National Library of Energy BETA

Sample records for nuclear weapons production

  1. Linking Legacies: Connecting the Cold War Nuclear Weapons Production...

    Office of Environmental Management (EM)

    Linking Legacies: Connecting the Cold War Nuclear Weapons Production Processes to Their Environmental Consequences Linking Legacies: Connecting the Cold War Nuclear Weapons ...

  2. Linking Legacies: Connecting the Cold War Nuclear Weapons Production

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Processes to Their Environmental Consequences | Department of Energy Linking Legacies: Connecting the Cold War Nuclear Weapons Production Processes to Their Environmental Consequences Linking Legacies: Connecting the Cold War Nuclear Weapons Production Processes to Their Environmental Consequences This report described each step in the cycle of nuclear weapons production and defined for the first time a planned disposition path for all waste streams generated prior to 1992 as a result of

  3. Sandia starts silicon wafer production for three nuclear weapon programs |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) starts silicon wafer production for three nuclear weapon programs Wednesday, March 25, 2015 - 3:24pm Sandia National Laboratories has begun making silicon wafers for three nuclear weapon modernization programs, the largest production series in the history of its Microsystems and Engineering Sciences Applications (MESA) complex. MESA's silicon fab in October began producing base wafers for Application-Specific Integrated Circuits for the

  4. Nuclear Weapons Journal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Weapons Journal Nuclear Weapons Journal The Nuclear Weapons Journal ceased publication after Issue 2, 2009. Below are Nuclear Weapons Journal archived issues. Issue 2, 2009 ...

  5. Sandia's Nuclear Weapons Mission

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Weapons Mission Ensuring that the nation's stockpile is safe, secure and effective, and that it meets military requirements America's Nuclear Weapons Systems Engineering ...

  6. Linking legacies: Connecting the Cold War nuclear weapons production processes to their environmental consequences

    SciTech Connect

    1997-01-01

    In the aftermath of the Cold War, the US has begun addressing the environmental consequences of five decades of nuclear weapons production. In support of this effort, the National Defense Authorization Act for Fiscal Year 1995 directed the Department of Energy (DOE) to describe the waste streams generated during each step in the production of nuclear weapons. Accordingly, this report responds to this mandate, and it is the Department`s first comprehensive analysis of the sources of waste and contamination generated by the production of nuclear weapons. The report also contains information on the missions and functions of nuclear weapons facilities, on the inventories of waste and materials remaining at these facilities, as well as on the extent and characteristics of contamination in and around these facilities. This analysis unites specific environmental impacts of nuclear weapons production with particular production processes. The Department used historical records to connect nuclear weapons production processes with emerging data on waste and contamination. In this way, two of the Department`s legacies--nuclear weapons manufacturing and environmental management--have become systematically linked. The goal of this report is to provide Congress, DOE program managers, non-governmental analysts, and the public with an explicit picture of the environmental results of each step in the nuclear weapons production and disposition cycle.

  7. Nuclear weapons modernizations

    SciTech Connect

    Kristensen, Hans M.

    2014-05-09

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  8. The gas centrifuge and nuclear weapons proliferation

    SciTech Connect

    Wood, Houston G.; Glaser, Alexander; Kemp, R. Scott

    2014-05-09

    Uranium enrichment by centrifugation is the basis for the quick and efficient production of nuclear fuel-or nuclear weapons.

  9. nuclear weapons

    National Nuclear Security Administration (NNSA)

    09, 2015

    WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) and United States Air Force completed eight successful...

  10. Identification of nuclear weapons

    DOEpatents

    Mihalczo, J.T.; King, W.T.

    1987-04-10

    A method and apparatus for non-invasively indentifying different types of nuclear weapons is disclosed. A neutron generator is placed against the weapon to generate a stream of neutrons causing fissioning within the weapon. A first detects the generation of the neutrons and produces a signal indicative thereof. A second particle detector located on the opposite side of the weapon detects the fission particles and produces signals indicative thereof. The signals are converted into a detected pattern and a computer compares the detected pattern with known patterns of weapons and indicates which known weapon has a substantially similar pattern. Either a time distribution pattern or noise analysis pattern, or both, is used. Gamma-neutron discrimination and a third particle detector for fission particles adjacent the second particle detector are preferably used. The neutrons are generated by either a decay neutron source or a pulled neutron particle accelerator.

  11. Virtual nuclear weapons

    SciTech Connect

    Pilat, J.F.

    1997-08-01

    The term virtual nuclear weapons proliferation and arsenals, as opposed to actual weapons and arsenals, has entered in recent years the American lexicon of nuclear strategy, arms control, and nonproliferation. While the term seems to have an intuitive appeal, largely due to its cyberspace imagery, its current use is still vague and loose. The author believes, however, that if the term is clearly delineated, it might offer a promising approach to conceptualizing certain current problems of proliferation. The first use is in a reference to an old problem that has resurfaced recently: the problem of growing availability of weapon-usable nuclear materials in civilian nuclear programs along with materials made `excess` to defense needs by current arms reduction and dismantlement. It is argued that the availability of these vast materials, either by declared nuclear-weapon states or by technologically advanced nonweapon states, makes it possible for those states to rapidly assemble and deploy nuclear weapons. The second use has quite a different set of connotations. It is derived conceptually from the imagery of computer-generated reality. In this use, one thinks of virtual proliferation and arsenals not in terms of the physical hardware required to make the bomb but rather in terms of the knowledge/experience required to design, assemble, and deploy the arsenal. Virtual weapons are a physics reality and cannot be ignored in a world where knowledge, experience, materials, and other requirements to make nuclear weapons are widespread, and where dramatic army reductions and, in some cases, disarmament are realities. These concepts are useful in defining a continuum of virtual capabilities, ranging from those at the low end that derive from general technology diffusion and the existence of nuclear energy programs to those at the high end that involve conscious decisions to develop or maintain militarily significant nuclear-weapon capabilities.

  12. weapons | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    weapons NNSA Reaches Important Milestone with B61-12 Life Extension Program WASHINGTON - The Department of Energy's National Nuclear Security Administration (DOE/NNSA) announced that they recently formally authorized the production engineering phase of its B61-12 warhead life extension program (LEP). This important milestone comes after four years of work in... DOD/DOE NNSA Joint Munitions Program: 30 years of collaborative innovation As part of NNSA's commitment to protecting and preserving the

  13. Nuclear Weapons Mission at Sandia

    SciTech Connect

    2015-03-12

    Take a rare “tour” of Sandia National Laboratories’ nuclear weapons work and see the strong, multidisciplinary relationship between all of Sandia’s missions and capabilities.

  14. nuclear weapons | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    weapons DOE, NNSA leaders open summit on the physical security of nuclear weapons Deputy Secretary of Energy Elizabeth Sherwood-Randall, NNSA Principal Deputy Administrator Madelyn Creedon, and numerous speakers from throughout the Nuclear Security Enterprise spoke at the 2016 Nuclear Weapons Physical Security Collaboration Summit earlier this month at Joint Base Andrews in... Y-12 National Security Complex Completes W69 Dismantlement The man who trains everyone on the bombs Mark Meyer, training

  15. Weapons production | Y-12 National Security Complex

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Weapons production Weapons production An effective production infrastructure is critical to national security. Y-12 continues to replace World War II-era facilities to increase efficiency and security, reduce costs and condense our high-security footprint. Nuclear Deterrence Completing the connection Sharing resources: the benefits of consolidation Stockpile Weapons production Material Management/Strategic Reserve Material Recycle and Recovery Processing Secure Storage Support Facilities

  16. Security and Use Control of Nuclear Explosives and Nuclear Weapons...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    O 452.4C, Security and Use Control of Nuclear Explosives and Nuclear Weapons by LtCol Karl Basham Functional areas: Nuclear Explosives, Nuclear Weapons, Security, Safety, Weapon...

  17. Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Clinton Extends Moratorium on Nuclear Weapons Testing Clinton Extends Moratorium on Nuclear Weapons Testing Washington, DC President Clinton extends the nuclear weapons testing moratorium for at least 15 months

  18. Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Eisenhower Halts Nuclear Weapons Testing Eisenhower Halts Nuclear Weapons Testing Washington, DC President Eisenhower announces a moratorium on nuclear weapons testing to begin on October 31, 1958

  19. Uncrackable code for nuclear weapons

    SciTech Connect

    Hart, Mark

    2014-11-20

    Mark Hart, a scientist and engineer in Lawrence Livermore National Laboratory's (LLNL) Defense Technologies Division, has developed a new approach for ensuring nuclear weapons and their components can't fall prey to unauthorized use. The beauty of his approach: Let the weapon protect itself. "Using the random process of nuclear radioactive decay is the gold standard of random number generators," said Mark Hart. "You’d have a better chance of winning both Mega Millions and Powerball on the same day than getting control of IUC-protected components."

  20. Nuclear Weapons Testing Resumes | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | (NNSA) Weapons Testing Resumes Nuclear Weapons Testing Resumes Washington, DC The Soviet Union breaks the nuclear test moratorium and the United States resumes testing

  1. Clinton Extends Moratorium on Nuclear Weapons Testing | National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Clinton Extends Moratorium on Nuclear Weapons Testing Clinton Extends Moratorium on Nuclear Weapons Testing Washington, DC President Clinton extends the nuclear weapons testing ...

  2. Control of Nuclear Weapon Data

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2011-07-21

    The directive establishes the policy, process and procedures for control of nuclear weapon data to ensure that dissemination of the information is restricted to individuals with appropriate clearances, approved authorization and valid need-to-know in keeping with the Atomic Energy Act (as amended) stipulation of ensuring common defense and security. Supersedes DOE O 5610.2.

  3. Nuclear Weapons Complex reconfiguration study

    SciTech Connect

    Not Available

    1991-01-01

    Shortly after assuming duties as Secretary of Energy, I reviewed the Nuclear Weapons Complex Modernization Report'' submitted to the Congress in January 1989 as required by the National Defense Authorization Act of 1988 and 1989. My review showed that several of the report's assumptions needed to be re-evaluated. During this eighteen-month review, dramatic world changes forced further reassessments of the future Nuclear Weapons Complex. These changes are reflected in the new report. The new report presents a plan to achieve a reconfigured complex, called Complex-21. Complex-21 would be smaller, less diverse, and less expensive to operated than the Complex of today. Complex-21 would be able to safely and reliability support nuclear deterrent stockpile objectives set forth by the President and funded by the Congress. It would be consistent with realities of the emerging international security environment and flexible enough to accommodate the likely range of deterrent contingencies. In addition, Complex-21 would be constructed and operated to comply with all applicable federal, state, and local laws, regulations, and orders. Achieving Complex-21 will require significant resources. This report provides and organized approach toward selecting the most appropriate configuration for Complex-21, satisfying environmental requirements, and minimizing costs. The alternative -- to continue to use piecemeal fixes to run an antiquated complex -- will be more expensive and provide a less reliable Nuclear Weapons Complex. As a consequence, implementation of the Complex-21 plan is considered necessary to ensure continued viability of our nuclear deterrent.

  4. Nuclear Explosive and Weapon Surety Program

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2014-08-05

    The Order defines the Nuclear Explosive and Weapon Surety (NEWS) Program, which was established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

  5. Weapons | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    and Russia all with the goal of reducing nuclear weapons in both countries and, ultimately, lowering the global nuclear proliferation risk and increasing international security. ...

  6. Uranium Weapons Components Successfully Dismantled | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Uranium Weapons Components Successfully Dismantled Uranium Weapons Components Successfully Dismantled Oak Ridge, TN Continuing its efforts to reduce the size of the U.S. nuclear weapons stockpile, the National Nuclear Security Administration announced that uranium components from two major nuclear weapons systems formerly deployed on U.S. Air Force missiles and aircraft have been dismantled at the Y-12 National Security Complex in Oak Ridge, TN. Y-12 workers

  7. Nuclear Weapons Life Cycle | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Nuclear Weapons Life Cycle Nuclear weapons are developed, produced, and maintained in the stockpile, and then retired and dismantled. This sequence of events is known as the nuclear weapons life cycle. The Department of Energy (DOE) through the National Nuclear Security Administration (NNSA) and in partnership with Department of Defense (DoD) conducts activities in a joint nuclear weapons life cycle process. The major steps, or phases, of the life cycle are described below. Currently,

  8. DOE's Nuclear Weapons Complex: Challenges to Safety, Security...

    Energy Saver

    U.S. House of Representatives "DOE's Nuclear Weapons Complex: Challenges to Safety, ... Department of Energy's oversight of the nuclear weapons complex. 1 The National Nuclear ...

  9. Toward a nuclear weapons free world?

    SciTech Connect

    Maaranen, S.A.

    1996-09-01

    Doubts about the wisdom of relying on nuclear weapons are as old as nuclear weapons themselves. But despite this questioning, nuclear weapons came to be seen as the indispensable element of American (indeed Western) security during the Cold War. By the 1970s and 1980s, however, discontent was growing about the intense US-Soviet nuclear arms competition, as it failed to provide any enduring improvement in security; rather, it was seen as creating ever greater risks and dangers. Arms control negotiations and limitations, adopted as a means to regulate the technical competition, may also have relieved some of the political pressures and dangers. But the balance of terror, and the fears of it, continued. The Strategic Defense Initiative (SDI) under President Reagan was a very different approach to escaping from the precarious protection of nuclear weapons, in that it sought a way to continue to defend the US and the West, but without the catastrophic risks of mutual deterrence. As such, SDI connoted unhappiness with the precarious nuclear balance and, for many, with nuclear weapons in general. The disappearance of the Warsaw Pact, the disintegration of the Soviet Union, and the sudden end of the Cold War seemed to offer a unique opportunity to fashion a new, more peaceful world order that might allow for fading away of nuclear weapons. Scholars have foreseen two different paths to a nuclear free world. The first is a fundamental improvement in the relationships between states such that nuclear weapons are no longer needed. The second path is through technological development, e.g., missile defenses which could provide effective protection against nuclear attacks. The paper discusses nuclear weapon policy in the US, views of other nuclear states, the future of nuclear weapons, and issues in a less-nuclear world.

  10. Reducing the Nuclear Weapons Stockpile | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Reducing the Nuclear Weapons Stockpile January 01, 2009 The Department of Energy's National Nuclear Security Administration (NNSA) is responsible for maintaining the safety, ...

  11. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program...

    Energy Saver

    of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues (111.05

  12. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program...

    Energy Saver

    of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues (55.31

  13. Nuclear Weapons Dismantlement Rate Up 146 Percent | National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Weapons Dismantlement Rate Up 146 Percent October 01, 2007 WASHINGTON, D.C. -- The United States significantly increased its rate of dismantled nuclear weapons during ...

  14. Nuclear Explosive and Weapon Surety Program

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2015-01-26

    All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Supersedes DOE O 452.1D.

  15. ESTABLISHING FINAL END STATE FOR A RETIRED NUCLEAR WEAPONS PRODUCTION REACTOR; COLLABORATION BETWEEN STAKEHOLDERS, REGULATORS AND THE FEDERAL GOVERNMENT

    SciTech Connect

    Bergren, C

    2009-01-16

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River (SRS) near Aiken, South Carolina. Nuclear weapons material production began in the early 1950s, utilizing five production reactors. In the early 1990s all SRS production reactor operations were terminated. The first reactor closure end state declaration was recently institutionalized in a Comprehensive Environmental Response and Compensation and Liability Act (CERCLA) Early Action Record of Decision. The decision for the final closure of the 318,000 square foot 105-P Reactor was determined to be in situ decommissioning (ISD). ISD is an acceptable and cost effective alternative to off-site disposal for the reactor building, which will allow for consolidation of remedial action wastes generated from other cleanup activities within the P Area. ISD is considered protective by the regulators, U. S. Environmental Protection Agency (US EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC), public and stakeholders as waste materials are stabilized/immobilized, and radioactivity is allowed to naturally decay, thus preventing future exposure to the environment. Stakeholder buy-in was critical in the upfront planning in order to achieve this monumental final decision. Numerous public meetings and workshops were held in two different states (covering a 200 mile radius) with stakeholder and SRS Citizens Advisory Board participation. These meetings were conducted over an eight month period as the end state decision making progressed. Information provided to the public evolved from workshop to workshop as data became available and public input from the public meetings were gathered. ISD is being considered for the balance of the four SRS reactors and other hardened facilities such as the chemical processing canyons.

