be obtained with various inorganic phases relevant to a number of photonic applications.

  12. Transparent conductor-embedding nanolens for Si solar cells

    SciTech Connect (OSTI)

    Kim, Joondong E-mail: junsin@skku.edu Kumar, Melvin David; Yun, Ju-Hyung; Kim, Hongsik; Park, Hyeong-Ho; Lee, Eunsongyi; Kim, Dong-wook; Kim, Hyunyub; Kim, Mingeon; Yi, Junsin E-mail: junsin@skku.edu; Jeong, Chaehwan E-mail: junsin@skku.edu

    2015-04-13

    We present a large-scale applicable nanolens-embedding solar cell. An electrically conductive and optically transparent indium-tin-oxide (ITO) thin film was coated on a Si substrate. After then, periodically patterned ITO nanodome-arrays were formed on the ITO film by using a nano-imprint method. This structure is effective to reduce the incident light reflection for broad wavelengths and also efficient to drive the incident photons into a light-absorbing Si substrate. There exist two electric fields. One is by a p/n junction and the other is by the light absorption into Si. We designed nanolens structures to overlap two electric fields and demonstrate highly improved solar cell performances of current and voltage values from a planar structure.

  13. Electromagnetically induced transparency in paraffin-coated vapor cells

    SciTech Connect (OSTI)

    Klein, M.; Hohensee, M.; Walsworth, R. L. [Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States); Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Phillips, D. F. [Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States)

    2011-01-15

    Antirelaxation coatings in atomic vapor cells allow ground-state coherent spin states to survive many collisions with the cell walls. This reduction in the ground-state decoherence rate gives rise to ultranarrow-bandwidth features in electromagnetically induced transparency (EIT) spectra, which can form the basis of, for example, long-time scale slow and stored light, sensitive magnetometers, and precise frequency standards. Here we study, both experimentally and theoretically, how Zeeman EIT contrast and width in paraffin-coated rubidium vapor cells are determined by cell and laser-beam geometry, laser intensity, and atomic density. Using a picture of Ramsey pulse sequences, where atoms alternately spend ''bright'' and ''dark'' time intervals inside and outside the laser beam, we explain the behavior of EIT features in coated cells, highlighting their unique characteristics and potential applications.

  14. Characterization of transparent zinc oxide films prepared by electrochemical reaction

    SciTech Connect (OSTI)

    Izaki, Masanobu; Omi, Takashi

    1997-06-01

    Transparent zinc oxide (ZnO) films have been grown by galvanostatic cathodic deposition onto conductive glasses from a simple aqueous zinc nitrate electrolyte maintained at 335 K. The as-deposited ZnO films were characterized with Fourier transform infrared absorption spectroscopy, x-ray diffraction, scanning electron microscopy, optical transmission and absorption studies, and measurement of sheet resistivity as a function of cathodic current density. The ZnO films prepared had a wurtzite structure and exhibited an optical bandgap energy of 3.3 eV which is characteristic of ZnO. At a low cathodic current density of 0.05 mA/cm{sup 2}, ZnO films with excellent electrical characteristics have been obtained. A 2 {micro}m thick ZnO film with an optical transmittance of 72% was deposited by electrolysis for approximately 20 min at a cathodic current density of 10 mA/cm{sup 2}.

  15. Semi-transparent solar energy thermal storage device

    DOE Patents [OSTI]

    McClelland, John F.

    1985-06-18

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  16. Semi-transparent solar energy thermal storage device

    DOE Patents [OSTI]

    McClelland, John F.

    1986-04-08

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  17. Optically transparent, scratch-resistant, diamond-like carbon coatings

    DOE Patents [OSTI]

    He, Xiao-Ming; Lee, Deok-Hyung; Nastasi, Michael A.; Walter, Kevin C.; Tuszewski, Michel G.

    2003-06-03

    A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.

  18. Hot Superplastic Powder Forging for Transparent nanocrystalline Ceramics

    SciTech Connect (OSTI)

    Cannon, W. Roger

    2006-05-22

    The program explored a completely new, economical method of manufacturing nanocrystalline ceramics, Hot Superplastic Powder Forging (HSPF). The goal of the work was the development of nanocrystalline/low porosity optically transparent zirconia/alumina. The high optical transparency should result from lack of grain boundary scattering since grains will be smaller than one tenth the wavelength of light and from elimination of porosity. An important technological potential for this process is manufacturing of envelopes for high-pressure sodium vapor lamps. The technique for fabricating monolithic nanocrystalline material does not begin with powder whose particle diameter is <100 nm as is commonly done. Instead it begins with powder whose particle diameter is on the order of 10-100 microns but contains nanocrystalline crystallites <<100 nm. Spherical particles are quenched from a melt and heat treated to achieve the desired microstructure. Under a moderate pressure within a die or a mold at temperatures of 1100C to 1300C densification is by plastic flow of superplastic particles. A nanocrystalline microstructure results, though some features are greater than 100nm. It was found, for instance, that in the fully dense Al2O3-ZrO2 eutectic specimens that a bicontinuous microstructure exists containing <100 nm ZrO2 particles in a matrix of Al2O3 grains extending over 1-2 microns. Crystallization, growth, phase development and creep during hot pressing and forging were studied for several compositions and so provided some details on development of polycrystalline microstructure from heating quenched ceramics.

  19. Fully transparent organic transistors with junction-free metallic network electrodes

    SciTech Connect (OSTI)

    Pei, Ke; Wang, Zongrong; Ren, Xiaochen; Zhang, Zhichao; Peng, Boyu; Chan, Paddy K. L.

    2015-07-20

    We utilize highly transparent, junction-free metal network electrodes to fabricate fully transparent organic field effect transistors (OFETs). The patterned transparent Ag networks are developed by polymer crack template with adjustable line width and density. Sheet resistance of the network is 6.8 Ω/sq and optical transparency in the whole visible range is higher than 80%. The bottom contact OFETs with DNTT active layer and parylene-C dielectric insulator show a maximum field-effect mobility of 0.13 cm{sup 2}/V s (average mobility is 0.12 cm{sup 2}/V s) and on/off ratio is higher than 10{sup 7}. The current OFETs show great potential for applications in the next generation of transparent and flexible electronics.

  20. Opportunities for Improving Photovoltaic Performance with Better Transparent Contacts

    SciTech Connect (OSTI)

    Ginley, David S.; Perkins, John D.

    2015-06-14

    NREL and DOE recently held a workshop to assess the challenges, opportunities and potential impacts for improved transparent contacts (TCs) to positively impact current and emerging photovoltaic conversion technologies. Here, we report on the workshop outcomes based on the collective input and participation from industry, academia, national laboratories and DOE. A primary conclusion is that new emerging materials can have significant impacts on the overall performance, reliability and cost for commercial scale PV. One key observation is that TC's should no longer be thought of as a single-layer single-purpose material but as an integrated contact layer stack that includes a charge selective interface layer, a conducting layer and sometimes layers for reliability or light management. In addition, the long standing goal of developing of high performance atmospheric-pressure-processed TCs has finally been met by the rapidly improving Ag nanowire based composites with better than ITO performance from an all ink based process. Even the more conventional metal oxide materials are improving rapidly by introducing solution processed buffer layers, and even conductor layers. This rapid evolution has opened the way to high-throughput low-cost TC processing. Key desired metrics for TCs and approaches to achieving them are discussed.

  1. Electromagnetically induced transparency resonances inverted in magnetic field

    SciTech Connect (OSTI)

    Sargsyan, A.; Sarkisyan, D. E-mail: david@ipr.sci.am; Pashayan-Leroy, Y.; Leroy, C.; Cartaleva, S.; Wilson-Gordon, A. D.; Auzinsh, M.

    2015-12-15

    The phenomenon of electromagnetically induced transparency (EIT) is investigated in a Λ-system of the {sup 87}Rb D{sub 1} line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates γ{sub rel} are used: an Rb cell with antirelaxation coating (L ∼ 1 cm) and an Rb nanometric- thin cell (nanocell) with a thickness of the atomic vapor column L = 795 nm. For the EIT in the nanocell, we have the usual EIT resonances characterized by a reduction in the absorption (dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (bright resonances (BR)). We suppose that such an unusual behavior of the EIT resonances (i.e., the reversal of the sign from DR to BR) is caused by the influence of an alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.

  2. High-performance, transparent conducting oxides based on cadmium stannate

    SciTech Connect (OSTI)

    Coutts, T.J.; Wu, X.; Mulligan, W.P.; Webb, J.M.

    1996-06-01

    We discuss the modeling of thin films of transparent conducting oxides and we compare the predictions with the observed properties of cadmium stannate. Thin films of this material were deposited using radio-frequency magnetron sputtering. The Drude free-carrier model is used to model the optical and electrical properties. The model demonstrates the need for high mobilities. The free-carrier absorbance in the visible spectrum is used as a comparative figure-of-merit for cadmium stannate and tin oxide. This shows that free-carrier absorbance is much less in cadmium stannate than in tin oxide. X-ray diffraction shows that annealed films consist of a single-phase spinel structure. The post-deposition annealing sequence is shown to be crucial to forming a single phase, which is vital for optimal optical and electrical properties. The films are typically high mobility (up to 65 cm{sup 2}V{sup -1}s{sup -1}) and have carrier concentrations as high as 10{sup 21} cm{sup -3}. Resistivities are as low as 1.3 10{sup -4} {Omega} cm, the lowest values reported for cadmium stannate. Atomic force microscopy indicates that the root-mean-square surface roughness is approximately {+-}15A. Cadmium stannate etches readily in both hydrofluoric and hydrochloric acid, which is a commanding advantage over tin oxide. 11 refs., 15 figs.

  3. Processing of transparent polycrystalline AlON:Ce3+ scintillators

    DOE PAGES-Beta [OSTI]

    Chen, Ching -Fong; Yang, Pin; King, Graham; Tegtmeier, Eric L.

    2015-10-23

    A new polycrystalline ceramic scintillator is reported for potential use in radiation detection and medical imaging applications. The goal was to develop cerium-activated aluminum oxynitride (AlON:Ce3+) ceramics, which can be produced using ceramic processes in comparison to the high-cost, low-yield single-crystal growth technique. A phase pure AlON:Ce3+ powder with cubic symmetry was successfully synthesized at high temperature under a reducing atmosphere to convert Ce4+ to Ce3+ in the solid solution. We explored two different activator concentrations (0.5 and 1.0 mol%). Fully dense and transparent AlON:Ce3+ ceramics were produced by a liquid-phase-assisted pressureless sintering. The crystal field splitting around the Ce3+more » activator in the AlON was comparable to the splitting induced by Br₋ and the Cl₋ ligands, which produced an emission spectrum perfectly matching the maximum quantum efficiency range of the photomultiplier tube for radiation detection. Both optical excitation and radiation ionizations in AlON:Ce3+ were demonstrated. Lastly, challenges and mechanisms related to the radioluminescence efficiency are discussed.« less

  4. Functional Multilayered Transparent Conducting Oxide Thin Films for Photovoltaic Devices

    SciTech Connect (OSTI)

    Noh, J. H.; Lee, S.; Kim, J. Y.; Lee, J. K.; Han, H. S.; Cho, C. M.; Cho, I. S.; Jung, H. S.; Hong, K. S.

    2009-01-01

    In this study, we present a thermally stable multilayered transparent conducting oxide (TCO) functionalized for dye-sensitized solar cells (DSSCs). Nb-doped TiO{sub 2} (NTO) layers deposited on conventional Sn-doped In{sub 2}O{sub 3} (ITO) substrates using pulsed laser deposition (PLD) enhanced the optical-to-electrical conversion efficiency of the DSSCs by as much as 17% compared to that of bare ITO-based DSSCs. The electrical properties and J-V characteristics of the multilayered NTO/ITO films showed that the improved cell performance was due to the facilitated charge injection from TiO{sub 2} to ITO that resulted from the formation of an ohmic contact with ITO, as well as the conserved high conductivity of ITO after the oxidizing annealing process. Moreover, the NTO/ITO-based DSSC exhibited higher efficiency than a F-doped SnO{sub 2}(FTO)-based one, which demonstrates that optimization of multilayered NTO-based TCOs is a realistic approach for achieving highly efficient photoenergy conversion devices.

  5. Transparent TiO2 nanotube array photoelectrodes prepared via two-step

    Office of Scientific and Technical Information (OSTI)

    anodization (Journal Article) | DOE PAGES Transparent TiO2 nanotube array photoelectrodes prepared via two-step anodization Title: Transparent TiO2 nanotube array photoelectrodes prepared via two-step anodization Two-step anodization of transparent TiO2 nanotube arrays has been demonstrated with aid of a Nb-doped TiO2 buffer layer deposited between the Ti layer and TCO substrate. Enhanced physical adhesion and electrochemical stability provided by the buffer layer has been found to be

  6. Portable vacuum object handling device

    DOE Patents [OSTI]

    Anderson, Gordon H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object.

  7. Transparent building-integrated PV modules. Phase 1: Comprehensive report

    SciTech Connect (OSTI)

    NONE

    1998-09-28

    This Comprehensive Report encompasses the activities that have been undertaken by Kiss + Cathcart, Architects, in conjunction with Energy Photovoltaics, Incorporated (EPV), to develop a flexible patterning system for thin-film photovoltaic (PV) modules for building applications. There are two basic methods for increasing transparency/light transmission by means of patterning the PV film: widening existing scribe lines, or scribing a second series of lines perpendicular to the first. These methods can yield essentially any degree of light transmission, but both result in visible patterns of light and dark on the panel surface. A third proposed method is to burn a grid of dots through the films, independent of the normal cell scribing. This method has the potential to produce a light-transmitting panel with no visible pattern. Ornamental patterns at larger scales can be created using combinations of these techniques. Kiss + Cathcart, Architects, in conjunction with EPV are currently developing a complementary process for the large-scale lamination of thin-film PVs, which enables building integrated (BIPV) modules to be produced in sizes up to 48 in. x 96 in. Flexible laser patterning will be used for three main purposes, all intended to broaden the appeal of the product to the building sector: To create semitransparent thin-film modules for skylights, and in some applications, for vision glazing.; to create patterns for ornamental effects. This application is similar to fritted glass, which is used for shading, visual screening, graphics, and other purposes; and to allow BIPV modules to be fabricated in various sizes and shapes with maximum control over electrical characteristics.

  8. Magnetic transparent conducting oxide film and method of making

    DOE Patents [OSTI]

    Windisch, Jr., Charles F.; Exarhos, Gregory J.; Sharma, Shiv K.

    2004-07-13

    Cobalt-nickel oxide films of nominal 100 nm thickness, and resistivity as low as 0.06 .OMEGA..multidot.cm have been deposited by spin-casting from both aqueous and organic precursor solutions followed by annealing at 450.degree. C. in air. Films deposited on sapphire substrates exhibit a refractive index of about 1.7 and are relatively transparent in the wavelength region from 0.6 to 10.0 .mu.m. They are also magnetic. The electrical and spectroscopic properties of the oxides have been studied as a function of x=Co/(Co+Ni) ratio. An increase in film resistivity was found upon substitution of other cations (e.g., Zn.sup.2+, Al.sup.3+) for Ni in the spinel structure. However, some improvement in the mechanical properties of the films resulted. On the other hand, addition of small amounts of Li decreased the resistivity. A combination of XRD, XPS, UV/Vis and Raman spectroscopy indicated that NiCo.sub.2 O.sub.4 is the primary conducting component and that the conductivity reaches a maximum at this stoichiometry. When x<0.67, NiO forms leading to an increase in resistivity; when x>0.67, the oxide was all spinel but the increased Co content lowered the conductivity. The influence of cation charge state and site occupancy in the spinel structure markedly affects calculated electron band structures and contributes to a reduction of p-type conductivity, the formation of polarons, and the reduction in population of mobile charge carriers that tend to limit transmission in the infrared.

  9. Overview of DOE-Supported Infrastructure Analyses Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE-Supported Infrastructure Analyses Webinar U.S. Department of Energy Fuel Cell Technologies Office July 24, 2013 2 | Fuel Cell Technologies Office eere.energy.gov * Introduction and webinar objectives * Analyses and Models * Examples * Component-level Models * Market Penetration * Transition Scenarios * Financial Models * Impact of Policies * Regional Models * Model enhancements * Next steps Agenda 3 | Fuel Cell Technologies Office eere.energy.gov H 2 USA is being formed as a public/private

  10. Interim Basis for PCB Sampling and Analyses

    SciTech Connect (OSTI)

    BANNING, D.L.

    2001-03-20

    This document was developed as an interim basis for sampling and analysis of polychlorinated biphenyls (PCBs) and will be used until a formal data quality objective (DQO) document is prepared and approved. On August 31, 2000, the Framework Agreement for Management of Polychlorinated Biphenyls (PCBs) in Hanford Tank Waste was signed by the U.S. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) (Ecology et al. 2000). This agreement outlines the management of double shell tank (DST) waste as Toxic Substance Control Act (TSCA) PCB remediation waste based on a risk-based disposal approval option per Title 40 of the Code of Federal Regulations 761.61 (c). The agreement calls for ''Quantification of PCBs in DSTs, single shell tanks (SSTs), and incoming waste to ensure that the vitrification plant and other ancillary facilities PCB waste acceptance limits and the requirements of the anticipated risk-based disposal approval are met.'' Waste samples will be analyzed for PCBs to satisfy this requirement. This document describes the DQO process undertaken to assure appropriate data will be collected to support management of PCBs and is presented in a DQO format. The DQO process was implemented in accordance with the U.S. Environmental Protection Agency EPA QA/G4, Guidance for the Data Quality Objectives Process (EPA 1994) and the Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. 1A, Vol. IV, Section 4.16 (Banning 1999).

  11. Interim Basis for PCB Sampling and Analyses

    SciTech Connect (OSTI)

    BANNING, D.L.

    2001-01-18

    This document was developed as an interim basis for sampling and analysis of polychlorinated biphenyls (PCBs) and will be used until a formal data quality objective (DQO) document is prepared and approved. On August 31, 2000, the Framework Agreement for Management of Polychlorinated Biphenyls (PCBs) in Hanford Tank Waste was signed by the US. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) (Ecology et al. 2000). This agreement outlines the management of double shell tank (DST) waste as Toxic Substance Control Act (TSCA) PCB remediation waste based on a risk-based disposal approval option per Title 40 of the Code of Federal Regulations 761.61 (c). The agreement calls for ''Quantification of PCBs in DSTs, single shell tanks (SSTs), and incoming waste to ensure that the vitrification plant and other ancillary facilities PCB waste acceptance limits and the requirements of the anticipated risk-based disposal approval are met.'' Waste samples will be analyzed for PCBs to satisfy this requirement. This document describes the DQO process undertaken to assure appropriate data will be collected to support management of PCBs and is presented in a DQO format. The DQO process was implemented in accordance with the U.S. Environmental Protection Agency EPA QAlG4, Guidance for the Data Quality Objectives Process (EPA 1994) and the Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. 1 A, Vol. IV, Section 4.16 (Banning 1999).

  12. GC Commits to Transparency on Nuclear Waste Fund Fee Adequacy Decisions

    Energy.gov [DOE]

    Consistent with the Administration's commitment to transparency, DOE General Counsel Scott Blake Harris has decided that all future determinations as to the adequacy of the Nuclear Waste Fund fee...

  13. The Use of Large Transparent Ceramics in a High Powered, Diode...

    Office of Scientific and Technical Information (OSTI)

    Pumped Solid State Laser Citation Details In-Document Search Title: The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid State Laser You are accessing ...

  14. Evidence for the onset of color transparency in ρ0 electroproduction off nuclei

    DOE PAGES-Beta [OSTI]

    Guo, L.; Hanretty, C.; Hicks, K.; Holt, R. J.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalker, S. S.; et al

    2012-05-11

    We have measured the nuclear transparency of the incoherent diffractive A(e,e'ρ0) process in 12C and 56Fe targets relative to 2H using a 5 GeV electron beam. The nuclear transparency, the ratio of the produced {rho}{sup 0}'s on a nucleus relative to deuterium, which is sensitive to ρA interaction, was studied as function of the coherence length (Ic), a lifetime of the hadronic fluctuation of the virtual photon, and the four-momentum transfer squared (Q2). Thus, while the transparency for both 12C and 56Fe showed no Ic dependence, a significant Q2 dependence was measured, which is consistent with calculations that included themore »color transparency effects.« less

  15. Evidence for the onset of color transparency in ρ0 electroproduction off nuclei

    DOE PAGES-Beta [OSTI]

    Guo, L.; Hanretty, C.; Hicks, K.; Holt, R. J.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalker, S. S.; et al

    2012-05-11

    We have measured the nuclear transparency of the incoherent diffractive A(e,e'ρ0) process in 12C and 56Fe targets relative to 2H using a 5 GeV electron beam. The nuclear transparency, the ratio of the produced {rho}{sup 0}'s on a nucleus relative to deuterium, which is sensitive to ρA interaction, was studied as function of the coherence length (Ic), a lifetime of the hadronic fluctuation of the virtual photon, and the four-momentum transfer squared (Q2). Thus, while the transparency for both 12C and 56Fe showed no Ic dependence, a significant Q2 dependence was measured, which is consistent with calculations that included themore » color transparency effects.« less

  16. Support for Cost Analyses on

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    35 Hartwell Ave Lexington, MA 02421 Support for Cost Analyses on Solar-Driven High Temperature Thermochemical Water-Splitting Cycles Final Report to: Department of Energy Order DE-DT0000951 Report prepared by TIAX LLC Reference D0535 February 22, 2011 Matt Kromer (Principal Investigator) Kurt Roth Rosalind Takata Paul Chin Copyright 2011, TIAX LLC Notice: This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government

  17. Low-Cost, Highly Transparent, Flexible, Low-Emission Coating Film to Enable

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electrochromic Windows with Increased Energy Savings | Department of Energy Highly Transparent, Flexible, Low-Emission Coating Film to Enable Electrochromic Windows with Increased Energy Savings Low-Cost, Highly Transparent, Flexible, Low-Emission Coating Film to Enable Electrochromic Windows with Increased Energy Savings ITN Energy Systems is using low-cost, high volume roll-to-roll coating techniques to develop a new low-e film with high visible transmission and high infrared reflectivity.

  18. Low-Cost, Haziness-Free, Transparent Insulation Based On a Porous Silica

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Material | Department of Energy Haziness-Free, Transparent Insulation Based On a Porous Silica Material Low-Cost, Haziness-Free, Transparent Insulation Based On a Porous Silica Material Image of porous silica material in alcohol.<br /> Photo credit: Oak Ridge National Lab Image of porous silica material in alcohol. Photo credit: Oak Ridge National Lab Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partner: VELUX Design and Development Company USA Inc., Greenwood, SC DOE

  19. Method for producing high carrier concentration p-Type transparent conducting oxides

    DOE Patents [OSTI]

    Li, Xiaonan; Yan, Yanfa; Coutts, Timothy J.; Gessert, Timothy A.; Dehart, Clay M.

    2009-04-14

    A method for producing transparent p-type conducting oxide films without co-doping plasma enhancement or high temperature comprising: a) introducing a dialkyl metal at ambient temperature and a saturated pressure in a carrier gas into a low pressure deposition chamber, and b) introducing NO alone or with an oxidizer into the chamber under an environment sufficient to produce a metal-rich condition to enable NO decomposition and atomic nitrogen incorporation into the formed transparent metal conducting oxide.

  20. OSTIblog Articles in the transparency Topic | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information transparency Topic DOE Open Government Plan 3.0 Highlights OSTI Products by Peter Lincoln 24 Jun, 2014 in The Department of Energy recently issued its latest Open Government Plan, and the document recognizes the DOE Office of Scientific and Technical Information (OSTI) for advancing open government and the principles of transparency, participation, and collaboration by making scientific and technical information (STI) publicly available. On his

  1. Portable vacuum object handling device

    DOE Patents [OSTI]

    Anderson, G.H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object. 1 fig.

  2. Sandia National Laboratories: Strategic Objectives

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    elevate the practice of engineering through partnerships We will communicate Sandia's own brand of mission delivery and continue to attract talented people to the Labs Objective 3:...

  3. An Objective Measure of Interconnection Usage for High Levels of Wind Integration

    SciTech Connect (OSTI)

    Yasuda, Yoh; Gomez-Lazaro, Emilio; Holttinen, Hannele; Estanqueiro, Ana; Kondoh, Junji; Orths, Antje; Cutululis, Nicolaos Antonio; Milligan, Michael; Smith, J. Charles

    2014-11-13

    This paper analyzes selected interconnectors in Europe using several evaluation factors; capacity factor, congested time, and congestion ratio. In a quantitative and objective evaluation, the authors propose to use publically available data on maximum net transmission capacity (NTC) levels during a single year to study congestion rates, realizing that the capacity factor depends upon the chosen capacity of the selected interconnector. This value will be referred to as 'the annual maximum transmission capacity (AMTC)', which gives a transparent and objective evaluation of interconnector usage based on the published grid data. While the method is general, its initial application is motivated by transfer of renewable energy.

  4. CKow -- A More Transparent and Reliable Model for Chemical Transfer to Meat and Milk

    SciTech Connect (OSTI)

    Rosenbaum, Ralph K.; McKone, Thomas E.; Jolliet, Olivier

    2009-03-01

    The objective of this study is to increase the understanding and transparency of chemical biotransfer modeling into meat and milk and explicitly confront the uncertainties in exposure assessments of chemicals that require such estimates. In cumulative exposure assessments that include food pathways, much of the overall uncertainty is attributable to the estimation of transfer into biota and through food webs. Currently, the most commonly used meat and milk-biotransfer models date back two decades and, in spite of their widespread use in multimedia exposure models few attempts have been made to advance or improve the outdated and highly uncertain Kow regressions used in these models. Furthermore, in the range of Kow where meat and milk become the dominant human exposure pathways, these models often provide unrealistic rates and do not reflect properly the transfer dynamics. To address these issues, we developed a dynamic three-compartment cow model (called CKow), distinguishing lactating and non-lactating cows. For chemicals without available overall removal rates in the cow, a correlation is derived from measured values reported in the literature to predict this parameter from Kow. Results on carry over rates (COR) and biotransfer factors (BTF) demonstrate that a steady-state ratio between animal intake and meat concentrations is almost never reached. For meat, empirical data collected on short term experiments need to be adjusted to provide estimates of average longer term behaviors. The performance of the new model in matching measurements is improved relative to existing models--thus reducing uncertainty. The CKow model is straight forward to apply at steady state for milk and dynamically for realistic exposure durations for meat COR.

  5. PRECLOSURE CONSEQUENCE ANALYSES FOR LICENSE APPLICATION

    SciTech Connect (OSTI)

    S. Tsai

    2005-01-12

    Radiological consequence analyses are performed for potential releases from normal operations in surface and subsurface facilities and from Category 1 and Category 2 event sequences during the preclosure period. Surface releases from normal repository operations are primarily from radionuclides released from opening a transportation cask during dry transfer operations of spent nuclear fuel (SNF) in Dry Transfer Facility 1 (DTF 1), Dry Transfer Facility 2 (DTF 2), the Canister Handling facility (CHF), or the Fuel Handling Facility (FHF). Subsurface releases from normal repository operations are from resuspension of waste package surface contamination and neutron activation of ventilated air and silica dust from host rock in the emplacement drifts. The purpose of this calculation is to demonstrate that the preclosure performance objectives, specified in 10 CFR 63.111(a) and 10 CFR 63.111(b), have been met for the proposed design and operations in the geologic repository operations area. Preclosure performance objectives are discussed in Section 6.2.3 and are summarized in Tables 1 and 2.

  6. The core legion object model

    SciTech Connect (OSTI)

    Lewis, M.; Grimshaw, A.

    1996-12-31

    The Legion project at the University of Virginia is an architecture for designing and building system services that provide the illusion of a single virtual machine to users, a virtual machine that provides secure shared object and shared name spaces, application adjustable fault-tolerance, improved response time, and greater throughput. Legion targets wide area assemblies of workstations, supercomputers, and parallel supercomputers, Legion tackles problems not solved by existing workstation based parallel processing tools; the system will enable fault-tolerance, wide area parallel processing, inter-operability, heterogeneity, a single global name space, protection, security, efficient scheduling, and comprehensive resource management. This paper describes the core Legion object model, which specifies the composition and functionality of Legion`s core objects-those objects that cooperate to create, locate, manage, and remove objects in the Legion system. The object model facilitates a flexible extensible implementation, provides a single global name space, grants site autonomy to participating organizations, and scales to millions of sites and trillions of objects.

  7. An object oriented software bus

    SciTech Connect (OSTI)

    McGirt, F.; Wilkerson, J.F.

    1995-12-31

    This paper describes a new approach to development of software for highly integrated software-hardware systems such as used for data acquisition and control. This approach, called the Object Oriented Software Bus (OSB), is a way to develop software according to a common specification similar to the way interface hardware has been developed since the advent of bus structures for minicomputers and microcomputers. Key concept of the OSB is extension of the common use of objects to support user interface and data analysis functions to the development of software objects that directly correspond to real- world hardware interfaces and modules.

  8. Object-oriented concurrent programming

    SciTech Connect (OSTI)

    Yonezawa, A.; Tokoro, M.

    1986-01-01

    This book deals with a major theme of the Japanese Fifth Generation Project, which emphasizes logic programming, parallelism, and distributed systems. It presents a collection of tutorials and research papers on a new programming and design methodology in which the system to be constructed is modeled as a collection of abstract entities called ''objects'' and concurrent messages passing among objects. The book includes proposals for programming languages that support this methodology, as well as the applications of object-oriented concurrent programming to such areas as artificial intelligence, software engineering, music synthesis, office information systems, and system programming.

  9. ARM - RHUBC II Science Objectives

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Objectives Related Links RHUBC-II Home RHUBC Home ARM Field Campaigns Home ARM Data Discovery Browse Data Deployment Instruments Science Team RHUBC-II Wiki Site Tour News RHUBC-II...

  10. Laser sources for object illumination

    SciTech Connect (OSTI)

    Albrecht, G.F.

    1994-11-15

    The considerations which formulate the specifications for a laser illuminator are explained, using the example of an underwater object. Depending on the parameters which define the scenario, widely varying laser requirements result.

  11. A study of polaritonic transparency in couplers made from excitonic materials

    SciTech Connect (OSTI)

    Singh, Mahi R.; Racknor, Chris

    2015-03-14

    We have studied light matter interaction in quantum dot and exciton-polaritonic coupler hybrid systems. The coupler is made by embedding two slabs of an excitonic material (CdS) into a host excitonic material (ZnO). An ensemble of non-interacting quantum dots is doped in the coupler. The bound exciton polariton states are calculated in the coupler using the transfer matrix method in the presence of the coupling between the external light (photons) and excitons. These bound exciton-polaritons interact with the excitons present in the quantum dots and the coupler is acting as a reservoir. The Schrödinger equation method has been used to calculate the absorption coefficient in quantum dots. It is found that when the distance between two slabs (CdS) is greater than decay length of evanescent waves the absorption spectrum has two peaks and one minimum. The minimum corresponds to a transparent state in the system. However, when the distance between the slabs is smaller than the decay length of evanescent waves, the absorption spectra has three peaks and two transparent states. In other words, one transparent state can be switched to two transparent states when the distance between the two layers is modified. This could be achieved by applying stress and strain fields. It is also found that transparent states can be switched on and off by applying an external control laser field.

  12. The effect of sub-oxide phases on the transparency of tin-doped gallium oxide

    DOE PAGES-Beta [OSTI]

    Lim, K.; Schelhas, L. T.; Siah, S. C.; Brandt, R. E.; Zakutayev, A.; Lany, S.; Gorman, B.; Sun, C. J.; Ginley, D.; Buonassisi, T.; et al

    2016-10-07

    There have been a number of studies on the fabrication of Sn-doped gallium oxide (Ga2O3:Sn) films with both conductive and transparent properties using a variety of deposition methods. However, often, synthesis results in films that are not transparent. In this paper, we examine the mechanisms underlying these results in Ga2O3:Sn thin films prepared at various growth temperatures, Sn concentrations, and oxygen partial pressures. With X-ray absorption spectroscopy, transmission electron microscopy and energy dispersive spectroscopy, we find that when films are grown under the oxygen deficient conditions there are Ga sub-oxide and SnOx phases in the Ga2O3:Sn thin film. These Gamore » sub-oxide phases are only found in non-transparent films, and so we infer that the Ga sub-oxide is responsible for the non-transparency. Furthermore, these observations suggest that to obtain transparent Ga2O3:Sn, films deposition or subsequent annealing must be carefully controlled in both temperature and oxygen partial pressure to avoid the formation of Ga sub-oxide phases.« less

  13. Fabrication of Transparent Capacitive Structure by Self-Assembled Thin Films

    SciTech Connect (OSTI)

    Zhang, Q.; Shing, Y. J.; Hua, Feng; Saraf, Laxmikant V.; Matson, Dean W.

    2008-06-01

    An approach to fabricating transparent electronic devices by using nanomaterial and nanofabrication is presented in this paper. A see-through capacitor is constructed from selfassembled silica nanoparticle layers that are stacked on the transparent substrate. The electrodes are made of indium tin oxide. Unlike the traditional processes used to fabricate such devices, the self-assembly approach enables one to synthesize the thin film layers at lower temperature and cost, and with a broader availability of nanomaterials. The vertical dimension of the selfassembled thin films can be precisely controlled, as well as the molecular order in the thin film layers. The shape of the capacitor is generated by planar micropatterning. The quartz crystal demonstrates the steady growth of the silica nanoparticle multilayer. In addition, because the nanomaterial synthesis and the device fabrication steps are separate, the device is not affected by the harsh conditions required for the material synthesis. A clear pattern is allowed over a large area on the substrate. The prepared capacitive structure has an optical transparency higher than 92% over the visible spectrum. The capacitive impedance is measured at different frequencies and fit the theoretical results. As one of the fundamental components, this type of capacitive structure can serve in the transparent circuits, interactive media and sensors, as well as being applicable to other transparent devices.

  14. GRIPPING DEVICE FOR CYLINDRICAL OBJECTS

    DOE Patents [OSTI]

    Pilger, J.P.

    1964-01-21

    A gripping device is designed for fragile cylindrical objects such as for drawing thin-walled tubes. The gripping is done by multiple jaw members held in position by two sets of slots, one defined by keystone-shaped extensions of the outer shell of the device and the other in a movable sleeve held slidably by the extensions. Forward movement oi the sleeve advances the jaws, thereby exerting a controlled, radial pressure on the object being gripped. (AEC)

  15. Detection of a concealed object

    DOE Patents [OSTI]

    Keller, Paul E [Richland, WA; Hall, Thomas E [Kennewick, WA; McMakin, Douglas L [Richland, WA

    2010-11-16

    Disclosed are systems, methods, devices, and apparatus to determine if a clothed individual is carrying a suspicious, concealed object. This determination includes establishing data corresponding to an image of the individual through interrogation with electromagnetic radiation in the 200 MHz to 1 THz range. In one form, image data corresponding to intensity of reflected radiation and differential depth of the reflecting surface is received and processed to detect the suspicious, concealed object.

  16. Detection of a concealed object

    DOE Patents [OSTI]

    Keller, Paul E. (Richland, WA); Hall, Thomas E. (Kennewick, WA); McMakin, Douglas L. (Richland, WA)

    2008-04-29

    Disclosed are systems, methods, devices, and apparatus to determine if a clothed individual is carrying a suspicious, concealed object. This determination includes establishing data corresponding to an image of the individual through interrogation with electromagnetic radiation in the 200 MHz to 1 THz range. In one form, image data corresponding to intensity of reflected radiation and differential depth of the reflecting surface is received and processed to detect the suspicious, concealed object.

  17. Photovoltaics: Life-cycle Analyses

    SciTech Connect (OSTI)

    Fthenakis V. M.; Kim, H.C.

    2009-10-02

    Life-cycle analysis is an invaluable tool for investigating the environmental profile of a product or technology from cradle to grave. Such life-cycle analyses of energy technologies are essential, especially as material and energy flows are often interwoven, and divergent emissions into the environment may occur at different life-cycle-stages. This approach is well exemplified by our description of material and energy flows in four commercial PV technologies, i.e., mono-crystalline silicon, multi-crystalline silicon, ribbon-silicon, and cadmium telluride. The same life-cycle approach is applied to the balance of system that supports flat, fixed PV modules during operation. We also discuss the life-cycle environmental metrics for a concentration PV system with a tracker and lenses to capture more sunlight per cell area than the flat, fixed system but requires large auxiliary components. Select life-cycle risk indicators for PV, i.e., fatalities, injures, and maximum consequences are evaluated in a comparative context with other electricity-generation pathways.

  18. Siting analyses for existing facilities

    SciTech Connect (OSTI)

    Ford, K.; Mannan, M. [RMT/Jones and Neuse, Inc., Austin, TX (United States)

    1996-08-01

    The term {open_quotes}facility siting{close_quotes} refers to the spacial relationships between process units, process equipment within units, and the location of buildings relative to process equipment. Facility siting is an important consideration for the safe operation of manufacturing facilities. Paragraph (d) of the Process Safety Management (PSM) rule (29 CFR 1910.119) requires employers to document the codes and standards used for designing process equipment. This documentation includes facility siting. The regulation also requires employers to document that the design of the facility complies with recognized and generally accepted good engineering practices. In addition, paragraph (e) of the PSM regulation requires that facility siting be evaluated during Process Hazard Analyses. Facility siting issues may also need to be considered in emergency planning and response which are required under paragraph (n) of the PSM rule. This paper will demonstrate, by utilizing an example, one technique for evaluating whether buildings could be affected by a catastrophic incident and for determining if these buildings should be included in the PSM programs developed at the facility such as Process Hazard Analysis and Mechanical Integrity. In addition, this example will illustrate a methodology for determining if the buildings are designed and located in accordance with good engineering practice and industry standards.

  19. Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells

    DOE PAGES-Beta [OSTI]

    Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; Macco, Bart; Kessels, W. M.; Geissbuhler, Jonas; De Wolf, Stefaan; Ballif, Christophe

    2014-11-01

    We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing,more » between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection.« less

  20. Portable NDA Equipment for Enrichment Measurements in the HEU Transparency Program

    SciTech Connect (OSTI)

    Decman, D J; Bandong, B B; Wong, J L; Valentine, J D; Luke, S J

    2008-06-02

    The Highly Enriched Uranium (HEU) Transparency Program has used portable nondestructive assay (NDA) equipment to measure the {sup 235}U enrichment of material subject to the transparency agreement since 1997. The equipment is based on the 'enrichment meter' method and uses low-resolution sodium iodide (NaI(Tl)) detectors. Although systems using high-purity germanium (HPGe) detectors can produce more accurate results we have found that the results with NaI(Tl) detectors are quite adequate for the requirements of the transparency agreement. This paper will describe the details of the equipment's operation, calibration, testing, and deployment in Russia. We will also provide a comparison of the units originally deployed in 1997 with the upgraded systems that were deployed in 2003.

  1. Semi-transparent perovskite solar cells for tandems with silicon and CIGS

    DOE PAGES-Beta [OSTI]

    Bailie, Colin D.; Christoforo, M. Greyson; Mailoa, Jonathan P.; Bowring, Andrea R.; Unger, Eva L.; Nguyen, William H.; Burschka, Julian; Pellet, Norman; Lee, Jungwoo Z.; Grätzel, Michael; et al

    2014-12-23

    A promising approach for upgrading the performance of an established low-bandgap solar technology without adding much cost is to deposit a high bandgap polycrystalline semiconductor on top to make a tandem solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS) and low-quality multicrystalline silicon (Si) to achieve solid-state polycrystalline tandem solar cells with a net improvement in efficiency over the bottom cell alone. Furthermore, this work paves the way for integrating perovskites into a low-costmore » and high-efficiency (>25%) tandem cell.« less

  2. Proposal for broader United States-Russian transparency of nuclear arms reductions

    SciTech Connect (OSTI)

    Percival, C.M.; Ingle, T.H.; Bieniawski, A.J.

    1995-07-01

    During the January 1994 Summit Presidents Clinton and Yeltsin agreed on the goal of ensuring the ``transparency and irreversibility`` of the nuclear arms reduction process. As a result, negotiations are presently underway between the United States Government and the Russian Federation to confirm the stockpiles of plutonium and highly enriched uranium removed from nuclear weapons. In December 1994 the United States presented a paper to the Russian Federation proposing additional measures to provide broader transparency of nuclear arms reduction. The US Department of Energy is studying the implementation of these broader transparency measures at appropriate DOE facilities. The results of the studies include draft protocols for implementation, assessments of the implementation procedures and the impacts on the facilities and estimates of the cost to implement these measures at various facilities.

  3. Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process

    SciTech Connect (OSTI)

    Tillotson, T.M.; Hrubesh, L.W.

    1991-09-01

    Conventional silica sol-gel chemistry is limited for the production of transparent ultralow-density aerogels because (1) gelation is either slow or unachievable, and (2) even when gelation is achieved, the large pore sizes result in loss of transparency for aerogels <.020 g/cc. We have developed a two-step sol-gel process that circumvents the limitations of the conventional process and allows the formation of ultralow-density gels in a matter of hours. we have found that the gel time is dependent on the catalyst concentration. After supercritical extraction, the aerogels are transparent, uncracked tiles with densities as low as .003 g/cc. 6 figs., 11 refs.

  4. Spray-on anti-soiling coatings that exhibit high transparency and mechanical durability

    SciTech Connect (OSTI)

    Schaeffer, Daniel A; Polyzos, Georgios; Smith, Barton; Lee, Dominic F; Rajic, Slobodan; Datskos, Panos G; Hunter, Scott Robert

    2014-01-01

    A superhydrophobic (SH) surface has many characteristics, one of which is its self-cleaning, anti-soiling functionality, that are desirable across various industries. A transparent, self-cleaning surface utilizes the right combination of surface chemistry and roughness that force water droplets to form high water contact angles (CA). This in turn allows droplets to easily roll off and pick up dirt and debris across the surface. In theory this is simple but in practice this can be very difficult as superhydrophobicity and optical transparency are competitive. We have developed a simple, spray-on coating based on functionalized SiO2 nanoparticles that can easily be applied to surfaces whose application requires high transparency including, but not limited to, optical sensors, photovoltaics, sights, and lenses. In addition, these coatings exhibit practical mechanical and environmental durability that allow prolonged use of the coatings in harsh environments.

  5. Semi-transparent perovskite solar cells for tandems with silicon and CIGS

    SciTech Connect (OSTI)

    Bailie, Colin D.; Christoforo, M. Greyson; Mailoa, Jonathan P.; Bowring, Andrea R.; Unger, Eva L.; Nguyen, William H.; Burschka, Julian; Pellet, Norman; Lee, Jungwoo Z.; Grätzel, Michael; Noufi, Rommel; Buonassisi, Tonio; Salleo, Alberto; McGehee, Michael D.

    2014-12-23

    A promising approach for upgrading the performance of an established low-bandgap solar technology without adding much cost is to deposit a high bandgap polycrystalline semiconductor on top to make a tandem solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS) and low-quality multicrystalline silicon (Si) to achieve solid-state polycrystalline tandem solar cells with a net improvement in efficiency over the bottom cell alone. Furthermore, this work paves the way for integrating perovskites into a low-cost and high-efficiency (>25%) tandem cell.

  6. Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells

    SciTech Connect (OSTI)

    Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; Macco, Bart; Kessels, W. M.; Geissbuhler, Jonas; De Wolf, Stefaan; Ballif, Christophe

    2014-11-01

    We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing, between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection.

  7. Performance of Europium-Doped Strontium Iodide, Transparent Ceramics and Bismuth-loaded Polymer Scintillators

    SciTech Connect (OSTI)

    Cherepy, Nerine; Payne, Stephen A.; Sturm, Benjamin; ONeal, S P; Seeley, Zachary; Drury, Owen; Haselhorst, L K; Rupert, B. L.; Sanner, Robert; Thelin, P; Fisher, S E; Hawrami, Rastgo; Shah, Kanai; Burger, Arnold; Ramey, Joanne Oxendine; Boatner, Lynn A

    2011-01-01

    Recently discovered scintillators for gamma ray spectroscopy, single crystal SrI2(Eu), GYGAG(Ce) transparent ceramic and Bismuth-loaded plastics offer resolution and fabrication advantages compared to commercial scintillators, such as NaI(Tl) and standard PVT plastic. Energy resolution at 662 keV of 2.7% is obtained with SrI2(Eu), while 4.5% is obtained with GYGAG(Ce). A new transparent ceramic scintillator for radiographic imaging systems, GLO(Eu) offers high light yield of ~75,000 Ph/MeV, high stopping, and low radiation damage. Implementation of single crystal SrI2(Eu), Gd-based transparent ceramics, and Bi-loaded plastic scintillators can advance the state-of-the art in ionizing radiation detection systems.

  8. Performance of Europium-Doped Strontium Iodide, Transparent Ceramics and Bismuth-loaded Polymer Scintillators

    SciTech Connect (OSTI)

    Cherepy, N J; Payne, S A; Sturm, B W; O'Neal, S P; Seeley, Z M; Drury, O B; Haselhorst, L K; Rupert, B L; Sanner, R D; Thelin, P A; Fisher, S E; Hawrami, R; Shah, K S; Burger, A; Ramey, J O; Boatner, L A

    2011-08-30

    Recently discovered scintillators for gamma ray spectroscopy, single crystal SrI{sub 2}(Eu), GYGAG(Ce) transparent ceramic and Bismuth-loaded plastics, offer resolution and fabrication advantages compared to commercial scintillators, such as NaI(Tl) and standard PVT plastic. Energy resolution at 662 keV of 2.7% is obtained with SrI{sub 2}(Eu), while 4.5% is obtained with GYGAG(Ce). A new transparent ceramic scintillator for radiographic imaging systems, GLO(Eu) offers high light yield of 70,000 Photons/MeV, high stopping, and low radiation damage. Implementation of single crystal SrI{sub 2}(Eu), Gd-based transparent ceramics, and Bi-loaded plastic scintillators can advance the state-of-the art in ionizing radiation detection systems.

  9. Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications

    SciTech Connect (OSTI)

    Lunt, Richard R; Bulovic, Vladimir

    2011-03-14

    We fabricate near-infrared absorbing organic photovoltaics that are highly transparent to visible light. By optimizing near-infrared optical-interference, we demonstrate power efficiencies of 1.3±0.1% with simultaneous average visible transmission of >65% . Subsequent incorporation of near-infrared distributed-Bragg-reflector mirrors leads to an increase in the efficiency to 1.7±0.1% , approaching the 2.4±0.2% efficiency of the opaque cell, while maintaining high visible-transparency of >55% . Finally, we demonstrate that a series-integrated array of these transparent cells is capable of powering electronic devices under near-ambient lighting. This architecture suggests strategies for high-efficiency power-generating windows and highlights an application uniquely benefiting from excitonic electronics.

  10. Acoustic Characterization of Mesoscale Objects

    SciTech Connect (OSTI)

    Chinn, D; Huber, R; Chambers, D; Cole, G; Balogun, O; Spicer, J; Murray, T

    2007-03-13

    This report describes the science and engineering performed to provide state-of-the-art acoustic capabilities for nondestructively characterizing mesoscale (millimeter-sized) objects--allowing micrometer resolution over the objects entire volume. Materials and structures used in mesoscale objects necessitate the use of (1) GHz acoustic frequencies and (2) non-contacting laser generation and detection of acoustic waves. This effort demonstrated that acoustic methods at gigahertz frequencies have the necessary penetration depth and spatial resolution to effectively detect density discontinuities, gaps, and delaminations. A prototype laser-based ultrasonic system was designed and built. The system uses a micro-chip laser for excitation of broadband ultrasonic waves with frequency components reaching 1.0 GHz, and a path-stabilized Michelson interferometer for detection. The proof-of-concept for mesoscale characterization is demonstrated by imaging a micro-fabricated etched pattern in a 70 {micro}m thick silicon wafer.

  11. Electronic Durability of Flexible Transparent Films from Type-Specific Single-Wall Carbon Nanotubes

    SciTech Connect (OSTI)

    Harris, J; Iyer, S; Bernhardt, A; Huh, JY; Hudson, S; Fagan, J; Hobbie, E.

    2011-12-11

    The coupling between mechanical flexibility and electronic performance is evaluated for thin films of metallic and semiconducting single-wall carbon nanotubes (SWCNTs) deposited on compliant supports. Percolated networks of type-purified SWCNTs are assembled as thin conducting coatings on elastic polymer substrates, and the sheet resistance is measured as a function of compression and cyclic strain through impedance spectroscopy. The wrinkling topography, microstructure and transparency of the films are independently characterized using optical microscopy, electron microscopy, and optical absorption spectroscopy. Thin films made from metallic SWCNTs show better durability as flexible transparent conductive coatings, which we attribute to a combination of superior mechanical performance and higher interfacial conductivity.

  12. Three-terminal resistive switching memory in a transparent vertical-configuration device

    SciTech Connect (OSTI)

    Ungureanu, Mariana; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E.

    2014-01-06

    The resistive switching phenomenon has attracted much attention recently for memory applications. It describes the reversible change in the resistance of a dielectric between two non-volatile states by the application of electrical pulses. Typical resistive switching memories are two-terminal devices formed by an oxide layer placed between two metal electrodes. Here, we report on the fabrication and operation of a three-terminal resistive switching memory that works as a reconfigurable logic component and offers an increased logic density on chip. The three-terminal memory device we present is transparent and could be further incorporated in transparent computing electronic technologies.

  13. Subaward Reporting For Federal Funding and Transparency Act of 2006 (FFATA)

    Energy.gov [DOE]

    The Federal Funding and Transparency Act of 2006 (FFATA) requires full disclosure of information on entities which received Federal funding from any Department at a single searchable web site. The purpose of FFATA is to provide total transparency to the public on how appropriated dollars are spent by the Federal Government. FFATA was implemented for prime awardees in 2008 and is no being implemented for subawardees beginning with first-tier subawardees. Effective October 1,2010, federal agencies must begin using new award terms which implement the following changes:

  14. Disorder-induced transparency in a one-dimensional waveguide side coupled with optical cavities

    SciTech Connect (OSTI)

    Zhang, Yongyou Dong, Guangda; Zou, Bingsuo

    2014-05-07

    Disorder influence on photon transmission behavior is theoretically studied in a one-dimensional waveguide side coupled with a series of optical cavities. For this sake, we propose a concept of disorder-induced transparency appearing on the low-transmission spectral background. Two kinds of disorders, namely, disorders of optical cavity eigenfrequencies and relative phases in the waveguide side coupled with optical cavities are considered to show the disorder-induced transparency. They both can induce the optical transmission peaks on the low-transmission backgrounds. The statistical mean value of the transmission also increases with increasing the disorders of the cavity eigenfrequencies and relative phases.

  15. Optical properties of transparent glassceramics containing lithiummica nanocrystals: Crystallization effect

    SciTech Connect (OSTI)

    Khani, V.; Alizadeh, P.; Shakeri, M.S.

    2013-09-01

    Graphical abstract: Optical properties of transparent Li{sub 2}OMgOAl{sub 2}O{sub 3}SiO{sub 2}F glasses containing lithiummica nanocrystals are studied and crystallization condition has been evaluated and optimized to produce transparent glassceramics. Crystallization temperatures were determined by differential thermal analysis and crystalline phases were identified and quantified by X-ray diffraction. Scanning electron microscopy was used for morphological variations and UVvis absorption spectroscopy for comparative analysis of transparency. In order to investigate the optical properties of transparent glassceramics, optical band gap, Fermi energy level and Urbach energy are calculated. The results of the investigation illustrate that band gap is reduced with increases in crystallization time and temperature. Enhanced orderliness in the arrangement of atoms might be regarded as possible reasons for the above changes. - Highlights: The optimum temperature and time of crystallization were determined. Limica nanocrystals with size of <30 nm were formed using a two-step heat-treatment. Optical band gap and Fermi energy of nanocrystalline materials decreased with increasing of crystallization temperature and time. Urbach band tailing was decreased with increasing of crystallization condition. - Abstract: Optical properties of transparent Li{sub 2}OMgOAl{sub 2}O{sub 3}SiO{sub 2}F glasses containing lithiummica nanocrystals were studied. The crystallization condition of these glasses was evaluated and optimized to produce transparent glassceramics. Crystallization temperatures were determined by differential thermal analysis and crystalline phases were identified and quantified by X-ray diffraction. Scanning electron microscopy was used to detect morphological changes and UVvis absorption spectroscopy was used for comparative analysis of transparency. In order to investigate the optical properties of the transparent glassceramics, optical band

  16. Center for Inverse Design Highlight: Anomalous Surface Conductivity in In2O3 Transparent Conductors

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Anomalous Surface Conductivity in In 2 O 3 Transparent Conductors Scientists in the Center for Inverse Design observed a dramatic new property in the class of transparent-conducting contacts that may significantly and beneficially change the way in which they are used in solar cells, displays, and low-e windows. Reference: S. Lany, A. Zakutayev, T.O. Mason, J.F. Wager, K.R. Poeppelmeier, J.D. Perkins, J.J. Berry, D.S. Ginley, and A. Zunger, "Surface origin of high conductivities in undoped

  17. Electrode with transparent series resistance for uniform switching of optical modulation devices

    DOE Patents [OSTI]

    Tench, D. Morgan; Cunningham, Michael A.; Kobrin, Paul H.

    2008-01-08

    Switching uniformity of an optical modulation device for controlling the propagation of electromagnetic radiation is improved by use of an electrode comprising an electrically resistive layer that is transparent to the radiation. The resistive layer is preferably an innerlayer of a wide-bandgap oxide sandwiched between layers of indium tin oxide or another transparent conductor, and may be of uniform thickness, or may be graded so as to provide further improvement in the switching uniformity. The electrode may be used with electrochromic and reversible electrochemical mirror (REM) smart window devices, as well as display devices based on various technologies.

  18. Data Quality Objectives Summary Report:

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1-68 Revision 0 Data Quality Objectives Summary Report: Evaluation of Natural Beryllium and Its Ratio to Other Metals in Background Hanford Surface Soils Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management U.S. DEPARTMENT OF Rich land Operations S ENERGY Office RO. Box 550 Richland, Washington 99352 APProwed for Public Rehe Futw Dlserrdn Ur~kled DOE/RL-201 1-68 Revision 0 Data Quality Objectives Summary Report: Evaluation of Natural Beryllium and Its

  19. Pyomo : Python Optimization Modeling Objects.

    SciTech Connect (OSTI)

    Siirola, John; Laird, Carl Damon; Hart, William Eugene; Watson, Jean-Paul

    2010-11-01

    The Python Optimization Modeling Objects (Pyomo) package [1] is an open source tool for modeling optimization applications within Python. Pyomo provides an objected-oriented approach to optimization modeling, and it can be used to define symbolic problems, create concrete problem instances, and solve these instances with standard solvers. While Pyomo provides a capability that is commonly associated with algebraic modeling languages such as AMPL, AIMMS, and GAMS, Pyomo's modeling objects are embedded within a full-featured high-level programming language with a rich set of supporting libraries. Pyomo leverages the capabilities of the Coopr software library [2], which integrates Python packages (including Pyomo) for defining optimizers, modeling optimization applications, and managing computational experiments. A central design principle within Pyomo is extensibility. Pyomo is built upon a flexible component architecture [3] that allows users and developers to readily extend the core Pyomo functionality. Through these interface points, extensions and applications can have direct access to an optimization model's expression objects. This facilitates the rapid development and implementation of new modeling constructs and as well as high-level solution strategies (e.g. using decomposition- and reformulation-based techniques). In this presentation, we will give an overview of the Pyomo modeling environment and model syntax, and present several extensions to the core Pyomo environment, including support for Generalized Disjunctive Programming (Coopr GDP), Stochastic Programming (PySP), a generic Progressive Hedging solver [4], and a tailored implementation of Bender's Decomposition.

  20. Pawnee Nation Energy Option Analyses

    SciTech Connect (OSTI)

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-21

    Pawnee Nation of Oklahoma Energy Option Analyses In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Description of Activities Performed The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Findings and Recommendations Due to a lack of financial incentives for renewable energy, particularly at the state level, combined mediocre renewable energy resources, renewable energy development opportunities are limited for Pawnee Nation. However, near-term potential exists for development of solar hot water at the gym, and an exterior wood-fired boiler system at the tribe’s main administrative building. Pawnee Nation should also explore options for developing LFGTE resources in collaboration with the City of Pawnee. Significant potential may also exist for development of bio-energy resources within the next decade. Pawnee Nation representatives should closely monitor

  1. Conductive polymer/fullerene blend thin films with honeycomb framework for transparent photovoltaic application

    DOE Patents [OSTI]

    Cotlet, Mircea; Wang, Hsing-Lin; Tsai, Hsinhan; Xu, Zhihua

    2015-04-21

    Optoelectronic devices and thin-film semiconductor compositions and methods for making same are disclosed. The methods provide for the synthesis of the disclosed composition. The thin-film semiconductor compositions disclosed herein have a unique configuration that exhibits efficient photo-induced charge transfer and high transparency to visible light.

  2. Photoactive transparent nano-crystalline glass-ceramic for remazole red dye degradation

    SciTech Connect (OSTI)

    Gad-Allah, Tarek A.; Margha, Fatma H.

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ? Preparation and characterization of novel transparent nanocrystalline glass-ceramic. ? Precipitation of photoactive phases by using controlled heat-treatment. ? Conservation of transparency along with photoactivity. ? Using the prepared nanocrystalline glass-ceramic in water purification. -- Abstract: Transparent glass ceramic material was prepared from alkali-borosilicate glass containing titania by proper heat treatment scheme. The prepared samples were characterized using differential thermal analysis, X-ray diffraction, transmission electron microscope, selected area electron diffraction and UVvisible spectroscopy. The applied heat treatment program allowed the crystallization of nano-crystalline anatase, rutile, barium titanate, titanium borate and silicate phases while maintaining the transparency. The precipitated nano-crystalline anatase and rutile phases were responsible for the observed high photocatalytic activity of the prepared samples. Samples of 24.29 and 32.39 TiO{sub 2} wt% showed better efficiency for the decolorization of remazole red dye compared with commercial-TiO{sub 2} used in preparation of glass-ceramic. The reuse of prepared glass-ceramic photocatalyst with nearly same efficiency for different times was also proved.

  3. Summary of On-Board Storage Models and Analyses

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    On-Board Storage Models and Analyses R.K. Ahluwalia, T. Q. Hua and J-K Peng Hydrogen Delivery Analysis Meeting FreedomCAR and Fuels Partnership Delivery, Storage and Hydrogen Pathways Tech Teams May 8-9, 2007 Columbia, MD 2 Objective: To determine the performance of the on-board system relative to the storage targets (capacity, efficiency, etc) 1. On-Board System Configuration 2. Dehydrogenation Reactor Dehydrogenation kinetics Trickle bed hydrodynamics Dehydrogenation reactor model Reactor

  4. ORISE: Statistical Analyses of Worker Health

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Statistical Analyses Statistical analyses at the Oak Ridge Institute for Science and Education (ORISE) support ongoing programs involving medical surveillance of workers and other populations, as well as occupational epidemiology and research. ORISE emphasizes insightful and accurate analysis, practical interpretation of results and clear, easily read reports. All analyses are preceded by extensive data scrubbing and verification. ORISE's approach relies on applying appropriate methods of

  5. DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES...

    Open Energy Information (Open El) [EERE & EIA]

    DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES ON MUDLOG GRAPHS Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

  6. Structural and Evolutionary Analyses Show Unique Stabilization...

    Office of Scientific and Technical Information (OSTI)

    Title: Structural and Evolutionary Analyses Show Unique Stabilization Strategies in the Type IV Pili of Clostridium difficile Authors: Piepenbrink, Kurt H. ; Maldarelli, Grace A. ; ...

  7. Lifecycle Assessments and Sustainability Analyses | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    to our research and development efforts. They provide an understanding of the economic, technical, and even global impacts of renewable technologies. These analyses also...

  8. On the possibility of detecting local refractive index changes in optically transparent objects by means of a point nanoantenna attached to a fibre microaxicon

    SciTech Connect (OSTI)

    Kulchin, Yu N; Vitrik, O B; Kuchmizhak, A A

    2014-10-31

    It is shown theoretically that the use of the spectral registration of the dipole local plasmon resonance (DLPR) displacement in a single spherical gold nanoantenna, placed near the surface of a homogeneous dielectric medium, allows the mapping of extremely small variations (to 5 × 10{sup -4}) of the refractive index (RI) of this medium. Using the quasi-static approximation, we have developed an analytic model that allows evaluation of the spectral displacement of the nanoantenna DLPR depending on the variation in the medium refractive index. The point probe based on a fibre microaxicon with a gold spherical nanoantenna attached to its top is proposed that allows practical implementation of the developed RI scanning method. Numerical calculations of the probe characteristics using the time-domain finite-difference method are presented, and it is shown that for the case of a gold spherical nanoantenna of small size, comparable with the skin layer thickness in gold, the relative spectral shift value is in good agreement with the results obtained by using the developed analytic model. (laser applications and other topics in quantum electronics)

  9. Investigation of fluorine-doped tin oxide based optically transparent E-shaped patch antenna for terahertz communications

    SciTech Connect (OSTI)

    Anand, S. E-mail: darak.mayur@gmail.com Darak, Mayur Sudesh E-mail: darak.mayur@gmail.com Kumar, D. Sriram E-mail: darak.mayur@gmail.com

    2014-10-15

    In this paper, a fluorine-doped tin oxide based optically transparent E-shaped patch antenna is designed and its radiation performance is analyzed in the 705 – 804 GHz band. As optically transparent antennas can be mounted on optical display, they facilitate the reduction of overall system size. The proposed antenna design is simulated using electromagnetic solver - Ansys HFSS and its characteristics such as impedance bandwidth, directivity, radiation efficiency and gain are observed. Results show that the fluorine-doped tin oxide based optically transparent patch antenna overcomes the conventional patch antenna limitations and thus the same can be used for solar cell antenna used in satellite systems.

  10. Single-walled carbon nanotube transparent conductive films fabricated by reductive dissolution and spray coating for organic photovoltaics

    SciTech Connect (OSTI)

    Ostfeld, Aminy E.; Arias, Ana Claudia; Catheline, Amlie; Ligsay, Kathleen; Kim, Kee-Chan; Fogden, Sin; Chen, Zhihua; Facchetti, Antonio

    2014-12-22

    Solutions of unbundled and unbroken single-walled carbon nanotubes have been prepared using a reductive dissolution process. Transparent conductive films spray-coated from these solutions show a nearly twofold improvement in the ratio of electrical conductivity to optical absorptivity versus those deposited from conventional aqueous dispersions, due to substantial de-aggregation and sizable nanotube lengths. These transparent electrodes have been utilized to fabricate P3HT-PCBM organic solar cells achieving power conversion efficiencies up to 2.3%, comparable to those of solar cells using indium tin oxide transparent electrodes.

  11. Overview of transparency issues under the US-Russian highly enriched uranium purchase agreement

    SciTech Connect (OSTI)

    Bieniawski, A.J.; Dougherty, D.R.

    1995-12-31

    The US has signed an Agreement with the Russian Federation for the purchase of 500 metric tons of highly enriched uranium (HEU) derived from dismantled Russian nuclear weapons. The BEU will be blended down to low-enriched uranium (LEU) in Russia and will be transported to the US to be used by fuel Fabricators to make fuel for commercial nuclear power plants. Both the United States and Russia have been preparing to institute transparency measures to provide confidence that the nonproliferation, physical protection, and material control and accounting requirements specified in the Agreement are met. This paper provides a background on the Agreement and subsequent on-going negotiations to develop transparency measures suited to the facilities and processes which are expected to be involved.

  12. Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response

    SciTech Connect (OSTI)

    Li, Hai-ming; Liu, Shao-bin Liu, Si-yuan; Ding, Guo-wen; Yang, Hua; Yu, Zhi-yang; Zhang, Hai-feng; Wang, Shen-yun

    2015-02-23

    In this paper, a low-loss and high transmission analogy of electromagnetically induced transparency based on electric toroidal dipolar response is numerically and experimentally demonstrated. It is obtained by the excitation of the low-loss electric toroidal dipolar response, which confines the magnetic field inside a dielectric substrate with toroidal geometry. The metamaterial electromagnetically induced transparency (EIT) structure is composed of the cut wire and asymmetric split-ring resonators. The transmission level is as high as 0.88, and the radiation loss is greatly suppressed, which can be proved by the surface currents distributions, the magnetic field distributions, and the imaginary parts of the effective permeability and permittivity. It offers an effective way to produce low-loss and high transmission metamaterial EIT.

  13. Tuning optical properties of transparent conducting barium stannate by dimensional reduction

    DOE PAGES-Beta [OSTI]

    Li, Yuwei; Zhang, Lijun; Ma, Yanming; Singh, David J.

    2015-01-30

    We report calculations of the electronic structure and optical properties of doped n-type perovskite BaSnO3 and layered perovskites. While doped BaSnO3 retains its transparency for energies below the valence to conduction band onset, the doped layered compounds exhibit below band edge optical conductivity due to transitions from the lowest conduction band. This gives absorption in the visible for Ba2SnO4. It is important to minimize this phase in transparent conducting oxide (TCO) films. Ba3Sn2O7 and Ba4Sn3O10 have strong transitions only in the red and infrared, respectively. Thus, there may be opportunities for using these as wavelength filtering TCO.

  14. Tuning optical properties of transparent conducting barium stannate by dimensional reduction

    SciTech Connect (OSTI)

    Li, Yuwei; Zhang, Lijun; Ma, Yanming; Singh, David J.

    2015-01-30

    We report calculations of the electronic structure and optical properties of doped n-type perovskite BaSnO3 and layered perovskites. While doped BaSnO3 retains its transparency for energies below the valence to conduction band onset, the doped layered compounds exhibit below band edge optical conductivity due to transitions from the lowest conduction band. This gives absorption in the visible for Ba2SnO4. It is important to minimize this phase in transparent conducting oxide (TCO) films. Ba3Sn2O7 and Ba4Sn3O10 have strong transitions only in the red and infrared, respectively. Thus, there may be opportunities for using these as wavelength filtering TCO.

  15. Growth and optical properties of partially transparent Eu doped CaF{sub 2} ceramic

    SciTech Connect (OSTI)

    Ghosh, Manoranjan Sen, Shashwati Pitale, S. S. Goutam, U. K. Shinde, Seema Patra, G. D. Gadkari, S. C.

    2014-04-24

    Partially transparent ceramic of 2 at.% Eu doped CaF{sub 2} have been grown preferentially towards [111] direction. For this purpose, Eu doped CaF{sub 2} nanoparticles (size?12 nm) obtained by a low temperature solution growth method has been pressed at 1000C under vacuum. The preferentially grown ceramic shows 15% transparency within the visible range of spectrum. As confirmed by the X-ray diffraction result, the hot pressed ceramic exhibits reduced lattice volume than the nanopowder. It indicates Eu{sup 3+} as the dominant substituting ions at the Ca{sup 2+} sites of CaF{sub 2} lattice in the hot pressed ceramic material. It is corroborated by the photoluminescence results of hot pressed ceramic which shows strong red emission corresponding to Eu{sup 3+} sites. However, photoluminescence of nanopowder exhibits intense peak in the blue region of the spectrum which is characteristics of Eu2+ sites.

  16. Realistic reflectance spectrum of thin films covering a transparent optically thick substrate

    SciTech Connect (OSTI)

    Cesaria, M. Caricato, A. P.; Martino, M.

    2014-07-21

    A spectrophotometric strategy is presented and discussed for calculating realistically the reflectance spectrum of an absorbing film deposited over a thick transparent or semi-transparent substrate. The developed route exploits simple mathematics, has wide range of applicability (high-to-weak absorption regions and thick-to-ultrathin films), rules out numerical and curve-fitting procedures as well as model-functions, inherently accounts for the non-measurable contribution of the film-substrate interface as well as substrate backside, and describes the film reflectance spectrum as determined by the experimental situation (deposition approach and parameters). The reliability of the method is tested on films of a well-known material (indium tin oxide) by deliberately changing film thickness and structural quality through doping. Results are found consistent with usual information yielded by reflectance, its inherent relationship with scattering processes and contributions to the measured total reflectance.

  17. ZnO:H indium-free transparent conductive electrodes for active-matrix display applications

    SciTech Connect (OSTI)

    Chen, Shuming Wang, Sisi

    2014-12-01

    Transparent conductive electrodes based on hydrogen (H)-doped zinc oxide (ZnO) have been proposed for active-matrix (AM) display applications. When fabricated with optimal H plasma power and optimal plasma treatment time, the resulting ZnO:H films exhibit low sheet resistance of 200 Ω/◻ and high average transmission of 85% at a film thickness of 150 nm. The demonstrated transparent conductive ZnO:H films can potentially replace indium-tin-oxide and serve as pixel electrodes for organic light-emitting diodes as well as source/drain electrodes for ZnO-based thin-film transistors. Use of the proposed ZnO:H electrodes means that two photomask stages can be removed from the fabrication process flow for ZnO-based AM backplanes.

  18. Multiphysics Object Oriented Simulation Environment

    SciTech Connect (OSTI)

    2014-02-12

    The Multiphysics Object Oriented Simulation Environment (MOOSE) software library developed at Idaho National Laboratory is a tool. MOOSE, like other tools, doesn’t actually complete a task. Instead, MOOSE seeks to reduce the effort required to create engineering simulation applications. MOOSE itself is a software library: a blank canvas upon which you write equations and then MOOSE can help you solve them. MOOSE is comparable to a spreadsheet application. A spreadsheet, by itself, doesn’t do anything. Only once equations are entered into it will a spreadsheet application compute anything. Such is the same for MOOSE. An engineer or scientist can utilize the equation solvers within MOOSE to solve equations related to their area of study. For instance, a geomechanical scientist can input equations related to water flow in underground reservoirs and MOOSE can solve those equations to give the scientist an idea of how water could move over time. An engineer might input equations related to the forces in steel beams in order to understand the load bearing capacity of a bridge. Because MOOSE is a blank canvas it can be useful in many scientific and engineering pursuits.