  16. ESTABLISHING FINAL END STATE FOR A RETIRED NUCLEAR WEAPONS PRODUCTION REACTOR; COLLABORATION BETWEEN STAKEHOLDERS, REGULATORS, AND THE FEDERAL GOVERNMENT - 11052

    SciTech Connect

    Bergren, C.; Flora, M.; Belencan, H.

    2010-11-17

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River (SRS) near Aiken, South Carolina. Nuclear weapons material production began in the early 1950s, utilizing five production reactors. In the early 1990s all SRS production reactor operations were terminated. The first reactor closure end state declaration was recently institutionalized in a Comprehensive Environmental Response and Compensation and Liability Act (CERCLA) Early Action Record of Decision. The decision for the final closure of the 318,000 square foot 105-P Reactor was determined to be in situ decommissioning (ISD). ISD is an acceptable and cost effective alternative to off-site disposal for the reactor building, which will allow for consolidation of remedial action wastes generated from other cleanup activities within the P Area. ISD is considered protective by the regulators, U. S. Environmental Protection Agency (US EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC), public and stakeholders as waste materials are stabilized/immobilized, and radioactivity is allowed to naturally decay, thus preventing future exposure to the environment. Stakeholder buy-in was critical in the upfront planning in order to achieve this monumental final decision. Numerous public meetings and workshops were held in two different states (covering a 200 mile radius) with stakeholder and SRS Citizens Advisory Board participation. These meetings were conducted over an eight month period as the end state decision making progressed. Information provided to the public evolved from workshop to workshop as data became available and public input from the public meetings were gathered. ISD is being considered for the balance of the four SRS reactors and other hardened facilities such as the chemical Separation Facilities (canyons).

  17. AEC and control of nuclear weapons

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    control of nuclear weapons The Atomic Energy Commission took control of the atomic energy project known originally as the Manhattan Project on January 1, 1947. This shift from the ...

  18. Sandia National Laboratories: National Security Missions: Nuclear Weapons

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Programs Nuclear Weapons Stockpile Stewardship Ensuring the nation's nuclear weapons stockpile is safe, secure, and reliable. About Nuclear Weapons Since 1949, Sandia's scientists and engineers have conducted breakthrough research in weaponization. About Safety & Security Safe and secure nuclear weapons are of paramount importance in a changing global threat environment. Safety and Security Science & Technology Sandia provides the science and engineering to help maintain and certify the

  19. Security and Control of Nuclear Explosives and Nuclear Weapons

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2001-12-17

    This directive establishes requirements and responsibilities to prevent the deliberate unauthorized use of U.S. nuclear explosives and U.S. nuclear weapons. Cancels DOE O 452.4.

  20. Nuclear Weapon Surety Interface with the Department of Defense

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2009-05-14

    This Order establishes Department of Energy and National Nuclear Security Administration requirements and responsibilities for addressing joint nuclear weapon and nuclear weapon system surety activities in conjunction with the Department of Defense. Supersedes DOE O 452.6.

  1. Audit Report National Nuclear Security Administration Nuclear Weapons

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    National Nuclear Security Administration Nuclear Weapons Systems Configuration Management DOE/IG-0902 March 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 March 26, 2014 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "National Nuclear Security Administration Nuclear Weapons Systems Configuration Management" BACKGROUND The National

  2. US nuclear weapons stockpile (June 1993)

    SciTech Connect

    Norris, R.S. ); Arkin, W.M.

    1993-06-01

    The US. nuclear stockpile is at its lowest level since late 1958 or early 1959. In the past year, many weapons were returned to central military storage depots in the United States and funneled to the Energy Department's Pantex facility for final disassembly and disposal. This article presents a table showing the author's current estimate of the composition of the current operational stockpile, which contains some 10,500 warheads. Also categorized are warheads in [open quotes]inactive reserve[close quotes] and warheads awaiting eventual disassembly. The warheads are generally grouped as bombs, submarine-launched ballistic missiles, intercontinental ballistic missiles, air-launched cruise missiles, and sea-launched cruise missiles. Initial production dates and yield are listed for the warheads.

  3. Chinese tactical nuclear weapons. Master`s thesis

    SciTech Connect

    Owens, G.B.

    1996-06-01

    The United States, Russia and Great Britain have retired all nonstrategic nuclear weapons. Surprisingly, China has not, China seems to value highly tactical nuclear weapons (TNWs). Most studies of China`s nuclear arsenal focus on strategic nuclear weapons. This focus could mislead those trying to understand PRC TNW strategy. The purpose of this thesis is to explain China`s TNW development. China`s nuclear arsenal evolution can be described in three phases. In the first phase, China developed a limited strategic nuclear deterrent. China`s arsenal was driven by threat. Technology supplanted threat as the dominant driver during the next phase. While conducting research to miniaturize strategic warheads, were developed. During the third phase, a reduced threat caused political leaders to restrain the nuclear program. The nuclear program reverted to its primary objective - building strategic weapons, causing TNW production to level off. This study explains the last two phases of TNW development. The research goals are twofold: to compare threat and technology, the primary motivations driving TNW production; and to examine the relationship between doctrine and development, describing how one influences the other. The conclusion offers U.S. foreign policy recommendations.

  4. EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning...

    Office of Environmental Management (EM)

    Concerning Foreign Research Reactor Spent Nuclear Fuel EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel SUMMARY ...

  5. Management of the Department of Energy Nuclear Weapons Complex

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2005-06-08

    The Order defines and affirms the authorities and responsibilities of the National Nuclear Security Administration (NNSA) for the management of the Department of Energy Nuclear Weapons Complex and emphasizes that the management of the United States nuclear weapons stockpile is the DOE's highest priority for the NNSA and the DOE Nuclear Weapons Complex. Supersedes DOE O 5600.1.

  6. The monitoring and verification of nuclear weapons

    SciTech Connect

    Garwin, Richard L.

    2014-05-09

    This paper partially reviews and updates the potential for monitoring and verification of nuclear weapons, including verification of their destruction. Cooperative monitoring with templates of the gamma-ray spectrum are an important tool, dependent on the use of information barriers.

  7. Briefing, Classification of Nuclear Weapons-Related Information |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy of Nuclear Weapons-Related Information Briefing, Classification of Nuclear Weapons-Related Information March 2015 This brief will familiarize individuals from agencies outside of DOE who may come in contact with RD and FRD with the procedures for identifying, classifying, marking, handling, and declassifying documents containing Nuclear Weapons-Related Information. Briefing, Classification of Nuclear Weapons-Related Information (1.25 MB) More Documents & Publications

  8. Nuclear weapons and NATO-Russia relations

    SciTech Connect

    Cornwell, G.C.

    1998-12-01

    Despite the development of positive institutional arrangements such as Russian participation in the NATO-led peacekeeping force in Bosnia and the NATO- Russia Permanent Joint Council, the strategic culture of Russia has not changed in any fundamental sense. Russian strategic culture has not evolved in ways that would make Russian policies compatible with those of NATO countries in the necessary economic, social, technological, and military spheres. On the domestic side, Russia has yet to establish a stable democracy and the necessary legal, judicial, and regulatory institutions for a free-market economy. Russia evidently lacks the necessary cultural traditions, including concepts of accountability and transparency, to make these adaptations in the short-term. Owing in part to its institutional shortcomings, severe socioeconomic setbacks have afflicted Russia. Russian conventional military strength has been weakened, and a concomitant reliance by the Russians on nuclear weapons as their ultimate line of defense has increased. The breakdown in the infrastructure that supports Russian early warning and surveillance systems and nuclear weapons stewardship defense, coupled with a tendency towards has exacerbated Russian anxiety and distrust toward NATO. Russia`s reliance on nuclear weapons as the ultimate line of defense, coupled with a tendency toward suspicion and distrust toward NATO, could lead to dangerous strategic miscalculation and nuclear catastrophe.

  9. Dismantlements of Nuclear Weapons Jump 50 Percent | National...

    National Nuclear Security Administration (NNSA)

    Dismantlements of Nuclear Weapons Jump 50 Percent June 07, 2007 WASHINGTON, D.C. -- Meeting President Bush's directive to reduce the country's nuclear arsenal, the Department of ...

  10. NNSA Administrator Gordon Assesses Security Of the Nuclear Weapons...

    National Nuclear Security Administration (NNSA)

    Gordon Assesses Security Of the Nuclear Weapons Complex | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile ...

  11. Date Set for Closure of Russian Nuclear Weapons Plant - NNSA...

    National Nuclear Security Administration (NNSA)

    Date Set for Closure of Russian Nuclear Weapons Plant - NNSA Is Helping Make It Happen | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission ...

  12. EGS 01-01: Nuclear Weapon Program Enforcement Issues

    Office of Environmental Management (EM)

    SUBJECT: Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues ... This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear ...

  13. Record-Setting Year for Nuclear Weapon Dismantlement Achieved...

    National Nuclear Security Administration (NNSA)

    Record-Setting Year for Nuclear Weapon Dismantlement Achieved at the Y-12 National Security Complex | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS...

  14. Robert C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program...

    National Nuclear Security Administration (NNSA)

    C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  15. The IAEA: Neutralizing Iraq's nuclear weapons potential

    SciTech Connect

    Zifferero, M.

    1993-04-01

    With support from UNSCOM and staff members from several countries, the IAEA has succeeded in identifying and destroying most of Iraq's nuclear weapons potential. IAEA activities in Iraq have also established a sound basis for long-term monitoring of Iraq. This will involve several procedures and techniques, including the periodic monitoring of Iraq's main bodies of water and unannounced visits of resident inspectors to plants, factories, and research centers.

  16. The US nuclear weapon infrastructure and a stable global nuclear weapon regime

    SciTech Connect

    Immele, John D; Wagner, Richard L

    2009-01-01

    US nuclear weapons capabilities -- extant force structure and nuclear weapons infrastructure as well as declared policy -- influence other nations' nuclear weapons postures, at least to some extent. This influence can be desirable or undesirable, and is, of course, a mixture of both. How strong the influence is, and its nature, are complicated, controversial, and -- in our view -- not well understood but often overstated. Divergent views about this influence and how it might shape the future global nuclear weapons regime seem to us to be the most serious impediment to reaching a national consensus on US weapons policy, force structure and supporting infrastructure. We believe that a paradigm shift to capability-based deterrence and dissuasion is not only consistent with the realities of the world and how it has changed, but also a desirable way for nuclear weapon postures and infrastructures to evolve. The US and other nuclear states could not get to zero nor even reduce nuclear arms and the nuclear profile much further without learning to manage latent capability. This paper has defined three principles for designing NW infrastructure both at the 'next plateau' and 'near zero.' The US can be a leader in reducing weapons and infrastructure and in creating an international regime in which capability gradually substitutes for weapons in being and is transparent. The current 'strategy' of not having policy or a Congressionally-approved plan for transforming the weapons complex is not leadership. If we can conform the US infrastructure to the next plateau and architect it in such a way that it is aligned with further arms reductions, it will have these benefits: The extant stockpile can be reduced in size, while the smaller stockpile still deters attack on the US and Allies. The capabilities of the infrastructure will dissuade emergence of new challenges/threats; if they emerge, nevertheless, the US will be able to deal with them in time. We will begin to transform the

  17. Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2010-01-22

    This Order establishes requirements to implement the nuclear explosive security and use control elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts/deliberate unauthorized use. Cancels DOE O 452.4A. Canceled by DOE O 452.4C.

  18. Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2014-11-19

    The Order establishes requirements to implement the nuclear explosive security and use control (UC) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts (DUAs), deliberate unauthorized use (DUU), and denial of authorized use (DAU).

  19. President Obama Calls for an End to Nuclear Weapons | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Calls for an End to Nuclear Weapons President Obama Calls for an End to Nuclear Weapons Prague, Czech Republic President Obama in a landmark speech in Prague, Czech Republic called nuclear weapons the gravest threat to international security and advocates for the global abolition of nuclear weapons

  20. Nuclear Weapon Surety Interface with the Department of Defense

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2006-10-19

    The Order prescribes how the Department of Energy participates with the Department of Defense (DoD) to ensure the surety (safety, security and control) of military nuclear weapon systems deployed around the world. The Order establishes National Nuclear Security Administration requirements and responsibilities for addressing joint nuclear weapon and nuclear weapon system surety activities in conjunction with the DoD. Cancels DOE O 5610.13. Canceled by DOE O 452.6A.

  1. The Steps of Weapons Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This graphic provides an overview of the steps of weapons production beginning in 1943. PDF icon Fat Man and Little Boy: The first two production weapons More Documents & ...

  2. Nuclear energy in a nuclear weapon free world

    SciTech Connect

    Pilat, Joseph

    2009-01-01

    The prospect of a nuclear renaissance has revived a decades old debate over the proliferation and terrorism risks of the use of nuclear power. This debate in the last few years has taken on an added dimension with renewed attention to disarmament. Increasingly, concerns that proliferation risks may reduce the prospects for realizing the vision of a nuclear-weapon-free world are being voiced.

  3. weapons material protection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Sheets Newsletters Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home weapons material protection weapons material protection...

  4. Gordon Assesses Security At Nuclear Weapons Complex News.....

    National Nuclear Security Administration (NNSA)

    Anson Franklin, 202586-7371 September 21, 2001 NNSA Administrator Gordon Assesses Security Of the Nuclear Weapons Complex John Gordon, Administrator of the Department of Energy's ...

  5. Office of Weapons Material Protection | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Weapons Material Protection The Office of Weapons Material Protection (OWMP) enhances the security of Russia's nuclear material at 37 sites, including 11 Russian Navy fuel storage sites, 7 Rosatom weapons sites and 19 Rosatom civilian sites. These sites include weapons design laboratories, uranium enrichment facilities, and material processing/storage sites located in closed cities. In some cases, these industrial sites are the size of small cities and contain

  6. weapon dismantlement | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    weapon dismantlement Y-12 National Security Complex Completes W69 Dismantlement

  7. The Effects of Nuclear Weapons (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    is a comprehensive summary of current knowledge on the effects of nuclear weapons. ... WEAPONRY, AND NATIONAL DEFENSE; MANUALS; NUCLEAR ENERGY; NUCLEAR WEAPONS; SCALING LAWS; US ...

  8. Sandia National Laboratories: National Security Missions: Nuclear Weapons:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Safety & Security Safety & Security Linux computer simulation Sandia is responsible for a variety of safety and security features of nuclear weapons. We design safety components and subsystems based on fundamental science-based principles to prevent energy from unintentionally reaching the nuclear explosives components. Weapons security requires denying adversaries access to the weapon and its internal features so that unauthorized detonation cannot be achieved. Because of evolving

  9. Major Milestone Achieved in Nuclear Weapons Stockpile Stewardship Program

    National Nuclear Security Administration (NNSA)

    at Y-12 | National Nuclear Security Administration | (NNSA) Major Milestone Achieved in Nuclear Weapons Stockpile Stewardship Program at Y-12 April 18, 2006 PDF icon NR-04-06.pdf

  10. COLLOQUIUM: Nuclear Famine: The Threat to Humanity from Nuclear Weapons |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Princeton Plasma Physics Lab 18, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Nuclear Famine: The Threat to Humanity from Nuclear Weapons Dr. Alan Robock Rutgers University A nuclear war between India and Pakistan, with each country using 50 Hiroshima-sized atom bombs as airbursts on urban areas, would inject smoke from the resulting fires into the stratosphere. This could produce climate change unprecedented in recorded human history and global-scale ozone depletion, with

  11. Sandia completes major overhaul of key nuclear weapons test facilities |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) completes major overhaul of key nuclear weapons test facilities Tuesday, May 13, 2014 - 2:46pm Sandia National Laboratories recently completed the renovation of five large-scale test facilities that are crucial to ensuring the safety and reliability of the nation's nuclear weapons systems. The work supports Sandia's ongoing nuclear stockpile modernization work on the B61-12 and W88 Alt, assessments of current stockpile systems, and test and

  12. U.S. No Longer Building Any Nuclear Weapons | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline U.S. No Longer Building Any Nuclear Weapons U.S. No Longer Building Any Nuclear Weapons May...

  13. Seventy Years of Computing in the Nuclear Weapons Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Seventy Years of Computing in the Nuclear Weapons Program Seventy Years of Computing in the Nuclear Weapons Program WHEN: Jan 13, 2015 7:30 PM - 8:00 PM WHERE: Fuller Lodge Central Avenue, Los Alamos, NM, USA SPEAKER: Bill Archer of the Weapons Physics (ADX) Directorate CONTACT: Bill Archer 505 665 7235 CATEGORY: Science INTERNAL: Calendar Login Event Description Rich history of computing in the Laboratory's weapons program. The talk is free and open to the public and is part of the 2014-15 Los

  14. The Effects of Nuclear Weapons (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    The Effects of Nuclear Weapons Citation Details In-Document Search Title: The Effects of Nuclear Weapons You are accessing a document from the Department of Energy's (DOE) ...

  15. The history of nuclear weapon safety devices (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    The history of nuclear weapon safety devices Citation Details In-Document Search Title: The history of nuclear weapon safety devices You are accessing a document from the ...

  16. Ukraine: Independent nuclear weapons capability rising. Master's thesis

    SciTech Connect

    Dewing, M.J.

    1993-06-01

    This thesis argues that Ukraine will move from possession of CIS-controlled nuclear weapons to the development of an independent nuclear capability. It attempts to show how the factors driving Ukraine towards remaining a nuclear state outweigh the factors acting in restraint. This thesis describes the contents of the Ukrainian arsenal, reviews its current material condition and investigates the likelihood that Ukraine can directly control it. This thesis also shows why Ukraine's most likely course in developing and independent nuclear weapons capability will be to retain its 46 SS-24 ICBMs. United States, Ukraine, Russia, Strategic weapons, National strategy, Nuclear strategy, Arms control, Strategic stability, Nuclear weapons Strategic command and control, International relations.

  17. SECURITY AND CONTROL OF NUCLEAR EXPLOSIVES AND NUCLEAR WEAPONS

    National Nuclear Security Administration (NNSA)

    http://www.nnsa.energy.gov Office of Nuclear Weapon Surety and Quality SUPPLEMENTAL DIRECTIVE Approved: 7-7-11 IMPLEMENTATION AND EVALUATION OF CONTROLS TO PREVENT DELIBERATE UNAUTHORIZED USE NATIONAL NUCLEAR SECURITY ADMINISTRATION Office of Defense Programs NA SD 452.4 NA SD 452.4 1 7-7-11 IMPLEMENTATION AND EVALUATION OF CONTROLS TO PREVENT DELIBERATE UNAUTHORIZED USE 1. PURPOSE. This NNSA Supplemental Directive (SD) supports the requirements of DOE O 452.4B, Security and Use Control of

  18. NNSA implements nondestructive gas sampling technique for nuclear weapon

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    components | Y-12 National Security Complex implements ... NNSA implements nondestructive gas sampling technique for nuclear weapon components Posted: June 12, 2012 - 1:34pm The National Nuclear Security Administration (NNSA) today announced that it has deployed a nondestructive process at its Y-12 facility for assessing nuclear weapon components as part of its Stockpile Stewardship and Management Program, called Nondestructive Laser Gas Sampling (NDLGS). The NDLGS system is capable of

  19. Closing the circle on the splitting of the atom: The environmental legacy of nuclear weapons production in the United States and what the Department of Energy is doing about it

    SciTech Connect

    1996-01-01

    In the grand scheme of things we are a little more than halfway through the cycle of splitting the atom for weapons purposes. If we visualize this historic cycle as the full sweep of a clockface, at zero hour we would find the first nuclear chain reaction by Enrico Fermi, followed immediately by the Manhattan Project and the explosion of the first atomic bombs. From two o`clock until five, the United States built and ran a massive industrial complex that produced tens of thousands of nuclear weapons. At half past, the Cold War ended, and the United States shut down most of its nuclear weapons factories. The second half of this cycle involves dealing with the waste and contamination from nuclear weapons production - a task that had, for the most part, been postponed into the indefinite future. That future is now upon us. Dealing with the environmental legacy of the Cold War is in many ways as big a challenge for us today as the building of the atomic bomb was for the Manhattan Project pioneers in the 1940s. Our challenges are political and social as well as technical, and we are meeting those challenges. We are reducing risks, treating wastes, developing new technologies, and building democratic institutions for a constructive debate on our future course.

  20. Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963.

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battlefield of the Cold War: The Nevada Test Site, Volume I | Department of Energy Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Terrence R. Fehner and F.G. Gosling. Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I (pdf). DOE/MA-0003. Washington,

  1. Initiating-event frequencies for nuclear weapons dismantlement hazard analysis

    SciTech Connect

    Eisenhawer, S.W.; Bott, T.F.

    1996-08-01

    A quantitative data base for initiating events encountered during nuclear weapons handling is described. This data base was assembled from incident reports at the plant where the weapons are handled. The strengths and pitfalls of constructing such a data base are elaborated using examples encountered in the data. Insights gained into accident sequences, human error probabilities, and other areas of concern are discussed.

  2. Assurance and assessment techniques for nuclear weapon related software

    SciTech Connect

    Blackledge, M.A.

    1993-07-01

    Sandia National Laboratories has the qualification evaluation responsibility for the design of certain components intended for use in nuclear weapons. Specific techniques in assurance and assessment have been developed to provide the quality evidence that the software has been properly qualified for use. Qualification Evaluation is a process for assessing the suitability of either a process used to develop or manufacture the product, or the product itself. The qualification process uses a team approach to evaluating a product or process, chaired by a Quality Assurance professional, with other members representing the design organization, the systems organization, and the production agency. Suitable for use implies that adequate and appropriate definition and documentation has been produced and formally released, adequate verification and validation activities have taken place to ensure proper operation, and the software product meets all requirements, explicitly or otherwise.

  3. Assurance and assessment techniques for nuclear weapon related software

    SciTech Connect

    Blackledge, M.A.

    1993-12-31

    Sandia National Laboratories has the qualification evaluation responsibility for the design of certain components intended for use in nuclear weapons. Specific techniques in assurance and assessment have been developed to provide the quality evidence that the software has been properly qualified for use. Qualification Evaluation is a process for assessing the suitability of either a process used to develop or manufacture the product, or the product itself The qualification process uses a team approach to evaluating a product or process, chaired by a Quality Assurance professional, with other members representing the design organization, the systems organization, and the production agency. Suitable for use implies that adequate and appropriate definition and documentation has been produced and formally released, adequate verification and validation activities have taken place to ensure proper operation, and the software product meets all requirements, explicitly or otherwise.

  4. Assurance and assessment techniques for nuclear weapon related software

    SciTech Connect

    Blackledge, M.A.

    1993-01-01

    Sandia National Laboratories has the qualification evaluation responsibility for the design of certain components intended for use in nuclear weapons. Specific techniques in assurance and assessment have been developed to provide the quality evidence that the software has been properly qualified for use. Qualification Evaluation is a process for assessing the suitability of either a process used to develop or manufacture the product, or the product itself. The qualification process uses a team approach to evaluating a product or process, chaired by a Quality Assurance professional, with other members representing the design organization, the systems organization, and the production agency. Suitable for use implies that adequate and appropriate definition and documentation has been produced and formally released, adequate verification and validation activities have taken place to ensure proper operation, and the software product meets all requirements, explicitly or otherwise.

  5. Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951...

    Energy Saver

    Cold War: The Nevada Test Site, Volume I Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Terrence ...

  6. National Day of Remembrance HSS Honors Former Nuclear Weapons Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Workers | Department of Energy Remembrance HSS Honors Former Nuclear Weapons Program Workers National Day of Remembrance HSS Honors Former Nuclear Weapons Program Workers October 28, 2013 - 3:11pm Addthis Color Guard | National Day of Remembrance - October 25, 2013 Color Guard | National Day of Remembrance - October 25, 2013 US Representative Dina Titus (1st Congressional District of Nevada) | National Day of Remembrance - October 25, 2013 US Representative Dina Titus (1st Congressional

  7. The role of nuclear weapons in the year 2000

    SciTech Connect

    Not Available

    1990-01-01

    This publication presents the proceedings for the workshop, The Role of Nuclear Weapons in the Year 2000, held on October 22--24, 1990. The workshop participants considered the changing nature of deterrence and of our strategic relationship with the Soviet Union, the impact of nuclear proliferation on regional conflicts, and ways that the nuclear forces might be restructured to reflect new political circumstances.

  8. DOE's Former Rocky Flats Weapons Production Site to Become National Wildlife Refuge

    Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced the transfer of nearly 4,000 acres of its former Rocky Flats nuclear weapons production site to the Department of the Interior's...

  9. CERCLA Preliminary Assessment of DOE'S Nevada Operations Office Nuclear Weapons Testing

    Office of Legacy Management (LM)

    tudies/B ackground Book 1 CERCLA Preliminary Assessment of DOE'S Nevada Operations Office Nuclear Weapons Testing Areas Vol. 11, April 1988 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. CERCLA PRELIMINARY ASSESSMENT OF DOE'S NEVADA OPERATIONS OFFICE WCILEAR WEAPONS T E S r n G AREAS Prepared by Water Resources Center Desert Research Institute University of Nevada System ,Prepared for U . S .

  10. Notice of Intent to Revise DOE O 452.3, Management of the Department of Energy Nuclear Weapons Complex

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2016-01-11

    The Order is being revised to better align the roles and responsibilities of the Deputy Administrator for Defense Programs consistent with the National Nuclear Security Administration (NNSA) Act (Public Law 106-65, SEC 3214.50 U.S.C. 2404) and the 1953 Agreement between the Department of Energy (DOE) and Department of Defense (DoD) for the development, production, and standardization of nuclear weapons. NNSA is also seeking to align the nuclear weapons acquisition and life cycle management roles and responsibilities, to include streamlined defense programs business and execution requirements and processes, and change the name within the title from 'Nuclear Weapons Complex' to 'Nuclear Security Enterprise'.

  11. Public perspectives of nuclear weapons in the post-cold war environment

    SciTech Connect

    Jenkins-Smith, H.C.; Herron, K.G.; Barke, R.P.

    1994-04-01

    This report summarizes the findings of a nationwide survey of public perceptions of nuclear weapons in the post-cold war environment. Participants included 1,301 members of the general public, 1,155 randomly selected members of the Union of Concerned Scientists, and 1,226 employees randomly selected from the technical staffs of four DOE national laboratories. A majority of respondents from all three samples perceived the post-cold war security environment to pose increased likelihood of nuclear war, nuclear proliferation, and nuclear terrorism. Public perceptions of nuclear weapons threats, risks, utilities, and benefits were found to systematically affect nuclear weapons policy preferences in predictable ways. Highly significant relationships were also found between public trust and nuclear weapons policy preferences. As public trust and official government information about nuclear weapons increased, perceptions of nuclear weapons management risks decreased and perceptions of nuclear weapons utilities and benefits increased. A majority of respondents favored decreasing funding for: (1) developing and testing new nuclear weapons; (2) maintaining existing nuclear weapons, and (3) maintaining the ability to develop and improve nuclear weapons. Substantial support was found among all three groups for increasing funding for: (1) enhancing nuclear weapons safety; (2) training nuclear weapons personnel; (3) preventing nuclear proliferation; and (4) preventing nuclear terrorism. Most respondents considered nuclear weapons to be a persistent feature of the post-cold war security environment.

  12. weapons material | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

  13. The Meteorological Monitoring program at a former nuclear weapons plant

    SciTech Connect

    Maxwell, D.R.; Bowen, B.M.

    1994-02-01

    The purpose of the Meteorological Monitoring program at Rocky Flats Plant (RFP) is to provide meteorological information for use in assessing the transport, and diffusion, and deposition of effluent actually or potentially released into the atmosphere by plant operations. Achievement of this objective aids in protecting health and safety of the public, employees, and environment, and directly supports Emergency Response programs at RFP. Meteorological information supports the design of environmental monitoring networks for impact assessments, environmental surveillance activities, remediation activities, and emergency responses. As the mission of the plant changes from production of nuclear weapons parts to environmental cleanup and economic development, smaller releases resulting from remediation activities become more likely. These possible releases could result from airborne fugitive dust, evaporation from collection ponds, or grass fires.

  14. Managing nuclear weapons in a changing world: Proceedings

    SciTech Connect

    Not Available

    1992-12-31

    The Center for Security and Technology Studies was established at the Lawrence Livermore National Laboratory to support long-range technical studies on issues of importance to US national security. An important goal of the Center is to bring together Laboratory staff and the broader outside community through a program of technical studies, visitors, symposia, seminars, workshops, and publications. With this in mind, the Center and LLNL`s Defense Systems Program sponsored a conference on Managing Nuclear Weapons in a Changing World held on November 17--18,1992. The first day of the meeting focused on nuclear weapons issues in the major geographical areas of the world. On the second day, the conference participants discussed what could be done to manage, control, and account for nuclear weapons in this changing world. Each of the talks and the concluding panel discussion are being indexed as separate documents.

  15. The use of neutron scattering in nuclear weapons research

    SciTech Connect

    Juzaitis, R.J.

    1995-10-01

    We had a weapons science breakout session last week. Although it would have been better to hold it closer in time to this workshop, I think that it was very valuable. it may have been less of a {open_quotes}short-sleeve{close_quotes} workshop environment than we would have liked, but as the first time two communities-the weapons community and the neutron scattering community- got together, it was a wonderful opportunity to transfer information during the 24 presentations that were made. This report contains discussions on the fundamental analysis of documentation of the enduring stockpile; LANSCE`s contribution to weapons; spallation is critical to understanding; weapons safety assessments; applied nuclear physics requires cross section information; fission models need refinement; and establishing teams on collaborative projects.

  16. Proliferation concerns in the Russian closed nuclear weapons complex cities : a study of regional migration behavior.

    SciTech Connect

    Flores, Kristen Lee

    2004-07-01

    The collapse of the Soviet Union in 1991 left the legacy of the USSR weapons complex with an estimated 50 nuclear, chemical, and biological weapons cities containing facilities responsible for research, production, maintenance, and destruction of the weapons stockpile. The Russian Federation acquired ten such previously secret, closed nuclear weapons complex cities. Unfortunately, a lack of government funding to support these facilities resulted in non-payment of salaries to employees and even plant closures, which led to an international fear of weapons material and knowledge proliferation. This dissertation analyzes migration in 33 regions of the Russian Federation, six of which contain the ten closed nuclear weapons complex cities. This study finds that the presence of a closed nuclear city does not significantly influence migration. However, the factors that do influence migration are statistically different in regions containing closed nuclear cities compared to regions without closed nuclear cities. Further, these results show that the net rate of migration has changed across the years since the break up of the Soviet Union, and that the push and pull factors for migration have changed across time. Specifically, personal and residential factors had a significant impact on migration immediately following the collapse of the Soviet Union, but economic infrastructure and societal factors became significant in later years. Two significant policy conclusions are derived from this research. First, higher levels of income are found to increase outmigration from regions, implying that programs designed to prevent migration by increasing incomes for closed city residents may be counter-productive. Second, this study finds that programs designed to increase capital and build infrastructure in the new Russian Federation will be more effective for employing scientists and engineers from the weapons complex, and consequently reduce the potential for emigration of

  17. Interim storage of dismantled nuclear weapon components at the U.S. Department of Energy Pantex Plant

    SciTech Connect

    Guidice, S.J.; Inlow, R.O.

    1995-12-31

    Following the events of 1989 and the subsequent cessation of production of new nuclear weapons by the US, the mission of the Department of Energy (DOE) Nuclear Weapons Complex has shifted from production to dismantlement of retired weapons. The sole site in the US for accomplishing the dismantlement mission is the DOE Pantex Plant near Amarillo, Texas. Pending a national decision on the ultimate storage and disposition of nuclear components form the dismantled weapons, the storage magazines within the Pantex Plant are serving as the interim storage site for pits--the weapon plutonium-bearing component. The DOE has stipulated that Pantex will provide storage for up to 12,000 pits pending a Record of Decision on a comprehensive site-wide Environmental Impact Statement in November 1996.