  19. Multiphysics Object Oriented Simulation Environment

    Energy Science and Technology Software Center (OSTI)

    2014-02-12

    The Multiphysics Object Oriented Simulation Environment (MOOSE) software library developed at Idaho National Laboratory is a tool. MOOSE, like other tools, doesn’t actually complete a task. Instead, MOOSE seeks to reduce the effort required to create engineering simulation applications. MOOSE itself is a software library: a blank canvas upon which you write equations and then MOOSE can help you solve them. MOOSE is comparable to a spreadsheet application. A spreadsheet, by itself, doesn’t do anything.more » Only once equations are entered into it will a spreadsheet application compute anything. Such is the same for MOOSE. An engineer or scientist can utilize the equation solvers within MOOSE to solve equations related to their area of study. For instance, a geomechanical scientist can input equations related to water flow in underground reservoirs and MOOSE can solve those equations to give the scientist an idea of how water could move over time. An engineer might input equations related to the forces in steel beams in order to understand the load bearing capacity of a bridge. Because MOOSE is a blank canvas it can be useful in many scientific and engineering pursuits.« less

  20. Radiation Heat Transfer in 3 Dimensions for Semi-Transparent Materials....

    Energy Science and Technology Software Center (OSTI)

    2010-12-02

    The RAD3D software solves the critical heat transfer mechanisms that occur in production glass furnaces. The code includes state-of-the-art solution algorithms for efficient radiant interaction of the heating elements, furnace walls and internal furnace components. The code specifically solves the coupled radiative and conductive heating of semi-transparent materials such as glass to calculate the temperature distribution in the glass during processing.

  1. Fluorogel Elastomers with Tunable Transparency, Elasticity, ShapeMemory, and Antifouling Properties

    Office of Scientific and Technical Information (OSTI)

    Angewandte Chemie Polymeric Cels DOI: 10.1002/anie,201310385 Fluorogel Elastomers with Tunable Transparency, Elasticity, Shape- Memory, and Antifouling Properties** Xi Yao,* Stuart S. Dunn, Philseok Kim, Meredith Duffy, Jack Alvarenga, and Joanna Aizenberg* Abstract: Omniphobic fluorogel elastomers were prepared by photocuring perfluorinated acrylates and a perfluoropolyether crosslinker. By tuning either the chemical composition or the temperature that control the crystallinity of the resulting

  2. Improving Data Transparency for the Distributed PV Interconnection Process: Emergent Utility Practices and State Requirements

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    June 3, 2015 "Improving Data Transparency for the Distributed PV Interconnection Process: Emergent Utility Practices and State Requirements" Joslyn Sato, Hawaiian Electric Companies Michael Conway, Borrego Solar Systems, Inc. Kristen Ardani and Emerson Reiter, National Renewable Energy Laboratory (NREL) 2 Purpose of Today's Meeting * Learn how data reporting requirements for interconnection vary across States, how tracking and data reporting for interconnection requests is evolving

  3. Improving Data Transparency for the Distributed PV Interconnection Process: Emergent Utility Practices and State Requirements Transcript

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Improving Data Transparency for the Distributed PV Page 1 of 21 Interconnection Process Emergent Utility Practices and State Requirements Kristen Adrani, Emerson Reiter, Joslyn Sato, Michael Conway Page 1 of 21 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us for today's quarterly meeting of the Distributed Generation Interconnection Collaborative, or the DGIC. My name is Kristen Ardani. I'm a solar analyst here at NREL and I'll be moderating today's discussion. The topic

  4. Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO2 nanoparticles

    DOE PAGES-Beta [OSTI]

    Schaeffer, Daniel A.; Polizos, Georgios; Smith, D. Barton; Lee, Dominic F.; Hunter, Scott R.; Datskos, Panos G.

    2015-01-09

    Optical surfaces such as mirrors and windows that are exposed to outdoor environmental conditions are susceptible to dust buildup and water condensation. The application of transparent superhydrophobic coatings on optical surfaces can improve outdoor performance via a self-cleaning effect similar to the Lotus effect. The contact angle (CA) of water droplets on a typical hydrophobic flat surface varies from 100° to 120°. Adding roughness or microtexture to a hydrophobic surface leads to an enhancement of hydrophobicity and the CA can be increased to a value in the range of 16≥0° to 175°. This result is remarkable because such behavior cannotmore » be explained using surface chemistry alone. When surface features are on the order of 100 nm or smaller, surfaces exhibit superhydrophobic behavior and maintain their optical transparency. In this work we discuss our results on transparent superhydrophobic coatings that can be applied across large surface areas. We have used functionalized silica nanoparticles to coat various optical elements and have measured the contact angle and optical transmission between 190 to 1100 nm on these elements. The functionalized silica nanoparticles were dissolved in a solution of the solvents isopropyl alcohol and 4-chlorobenzotrifluoride (PCBTF) and a proprietary ceramic binder (Cerakote ). Finally, this solution was spin-coated onto a variety of test glass substrates, and following a curing period of about 30 minutes, these coatings exhibited superhydrophobic behavior with a static CA ≥160°.« less

  5. FAQS Job Task Analyses- Radiation Protection

    Office of Energy Efficiency and Renewable Energy (EERE)

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  6. FAQS Job Task Analyses- Environmental Restoration

    Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  7. FAQS Job Task Analyses- Facility Representative

    Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  8. FAQS Job Task Analyses- Technical Program Manager

    Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  9. FAQS Job Task Analyses- Emergency Management

    Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  10. FAQS Job Task Analyses- Technical Training

    Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  11. FAQS Job Task Analyses- Criticality Safety

    Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  12. FAQS Job Task Analyses- Nuclear Safety Specialist

    Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  13. FAQS Job Task Analyses- General Technical Base

    Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  14. FAQS Job Task Analyses- Quality Assurance

    Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  15. FAQS Job Task Analyses- Weapons Quality Assurance

    Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  16. FAQS Job Task Analyses- Environmental Compliance

    Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  17. FAQS Job Task Analyses- Deactivation and Decommissioning

    Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  18. FAQS Job Task Analyses- Occupational Safety

    Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  19. FAQS Job Task Analyses- DOE Aviation Manager

    Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  20. FAQS Job Task Analyses- Chemical Processing

    Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  1. FAQS Job Task Analyses- Industrial Hygiene

    Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  2. Synthesis Of Superconducting Magnesium Diboride Objects.

    DOE Patents [OSTI]

    Finnemore, Douglas K.; Canfield, Paul C.; Bud'ko, Sergey L.; Ostenson, Jerome E.; Petrovic, Cedomir; Cunningham, Charles E.; Lapertot, Gerard

    2003-07-08

    A process to produce magnesium diboride objects from boron objects with a similar form is presented. Boron objects are reacted with magnesium vapor at a predetermined time and temperature to form magnesium diboride objects having a morphology similar to the boron object's original morphology.

  3. Synthesis of superconducting magnesium diboride objects

    DOE Patents [OSTI]

    Finnemore, Douglas K.; Canfield, Paul C.; Bud'ko, Sergey L.; Ostenson, Jerome E.; Petrovic, Cedomir; Cunningham, Charles E.; Lapertot, Gerard

    2003-08-15

    A process to produce magnesium diboride objects from boron objects with a similar form is presented. Boron objects are reacted with magnesium vapor at a predetermined time and temperature to form magnesium diboride objects having a morphology similar to the boron object's original morphology.

  4. Program Objectives | National Nuclear Security Administration...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Program Objectives National Laser Users' Facility Grant Program Objectives The primary purpose of the National Laser Users' Facility (NLUF) is to provide facility time for ...

  5. SCM Forcing Data Derived from NWP Analyses

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jakob, Christian

    2008-01-15

    Forcing data, suitable for use with single column models (SCMs) and cloud resolving models (CRMs), have been derived from NWP analyses for the ARM (Atmospheric Radiation Measurement) Tropical Western Pacific (TWP) sites of Manus Island and Nauru.

  6. MOOSE: Multiphysics Object-Oriented Simulation Environment

    SciTech Connect (OSTI)

    Gaston, Derek

    2014-04-09

    An overview of Idaho National Laboratory's MOOSE: Multiphysics Object-Oriented Simulation Environment

  7. MOOSE: Multiphysics Object-Oriented Simulation Environment

    ScienceCinema (OSTI)

    Gaston, Derek

    2016-07-12

    An overview of Idaho National Laboratory's MOOSE: Multiphysics Object-Oriented Simulation Environment

  8. The role of opacity and transparency in achieving strategic stability in South Asia.

    SciTech Connect (OSTI)

    Rajain, Arpit; Ashraf, Tariq Mahmud

    2005-08-01

    According to international relations theory, deterrence can be used as a tool to achieve stability between potentially hostile nations. India and Pakistan's long history of periodic crises raises the question of how they can achieve deterrence stability. 'Transparency' describes the flow of information between parties and plays a key role in establishing a deterrence relationship. This paper studies the balance needed between opacity and transparency in nuclear topics for the maintenance of deterrence stability between India and Pakistan. States with nuclear weapons are postulated to implement transparency in four categories: potential, capability, intent, and resolve. The study applies these categories to the nuclear components of the ongoing India-Pakistan Composite Dialogue Working Group for Peace and Security including CBMs. To focus our efforts, we defined four scenarios to characterize representative strategic/military/political conditions. The scenarios are combinations of these two sets of opposite poles: competition - cooperation; extremism - moderation (to be understood primarily in a religious/nationalistic sense). We describe each scenario in terms of select focal areas (nuclear doctrine, nuclear command and control, nuclear stockpile, nuclear delivery/defensive systems, and conventional force posture). The scenarios help frame the realm of possibilities, and have been described in terms of expected conditions for the focal areas. We then use the conditions in each scenario to prescribe a range of information-sharing actions that the two countries could take to increase stability. We also highlight the information that should not be shared. These actions can be political (e.g., declarations), procedural (e.g., advance notice of certain military activities), or technologically based (e.g., seismic monitoring of the nuclear test moratorium).

  9. Surface and mechanical properties of transparent polycrystalline YAG fabricated by SPS

    SciTech Connect (OSTI)

    Palmero, P.; Bonelli, B.; Fantozzi, G.; Spina, G.; Bonnefont, G.; Montanaro, L.; Chevalier, J.

    2013-07-15

    Graphical abstract: - Highlights: • Ultrasonication as effective, un-polluting dispersion route for YAG powders. • Annealing in the 700–900 °C range to increase the transparency. • Oxygen vacancies more crucial on the transmittance than C contamination. • SPS reliable method for transparent and ultra-fine polycrystalline YAG. • Very high hardness (16.5–17 GPa) for the fully dense, fine materials. - Abstract: YAG powder was synthesised by reverse-strike co-precipitation, calcined at 1000 °C and dispersed by either ball-milling with α-alumina (BM{sub A}) or zirconia (BMz) spheres or by ultrasonication (US). All the dispersed powders were consolidated by SPS to nearly theoretical density, but only the US powder gave rise to a transparent material (transmittance of about 60% at 600 nm, 1 mm thickness), characterised by an ultra-fine microstructure (average size of 330 nm). In the BM materials, Raman spectroscopy allowed to evidence some phonon vibrational shifts due to secondary phases deriving from pollution by the milling media, not detectable by XRD because present in small amounts. The transmittance of the as-sintered US sample was further increased by annealing in air at 900 °C; this was assigned to the restoration of some oxygen vacancies created in the reducing environment of the SPS chamber, as evidenced by XPS (X-ray photoelectron spectroscopy). Finally, US samples sintered in the 1250–1400 °C were submitted to a basic mechanical characterisation, showing a very good hardness, in spite of a moderate fracture toughness, especially for the fully dense and fine-grained materials sintered at 1300–1350 °C.

  10. Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence

    SciTech Connect (OSTI)

    Nylund, Gustav; Storm, Kristian; Torstensson, Henrik; Wallentin, Jesper; Borgstrm, Magnus T.; Hessman, Dan; Samuelson, Lars

    2013-12-04

    We present a technique to measure gate-controlled photoluminescence (PL) on arrays of semiconductor nanowire (NW) capacitors using a transparent film of Indium-Tin-Oxide (ITO) wrapping around the nanowires as the gate electrode. By tuning the wrap-gate voltage, it is possible to increase the PL peak intensity of an array of undoped InP NWs by more than an order of magnitude. The fine structure of the PL spectrum reveals three subpeaks whose relative peak intensities change with gate voltage. We interpret this as gate-controlled state-filling of luminescing quantum dot segments formed by zincblende stacking faults in the mainly wurtzite NW crystal structure.

  11. Graphene as transparent and current spreading electrode in silicon solar cell

    SciTech Connect (OSTI)

    Behura, Sanjay K. Nayak, Sasmita; Jani, Omkar; Mahala, Pramila

    2014-11-15

    Fabricated bi-layer graphene (BLG) has been studied as transparent and current spreading electrode (TCSE) for silicon solar cell, using TCAD-Silvaco 2D simulation. We have carried out comparative study using both Ag grids and BLG as current spreading electrode (CSE) and TCSE, respectively. Our study reveals that BLG based solar cell shows better efficiency of 24.85% than Ag-based cell (21.44%), in all of the critical aspects, including generation rate, recombination rate, electric field, potential and quantum efficiency. Further BLG based cell exhibits pronounce rectifying behavior, low saturation current, and good turn-on voltage while studying in dark.

  12. Transparent TiO2 nanotube array photoelectrodes prepared via two-step anodization

    DOE PAGES-Beta [OSTI]

    Kim, Jin Young; Zhu, Kai; Neale, Nathan R.; Frank, Arthur J.

    2014-04-04

    Two-step anodization of transparent TiO2 nanotube arrays has been demonstrated with aid of a Nb-doped TiO2 buffer layer deposited between the Ti layer and TCO substrate. Enhanced physical adhesion and electrochemical stability provided by the buffer layer has been found to be important for successful implementation of the two-step anodization process. As a result, with the proposed approach, the morphology and thickness of NT arrays could be controlled very precisely, which in turn, influenced their optical and photoelectrochemical properties.

  13. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    SciTech Connect (OSTI)

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong E-mail: suo@seas.harvard.edu; Chen, Baohong; Zhou, Jinxiong; Suo, Zhigang E-mail: suo@seas.harvard.edu

    2014-10-13

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels become possible.

  14. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    DOE Patents [OSTI]

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  15. Color transparency and the structure of the proton in quantum chromodynamics

    SciTech Connect (OSTI)

    Brodsky, S.J.

    1989-06-01

    Many anomalies suggest that the proton itself is a much more complex object than suggested by simple non-relativistic quark models. Recent analyses of the proton distribution amplitude using QCD sum rules points to highly-nontrivial proton structure. Solutions to QCD in one-space and one-time dimension suggest that the momentum distributions of non-valence quarks in the hadrons have a non-trivial oscillatory structure. The data seems also to be suggesting that the intrinsic'' bound state structure of the proton has a non-negligible strange and charm quark content, in addition to the extrinsic'' sources of heavy quarks created in the collision itself. As we shall see in this lecture, the apparent discrepancies with experiment are not so much a failure of QCD, but rather symptoms of the complexity and richness of the theory. An important tool for analyzing this complexity is the light-cone Fock state representation of hadron wavefunctions, which provides a consistent but convenient framework for encoding the features of relativistic many-body systems in quantum field theory. 121 refs., 44 figs., 1 tab.

  16. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    SciTech Connect (OSTI)

    Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

    2011-01-02

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a

  17. Goals & Objectives Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Goals & Objectives Chart PDF icon goal and objectives chart.pdf Responsible Contacts Donna Friend HUMAN RESOURCES SPECIALIST E-mail donna.friend@hq.doe.dov Phone 202-586-5880 More ...

  18. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    DOE PAGES-Beta [OSTI]

    Malasi, A.; Taz, H.; Farah, A.; Patel, M.; Lawrie, Benjamin; Pooser, R.; Baddorf, A.; Duscher, G.; Kalyanaraman, R.

    2015-12-16

    We report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergentmore » semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. In conclusion, since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned.« less

  19. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    SciTech Connect (OSTI)

    Malasi, A.; Taz, H.; Farah, A.; Patel, M.; Lawrie, Benjamin; Pooser, R.; Baddorf, A.; Duscher, G.; Kalyanaraman, R.

    2015-12-16

    We report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergent semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. In conclusion, since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned.

  20. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers

    SciTech Connect (OSTI)

    Vogel, Nicolas; Belisle, Rebecca A.; Hatton, Benjamin; Wong, Tak-Sing; Aizenberg, Joanna

    2013-07-31

    A transparent coating that repels a wide variety of liquids, prevents staining, is capable of self-repair and is robust towards mechanical damage can have a broad technological impact, from solar cell coatings to self-cleaning optical devices. Here we employ colloidal templating to design transparent, nanoporous surface structures. A lubricant can be firmly locked into the structures and, owing to its fluidic nature, forms a defect-free, self-healing interface that eliminates the pinning of a second liquid applied to its surface, leading to efficient liquid repellency, prevention of adsorption of liquid-borne contaminants, and reduction of ice adhesion strength. We further show how this method can be applied to locally pattern the repellent character of the substrate, thus opening opportunities to spatially confine any simple or complex fluids. The coating is highly defect-tolerant due to its interconnected, honeycomb wall structure, and repellency prevails after the application of strong shear forces and mechanical damage. The regularity of the coating allows us to understand and predict the stability or failure of repellency as a function of lubricant layer thickness and defect distribution based on a simple geometric model.

  1. Study of transparent and nontransparent regimes of implosion in star wire arrays

    SciTech Connect (OSTI)

    Ivanov, V. V.; Astanovitskiy, A. L.; Papp, D.; Altemara, S. D.; Chittenden, J. P.; Bland, S. N.; Jones, B.

    2010-10-15

    Star wire arrays were used to control the imploding plasma flows and study plasma interpenetration. These arrays consisted of linear 'rays' aligned azimuthally and extending from the vertical axis. Star arrays with two close located wires ('gates') instead of a single wire on the inner cylinder were studied for transparent and nontransparent regimes of propagation of imploding plasma through the gates. Nontransparent mode of collision is typical for regular star wire arrays and it was also observed in Al stars with gate wires of regular length and with the gate width of 0.3-2 mm. The cascade process of implosion in stars and trapping of imploding plasma in 1-2 mm gates were modeled with the three-dimensional resistive magnetohydrodynamics code. The intermediate semitransparent mode of collision was observed in Al stars with long Al 'gate' wires. A transparent mode was observed in Al stars with long stainless steel or W gate wires. Applications of wire arrays with controlled plasma flows are discussed.

  2. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers

    DOE PAGES-Beta [OSTI]

    Vogel, Nicolas; Belisle, Rebecca A.; Hatton, Benjamin; Wong, Tak-Sing; Aizenberg, Joanna

    2013-07-31

    A transparent coating that repels a wide variety of liquids, prevents staining, is capable of self-repair and is robust towards mechanical damage can have a broad technological impact, from solar cell coatings to self-cleaning optical devices. Here we employ colloidal templating to design transparent, nanoporous surface structures. A lubricant can be firmly locked into the structures and, owing to its fluidic nature, forms a defect-free, self-healing interface that eliminates the pinning of a second liquid applied to its surface, leading to efficient liquid repellency, prevention of adsorption of liquid-borne contaminants, and reduction of ice adhesion strength. We further show howmore » this method can be applied to locally pattern the repellent character of the substrate, thus opening opportunities to spatially confine any simple or complex fluids. The coating is highly defect-tolerant due to its interconnected, honeycomb wall structure, and repellency prevails after the application of strong shear forces and mechanical damage. The regularity of the coating allows us to understand and predict the stability or failure of repellency as a function of lubricant layer thickness and defect distribution based on a simple geometric model.« less

  3. Participatory approach, acceptability and transparency of waste management LCAs: Case studies of Torino and Cuneo

    SciTech Connect (OSTI)

    Blengini, Gian Andrea; Fantoni, Moris; Busto, Mirko; Genon, Giuseppe; Zanetti, Maria Chiara

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Life Cycle Assessment is still not fully operational in waste management at local scale. Black-Right-Pointing-Pointer Credibility of WM LCAs is negatively affected by assumptions and lack of transparency. Black-Right-Pointing-Pointer Local technical-social-economic constraints are often not reflected by WM LCAs. Black-Right-Pointing-Pointer A participatory approach can increase acceptability and credibility of WM LCAs. Black-Right-Pointing-Pointer Results of a WM LCA can hardly ever be generalised, thus transparency is essential. - Abstract: The paper summarises the main results obtained from two extensive applications of Life Cycle Assessment (LCA) to the integrated municipal solid waste management systems of Torino and Cuneo Districts in northern Italy. Scenarios with substantial differences in terms of amount of waste, percentage of separate collection and options for the disposal of residual waste are used to discuss the credibility and acceptability of the LCA results, which are adversely affected by the large influence of methodological assumptions and the local socio-economic constraints. The use of site-specific data on full scale waste treatment facilities and the adoption of a participatory approach for the definition of the most sensible LCA assumptions are used to assist local public administrators and stakeholders showing them that LCA can be operational to waste management at local scale.

  4. Structure and chemistry of sol-gel derived transparent silica aerogel

    SciTech Connect (OSTI)

    Tewari, P.H.; Lofftus, K.D.; Hunt, A.J.

    1985-02-01

    Transparent silica aerogels are being studied because of their excellent thermal insulation properties for window glazing materials. The chemistry of the base catalyzed Si(OC/sub 2/H/sub 5/)/sub 4/ sol-gel process to produce transparent aerogels is presented. The results of a factorial design set of experiments are discussed in which five process parameters are simultaneously varied. The goal of these experiments was to optimize the process conditions and to analyze the importance of various parameters in improving the properties of the aerogel. A novel technique of ambient temperature supercritical drying of alcogels is described. In this process, supercritical drying occurs at less than or equal to40/sup 0/C instead of at greater than or equal to270/sup 0/C and greater than or equal to1700 PSI (12 MPa), by substituting CO/sub 2/ for alcohol in the alcogel. The time of drying is reduced from 2 to 3 days to 8 to 10 hours. It is shown that light scattering, microstructural properties and other characteristics of aerogels produced by this process and by the high temperature supercritical drying are similar.

  5. Hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer

    SciTech Connect (OSTI)

    Kim, Taehee; Choi, Jin Young; Jeon, Jun Hong; Kim, Youn-Su; Kim, Bong-Soo; Lee, Doh-Kwon; Kim, Honggon; Han, Seunghee; Kim, Kyungkon

    2012-10-15

    Highlights: ► This work enhanced power conversion efficiency of the hybrid tandem solar cell from 1.0% to 2.6%. ► The interfacial series resistance of the tandem solar cell was eliminated by inserting ITO layer. ► This work shows the feasibility of the highly efficient hybrid tandem solar cells. -- Abstract: We demonstrate hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer. The series-connected hybrid tandem photovoltaic devices were developed by combining hydrogenated amorphous silicon (a-Si:H) and polymer-based organic photovoltaics (OPVs). In order to enhance the interfacial connection between the subcells, we employed highly transparent and conductive indium tin oxide (ITO) thin layer. By using the ITO interconnecting layer, the power conversion efficiency of the hybrid tandem solar cell was enhanced from 1.0% (V{sub OC} = 1.041 V, J{sub SC} = 2.97 mA/cm{sup 2}, FF = 32.3%) to 2.6% (V{sub OC} = 1.336 V, J{sub SC} = 4.65 mA/cm{sup 2}, FF = 41.98%) due to the eliminated interfacial series resistance.

  6. Status of the United States-Russian Federation safeguards, transparency and irreversibility (STI) initiative for nuclear arms reductions

    SciTech Connect (OSTI)

    Czajkowski, A.F.; Bieniawski, A.J.; Percival, C.M.

    1996-12-31

    The US-Russian Federation initiative to provide safeguards, transparency, and irreversibility (STI) of nuclear arms reductions has been emphasized by several Presidential Joint Summit Statements as well as various agreements between the two parties. Beginning with the US and Russian Federation agreement in March, 1994, to host reciprocal inspections to confirm the stockpiles of plutonium removed from nuclear weapons, the US and Russia have been negotiating an STI regime to increase the transparency and irreversibility of nuclear arms reduction. In December, 1994, the US presented a paper to the Russian Federation proposing a regime of specific transparency measures to provide broader transparency and irreversibility of nuclear arms reductions. Presently the US considers STI to consist of the following measures: (1) agreement for cooperation (AFC); (2) stockpile data exchange agreement (SDEA); (3) mutual reciprocal inspections (MRI); (4) spot checks to confirm data exchanges (SC); and (5) limited Chain of Custody of Warheads Being Dismantled (LCC). The US and Russian have begun negotiations, which are in various stages of progress, on the first three of these measures. This paper will present a brief historical background of STI and discuss the transparency measures including the status of negotiation for each of the measures.

  7. Uncertainty quantification approaches for advanced reactor analyses.

    SciTech Connect (OSTI)

    Briggs, L. L.; Nuclear Engineering Division

    2009-03-24

    The original approach to nuclear reactor design or safety analyses was to make very conservative modeling assumptions so as to ensure meeting the required safety margins. Traditional regulation, as established by the U. S. Nuclear Regulatory Commission required conservatisms which have subsequently been shown to be excessive. The commission has therefore moved away from excessively conservative evaluations and has determined best-estimate calculations to be an acceptable alternative to conservative models, provided the best-estimate results are accompanied by an uncertainty evaluation which can demonstrate that, when a set of analysis cases which statistically account for uncertainties of all types are generated, there is a 95% probability that at least 95% of the cases meet the safety margins. To date, nearly all published work addressing uncertainty evaluations of nuclear power plant calculations has focused on light water reactors and on large-break loss-of-coolant accident (LBLOCA) analyses. However, there is nothing in the uncertainty evaluation methodologies that is limited to a specific type of reactor or to specific types of plant scenarios. These same methodologies can be equally well applied to analyses for high-temperature gas-cooled reactors and to liquid metal reactors, and they can be applied to steady-state calculations, operational transients, or severe accident scenarios. This report reviews and compares both statistical and deterministic uncertainty evaluation approaches. Recommendations are given for selection of an uncertainty methodology and for considerations to be factored into the process of evaluating uncertainties for advanced reactor best-estimate analyses.

  8. Finite element analyses for seismic shear wall international standard problem

    SciTech Connect (OSTI)

    Park, Y.J.; Hofmayer, C.H.

    1998-04-01

    Two identical reinforced concrete (RC) shear walls, which consist of web, flanges and massive top and bottom slabs, were tested up to ultimate failure under earthquake motions at the Nuclear Power Engineering Corporation`s (NUPEC) Tadotsu Engineering Laboratory, Japan. NUPEC provided the dynamic test results to the OECD (Organization for Economic Cooperation and Development), Nuclear Energy Agency (NEA) for use as an International Standard Problem (ISP). The shear walls were intended to be part of a typical reactor building. One of the major objectives of the Seismic Shear Wall ISP (SSWISP) was to evaluate various seismic analysis methods for concrete structures used for design and seismic margin assessment. It also offered a unique opportunity to assess the state-of-the-art in nonlinear dynamic analysis of reinforced concrete shear wall structures under severe earthquake loadings. As a participant of the SSWISP workshops, Brookhaven National Laboratory (BNL) performed finite element analyses under the sponsorship of the U.S. Nuclear Regulatory Commission (USNRC). Three types of analysis were performed, i.e., monotonic static (push-over), cyclic static and dynamic analyses. Additional monotonic static analyses were performed by two consultants, F. Vecchio of the University of Toronto (UT) and F. Filippou of the University of California at Berkeley (UCB). The analysis results by BNL and the consultants were presented during the second workshop in Yokohama, Japan in 1996. A total of 55 analyses were presented during the workshop by 30 participants from 11 different countries. The major findings on the presented analysis methods, as well as engineering insights regarding the applicability and reliability of the FEM codes are described in detail in this report. 16 refs., 60 figs., 16 tabs.

  9. System and method for disrupting suspect objects

    SciTech Connect (OSTI)

    Gladwell, T. Scott; Garretson, Justin R; Hobart, Clinton G; Monda, Mark J

    2013-07-09

    A system and method for disrupting at least one component of a suspect object is provided. The system includes a source for passing radiation through the suspect object, a screen for receiving the radiation passing through the suspect object and generating at least one image therefrom, a weapon having a discharge deployable therefrom, and a targeting unit. The targeting unit displays the image(s) of the suspect object and aims the weapon at a disruption point on the displayed image such that the weapon may be positioned to deploy the discharge at the disruption point whereby the suspect object is disabled.

  10. Perovskite Sr-doped LaCrO3 as a new p-type transparent conducting oxide

    SciTech Connect (OSTI)

    Zhang, Hongliang; Du, Yingge; Papadogianni, Alexandra; Bierwagen, Oliver; Sallis, Shawn; Piper, Louis F. J.; Bowden, Mark E.; Shutthanandan, V.; Sushko, Petr; Chambers, Scott A.

    2015-09-16

    Transparent conducting oxides (TCOs) constitute a unique class of materials which combine the seemingly mutually exclusive properties of electrical conductivity and optical transparency in a single material. TCOs are useful for a wide range of applications including solar cells, displays, light emitting diodes and transparent electronics. Simple post-transition metal oxides such as ZnO, In2O3 and SnO2 are wide gap insulators in which the ionic character generates an oxygen 2p-derived valence band (VB) and a metal s-derived conduction band (CB), resulting in large optical band gaps (>3.0 eV) and excellent n-type conductivity when donor doped. In contrast, the development of efficient p-type TCOs remains a global materials challenge. Converting n-type oxides to p-type analogs by acceptor doping is extremely difficult and these materials display poor conductivity.

  11. Sensitivity in risk analyses with uncertain numbers.

    SciTech Connect (OSTI)

    Tucker, W. Troy; Ferson, Scott

    2006-06-01

    Sensitivity analysis is a study of how changes in the inputs to a model influence the results of the model. Many techniques have recently been proposed for use when the model is probabilistic. This report considers the related problem of sensitivity analysis when the model includes uncertain numbers that can involve both aleatory and epistemic uncertainty and the method of calculation is Dempster-Shafer evidence theory or probability bounds analysis. Some traditional methods for sensitivity analysis generalize directly for use with uncertain numbers, but, in some respects, sensitivity analysis for these analyses differs from traditional deterministic or probabilistic sensitivity analyses. A case study of a dike reliability assessment illustrates several methods of sensitivity analysis, including traditional probabilistic assessment, local derivatives, and a ''pinching'' strategy that hypothetically reduces the epistemic uncertainty or aleatory uncertainty, or both, in an input variable to estimate the reduction of uncertainty in the outputs. The prospects for applying the methods to black box models are also considered.

  12. Reliability of chemical analyses of water samples

    SciTech Connect (OSTI)

    Beardon, R.

    1989-11-01

    Ground-water quality investigations require reliable chemical analyses of water samples. Unfortunately, laboratory analytical results are often unreliable. The Uranium Mill Tailings Remedial Action (UMTRA) Project`s solution to this problem was to establish a two phase quality assurance program for the analysis of water samples. In the first phase, eight laboratories analyzed three solutions of known composition. The analytical accuracy of each laboratory was ranked and three laboratories were awarded contracts. The second phase consists of on-going monitoring of the reliability of the selected laboratories. The following conclusions are based on two years experience with the UMTRA Project`s Quality Assurance Program. The reliability of laboratory analyses should not be taken for granted. Analytical reliability may be independent of the prices charged by laboratories. Quality assurance programs benefit both the customer and the laboratory.

  13. Non-traditional ion beam analyses

    SciTech Connect (OSTI)

    Doyle, B.L.; Knapp, J.A.; Banks, J.C.; Barbour, J.C.; Walsh, D.S.

    1993-02-01

    Rutherford backscattering spectrometry (RBS), elastic recoil detection (ERD), proton induced x-ray emission (PIXE) and nuclear reaction analysis (NRA) are among the most commonly used, or traditional, ion beam analysis (IBA) techniques. In this review, several adaptations of these IBA techniques are described where either the approach used in the analysis or the application area is clearly non-traditional or unusual. These analyses and/or applications are summarized in this paper.

  14. LIGHT CURVES OF 32 LARGE TRANSNEPTUNIAN OBJECTS

    SciTech Connect (OSTI)

    Benecchi, Susan D.; Sheppard, Scott S.

    2013-05-15

    We present observations of 32 primarily bright, newly discovered Transneptunian objects (TNOs) observable from the Southern Hemisphere during 39 nights of observation with the Irenee du Pont 2.5 m telescope at Las Campanas Observatory. Our dataset includes objects in all dynamical classes, but is weighted toward scattered objects. We find 15 objects for which we can fit periods and amplitudes to the data, and place light curve amplitude upper limits on the other 17 objects. Combining our sample with the larger light curve sample in the literature, we find a 3{sigma} correlation between light curve amplitude and absolute magnitude with fainter objects having larger light curve amplitudes. We looked for correlations between light curve and individual orbital properties, but did not find any statistically significant results. However, if we consider light curve properties with respect to object dynamical classification, we find statistically different distributions between the classical-scattered and classical-resonant populations at the 95.60% and 94.64% level, respectively, with the classical objects having larger amplitude light curves. The significance is 97.05% if the scattered and resonant populations are combined. The properties of binary light curves are largely consistent with the greater TNO population except in the case of tidally locked systems. All the Haumea family objects measured so far have light curve amplitudes and rotation periods {<=}10 hr, suggesting that they are not significantly different from the larger TNO population. We expect multiple factors are influencing object rotations: object size dominates light curve properties except in the case of tidal, or proportionally large collisional interactions with other TNOs, the influence of the latter being different for each TNO sub-population. We also present phase curves and colors for some of our objects.

  15. Parallel object-oriented decision tree system

    DOE Patents [OSTI]

    Kamath; Chandrika , Cantu-Paz; Erick

    2006-02-28

    A data mining decision tree system that uncovers patterns, associations, anomalies, and other statistically significant structures in data by reading and displaying data files, extracting relevant features for each of the objects, and using a method of recognizing patterns among the objects based upon object features through a decision tree that reads the data, sorts the data if necessary, determines the best manner to split the data into subsets according to some criterion, and splits the data.

  16. Method for imaging a concealed object

    DOE Patents [OSTI]

    Davidson, James R [Idaho Falls, ID; Partin, Judy K [Idaho Falls, ID; Sawyers, Robert J [Idaho Falls, ID

    2007-07-03

    A method for imaging a concealed object is described and which includes a step of providing a heat radiating body, and wherein an object to be detected is concealed on the heat radiating body; imaging the heat radiating body to provide a visibly discernible infrared image of the heat radiating body; and determining if the visibly discernible infrared image of the heat radiating body is masked by the presence of the concealed object.

  17. Technical Qualification Program Accreditation Objectives and Criteria |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Objectives and Criteria Technical Qualification Program Accreditation Objectives and Criteria The program clearly identifies and documents the process used to demonstrate employee technical competence. TQP Accreditation Objectives and Criteria (40.57 KB) More Documents & Publications Technical Qualification Program Self-Assessment Report - Sandia Site Office - 2012 Technical Qualification Program Self-Assessment Report - Richland Operations Office - 2014 Technical

  18. Technical Qualification Program Accreditation Objectives and...

    Energy.gov (indexed) [DOE]

    TQP Accreditation Objectives and Criteria (40.57 KB) More Documents & Publications Technical Qualification Program Self-Assessment Report - Sandia Site Office - 2012 Technical ...

  19. Aligning Utility Interests with Energy Efficiency Objectives...

    Open Energy Information (Open El) [EERE & EIA]

    Interests with Energy Efficiency Objectives: A Review of Recent Efforts at Decoupling and Performance Incentives Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Aligning...

  20. Object-Oriented Programming in Fortran 2003

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Conventional programming costs and complexity; Alternative programming paradigms; How ... Object---Oriented Design (OOD). Unified Modeling Language (UML): use case and class ...

  1. Impacts of humidity and temperature on the performance of transparent conducting zinc oxide.

    SciTech Connect (OSTI)

    Granata, Jennifer E.; Yaklin, Melissa A.; Schneider, Duane Allen; Staiger, Chad Lynn; Norman, Kirsten

    2010-06-01

    The impact of humidity and temperature on a zinc oxide based transparent conducting oxide (TCO) was assessed under accelerated aging conditions. An in situ electroanalytical method was used to monitor the electrical properties for a conducting zinc oxide under controlled atmospheric (humidity, temperature and irradiation) conditions. A review of thin film photovoltaic (PV) literature has shown one major failure mode of cells/modules is associated with the ingress of water into modules in the field. Water contamination has been shown to degrade the performance of the TCO in addition to corroding interconnects and other conductive metals/materials associated with the module. Water ingress is particularly problematic in flexible thin film PV modules since traditional encapsulates such as poly(ethyl vinyl acetate) (EVA) have high water vapor transmission rates. The accelerated aging studies of the zinc oxide based TCOs will allow acceleration factors and kinetic parameters to be determined for reliability purposes.

  2. Thin film electronic devices with conductive and transparent gas and moisture permeation barriers

    DOE Patents [OSTI]

    Simpson, Lin Jay

    2015-07-28

    Thin film electronic devices (or stacks integrated with a substrate) that include a permeation barrier formed of a thin layer of metal that provides a light transmitting and electrically conductive layer, wherein the electrical conductive layer is formed on a surface of the substrate or device layer such as a transparent conducting material layer with pin holes or defects caused by manufacturing and the thin layer of metal is deposited on the conductive layer and formed from a self-healing metal that forms self-terminating oxides. A permeation plug or block is formed in or adjacent to the thin film of metal at or proximate to the pin holes to block further permeation of contaminants through the pin holes.

  3. Coordination Between the HEU Transparency Program and the Material Protection, Control and Accountability Program

    SciTech Connect (OSTI)

    Glaser, J.; Hernandez, J.; Dougherty, D.; Bieniawski, A.; Cahalane, P.; Mastal, E.

    2000-06-30

    DOE sponsored programs such as Material Protection Control and Accountability (MPC&A) and implementation of the Highly-Enriched Uranium (HEU) Transparency Program send US personnel into Russian nuclear facilities and receive Russian representatives from these programs. While there is overlap in the Russian nuclear facilities visited by these two programs, there had not been any formal mechanism to share information between them. Recently, an MPC&A/HEU Working Group was developed to facilitate the sharing of appropriate information and to address concerns expressed by Minatom and Russian facility personnel such as US visit scheduling conflicts. This paper discusses the goals of the Working Group and ways it has helped to allow the programs to work more efficiently with the Russian facilities.

  4. Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes

    SciTech Connect (OSTI)

    Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui E-mail: lsliao@suda.edu.cn; Liao, Liang-Sheng E-mail: lsliao@suda.edu.cn

    2015-06-01

    A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO{sub 2} film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.

  5. Atomic Physics Effects on Convergent, Child-Langmuir Ion Flow between Nearly Transparent Electrodes

    SciTech Connect (OSTI)

    Santarius, John F.; Emmert, Gilbert A.

    2013-11-07

    Research during this project at the University of Wisconsin Fusion Technology Institute (UW FTI) on ion and neutral flow through an arbitrary, monotonic potential difference created by nearly transparent electrodes accomplished the following: (1) developed and implemented an integral equation approach for atomic physics effects in helium plasmas; (2) extended the analysis to coupled integral equations that treat atomic and molecular deuterium ions and neutrals; (3) implemented the key deuterium and helium atomic and molecular cross sections; (4) added negative ion production and related cross sections; and (5) benchmarked the code against experimental results. The analysis and codes treat the species D0, D20, D+, D2+, D3+, D and, separately at present, He0 and He+. Extensions enhanced the analysis and related computer codes to include He++ ions plus planar and cylindrical geometries.

  6. Data Mining-Aided Crystal Engineering for the Design of Transparent Conducting Oxides: Preprint

    SciTech Connect (OSTI)

    Suh, C.; Kim, K.; Berry, J. J.; Lee, J.; Jones, W. B.

    2010-12-01

    The purpose of this paper is to accelerate the pace of material discovery processes by systematically visualizing the huge search space that conventionally needs to be explored. To this end, we demonstrate not only the use of empirical- or crystal chemistry-based physical intuition for decision-making, but also to utilize knowledge-based data mining methodologies in the context of finding p-type delafossite transparent conducting oxides (TCOs). We report on examples using high-dimensional visualizations such as radial visualization combined with machine learning algorithms such as k-nearest neighbor algorithm (k-NN) to better define and visualize the search space (i.e. structure maps) of functional materials design. The vital role of search space generated from these approaches is discussed in the context of crystal chemistry of delafossite crystal structure.

  7. Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia

    SciTech Connect (OSTI)

    Ghosh, S.; Teweldebrhan, D.; Morales, J. R.; Garay, J. E.; Balandin, A. A.

    2009-12-01

    The authors report results of investigation of thermal conductivity of nanocrystalline yttria-stabilized zirconia. The optically transparent pore-free bulk samples were prepared via the spark plasma sintering process to ensure homogeneity. Thermal conductivity K was measured by two different techniques. It was found that the pore-free nanostructured bulk zirconia is an excellent thermal insulator with the room-temperature Kapprox1.7-2.0 W/m K. It was also shown that the 'phonon-hopping' model can accurately describe specifics of K dependence on temperature and the grain size. The obtained results are important for optimization of zirconia properties for specific applications in advanced electronics and coatings.

  8. Transparent electrodes in silicon heterojunction solar cells: Influence on contact passivation

    DOE PAGES-Beta [OSTI]

    Tomasi, Andrea; Sahli, Florent; Seif, Johannes Peter; Fanni, Lorenzo; de Nicolas Agut, Silvia Martin; Geissbuhler, Jonas; Paviet-Salomon, Bertrand; Nicolay, Sylvain; Barraud, Loris; Niesen, Bjoern; et al

    2015-10-26

    Charge carrier collection in silicon heterojunction solar cells occurs via intrinsic/doped hydrogenated amorphous silicon layer stacks deposited on the crystalline silicon wafer surfaces. Usually, both the electron and hole collecting stacks are externally capped by an n-type transparent conductive oxide, which is primarily needed for carrier extraction. Earlier, it has been demonstrated that the mere presence of such oxides can affect the carrier recombination in the crystalline silicon absorber. Here, we present a detailed investigation of the impact of this phenomenon on both the electron and hole collecting sides, including its consequences for the operating voltages of silicon heterojunction solarmore » cells. As a result, we define guiding principles for improved passivating contact design for high-efficiency silicon solar cells.« less

  9. Transparent electrodes in silicon heterojunction solar cells: Influence on contact passivation

    SciTech Connect (OSTI)

    Tomasi, Andrea; Sahli, Florent; Seif, Johannes Peter; Fanni, Lorenzo; de Nicolas Agut, Silvia Martin; Geissbuhler, Jonas; Paviet-Salomon, Bertrand; Nicolay, Sylvain; Barraud, Loris; Niesen, Bjoern; De Wolf, Stefaan; Ballif, Christophe

    2015-10-26

    Charge carrier collection in silicon heterojunction solar cells occurs via intrinsic/doped hydrogenated amorphous silicon layer stacks deposited on the crystalline silicon wafer surfaces. Usually, both the electron and hole collecting stacks are externally capped by an n-type transparent conductive oxide, which is primarily needed for carrier extraction. Earlier, it has been demonstrated that the mere presence of such oxides can affect the carrier recombination in the crystalline silicon absorber. Here, we present a detailed investigation of the impact of this phenomenon on both the electron and hole collecting sides, including its consequences for the operating voltages of silicon heterojunction solar cells. As a result, we define guiding principles for improved passivating contact design for high-efficiency silicon solar cells.

  10. FAQS Job Task Analyses Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Form FAQS Job Task Analyses Form Step 1, Identify and evaluate tasks; Step 2, Identify and evaluate competencies; and Step 3, Evaluate linkage between tasks and competencies. FAQS Job Task Analyses Form (18.57 KB) More Documents & Publications FAQS Job Task Analyses - Environmental Compliance FAQS Job Task Analyses - Construction Management FAQS Job Task Analyses - General Technical Base

  11. Stable isotopic analyses in paleoclimatic reconstruction

    SciTech Connect (OSTI)

    Wigand, P.E.

    1995-09-01

    Most traditional paleoclimatic proxy data have inherent time lags between climatic input and system response that constrain their use in accurate reconstruction of paleoclimate chronology, scaling of its variability, and the elucidation of the processes that determine its impact on the biotic and abiotic environment. With the exception of dendroclimatology, and studies of short-lived organisms and pollen recovered from annually varved lacustrine sediments, significant periods of time ranging from years, to centuries, to millennia may intervene between climate change and its first manifestation in paleoclimatic proxy data records. Reconstruction of past climate through changes in plant community composition derived from pollen sequences and plant remains from ancient woodrat middens, wet environments and dry caves all suffer from these lags. However, stable isotopic analyses can provide more immediate indication of biotic response to climate change. Evidence of past physiological response of organisms to changes in effective precipitation as climate varies can be provided by analyses of the stable isotopic content of plant macrofossils from various contexts. These analyses consider variation in the stable isotopic (hydrogen, oxygen and carbon) content of plant tissues as it reflects (1) past global or local temperature through changes in meteoric (rainfall) water chemistry in the case of the first two isotopes, and (2) plant stress through changes in plant respiration/transpiration processes under differing water availability, and varying atmospheric CO, composition (which itself may actually be a net result of biotic response to climate change). Studies currently being conducted in the Intermountain West indicate both long- and short-term responses that when calibrated with modem analogue studies have the potential of revealing not only the timing of climate events, but their direction, magnitude and rapidity.

  12. Program Objectives | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Program Objectives Stewardship Science Academic Alliances (SSAA) Program Objectives Support the U.S. scientific community by funding research projects at universities that conduct fundamental science and technology research that is of relevance to Stockpile Stewardship, namely; materials under extreme conditions (condensed matter physics and materials science, hydrodynamics, and fluid dynamics); low energy nuclear science, high energy density physics, and radiochemistry. Provide opportunities

  13. STORM: A STatistical Object Representation Model

    SciTech Connect (OSTI)

    Rafanelli, M. ); Shoshani, A. )

    1989-11-01

    In this paper we explore the structure and semantic properties of the entities stored in statistical databases. We call such entities statistical objects'' (SOs) and propose a new statistical object representation model,'' based on a graph representation. We identify a number of SO representational problems in current models and propose a methodology for their solution. 11 refs.

  14. Method for contour extraction for object representation

    DOE Patents [OSTI]

    Skourikhine, Alexei N.; Prasad, Lakshman

    2005-08-30

    Contours are extracted for representing a pixelated object in a background pixel field. An object pixel is located that is the start of a new contour for the object and identifying that pixel as the first pixel of the new contour. A first contour point is then located on the mid-point of a transition edge of the first pixel. A tracing direction from the first contour point is determined for tracing the new contour. Contour points on mid-points of pixel transition edges are sequentially located along the tracing direction until the first contour point is again encountered to complete tracing the new contour. The new contour is then added to a list of extracted contours that represent the object. The contour extraction process associates regions and contours by labeling all the contours belonging to the same object with the same label.

  15. How the NDA Provides Transparency and Visibility of the Technical Deliverability of the R and D Programme - 13303

    SciTech Connect (OSTI)

    Seed, Ian; James, Paula; Brownridge, Melanie; McMinn, Mervin

    2013-07-01

    The Nuclear Decommissioning Authority (NDA) was created under the UK Energy Act 2004 to ensure the UK historic civil public sector nuclear legacy sites are decommissioned safely, securely, cost effectively and in ways that protect the environment. The delivery will involve carrying out many unique projects within a high hazard environment requiring the very highest standards in safety, security and environmental management. Unique problems require unique solutions and there is a substantial amount of research and development required for each project. The NDA's R and D strategic objective is to ensure that delivery of the NDA's mission is technically underpinned by sufficient and appropriate research and development. This drives a requirement to provide transparency and visibility of the technical deliverability of the programme through the technical baseline and accompanying research and development requirements. The NDA need to have confidence in the technical deliverability of the Site License Companies (SLCs) plans, provide overall visibility of R and D across the NDA Estate and ensure that appropriate R and D is being carried out in a timely manner. They need to identify where coordinated R and D programmes may be advantageous as a result of common needs, risks and opportunities and ensure key R and D needs across NDA are identified, prioritised and work programmes are costed and scheduled in the Lifetime Plans for individual sites and SLCs. Evidence of the Site License Company's approach and their corresponding technical underpinning programmes is achieved through submission of a number of outputs collectively known as TBuRDs (Technical Baseline and Underpinning Research and Development Requirements). This paper is a summary of the information generated by an independent review of those TBuRDs. It highlights some of the key messages, synergies and common R and D activities across the estate. It demonstrates the value of a consistent approach to collecting R

  16. Analyses of containment structures with corrosion damage

    SciTech Connect (OSTI)

    Cherry, J.L.

    1997-01-01

    Corrosion damage that has been found in a number of nuclear power plant containment structures can degrade the pressure capacity of the vessel. This has prompted concerns regarding the capacity of corroded containments to withstand accident loadings. To address these concerns, finite element analyses have been performed for a typical PWR Ice Condenser containment structure. Using ABAQUS, the pressure capacity was calculated for a typical vessel with no corrosion damage. Multiple analyses were then performed with the location of the corrosion and the amount of corrosion varied in each analysis. Using a strain-based failure criterion, a {open_quotes}lower bound{close_quotes}, {open_quotes}best estimate{close_quotes}, and {open_quotes}upper bound{close_quotes} failure level was predicted for each case. These limits were established by: determining the amount of variability that exists in material properties of typical containments, estimating the amount of uncertainty associated with the level of modeling detail and modeling assumptions, and estimating the effect of corrosion on the material properties.

  17. Waste Stream Analyses for Nuclear Fuel Cycles

    SciTech Connect (OSTI)

    N. R. Soelberg

    2010-08-01

    A high-level study was performed in Fiscal Year 2009 for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) Advanced Fuel Cycle Initiative (AFCI) to provide information for a range of nuclear fuel cycle options (Wigeland 2009). At that time, some fuel cycle options could not be adequately evaluated since they were not well defined and lacked sufficient information. As a result, five families of these fuel cycle options are being studied during Fiscal Year 2010 by the Systems Analysis Campaign for the DOE NE Fuel Cycle Research and Development (FCRD) program. The quality and completeness of data available to date for the fuel cycle options is insufficient to perform quantitative radioactive waste analyses using recommended metrics. This study has been limited thus far to qualitative analyses of waste streams from the candidate fuel cycle options, because quantitative data for wastes from the front end, fuel fabrication, reactor core structure, and used fuel for these options is generally not yet available.

  18. Fuel Cycle Assessment: Evaluation and Analyses using ORION for...

    Office of Scientific and Technical Information (OSTI)

    Fuel Cycle Assessment: Evaluation and Analyses using ORION for US Fuel Cycle Options Citation Details In-Document Search Title: Fuel Cycle Assessment: Evaluation and Analyses using ...

  19. FAQS Job Task Analyses - Safeguards and Security General Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Security General Technical Base FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a...

  20. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses...

    Office of Scientific and Technical Information (OSTI)

    Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses Citation Details In-Document Search Title: Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses The ...

  1. Renewable, Recycled and Conserved Energy Objective | Department...

    Energy.gov (indexed) [DOE]

    an objective that 10% of all retail electricity sales in the state be obtained from renewable and recycled energy by 2015. In March 2009, this policy was modified by allowing...

  2. NOX: An Object-Oriented Nonlinear Solver

    Energy Science and Technology Software Center (OSTI)

    2002-11-15

    NOX is a C++ object-oriented library for the solving nonlinear equations. It can be used with an linear algebra package and includes interfaces to Epetra and PETSc.

  3. Parallel object-oriented data mining system

    DOE Patents [OSTI]

    Kamath, Chandrika; Cantu-Paz, Erick

    2004-01-06

    A data mining system uncovers patterns, associations, anomalies and other statistically significant structures in data. Data files are read and displayed. Objects in the data files are identified. Relevant features for the objects are extracted. Patterns among the objects are recognized based upon the features. Data from the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) sky survey was used to search for bent doubles. This test was conducted on data from the Very Large Array in New Mexico which seeks to locate a special type of quasar (radio-emitting stellar object) called bent doubles. The FIRST survey has generated more than 32,000 images of the sky to date. Each image is 7.1 megabytes, yielding more than 100 gigabytes of image data in the entire data set.

  4. Slow speed object detection for haul trucks

    SciTech Connect (OSTI)

    2009-09-15

    Caterpillar integrates radar technology with its current camera based system. Caterpillar has developed the Integrated Object Detection System, a slow speed object detection system for mining haul trucks. Object detection is a system that aids the truck operator's awareness of their surroundings. The system consists of a color touch screen display along with medium- and short-range radar as well as cameras, harnesses and mounting hardware. It is integrated into the truck's Work Area Vision System (WAVS). After field testing in 2007, system commercialization began in 2008. Prototype systems are in operation in Australia, Utah and Arizona and the Integrated Object Detection System will be available in the fourth quarter of 2009 and on production trucks 785C, 789C, 793D and 797B. The article is adapted from a presentation by Mark Richards of Caterpillar to the Haulage & Loading 2009 conference, May, held in Phoenix, AZ. 1 fig., 5 photos.

  5. Ergoregion instability of ultracompact astrophysical objects

    SciTech Connect (OSTI)

    Cardoso, Vitor; Pani, Paolo; Cadoni, Mariano; Cavaglia, Marco

    2008-06-15

    Most of the properties of black holes can be mimicked by horizonless compact objects such as gravastars and boson stars. We show that these ultracompact objects develop a strong ergoregion instability when rapidly spinning. Instability time scales can be of the order of 0.1 seconds to 1 week for objects with mass M=1-10{sup 6}M{sub {center_dot}} and angular momentum J>0.4M{sup 2}. This provides a strong indication that ultracompact objects with large rotation are black holes. Explosive events due to ergoregion instability have a well-defined gravitational-wave signature. These events could be detected by next-generation gravitational-wave detectors such as Advanced LIGO or LISA.

  6. TRACE ELEMENT ANALYSES OF URANIUM MATERIALS

    SciTech Connect (OSTI)

    Beals, D; Charles Shick, C

    2008-06-09

    The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a series of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.

  7. Program Objectives | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Program Objectives High Energy Density Laboratory Plasmas (HEDLP) Program Objectives Support the U.S. scientific community by funding research projects at universities in the areas of fundamental science and technology of relevance to the Stockpile Stewardship Program, with a focus on those areas not supported by other federal agencies, and for which there is a recruiting need within the National Laboratories; Provide advanced research in the area of high energy density physics; Provide

  8. Program Objectives | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Program Objectives National Laser Users' Facility Grant Program Objectives The primary purpose of the National Laser Users' Facility (NLUF) is to provide facility time for university- and business-led high energy density experiments on the Omega Laser Facility at the University of Rochester's Laboratory for Laser Energetics. Currently, approximately 15% of the Omega Facility time is devoted to NLUF. Through this program, two of the world's most powerful laser systems, OMEGA and OMEGA EP, are

  9. Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics

    SciTech Connect (OSTI)

    Ha, Tae-Jun

    2014-10-15

    We investigate the origin of visible-light-induced instability in amorphous metal-oxide based thin film transistors (oxide-TFTs) for transparent electronics by exploring the shift in threshold voltage (V{sub th}). A large hysteresis window in amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs possessing large optical band-gap (≈3 eV) was observed in a visible-light illuminated condition whereas no hysteresis window was shown in a dark measuring condition. We also report the instability caused by photo irradiation and prolonged gate bias stress in oxide-TFTs. Larger V{sub th} shift was observed after photo-induced stress combined with a negative gate bias than the sum of that after only illumination stress and only negative gate bias stress. Such results can be explained by trapped charges at the interface of semiconductor/dielectric and/or in the gate dielectric which play a role in a screen effect on the electric field applied by gate voltage, for which we propose that the localized-states-assisted transitions by visible-light absorption can be responsible.

  10. A narrow window of Rabi frequency for competition between electromagnetically induced transparency and Raman absorption

    SciTech Connect (OSTI)

    Chang, Ray-Yuan; Fang, Wei-Chia; Lee, Ming-Tsung; He, Zong-Syun; Ke, Bai-Cian; Lee, Yi-Chi; Tsai, Chin-Chun

    2010-01-15

    This investigation clarifies the transition phenomenon between the electromagnetically induced transparency (EIT) and Raman absorption in a ladder-type system of Doppler-broadened cesium vapor. A competition window of this transition was found to be as narrow as 2 MHz defined by the probe Rabi frequency. For a weak probe, the spectrum of EIT associated with quantum interference suggests that the effect of the Doppler velocity on the spectrum is negligible. When the Rabi frequency of the probe becomes comparable with the effective decay rate, an electromagnetically induced absorption (EIA) dip emerges at the center of the power broadened EIT peak. While the Rabi frequency of the probe exceeds the effective decay rate, decoherence that is generated by the intensified probe field occurs and Raman absorption dominates the interaction process, yielding a pure absorption spectrum; the Doppler velocity plays an important role in the interaction. A theory that is based on density matrix simulation, with or without the Doppler effect, can qualitatively fit the experimental data. In this work, the coherence of atom-photon interactions is created or destroyed using the probe Rabi frequency as a decoherence source.

  11. Structural stability of transparent conducting films assembled from length purified single-wall carbon nanotubes

    SciTech Connect (OSTI)

    J. M. Harris; G. R. S. Iyer; D. O. Simien; J. A. Fagan; J. Y. Huh; J. Y. Chung; S. D. Hudson; J. Obrzut; J. F. Douglas; C. M. Stafford; E. K. Hobbie

    2011-01-01

    Single-wall carbon nanotube (SWCNT) films show significant promise for transparent electronics applications that demand mechanical flexibility, but durability remains an outstanding issue. In this work, thin membranes of length purified single-wall carbon nanotubes (SWCNTs) are uniaxially and isotropically compressed by depositing them on prestrained polymer substrates. Upon release of the strain, the topography, microstructure, and conductivity of the films are characterized using a combination of optical/fluorescence microscopy, light scattering, force microscopy, electron microscopy, and impedance spectroscopy. Above a critical surface mass density, films assembled from nanotubes of well-defined length exhibit a strongly nonlinear mechanical response. The measured strain dependence reveals a dramatic softening that occurs through an alignment of the SWCNTs normal to the direction of prestrain, which at small strains is also apparent as an anisotropic increase in sheet resistance along the same direction. At higher strains, the membrane conductivities increase due to a compression-induced restoration of conductive pathways. Our measurements reveal the fundamental mode of elasto-plastic deformation in these films and suggest how it might be suppressed.

  12. High performance transparent conducting films of cadmium indate prepared by RF sputtering

    SciTech Connect (OSTI)

    Coutts, T.J.; Wu, X.; Mulligan, W.P.

    1996-04-01

    The authors are examining various spinel-structured thin films (e.g., Cd{sub 2}SnO{sub 4}, Zn{sub 2}SnO{sub 4}) to develop higher-quality transparent conducting oxides (TCO) than more conventional materials such as indium tin oxide. Here, the authors report on cadmium indate (CdIn{sub 2}O{sub 4}, CIO), which is another member of this family. Thin films of CIO were deposited by radio-frequency (RF) magnetron sputtering, from an oxide target, onto borosilicate glass substrates. The variables included the substrate temperature, sputtering gas composition, and pressure. Film properties were measured before and after heat treatment. Characterization involved Hall effect measurements, optical and infrared spectrophotometry, X-ray diffraction, and atomic-force microscopy. Film resistivities as low as 2.3 {times} 10{sup {minus}4} {Omega} cm were achieved for a film thickness of 0.55 {micro}m. The transmittance was 90% in the visible region of the spectrum, without correction for substrate losses and without an anti-reflection coating. The plasma resonance occurred at longer wavelengths than for other materials and this, with a bandgap of approximately 3.1 eV, presents a wide window for optical transmittance. The highest mobility was 54 cm{sup 2} V{sup {minus}1} s{sup {minus}1} and the highest carrier concentration was 7.5 {times} 10{sup 20} cm{sup {minus}3}.

  13. Processing of transparent polycrystalline AlON:Ce3+ scintillators

    SciTech Connect (OSTI)

    Chen, Ching -Fong; Yang, Pin; King, Graham; Tegtmeier, Eric L.

    2015-10-23

    A new polycrystalline ceramic scintillator is reported for potential use in radiation detection and medical imaging applications. The goal was to develop cerium-activated aluminum oxynitride (AlON:Ce3+) ceramics, which can be produced using ceramic processes in comparison to the high-cost, low-yield single-crystal growth technique. A phase pure AlON:Ce3+ powder with cubic symmetry was successfully synthesized at high temperature under a reducing atmosphere to convert Ce4+ to Ce3+ in the solid solution. We explored two different activator concentrations (0.5 and 1.0 mol%). Fully dense and transparent AlON:Ce3+ ceramics were produced by a liquid-phase-assisted pressureless sintering. The crystal field splitting around the Ce3+ activator in the AlON was comparable to the splitting induced by Br₋ and the Cl₋ ligands, which produced an emission spectrum perfectly matching the maximum quantum efficiency range of the photomultiplier tube for radiation detection. Both optical excitation and radiation ionizations in AlON:Ce3+ were demonstrated. Lastly, challenges and mechanisms related to the radioluminescence efficiency are discussed.

  14. TRANSMISSION AND EMISSION OF SOLAR ENERGETIC PARTICLES IN SEMI-TRANSPARENT SHOCKS

    SciTech Connect (OSTI)

    Kocharov, Leon; Usoskin, Ilya; Laitinen, Timo; Vainio, Rami

    2014-06-01

    While major solar energetic particle (SEP) events are associated with coronal mass ejection (CME)-driven shocks in solar wind, accurate SEP measurements reveal that more than one component of energetic ions exist in the beginning of the events. Solar electromagnetic emissions, including nuclear gamma-rays, suggest that high-energy ions could also be accelerated by coronal shocks, and some of those particles could contribute to SEPs in interplanetary space. However, the CME-driven shock in solar wind is thought to shield any particle source beneath the shock because of the strong scattering required for the diffusive shock acceleration. In this Letter, we consider a shock model that allows energetic particles from the possible behind-shock source to appear in front of the shock simultaneously with SEPs accelerated by the shock itself. We model the energetic particle transport in directions parallel and perpendicular to the magnetic field in a spherical shock expanding through the highly turbulent magnetic sector with an embedded quiet magnetic tube, which makes the shock semi-transparent for energetic particles. The model energy spectra and time profiles of energetic ions escaping far upstream of the shock are similar to the profiles observed during the first hour of some gradual SEP events.

  15. Improving Transparency in the Reporting of Safeguards Implementation: FY11 Update

    SciTech Connect (OSTI)

    Toomey, Christopher; Odlaug, Christopher S.; Wyse, Evan T.

    2011-09-30

    In 2008, the Standing Advisory Group on Safeguards Implementation (SAGSI) indicated that the International Atomic Energy Agency's (IAEA) Safeguards Implementation Report (SIR) has not kept pace with the evolution of safeguards and provided the IAEA with a set of recommendations for improvement. The SIR is the primary mechanism for providing an overview of safeguards implementation in a given year and reporting on the annual safeguards findings and conclusions drawn by the Secretariat. As the IAEA transitions to State-level safeguards approaches, SIR reporting must adapt to reflect these evolutionary changes. This evolved report will better reflect the IAEA's transition to a more qualitative and information-driven approach, based upon State-as-a-whole considerations. This paper applies SAGSI's recommendations to the development of multiple models for an evolved SIR and finds that an SIR repurposed as a 'safeguards portal' could significantly enhance information delivery, clarity, and transparency. In addition, this paper finds that the 'portal concept' also appears to have value as a standardized information presentation and analysis platform for use by Country Officers, for continuity of knowledge purposes, and the IAEA Secretariat in the safeguards conclusion process. Accompanying this paper is a fully functional prototype of the 'portal' concept, built using commercial software and IAEA Annual Report data and available for viewing at http://safeguardsportal.pnnl.gov.

  16. Preparation of transparent conducting B-doped ZnO films by vacuum arc plasma evaporation

    SciTech Connect (OSTI)

    Miyata, Toshihiro; Honma, Yasunori; Minami, Tadatsugu

    2007-07-15

    Highly transparent and conductive B-doped ZnO (BZO) thin films have been prepared by a newly developed vacuum arc plasma evaporation method that provided high-rate film depositions using sintered BZO pellets and fragments. The obtained electrical and optical properties of the deposited BZO thin films were considerably affected by the deposition conditions as well as the preparation method of the BZO pellets and fragments used. The lowest thin film resistivity was obtained with a B doping content [B/(B+Zn) atomic ratio] of approximately 1 at. %. A resistivity as low as 5x10{sup -4} {omega} cm and an average transmittance above about 80% in the wavelength range of 400-1300 nm were obtained in BZO films prepared with a thickness above approximately 400 nm at a substrate temperature of 200 deg. C. In addition, a low resistivity of 7.97x10{sup -4} {omega} cm and average transmittances above about 80% in the visible wavelength range were obtained in a BZO film prepared at a substrate temperature of 100 deg. C and an O{sub 2} gas flow rate of 10 SCCM (SCCM denotes cubic centimeter per minute at STP). The deposition rate of BZO films was typically 170 nm/min with a cathode plasma power of 4.5 kW.

  17. Towards more transparent and reproducible omics studies through a common metadata checklist and data publications

    SciTech Connect (OSTI)

    Kolker, Eugene; Ozdemir, Vural; Martens , Lennart; Hancock, William S.; Anderson, Gordon A.; Anderson, Nathaniel; Aynacioglu, Sukru; Baranova, Ancha; Campagna, Shawn R.; Chen, Rui; Choiniere, John; Dearth, Stephen P.; Feng, Wu-Chun; Ferguson, Lynnette; Fox, Geoffrey; Frishman, Dmitrij; Grossman, Robert; Heath, Allison; Higdon, Roger; Hutz, Mara; Janko, Imre; Jiang, Lihua; Joshi, Sanjay; Kel, Alexander; Kemnitz, Joseph W.; Kohane, Isaac; Kolker, Natali; Lancet, Doron; Lee, Elaine; Li, Weizhong; Lisitsa, Andrey; Llerena, Adrian; MacNealy-Koch, Courtney; Marhsall, Jean-Claude; Masuzzo, Paolo; May, Amanda; Mias, George; Monroe, Matthew E.; Montague, Elizabeth; Monney, Sean; Nesvizhskii, Alexey; Noronha, Santosh; Omenn, Gilbert; Rajasimha, Harsha; Ramamoorthy, Preveen; Sheehan, Jerry; Smarr, Larry; Smith, Charles V.; Smith, Todd; Snyder, Michael; Rapole, Srikanth; Srivastava, Sanjeeva; Stanberry, Larissa; Stewart, Elizabeth; Toppo, Stefano; Uetz, Peter; Verheggen, Kenneth; Voy, Brynn H.; Warnich, Louise; Wilhelm, Steven W.; Yandl, Gregory

    2014-01-01

    Biological processes are fundamentally driven by complex interactions between biomolecules. Integrated high-throughput omics studies enable multifaceted views of cells, organisms, or their communities. With the advent of new post-genomics technologies omics studies are becoming increasingly prevalent yet the full impact of these studies can only be realized through data harmonization, sharing, meta-analysis, and integrated research,. These three essential steps require consistent generation, capture, and distribution of the metadata. To ensure transparency, facilitate data harmonization, and maximize reproducibility and usability of life sciences studies, we propose a simple common omics metadata checklist. The proposed checklist is built on the rich ontologies and standards already in use by the life sciences community. The checklist will serve as a common denominator to guide experimental design, capture important parameters, and be used as a standard format for stand-alone data publications. This omics metadata checklist and data publications will create efficient linkages between omics data and knowledge-based life sciences innovation and importantly, allow for appropriate attribution to data generators and infrastructure science builders in the post-genomics era. We ask that the life sciences community test the proposed omics metadata checklist and data publications and provide feedback for their use and improvement.

  18. High performance transparent conducting films of cadmium indate prepared by RF sputtering

    SciTech Connect (OSTI)

    Coutts, T.J.; Wu, X.; Mulligan, W.P.

    1996-12-31

    The authors are examining various spinel-structured thin films (e.g., Cd{sub 2}SnO{sub 4}, Zn{sub 2}SnO{sub 4}) to develop higher-quality transparent conducting oxides (TCO) than more conventional materials such as indium tin oxide. Here, they report on cadmium indate (CdIn{sub 2}O{sub 4}, CIO), which is another member of this family. Thin films of CIO were deposited by radio-frequency (RF) magnetron sputtering, from an oxide target, onto borosilicate glass substrates. The variables included the substrate temperature, sputtering gas composition, and pressure. Film properties were measured before and after heat treatment. Characterization involved Hall effect measurements, optical and infrared spectrophotometry, X-ray diffraction, and atomic-force microscopy. Film resistivities as low as 2.3 {times} 10{sup {minus}4} {Omega}cm were achieved for a film thickness of 0.55 {micro}m. The transmittance was 90% in the visible region of the spectrum, without correction for substrate losses and without an anti-reflection coating. The plasma resonance occurred at longer wavelengths than for other materials and this, with a bandgap of approximately 3.1 eV, presents a wide window for optical transmittance. The highest mobility was 54 cm{sup 2} V{sup {minus}1} s{sup {minus}1} and the highest carrier concentration was 7.5 {times} 10{sup 20} cm{sup {minus}3}.

  19. Growth of oriented vanadium pentaoxide nanostructures on transparent conducting substrates and their applications in photocatalysis

    SciTech Connect (OSTI)

    Liu, Hongjiang; Gao, Yanfeng; Zhou, Jiadong; Liu, Xinling; Chen, Zhang; Cao, Chuanxiang; Luo, Hongjie; Kanehira, Minoru

    2014-06-01

    A novel, hydrothermal and hard-template-free method was developed for the first time to grow oriented, single-crystalline monoclinic VO{sub 2} (B) flower-like nanorod films on transparent conductive fluorine-doped tin oxide (FTO) substrates. The length and morphology of the nanorods can be tuned by changing the growth parameters, such as growth time and initial precursor concentration. The flower-like V{sub 2}O{sub 5} films were obtained after post-calcination treatment of VO{sub 2} (B) films. The photocatalytic activity of V{sub 2}O{sub 5} films was investigated by the degradation of methylene blue (MB) under UV and visible light. The prepared V{sub 2}O{sub 5} film exhibited good photocatalytic performance (74.6% and 63% under UV and visible light for 210 min, respectively) and more practical application in industry. - Graphical abstract: Flower nanostructured vanadium oxide film was prepared by hydrothermal reaction for photocatalysis application. - Highlights: Monoclinic VO{sub 2} nanorod array and flower-like nanostructure were directly grown on FTO substrate by hydrothermal reaction. The growth mechanism was analyzed by FESEM at different time. V{sub 2}O{sub 5} flower-like nanostructure film was obtained after calcining VO{sub 2} film. V{sub 2}O{sub 5} film exhibited good light activity and potential application in photocatalysis.