  18. Y-12, the Cold War, and nuclear weapons dismantlement „ Or:...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the Cold War, and nuclear weapons dismantlement - Or: The Cold War and nuclear weapons dismantlement (title used in The Oak Ridger) The Cold War heated up over the years with such ...

  19. Los Alamos turns its nuclear weapons power to war on cancer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Los Alamos turns its nuclear weapons power to war on cancer Los Alamos turns its nuclear weapons power to war on cancer Los Alamos Physicist Eva Birnbaum shows how the laboratory ...

  20. The Effects of Nuclear Weapons (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    book is a revision of "The Effects of Nuclear Weapons" which was issued in 1957. It was ... Although the complex nature of nuclear weapons effects does not always allow exact ...

  1. Nuclear Explosive and Weapon Surety Program

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2005-09-20

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1B. Canceled by DOE O 452.1D

  2. Nuclear Explosive and Weapon Surety Program

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2009-04-14

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1C. Canceled by DOE O 452.1D Admin Chg 1.

  3. Nuclear Explosive and Weapon Surety Program

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2001-08-06

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1A. Canceled by DOE O 452.1C.

  4. Nuclear Explosive and Weapon Surety Program

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-01-17

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1. Canceled by DOE O 452.1B.

  5. Nuclear Explosive and Weapon Surety Program

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2009-04-14

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.1D.

  6. Securing NNSA's Nuclear Weapons Complex in a Post-9/11 World...

    National Nuclear Security Administration (NNSA)

    Securing NNSA's Nuclear Weapons Complex in a Post-911 World January 02, 2009 The National Nuclear Security Administration (NNSA) has several missions that are critical to the ...

  7. Cold War Films Yield New Effects-Data for U.S. Nuclear Weapons

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Cold War Films Yield New Effects National Security Science Latest Issue:April 2016 past issues All Issues » submit Cold War Films Yield New Effects-Data for U.S. Nuclear Weapons The rush is on to save deteriorating atmospheric nuclear-testing films that give Department of Defense planners, emergency-preparedness officials, and weapons researchers irreplaceable hard data on the yield of nuclear weapons. Digitizing and reanalyzing these films is revealing surprises, causing weapons scientists and

  8. The role of the weapons laboratory in nuclear security

    SciTech Connect

    Barry, W.R. )

    1989-07-01

    The role of the Nuclear Systems/Surety Division and its relationship to the Air Force Weapons Laboratory are described. The Function and goals of the security section within that division, under basic DOD guidance, are considered. Reference is made to work on ballistic protection shrouds for Minuteman II and III and Air Force nuclear weapon shipping containers. BNL-TSO contributions to AFWL study projects are explained. This involvement has existed since 1984 in regard to security improvements for SAC alert aircraft. The work involves ballistic screening and development of a taxiway-gap cable vehicle barrier. Future activities may deal with alert system upgrades, access denial systems, security seals, comprehensive security analysis, and criteria development.

  9. Y-12 employees receive awards recognizing excellence in nuclear weapons

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    program | Y-12 National Security Complex receive ... Y-12 employees receive awards recognizing excellence in nuclear weapons program Posted: October 6, 2014 - 9:09am Defense Programs 2013 Award of Excellence recipient Penny Cunningham receives congratulations from Jim Haynes (far left), CNS president and CEO, Tim Driscoll, NNSA uranium program manager, and Mark Padilla, NPO's assistant manager for programs and projects. Thirteen Y-12 teams received DP Awards of Excellence for 2013 at a

  10. Nuclear weapons research holds benefits for tech industry | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) weapons research holds benefits for tech industry Tuesday, May 31, 2016 - 5:05pm Sandia National Laboratories' Alec Talin inspects a silicon chip coated with a thin oxide layer, an array of platinum electrodes and a MOF film. Optical absorption and interference in the MOF and silicon-dioxide layers give it the deep blue color. Research work performed at NNSA's national laboratories generates fervor among scientists worldwide because it produces new

  11. U.S. Nuclear Weapons Strategy Delivered to Congress | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nuclear Weapons Strategy Delivered to Congress U.S. Nuclear Weapons Strategy Delivered to Congress July 24, 2007 - 2:55pm Addthis WASHINGTON, DC -U.S. Secretary of Energy Samuel W. Bodman joined the U.S. Secretaries of Defense and State in sending to Congress the Bush Administration's nuclear weapons strategy. This document not only describes the history of nuclear deterrence during the Cold War, but reinforces how deterrence applies to present and future security threats, and what a nuclear

  12. Towards a tactical nuclear weapons treaty? Is There a Role of IAEA Tools of Safeguards?

    SciTech Connect

    Saunders, Emily C.; Rowberry, Ariana N.; Fearey, Bryan L.

    2012-07-12

    In recent years, there is growing interest in formal negotiations on non-strategic or tactical nuclear weapons. With the negotiations of New START, there has been much speculation that a tactical nuclear weapons treaty should be included in the follow on to New START. This paper examines the current policy environment related to tactical weapons and some of the issues surrounding the definition of tactical nuclear weapons. We then map out the steps that would need to be taken in order to begin discussions on a tactical nuclear weapons treaty. These steps will review the potential role of the IAEA in verification of a tactical nuclear weapons treaty. Specifically, does IAEA involvement in various arms control treaties serve as a useful roadmap on how to overcome some of the issues pertaining to a tactical nuclear weapons treaty?

  13. AIM-98-3464 RECEIVED THE HISTORY OF NUCLEAR WEAPON SAFETY DEVICES

    Office of Scientific and Technical Information (OSTI)

    ... sea on April 7, after extensive search and recovery efforts. ... in the last weapon to enter the nuclear weapon stockpile. ... In electrical terms, nominal size-to-tolerance is equivalent ...

  14. Picture of the Week: From nuclear weapons testing to stockpile stewardship

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    9 From nuclear weapons testing to stockpile stewardship On Sept. 23, 1992, the last full-scale underground test of a nuclear weapon was conducted by Los Alamos National Lab at the Nevada Test Site. The test, code named "Divider," was the last of 1,030 nuclear tests carried out by the U.S. July 26, 2015 From nuclear weapons testing to stockpile stewardship x View larger version On Sept. 23, 1992, the last full-scale underground test of a nuclear weapon was conducted by Los Alamos

  15. Safeguards considerations related to the decontamination and decommissioning of former nuclear weapons facilities

    SciTech Connect

    Crawford, D.

    1995-12-31

    In response to the post-Cold War environment and the changes in the U. S. Department of Energy defense mission, many former nuclear operations are being permanently shut down. These operations include facilities where nuclear materials production, processing, and weapons manufacturing have occurred in support of the nation`s defense industry. Since defense-related operations have ceased, many of the classification and sensitive information concerns do not exist. However, nuclear materials found at these sites are of interest to the DOE from environmental, safety and health, and materials management perspectives. Since these facilities played a role in defense activities, the nuclear materials found at these facilities are considered special nuclear materials, primarily highly enriched uranium and/or plutonium. Consequently, these materials pose significant diversion, theft, and sabotage threats, and significant nuclear security issues exist that must be addressed. This paper focuses on the nuclear materials protection issues associated with facility decommissioning and decontamination, primarily safeguards.

  16. CERCLA Preliminary Assessment of DOE'S Nevada Operations Office Nuclear Weapons Testing

    Office of Legacy Management (LM)

    tudies1B ackground Book 1 CERCLA Preliminary Assessment of DOE'S Nevada Operations Office Nuclear Weapons Testing Areas Vol. I, April 1988 This page intentionally left blank CERCLA P R E W A R Y ASSESSMENT OF DOE'S NEVADA OPERATIONS OFFICE NUCLEAR WEAPONS TESTING AREAS Prepared for U . S . Department of Energy Nevada Operations Office Las Vegas, Nevada April 1988 vo I CERCLA PRELIMINARY ASSESSMENT OF DOE'S NEVADA OPERATIONS OFFICE NUCLEAR WEAPONS TESTING AREAS DRAFT Prepared for U.S. Department

  17. Los Alamos turns its nuclear weapons power to war on cancer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Los Alamos turns its nuclear weapons power to war on cancer Los Alamos turns its nuclear weapons power to war on cancer Los Alamos Physicist Eva Birnbaum shows how the laboratory is manufacturing a radioactive treatment that targets tumors, without killing the surrounding healthy tissue. December 20, 2015 Los Alamos physicist Eva Birnbaum Los Alamos physicist Eva Birnbaum Los Alamos turns its nuclear weapons power to war on cancer NBC News got exclusive access to Los Alamos National Laboratory

  18. Radiocesium Discharges and Subsequent Environmental Transport at the Major U.S. Weapons Production Facilities

    SciTech Connect

    Garten, Jr. C.T.; Hamby, D.M.; Schreckhise, R.G.

    1999-11-14

    Radiocesium is one of the more prevalent radionuclides in the environment as a result of weapons production related atomic projects in the United States and the former Soviet Union. Radiocesium discharges during the 1950's account for a large fraction of the historical releases from U.S. weapons production facilities. Releases of radiocesium to terrestrial and aquatic ecosystems during the early ,years of nuclear weapons production provided the opportunity to conduct multidisciplinary studies on the transport mechanisms of this potentially hazardous radionuclide. The major U.S. Department of Energy facilities (Oak Ridge Reservation in Tennessee, Hanford Site near Richland, Washington, and Savannah River Site near Aiken, South Carolina) are located in regions of the country that have different geographical characteristics. The facility siting provided diverse backgrounds for the development of an understanding of environmental factors contributing to the fate and transport of radiocesium. In this paper, we summarize the significant environmental releases of radiocesium in the early -years of weapons production and then discuss the historically significant transport mechanisms for r37Cs at the three facilities that were part of the U.S. nuclear weapons complex.

  19. EA-1137: Nonnuclear Consolidation Weapons Production Support Project for the Kansas City Plant, Kansas City, Missouri

    Energy.gov [DOE]

    Nonnuclear Consolidation Weapons Production Support Project for the Kansas City Plant, Kansas City, Missouri

  20. NNSA Eliminates 100 Metric Tons Of Weapons-Grade Nuclear Material...

    National Nuclear Security Administration (NNSA)

    secure and less expensive nuclear weapons complex. ... sale of LEU for safe use in power and research reactors around the world. ... NNSA maintains and enhances the safety, security, ...

  1. Plus c`est la meme chose: The future of nuclear weapons in Europe

    SciTech Connect

    Maaranen, S.A.

    1996-07-01

    Since the end of the Cold War, the United States perhaps more than any other nuclear weapon state has deeply questioned the future role of nuclear weapons, both in a strategic sense and in Europe. It is probably the United States that has raised the most questions about the continuing need for and efficacy of nuclear weapons, and has expressed the greatest concerns about the negative consequences of continuing nuclear weapons deployment. In the US, this period of questioning has now come to a pause, if not a conclusion. In late 1994 the United States decided to continue to pursue reductions in numbers of nuclear weapons as well as other changes designed to reduce the dangers associated with the possession of nuclear weapons. But at the same time the US concluded that some number of nuclear forces would continue to be needed for national security for the foreseeable future. These necessary nuclear forces include a continuing but greatly reduced stockpile of nuclear bombs deployed in Europe under NATO`s New Strategic Concept. If further changes to the US position on nuclear weapons in Europe are to occur, it is likely to be after many years, and only in the context of dramatic additional improvements in the political and geo-political climate in and around Europe. The future role of nuclear weapons in Europe, as discussed in this report, depends in part on past and future decisions by the United States. but it must also be noted that other states that deploy nuclear weapons in Europe--Britain, France, and Russia, as well as the NATO alliance--have shown little inclination to discontinue their deployment of such weapons, whatever the United States might choose to do in the future.

  2. Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2015-08-28

    The order establishes requirements to implement the nuclear explosive security and use control elements of DOE O 452.1E to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts, deliberate unauthorized use, and denial of authorized use. Supersedes DOE O 452.4B, dated 1-22-10.

  3. Quality by design in the nuclear weapons complex

    SciTech Connect

    Ikle, D.N.

    1988-04-01

    Modern statistical quality control has evolved beyond the point at which control charts and sampling plans are sufficient to maintain a competitive position. The work of Genichi Taguchi in the early 1970's has inspired a renewed interest in the application of statistical methods of experimental design at the beginning of the manufacturing cycle. While there has been considerable debate over the merits of some of Taguchi's statistical methods, there is increasing agreement that his emphasis on cost and variance reduction is sound. The key point is that manufacturing processes can be optimized in development before they get to production by identifying a region in the process parameter space in which the variance of the process is minimized. Therefore, for performance characteristics having a convex loss function, total product cost is minimized without substantially increasing the cost of production. Numerous examples of the use of this approach in the United States and elsewhere are available in the literature. At the Rocky Flats Plant, where there are severe constraints on the resources available for development, a systematic development strategy has been developed to make efficient use of those resources to statistically characterize critical production processes before they are introduced into production. This strategy includes the sequential application of fractional factorial and response surface designs to model the features of critical processes as functions of both process parameters and production conditions. This strategy forms the basis for a comprehensive quality improvement program that emphasizes prevention of defects throughout the product cycle. It is currently being implemented on weapons programs in development at Rocky Flats and is in the process of being applied at other production facilities in the DOE weapons complex. 63 refs.

  4. DOE, NNSA leaders open summit on the physical security of nuclear weapons |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) DOE, NNSA leaders open summit on the physical security of nuclear weapons Wednesday, August 17, 2016 - 3:52pm Deputy Secretary of Energy Elizabeth Sherwood-Randall, NNSA Principal Deputy Administrator Madelyn Creedon, and numerous speakers from throughout the Nuclear Security Enterprise spoke at the 2016 Nuclear Weapons Physical Security Collaboration Summit earlier this month at Joint Base Andrews in Maryland. The event brought together

  5. COLLOQUIUM: Risks of Nuclear Weapons Use in an Era of Proliferation, Cyber

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Warfare and Terrorism | Princeton Plasma Physics Lab 5, 2014, 4:00pm to 5:30pm Colloquia MGB Auditorium COLLOQUIUM: Risks of Nuclear Weapons Use in an Era of Proliferation, Cyber Warfare and Terrorism Dr. Bruce G. Blair Princeton University The United States and eight other countries that possess nuclear weapons run myriad risks every day -- risks of accidental detonations, of unauthorized launches caused by false warning, of provoking escalation between nuclear forces, and of nuclear

  6. DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Oversight and Investigations Committee on Energy and Commerce U.S. House of Representatives "DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship" FOR RELEASE ON DELIVERY 10:00 AM September 12, 2012 1 Mr. Chairman and Members of the Subcommittee, I am pleased to be here at your request to testify on matters relating to the Department of Energy's oversight of the nuclear weapons complex. 1 The National Nuclear Security Administration (NNSA) was

  7. Weapons Intern Program participants visit Pantex | National Nuclear...

    National Nuclear Security Administration (NNSA)

    NNSA Blog The current Sandia Weapons Intern Program (WIP) class recently visited NNSA's Pantex Plant as part of the six-month program curriculum. While at Pantex, participants ...

  8. Los Alamos Selected as Atomic Weapons Laboratory | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Los Alamos Selected as Atomic Weapons Laboratory Los Alamos, NM Groves selects Los Alamos, New Mexico, as site for separate scientific laboratory to design an atomic bomb

  9. NEW - DOE O 452.1E, Nuclear Explosive and Weapon Surety Program

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

  10. Source terms for plutonium aerosolization from nuclear weapon accidents

    SciTech Connect

    Stephens, D.R.