  20. A transparent Pyrex ?-reactor for combined in situ optical characterization and photocatalytic reactivity measurements

    SciTech Connect (OSTI)

    Dionigi, F.; Hansen, O.; Department of Micro- and Nanotechnology, Nanotech, Building 345 East, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby ; Nielsen, M. G.; Chorkendorff, I.; Vesborg, P. C. K.; Pedersen, T.

    2013-10-15

    A new Pyrex-based ?-reactor for photocatalytic and optical characterization experiments is presented. The reactor chamber and gas channels are microfabricated in a thin poly-silicon coated Pyrex chip that is sealed with a Pyrex lid by anodic bonding. The device is transparent to light in the UV-vis-near infrared range of wavelengths (photon energies between ?0.4 and ?4.1 eV). The absorbance of a photocatalytic film obtained with a light transmission measurement during a photocatalytic reaction is presented as a proof of concept of a photocatalytic reactivity measurement combined with in situ optical characterization. Diffuse reflectance measurements of highly scattering photocatalytic nanopowders in a sealed Pyrex ?-reactor are also possible using an integrating sphere as shown in this work. These experiments prove that a photocatalyst can be characterized with optical techniques after a photocatalytic reaction without removing the material from the reactor. The catalyst deposited in the cylindrical reactor chamber can be illuminated from both top and bottom sides and an example of application of top and bottom illumination is presented.

  1. Thin film electronic devices with conductive and transparent gas and moisture permeation barriers

    DOE Patents [OSTI]

    Simpson, Lin Jay

    2013-12-17

    A thin film stack (100, 200) is provided for use in electronic devices such as photovoltaic devices. The stack (100, 200) may be integrated with a substrate (110) such as a light transmitting/transmissive layer. A electrical conductor layer (120, 220) is formed on a surface of the substrate (110) or device layer such as a transparent conducting (TC) material layer (120,220) with pin holes or defects (224) caused by manufacturing. The stack (100) includes a thin film (130, 230) of metal that acts as a barrier for environmental contaminants (226, 228). The metal thin film (130,230) is deposited on the conductor layer (120, 220) and formed from a self-healing metal such as a metal that forms self-terminating oxides. A permeation plug or block (236) is formed in or adjacent to the thin film (130, 230) of metal at or proximate to the pin holes (224) to block further permeation of contaminants through the pin holes (224).

  2. Carrier Selective, Passivated Contacts for High Efficiency Silicon Solar Cells based on Transparent Conducting Oxides

    DOE PAGES-Beta [OSTI]

    Young, David L.; Nemeth, William; Grover, Sachit; Norman, Andrew; Yuan, Hao-Chih; Lee, Benjamin G.; LaSalvia, Vincenzo; Stradins, Paul

    2014-01-01

    We describe the design, fabrication and results of passivated contacts to n-type silicon utilizing thin SiO2 and transparent conducting oxide layers. High temperature silicon dioxide is grown on both surfaces of an n-type wafer to a thickness <50 Å, followed by deposition of tin-doped indium oxide (ITO) and a patterned metal contacting layer. As deposited, the thin-film stack has a very high J0,contact, and a non-ohmic, high contact resistance. However, after a forming gas anneal, the passivation quality and the contact resistivity improve significantly. The contacts are characterized by measuring the recombination parameter of the contact (J0,contact) and the specificmore » contact resistivity (ρcontact) using a TLM pattern. The best ITO/SiO2 passivated contact in this study has J0,contact = 92.5 fA/cm2 and ρcontact = 11.5 mOhm-cm2. These values are placed in context with other passivating contacts using an analysis that determines the ultimate efficiency and the optimal area fraction for contacts for a given set of (J0,contact, ρcontact) values. The ITO/SiO2 contacts are found to have a higher J0,contact, but a similar ρcontact compared to the best reported passivated contacts.« less

  3. Investigation of Some Transparent Metal Oxides as Damp Heat Protective Coating for CIGS Solar Cells: Preprint

    SciTech Connect (OSTI)

    Pern, F. J.; Yan, F.; Zaaunbrecher, B.; To, B.; Perkins, J.; Noufi, R.

    2012-10-01

    We investigated the protective effectiveness of some transparent metal oxides (TMO) on CIGS solar cell coupons against damp heat (DH) exposure at 85oC and 85% relative humidity (RH). Sputter-deposited bilayer ZnO (BZO) with up to 0.5-um Al-doped ZnO (AZO) layer and 0.2-um bilayer InZnO were used as 'inherent' part of device structure on CdS/CIGS/Mo/SLG. Sputter-deposited 0.2-um ZnSnO and atomic layer deposited (ALD) 0.1-um Al2O3 were used as overcoat on typical BZO/CdS/CIGS/Mo/SLG solar cells. The results were all negative -- all TMO-coated CIGS cells exhibited substantial degradation in DH. Combining the optical photographs, PL and EL imaging, SEM surface micro-morphology, coupled with XRD, I-V and QE measurements, the causes of the device degradations are attributed to hydrolytic corrosion, flaking, micro-cracking, and delamination induced by the DH moisture. Mechanical stress and decrease in crystallinity (grain size effect) could be additional degrading factors for thicker AZO grown on CdS/CIGS.

  4. Low-resistivity photon-transparent window attached to photo-sensitive silicon detector

    DOE Patents [OSTI]

    Holland, Stephen Edward

    2000-02-15

    The invention comprises a combination of a low resistivity, or electrically conducting, silicon layer that is transparent to long or short wavelength photons and is attached to the backside of a photon-sensitive layer of silicon, such as a silicon wafer or chip. The window is applied to photon sensitive silicon devices such as photodiodes, charge-coupled devices, active pixel sensors, low-energy x-ray sensors and other radiation detectors. The silicon window is applied to the back side of a photosensitive silicon wafer or chip so that photons can illuminate the device from the backside without interference from the circuit printed on the frontside. A voltage sufficient to fully deplete the high-resistivity photosensitive silicon volume of charge carriers is applied between the low-resistivity back window and the front, patterned, side of the device. This allows photon-induced charge created at the backside to reach the front side of the device and to be processed by any circuitry attached to the front side. Using the inventive combination, the photon sensitive silicon layer does not need to be thinned beyond standard fabrication methods in order to achieve full charge-depletion in the silicon volume. In one embodiment, the inventive backside window is applied to high resistivity silicon to allow backside illumination while maintaining charge isolation in CCD pixels.

  5. Static and dynamic behavior of ultrathin cobalt nanowires embedded in transparent matrix

    SciTech Connect (OSTI)

    Roussigné, Y.; Chérif, S. M.; Stashkevich, A. A.; Vidal, F.; Zheng, Y.

    2015-12-21

    Two self-assembly of ultrathin Co nanowires (NWs) embedded in a CeO{sub 2} matrix was grown on SrTiO{sub 3}(001) and oxidized Si(001) substrates. A common feature of the two arrays of NWs is the small diameter of the wires, falling in the 4–5 nm range. Combined with their length, the aspect ratio is large enough to ensure large magnetostatic anisotropy with an easy axis along the axis of the nanowires as revealed by magnetometry measurements. The Brillouin light scattering technique has been used to investigate the behavior of the spin waves under a field perpendicular to the NWs axes. The transparency of the matrix ensures the penetration of the probing light inside the sample. Importantly, Brillouin light scattering from the magnetic modes obeys the volume Bragg condition, which is characteristic of the configuration in which the observed modes are propagating along the nanowires and due to their very small diameter are nearly constant across the section. Both series of experimental results are satisfactorily analyzed by means of a single analytical model, based on a mean-field approach, assuming the presence at remanence of two populations of NWs with up and down magnetizations and including the dipolar coupling between the cylinders.

  6. Activation analyses for different fusion structural alloys

    SciTech Connect (OSTI)

    Attaya, H.; Smith, D.

    1991-12-31

    The leading candidate structural materials, viz., the vanadium alloys, the nickel or the manganese stabilized austenitic steels, and the ferritic steels, are analysed in terms of their induced activation in the TPSS fusion power reactor. The TPSS reactor has 1950 MW fusion power and inboard and outboard average neutron wall loading of 3.75 and 5.35 MW/m{sup 2} respectively. The results shows that, after one year of continuous operation, the vanadium alloys have the least radioactivity at reactor shutdown. The maximum difference between the induced radioactivity in the vanadium alloys and in the other iron-based alloys occurs at about 10 years after reactor shutdown. At this time, the total reactor radioactivity, using the vanadium alloys, is about two orders of magnitude less than the total reactor radioactivity utilizing any other alloy. The difference is even larger in the first wall, the FW-vanadium activation is 3 orders of magnitude less than other alloys` FW activation. 2 refs., 7 figs.

  7. Activation analyses for different fusion structural alloys

    SciTech Connect (OSTI)

    Attaya, H.; Smith, D.

    1991-01-01

    The leading candidate structural materials, viz., the vanadium alloys, the nickel or the manganese stabilized austenitic steels, and the ferritic steels, are analysed in terms of their induced activation in the TPSS fusion power reactor. The TPSS reactor has 1950 MW fusion power and inboard and outboard average neutron wall loading of 3.75 and 5.35 MW/m{sup 2} respectively. The results shows that, after one year of continuous operation, the vanadium alloys have the least radioactivity at reactor shutdown. The maximum difference between the induced radioactivity in the vanadium alloys and in the other iron-based alloys occurs at about 10 years after reactor shutdown. At this time, the total reactor radioactivity, using the vanadium alloys, is about two orders of magnitude less than the total reactor radioactivity utilizing any other alloy. The difference is even larger in the first wall, the FW-vanadium activation is 3 orders of magnitude less than other alloys' FW activation. 2 refs., 7 figs.

  8. Seismic Soil-Structure Interaction Analyses of a Deeply Embedded Model Reactor – SASSI Analyses

    SciTech Connect (OSTI)

    Nie J.; Braverman J.; Costantino, M.

    2013-10-31

    This report summarizes the SASSI analyses of a deeply embedded reactor model performed by BNL and CJC and Associates, as part of the seismic soil-structure interaction (SSI) simulation capability project for the NEAMS (Nuclear Energy Advanced Modeling and Simulation) Program of the Department of Energy. The SASSI analyses included three cases: 0.2 g, 0.5 g, and 0.9g, all of which refer to nominal peak accelerations at the top of the bedrock. The analyses utilized the modified subtraction method (MSM) for performing the seismic SSI evaluations. Each case consisted of two analyses: input motion in one horizontal direction (X) and input motion in the vertical direction (Z), both of which utilized the same in-column input motion. Besides providing SASSI results for use in comparison with the time domain SSI results obtained using the DIABLO computer code, this study also leads to the recognition that the frequency-domain method should be modernized so that it can better serve its mission-critical role for analysis and design of nuclear power plants.

  9. Buried object detection in GPR images

    DOE Patents [OSTI]

    Paglieroni, David W; Chambers, David H; Bond, Steven W; Beer, W. Reginald

    2014-04-29

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  10. Laser scanning system for object monitoring

    DOE Patents [OSTI]

    McIntyre, Timothy James [Knoxville, TN; Maxey, Lonnie Curtis [Powell, TN; Chiaro, Jr; John, Peter [Clinton, TN

    2008-04-22

    A laser scanner is located in a fixed position to have line-of-sight access to key features of monitored objects. The scanner rapidly scans pre-programmed points corresponding to the positions of retroreflecting targets affixed to the key features of the objects. The scanner is capable of making highly detailed scans of any portion of the field of view, permitting the exact location and identity of targets to be confirmed. The security of an object is verified by determining that the cooperative target is still present and that its position has not changed. The retroreflecting targets also modulate the reflected light for purposes of returning additional information back to the location of the scanner.

  11. Solid Freeform Fabrication of Aesthetic Objects

    ScienceCinema (OSTI)

    Hart, George [SUNY Stony Brook, Stony Brook, New York, United States

    2016-07-12

    Solid Freeform Fabrication (aka. Rapid Prototyping) equipment can produce beautiful three-dimensional objects of exquisite intricacy. To use this technology to its full potential requires spatial visualization in the designer and new geometric algorithms as tools. As both a sculptor and a research professor in the Computer Science department at Stony Brook University, George Hart is exploring algorithms for the design of elaborate aesthetic objects. In this talk, he will describe this work, show many images, and bring many physical models to display.

  12. See-through amorphous silicon solar cells with selectively transparent and conducting photonic crystal back reflectors for building integrated photovoltaics

    SciTech Connect (OSTI)

    Yang, Yang; OBrien, Paul G.; Materials Chemistry Research Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 ; Ozin, Geoffrey A. E-mail: kherani@ecf.utoronto.ca; Kherani, Nazir P. E-mail: kherani@ecf.utoronto.ca

    2013-11-25

    Thin semi-transparent hydrogenated amorphous silicon (a-Si:H) solar cells with selectively transparent and conducting photonic crystal (STCPC) back-reflectors are demonstrated. Short circuit current density of a 135?nm thick a-Si:H cell with a given STCPC back-reflector is enhanced by as much as 23% in comparison to a reference cell with an ITO film functioning as its rear contact. Concurrently, solar irradiance of 295?W/m{sup 2} and illuminance of 3480 lux are transmitted through the cell with a given STCPC back reflector under AM1.5 Global tilt illumination, indicating its utility as a source of space heating and lighting, respectively, in building integrated photovoltaic applications.

  13. Transparent selective illumination means suitable for use in optically activated electrical switches and optically activated electrical switches constructed using same

    DOE Patents [OSTI]

    Wilcox, R.B.

    1991-09-10

    A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch. 11 figures.

  14. Transparent selective illumination means suitable for use in optically activated electrical switches and optically activated electrical switches constructed using same

    DOE Patents [OSTI]

    Wilcox, Russell B.

    1991-01-01

    A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch.

  15. Infrared-optical spectroscopy of transparent conducting perovskite (La,Ba)SnO{sub 3} thin films

    SciTech Connect (OSTI)

    Seo, Dongmin; Yu, Kwangnam; Jun Chang, Young; Choi, E. J.; Sohn, Egon; Hoon Kim, Kee

    2014-01-13

    We have performed optical transmission, reflection, spectroscopic ellipsometry, and Hall effect measurements on the electron-doped La{sub x}Ba{sub 1x}SnO{sub 3} (x?=?0.04) transparent thin films. From the infrared Drude response and plasma frequency analysis we determine the effective mass of the conducting electron m*?=?0.35m{sub 0}. In the visible-UV region the optical band gap shifts to high energy in (La,Ba)SnO{sub 3} by 0.18?eV compared with undoped BaSnO{sub 3} which, in the context of the Burstein-Moss analysis, is consistent with the infrared-m*. m* of BaSnO{sub 3} is compared with other existing transparent conducting oxides (TCO), and implication on search for high-mobility TCO compounds is discussed.

  16. Application of Single Wall Carbon Nanotubes as Transparent Electrodes in Cu(In,Ga)Se2-Based Solar Cells: Preprint

    SciTech Connect (OSTI)

    Contreras, M.; Barnes, T.; van de Lagemaat, J.; Rumbles, G.; Coutts, T. J.; Weeks, C.; Glatkowski, P.; Levitsky, I.; Peltola, J.

    2006-05-01

    We present a new thin-film solar cell structure in which the traditional transparent conductive oxide electrode (ZnO) is replaced by a transparent conductive coating consisting of a network of bundled single-wall carbon nanotubes. Optical transmission properties of these coatings are presented in relation to their electrical properties (sheet resistance), along with preliminary solar cell results from devices made using CuIn1-xGaxSe2 thin-film absorber materials. Achieving an energy conversion efficiency of >12% and a quantum efficiency of {approx}80% demonstrate the feasibility of the concept. A discussion of the device structures will be presented considering the physical properties of the new electrodes comparing current-voltage results from the new solar cell structure and those from standard ZnO/CdS/Cu(In,Ga)Se2/Mo solar cells.

  17. Optimization of transparent and reflecting electrodes for amorphous silicon solar cells. Annual subcontract report, April 1, 1994--March 31, 1995

    SciTech Connect (OSTI)

    Gordon, R.G.

    1995-10-01

    Transparent and reflecting electrodes are important parts of the structure of amorphous silicon solar cells. We report improved methods for depositing zinc oxide, deposition of tin nitride as a potential reflection-enhancing diffusion barrier between the a-Si and back metal electrodes. Highly conductive and transparent fluorine-doped zinc oxide was successfully produced on small areas by atmospheric pressure CVD from a less hazardous zinc precursor, zinc acetylacetonate. The optical properties measured for tin nitride showed that the back-reflection would be decreased if tin nitride were used instead of zinc oxide as a barrier layer over silver on aluminum. Niobium-doped titanium dioxide was produced with high enough electrical conductivity so that normal voltages and fill factors were obtained for a-Si cells made on it.

  18. MACHO (MAssive Compact Halo Objects) Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The primary aim of the MACHO Project is to test the hypothesis that a significant fraction of the dark matter in the halo of the Milky Way is made up of objects like brown dwarfs or planets: these objects have come to be known as MACHOs, for MAssive Compact Halo Objects. The signature of these objects is the occasional amplification of the light from extragalactic stars by the gravitational lens effect. The amplification can be large, but events are extremely rare: it is necessary to monitor photometrically several million stars for a period of years in order to obtain a useful detection rate. For this purpose MACHO has a two channel system that employs eight CCDs, mounted on the 50 inch telescope at Mt. Stromlo. The high data rate (several GBytes per night) is accommodated by custom electronics and on-line data reduction. The Project has taken more than 27,000 images with this system since June 1992. Analysis of a subset of these data has yielded databases containing light curves in two colors for 8 million stars in the LMC and 10 million in the bulge of the Milky Way. A search for microlensing has turned up four candidates toward the Large Magellanic Cloud and 45 toward the Galactic Bulge. The web page for data provides links to MACHO Project data portals and various specialized interfaces for viewing or searching the data. (Specialized Interface)

  19. Detecting concealed objects at a checkpoint

    DOE Patents [OSTI]

    McMakin, Douglas L. (Richland, WA); Hall, Thomas E. (Kennewick, WA); Sheen, David M. (Richland, WA); Severtsen, Ronald H. (Richland, WA)

    2008-07-29

    Disclosed are systems, methods, devices, and apparatus to interrogate a clothed individual with electromagnetic radiation to determine if a concealed object is being carried. This determination includes establishing data corresponding to an image of the individual with a pair of opposed, semi-cylindrical array panels each configured to interrogate the individual with electromagnetic radiation in the 200 MHz to 1 THz range.

  20. Resonant seismic emission of subsurface objects

    SciTech Connect (OSTI)

    Korneev, Valeri A.

    2009-04-15

    Numerical modeling results and field data indicate that some contrasting subsurface objects (such as tunnels, caves, pipes, filled pits, and fluid-filled fractures) are capable of generating durable resonant oscillations after trapping seismic energy. These oscillations consist of surface types of circumferential waves that repeatedly propagate around the object. The resonant emission of such trapped energy occurs primarily in the form of shear body waves that can be detected by remotely placed receivers. Resonant emission reveals itself in the form of sharp resonant peaks for the late parts of the records, when all strong direct and primary reflected waves are gone. These peaks were observed in field data for a buried barrel filled with water, in 2D finite-difference modeling results, and in the exact canonical solution for a fluid-filled sphere. A computed animation for the diffraction of a plane wave upon a low-velocity elastic sphere confirms the generation of resonances by durable surface waves. Resonant emission has characteristic quasi-hyperbolic traveltime patterns on shot gathers. The inversion of these patterns can be performed in the frequency domain after muting the strong direct and primary scattered waves. Subsurface objects can be detected and imaged at a single resonance frequency without an accurate knowledge of source trigger time. The imaging of subsurface objects requires information about the shear velocity distribution in an embedding medium, which can be done interactively during inversion.

  1. Homodyne impulse radar hidden object locator

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-04-30

    An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules. 15 figs.

  2. Homodyne impulse radar hidden object locator

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1996-01-01

    An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules.

  3. Program Objectives | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Program Objectives Support the U.S. scientific community by funding research projects at universities that conduct fundamental science and technology research that is of relevance to Stockpile Stewardship, namely; materials under extreme conditions (condensed matter physics and materials science, hydrodynamics, and fluid dynamics); low energy nuclear science, high energy density physics, and radiochemistry. Provide opportunities for intellectual challenge and collaboration by promoting

  4. Systems Analyses of Advanced Brayton Cycles

    SciTech Connect (OSTI)

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study

  5. A new architecture as transparent electrodes for solar and IR applications based on photonic structures via soft lithography

    SciTech Connect (OSTI)

    Kuang, Ping

    2011-05-15

    Transparent conducting electrodes with the combination of high optical transmission and good electrical conductivity are essential for solar energy harvesting and electric lighting devices. Currently, indium tin oxide (ITO) is used because ITO offers relatively high transparency (>80%) to visible light and low sheet resistance (R{sub s} = 10 ohms/square ({Omega}#2;/?)) for electrical conduction. However, ITO is costly due to limited indium reserves, and it is brittle. These disadvantages have motivated the search for other conducting electrodes with similar or better properties. There has been research on a variety of electrode structures involving carbon nanotube networks, graphene films, nanowire and nanopatterned meshes and grids. Due to their novel characteristics in light manipulation and collection, photonic crystal structures show promise for further improvement. Here, we report on a new architecture consisting of nanoscale high aspect ratio metallic photonic structures as transparent electrodes fabricated via a combination of processes. For (Au) and silver (Ag) structures, the visible light transmission can reach as high as 80%, and the sheet resistance of the structure can be as low as 3.2{Omega}#2;/?. The optical transparency of the high aspect ratio metal structures at visible wavelength range is comparable to that of ITO glass, while their sheet resistance is more than 3 times lower, which indicates a much higher electrical conductivity of the metal structures. Furthermore, the high aspect ratio metal structures have very high infrared (IR) reflection (90%) for the transverse magnetic (TM) mode, which can lead to the development of fabrication of metallic structures as IR filters for heat control applications. Investigations of interdigitated structures based on the high aspect ratio metal electrodes are ongoing to study the feasibility in smart window applications in light transmission modulation.

  6. The IRMIS object model and services API.

    SciTech Connect (OSTI)

    Saunders, C.; Dohan, D. A.; Arnold, N. D.; Accelerator Systems Division

    2005-01-01

    The relational model developed for the Integrated Relational Model of Installed Systems (IRMIS) toolkit has been successfully used to capture the Advanced Photon Source (APS) control system software (EPICS process variables and their definitions). The relational tables are populated by a crawler script that parses each Input/Output Controller (IOC) start-up file when an IOC reboot is detected. User interaction is provided by a Java Swing application that acts as a desktop for viewing the process variable information. Mapping between the display objects and the relational tables was carried out with the Hibernate Object Relational Modeling (ORM) framework. Work is well underway at the APS to extend the relational modeling to include control system hardware. For this work, due in part to the complex user interaction required, the primary application development environment has shifted from the relational database view to the object oriented (Java) perspective. With this approach, the business logic is executed in Java rather than in SQL stored procedures. This paper describes the object model used to represent control system software, hardware, and interconnects in IRMIS. We also describe the services API used to encapsulate the required behaviors for creating and maintaining the complex data. In addition to the core schema and object model, many important concepts in IRMIS are captured by the services API. IRMIS is an ambitious collaborative effort for defining and developing a relational database and associated applications to comprehensively document the large and complex EPICS-based control systems of today's accelerators. The documentation effort includes process variables, control system hardware, and interconnections. The approach could also be used to document all components of the accelerator, including mechanical, vacuum, power supplies, etc. One key aspect of IRMIS is that it is a documentation framework, not a design and development tool. We do not

  7. Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO2 nanoparticles

    SciTech Connect (OSTI)

    Schaeffer, Daniel A.; Polizos, Georgios; Smith, D. Barton; Lee, Dominic F.; Hunter, Scott R.; Datskos, Panos G.

    2015-01-09

    Optical surfaces such as mirrors and windows that are exposed to outdoor environmental conditions are susceptible to dust buildup and water condensation. The application of transparent superhydrophobic coatings on optical surfaces can improve outdoor performance via a self-cleaning effect similar to the Lotus effect. The contact angle (CA) of water droplets on a typical hydrophobic flat surface varies from 100° to 120°. Adding roughness or microtexture to a hydrophobic surface leads to an enhancement of hydrophobicity and the CA can be increased to a value in the range of 16≥0° to 175°. This result is remarkable because such behavior cannot be explained using surface chemistry alone. When surface features are on the order of 100 nm or smaller, surfaces exhibit superhydrophobic behavior and maintain their optical transparency. In this work we discuss our results on transparent superhydrophobic coatings that can be applied across large surface areas. We have used functionalized silica nanoparticles to coat various optical elements and have measured the contact angle and optical transmission between 190 to 1100 nm on these elements. The functionalized silica nanoparticles were dissolved in a solution of the solvents isopropyl alcohol and 4-chlorobenzotrifluoride (PCBTF) and a proprietary ceramic binder (Cerakote ). Finally, this solution was spin-coated onto a variety of test glass substrates, and following a curing period of about 30 minutes, these coatings exhibited superhydrophobic behavior with a static CA ≥160°.

  8. Concepts and Strategies for Transparency Monitoring of Nuclear Materials at the Back End of the Fuel/Weapons Cycle

    SciTech Connect (OSTI)

    COSTIN, LAURENCE; DAVIES, PETER; PREGENZER, ARIAN L.

    1999-10-01

    Representatives of the Department of Energy, the national laboratories, the Waste Isolation Pilot Plant (WIPP), and others gathered to initiate the development of broad-based concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle, including both geologic disposal and monitored retrievable storage. The workshop focused on two key questions: ''Why should we monitor?'' and ''What should we monitor?'' These questions were addressed by identifying the range of potential stakeholders, concerns that stakeholders may have, and the information needed to address those concerns. The group constructed a strategic framework for repository transparency implementation, organized around the issues of safety (both operational and environmental), diversion (assuring legitimate use and security), and viability (both political and economic). Potential concerns of the international community were recognized as the possibility of material diversion, the multinational impacts of potential radionuclide releases, and public and political perceptions of unsafe repositories. The workshop participants also identified potential roles that the WIPP may play as a monitoring technology development and demonstration test-bed facility. Concepts for WIPP'S potential test-bed role include serving as (1) an international monitoring technology and development testing facility, (2) an international demonstration facility, and (3) an education and technology exchange center on repository transparency technologies.

  9. Genome-Facilitated Analyses of Geomicrobial Processes

    SciTech Connect (OSTI)

    Kenneth H. Nealson

    2012-05-02

    that makes up chitin, virtually all of the strains were in fact capable. This led to the discovery of a great many new genes involved with chitin and NAG metabolism (7). In a similar vein, a detailed study of the sugar utilization pathway revealed a major new insight into the regulation of sugar metabolism in this genus (19). Systems Biology and Comparative Genomics of the shewanellae: Several publications were put together describing the use of comparative genomics for analyses of the group Shewanella, and these were a logical culmination of our genomic-driven research (10,15,18). Eight graduate students received their Ph.D. degrees doing part of the work described here, and four postdoctoral fellows were supported. In addition, approximately 20 undergraduates took part in projects during the grant period.

  10. Cantera and Cantera Electrolyte Thermodynamics Objects

    SciTech Connect (OSTI)

    John Hewson, Harry Moffat

    2015-10-19

    Cantera is a suite of object-oriented software tools for problems involving chemical kinetics, thermodynamics, and/or transport processes. It is a multi-organizational effort to create and formulate high quality 0D and 1D constitutive modeling tools for reactive transport codes.Institutions involved with the effort include Sandia, MIT, Colorado School of Mines, U. Texas, NASA, and Oak Ridge National Labs. Specific to Sandia’s contributions, the Cantera Electrolyte Thermo Objects (CETO) packages is comprised of add-on routines for Cantera that handle electrolyte thermochemistry and reactions within the overall Cantera package. Cantera is a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. With this addition, Cantera can be extended to handle problems involving liquid phase reactions and transport in electrolyte systems, and phase equilibrium problemsinvolving concentrated electrolytes and gas/solid phases. A full treatment of molten salt thermodynamics and transport has also been implemented in CETO. The routines themselves consist of .cpp and .h files containing C++ objects that are derived from parent Cantera objects representing thermodynamic functions. They are linked unto the main Cantera libraries when requested by the user. As an addendum to the main thermodynamics objects, several utility applications are provided. The first is multiphase Gibbs free energy minimizer based on the vcs algorithm, called vcs_cantera. This code allows for the calculation of thermodynamic equilibrium in multiple phases at constant temperature and pressure. Note, a similar code capability exists already in Cantera. This version follows the same algorithm, but gas a different code-base starting point, and is used as a research tool for algorithm development. The second program, cttables, prints out tables of thermodynamic and kinetic information for thermodynamic and kinetic objects within Cantera. This program serves as a “Get the numbers

  11. Cantera and Cantera Electrolyte Thermodynamics Objects

    Energy Science and Technology Software Center (OSTI)

    2015-10-19

    Cantera is a suite of object-oriented software tools for problems involving chemical kinetics, thermodynamics, and/or transport processes. It is a multi-organizational effort to create and formulate high quality 0D and 1D constitutive modeling tools for reactive transport codes.Institutions involved with the effort include Sandia, MIT, Colorado School of Mines, U. Texas, NASA, and Oak Ridge National Labs. Specific to Sandia’s contributions, the Cantera Electrolyte Thermo Objects (CETO) packages is comprised of add-on routines for Canteramore » that handle electrolyte thermochemistry and reactions within the overall Cantera package. Cantera is a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. With this addition, Cantera can be extended to handle problems involving liquid phase reactions and transport in electrolyte systems, and phase equilibrium problemsinvolving concentrated electrolytes and gas/solid phases. A full treatment of molten salt thermodynamics and transport has also been implemented in CETO. The routines themselves consist of .cpp and .h files containing C++ objects that are derived from parent Cantera objects representing thermodynamic functions. They are linked unto the main Cantera libraries when requested by the user. As an addendum to the main thermodynamics objects, several utility applications are provided. The first is multiphase Gibbs free energy minimizer based on the vcs algorithm, called vcs_cantera. This code allows for the calculation of thermodynamic equilibrium in multiple phases at constant temperature and pressure. Note, a similar code capability exists already in Cantera. This version follows the same algorithm, but gas a different code-base starting point, and is used as a research tool for algorithm development. The second program, cttables, prints out tables of thermodynamic and kinetic information for thermodynamic and kinetic objects within Cantera. This program serves as a “Get the

  12. Transparent Conductors from Carbon Nanotubes LBL-Assembled with Polymer Dopant with ?-? Electron Transfer

    SciTech Connect (OSTI)

    Zhu, Jian; Shim, Bong Sup; Di Prima, Matthew; Kotov, Nicholas A.

    2011-01-01

    Single-walled carbon nanotube (SWNT) and other carbon-based coatings are being considered as replacements for indium tin oxide (ITO). The problems of transparent conductors (TCs) coatings from SWNT and similar materials include poor mechanical properties, high roughness, low temperature resilience, and fast loss of conductivity. The simultaneous realization of these desirable characteristics can be achieved using high structural control of layer-by-layer (LBL) deposition, which is demonstrated by the assembly of hydroethyl cellulose (HOCS) and sulfonated polyetheretherketone (SPEEK)-SWNTs. A new type of SWNT doping based on electron transfer from valence bands of nanotubes to unoccupied levels of SPEEK through ?-? interactions was identified for this system. It leads to a conductivity of 1.1 10? S/m at 66 wt % loadings of SWNT. This is better than other polymer/SWNT composites and translates into surface conductivity of 920 ?/? and transmittance of 86.7% at 550 nm. The prepared LBL films also revealed unusually high temperature resilience up to 500 C, and low roughness of 3.5 nm (ITO glass -2.4 nm). Tensile modulus, ultimate strength, and toughness of such coatings are 13 2 GPa, 366 35 MPa, and 8 3 kJ/m, respectively, and exceed corresponding parameters of all similar TCs. The cumulative figure of merit, ?TC, which included the critical failure strain relevant for flexible electronics, was ?TC = 0.022 and should be compared to ?TC = 0.006 for commercial ITO. Further optimization is possible using stratified nanoscale coatings and improved doping from the macromolecular LBL components.

  13. Ag-Pd-Cu alloy inserted transparent indium tin oxide electrodes for organic solar cells

    SciTech Connect (OSTI)

    Kim, Hyo-Joong; Seo, Ki-Won; Kim, Han-Ki; Noh, Yong-Jin; Na, Seok-In

    2014-09-01

    The authors report on the characteristics of Ag-Pd-Cu (APC) alloy-inserted indium tin oxide (ITO) films sputtered on a glass substrate at room temperature for application as transparent anodes in organic solar cells (OSCs). The effect of the APC interlayer thickness on the electrical, optical, structural, and morphological properties of the ITO/APC/ITO multilayer were investigated and compared to those of ITO/Ag/ITO multilayer electrodes. At the optimized APC thickness of 8 nm, the ITO/APC/ITO multilayer exhibited a resistivity of 8.55 × 10{sup −5} Ω cm, an optical transmittance of 82.63%, and a figure-of-merit value of 13.54 × 10{sup −3} Ω{sup −1}, comparable to those of the ITO/Ag/ITO multilayer. Unlike the ITO/Ag/ITO multilayer, agglomeration of the metal interlayer was effectively relieved with APC interlayer due to existence of Pd and Cu elements in the thin region of the APC interlayer. The OSCs fabricated on the ITO/APC/ITO multilayer showed higher power conversion efficiency than that of OSCs prepared on the ITO/Ag/ITO multilayer below 10 nm due to the flatness of the APC layer. The improved performance of the OSCs with ITO/APC/ITO multilayer electrodes indicates that the APC alloy interlayer prevents the agglomeration of the Ag-based metal interlayer and can decrease the thickness of the metal interlayer in the oxide-metal-oxide multilayer of high-performance OSCs.

  14. Periodically distributed objects with quasicrystalline diffraction pattern

    SciTech Connect (OSTI)

    Wolny, Janusz Strzalka, Radoslaw; Kuczera, Pawel

    2015-03-30

    It is possible to construct fully periodically distributed objects with a diffraction pattern identical to the one obtained for quasicrystals. These objects are probability distributions of distances obtained in the statistical approach to aperiodic structures distributed periodically. The diffraction patterns have been derived by using a two-mode Fourier transform—a very powerful method not used in classical crystallography. It is shown that if scaling is present in the structure, this two-mode Fourier transform can be reduced to a regular Fourier transform with appropriately rescaled scattering vectors and added phases. Detailed case studies for model sets 1D Fibonacci chain and 2D Penrose tiling are discussed. Finally, it is shown that crystalline, quasicrystalline, and approximant structures can be treated in the same way.

  15. Environmental management system objectives & targets results summary :

    SciTech Connect (OSTI)

    Vetter, Douglas Walter

    2014-04-01

    Sandia National Laboratories/New Mexicos (SNL/NM) Environmental Management System is the integrated approach for members of the workforce to identify and manage environmental risks. Each Fiscal Year (FY) SNL/NM performs an analysis to identify environmental aspects, and the environmental programs associated with them are charged with the task of routinely monitoring and measuring the objectives and targets that are established to mitigate potential impacts of SNL/NMs operations on the environment. An annual summary of the results achieved towards meeting established Sandia Corporation and SNL/NM Site-specific objectives and targets provides a connection to, and rational for, annually revised environmental aspects. The purpose of this document is to summarize the results achieved and documented in FY2013.

  16. Distributed Object Oriented Geographic Information System

    Energy Science and Technology Software Center (OSTI)

    1997-02-01

    This interactive, object-oriented, distributed Geographic Information System (GIS) uses the World Wibe Web (WWW) as application medium and distribution mechanism. The software provides distributed access to multiple geo-spatial databases and presents them as if they came from a single coherent database. DOOGIS distributed access comes not only in the form of multiple geo-spatial servers but can break down a single logical server into the constituent physical servers actually storing the data. The program provides formore » dynamic protocol resolution and content handling allowing unknown objects from a particular server to download their handling code. Security and access privileges are negotiated dynamically with each server contacted and each access attempt.« less

  17. Vehicle for carrying an object of interest

    DOE Patents [OSTI]

    Zollinger, W.T.; Ferrante, T.A.

    1998-10-13

    A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface. 8 figs.

  18. Vehicle for carrying an object of interest

    DOE Patents [OSTI]

    Zollinger, W. Thor; Ferrante, Todd A.

    1998-01-01

    A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface.

  19. Midlatitude Continental Convective Clouds Experiment Science Objective

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Midlatitude Continental Convective Clouds Experiment Science Objective Despite improvements in computing power, current weather and climate models are unable to accurately reproduce the formation, growth, and decay of clouds and precipitation associated with storm systems. Not only is this due to a lack of data about precipitation, but also about the 3-dimensional environment of the surrounding clouds, winds, and moisture, and how that affects the transfer of energy between the sun and Earth. To

  20. Optimizing Monitoring Designs under Alternative Objectives

    DOE PAGES-Beta [OSTI]

    Gastelum, Jason A.; USA, Richland Washington; Porter, Ellen A.; USA, Richland Washington

    2014-12-31

    This paper describes an approach to identify monitoring designs that optimize detection of CO2 leakage from a carbon capture and sequestration (CCS) reservoir and compares the results generated under two alternative objective functions. The first objective function minimizes the expected time to first detection of CO2 leakage, the second more conservative objective function minimizes the maximum time to leakage detection across the set of realizations. The approach applies a simulated annealing algorithm that searches the solution space by iteratively mutating the incumbent monitoring design. The approach takes into account uncertainty by evaluating the performance of potential monitoring designs across amore » set of simulated leakage realizations. The approach relies on a flexible two-tiered signature to infer that CO2 leakage has occurred. This research is part of the National Risk Assessment Partnership, a U.S. Department of Energy (DOE) project tasked with conducting risk and uncertainty analysis in the areas of reservoir performance, natural leakage pathways, wellbore integrity, groundwater protection, monitoring, and systems level modeling.« less

  1. Optimizing Monitoring Designs under Alternative Objectives

    SciTech Connect (OSTI)

    Gastelum, Jason A.; USA, Richland Washington; Porter, Ellen A.; USA, Richland Washington

    2014-12-31

    This paper describes an approach to identify monitoring designs that optimize detection of CO2 leakage from a carbon capture and sequestration (CCS) reservoir and compares the results generated under two alternative objective functions. The first objective function minimizes the expected time to first detection of CO2 leakage, the second more conservative objective function minimizes the maximum time to leakage detection across the set of realizations. The approach applies a simulated annealing algorithm that searches the solution space by iteratively mutating the incumbent monitoring design. The approach takes into account uncertainty by evaluating the performance of potential monitoring designs across a set of simulated leakage realizations. The approach relies on a flexible two-tiered signature to infer that CO2 leakage has occurred. This research is part of the National Risk Assessment Partnership, a U.S. Department of Energy (DOE) project tasked with conducting risk and uncertainty analysis in the areas of reservoir performance, natural leakage pathways, wellbore integrity, groundwater protection, monitoring, and systems level modeling.

  2. Objective analysis of toolmarks in forensics

    SciTech Connect (OSTI)

    Grieve, Taylor N.

    2013-03-01

    Since the 1993 court case of Daubert v. Merrell Dow Pharmaceuticals, Inc. the subjective nature of toolmark comparison has been questioned by attorneys and law enforcement agencies alike. This has led to an increased drive to establish objective comparison techniques with known error rates, much like those that DNA analysis is able to provide. This push has created research in which the 3-D surface profile of two different marks are characterized and the marks cross-sections are run through a comparative statistical algorithm to acquire a value that is intended to indicate the likelihood of a match between the marks. The aforementioned algorithm has been developed and extensively tested through comparison of evenly striated marks made by screwdrivers. However, this algorithm has yet to be applied to quasi-striated marks such as those made by the shear edge of slip-joint pliers. The results of this algorithms application to the surface of copper wire will be presented. Objective mark comparison also extends to comparison of toolmarks made by firearms. In an effort to create objective comparisons, microstamping of firing pins and breech faces has been introduced. This process involves placing unique alphanumeric identifiers surrounded by a radial code on the surface of firing pins, which transfer to the cartridges primer upon firing. Three different guns equipped with microstamped firing pins were used to fire 3000 cartridges. These cartridges are evaluated based on the clarity of their alphanumeric transfers and the clarity of the radial code surrounding the alphanumerics.

  3. Optical inspection system for cylindrical objects

    DOE Patents [OSTI]

    Brenden, Byron B.; Peters, Timothy J.

    1989-01-01

    In the inspection of cylindrical objects, particularly O-rings, the object is translated through a field of view and a linear light trace is projected on its surface. An image of the light trace is projected on a mask, which has a size and shape corresponding to the size and shape which the image would have if the surface of the object were perfect. If there is a defect, light will pass the mask and be sensed by a detector positioned behind the mask. Preferably, two masks and associated detectors are used, one mask being convex to pass light when the light trace falls on a projection from the surface and the other concave, to pass light when the light trace falls on a depression in the surface. The light trace may be either dynamic, formed by a scanned laser beam, or static, formed by such a beam focussed by a cylindrical lens. Means are provided to automatically keep the illuminating receiving systems properly aligned.

  4. Infrared system for monitoring movement of objects

    DOE Patents [OSTI]

    Valentine, K.H.; Falter, D.D.; Falter, K.G.

    1991-04-30

    A system is described for monitoring moving objects, such as the flight of honeybees and other insects, using a pulsed laser light source. This system has a self-powered micro-miniaturized transmitting unit powered, in the preferred embodiment, with an array of solar cells. This transmitting unit is attached to the object to be monitored. These solar cells provide current to a storage energy capacitor to produce, for example, five volts for the operation of the transmitter. In the simplest embodiment, the voltage on the capacitor operates a pulse generator to provide a pulsed energizing signal to one or more very small laser diodes. The pulsed light is then received at a receiving base station using substantially standard means which converts the light to an electrical signal for processing in a microprocessor to create the information as to the movement of the object. In the case of a unit for monitoring honeybees and other insects, the transmitting unit weighs less than 50 mg, and has a size no larger than 1[times]3[times]5 millimeters. Also, the preferred embodiment provides for the coding of the light to uniquely identify the particular transmitting unit that is being monitored. A wake-up' circuit is provided in the preferred embodiment whereby there is no transmission until the voltage on the capacitor has exceeded a pre-set threshold. Various other uses of the motion-detection system are described. 4 figures.

  5. Infrared system for monitoring movement of objects

    SciTech Connect (OSTI)

    Valentine, Kenneth H.; Falter, Diedre D.; Falter, Kelly G.

    1991-01-01

    A system for monitoring moving objects, such as the flight of honeybees and other insects, using a pulsed laser light source. This system has a self-powered micro-miniaturized transmitting unit powered, in the preferred embodiment, with an array solar cells. This transmitting unit is attached to the object to be monitored. These solar cells provide current to a storage energy capacitor to produce, for example, five volts for the operation of the transmitter. In the simplest embodiment, the voltage on the capacitor operates a pulse generator to provide a pulsed energizing signal to one or more very small laser diodes. The pulsed light is then received at a receiving base station using substantially standard means which converts the light to an electrical signal for processing in a microprocessor to create the information as to the movement of the object. In the case of a unit for monitoring honeybees and other insects, the transmitting unit weighs less than 50 mg, and has a size no larger than 1.times.3.times.5 millimeters. Also, the preferred embodiment provides for the coding of the light to uniquely identify the particular transmitting unit that is being monitored. A "wake-up" circuit is provided in the preferred embodiment whereby there is no transmission until the voltage on the capacitor has exceeded a pre-set threshold. Various other uses of the motion-detection system are described.

  6. Neutronics Analyses of the Minimum Original HEU TREAT Core

    SciTech Connect (OSTI)

    Kontogeorgakos, D.; Connaway, H.; Yesilyurt, G.; Wright, A.

    2014-04-01

    This work was performed to support the feasibility study on the potential conversion of the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory from the use of high-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by the GTRI Reactor Conversion staff at the Argonne National Laboratory (ANL). The objective of this study was to validate the MCNP model of the TREAT reactor with the well-documented measurements which were taken during the start-up and early operation of TREAT. Furthermore, the effect of carbon graphitization was also addressed. The graphitization level was assumed to be 100% (ANL/GTRI/TM-13/4). For this purpose, a set of experiments was chosen to validate the TREAT MCNP model, involving the approach to criticality procedure, in-core neutron flux measurements with foils, and isothermal temperature coefficient and temperature distribution measurements. The results of this study extended the knowledge base for the TREAT MCNP calculations and established the credibility of the MCNP model to be used in the core conversion feasibility analysis.

  7. Low-cost, highly transparent flexible low-e coating film to enable electrochromic windows with increased energy savings

    SciTech Connect (OSTI)

    Berland, Brian; Hollingsworth, Russell

    2015-03-31

    Five Quads of energy are lost through windows annually in the U.S. Low-e coatings are increasingly employed to reduce the wasted energy. Most commonly, the low-e coating is an oxide material applied directly to the glass at high temperature. With over 100,000,000 existing homes, a retrofit product is crucial to achieve widespread energy savings. Low-e films, i.e. coatings on polymeric substrates, are now also available to meet this need. However, the traditional oxide materials and process is incompatible with low temperature plastics. Alternate high performing low-e films typically incorporate materials that limit visible transmission to 35% or less. Further, the cost is high. The objective of this award was to develop a retrofit, integrated low-e/electrochromic window film to dramatically reduce energy lost through windows. While field testing of state-of-the-art electrochromic (EC) windows show the energy savings are maximized if a low-e coating is used in conjunction with the EC, available low-e films have a low visible transmission (~70% or less) that limits the achievable clear state and therefore, appearance and energy savings potential. Comprehensive energy savings models were completed at Lawrence Berkeley National Lab (LBNL). A parametric approach was used to project energy usage for windows with a large range of low-e properties across all U.S. climate zones, without limiting the study to materials that had already been produced commercially or made in a lab. The model enables projection of energy savings for low-e films as well as integrated low-e/EC products. This project developed a novel low-e film, optimized for compatibility with EC windows, using low temperature, high deposition rate processes for the growth of low-e coatings on plastic films by microwave plasma enhanced chemical vapor deposition. Silica films with good density and optical properties were demonstrated at deposition rates as high as 130Å/sec. A simple bi-layer low-e stack of

  8. A Multiple Objective Decision Support Tool (MODS)

    Energy Science and Technology Software Center (OSTI)

    2003-12-14

    The Multiple Objective Decision Support (MODS) tool is an automated tool used to assist decision makers and policy analysts with multiple-objective decision problems. The classes of problems that this decision support tool addresses have both multiple objectives and multiple stakeholders. Decision problems, which have multiple objectives that in general cannot be maximized simultaneously, and multiple stakeholders, who have different perspectives about the relative importance of the objectives, require analytic approaches and tools that can providemore » flexible support to decision makers. This tool provides capabilities for the management, analysis, and graphical display for these types of decision problems drawn from diverse problem domains. The MODS tool is a unique integration of analysis algorithms, an information database, and a graphical user interface. This collection of algorithms, the combination of an information database with the analysis into a single tool, and the graphical user interface provides a technically advanced tool to decision makers and policy analysts. There are two main issues when addressing problems of this type: what set of attributes should be used to characterize the tokens in the domain of interest, and how should the values of these attributes and their weights be determined and combined to provide a relative ordering to the tokens. This tool addresses both of these issues. This decision support tool provides a flexible way to derive and use a chosen set of attributes. For example, the tool could be used to first perform a paired comparison of a large set of attributes and from this evaluation select those attributes that have the highest weights. The flexibility of the tool allows experimentation with various attribute sets and this capability, along with domain expertise, addresses the first issue. To address the second issue, several algorithms have been implemented. For example, two algorithms that have been implemented are

  9. Nuclear Transparency and Single Particle Spectral Functions from Quasielastic A(e,e'p) Reactions up to Q2=8.1 GeV2

    SciTech Connect (OSTI)

    David McKee

    2003-05-01

    High statistics elastic and quasielastic scattering measurements were performed on hydrogen, deuterium, carbon, and iron at squared momentum transfers up to 8.1 GeV2. Both the nuclear transparency and the single particle spectral functions were extracted by means of comparison with a Plane- Wave Impulse Approximation calculation. Our data provide no evidence of the onset of color transparency within our kinematic range.

  10. Small object transporter. [Patent: for objects 0. 01 to 2. 00 mm dia

    DOE Patents [OSTI]

    Winkler, M.A.

    1980-05-21

    The disclosure relates to a small object transporter. Gas is passed through a conduit having a venturi. Small objects are picked up at a first location by a pickup tube in communication with the venturi and are forced out one end of the conduit at a desired second location.

  11. Ultraviolet laser crystallized ZnO:Al films on sapphire with high Hall mobility for simultaneous enhancement of conductivity and transparency

    SciTech Connect (OSTI)

    Nian, Qiong; Zhang, Martin Y.; Schwartz, Bradley D.; Cheng, Gary J.

    2014-05-19

    One of the most challenging issues in transparent conductive oxides (TCOs) is to improve their conductivity without compromising transparency. High conductivity in TCO films often comes from a high carrier concentration, which is detrimental to transparency due to free carrier absorption. Here we show that UV laser crystallization (UVLC) of aluminum-doped ZnO (AZO) films prepared by pulsed laser deposition on sapphire results in much higher Hall mobility, allowing relaxation of the constraints of the conductivity/transparency trade-off. X-ray diffraction patterns and morphological characterizations show grain growth and crystallinity enhancement during UVLC, resulting in less film internal imperfections. Optoelectronic measurements show that UVLC dramatically improves the electron mobility, while the carrier concentration decreases which in turn simultaneously increases conductivity and transparency. AZO films under optimized UVLC achieve the highest electron mobility of 79 cm{sup 2}/V s at a low carrier concentration of 7.9 × 10{sup +19} cm{sup −3}. This is realized by a laser crystallization induced decrease of both grain boundary density and electron trap density at grain boundaries. The infrared (IR) to mid-IR range transmittance spectrum shows UVLC significantly enhances the AZO film transparency without compromising conductivity.

  12. Range of Neutronic Parameters for Repository Criticality Analyses

    SciTech Connect (OSTI)

    W.J. Anderson

    1999-09-28

    The ''Range of Neutronic Parameters for Repository Criticality Analyses'' technical report contains a summary of the benchmark criticality analyses (including the laboratory critical experiment [LCEs] and the commercial reactor criticals [CRCs]) used to support the validation of the criticality evaluation methods. This report also documents the development of the Critical Limits (CLs) for the repository criticality analyses.

  13. Secret Objective Standoff: International Safeguards Educational Exercise

    SciTech Connect (OSTI)

    Okowita, Samantha L

    2014-01-01

    The International Safeguards Regime, being so multi-faceted, can be overwhelming to those first introduced to its many components. The organizers and lecturers of workshops and courses on nonproliferation often provide a series of independent lectures and must somehow demonstrate the cohesive and effective nature of the system. An exercise titled The Secret Objective Standoff was developed to complement lectures with hands-on learning to assist participants in bringing all the many components (IAEA agreements, export controls, treaty obligations, international diplomacy, etc.) of the International Safeguards Regime together. This exercise divides participants into teams that are assigned the role of either a country or the IAEA and asks that they fully immerse themselves in their roles. The teams are then randomly assigned three unique and secret objectives that are intended to represent realistic and current geopolitical scenarios. Through construction, trading, or hoarding of four resources (experts, technology, money, and uranium), the teams have a finite number of turns to accomplish their objectives. Each turn has three phases random dispersal of resources, a timed discussion where teams can coordinate and strategize with others, and an action phase. During the action phase, teams inform the moderator individually and secretly what they will be doing that turn. The exercise has been tested twice with Oak Ridge National Laboratory personnel, and has been conducted with outside participants twice, in each case the experience was well received by both participants and instructors. This exercise provides instructors the ability to modify the exercise before or during game play to best fit their educational goals. By offering a range of experiences, from an in-depth look at specific components to a generalized overview, this exercise is an effective tool in helping participants achieve a full understanding the International Safeguards Regime.

  14. Modern testing meets wide range of objectives

    SciTech Connect (OSTI)

    Ehlig-Economides, C.A.; Hegeman, P. ); Clark, G. )

    1994-08-01

    Testing sequences in two very different wells illustrate the wide range of objectives that are met with modern testing procedures. The first example is a drill stem test in an exploration well. The second test is in an established producing well. The exploration well test incorporated tubing-conveyed perforating, fluid sampling, production logging, and matrix stimulation to evaluate and properly treat near-well bore damage, as well as to investigate reservoir volume and characterize boundaries. The test on the established producer evaluated whether a workover could remedy lower than expected productivity. Production logging was combined with stationary transient measurements.

  15. Apparatus for synthetic imaging of an object

    DOE Patents [OSTI]

    Sheen, David M

    2015-01-20

    An apparatus for synthetic imaging of an object is disclosed. The apparatus includes a plurality of transmitter elements spaced apart by a first distance in a first column and a plurality of receiver elements spaced apart by a second distance in a second column. The first distance and the second distance are different. The plurality of transmitter elements is a non-integer multiple of the plurality of receiver elements, and the plurality of receiver elements is a non-integer multiple of the plurality of transmitter elements.

  16. WEIGHTED GUIDELINES PROFIT/FEE OBJECTIVE

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WEIGHTED GUIDELINES PROFIT/FEE OBJECTIVE DOE F 4220.23 (06-95) U.S. DEPARTMENT OF ENERGY 1. CONTRACTOR IDENTIFICATION 2. TYPE OF ACQUISTION ACTION (REFER TO OFPP MANUAL, FEDERAL PROCUREMENT DATA SYSTEMS - PRODUCT AND SERVICE CODES. APRIL 1980) a. Name c. Street address b. Division (If any) d. City e. State f. Zip code a. SUPPLIES & EQUIPMENT b. RESEARCH & DEVELOPMENT c. SERVICES: (1) ARCHITECT-ENGINEER: (2) MANAGEMENT SERVICES: (3) MEDICAL: (4) OTHER (e.g., SUPPORT SERVICES) 3.

  17. Integrated Waste Treatment Unit (IWTU) Input Coal Analyses and Off-Gass Filter (OGF) Content Analyses

    SciTech Connect (OSTI)

    Jantzen, Carol M.; Missimer, David M.; Guenther, Chris P.; Shekhawat, Dushyant; VanEssendelft, Dirk T.; Means, Nicholas C.

    2015-04-23

    in process piping and materials, in excessive off-gas absorbent loading, and in undesired process emissions. The ash content of the coal is important as the ash adds to the DMR and other vessel products which affect the final waste product mass and composition. The amount and composition of the ash also affects the reaction kinetics. Thus ash content and composition contributes to the mass balance. In addition, sodium, potassium, calcium, sulfur, and maybe silica and alumina in the ash may contribute to wall-scale formation. Sodium, potassium, and alumina in the ash will be overwhelmed by the sodium, potassium, and alumina from the feed but the impact from the other ash components needs to be quantified. A maximum coal particle size is specified so the feed system does not plug and a minimum particle size is specified to prevent excess elutriation from the DMR to the Process Gas Filter (PGF). A vendor specification was used to procure the calcined coal for IWTU processing. While the vendor supplied a composite analysis for the 22 tons of coal (Appendix A), this study compares independent analyses of the coal performed at the Savannah River National Laboratory (SRNL) and at the National Energy Technology Laboratory (NETL). Three supersacks a were sampled at three different heights within the sack in order to determine within bag variability and between bag variability of the coal. These analyses were also compared to the vendor’s composite analyses and to the coal specification. These analyses were also compared to historic data on Bestac coal analyses that had been performed at Hazen Research Inc. (HRI) between 2004-2011.

  18. Object-oriented inventory classes: Comparison of implementations in KEE and CLOS (Common Lisp Object System)

    SciTech Connect (OSTI)

    Silbar, R.R.

    1990-01-01

    The modeling of manufacturing processes can be cast in a form which relies heavily on stores to and draws from object-oriented inventories, which contain the functionalities imposed on them by the other objects (including other inventories) in the model. These concepts have been implemented, but with some difficulties, for the particular case of pyrochemical operations at the DOE's Rocky Flats Plant using KEE, a frame-oriented expert system shell. An alternative implementation approach using CLOS (the emerging Common Lisp Object System) has been explored and found to give significant simplifications. 8 refs., 1 fig.

  19. Workshop Goals, Objectives, and Desired Outcomes

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    D presentation slides: Workshop Goals, objectives, and Desired outcomes Steve Chalk, DOE 1 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX D 2 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX D 3 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX D 4 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX D 5 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report

  20. Magnetic levitation system for moving objects

    DOE Patents [OSTI]

    Post, Richard F.

    1998-01-01

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds.

  1. Magnetic levitation system for moving objects

    DOE Patents [OSTI]

    Post, R.F.

    1998-03-03

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds. 7 figs.

  2. Pulse Emission from Relativistic Collapsing Objects

    SciTech Connect (OSTI)

    Frolov, V.

    2005-03-15

    We discuss observable form of the radiation emitted from a surface of a collapsing object using a simplified model in which a radiation of massless particles has a sharp in time profile and it happens at the surface at the same moment of comoving time. Its redshift and bending angle are affected by the strong gravitational field. We obtain a simple expression for the observed flux of the radiation as a function of time. To find an explicit expression for the flux we develop an analytical approximation for the bending angle and time delay for null rays emitted by a collapsing surface at R > 2R{sub g}. We obtain an approximate analytical expression for the observed flux and study its properties.

  3. Hierarchical image segmentation for learning object priors

    SciTech Connect (OSTI)

    Prasad, Lakshman; Yang, Xingwei; Latecki, Longin J; Li, Nan

    2010-11-10

    The proposed segmentation approach naturally combines experience based and image based information. The experience based information is obtained by training a classifier for each object class. For a given test image, the result of each classifier is represented as a probability map. The final segmentation is obtained with a hierarchial image segmentation algorithm that considers both the probability maps and the image features such as color and edge strength. We also utilize image region hierarchy to obtain not only local but also semi-global features as input to the classifiers. Moreover, to get robust probability maps, we take into account the region context information by averaging the probability maps over different levels of the hierarchical segmentation algorithm. The obtained segmentation results are superior to the state-of-the-art supervised image segmentation algorithms.

  4. Low-Cost, Highly Transparent Flexible low-e Coating Film to Enable Electrochromic Windows with Increased Energy Savings

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Berland, bberland@itnes.com ITN Energy Systems Low-Cost, Highly Transparent Flexible low-e Coating Film to Enable Electrochromic Windows with Increased Energy Savings 2014 Building Technologies Office Peer Review 2 Project Summary Timeline: Start date: October 1, 2013 Planned end date: September 30, 2014 Key Milestones 1.Low-e Film: 90% T,vis & R,ir (100 cm 2 ) (Q2) 2.Low-e Film: 90% T,vis & R,ir (2m long, %T,%R variation < 2% cross web) (Q3) 3.Demonstrate Low-e/EC Film (Q3) Budget:

  5. Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance

    SciTech Connect (OSTI)

    Li, Hai-ming; Liu, Shao-bin Liu, Si-yuan; Zhang, Hai-feng; Bian, Bo-rui; Kong, Xiang-kun; Wang, Shen-yun

    2015-03-16

    In this paper, we numerically and experimentally demonstrate electromagnetically induced transparency (EIT)-like spectral response with magnetic resonance near field coupling to electric resonance. Six split-ring resonators and a cut wire are chosen as the bright and dark resonator, respectively. An EIT-like transmission peak located between two dips can be observed with incident magnetic field excitation. A large delay bandwidth product (0.39) is obtained, which has potential application in quantum optics and communications. The experimental results are in good agreement with simulated results.

  6. Fabrication of highly transparent diamond-like carbon anti-reflecting coating for Si solar cell application

    SciTech Connect (OSTI)

    Banerjee, Amit Das, Debajyoti

    2014-04-24

    ARC grade highly transparent unhydrogenated diamond-like carbon (DLC) films were produced, directly from a-C target, using RF magnetron sputtering deposition technique, for optoelectronic applications. Optical band gap, transmittance, reflectance, sp{sup 3} fraction, I{sub D}/I{sub G}, density, and refractive index of the films have been estimated with the help of optical tools like Uv-vis spectrophotometer, ellipsometer and micro-Raman. Optimum ARC-qualities have been identified in low-temperature grown DLC films at an Ar pressure of 4 mTorr in the reactor, accomplishing its key requirements for use in silicon solar cells.

  7. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    SciTech Connect (OSTI)

    Gary Silverman; Bluhm, Martin; Coffey, James; Korotkov, Roman; Polsz, Craig; Salemi, Alexandre; Smith, Robert; Smith, Ryan; Stricker, Jeff; Xu,Chen; Shirazi, Jasmine; Papakonstantopulous, George; Carson, Steve Philips Lighting GmbH Goldman, Claudia; Hartmann, Sren; Jessen, Frank; Krogmann, Bianca; Rickers, Christoph; Ruske, Manfred, Schwab, Holger; Bertram, Dietrich

    2011-01-02

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exaserbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectonic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availablility of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a

  8. February 23, 2016 Webinar - Multi-Criteria Decisional Analyses: Methodology

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Case Studies | Department of Energy 3, 2016 Webinar - Multi-Criteria Decisional Analyses: Methodology and Case Studies February 23, 2016 Webinar - Multi-Criteria Decisional Analyses: Methodology and Case Studies Performance & RIsk Assessment (P&RA) Community of Practice (CoP) Webinar - February 23, 2016 - Multi-Criteria Decisional Analyses: Methodology and Case Studies (Dr. Igor Linkov and Mr. Matthew Bates, U.S. Army Corps of Engineers). Video recording of the presentation

  9. Evaluation of Pre- and Post-Redevelopment Groundwater Chemical Analyses

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    from LM Monitoring Wells | Department of Energy Evaluation of Pre- and Post-Redevelopment Groundwater Chemical Analyses from LM Monitoring Wells Evaluation of Pre- and Post-Redevelopment Groundwater Chemical Analyses from LM Monitoring Wells AS&T Ancillary Work Plan (AWP) Final Well Redevelopment Evaluation Report Evaluation of Pre- and Post-Redevelopment Groundwater Chemical Analyses from LM Monitoring Wells (3.25 MB) More Documents & Publications Analysis and Geochemical Modeling

  10. FAQS Job Task Analyses - Construction Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Construction Management FAQS Job Task Analyses - Construction Management FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies. FAQS JTA - Construction

  11. FAQS Job Task Analyses - Fire Protection Engineering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fire Protection Engineering FAQS Job Task Analyses - Fire Protection Engineering FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies. FAQS JTA - Fire

  12. FAQS Job Task Analyses - Instrument and Controls | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Instrument and Controls FAQS Job Task Analyses - Instrument and Controls FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies. FAQS JTA - Instrument and

  13. FAQS Job Task Analyses - Safeguards and Security General Technical Base |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Security General Technical Base FAQS Job Task Analyses - Safeguards and Security General Technical Base FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage

  14. FAQS Job Task Analyses - Safeguards and Security | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Security FAQS Job Task Analyses - Safeguards and Security FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies. FAQS JTA - Safeguards and Security

  15. Intelligent Object-Oriented GIS Engine W/dynamic Coupling to Modeled Objects

    Energy Science and Technology Software Center (OSTI)

    1997-02-12

    The GEOVIEWER is an intelligent object-oriented Geographic Information System (GIS) engine that provides not only a spatially-optimized object representation, but also direct linkage to the underlying object, its data and behaviors. Tools are incorporated to perform tasks involving typical GIS functionality, data ingestion, linkage to external models, and integration with other application frameworks. The GOEVIEWER module was designed to provide GIS functionality to create, query, view, and manipulate software objects within a selected area undermore » investigation in a simulation system. Many of these objects are not stored in a format conductive to efficient GIS usage. Their dynamic nature, complexity, and the sheer number of possible entity classes preclude effective integration with traditional GIS technologies due to the loosely coupled nature of their data representations. The primary difference between GEOVIEWER and standard GIS packages is that standard GIS packages offer static views of geospatial data while GEOVIEWER can be dynamically coupled to models and/or applications producing data and, therefore, display changes in geometry, attributes or behavior as they occur in the simulation.« less

  16. MARSSIM: Data quality objectives (DQO) process

    SciTech Connect (OSTI)

    Doehnert, M.

    1996-06-01

    The Department of Defense, Department of Energy, Environmental Protection Agency, and the Nuclear Regulatory Commission are developing joint Federal guidance for standardized and consistent approaches to accomplish structural and environmental radiation surveys. The guidance is being developed as a draft document titled the {open_quotes}Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM).{close_quotes} MARSSIM is using the Data Quality Objectives (DQO) Process, a series of planning steps based on the scientific method for establishing criteria for data quality and developing survey designs. The DQO Process is iterative; the outputs of one step may lead to reconsideration of prior steps. Planning radiation site surveys using the DQO Process can improve the effectiveness, efficiency, and defensibility of decisions in a resource-effective manner. It also can minimize expenditures related to data collection by eliminating unnecessary, duplicative, or overly precise data. Using the DQO Process assures that the type, quantity, and quality of environmental data used in decision making will be appropriate for the intended application.

  17. Chemical and Radiochemical Analyses of Waste Isolation Pilot...

    Office of Environmental Management (EM)

    This document corresponds to Appendix C: Analysis Integrated Summary Report of the Technical Assessment Team Report. Chemical and Radiochemical Analyses of Waste Isolation Pilot ...

  18. EIA- Energy Efficiency Related Links: EIA Reports and Analyses

    U.S. Energy Information Administration (EIA) (indexed site)

    Reports Energy-Efficiency Related: EIA Reports and Analyses Released Release Date: October 1999 Last Updated: August 2010 End Users: Commercial Buildings Manufacturing ...

  19. Ch. III, Interpretation of water sample analyses Waunita Hot...

    Open Energy Information (Open El) [EERE & EIA]

    of water sample analyses Waunita Hot Springs area Gunnison County, Colorado Author R. H. Carpenter Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation...

  20. Interpretation of chemical analyses of waters collected from...

    Open Energy Information (Open El) [EERE & EIA]

    chemical analyses of waters collected from two geothermal wells at Coso, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  1. SENSITIVITY ANALYSIS FOR SALTSTONE DISPOSAL UNIT COLUMN DEGRADATION ANALYSES

    SciTech Connect (OSTI)

    Flach, G.

    2014-10-28

    PORFLOW related analyses supporting a Sensitivity Analysis for Saltstone Disposal Unit (SDU) column degradation were performed. Previous analyses, Flach and Taylor 2014, used a model in which the SDU columns degraded in a piecewise manner from the top and bottom simultaneously. The current analyses employs a model in which all pieces of the column degrade at the same time. Information was extracted from the analyses which may be useful in determining the distribution of Tc-99 in the various SDUs throughout time and in determining flow balances for the SDUs.

  2. Optical and electronic properties of delafossite CuBO{sub 2}p-type transparent conducting oxide

    SciTech Connect (OSTI)

    Ruttanapun, Chesta E-mail: krchesta@kmitl.ac.th

    2013-09-21

    CuBO{sub 2} delafossite was prepared by solid state reaction and calcined/sintered at 1005?C. The optical properties of this p-type transparent conducting oxide were investigated. Its crystal structure, morphology, composition, oxygen decomposition, and optical and electronic properties were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, thermal gravimetric analysis (TGA), ultraviolet-visible-near-infrared (UV-VIS-NIR) and fluorescence spectroscopies, Seebeck coefficient, and electrical conductivity measurements. CuBO{sub 2} delafossite possesses a hexagonal space group R3{sup }m. TGA indicated a weight loss of 10%, which was attributed to excess oxygen. The positive Seebeck coefficient confirmed p-type behavior. Emission at 355?nm indicated a direct band type transition, and the UV-VIS-NIR spectrum indicated an optical direct gap of 3.6?eV. Activation energies for carrier production and electrical conduction were 0.147 and 0.58?eV, respectively, indicating the thermal activation of carriers. CuBO{sub 2} delafossite is a p-type transparent conducting oxide with a wide band gap and may have potential in industrial p-type electrodes.

  3. U.S. transparency monitoring of HEU oxide conversion and blending to LEU hexafluoride at three Russian blending plants

    SciTech Connect (OSTI)

    Leich, D., LLNL

    1998-07-27

    The down-blending of Russian highly enriched uranium (HEU) takes place at three Russian gaseous centrifuge enrichment plants. The fluorination of HEU oxide and down-blending of HEU hexafluoride began in 1994, and shipments of low enriched uranium (LEU) hexafluoride product to the United States Enrichment Corporation (USEC) began in 1995 US transparency monitoring under the HEU Purchase Agreement began in 1996 and includes a permanent monitoring presence US transparency monitoring at these facilities is intended to provide confidence that HEU is received and down-blended to LEU for shipment to USEC The monitoring begins with observation of the receipt of HEU oxide shipments, including confirmation of enrichment using US nondestructive assay equipment The feeding of HEU oxide to the fluorination process and the withdrawal of HEU hexafluoride are monitored Monitoring is also conducted where the blending takes place and where shipping cylinders are filled with LEU product. A series of process and material accountancy documents are provided to US monitors.

  4. Effect of purity on the electro-optical properties of single wall nanotube-based transparent conductive electrodes

    SciTech Connect (OSTI)

    Garrett, Matthew P; Ivanov, Ilia N; Geohegan, David B; Hu, Bin

    2013-01-01

    We present a detailed assessment of centrifugation technique for purification of single wall carbon nanotubes (SWCNTs) for application as transparent conductive electrodes. As- grown and highly-purified SWCNTs were dispersed in surfactants by ultrasonication, and then centrifuged to selectively remove carbonaceous and metal impurities. The centrifuged supernatant suspensions were made into thin films by transferring filtrated nanotube coat- ings onto glass slides. The absorbance and resistance of nanotube coatings were measured, and their optical purity level estimated from a comparison of the area of the near-infrared S22 SWCNT optical absorption band relative to the area of the background. The single-step centrifugation process is shown to purify laser-vaporization grown SWCNTs from an initial optical purity of 0.10 to an averaged purity of 0.23, with an 8.8% yield, which is comparable to other purification techniques. The quality of transparent conductive electrodes esti- mated as a ratio of visible-spectrum absorbance to sheet conductivity is improved by a fac- tor of 12 upon purification.

  5. AlGaInN-based light emitting diodes with a transparent p-contact based on thin ITO films

    SciTech Connect (OSTI)

    Smirnova, I. P. Markov, L. K.; Pavlyuchenko, A. S.; Kukushkin, M. V.