    1995-07-01

    The source term literature was reviewed to estimate aerosolized and respirable release fractions for accidents involving plutonium in high-explosive (HE) detonation and in fuel fires. For HE detonation, all estimates are based on the total amount of Pu. For fuel fires, all estimates are based on the amount of Pu oxidized. I based my estimates for HE detonation primarily upon the results from the Roller Coaster experiment. For hydrocarbon fuel fire oxidation of plutonium, I based lower bound values on laboratory experiments which represent accident scenarios with very little turbulence and updraft of a fire. Expected values for aerosolization were obtained from the Vixen A field tests, which represent a realistic case for modest turbulence and updraft, and for respirable fractions from some laboratory experiments involving large samples of Pu. Upper bound estimates for credible accidents are based on experiments involving combustion of molten plutonium droplets. In May of 1991 the DOE Pilot Safety Study Program established a group of experts to estimate the fractions of plutonium which would be aerosolized and respirable for certain nuclear weapon accident scenarios.

  11. Iraqi nuclear weapons development program. Final report, October 1, 1992--September 30, 1993

    SciTech Connect

    Not Available

    1993-09-30

    This is an abstract of the final report focusing on the collection, collation, analysis, and recording of information pertaining to Iraqi nuclear weapons development and on the long term monitoring of Iraq.

  12. Quality at Y-12, part 3 -- Or: Quality goes beyond nuclear weapons...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Quality at Y-12, part 3 Or: Quality goes beyond nuclear weapons (title as it appeared in The Oak Ridger) As we continue our look at the history of Quality at Y-12, Bud Leete, Y-12 ...

  13. EIS-0225: Continued Operation of the Pantex Plant and Associated Storage of Nuclear Weapon Components

    Energy.gov [DOE]

    This EIS evaluates the potential environemental impact of a proposal to continue operation of the Pantex Plant and associated storage of nuclear weapon components. Alternatives considered include: ...

  14. Proceedings: 17th Asilomar conference on fire and blast effects of nuclear weapons

    SciTech Connect

    Hickman, R.G.; Meier, C.A.

    1983-01-01

    The objective of the 1983 conference was to provide for the technical exchange of ideas relating to the science and technology of the immediate effects of nuclear weapon explosions. Separate abstracts were prepared for 39 of the papers.

  15. COLLOQUIUM: Risks of Nuclear Weapons Use in an Era of Proliferation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    COLLOQUIUM: Risks of Nuclear Weapons Use in an Era of Proliferation, Cyber Warfare and ... Carol Ann Austin 609-243-2484 Contact Information Coordinator(s): Miss Carol Ann Austin ...

  16. Virtual enterprise model for the electronic components business in the Nuclear Weapons Complex

    SciTech Connect

    Ferguson, T.J.; Long, K.S.; Sayre, J.A.; Hull, A.L.; Carey, D.A.; Sim, J.R.; Smith, M.G.

    1994-08-01

    The electronic components business within the Nuclear Weapons Complex spans organizational and Department of Energy contractor boundaries. An assessment of the current processes indicates a need for fundamentally changing the way electronic components are developed, procured, and manufactured. A model is provided based on a virtual enterprise that recognizes distinctive competencies within the Nuclear Weapons Complex and at the vendors. The model incorporates changes that reduce component delivery cycle time and improve cost effectiveness while delivering components of the appropriate quality.

  17. Laboratory's role in Cold War nuclear weapons testing program focus of

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    next 70th anniversary lecture 70th anniversary lecture Laboratory's role in Cold War nuclear weapons testing program focus of next 70th anniversary lecture Lab's role in the development of nuclear weapons during the Cold War period will be discussed by Byron Ristvet of the Defense Threat Reduction Agency. September 5, 2013 This photograph captures the expanding fireball of the world's first full-scale hydrogen bomb test, Ivy-Mike, which was conducted Oct. 31, 1952. This photograph captures

  18. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    SciTech Connect

    Schoenberg, Kurt F

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  19. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    DOE PAGES [OSTI]

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.; Shuh, D. K.; Knight, K. B.; Eppich, G. R.; Holliday, K. S.

    2016-05-18

    We report that nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. Wemore » find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. Lastly, the resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.« less

  20. Chinese attitudes toward nuclear weapons: China and the United States during the Korean War

    SciTech Connect

    Ryan, M.A.

    1986-01-01

    Fundamental Chinese attitudes related to nuclear disarmament and proliferation, civil defense against nuclear attack, and the likely repercussions of nuclear war were set during the Korean War. Chinese viewpoints were heavily influenced by Western writings on nuclear matters from 1945-1950 and were characterized by an integrated military, political, and psychological realism. Previous studies, failing to make use of relevant Chinese-language materials, have neglected this crucial formative period. Both the Truman and Eisenhower administrations considered using nuclear weapons in Korea and China and attempted to shape the political settlement of the war through nuclear threats. The Chinese reaction was notable for its efforts to counteract the effects of fear among its population. They acknowledged the unprecedented destructiveness, not the military decisiveness, of the weapons, but they adamantly denied that nuclear threats would cow them. Chinese propaganda stressed the Soviet deterrent and skillfully appealed to worldwide opposition to nuclear weapons, often utilizing Western spokesmen and playing upon the theme of US misuse of science. The Chinese considered a nuclear attack relatively unlikely but were prepared to absorb an attack and fight a war of long duration. In Korea both the terrain and the extensive tunneling by Chinese troops afforded significant protection from nuclear weapons.

  1. Stopping the emergence of nuclear weapon states in the Third World: An examination of the Iraq weapons inspection program. Study project

    SciTech Connect

    Block, D.A.

    1993-01-31

    The end of the Gulf War and the implementation of United Nation (UN) resolutions uncovered an Iraqi multi-billion dollar nuclear weapons program. Iraq's ability to pursue this clandestine program for more than a decade, despite periodic inspections, suggest that the myriad of treaties and agreements designed to curb proliferation may be inadequate. Clearly more must be done to deter and counter the spread of these deadly weapon. The UN weapons inspections in Iraq provide insight into possible solutions to the proliferation of nuclear weapons technology in the developing world. This study examines the policy and operational aspects associated with an intrusive United Nations inspection program. In its final analysis, this paper suggests that an effective challenge inspection program is a necessary element in countering the spread of weapons of mass destruction. Further, it suggests that the UN, as the only internationally accepted enforcement organization, be fully engaged in nonproliferation issues and support the challenge inspection program.

  2. Notice of Intent to Revise DOE O 452.4B, Security and Control of Nuclear Explosives and Nuclear Weapons, dated 1-11-2010

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2014-09-18

    Recent events have revealed that there are organizations that are seeking to insert malicious software and/or components into the nuclear weapon supply chain that can alter the functionality of the weapon and possible cause DAU.

  3. Deputy Secretary Daniel Poneman’s Remarks to the International Forum for a Nuclear Weapons-Free World

    Office of Energy Efficiency and Renewable Energy (EERE)

    Please find below Deputy Secretary Daniel Poneman’s remarks, as prepared for delivery, to the International Forum for a Nuclear Weapons-Free World in Astana, Kazakhstan.

  4. Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons

    Energy.gov [DOE]

    Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons - December Commission meeting

  5. The meteorological monitoring audit, preventative maintenance and quality assurance programs at a former nuclear weapons facility

    SciTech Connect

    Maxwell, D.R.

    1995-12-31

    The purposes of the meteorological monitoring audit, preventative maintenance, and quality assurance programs at the Rocky Flats Environmental Technology Site (Site), are to (1) support Emergency Preparedness (EP) programs at the Site in assessing the transport, dispersion, and deposition of effluents actually or potentially released into the atmosphere by Site operations; and (2) provide information for onsite and offsite projects concerned with the design of environmental monitoring networks for impact assessments, environmental surveillance activities, and remediation activities. The risk from the Site includes chemical and radioactive emissions historically related to nuclear weapons component production activities that are currently associated with storage of large quantities of radionuclides (plutonium) and radioactive waste forms. The meteorological monitoring program provides information for site-specific weather forecasting, which supports Site operations, employee safety, and Emergency Preparedness operations.

  6. Some thoughts on the nonproliferation of nuclear weapons

    SciTech Connect

    Krikorian N.H.; Hawkins, H.T.

    1996-05-01

    This paper discusses factors controlling the dissemination of nuclear technologies and especially fissile materials.

  7. DRAFT - DOE O 452.2C, Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    The Order establishes requirements to implement the nuclear explosive security and use control (UC) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts (DUAs), deliberate unauthorized use (DUU), and denial of authorized use (DAU).

  8. Production Technology | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Production Technology NNSA continues to assure the safety, security, and reliability of the existing stockpile as it progresses towards a newly responsive nuclear weapons infrastructure as called for in the 2001 Nuclear Posture Review and described in the vision for Complex Transformation. The work is one of the key providers of design-to-manufacturing and technological readiness capabilities for this transformation effort. NNSA closely integrates planning and project selection prioritization

  9. NNSA Exceeds 2012 Goal for Nuclear Weapons Dismantlements | National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) ... Non-nuclear components are sent to the Savannah River Site and the Kansas City Plant for final disposition. ...

  10. The Need for a Strong Science and Technology Program in the Nuclear Weapons Complex for the 21st Century

    SciTech Connect

    Garaizar, X

    2010-01-06

    In this paper I argue for the need for a strong Science and Technology program in the Nuclear Weapons Complex as the basis for maintaining a credible deterrence capability. The current Nuclear Posture Review establishes a New Triad as the basis for the United States deterrence strategy in a changing security environment. A predictive science capability is at the core of a credible National Nuclear Weapons program in the 21st Century. In absence of nuclear testing, the certification of our current Nuclear Weapons relies on predictive simulations and quantification of the associated simulation uncertainties. In addition, a robust nuclear infrastructure needs an active research and development program that considers all the required nuclear scenarios, including new configurations for which there is no nuclear test data. This paper also considers alternative positions to the need for a Science and Technology program in the Nuclear Weapons complex.

  11. DOE (Department of Energy) nuclear weapon R and T (research, development, and testing): Objectives, roles, and responsibilities

    SciTech Connect

    Otey, G.R.

    1989-07-01

    An overview of the DOE nuclear weapons research, development, and testing program is given along with a description of the program objectives and the roles and responsibilities of the various involved organizations. The relationship between the DoD and DOE is described and the division of responsibilities for weapon development as well as the coordinated planning and acquisition activities are reviewed. Execution of the RD T program at the nuclear weapons laboratories is outlined. 24 refs., 3 figs.

  12. Historical Exposures to Chemicals at the Rocky Flats Nuclear Weapons Plant: A Pilot Retrospective Exposure Assessment

    SciTech Connect

    Janeen Denise Robertson

    1999-02-01

    In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the control groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.

  13. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues

    Energy.gov [DOE]

    Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement activities. This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues.

  14. Supporting Technology for Chain of Custody of Nuclear Weapons and Materials throughout the Dismantlement and Disposition Processes

    SciTech Connect

    Bunch, Kyle J.; Jones, Anthony M.; Ramuhalli, Pradeep; Benz, Jacob M.; Denlinger, Laura Schmidt

    2014-05-04

    The ratification and ongoing implementation of the New START Treaty have been widely regarded as noteworthy global security achievements for both the Obama Administration and the Putin (formerly Medvedev) regime. But deeper cuts that move beyond the United States and Russia to engage the P-5 and other nuclear weapons possessor states are envisioned under future arms control regimes, and are indeed required for the P-5 in accordance with their Article VI disarmament obligations in the Nuclear Non-Proliferation Treaty. Future verification needs will include monitoring the cessation of production of new fissile material for weapons, monitoring storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondary stages, and other materials. A fundamental challenge to implementing a nuclear disarmament regime is the ability to thwart unauthorized material diversion throughout the dismantlement and disposition process through strong chain of custody implementation. Verifying the declared presence, or absence, of nuclear materials and weapons components throughout the dismantlement and disposition lifecycle is a critical aspect of the disarmament process. From both the diplomatic and technical perspectives, verification under these future arms control regimes will require new solutions. Since any acceptable verification technology must protect sensitive design information and attributes to prevent the release of classified or other proliferation-sensitive information, non-nuclear non-sensitive modalities may provide significant new verification tools which do not require the use of additional information barriers. Alternative verification technologies based upon electromagnetic and acoustics could potentially play an important role in fulfilling the challenging requirements of future verification regimes. For example, researchers at the Pacific Northwest National Laboratory (PNNL) have demonstrated that low frequency electromagnetic

  15. AUDIT REPORT Followup on Sandia National Laboratories' Nuclear Weapons Safety Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sandia National Laboratories' Nuclear Weapons Safety Program OAI-M-16-16 August 2016 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 August 17, 2016 MEMORANDUM FOR THE ADMINISTRATOR, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: George W. Collard Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report for the "Followup on Sandia National Laboratories'

  16. Nuclear Nonproliferation Program Offices | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... and monitor nuclear weapons production, proliferation, and nuclear explosions worldwide. ...

  17. Report to Congress on stockpile reliability, weapon remanufacture, and the role of nuclear testing

    SciTech Connect

    Miller, G.H.; Brown, P.S.; Alonso, C.T.

    1987-10-01

    This report analyzes two issues: (1) ''whether past warhead reliability problems demonstrate that nuclear explosive testing is needed to identify or to correct stockpile reliability,'' or (2) ''whether a program of stockpile inspection, nonnuclear testing, and remanufacture would be sufficient to deal with stockpile reliability problems.'' Chapter 1 examines the reasons for nuclear testing. Although the thrust of the request from Congressman Aspin et al., has to do with the need for nuclear testing as it relates to stockpile reliability and remanufacture, there are other very important reasons for nuclear testing. Since there has been increasing interest in the US Congress for more restrictive nuclear test limits, we have addressed the overall need for nuclear testing and the potential impact of further nuclear test limitations. Chapter 1 also summarizes the major conclusions of a recent study conducted by the Scientific and Academic Advisory Committee (SAAC) for the President of the University of California; the SAAC report is entitled, ''Nuclear Weapon Tests: The Role of the University of California-Department of Energy Laboratories.'' Chapter 2 presents a brief history of stockpile problems that involved post-deployment nuclear testing for their resolution. Chapter 3 addresses the problems involved in remanufacturing nuclear weapons, and Chapter 4 discusses measures that should be taken to prepare for possible future restrictive test limits.

  18. Welcome to the NNSA Production Office | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) NNSA Production Office The NNSA Production Office (NPO) ensures the safe, secure and cost-effective management of the Pantex Plant, Amarillo, Texas, and the Y-12 National Security Complex, Oak Ridge, Tenn. Pantex handles nuclear weapons surveillance and life extension programs; weapons dismantlement; the development, testing and fabrication of high explosive components; and storage and surveillance of plutonium pits. Y-12 is responsible for uranium storage, processing

  19. Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM, DOE O 452.2D, NUCLEAR EXPLOSIVE SAFETY

    Energy.gov [DOE]

    "To prevent accidents and inadvertent or unauthorized use of U.S. nuclear weapons and nuclear explosives. In conjunction with the Department of Defense (DoD), to protect the public health and...

  20. US, Russian reach agreement on sale of nuclear weapons material

    SciTech Connect

    Lockwood, D.

    1993-03-01

    As part of the Safety, Security, and Dismantlement (SSD) talks, the USA and Russia on February 18, 1993 signed an agreement committing the USA to purchase, over the next 20 years, 500 metric tons of highly-enriched uranium (HEU) extracted from former USSR nuclear warheads. The process will not actually begin until a detailed contract is negotiated and arrangements are agreed, on a bilateral basis, between Russia and Belarus, Kazakhstan, and Ukraine on the division of the proceeds.

  1. De-Alerting and De-Activating Strategic Nuclear Weapons

    SciTech Connect

    KARAS, THOMAS H.

    2001-04-01

    Despite the end of the Cold War, the US and Russia continue to maintain their ICBMs and many SLBMs in a highly alerted state--they are technically prepared to launch the missiles within minutes of a command decision to do so. Some analysts argue that, particularly in light of the distressed condition of the Russian military, these high alert conditions are tantamount to standing on the edge of a nuclear cliff from which we should now step back. They have proposed various bilateral ''de-alerting'' measures, to be taken prior to and outside the context of the formal strategic arms reduction treaty (START) process. This paper identifies several criteria for a stable de-alerting regime, but fails to find de-alerting measures that convincingly satisfy the criteria. However, some de-alerting measures have promise as de-activation measures for systems due for elimination under the START II and prospective START III treaties. Moreover, once these systems are deactivated, a considerable part of the perceived need to keep nuclear forces on high alert as a survivability hedge will be reduced. At the same time, the U.S. and Russia could consider building on their earlier cooperative actions to reduce the risk of inadvertent nuclear war by enhancing their communications links and possibly joining in efforts to improve early warning systems.