    2012-03-15

    A method for obtaining transparent conductive ITO (indium-tin oxide) films aimed for use in light emitting diodes of the blue spectral range is developed. The peak external quantum efficiency of light-emitting diodes with a p-contact based on the obtained films reaches 25%, while for similar light-emitting diodes with a standard semitransparent metal contact, it is <10%. An observed increase in the direct voltage drop from 3.15 to 3.37 V does not significantly affect the possibility of applying these films in light-emitting diodes since the optical power of light-emitting diodes with a transparent p-contact based on ITO films exceeds that of chips with metal semitransparent p-contacts with a working current of 20 mA by a factor of almost 2.5. Light-emitting diodes with p-contacts based on ITO films successfully withstand a pumping current that exceeds their calculated working current by a factor of 5 without the appearance of any signs of degradation.

  6. Highly transparent conductive electrode with ultra-low HAZE by grain boundary modification of aqueous solution fabricated alumina-doped zinc oxide nanocrystals

    SciTech Connect (OSTI)

    Nian, Qiong; Cheng, Gary J.; Callahan, Michael; Bailey, John; Look, David; Efstathiadis, Harry

    2015-06-01

    Commercial production of transparent conducting oxide (TCO) polycrystalline films requires high electrical conductivity with minimal degradation in optical transparency. Aqueous solution deposited TCO films would reduce production costs of TCO films but suffer from low electrical mobility, which severely degrades both electrical conductivity and optical transparency in the visible spectrum. Here, we demonstrated that grain boundary modification by ultra-violet laser crystallization (UVLC) of solution deposited aluminium-doped zinc oxide (AZO) nanocrystals results in high Hall mobility, with a corresponding dramatic improvement in AZO electrical conductance. The AZO films after laser irradiation exhibit electrical mobility up to 18.1 cm{sup 2} V{sup −1} s{sup −1} with corresponding electrical resistivity and sheet resistances as low as 1 × 10{sup −3} Ω cm and 75 Ω/sq, respectively. The high mobility also enabled a high transmittance (T) of 88%-96% at 550 nm for the UVLC films. In addition, HAZE measurement shows AZO film scattering transmittance as low as 1.8%, which is superior over most other solution deposited transparent electrode alternatives such as silver nanowires. Thus, AZO films produced by the UVLC technique have a combined figure of merit for electrical conductivity, optical transparency, and optical HAZE higher than other solution based deposition techniques and comparable to vacuumed based deposition methods.

  7. Highly efficient blue organic light emitting device using indium-free transparent anode Ga:ZnO with scalability for large area coating

    SciTech Connect (OSTI)

    Wang, Liang; Matson, Dean W.; Polikarpov, Evgueni; Swensen, James S.; Bonham, Charles C.; Cosimbescu, Lelia; Berry, J. J.; Ginley, D. S.; Gaspar, Daniel J.; Padmaperuma, Asanga B.

    2010-02-15

    The availability of economically-produced and environmentally-stable transparent conductive oxide (TCO) coatings is critical for the development of a variety of electronic devices requiring transparent electrodes. Such devices include liquid crystal display pixels and organic light emitting diodes (OLEDs),[1, 2] solar cell applications,[3, 4] and electrically heated windows.[5, 6] The materials fulfilling these requirements are usually wide band gap inorganic transparent conductive oxides (TCOs). Tin-doped indium oxide, or ITO, has traditionally been used for electronic TCO applications because of its low resistivity, high work function and transparency. Due to the increasing cost and limited supply of indium and its tendency to migrate in to the device, there has been increasing research interest to substitute ITO with an indium-free material. A number of alternative metal oxides and doped oxides have been evaluated as TCO materials with varying degrees of success.[7, 8] Among these alternatives to ITO, gallium-doped zinc oxide (GZO) [2, 9] and aluminium-doped zinc oxide (AZO) [10, 11] have drawn particular attention. These materials have been demonstrated to have resistivities and transparencies approaching those of the best ITO, low toxicity, and much lower materials cost. Although AZO is attractive as a TCO electrode material, GZO features a greater resistance to oxidation as a result of gallium’s greater electronegativity compared to Submitted to 2 aluminum.[12, 13

  8. Object Modeling for Transport of Physical Objects or Substances Across a Geograc

    Energy Science and Technology Software Center (OSTI)

    1997-02-12

    TRANSPORTNET, a suite of object classes, addresses the general problem of simulating transport of objects or substances across a geographically distributed network. This highly abstract concept supports subclassed networks of many types, including road, rail, air, and navigation transportation networks, drainage (hydrological) networks, and utility networks of various sorts, such as pipelines, transmission lines, etc. In TRANSPORTNET, transport occurs along transport links which are connected by transport nodes. The concepts of link and node aremore » also highly abstracted and subject to several topological variants (subclasses), subject to the constraint that all transport takes place along links, and links are connected at the nodes.« less

  9. FAQS Job Task Analyses- NNSA Package Certification Engineer

    Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  10. FAQS Job Task Analyses- Electrical Systems and Safety Oversight

    Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  11. FAQS Job Task Analyses- Civil/Structural Engineering

    Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  12. Functional Area Qualification Standard Job Task Analyses | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Job Task Analyses Functional Area Qualification Standard Job Task Analyses DOE Aviation Manager DOE Aviation Safety Officer Chemical Processing Civil/Structural Engineering Confinement Ventilation and Process Gas Treatment Construction Management Criticality Safety Deactivation and Decommissioning Electrical Systems and Safety Oversight Emergency Management Environmental Compliance Environmental Restoration Facility Representative Fire Protection Engineering General Technical Base

  13. FAQS Job Task Analyses- Nuclear Explosive Safety Study

    Office of Energy Efficiency and Renewable Energy (EERE)

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  14. FAQS Job Task Analyses- Senior Technical Safety Manager

    Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  15. FAQS Job Task Analyses- Confinement Ventilation and Process Gas Treatment

    Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  16. FAQS Job Task Analyses- DOE Aviation Safety Officer

    Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  17. RAPID RADIOCHEMICAL ANALYSES IN SUPPORT OF FUKUSHIMA NUCLEAR ACCIDENT

    SciTech Connect (OSTI)

    Maxwell, S.

    2012-11-07

    There is an increasing need to develop faster analytical methods for emergency response, including emergency soil and air filter samples. The Savannah River National Laboratory (SRNL) performed analyses on samples received from Japan in April, 2011 as part of a U.S. Department of Energy effort to provide assistance to the government of Japan, following the nuclear event at Fukushima Daiichi, resulting from the earthquake and tsunami on March 11, 2011. Of particular concern was whether it was safe to plant rice in certain areas (prefectures) near Fukushima. The primary objectives of the sample collection, sample analysis, and data assessment teams were to evaluate personnel exposure hazards, identify the nuclear power plant radiological source term and plume deposition, and assist the government of Japan in assessing any environmental and agricultural impacts associated with the nuclear event. SRNL analyzed approximately 250 samples and reported approximately 500 analytical method determinations. Samples included soil from farmland surrounding the Fukushima reactors and air monitoring samples of national interest, including those collected at the U.S. Embassy and American military bases. Samples were analyzed for a wide range of radionuclides, including strontium-89, strontium-90, gamma-emitting radionuclides, and plutonium, uranium, americium and curium isotopes. Technical aspects of the rapid soil and air filter analyses will be described. The extent of radiostrontium contamination was a significant concern. For {sup 89,90}Sr analyses on soil samples, a rapid fusion technique using 1.5 gram soil aliquots to enable a Minimum Detectable Activity (MDA) of <1 pCi {sup 89,90} Sr /g of soil was employed. This sequential technique has been published recently by this laboratory for actinides and radiostrontium in soil and vegetation. It consists of a rapid sodium hydroxide fusion, pre-concentration steps using iron hydroxide and calcium fluoride precipitations, followed

  18. Rapid Radiochemical Analyses in Support of Fukushima Nuclear Accident - 13196

    SciTech Connect (OSTI)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2013-07-01

    There is an increasing need to develop faster analytical methods for emergency response, including emergency soil and air filter samples [1, 2]. The Savannah River National Laboratory (SRNL) performed analyses on samples received from Japan in April, 2011 as part of a U.S. Department of Energy effort to provide assistance to the government of Japan, following the nuclear event at Fukushima Daiichi, resulting from the earthquake and tsunami on March 11, 2011. Of particular concern was whether it was safe to plant rice in certain areas (prefectures) near Fukushima. The primary objectives of the sample collection, sample analysis, and data assessment teams were to evaluate personnel exposure hazards, identify the nuclear power plant radiological source term and plume deposition, and assist the government of Japan in assessing any environmental and agricultural impacts associated with the nuclear event. SRNL analyzed approximately 250 samples and reported approximately 500 analytical method determinations. Samples included soil from farmland surrounding the Fukushima reactors and air monitoring samples of national interest, including those collected at the U.S. Embassy and American military bases. Samples were analyzed for a wide range of radionuclides, including strontium-89, strontium-90, gamma-emitting radionuclides, and plutonium, uranium, americium and curium isotopes. Technical aspects of the rapid soil and air filter analyses will be described. The extent of radiostrontium contamination was a significant concern. For {sup 89,90}Sr analyses on soil samples, a rapid fusion technique using 1.5 gram soil aliquots to enable a Minimum Detectable Activity (MDA) of <1 pCi {sup 89,90}Sr /g of soil was employed. This sequential technique has been published recently by this laboratory for actinides and radiostrontium in soil and vegetation [3, 4]. It consists of a rapid sodium hydroxide fusion, pre-concentration steps using iron hydroxide and calcium fluoride

  19. The Use of Object-Oriented Analysis Methods in Surety Analysis

    SciTech Connect (OSTI)

    Craft, Richard L.; Funkhouser, Donald R.; Wyss, Gregory D.

    1999-05-01

    Object-oriented analysis methods have been used in the computer science arena for a number of years to model the behavior of computer-based systems. This report documents how such methods can be applied to surety analysis. By embodying the causality and behavior of a system in a common object-oriented analysis model, surety analysts can make the assumptions that underlie their models explicit and thus better communicate with system designers. Furthermore, given minor extensions to traditional object-oriented analysis methods, it is possible to automatically derive a wide variety of traditional risk and reliability analysis methods from a single common object model. Automatic model extraction helps ensure consistency among analyses and enables the surety analyst to examine a system from a wider variety of viewpoints in a shorter period of time. Thus it provides a deeper understanding of a system's behaviors and surety requirements. This report documents the underlying philosophy behind the common object model representation, the methods by which such common object models can be constructed, and the rules required to interrogate the common object model for derivation of traditional risk and reliability analysis models. The methodology is demonstrated in an extensive example problem.

  20. Description of Transmutation Library for Fuel Cycle System Analyses

    SciTech Connect (OSTI)

    Steven J. Piet; Samuel E. Bays; Edward A. Hoffman

    2010-08-01

    This report documents the Transmutation Library that is used in Fuel Cycle System Analyses. This version replaces the 2008 version.[Piet2008] The Transmutation Library has the following objectives: • Assemble past and future transmutation cases for system analyses. • For each case, assemble descriptive information such as where the case was documented, the purpose of the calculation, the codes used, source of feed material, transmutation parameters, and the name of files that contain raw or source data. • Group chemical elements so that masses in separation and waste processes as calculated in dynamic simulations or spreadsheets reflect current thinking of those processes. For example, the CsSr waste form option actually includes all Group 1A and 2A elements. • Provide mass fractions at input (charge) and output (discharge) for each case. • Eliminate the need for either “fission product other” or “actinide other” while conserving mass. Assessments of waste and separation cannot use “fission product other” or “actinide other” as their chemical behavior is undefined. • Catalog other isotope-specific information in one place, e.g., heat and dose conversion factors for individual isotopes. • Describe the correlations for how input and output compositions change as a function of UOX burnup (for LWR UOX fuel) or fast reactor (FR) transuranic (TRU) conversion ratio (CR) for either FR-metal or FR-oxide. This document therefore includes the following sections: • Explanation of the data set information, i.e., the data that describes each case. In no case are all of the data presented in the Library included in previous documents. In assembling the Library, we return to raw data files to extract the case and isotopic data, into the specified format. • Explanation of which isotopes and elements are tracked. For example, the transition metals are tracked via the following: two Zr isotopes, Zr-other, Tc99, Tc-other, two Mo-Ru-Rh-Pd isotopes, Mo

  1. Probing Nanoscale Objects in Liquids through Membranes with Near...

    Office of Scientific and Technical Information (OSTI)

    Conference: Probing Nanoscale Objects in Liquids through Membranes with Near-Field Microwave Microscopy Citation Details In-Document Search Title: Probing Nanoscale Objects in ...

  2. Naval Spent Fuel Rail Shipment Accident Exercise Objectives ...

    Office of Environmental Management (EM)

    Naval Spent Fuel Rail Shipment Accident Exercise Objectives Naval Spent Fuel Rail Shipment Accident Exercise Objectives PDF icon Naval Spent Fuel Rail Shipment Accident Exercise ...

  3. Detecting and Analyzing Multiple Moving Objects in a Crowd -...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    unison *Requires no complex shape or appearance models to select objectsApplications and Industries* Detecting and counting any type of moving object * Estimating crowd size for...

  4. V-149: Microsoft Internet Explorer Object Access Bug Lets Remote...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9: Microsoft Internet Explorer Object Access Bug Lets Remote Users Execute Arbitrary Code V-149: Microsoft Internet Explorer Object Access Bug Lets Remote Users Execute Arbitrary...

  5. Deterministic, Nanoscale Fabrication of Mesoscale Objects

    SciTech Connect (OSTI)

    Jr., R M; Shirk, M; Gilmer, G; Rubenchik, A

    2004-09-24

    Neither LLNL nor any other organization has the capability to perform deterministic fabrication of mm-sized objects with arbitrary, {micro}m-sized, 3-dimensional features with 20-nm-scale accuracy and smoothness. This is particularly true for materials such as high explosives and low-density aerogels. For deterministic fabrication of high energy-density physics (HEDP) targets, it will be necessary both to fabricate features in a wide variety of materials as well as to understand and simulate the fabrication process. We continue to investigate, both in experiment and in modeling, the ablation/surface-modification processes that occur with the use of laser pulses that are near the ablation threshold fluence. During the first two years, we studied ablation of metals, and we used sub-ps laser pulses, because pulses shorter than the electron-phonon relaxation time offered the most precise control of the energy that can be deposited into a metal surface. The use of sub-ps laser pulses also allowed a decoupling of the energy-deposition process from the ensuing movement/ablation of the atoms from the solid, which simplified the modeling. We investigated the ablation of material from copper, gold, and nickel substrates. We combined the power of the 1-D hydrocode ''HYADES'' with the state-of-the-art, 3-D molecular dynamics simulations ''MDCASK'' in our studies. For FY04, we have stretched ourselves to investigate laser ablation of carbon, including chemically-assisted processes. We undertook this research, because the energy deposition that is required to perform direct sublimation of carbon is much higher than that to stimulate the reaction 2C + O{sub 2} => 2CO. Thus, extremely fragile carbon aerogels might survive the chemically-assisted process more readily than ablation via direct laser sublimation. We had planned to start by studying vitreous carbon and move onto carbon aerogels. We were able to obtain flat, high-quality vitreous carbon, which was easy to work on

  6. The role of SEA in integrating and balancing high policy objectives in European cohesion funding programmes

    SciTech Connect (OSTI)

    Jiricka, Alexandra Proebstl, Ulrike

    2013-01-15

    Funding programmes for European cohesion policy are a crucial tool to support the sustainability goals of the European Union and national policies of its member states. All these funding programmes require a Strategic Environmental Assessment (SEA) to enhance sustainable development. This article compares five first SEA applications at cohesion policy level to discuss challenges, limitations and benefits of this instrument. In order to support the SEA-process a 'Handbook on SEA for Cohesion Policy 2007-13' (GRDP 2006) was developed. The paper examines the special requirements and challenges at the programme level given the special conditions for stakeholder involvement, integration of SEA in the programme development process and strategies to cope with uncertainties to ensure real compatibility with policy goals. Using action research and in-depth interviews with SEA planners and programme managers enabled us to analyse the suitability of the methodology proposed by the handbook. The results show that some recommendations of the handbook should be changed in order to increase the transparency and to enhance the standard and comparability of the SEA-documents. Overall the SEA proved to be a rather successful tool for the integration of sustainability goals at the EU and national policy levels. Its particular strengths emerged as the process makes uncertainties visible and leads to possible redefinitions while maintaining actual policy goals. - Highlights: Black-Right-Pointing-Pointer Comparing five case studies of first applications of SEA at cohesion policy level. Black-Right-Pointing-Pointer Overall the SEA proved to be a rather successful tool for the integration of sustainability goals. Black-Right-Pointing-Pointer The study makes uncertainties visible and shows how SEA could lead to possible redefinitions.

  7. ARM - PI Product - SCM Forcing Data Derived from NWP Analyses

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ProductsSCM Forcing Data Derived from NWP Analyses ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : SCM Forcing Data Derived from NWP Analyses Forcing data, suitable for use with single column models (SCMs) and cloud resolving models (CRMs), have been derived from NWP analyses for the ARM (Atmospheric Radiation Measurement) Tropical Western Pacific (TWP) sites of Manus Island and Nauru. Data Details

  8. Characterization of plasmonic hole arrays as transparent electrical contacts for organic photovoltaics using high-brightness Fourier transform methods

    DOE PAGES-Beta [OSTI]

    Camino, Fernando E.; Nam, Chang-Yong; Pang, Yutong T.; Hoy, Jessica; Eisaman, Matthew D.; Black, Charles T.; Sfeir, Matthew Y.

    2014-05-15

    Here we present a methodology for probing light-matter interactions in prototype photovoltaic devices consisting of an organic semiconductor active layer with a semitransparent metal electrical contact exhibiting surface plasmon-based enhanced optical transmission. We achieve high-spectral irradiance in a spot size of less than 100 μm using a high-brightness laser-driven light source and appropriate coupling optics. Spatially resolved Fourier transform photocurrent spectroscopy in the visible and near-infrared spectral regions allows us to measure external quantum efficiency with high sensitivity in small-area devices (<1 mm2). Lastly, this allows for rapid fabrication of variable-pitch sub-wavelength hole arrays in metal films for use asmore » transparent electrical contacts, and evaluation of the evanescent and propagating mode coupling to resonances in the active layer.« less

  9. Directivity patterns and pulse profiles of ultrasound emitted by laser action on interface between transparent and opaque solids: Analytical theory

    SciTech Connect (OSTI)

    Nikitin, Sergey M. E-mail: vitali.goussev@univ-lemans.fr; Tournat, Vincent; Chigarev, Nikolay; Castagnede, Bernard; Gusev, Vitalyi E-mail: vitali.goussev@univ-lemans.fr; Bulou, Alain; Zerr, Andreas

    2014-01-28

    The analytical theory for the directivity patterns of ultrasounds emitted from laser-irradiated interface between two isotropic solids is developed. It is valid for arbitrary combinations of transparent and opaque materials. The directivity patterns are derived both in two-dimensional and in three-dimensional geometries, by accounting for the specific features of the sound generation by the photo-induced mechanical stresses distributed in the volume, essential in the laser ultrasonics. In particular, the theory accounts for the contribution to the emitted propagating acoustic fields from the converted by the interface evanescent photo-generated compression-dilatation waves. The precise analytical solutions for the profiles of longitudinal and shear acoustic pulses emitted in different directions are proposed. The developed theory can be applied for dimensional scaling, optimization, and interpretation of the high-pressure laser ultrasonics experiments in diamond anvil cell.

  10. Methods of forming aluminum oxynitride-comprising bodies, including methods of forming a sheet of transparent armor

    DOE Patents [OSTI]

    Chu, Henry Shiu-Hung [Idaho Falls, ID; Lillo, Thomas Martin [Idaho Falls, ID

    2008-12-02

    The invention includes methods of forming an aluminum oxynitride-comprising body. For example, a mixture is formed which comprises A:B:C in a respective molar ratio in the range of 9:3.6-6.2:0.1-1.1, where "A" is Al.sub.2O.sub.3, "B" is AlN, and "C" is a total of one or more of B.sub.2O.sub.3, SiO.sub.2, Si--Al--O--N, and TiO.sub.2. The mixture is sintered at a temperature of at least 1,600.degree. C. at a pressure of no greater than 500 psia effective to form an aluminum oxynitride-comprising body which is at least internally transparent and has at least 99% maximum theoretical density.

  11. Effect of substrate temperature on the properties of transparent conductive ZnO:Al thin films prepared by RF sputtering

    SciTech Connect (OSTI)

    Deng Xueran; Deng Hong; Wei Min; Chen Jinju; Chen Han

    2011-09-15

    Transparent conductive ZnO:Al thin films were successfully deposited on glass substrates via radio frequency sputtering with a ceramic target in ambient argon. X-ray diffraction, profilometry, Hall-effect measurement, and spectrophotometry were employed to investigate the structural, electrical, and optical properties of films. The electrical and optical properties were found to be strongly dependent on the crystalline quality, grain size, and thickness of the films. X-ray diffraction spectra indicated that the crystalline quality of the films improved and grains became larger with increasing substrate temperature. Transmission spectra revealed that films possessed a higher transmittance in the visible range with an increase of the substrate temperature, but the band gap did not broaden obviously. Films with a resistivity of about 2.66 x 10{sup -4}{Omega} cm and an average transmittance above 90% in the visible range were obtained at the optimum temperature of 450 deg. C.

  12. High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition

    SciTech Connect (OSTI)

    Anders, Andre; Lim, Sunnie H.N.; Yu, Kin Man; Andersson, Joakim; Rosen, Johanna; McFarland, Mike; Brown, Jeff

    2009-04-24

    Aluminum-doped zinc oxide, ZnO:Al or AZO, is a well-known n-type transparent conducting oxide with great potential in a number of applications currently dominated by indium tin oxide (ITO). In this study, the optical and electrical properties of AZO thin films deposited on glass and silicon by pulsed filtered cathodic arc deposition are systematically studied. In contrast to magnetron sputtering, this technique does not produce energetic negative ions, and therefore ion damage can be minimized. The quality of the AZO films strongly depends on the growth temperature while only marginal improvements are obtained with post-deposition annealing. The best films, grown at a temperature of about 200?C, have resistivities in the low to mid 10-4 Omega cm range with a transmittance better than 85percent in the visible part of the spectrum. It is remarkable that relatively good films of small thickness (60 nm) can be fabricated using this method.

  13. Preliminary Results of Ancillary Safety Analyses Supporting TREAT LEU Conversion Activities

    SciTech Connect (OSTI)

    Brunett, A. J.; Fei, T.; Strons, P. S.; Papadias, D. D.; Hoffman, E. A.; Kontogeorgakos, D. C.; Connaway, H. M.; Wright, A. E.

    2015-10-01

    The Transient Reactor Test Facility (TREAT), located at Idaho National Laboratory (INL), is a test facility designed to evaluate the performance of reactor fuels and materials under transient accident conditions. The facility, an air-cooled, graphite-moderated reactor designed to utilize fuel containing high-enriched uranium (HEU), has been in non-operational standby status since 1994. Currently, in support of the missions of the Department of Energy (DOE) National Nuclear Security Administration (NNSA) Material Management and Minimization (M3) Reactor Conversion Program, a new core design is being developed for TREAT that will utilize low-enriched uranium (LEU). The primary objective of this conversion effort is to design an LEU core that is capable of meeting the performance characteristics of the existing HEU core. Minimal, if any, changes are anticipated for the supporting systems (e.g. reactor trip system, filtration/cooling system, etc.); therefore, the LEU core must also be able to function with the existing supporting systems, and must also satisfy acceptable safety limits. In support of the LEU conversion effort, a range of ancillary safety analyses are required to evaluate the LEU core operation relative to that of the existing facility. These analyses cover neutronics, shielding, and thermal hydraulic topics that have been identified as having the potential to have reduced safety margins due to conversion to LEU fuel, or are required to support the required safety analyses documentation. The majority of these ancillary tasks have been identified in [1] and [2]. The purpose of this report is to document the ancillary safety analyses that have been performed at Argonne National Laboratory during the early stages of the LEU design effort, and to describe ongoing and anticipated analyses. For all analyses presented in this report, methodologies are utilized that are consistent with, or improved from, those used in analyses for the HEU Final Safety Analysis

  14. Transparent Cost Database | Transparent Cost Database

    Open Energy Information (Open El) [EERE & EIA]

    15 Fuel Cell 15 PHEV 15 Ethanol-Flex Fuel 15 Natural Gas 15 Propane 15 Default 15 Fuel Prices: Diesel 3.540 Electricity 3.866 Ethanol-Flex Fuel 4.600 Gasoline 3.680...

  15. Transparent Cost Database | Transparent Cost Database

    Open Energy Information (Open El) [EERE & EIA]

    Hydropower 7% Hydropower 7% Ocean 7% Biopower 7% Distributed Generation 7% Fuel Cell 7% Natural Gas Combined Cycle 7% Natural Gas Combustion Turbine 7% Coal, Pulverized Coal,...

  16. May 20, 2015 Webinar - Guidance for Conducting Technical Analyses...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Performance & RIsk Assessment (P&RA) Community of Practice (CoP) Webinar - May 20, 2015 - Guidance for Conducting Technical Analyses for 10 CFR Part 61 by Mr. Chris Grossman (NRC) ...

  17. Monitoring objects orbiting earth using satellite-based telescopes

    DOE Patents [OSTI]

    Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.

    2015-06-30

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  18. Tracking target objects orbiting earth using satellite-based telescopes

    DOE Patents [OSTI]

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  19. Determining root correspondence between previously and newly detected objects

    DOE Patents [OSTI]

    Paglieroni, David W.; Beer, N Reginald

    2014-06-17

    A system that applies attribute and topology based change detection to networks of objects that were detected on previous scans of a structure, roadway, or area of interest. The attributes capture properties or characteristics of the previously detected objects, such as location, time of detection, size, elongation, orientation, etc. The topology of the network of previously detected objects is maintained in a constellation database that stores attributes of previously detected objects and implicitly captures the geometrical structure of the network. A change detection system detects change by comparing the attributes and topology of new objects detected on the latest scan to the constellation database of previously detected objects.

  20. Dose planning objectives in anal canal cancer IMRT: the TROG ANROTAT experience

    SciTech Connect (OSTI)

    Brown, Elizabeth; Cray, Alison; Haworth, Annette; Chander, Sarat; Lin, Robert; Subramanian, Brindha; Ng, Michael

    2015-06-15

    Intensity modulated radiotherapy (IMRT) is ideal for anal canal cancer (ACC), delivering high doses to irregular tumour volumes whilst minimising dose to surrounding normal tissues. Establishing achievable dose objectives is a challenge. The purpose of this paper was to utilise data collected in the Assessment of New Radiation Oncology Treatments and Technologies (ANROTAT) project to evaluate the feasibility of ACC IMRT dose planning objectives employed in the Australian situation. Ten Australian centres were randomly allocated three data sets from 15 non-identifiable computed tomography data sets representing a range of disease stages and gender. Each data set was planned by two different centres, producing 30 plans. All tumour and organ at risk (OAR) contours, prescription and dose constraint details were provided. Dose–volume histograms (DVHs) for each plan were analysed to evaluate the feasibility of dose planning objectives provided. All dose planning objectives for the bone marrow (BM) and femoral heads were achieved. Median planned doses exceeded one or more objectives for bowel, external genitalia and bladder. This reached statistical significance for bowel V30 (P = 0.04), V45 (P < 0.001), V50 (P < 0.001), external genitalia V20 (P < 0.001) and bladder V35 (P < 0.001), V40 (P = 0.01). Gender was found to be the only significant factor in the likelihood of achieving the bowel V50 (P = 0.03) and BM V30 constraints (P = 0.04). The dose planning objectives used in the ANROTAT project provide a good starting point for ACC IMRT planning. To facilitate clinical implementation, it is important to prioritise OAR objectives and recognise factors that affect the achievability of these objectives.

  1. Renewable and Recycled Energy Objective | Department of Energy

    Energy.gov (indexed) [DOE]

    an objective that 10% of all retail electricity sold in the state be obtained from renewable energy and recycled energy by 2015. The objective must be measured by qualifying...

  2. Ceph: An Open Source Object Store Evan Harvey Gustavo Rayos

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Ceph: An Open Source Object Store Evan Harvey Gustavo Rayos Nick Schuchhardt Mentors: David Bonnie, Chris Hoffman, Dominic Manno LA---UR---15---25907 What is an Object Store? *...

  3. Dynamics analyses of space power systems using the salt code

    SciTech Connect (OSTI)

    Geyer, H.K.; Bhattacharyya, S.K.; Hanan, N.A.; Livingston, J.M.; Westinghouse Electric Corp., Pittsburgh, PA )

    1989-01-01

    The dynamic behavior of large space power systems has been identified as a significant technical issue. To date several analyses of reactor kinetics have been reported in the literature, but there have been few (if any) studies of the dynamic response of the entire space power system. The problem is complex and required analytical methods are not generally available. Furthermore, given the conceptual state of current MMW space power systems designs, dynamic models of components are not generally available. We have used the SALT code to perform preliminary analyses of the startup and shutdown transients of several proposed MMW system designs. In this paper we will provide a description of the code methodology and present results of the analyses performed for the NERVA derivative reactor (NDR) system. 3 refs., 3 figs.

  4. Finite element analyses of a linear-accelerator electron gun

    SciTech Connect (OSTI)

    Iqbal, M. E-mail: muniqbal@ihep.ac.cn; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-02-15

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  5. Future Power Systems 20: The Smart Enterprise, its Objective and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Forecasting. | Department of Energy 0: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise, its Objective and Forecasting. (297.93 KB) More Documents & Publications Future Power Systems 21 - The Smart Customer Smart Grid R&D Multi-Year Program Plan (2010-2014) - September 2011 Update

  6. Enabling Detailed Energy Analyses via the Technology Performance Exchange: Preprint

    SciTech Connect (OSTI)

    Studer, D.; Fleming, K.; Lee, E.; Livingood, W.

    2014-08-01

    One of the key tenets to increasing adoption of energy efficiency solutions in the built environment is improving confidence in energy performance. Current industry practices make extensive use of predictive modeling, often via the use of sophisticated hourly or sub-hourly energy simulation programs, to account for site-specific parameters (e.g., climate zone, hours of operation, and space type) and arrive at a performance estimate. While such methods are highly precise, they invariably provide less than ideal accuracy due to a lack of high-quality, foundational energy performance input data. The Technology Performance Exchange was constructed to allow the transparent sharing of foundational, product-specific energy performance data, and leverages significant, external engineering efforts and a modular architecture to efficiently identify and codify the minimum information necessary to accurately predict product energy performance. This strongly-typed database resource represents a novel solution to a difficult and established problem. One of the most exciting benefits is the way in which the Technology Performance Exchange's application programming interface has been leveraged to integrate contributed foundational data into the Building Component Library. Via a series of scripts, data is automatically translated and parsed into the Building Component Library in a format that is immediately usable to the energy modeling community. This paper (1) presents a high-level overview of the project drivers and the structure of the Technology Performance Exchange; (2) offers a detailed examination of how technologies are incorporated and translated into powerful energy modeling code snippets; and (3) examines several benefits of this robust workflow.

  7. The World's Largest 3D Printed Object | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The World's Largest 3D Printed Object The World's Largest 3D Printed Object Addthis The Guinness Book of World Records just certified that the Department of Energy's Oak Ridge National Laboratory produced the world's largest solid 3D-printed object

  8. ChemCam laser first analyses yield beautiful results

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ChemCam laser first analyses ChemCam laser first analyses yield beautiful results The laser instrument has fired nearly 500 shots so far that have produced strong, clear data about the composition of the Martian surface. August 23, 2012 This photo mosaic shows the scour mark, dubbed Goulburn, left by the thrusters on the sky crane that helped lower NASA's Curiosity rover to the Red Planet. It is located 16 to 20 feet (5 to 6 meters) to the left of the rover's landing position. The sky crane

  9. Verification and Validation of Corrected Versions of RELAP5 for ATR Reactivity Analyses

    SciTech Connect (OSTI)

    Cliff B. Davis

    2008-11-01

    Two versions of the RELAP5 computer code, RELAP5/MOD2.5 and RELAP5/MOD3 Version 3.2.1.2, are used to support safety analyses of the Advanced Test Reactor (ATR). Both versions of RELAP5 contain a point reactor kinetics model that has been used to simulate power excursion transients at the ATR. Errors in the RELAP5 point kinetics model were reported to the RELAP5 code developers in 2007. These errors had the potential to affect reactivity analyses that are part of the ATR’s safety basis. Consequently, corrected versions of RELAP5 were developed for analysis of the ATR. Four reactivity transients were simulated to verify and validate the corrected codes for use in safety evaluations of the ATR. The objectives of this paper are to describe the verification and validation of the point kinetics model for ATR applications and to inform code users of the effects of the errors on representative reactivity analyses.

  10. Preliminary analyses of the excavation investigation experiments proposed for the exploratory shaft at Yucca Mountain, Nevada Test Site

    SciTech Connect (OSTI)

    Costin, L.S.; Bauer, S.J.

    1988-12-01

    The Yucca Mountain Project (YMP), is examining the feasibility of siting a repository for high-level nuclear waste at Yucca Mountain on and adjacent to the Nevada Test Site. Three excavation experiments, Shaft Convergence, Demonstration Breakout Rooms, and Sequential Drift Mining, will provide some of the data required to (1) assess the mechanical behavior of repository-size openings and (2) validate numerical models that may be used in the repository design process. In this report, the results of preliminary analyses of the three excavation experiments are presented. The major objective of these analyses was to provide some guidance to the experiment planners regarding the expected displacements and stresses near the experimental drifts so that selection and placement of instrumentation could be optimized. Further, successful completion of these analyses demonstrates the ability to model the experiments, given the simplifying assumptions presented. Limitations of the analyses performed and the experiments as currently designed are also discussed. Finally, the results of these analyses provided some indication of how the variation of some key geometric and material parameters would affect the predicted results. Once the experiment design is finalized and site-specific material data are collected, pretest predictive analyses will be conducted using the mechanical and material models that require validation. 15 refs., 123 figs., 13 tabs.

  11. Phase Effects on Mesoscale Object X-ray Absorption Images

    SciTech Connect (OSTI)

    Martz, Jr., H E; Aufderheide, M B; Barty, A; Lehman, S K; Kozioziemski, B J; Schneberk, D J

    2004-09-24

    At Lawrence Livermore National Laboratory particular emphasis is being placed on the nondestructive characterization (NDC) of 'mesoscale' objects.[Martz and Albrecht 2003] We define mesoscale objects as objects that have mm extent with {micro}m features. Here we confine our discussions to x-ray imaging methods applicable to mesoscale object characterization. The goal is object recovery algorithms including phase to enable emerging high-spatial resolution x-ray imaging methods to ''see'' inside or image mesoscale-size materials and objects. To be successful our imaging characterization effort must be able to recover the object function to one micrometer or better spatial resolution over a few millimeters field-of-view with very high contrast.

  12. Analyses of Selected Provisions of Proposed Energy Legislation: 2003

    Reports and Publications

    2003-01-01

    This study responds to a July 31, 2003 request from Senator Byron L. Dorgan. The study is based primarily on analyses the Energy Information Administration has previously done for studies requested by Congress. It includes analysis of the Renewable Portfolio Standard, Renewable Fuels Standard, production in the Alaskan National Wildlife Refuge, the construction of an Alaskan Natural Gas pipeline, and various tax provisions.

  13. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    SciTech Connect (OSTI)

    Talamo, Alberto; Gohar, Yousry

    2016-01-01

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is driven by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.