  2. Five minutes past midnight: The clear and present danger of nuclear weapons grade fissile materials

    SciTech Connect

    Roberts, G.B.

    1996-02-01

    Growing stockpiles of nuclear weapons grade fissile materials (plutonium and highly enriched uranium) are a `clear and present danger` to international security. Much of this material is uncontrolled and unsecured in the former Soviet Union (FSU). Access to these materials is the primary technical barrier to a nuclear weapons capability since the technology know-how for a bomb making is available in the world scientific community. Strategies to convince proliferators to give up their nuclear ambitions are problematic since those ambitions are a party of largest regional security. There is no national material control and accounting in Russia. No one knows exactly how much fissile materials they have, and if any is missing. A bankrupt atomic energy industry, unpaid employees and little or no security has created a climate in which more and more fissile materials will likely be sold in black markets or diverted to clandestine nuclear weapons programs or transnational terrorist groups. Control over these materials will ultimately rely on the continuous and simultaneous exercise of several measures. While there is little one can do now to stop a determined proliferator, over time international consensus and a strengthened non-proliferation regime will convince proliferators that the costs outweigh the gains.

  3. Anti-nuclear weapons activism in the United States and Great Britain: a comparative analysis

    SciTech Connect

    Sussman, G.

    1987-01-01

    This study is a response to the lacuna in empirical research into political activism and the nuclear issue and seeks to ascertain the social and value characteristics, political attitudes, and political behavior of activists in the United States and Great Britain. Consideration is also given to gender differences in light of evidence of an emerging gender gap in these two countries. The study investigates the common forces cited in two sets of literature - post-industrialism and anti-nuclear weapons movements - which provide a framework for analysis. Survey research data is employed to assess cross-national similarities and differences. The findings obtained indicate that while American and British activists exhibit common social and value characteristics, British activists appear more integrated in their political opposition to nuclear weapons compared with their American counterparts. Survey results indicate that the political-action repertoire of these activists is quite diverse, suggesting a new style of politics in advanced industrial democracies. Gender-based analysis reveals two important findings. First, activist American men differ significantly from the other three social groups in their attitudes towards nuclear weapons. Second, activist women in both national settings participate at a level equal to or exceeding that of activist men.

  4. Assessing State Nuclear Weapons Proliferation: Using Bayesian Network Analysis of Social Factors

    SciTech Connect

    Coles, Garill A.; Brothers, Alan J.; Olson, Jarrod; Whitney, Paul D.

    2010-04-16

    A Bayesian network (BN) model of social factors can support proliferation assessments by estimating the likelihood that a state will pursue a nuclear weapon. Social factors including political, economic, nuclear capability, security, and national identity and psychology factors may play as important a role in whether a State pursues nuclear weapons as more physical factors. This paper will show how using Bayesian reasoning on a generic case of a would-be proliferator State can be used to combine evidence that supports proliferation assessment. Theories and analysis by political scientists can be leveraged in a quantitative and transparent way to indicate proliferation risk. BN models facilitate diagnosis and inference in a probabilistic environment by using a network of nodes and acyclic directed arcs between the nodes whose connections, or absence of, indicate probabilistic relevance, or independence. We propose a BN model that would use information from both traditional safeguards and the strengthened safeguards associated with the Additional Protocol to indicate countries with a high risk of proliferating nuclear weapons. This model could be used in a variety of applications such a prioritization tool and as a component of state safeguards evaluations. This paper will discuss the benefits of BN reasoning, the development of Pacific Northwest National Laboratorys (PNNL) BN state proliferation model and how it could be employed as an analytical tool.

  5. Literature survey of blast and fire effects of nuclear weapons on urban areas

    SciTech Connect

    Reitter, T.A.; McCallen, D.B.; Kang, S.W.

    1982-06-01

    The American literature of the past 30 years on fire and blast effects of nuclear weapons on urban areas has been surveyed. The relevant work is briefly sketched and areas where information is apparently lacking are noted. This report is intended to provide the basis for suggesting research priorities in the fire and blast effects area for the Federal Emergency Management Agency. It is also intended to provide entry into the literature for researchers. over 850 references are given.

  6. Risk-Based Decision Process for Accelerated Closure of a Nuclear Weapons Facility

    SciTech Connect

    Butler, L.; Norland, R. L.; DiSalvo, R.; Anderson, M.

    2003-02-25

    Nearly 40 years of nuclear weapons production at the Rocky Flats Environmental Technology Site (RFETS or Site) resulted in contamination of soil and underground systems and structures with hazardous substances, including plutonium, uranium and hazardous waste constituents. The Site was placed on the National Priority List in 1989. There are more than 370 Individual Hazardous Substance Sites (IHSSs) at RFETS. Accelerated cleanup and closure of RFETS is being achieved through implementation and refinement of a regulatory framework that fosters programmatic and technical innovations: (1) extensive use of ''accelerated actions'' to remediate IHSSs, (2) development of a risk-based screening process that triggers and helps define the scope of accelerated actions consistent with the final remedial action objectives for the Site, (3) use of field instrumentation for real time data collection, (4) a data management system that renders near real time field data assessment, and (5) a regulatory agency consultative process to facilitate timely decisions. This paper presents the process and interim results for these aspects of the accelerated closure program applied to Environmental Restoration activities at the Site.

  7. The Plutonium Transition from Nuclear Weapons to Crypt

    SciTech Connect

    Gray, L.W.

    2000-03-14

    With the end of the ''Cold War'' thousands of nuclear warheads are being dismantled. The National Academy of Sciences termed this growing stockpile of plutonium and highly enriched uranium ''a clear and present danger'' to international security. DOE/MD selected a duel approach to plutonium disposition--burning MOX fuel in existing reactors and immobilization in a ceramic matrix surrounded by HLW glass. MOX material will be pits and clean metal. The challenges come with materials that will be transferred to Immobilization--these range from engineered materials to residues containing < 30% Pu. Impurity knowledge range from guesses to actual data. During packaging, sites will flag ''out of the ordinary'' containers for characterized. If the process history is lost, characterization cost will escalate rapidly. After two step blending and ceramic precursor addition, cold press and sintering will form 0.5-kg ceramic pucks containing {le}50 g Pu. Pucks will be sealed in cans, placed into magazines, then into HLW canisters; these canisters will be filled with HLW glass prior to being transported to the HLW repository. The Immobilization Program must interface with DP, EM, RW, and NN. Overlaid on top of these interfaces are the negotiations with the Russians.

  8. Nuclear Safety Design Principles & the Concept of Independence: Insights from Nuclear Weapon Safety for Other High-Consequence Applications.

    SciTech Connect

    Brewer, Jeffrey D.

    2014-05-01

    Insights developed within the U.S. nuclear weapon system safety community may benefit system safety design, assessment, and management activities in other high consequence domains. The approach of assured nuclear weapon safety has been developed that uses the Nuclear Safety Design Principles (NSDPs) of incompatibility, isolation, and inoperability to design safety features, organized into subsystems such that each subsystem contributes to safe system responses in independent and predictable ways given a wide range of environmental contexts. The central aim of the approach is to provide a robust technical basis for asserting that a system can meet quantitative safety requirements in the widest context of possible adverse or accident environments, while using the most concise arrangement of safety design features and the fewest number of specific adverse or accident environment assumptions. Rigor in understanding and applying the concept of independence is crucial for the success of the approach. This paper provides a basic description of the assured nuclear weapon safety approach, in a manner that illustrates potential application to other domains. There is also a strong emphasis on describing the process for developing a defensible technical basis for the independence assertions between integrated safety subsystems.

  9. Sandia California works on nuclear weapon W80-4 Life Extension Program |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) works on nuclear weapon W80-4 Life Extension Program Friday, October 16, 2015 - 10:23am The W80-4 mechanical team at Sandia National Laboratories reviews results. The W80-4 mechanical team at Sandia National Laboratories reviews the results of thermal analysis. From the top center, counterclockwise, are Ryan Johnson, Bryn Miyahara, Alvin Leung and Matt H. Jones. Sandia National Laboratories is doing what it hasn't done in decades: extending

  10. Rocky Flats Plant: Test bed for transitioning from weapons production mission to environmental restoration, waste management, and economic development missions

    SciTech Connect

    Benjamin, A.; Murthy, K.S.; Krenzer, R.W.; Williams, R.E.; Detamore, J.A.; Brown, C.M.; Francis, G.E.; Lucerna, J.J.

    1993-01-07

    Redirection of Rocky Flats Plant`s (RF) mission is an inevitable result of changes in the worldwide social, political, and environmental factors. These changes were exemplified in the cancellation of the W-88 Warhead in January 1992, by the President of the United States. These unprecedented changes have altered the RF`s traditional nuclear weapons production mission to the transition mission, i.e., cleanup, preparation for deactivation and decontamination, decommissioning, dismantlement and demolition, and when appropriate, economic development, of the facilities. The purpose of this paper is to describe the essentials of the technical approach and management actions advanced by EG&G Rocky Flats, Inc., to organize, staff, direct, and control the activities necessary to transition the RF from its historical weapons production mission to the transition mission.

  11. Rocky Flats Plant: Test bed for transitioning from weapons production mission to environmental restoration, waste management, and economic development missions

    SciTech Connect

    Benjamin, A.; Murthy, K.S.; Krenzer, R.W.; Williams, R.E.; Detamore, J.A.; Brown, C.M.; Francis, G.E.; Lucerna, J.J.

    1993-01-07

    Redirection of Rocky Flats Plant's (RF) mission is an inevitable result of changes in the worldwide social, political, and environmental factors. These changes were exemplified in the cancellation of the W-88 Warhead in January 1992, by the President of the United States. These unprecedented changes have altered the RF's traditional nuclear weapons production mission to the transition mission, i.e., cleanup, preparation for deactivation and decontamination, decommissioning, dismantlement and demolition, and when appropriate, economic development, of the facilities. The purpose of this paper is to describe the essentials of the technical approach and management actions advanced by EG G Rocky Flats, Inc., to organize, staff, direct, and control the activities necessary to transition the RF from its historical weapons production mission to the transition mission.

  12. North Korea's nuclear weapons program:verification priorities and new challenges.

    SciTech Connect

    Moon, Duk-ho

    2003-12-01

    A comprehensive settlement of the North Korean nuclear issue may involve military, economic, political, and diplomatic components, many of which will require verification to ensure reciprocal implementation. This paper sets out potential verification methodologies that might address a wide range of objectives. The inspection requirements set by the International Atomic Energy Agency form the foundation, first as defined at the time of the Agreed Framework in 1994, and now as modified by the events since revelation of the North Korean uranium enrichment program in October 2002. In addition, refreezing the reprocessing facility and 5 MWe reactor, taking possession of possible weapons components and destroying weaponization capabilities add many new verification tasks. The paper also considers several measures for the short-term freezing of the North's nuclear weapon program during the process of negotiations, should that process be protracted. New inspection technologies and monitoring tools are applicable to North Korean facilities and may offer improved approaches over those envisioned just a few years ago. These are noted, and potential bilateral and regional verification regimes are examined.

  13. Environmental Radiation Dose Reconstruction for U.S. and Russian Weapons Production Facilities: Hanford and Mayak

    SciTech Connect

    Ansbaugh, Lynn R.; Degteva, M. O.; Kozheurov, V. P.; Napier, Bruce A.; Tolstykh, E. I.; Vorobiova, M. I.

    2003-05-01

    Another way to look at Cold War legacies is to examine the major environmental releases that resulted from past operation of Cold War-related facilities for the manufacture of nuclear weapons. Examining these historical releases and the resultant radiation dose to individuals living near these facilities is called environmental dose reconstruction. Dose reconstructions have been performed or are underway at most large Cold War installations in the United States, such as the Hanford facility; several are also underway in other countries, such as at the Mayak facility in Russia. The efforts in the United States are mostly based on historical operating records and current conditions, which are used to estimate environmental releases, transport, and human exposure. The Russian efforts are largely based on environmental measurements and measurements of human subjects; environmental transport modelling, when conducted, is used to organize and validate the measurements. Past operation of Cold War-related facilities for the manufacture of nuclear weapons has resulted in major releases of radionuclides into the environment. Reconstruction of the historical releases and the resultant radiation dose to individuals in the public living near these facilities is called environmental dose reconstruction. Dose reconstructions have been performed or are underway at most large Cold War installations in the United States; several are also underway in other countries. The types of activity performed, the operating histories, and the radionuclide releases vary widely across the different facilities. The U.S. Hanford Site and the Russian Mayak Production Association are used here to illustrate the nature of the assessed problems and the range of approaches developed to solve them.

  14. Probabilistic cost-benefit analysis of enhanced safety features for strategic nuclear weapons at a representative location

    SciTech Connect

    Stephens, D.R.; Hall, C.H.; Holman, G.S.; Graham, K.F.; Harvey, T.F.; Serduke, F.J.D.

    1993-10-01

    We carried out a demonstration analysis of the value of developing and implementing enhanced safety features for nuclear weapons in the US stockpile. We modified an approach that the Nuclear Regulatory Commission (NRC) developed in response to a congressional directive that NRC assess the ``value-impact`` of regulatory actions for commercial nuclear power plants. Because improving weapon safety shares some basic objectives with NRC regulations, i.e., protecting public health and safety from the effects of accidents involving radioactive materials, we believe the NRC approach to be appropriate for evaluating weapons-safety cost-benefit issues. Impact analysis includes not only direct costs associated with retrofitting the weapon system, but also the expected costs (or economic risks) that are avoided by the action, i.e., the benefits.

  15. Opportunities for Russian Nuclear Weapons Institute developing computer-aided design programs for pharmaceutical drug discovery. Final report

    SciTech Connect

    1996-09-23

    The goal of this study is to determine whether physicists at the Russian Nuclear Weapons Institute can profitably service the need for computer aided drug design (CADD) programs. The Russian physicists` primary competitive advantage is their ability to write particularly efficient code able to work with limited computing power; a history of working with very large, complex modeling systems; an extensive knowledge of physics and mathematics, and price competitiveness. Their primary competitive disadvantage is their lack of biology, and cultural and geographic issues. The first phase of the study focused on defining the competitive landscape, primarily through interviews with and literature searches on the key providers of CADD software. The second phase focused on users of CADD technology to determine deficiencies in the current product offerings, to understand what product they most desired, and to define the potential demand for such a product.

  16. Progress toward mutual reciprocal inspections of fissile materials from dismantled nuclear weapons

    SciTech Connect

    Johnson, M.W.; Gosnell, T.B.

    1995-08-01

    In March 1994, the United States and the Russian Federation announced their intention to conduct mutual reciprocal inspections (MRI) to confirm inventories of fissile materials from dismantled nuclear weapons. Subsequent interactions between the two countries have established the basis for an MRI regime, covering instrumentation, candidate sites for MRI, and protection of information deemed sensitive by the countries. This paper discusses progress made toward MRI, stressing measurement technologies and observables, as well as prospects for MRI implementation. An analysis is presented of observables that might be exploited to provide assurance that the material being measured could have come from a dismantled weapon rather than other sources. Instrumentation to exploit these observables will also be discussed, as will joint US/Russian efforts to demonstrate such instrumentation. Progress toward a so-called ``program of cooperation`` between the two countries in protecting each other`s sensitive information will be reviewed. All of these steps are essential components of an eventual comprehensive regime for controlling fissile materials from weapons.