  14. The RACER (risk analysis, communication, evaluation, and reduction) stakeholder environmental data transparency project for Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Echohawk, John Chris; Dorries, Alison M; Eberhart, Craig F; Werdel, Nancy

    2008-01-01

    The RACER (Risk Analysis, Communication, Evaluation, and Reduction) project was created in 2003, as an effort to enhance the Los Alamos National Laboratory's ability to effectively communicate the data and processes used to evaluate environmental risks to the public and the environment. The RACER project staff consists of members of Risk Assessment Corporation, Los Alamos National Laboratory (LANL), and the New Mexico Environment Department (NMED). RACER staff worked closely with members of the community, tribal governments, and others within NMED and LANL to create innovative tools and a process that could provide information to regulators, LANL and the community about the sources of public health risk and ecological impact from LAN L operations. The RACER Data Analysis Tool (DA T) provides the public with webbased access to environmental measurement data collected in and around the LANL site. Its purpose is to provide a 'transparent' view to the public of all data collected by LANL and NMED regarding the LANL site. The DAT is available to the public at 'www.racernm.com'.

  15. Effects of alpha-zirconium phosphate on thermal degradation and flame retardancy of transparent intumescent fire protective coating

    SciTech Connect (OSTI)

    Xing, Weiyi; Zhang, Ping; Song, Lei; Wang, Xin; Hu, Yuan

    2014-01-01

    Graphical abstract: - Highlights: A transparent intumescent fire protective coating was obtained by UV-cured technology. OZrP could enhance the thermal stability and anti-oxidation of the coating. OZrP could reduce the combustion properties of the coatings. - Abstract: Organophilic alpha-zirconium phosphate (OZrP) was used to improve the thermal and fire retardant behaviors of the phenyl di(acryloyloxyethyl)phosphate (PDHA)-triglycidyl isocyanurate acrylate (TGICA)-2-phenoxyethyl acrylate (PHEA) (PDHA-TGICA-PHEA) coating. The morphology of nanocomposite coating was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of OZrP on the flame retardancy, thermal stability, fireproofing time and char formation of the coatings was investigated by microscale combustion calorimeter (MCC), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), laser Raman spectroscopy (LRS) and scanning electric microscope (SEM). The results showed that by adding OZrP, the peak heat release rate and total heat of combustion were significantly reduced. The highest improvement was achieved with 0.5 wt% OZrP. XPS analysis indicated that the performance of anti-oxidation of the coating was improved with the addition of OZrP, and SEM images showed that a good synergistic effect was obtained through a ceramic-like layer produced by OZrP covered on the surface of char.

  16. Highly transparent and conductive double-layer oxide thin films as anodes for organic light-emitting diodes

    SciTech Connect (OSTI)

    Yang Yu; Wang Lian; Yan He; Jin Shu; Marks, Tobin J.; Li Shuyou

    2006-07-31

    Double-layer transparent conducting oxide thin film structures containing In-doped CdO (CIO) and Sn-doped In{sub 2}O{sub 3} (ITO) layers were grown on glass by metal-organic chemical vapor deposition and ion-assisted deposition (IAD), respectively, and used as anodes for polymer light-emitting diodes (PLEDs). These films have a very low overall In content of 16 at. %. For 180-nm-thick CIO/ITO films, the sheet resistance is 5.6 {omega}/{open_square}, and the average optical transmittance is 87.1% in the 400-700 nm region. The overall figure of merit ({phi}=T{sup 10}/R{sub sheet}) of the double-layer CIO/ITO films is significantly greater than that of single-layer CIO, IAD-ITO, and commercial ITO films. CIO/ITO-based PLEDs exhibit comparable or superior device performance versus ITO-based control devices. CIO/ITO materials have a much lower sheet resistance than ITO, rendering them promising low In content electrode materials for large-area optoelectronic devices.

  17. All-dielectric metasurface analogue of electromagnetically induced transparency [High Quality Factor Fano-Resonant All-Dielectric Metamaterials

    DOE PAGES-Beta [OSTI]

    Yang, Yuanmu; Kravchenko, Ivan I.; Briggs, Dayrl P.; Valentine, Jason

    2014-12-16

    Fano-resonant plasmonic metamaterials and nanostructures have become a major focus of the nanophotonics fields over the past several years due their ability to produce high quality factor (Q-factor) resonances. The origin of such resonances is the interference between a broad and narrow resonance, ultimately allowing suppression of radiative damping. However, Fano-resonant plasmonic structures still suffer non-radiative damping due to Ohmic loss, ultimately limiting the achievable Q-factors to values less than ~10. Here, we report experimental demonstration of Fano-resonant silicon-based metamaterials that have a response that mimics the electromagnetically induced transparency (EIT) found in atomic systems. Due to extremely low absorptionmore » loss, a record-high quality factor (Q-factor) of 306 was experimentally observed. Furthermore, the unit cell of the metamaterial was designed with a feed-gap which results in strong local field enhancement in the surrounding medium resulting in strong light-matter interaction. This allows the metamaterial to serve as a refractive index sensor with a figure-of-merit (FOM) of 101, far exceeding the performance of previously demonstrated localized surface plasmon resonance sensors.« less

  18. Cooperative Monitoring Center Occasional Paper/12: ENTNEA: A Concept for Enhancing Nuclear Transparency for Confidence Building in Northeast Asia

    SciTech Connect (OSTI)

    Nam, Man-Kwon; Shin, Sung-Tack

    1999-06-01

    Nuclear energy continues to be a strong and growing component of economic development in Northeast Asia. A broad range of nuclear energy systems already exists across the region and vigorous growth is projected. Associated with these capabilities and plans are various concerns about operational safety, environmental protection, and accumulation of spent fuel and other nuclear materials. We consider cooperative measures that might address these concerns. The confidence building measures suggested here center on the sharing of information to lessen concerns about nuclear activities or to solve technical problems. These activities are encompassed by an Enhanced Nuclear Transparency in Northeast Asia (ENTNEA) concept that would be composed of near-term, information-sharing activities and an eventual regional institution. The near-term activities would address specific concerns and build a tradition of cooperation; examples include radiation measurements for public safety and emergency response, demonstration of safe operations at facilities and in transportation, and material security in the back end of the fuel cycle. Linkages to existing efforts and organizations would be sought to maximize the benefits of cooperation. In the longer term, the new cooperative tradition might evolve into an ENTNEA institution. In institutional form, ENTNEA could combine the near-term activities and new cooperative activities, which might require an institutional basis, for the mutual benefit and security of regional parties.

  19. Environmental measurements and technology for non-proliferation objectives. Final report

    SciTech Connect (OSTI)

    Broadway, J.A.

    1998-03-31

    The purpose of this study is to identify multi-disciplinary and single focus laboratories from the environmental and public health communities that can serve as technical center of opportunity for nuclear, inorganic and organic analyses. The objectives of the Office of Research and Development effort are twofold: (1) to identify the technology shortcomings and technologies gaps (thus requirements) within these communities that could benefit from state-of-the-art infield analysis technologies currently under development and (2) to promote scientist-to-scientist dialog and technical exchange under such existing US government internship programs (eg SABIT/USDOC) to improve skills and work relationships. Although the data analysis will focus on environmentally sensitive signatures and materials, the office of Research and Development wishes to further its nuclear non-proliferation objectives by assessing the current technical skill and ingenious analytical tools in less-developed countries so as to broaden the base of capability for multi-species measurement technology development.

  20. Near earth object fuels (neo-fuels): Discovery, prospecting and use

    SciTech Connect (OSTI)

    Zuppero, A.C.; Jacox, M.G.

    1992-08-25

    The 1992 discovery of a water-ice, near-Earth object (NEO) in the space near Earth is evaluated as a source of rocket fuel and life support materials for Earth orbit use. Nuclear thermal rockets using steam propellant are evaluated and suggested. The space geological formation containing such water-rich NEO's is described. An architecture couples near-Earth object fuels (neo-fuel) extraction with use in Earth orbits. Preliminary mass payback analyses show that space tanker systems fueled from space can return in excess of 100 times their launched mass from the NEO, per trip. Preliminary cost estimates indicate neo-fuel costs at Earth orbit can be 3 orders of magnitude below today's cost. A suggested resource verification plan is presented.

  1. Near earth object fuels (neo-fuels): Discovery, prospecting and use

    SciTech Connect (OSTI)

    Zuppero, A.C.; Jacox, M.G.

    1992-08-25

    The 1992 discovery of a water-ice, near-Earth object (NEO) in the space near Earth is evaluated as a source of rocket fuel and life support materials for Earth orbit use. Nuclear thermal rockets using steam propellant are evaluated and suggested. The space geological formation containing such water-rich NEO`s is described. An architecture couples near-Earth object fuels (neo-fuel) extraction with use in Earth orbits. Preliminary mass payback analyses show that space tanker systems fueled from space can return in excess of 100 times their launched mass from the NEO, per trip. Preliminary cost estimates indicate neo-fuel costs at Earth orbit can be 3 orders of magnitude below today`s cost. A suggested resource verification plan is presented.

  2. Laser radiography forming bremsstrahlung radiation to image an object

    DOE Patents [OSTI]

    Perry, Michael D.; Sefcik, Joseph A.

    2004-01-13

    A method of imaging an object by generating laser pulses with a short-pulse, high-power laser. When the laser pulse strikes a conductive target, bremsstrahlung radiation is generated such that hard ballistic high-energy electrons are formed to penetrate an object. A detector on the opposite side of the object detects these electrons. Since laser pulses are used to form the hard x-rays, multiple pulses can be used to image an object in motion, such as an exploding or compressing object, by using time gated detectors. Furthermore, the laser pulses can be directed down different tubes using mirrors and filters so that each laser pulse will image a different portion of the object.

  3. Interrogation of an object for dimensional and topographical information

    DOE Patents [OSTI]

    McMakin, Doug L [Richland, WA; Severtsen, Ronald H [Richland, WA; Hall, Thomas E [Richland, WA; Sheen, David M [Richland, WA

    2003-01-14

    Disclosed are systems, methods, devices, and apparatus to interrogate a clothed individual with electromagnetic radiation to determine one or more body measurements at least partially covered by the individual's clothing. The invention further includes techniques to interrogate an object with electromagnetic radiation in the millimeter and/or microwave range to provide a volumetric representation of the object. This representation can be used to display images and/or determine dimensional information concerning the object.

  4. Interrogation of an object for dimensional and topographical information

    DOE Patents [OSTI]

    McMakin, Douglas L.; Severtsen, Ronald H.; Hall, Thomas E.; Sheen, David M.; Kennedy, Mike O.

    2004-03-09

    Disclosed are systems, methods, devices, and apparatus to interrogate a clothed individual with electromagnetic radiation to determine one or more body measurements at least partially covered by the individual's clothing. The invention further includes techniques to interrogate an object with electromagnetic radiation in the millimeter and/or microwave range to provide a volumetric representation of the object. This representation can be used to display images and/or determine dimensional information concerning the object.

  5. ENVIRONMENTAL MANAGEMENT SYSTEM OBJECTIVES AND TARGETS PROGRESS CY2014

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Objectives & Targets Rev. 1.2, 8/29/2014 Page 1 of 3 ENVIRONMENTAL MANAGEMENT SYSTEM OBJECTIVES AND TARGETS PROGRESS CY2014 for SOUTHWESTERN POWER ADMINISTRATION Activity Legal Requirement Aspect Objective Target** see important note 2014 Target Achievements Real Estate Management DOE O 436.1 E.O. 13423 & 13514 EPAct 1992 and 2005 EISA 2007 NECPA 1978 Natural resource depletion and GHG emissions from resource intensive facilities Increase sustainability of facility resources, reduce

  6. Template:IngredientSubObject | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    be called in the following format: IngredientSubObject | qty | ingredient | alternative Edit the page to see the template text. Retrieved from "http:en.openei.orgw...

  7. Object-oriented system building for the SSC

    SciTech Connect (OSTI)

    Ludgate, G.A.

    1989-04-01

    The concepts and terminology of object-oriented system development are presented assuming the reader is familiar with the Structured Analysis and Structured Design (SA/SD) methodology. An improvement to SA/SD, known as Object Oriented Analysis/Object Oriented Design (OOA/OOD) is described and the steps in such an undertaking explained. Object Oriented Programming (OOP) is briefly introduced before SA/SD and OOA/OOD are compared. A recommendation to the SSC Central Design Group concludes the paper.

  8. Recovery Act: Multi-Objective Optimization Approaches for the...

    Office of Scientific and Technical Information (OSTI)

    The main objective of this project is to provide training opportunities for two graduate students in order to improve the human capital and skills required for implementing and ...

  9. System and method for removal of buried objects

    DOE Patents [OSTI]

    Alexander, Robert G.; Crass, Dennis; Grams, William; Phillips, Steven J.; Riess, Mark

    2008-06-03

    The present invention is a system and method for removal of buried objects. According to one embodiment of the invention, a crane with a vibrator casing driver is used to lift and suspend a large diameter steel casing over the buried object. Then the casing is driven into the ground by the vibratory driver until the casing surrounds the buried object. Then the open bottom of the casing is sealed shut by injecting grout into the ground within the casing near its bottom. When the seal has cured and hardened, the top of the casing is lifted to retrieve the casing, with the buried object inside, from the ground.

  10. LIGHT CURVES OF 32 LARGE TRANSNEPTUNIAN OBJECTS (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    TNO population except in the case of tidally locked systems. more All the Haumea family objects measured so far have light curve amplitudes and rotation periods <10 hr,...

  11. Enhancement of the visibility of objects located below the surface...

    Office of Scientific and Technical Information (OSTI)

    Enhancement of the visibility of objects located below the surface of a scattering medium ... The enhancement of the image contrast of a subsurface structure is based on the ...

  12. Center Objective | Center for Bio-Inspired Solar Fuel Production

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Our objective is to adapt the fundamental principles of natural photosynthesis to the man-made production of hydrogen or other fuels from sunlight A multidisciplinary team of...

  13. A miniaturized mW thermoelectric generator for nw objectives...

    Office of Scientific and Technical Information (OSTI)

    reliable power for decades. Citation Details In-Document Search Title: A miniaturized mW thermoelectric generator for nw objectives: continuous, autonomous, reliable power for ...

  14. Reconstruction of shapes of near symmetric and asymmetric objects

    DOE Patents [OSTI]

    Pizlo, Zygmunt; Sawada, Tadamasa; Li, Yunfeng

    2013-03-26

    A system processes 2D images of 2D or 3D objects, creating a model of the object that is consistent with the image and as veridical as the perception of the 2D image by humans. Vertices of the object that are hidden in the image are recovered by using planarity and symmetry constraints. The 3D shape is recovered by maximizing 3D compactness of the recovered object and minimizing its surface area. In some embodiments, these two criteria are weighted by using the geometric mean.

  15. Stainless Steel Hotplate Heater for Long Objects --- Inventor...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Stainless Steel Hotplate Heater for Long Objects --- Inventor(s): Stephan Jurczynski and ... High electrical current is passed through a stainless steel plate longer and slightly ...

  16. "A Novel Objective for EUV Microscopy and EUV Lithography" Inventors...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A Novel Objective for EUV Microscopy and EUV Lithography" Inventors ..--.. Manfred Bitter, Kenneth Hill, Philip Efthimion. This invention is a new x-ray scheme for stigmatic...

  17. Method and apparatus for determining the coordinates of an object

    DOE Patents [OSTI]

    Pedersen, Paul S.

    2002-01-01

    A simplified method and related apparatus are described for determining the location of points on the surface of an object by varying, in accordance with a unique sequence, the intensity of each illuminated pixel directed to the object surface, and detecting at known detector pixel locations the intensity sequence of reflected illumination from the surface of the object whereby the identity and location of the originating illuminated pixel can be determined. The coordinates of points on the surface of the object are then determined by conventional triangulation methods.

  18. Neutronics analyses in support of rotating target developments at SNS

    SciTech Connect (OSTI)

    Gallmeier, Franz X.

    2010-03-08

    A second target station (STS) for Spallation Neutron Souce (SNS) very likely being operated in long-pulse mode is in the early design phase, will complement the ORNL neutron sources, which presently consist of a short-pulse spallation source and the HFIR research reactor. As an alternative to the stationary liquid metal target, a rotating target is being considered. Neutronics studies in support of a 3MW power 20 Hz repetition rate rotating target feasibility study funded through the laboratory LDRD program, was extended towards a 1.5 MW STS design. The scope of work included in-operation heat deposition rates in target structures for thermal and structural analyses, target radionuclide inventory for decay heat and safety analyses, lifetime estimations due to radiation-driven material damage of target and moderator components, moderator neutron performance and moderator cryogenic heatloads.

  19. Fabrication and microstructure of cerium doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics by solid-state reaction method

    SciTech Connect (OSTI)

    Li, Junlang; Xu, Jian; Shi, Ying; Qi, Hongfang; Xie, Jianjun; Lei, Fang

    2014-07-01

    Highlights: We fabricate Ce doped lutetium aluminum garnet ceramics by solid-state method. The raw materials include Lu{sub 2}O{sub 3} nanopowders synthesized by co-precipitation method. The density of the transparent ceramics reach 99.7% of the theoretical value. The optical transmittance of the bulk ceramic at 550 nm was 57.48%. Some scattering centers decrease the optical characteristic of the ceramic. - Abstract: Polycrystalline Ce{sup 3+} doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics fabricated by one step solid-state reaction method using synthetic nano-sized Lu{sub 2}O{sub 3}, commercial ?-Al{sub 2}O{sub 3} and CeO{sub 2} powders were investigated in this paper. The green compacts shaped by the mixed powders were successfully densified into Ce:LuAG transparent ceramics after vacuum sintering at 1750 C for 10 h. The in-line optical transmittance of the Ce:LuAG ceramic made by home-made Lu{sub 2}O{sub 3} powders could reach 57.48% at 550 nm, which was higher than that of the ceramic made by commercial Lu{sub 2}O{sub 3} powders (22.96%). The microstructure observation showed that light scattering centers caused by micro-pores, aluminum segregation and refraction index inhomogeneities induced the decrease of optical transparency of the Ce:LuAG ceramics, which should be removed and optimized in the future work.

  20. I I Hydrological/Geological Studies Radiochemical Analyses of Water

    Office of Legacy Management (LM)

    ' Hydrological/Geological Studies Radiochemical Analyses of Water Samples from Selected Streams, Wells, Springs and Precipitation Collected Prior to Re-Entry . , Drilling, Project Rulison-6, 197 1 HGS 7 ' DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Prepared Under Agreement No. AT(29-2)-474 f o r the Nevada Operations Office U.S. Atomic Energy Commission PROPERTY OF U. S. GOVERNMENT -UNITED

  1. Radiochemical Analyses of Water Samples from Selected Streams

    Office of Legacy Management (LM)

    > : , - ' and Precipitation Collected in - Connection with Calibration-Test Flaring of Gas From Test Well, - I August 15-October 13, 197,0,, Project Rulison-8, 197 1 HGS 9 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Federal center, Denver, Colorado 80225 RADIOCHEMICAL ANALYSES OF WATER SAMPLES FROM SELECTED STREAMS AND PRECIPITATION

  2. Panel 2, H2 Grid Integration: Tools and Analyses

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    H 2 Grid Integration: Tools and Analyses Hydrogen Energy Storage Workshop Josh Eichman, PhD 5/14/2014 2 Wind to Hydrogen Project * Xcel Energy, DOE and NREL collaboration * Can explore the role of H 2 for... *Renewable Integration *Responsive loads (demand response) *Energy Storage *Multiple outputs streams o Electricity o Transportation fuel o Industrial gas 3 Electricity market requirements * Important operational characteristics o Power capacity How much can you provide in response? o Energy

  3. H2A Delivery Scenario Model and Analyses

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    H2A Delivery Scenario Model and Analyses Marianne Mintz and Jerry Gillette DOE Hydrogen Delivery Analysis and High Pressure Tanks R&D Project Review Meeting February 8, 2005 2 Pioneering Science and Technology Office of Science U.S. Department of Energy Topics * Delivery Scenarios - Current status - Future scenarios * Delivery Scenarios model - Approach - Structure - Current status - Results * Pipeline modeling - Approach - Key assumptions - Results * Next Steps 3 Pioneering Science and

  4. Plasmonic Three-Dimensional Transparent Conductor Based on Al-Doped Zinc Oxide-Coated Nanostructured Glass Using Atomic Layer Deposition

    DOE PAGES-Beta [OSTI]

    Malek, Gary A.; Aytug, Tolga; Liu, Qingfeng; Wu, Judy

    2015-04-02

    Transparent nanostructured glass coatings, fabricated on glass substrates, with a unique three-dimensional (3D) architecture were utilized as the foundation for the design of plasmonic 3D transparent conductors. Transformation of the non-conducting 3D structure to a conducting 3D network was accomplished through atomic layer deposition of aluminum-doped zinc oxide (AZO). After AZO growth, gold nanoparticles (AuNPs) were deposited by electronbeam evaporation to enhance light trapping and decrease the overall sheet resistance. Field emission scanning electron microscopy and atomic force microcopy images revealed the highly porous, nanostructured morphology of the AZO coated glass surface along with the in-plane dimensions of the depositedmore » AuNPs. Sheet resistance measurements conducted on the coated samples verified that the electrical properties of the 3D network are comparable to that of the untextured two-dimensional AZO coated glass substrates. In addition, transmittance measurements of the glass samples coated with various AZO thicknesses showed preservation of the highly transparent nature of each sample, while the AuNPs demonstrated enhanced light scattering as well as light-trapping capability.« less

  5. Plasmonic Three-Dimensional Transparent Conductor Based on Al-Doped Zinc Oxide-Coated Nanostructured Glass Using Atomic Layer Deposition

    SciTech Connect (OSTI)

    Malek, Gary A.; Aytug, Tolga; Liu, Qingfeng; Wu, Judy

    2015-04-02

    Transparent nanostructured glass coatings, fabricated on glass substrates, with a unique three-dimensional (3D) architecture were utilized as the foundation for the design of plasmonic 3D transparent conductors. Transformation of the non-conducting 3D structure to a conducting 3D network was accomplished through atomic layer deposition of aluminum-doped zinc oxide (AZO). After AZO growth, gold nanoparticles (AuNPs) were deposited by electronbeam evaporation to enhance light trapping and decrease the overall sheet resistance. Field emission scanning electron microscopy and atomic force microcopy images revealed the highly porous, nanostructured morphology of the AZO coated glass surface along with the in-plane dimensions of the deposited AuNPs. Sheet resistance measurements conducted on the coated samples verified that the electrical properties of the 3D network are comparable to that of the untextured two-dimensional AZO coated glass substrates. In addition, transmittance measurements of the glass samples coated with various AZO thicknesses showed preservation of the highly transparent nature of each sample, while the AuNPs demonstrated enhanced light scattering as well as light-trapping capability.

  6. Why MnIn{sub 2}O{sub 4} spinel is not a transparent conducting oxide?

    SciTech Connect (OSTI)

    Martinez-Lope, M.J.; Retuerto, M.; Calle, C. de la; Porcher, Florence

    2012-03-15

    The title compound has been synthesized by a citrate technique. The crystal structure has been investigated at room temperature from high-resolution neutron powder diffraction (NPD) data. It crystallizes in a cubic spinel structure, space group Fd3-bar m, Z=8, with a=9.0008(1) A at 295 K. It exhibits a crystallographic formula (Mn{sub 0.924(2)}In{sub 0.076(2)}){sub 8a}(In{sub 1.804(2)}Mn{sub 0.196(2)}){sub 16d}O{sub 4}, where 8a and 16d stand for the tetrahedral and octahedral sites of the spinel structure, respectively, with a slight degree of inversion, {lambda}=0.08. MnIn{sub 2}O{sub 4} shows antiferromagnetic interactions below T{sub N} Almost-Equal-To 40 K, due to the statistical distribution of Mn ions over the two available sites. Unlike the related MgIn{sub 2}O{sub 4} and CdIn{sub 2}O{sub 4} spinels, well known as transparent conducting oxides, MnIn{sub 2}O{sub 4} is not transparent and shows a poor conductivity ({sigma}=0.38 S cm{sup -1} at 1123 K): the presence of Mn ions, able to adopt mixed valence states, localizes the charges that, otherwise, would be delocalized in the spinel conduction band. - Graphical Abstract: From NPD data the crystallographic formula (Mn{sub 0.924(2)}In{sub 0.076(2)}){sub 8a}(In{sub 1.804(2)}Mn{sub 0.196(2)}){sub 16d}O{sub 4}, shows a slight degree of inversion, {lambda}=0.08 and a certain In deficiency. The presence of Mn ions, able to adopt mixed oxidation states, localize the charges that, otherwise, would be delocalized in the spinel conduction band; the presence of localized Mn{sup 2+} and Mn{sup 3+} ions provides the characteristic brown color. Highlights: Black-Right-Pointing-Pointer Accurate structural determination from NPD data: inversion degree (8%), and In deficiency. Black-Right-Pointing-Pointer Bond-valence indicates Mn{sup 2+}-Mn{sup 3+} ions; edge-sharing octahedra contain 90% In{sup 3+}+10% Mn{sup 3+} cations. Black-Right-Pointing-Pointer Conductivity several orders of magnitude lower than those of MgIn{sub 2}O

  7. SMITHERS: An object-oriented modular mapping methodology for MCNP-based neutronic–thermal hydraulic multiphysics

    DOE PAGES-Beta [OSTI]

    Richard, Joshua; Galloway, Jack; Fensin, Michael; Trellue, Holly

    2015-04-04

    A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from themore » combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.« less

  8. SMITHERS: An object-oriented modular mapping methodology for MCNP-based neutronicthermal hydraulic multiphysics

    SciTech Connect (OSTI)

    Richard, Joshua; Galloway, Jack; Fensin, Michael; Trellue, Holly

    2015-04-04

    A novel object-oriented modular mapping methodology for externally coupled neutronicsthermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from the combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.

  9. SMITHERS: An object-oriented modular mapping methodology for MCNP-based neutronic–thermal hydraulic multiphysics

    SciTech Connect (OSTI)

    Richard, Joshua; Galloway, Jack; Fensin, Michael; Trellue, Holly

    2015-04-04

    A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from the combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.

  10. Comparison of the effect of outdoor exposure on the optical properties of solar mirrors and transparent encapsulant materials

    SciTech Connect (OSTI)

    Dake, L.S.; Lind, M.A.; Maag, C.R.

    1981-09-01

    The effects of outdoor exposure on solar mirrors and transparent encapsulant materials are assessed and compared. The encapsulant materials tested included glasses, polymers and silicones. Samples of the materials were placed on stationary exposure racks in six locations that represented urban, desert, oceanside and high altitude mountain areas. Samples were removed periodically for optical characterizations. The spectral hemispherical and diffuse reflectance of the mirror samples and the spectral hemispherical transmittance and diffuse reflectance of the encapsulant materials was measured. The relative normal hemispherical transmittance of the encapsulant materials was measured. Correlations between the glass and mirror data showed that the average diffuse reflectance losses were six times larger for the mirrors than for the glass samples. The average specular reflectance losses for the mirror samples were seven times as large as the average hemispherical transmittance losses for the glass samples. These correlations may enable one to predict the performance of mirrors made using the other encapsulant materials for superstrates. It was found that the urban and oceanside sites were the dirtiest, while the desert and mountain sites were the cleanest. Average specular reflectance losses varied from 4% at the cleanest site to 50% at the dirtiest site. The range in hemispherical transmittance losses for the encapsulant materials varied between 0% and 6%. At one site, the average daily specular reflectance losses were .04% for the mirror samples and average daily hemispherical transmittance losses were about .01% for the glass samples. The polymer materials degraded somewhat more rapidly than the glasses, and the silicones irreversible degraded too rapidly and severely to be useful for either photovoltaic or solar thermal applications.

  11. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    SciTech Connect (OSTI)

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-08-11

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.

  12. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE PAGES-Beta [OSTI]

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-08-11

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  13. Fissile Mass Flow Monitor Implementation for Transparency in HEU Blenddown at the URAL Electrochemical Integrated Plant (UEIP) in Novouralsk

    SciTech Connect (OSTI)

    March-Leuba, J.; Mastal, E.; Powell, D.; Sumner, J.; Uckan, T.; Vines, B.

    1999-07-25

    The Oak Ridge National Laboratory (ORNL) Fissile Mass Flow Monitor (FMFM) was deployed at the Ural Electrochemical Integrated Plant (UEIP) highly enriched uranium (HEU) blending facility in January and February 1999 at Novouralsk in Russia for the DOE HEU Transparency Program. The FMFM provides unattended monitoring of the fissile mass flow of the uranium hexafluoride (UF{sub 6}) gas in the process lines of HEU, the low enriched uranium (LEU) blend stock, and the product LEU (P-LEU) of the blending tee non-intrusively. To do this, uranium-235 (U-235) fissions are induced in the UF{sub 6} by a thermalized and modulated californium-252 (Cf-252) neutron source placed on each process line. A set of detectors, located downstream of source, measure delayed gamma rays emitted by the resulting fission fragments. The observed delay in the time correlated measurement between the source and the detector signal provides the velocity of UF{sub 6} and its amplitude is related to the U- 235 content in UF{sub 6}. An on-line computer controls the source modulator, processes the collected detector data, and displays the results. The UEIP Main and the Reserved process lines were implemented with minor modifications. The FMFM monitors the HEU blending operation by measuring UF{sub 6} flows in the process blending lines, and the traceability of the HEU flow from the blend point to the P-LEU. The detail operational characteristics of the FMFM software (FM2) and the measurement methodology used are presented.

  14. Transparent conducting impurity-doped ZnO thin films prepared using oxide targets sintered by millimeter-wave heating

    SciTech Connect (OSTI)

    Minami, Tadatsugu; Okada, Kenji; Miyata, Toshihiro; Nomoto, Juni-chi; Hara, Youhei; Abe, Hiroshi

    2009-07-15

    The preparation of transparent conducting impurity-doped ZnO thin films by both pulsed laser deposition (PLD) and magnetron sputtering deposition (MSD) using impurity-doped ZnO targets sintered with a newly developed energy saving millimeter-wave (28 GHz) heating technique is described. Al-doped ZnO (AZO) and V-co-doped AZO (AZO:V) targets were prepared by sintering with various impurity contents for 30 min at a temperature of approximately 1250 degree sign C in an air or Ar gas atmosphere using the millimeter-wave heating technique. The resulting resistivity and its thickness dependence obtainable in thin films prepared by PLD using millimeter-wave-sintered AZO targets were comparable to those obtained in thin films prepared by PLD using conventional furnace-sintered AZO targets; a low resistivity on the order of 3x10{sup -4} {Omega} cm was obtained in AZO thin films prepared with an Al content [Al/(Al+Zn) atomic ratio] of 3.2 at. % and a thickness of 100 nm. In addition, the resulting resistivity and its spatial distribution on the substrate surface obtainable in thin films prepared by rf-MSD using a millimeter-wave-sintered AZO target were almost the same as those obtained in thin films prepared by rf-MSD using a conventional powder AZO target. Thin films prepared by PLD using millimeter-wave-sintered AZO:V targets exhibited an improved resistivity stability in a high humidity environment. Thin films deposited with a thickness of approximately 100 nm using an AZO:V target codoped with an Al content of 4 at. % and a V content [V/(V+Zn) atomic ratio] of 0.2 at. % were sufficiently stable when long-term tested in air at 90% relative humidity and 60 degree sign C.

  15. A sol-gel route for the development of rare-earth aluminum borate nanopowders and transparent thin films

    SciTech Connect (OSTI)

    Maia, Lauro J.Q. Mastelaro, Valmor R.; Hernandes, Antonio C.

    2007-02-15

    A new sol-gel route was applied to obtain Y{sub 0.9}Er{sub 0.1}Al{sub 3}(BO{sub 3}){sub 4} crystalline powders and amorphous thin films by using Al(acac){sub 3}, B(OPr {sup i}){sub 3}, Y(NO{sub 3}){sub 3}.6H{sub 2}O, and Er(NO{sub 3}){sub 3}.5H{sub 2}O as starting materials dissolved in propionic acid and ethyl alcohol mixtures. Our study shows that propionic acid acts as good chelant agent for yttrium and erbium ions while ethyl alcohol allows to dissolve Al(acac){sub 3}. This process makes the resulting sols very stable to obtain homogeneous gels and transparent amorphous thin films. In addition, the propionic acid prevents the sol precipitation, making easy porous- and crack-free thin film depositions. Chemical reactions involved in the complexation were discussed. As-prepared powders and films are amorphous and present a good thermal stability due to their high glass transition (746 deg. C) and crystallization temperatures (830 deg. C). This new sol-gel route showed to be adequate to obtain dense and crack-free thin films free of organic and hydroxyl groups that can be considered as promising materials to be used in integrated optical systems. - Graphical abstract: SEM micrograph of Y{sub 0.9}Er{sub 0.1}Al{sub 3}(BO{sub 3}){sub 4} powders calcined at 400 and 700 deg. C during 24 h and heat-treated at 1150 deg. C.

  16. Guide to good practices for developing learning objectives. DOE Handbook

    SciTech Connect (OSTI)

    1992-07-01

    This guide to good practices provides information and guidance on the types of and development of learning objectives in a systematic approach to training program. This document can serve as a reference during the development of new learning objectives or refinement of existing ones.

  17. Method for detecting a mass density image of an object

    DOE Patents [OSTI]

    Wernick, Miles N.; Yang, Yongyi

    2008-12-23

    A method for detecting a mass density image of an object. An x-ray beam is transmitted through the object and a transmitted beam is emitted from the object. The transmitted beam is directed at an angle of incidence upon a crystal analyzer. A diffracted beam is emitted from the crystal analyzer onto a detector and digitized. A first image of the object is detected from the diffracted beam emitted from the crystal analyzer when positioned at a first angular position. A second image of the object is detected from the diffracted beam emitted from the crystal analyzer when positioned at a second angular position. A refraction image is obtained and a regularized mathematical inversion algorithm is applied to the refraction image to obtain a mass density image.

  18. Method and system for producing complex-shape objects

    DOE Patents [OSTI]

    Jeantette, Francisco P.; Keicher, David M.; Romero, Joseph A.; Schanwald, Lee P.

    2000-01-01

    A method and system are provided for producing complex, three-dimensional, net shape objects from a variety of powdered materials. The system includes unique components to ensure a uniform and continuous flow of powdered materials as well as to focus and locate the flow of powdered materials with respect to a laser beam which results in the melting of the powdered material. The system also includes a controller so that the flow of molten powdered materials can map out and form complex, three-dimensional, net-shape objects by layering the molten powdered material. Advantageously, such complex, three-dimensional net-shape objects can be produced having material densities varying from 90% of theoretical to fully dense, as well as a variety of controlled physical properties. Additionally, such complex, three-dimensional objects can be produced from two or more different materials so that the composition of the object can be transitioned from one material to another.

  19. Methods | Transparent Cost Database

    Open Energy Information (Open El) [EERE & EIA]

    Efficiency and Renewable Energy (EERE) covers a wide variety of applications, so methodology necessarily varies by sector and technology specifics. EERE seeks to use a...

  20. Method and apparatus for accurately manipulating an object during microelectrophoresis

    DOE Patents [OSTI]

    Parvin, B.A.; Maestre, M.F.; Fish, R.H.; Johnston, W.E.

    1997-09-23

    An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations and reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage. 11 figs.