  17. A Sandia nuclear weapon knowledge management program plan for FY 1998--2003. Volume 1: Synopsis

    SciTech Connect

    1998-02-01

    This volume contains a synopsis and briefing charts for a five-year plan which describes a Knowledge Management Program needed to meet Sandia`s responsibility for maintaining safety, security, reliability, and operational effectiveness of the nuclear weapon stockpile. Although the knowledge and expertise required to maintain and upgrade the stockpile continues to be critical to the country`s defense, Sandia`s historical process for developing and advancing future knowledge and expertise needs to be addressed. This plan recommends implementing an aggressive Knowledge Management Program to assure retention and furtherance of Sandia`s expertise, beginning in fiscal year 1998, as an integrated approach to solving the expertise dilemma.

  18. Cooperative measures to support the Indo-Pak Agreement Reducing Risk from Accidents Relating to Nuclear Weapons.

    SciTech Connect

    Mishra, Sitakanta; Ahmed, Mansoor

    2014-04-01

    In 2012, India and Pakistan reaffirmed the Agreement on Reducing the Risk from Accidents Relating to Nuclear Weapons. Despite a history of mutual animosity and persistent conflict between the two countries, this agreement derives strength from a few successful nuclear confidence building measures that have stood the test of time. It also rests on the hope that the region would be spared a nuclear holocaust from an accidental nuclear weapon detonation that might be misconstrued as a deliberate use of a weapon by the other side. This study brings together two emerging strategic analysts from South Asia to explore measures to support the Agreement and further develop cooperation around this critical issue. This study briefly dwells upon the strategic landscape of nuclear South Asia with the respective nuclear force management structures, doctrines, and postures of India and Pakistan. It outlines the measures in place for the physical protection and safety of nuclear warheads, nuclear materials, and command and control mechanisms in the two countries, and it goes on to identify the prominent, emerging challenges posed by the introduction of new weapon technologies and modernization of the respective strategic forces. This is followed by an analysis of the agreement itself leading up to a proposed framework for cooperative measures that might enhance the spirit and implementation of the agreement.

  19. Preliminary results of calculations for heavy-water nuclear-power-plant reactors employing {sup 235}U, {sup 233}U, and {sup 232}Th as a fuel and meeting requirements of a nonproliferation of nuclear weapons

    SciTech Connect

    Ioffe, B. L.; Kochurov, B. P.

    2012-02-15

    A physical design is developed for a gas-cooled heavy-water nuclear reactor intended for a project of a nuclear power plant. As a fuel, the reactor would employ thorium with a small admixture of enriched uranium that contains not more than 20% of {sup 235}U. It operates in the open-cycle mode involving {sup 233}U production from thorium and its subsequent burnup. The reactor meets the conditions of a nonproliferation of nuclear weapons: the content of fissionable isotopes in uranium at all stages of the process, including the final one, is below the threshold for constructing an atomic bomb, the amount of product plutonium being extremely small.

  20. Bikini, Enewetak, and Rongelap Marshallese, and United States nuclear weapons testing in the Marshall Islands: A bibliography

    SciTech Connect

    Schultz, V. ); Schultz, S.C. ); Robison, W.L. )

    1991-05-01

    A considerable literature exists on the Bikini, Enewetak, and Rongelap Marshallese and their atolls; however, this literature consists of a large number of governmental documents that are relatively unknown and difficult to locate. This is particularly true of the documents of the Trust Territory of the Pacific Islands and those related to nuclear weapons testing in the Marshall Islands. Because a comprehensive bibliography on the impact of nuclear weapons testing on the Marshallese and their atolls does not exist, the preparation of a bibliography that includes sufficient information to locate all types of reports seems justified. This document is the bibliography.

  1. American perspectives on security : energy, environment, nuclear weapons, and terrorism : 2010.

    SciTech Connect

    Herron, Kerry Gale; Jenkins-Smith, Hank C.; Silva, Carol L.

    2011-03-01

    We report findings from an Internet survey and a subset of questions administered by telephone among the American public in mid-2010 on US energy and environmental security. Key areas of investigation include public perceptions shaping the context for debate about a comprehensive national energy policy, and what levels of importance are assigned to various prospective energy technologies. Additionally, we investigate how public views on global climate change are evolving, how the public assesses the risks and benefits of nuclear energy, preferences for managing used nuclear fuel, and public trust in sources of scientific and technical information. We also report findings from a national Internet survey and a subset of questions administered by telephone in mid-2010 on public views of the relevance of US nuclear weapons today, support for strategic arms control, and assessments of the potential for nuclear abolition. Additionally, we analyze evolving public views of the threat of terrorism, assessments of progress in the struggle against terrorism, and tolerance for intrusive antiterror policies. Where possible, findings from each survey are compared with previous surveys in this series for analyses of trends.

  2. Mobile Pit verification system design based on passive special nuclear material verification in weapons storage facilities

    SciTech Connect

    Paul, J. N.; Chin, M. R.; Sjoden, G. E.

    2013-07-01

    A mobile 'drive by' passive radiation detection system to be applied in special nuclear materials (SNM) storage facilities for validation and compliance purposes has been designed through the use of computational modeling and new radiation detection methods. This project was the result of work over a 1 year period to create optimal design specifications to include creation of 3D models using both Monte Carlo and deterministic codes to characterize the gamma and neutron leakage out each surface of SNM-bearing canisters. Results were compared and agreement was demonstrated between both models. Container leakages were then used to determine the expected reaction rates using transport theory in the detectors when placed at varying distances from the can. A 'typical' background signature was incorporated to determine the minimum signatures versus the probability of detection to evaluate moving source protocols with collimation. This established the criteria for verification of source presence and time gating at a given vehicle speed. New methods for the passive detection of SNM were employed and shown to give reliable identification of age and material for highly enriched uranium (HEU) and weapons grade plutonium (WGPu). The finalized 'Mobile Pit Verification System' (MPVS) design demonstrated that a 'drive-by' detection system, collimated and operating at nominally 2 mph, is capable of rapidly verifying each and every weapon pit stored in regularly spaced, shelved storage containers, using completely passive gamma and neutron signatures for HEU and WGPu. This system is ready for real evaluation to demonstrate passive total material accountability in storage facilities. (authors)

  3. Electromagnetic Signature Technique as a Promising Tool to Verify Nuclear Weapons Storage and Dismantlement under a Nuclear Arms Control Regime

    SciTech Connect

    Bunch, Kyle J.; Williams, Laura S.; Jones, Anthony M.; Ramuhalli, Pradeep

    2012-08-01

    The 2010 ratification of the New START Treaty has been widely regarded as a noteworthy national security achievement for both the Obama administration and the Medvedev-Putin regime, but deeper cuts are envisioned under future arms control regimes. Future verification needs will include monitoring the storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondaries, and other materials. From both the diplomatic and technical perspectives, verification under future arms control regimes will pose new challenges. Since acceptable verification technology must protect sensitive design information and attributes, non-nuclear non-sensitive signatures may provide a significant verification tool without the use of additional information barriers. The use of electromagnetic signatures to monitor nuclear material storage containers is a promising technology with the potential to fulfill these challenging requirements. Research performed at Pacific Northwest National Laboratory (PNNL) has demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to confirm the presence of specific components on a “yes/no” basis without revealing classified information. Arms control inspectors might use this technique to verify the presence or absence of monitored items, including both nuclear and non-nuclear materials. Although additional research is needed to study signature aspects such as uniqueness and investigate container-specific scenarios, the technique potentially offers a rapid and cost-effective tool to verify reduction and dismantlement of U.S. and Russian nuclear weapons.

  4. Low Prevalence of Chronic Beryllium Disease among Workers at a Nuclear Weapons Research and Development Facility

    SciTech Connect

    Arjomandi, M; Seward, J P; Gotway, M B; Nishimura, S; Fulton, G P; Thundiyil, J; King, T E; Harber, P; Balmes, J R

    2010-01-11

    To study the prevalence of beryllium sensitization (BeS) and chronic beryllium disease (CBD) in a cohort of workers from a nuclear weapons research and development facility. We evaluated 50 workers with BeS with medical and occupational histories, physical examination, chest imaging with HRCT (N=49), and pulmonary function testing. Forty of these workers also underwent bronchoscopy for bronchoalveolar lavage (BAL) and transbronchial biopsies. The mean duration of employment at the facility was 18 yrs and the mean latency (from first possible exposure) to time of evaluation was 32 yrs. Five of the workers had CBD at the time of evaluation (based on histology or HRCT); three others had evidence of probable CBD. These workers with BeS, characterized by a long duration of potential Be exposure and a long latency, had a low prevalence of CBD.

  5. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    Facilities Production Facilities Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for the irradiation of experiments with high-intensity gamma ray sources. The main features

  6. EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel

    Office of Energy Efficiency and Renewable Energy (EERE)

    This study analyzes the potential environmental impacts of adopting a policy to manage foreign research reactor spent nuclear fuel containing uranium enriched in the United States. In particular, the study examines the comparative impacts of several alternative approaches to managing the spent fuel.

  7. Proliferation Detection | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Research and Development Proliferation Detection The Office of Proliferation Detection (PD) develops capabilities to detect special nuclear materials and weapons production and movement, as well as for transparent nuclear reductions and monitoring. The PD efforts are aligned along three functional areas: Nuclear Weaponization and Material Production Detection: Supports the development of technology to target the detection and characterization of foreign weapons program activities, including

  8. Uranium Weapons Components Successfully Dismantled | National...

    National Nuclear Security Administration (NNSA)

    Uranium Weapons Components Successfully Dismantled Uranium Weapons Components Successfully Dismantled Oak Ridge, TN Continuing its efforts to reduce the size of the U.S. nuclear ...

  9. Supercritical-fluid carbon dioxide (SCCO{sub 2}) cleaning of nuclear weapon components

    SciTech Connect

    Taylor, C.M.V.; Sivils, L.D.; Rubin, J.B.

    1998-05-01

    Supercritical fluid carbon dioxide (SCCO{sub 2}) has been evaluated as a cleaning solvent for the cleaning of plutonium (Pu) metal parts. The results of the evaluation show that SCCO{sub 2} is an effective alternative to halogenated solvents that are conventionally used for removing organic and inorganic contaminants from the surface of these parts. The cleaning process was demonstrated at the laboratory scale for steel and uranium substrates and has been found to be compatible with Pu. The efficacy of this cleaning method is found to be dependent on process conditions of pressure, temperature, fluid-flow rate, as well as cleaning time. Process parameters of P > 2,500 psi, T > 40 C, and moderate fluid flow rates, produced good cleaning results in less than 10 minutes using a simple flow-through process configuration. Within the parameter range studied, cleaning efficiency generally improved with increasing process pressure and flow rate. SCCO{sub 2} cleaning is suitable for a variety of component cleaning tasks and is adaptable to precision cleaning requirements. The SCCO{sub 2} cleaning process is currently being developed for deployment for weapons production at LANL.

  10. NNSA's Cielo Supercomputer Commences High-Resolution 3-D Weapon

    National Nuclear Security Administration (NNSA)

    Simulations | National Nuclear Security Administration | (NNSA) NNSA's Cielo Supercomputer Commences High-Resolution 3-D Weapon Simulations August 03, 2011 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) has announced that it has begun production runs focusing on high resolution 3-D weapon simulations on NNSA's largest supercomputer platform, Cielo. The simulations will be used to ensure the safety, security, and effectiveness of the nuclear stockpile while maintaining

  11. Consequence modeling for nuclear weapons probabilistic cost/benefit analyses of safety retrofits

    SciTech Connect

    Harvey, T.F.; Peters, L.; Serduke, F.J.D.; Hall, C.; Stephens, D.R.

    1998-01-01

    The consequence models used in former studies of costs and benefits of enhanced safety retrofits are considered for (1) fuel fires; (2) non-nuclear detonations; and, (3) unintended nuclear detonations. Estimates of consequences were made using a representative accident location, i.e., an assumed mixed suburban-rural site. We have explicitly quantified land- use impacts and human-health effects (e.g. , prompt fatalities, prompt injuries, latent cancer fatalities, low- levels of radiation exposure, and clean-up areas). Uncertainty in the wind direction is quantified and used in a Monte Carlo calculation to estimate a range of results for a fuel fire with uncertain respirable amounts of released Pu. We define a nuclear source term and discuss damage levels of concern. Ranges of damages are estimated by quantifying health impacts and property damages. We discuss our dispersal and prompt effects models in some detail. The models used to loft the Pu and fission products and their particle sizes are emphasized.

  12. Leveraging U.S. nuclear weapons policy to advance U.S. nonproliferation goals : implications of major theories of international relations.

    SciTech Connect

    Walter, Andrew

    2009-06-01

    National policymakers are currently considering a dilemma of critical importance to the continued security of the United States: how can U.S. nuclear weapons policies be leveraged to benefit U.S. nuclear nonproliferation goals in the near-term, without sacrificing U.S. national security? In its role supporting U.S. nuclear weapons policy, Sandia National Laboratories has a responsibility to provide objective technical advice to support policy deliberations on this question. However, to best fulfill this duty Sandia must have a broader understanding of the context of the problem. To help develop this understanding, this paper analyzes the two predominant analytical perspectives of international relations theory to explore their prescriptions for how nuclear weapons and nonproliferation policies interact. As lenses with which to view and make sense of the world, theories of international relations must play a crucial role in framing the trade-offs at the intersection of the nuclear weapons and nonproliferation policy domains. An analysis of what these theories suggest as courses of action to leverage nuclear weapons policies to benefit nonproliferation goals is then offered, with particular emphasis on where the policy prescriptions resulting from the respective theories align to offer near-term policy changes with broad theoretical support. These policy prescriptions are then compared to the 2001 Nuclear Posture Review to understand what the theories indicate policymakers may have gotten right in their dealing with the nuclear dilemma, and where they may have gone wrong. Finally, a brief international relations research agenda is proposed to help address the dilemma between nuclear deterrence and nuclear nonproliferation policies, with particular emphasis on how such an agenda can best support the needs of the policy community and a potential 'all things nuclear' policy deliberation and decision-support framework.

  13. NNSA Releases Report on Plans for Future of the Nuclear Weapons...

    National Nuclear Security Administration (NNSA)

    ... complex consists of the eight major facilities across the country that work together to keep the nation's nuclear stockpile safe and reliable without underground nuclear testing. ...

  14. SLD | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    SLD Proliferation Detection The Office of Proliferation Detection (PD) develops capabilities to detect special nuclear materials and weapons production and movement, as well as for ...

  15. Supplying the nuclear arsenal: Production reactor technology, management, and policy, 1942--1992

    SciTech Connect

    Carlisle, R.P.; Zenzen, J.M.

    1994-01-01

    This book focuses on the lineage of America`s production reactors, those three at Hanford and their descendants, the reactors behind America`s nuclear weapons. The work will take only occasional sideways glances at the collateral lines of descent, the reactor cousins designed for experimental purposes, ship propulsion, and electric power generation. Over the decades from 1942 through 1992, fourteen American production reactors made enough plutonium to fuel a formidable arsenal of more than twenty thousand weapons. In the last years of that period, planners, nuclear engineers, and managers struggled over designs for the next generation of production reactors. The story of fourteen individual machines and of the planning effort to replace them might appear relatively narrow. Yet these machines lay at the heart of the nation`s nuclear weapons complex. The story of these machines is the story of arming the winning weapon, supplying the nuclear arms race. This book is intended to capture the history of the first fourteen production reactors, and associated design work, in the face of the end of the Cold War.

  16. OSTIblog Articles in the nuclear weapons technology Topic | OSTI, US Dept

    Office of Scientific and Technical Information (OSTI)

    of Energy Office of Scientific and Technical Information weapons technology Topic The Successes of Government Science and Technology by Sam Rosenbloom 30 Oct, 2013 in Science Communications Sorry due to allocation we can serve no more gasoline today Theodore Roosevelt, in his famous speech "Citizenship In A Republic" starts by saying "it is not the critic who counts;" What makes the speech poignant is that all too often it is the critic who counts because we see time and

  17. U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons...

    Energy Saver

    ... Read more information about the National Nuclear Security Administration (NNSA). Media contact(s): Megan Barnett, (202) 586-4940 Julianne Smith, (202) 586-7371 Addthis Related ...

  18. SUPPLEMENT ANALYSIS DETERMINATION The Department of Energy (DOE), National Nuclear Security Administration (NNSA) Production Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DETERMINATION The Department of Energy (DOE), National Nuclear Security Administration (NNSA) Production Office Pantex (NPO) has prepared a Supplement Analysis (SA) to determine whether the Final Environmental Impact Statement for the Continued Operation of the Pantex Plant and Associated Storage of Nuclear Weapon Components, also known as the Site-Wide Environmental Impact Statement (SWEIS), adequately addresses the environmental impacts of continued Pantex Plant operations, or if additional

  19. Nuclear Deterrence in the Age of Nonproliferation

    SciTech Connect

    Richardson, J

    2009-01-21

    The fallacy of zero nuclear weapons, even as a virtual goal, is discussed. Because the complete abolition of nuclear weapons is not verifiable, nuclear weapons will always play a role in the calculus of assure, dissuade, deter and defeat (ADDD). However, the relative contribution of nuclear weapons to international security has diminished. To reconstitute the Cold War nuclear capability, with respect to both the nuclear weapons capability and their associated delivery systems, is fiscally daunting and not warranted due to competing budgetary pressures and their relative contribution to international security and nonproliferation. A proposed pathway to a sustainable nuclear weapons capability end-state is suggested which provides enough ADDD; a Dyad composed of fewer delivery and weapon systems, with trickle production at the National Laboratories and private sector to maintain capability and guard against technological surprise.

  20. Applying Agile MethodstoWeapon/Weapon-Related Software

    SciTech Connect

    Adams, D; Armendariz, M; Blackledge, M; Campbell, F; Cloninger, M; Cox, L; Davis, J; Elliott, M; Granger, K; Hans, S; Kuhn, C; Lackner, M; Loo, P; Matthews, S; Morrell, K; Owens, C; Peercy, D; Pope, G; Quirk, R; Schilling, D; Stewart, A; Tran, A; Ward, R; Williamson, M

    2007-05-02

    This white paper provides information and guidance to the Department of Energy (DOE) sites on Agile software development methods and the impact of their application on weapon/weapon-related software development. The purpose of this white paper is to provide an overview of Agile methods, examine the accepted interpretations/uses/practices of these methodologies, and discuss the applicability of Agile methods with respect to Nuclear Weapons Complex (NWC) Technical Business Practices (TBPs). It also provides recommendations on the application of Agile methods to the development of weapon/weapon-related software.

  1. Phase 6.X Process | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Nuclear Weapons Life Cycle Phase 6.X Process The Phase 6.x Process is based on the original Joint Nuclear Weapons Life Cycle Process, which includes Phases 1 through 7 and covers all phases of a weapon's life from initial feasibility studies and design through development, production, maintenance, deployment, retirement, and dismantlement. These traditional phases were established by the Department of Defense and the Department of Energy who share responsibility for all U.S nuclear weapons.

  2. Geoff Beausoleil | National Nuclear Security Administration ...

    National Nuclear Security Administration (NNSA)

    The mission of the Y12 and Pantex Plants is to maintain the nuclear weapons stockpile; provide enriched uranium for naval, research, and isotope production reactors; and support ...

  3. MPC&A | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    MPC&A Proliferation Detection The Office of Proliferation Detection (PD) develops capabilities to detect special nuclear materials and weapons production and movement, as well as ...

  4. LANSCE Weapons Physics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    7 LANSCE Weapons Physics Fortune 500 companies and weapons designers alike rely on our internationally recognized nuclear physics and materials science expertise as well as our one-of-a-kind experimental tools. Contact Us Group Leader (acting) Aaron Couture Email Deputy Group Leader Fredrik Tovesson Email Deputy Group Leader and Experimental Area Manager Charles Kelsey Email Group Office (505) 665-5390 Time Projection Chamber at LANSCE Researcher making measurements of fission cross sections on

  5. Pantex Plant | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Pantex Plant The Pantex Plant, near Amarillo, Texas, is charged with maintaining the safety, security and effectiveness of the nation's nuclear weapons stockpile. It is managed and operated by Consolidated Nuclear Security, LLC for the NNSA Production Office. Work performed at Pantex includes support of the nuclear weapons life extension programs; nuclear weapons dismantlement; the development, testing and fabrication of high explosive components; and interim storage and surveillance of

  6. President Truman Orders Development of Thermonuclear Weapon | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Orders Development of Thermonuclear Weapon President Truman Orders Development of Thermonuclear Weapon Washington, DC President Truman instructs the Atomic Energy Commission to expedite development of a thermonuclear weapon

  7. 20 Years of Success: Science, Technology, and the Nuclear Weapons Stockpile

    SciTech Connect

    None, None

    2015-10-22

    On Oct. 22, 2015, NNSA celebrated the proven success of the Stockpile Stewardship Program at a half-day public event featuring remarks by Secretary of Energy Ernest Moniz, Secretary of State John Kerry, and Under Secretary for Nuclear Security and NNSA Administrator Lt. Gen. (retired) Frank G. Klotz. The event also featured remarks by Deputy Secretary of Energy Elizabeth Sherwood-Randall and NNSA Principal Deputy Administrator Madelyn Creedon.

  8. Principal Associate Director - Weapons Programs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Weapons Programs As Principal Associate Director for the Weapons Program, Robert Webster leads the programs to assure the safety, security, and effectiveness of the systems in the nation's nuclear stockpile. Contact Operator Los Alamos National Laboratory (505) 667-5061 Under his leadership, the LANL Weapons Program integrates planning and execution of the stockpile stewardship program, a critical mission of the Laboratory. Robert Webster Bob Webster Under the leadership of Principal Associate

  9. Concepts and Strategies for Transparency Monitoring of Nuclear Materials at the Back End of the Fuel/Weapons Cycle

    SciTech Connect

    COSTIN, LAURENCE; DAVIES, PETER; PREGENZER, ARIAN L.

    1999-10-01

    Representatives of the Department of Energy, the national laboratories, the Waste Isolation Pilot Plant (WIPP), and others gathered to initiate the development of broad-based concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle, including both geologic disposal and monitored retrievable storage. The workshop focused on two key questions: ''Why should we monitor?'' and ''What should we monitor?'' These questions were addressed by identifying the range of potential stakeholders, concerns that stakeholders may have, and the information needed to address those concerns. The group constructed a strategic framework for repository transparency implementation, organized around the issues of safety (both operational and environmental), diversion (assuring legitimate use and security), and viability (both political and economic). Potential concerns of the international community were recognized as the possibility of material diversion, the multinational impacts of potential radionuclide releases, and public and political perceptions of unsafe repositories. The workshop participants also identified potential roles that the WIPP may play as a monitoring technology development and demonstration test-bed facility. Concepts for WIPP'S potential test-bed role include serving as (1) an international monitoring technology and development testing facility, (2) an international demonstration facility, and (3) an education and technology exchange center on repository transparency technologies.

  10. Nuclear Materials Science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MST » MST-16 Nuclear Materials Science Our multidisciplinary expertise comprises the core actinide materials science and metallurgical capability within the nuclear weapons production and surveillance communities. Contact Us Group Leader David Pugmire Email Deputy Group Leader (acting) Marianne Wilkerson Email Group Office (505) 667-4665 The evaluations performed by our group are essential for the nuclear weapons program as well as nuclear materials storage, forensics, and actinide fundamental

  11. New - DOE O 452.4C, Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    The order establishes requirements to implement the nuclear explosive security and use control elements of DOE O 452.1E to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts, deliberate unauthorized use, and denial of authorized use. Cancels DOE O 452.4B, dated 1-22-10.

  12. US, New Zealand Expand Partnership to Reduce Global Nuclear Threats...

    National Nuclear Security Administration (NNSA)

    NNSA's efforts to shut down the last remaining weapons-grade plutonium production reactor in Russia, as well as projects in Kazakhstan and Ukraine to combat nuclear smuggling. ...

  13. second line of defense | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    second line of defense Proliferation Detection The Office of Proliferation Detection (PD) develops capabilities to detect special nuclear materials and weapons production and ...

  14. US weapons secrets revealed

    SciTech Connect

    Norris, R.S.; Arkin, W.M.

    1993-03-01

    Extraordinary details have only recently been revealed about the struggle over the control of early U.S. nuclear weapons and their initial deployments abroad. The information comes from a newly declassified top secret report, part of a larger study, The History of the Strategic Arms Competition, 1945-1972, commissioned by Defense Secretary James R. Schlisinger in summer 1974.

  15. Weapon Systems Engineering

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Systems Engineering Weapon Systems Engineering Serving the nation and our allies by providing a safe, secure, and effective stockpile Contact Us Division Leader (acting), Program Director J. Patrick Garcia Email Deputy Division Leader (acting), Stockpile Integration Jay Carnes Email Division Office (505) 606-0068 Human Resources Contacts Andrea Gonzales (505) 665-8043 Jeremy Vonharders (505) 665-5993 Careers/Jobs LANL nuclear engineer demonstrates a 3-D model Bradley Cox, a nuclear engineer

  16. Risk in the Weapons Stockpile

    SciTech Connect

    Noone, Bailey C

    2012-08-14

    When it comes to the nuclear weapons stockpile, risk must be as low as possible. Design and care to keep the stockpile healthy involves all aspects of risk management. Design diversity is a method that helps to mitigate risk.

  17. About NNSA | National Nuclear Security Administration | (NNSA...

    National Nuclear Security Administration (NNSA)

    of the U.S. nuclear weapons stockpile without nuclear testing; * Preventing the proliferation nuclear weapons and securing dangerous nuclear materials; * Providing the U.S. Navy ...

  18. About NNSA | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    of the U.S. nuclear weapons stockpile without nuclear testing; * Preventing the proliferation nuclear weapons and securing dangerous nuclear materials; * Providing the U.S. Navy ...

  19. Feasibility Study of Hydrogen Production at Existing Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    project(s) that will utilize hydrogen production equipment and nuclear energy as necessary to produce data and analysis on the economics of hydrogen production with nuclear energy. ...

  20. Method of immobilizing weapons plutonium to provide a durable, disposable waste product

    DOEpatents

    Ewing, Rodney C.; Lutze, Werner; Weber, William J.

    1996-01-01

    A method of atomic scale fixation and immobilization of plutonium to provide a durable waste product. Plutonium is provided in the form of either PuO.sub.2 or Pu(NO.sub.3).sub.4 and is mixed with and SiO.sub.2. The resulting mixture is cold pressed and then heated under pressure to form (Zr,Pu)SiO.sub.4 as the waste product.

  1. Nuclear Dependence of Charm Production

    SciTech Connect

    Blanco-Covarrubias, A.; Engelfried, J.; Akgun, U.; Alkhazov, G.; Amaro-Reyes, J.; Atamantchouk, A.G.; Ayan, A.S.; Balatz, M.Y.; Bondar, N.F.; Cooper, P.S.; Dauwe, Loretta J.; /Michigan U., Flint /Moscow, ITEP

    2009-02-01

    With data taken by SELEX, which accumulated data during the 1996-1997 fixed target run at Fermilab, we study the production of charmed hadrons on copper and carbon targets with {Sigma}{sup -}, p, {pi}{sup -}, and {pi}{sup +} beams. Parameterizing the production cross section {infinity} A{sup {alpha}}, A being the atomic number, we determine {alpha} for D{sup +}, D{sup 0}, D{sub s}{sup +}, D{sup +}(2010), {Lambda}{sub c}{sup +}, and their respective anti-particles, as a function of their transverse momentum p{sub t} and scaled longitudinal momentum x{sub F}. Within our statistics there is no dependence of {alpha} on x{sub F} for any charm species for the interval 0.1 < x{sub F} < 1.0. The average value of {alpha} for charm production by pion beams is {alpha}{sub meson} = 0.850 {+-} 0.028. This is somewhat larger than the corresponding average {alpha}{sub baryon} = 0.755 {+-} 0.016 for charm production by baryon beams ({Sigma}{sup -}, p).

  2. Bret Knapp to head combined Weapons Engineering, Weapons Physics...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Weapons Engineering, Weapons Physics Directorates Bret Knapp to head combined Weapons Engineering, Weapons Physics Directorates at Los Alamos National Laboratory New leadership...

  3. Annular Core Research Reactor - Critical to Science-Based Weapons...

    National Nuclear Security Administration (NNSA)

    environments needed to simulate nuclear weapons effects on full-scale systems. This test capability is critical to science-based weapons design and certification. The ACRR is a ...

  4. Weapons dismantlement issues in independent Ukraine

    SciTech Connect

    Zack, N.R. . Safeguards Systems Group); Kirk, E.J. )

    1995-02-01

    The American Association for the Advancement of Science sponsored a seminar during September 1993 in Kiev, Ukraine, titled, Toward a Nuclear-Free Future--Barriers and Problems.'' It brought together Ukrainians, Belarusians and Americans to discuss the legal, political, economic, technical, and safeguards and security dimensions of nuclear weapons dismantlement and destruction. US representatives initiated discussions on legal and treaty requirements and constraints, safeguards and security issues surrounding dismantlement, storage and disposition of nuclear materials, warhead transportation, and economic considerations. Ukrainians gave presentations on arguments for and against the Ukraine keeping nuclear weapons, the Ukrainian Parliament's nonapproval of START 1, alternative strategies for dismantling silos and launchers, and economic and security implications of nuclear weapons removal from the Ukraine. Participants from Belarus discussed proliferation and control regime issues. This paper will highlight and detail the issues, concerns and possible impacts of the Ukraine's dismantlement of its nuclear weapons.

  5. Plutonium Pits | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Pits Plutonium pits are a critical core component of a nuclear weapon. To ensure the reliability, safety, and security of nuclear weapons without underground nuclear testing;...

  6. Nuclear pursuits

    SciTech Connect

    Not Available

    1993-05-01

    This table lists quantities of warheads (in stockpile, peak number per year, total number built, number of known test explosions), weapon development milestones (developers of the atomic bomb and hydrogen bomb, date of first operational ICBM, first nuclear-powered naval SSN in service, first MIRVed missile deployed), and testing milestones (first fission test, type of boosted fission weapon, multistage thermonuclear test, number of months from fission bomb to multistage thermonuclear bomb, etc.), and nuclear infrastructure (assembly plants, plutonium production reactors, uranium enrichment plants, etc.). Countries included in the tally are the United States, Soviet Union, Britain, France, and China.

  7. Nonproliferation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    or rogue nations will acquire nuclear weapons or other weapons of mass destruction (WMD). NNSA, through its Office of Defense Nuclear Nonproliferation (DNN), works closely ...

  8. Creating an educational consortium to support the recruitment and retention of expertise for the nuclear weapons complex

    SciTech Connect

    Harmon, Frank; Wells, Douglas P.; Hunt, Alan; Beller, Denis

    2006-12-13

    From FY 02-05 IAC has been a part of the DOE Advanced Fuel Cycle Initiative and its predecessor organization Advanced Accelerator Applications. In the IAC program effort has been divided into three parts; Student Research, Accelerator Driven Nuclear Research and Materials Science. Within the three parts specific research and development activities have been undertaken in Student Research, which supported undergraduate and graduate students, post-docs, engineering staff, program administration, project infrastructure, visiting and summer faculty appointments, visiting scientists, and support of students and faculty at the University of Michigan, Texas A&M University, University of Texas and UNLV; Accelerator Driven Nuclear Research included the use of electron accelerators to study driven sub-critical nuclear systems (ADS) and to provide practical methods of monitoring and assaying nuclear materials for accountancy in non proliferation applications (Materials Accountability and Control, MA&C); and Materials Science research at IAC supported all AFC national technical areas.

  9. Production Risk Evaluation Program (PREP) - summary

    SciTech Connect

    Kjeldgaard, E.A.; Saloio, J.H.; Vannoni, M.G.

    1997-03-01

    Nuclear weapons have been produced in the US since the early 1950s by a network of contractor-operated Department of Energy (DOE) facilities collectively known as the Nuclear Weapon Complex (NWC). Recognizing that the failure of an essential process might stop weapon production for a substantial period of time, the DOE Albuquerque Operations office initiated the Production Risk Evaluation Program (PREP) at Sandia National Laboratories (SNL) to assess quantitatively the potential for serious disruptions in the NWC weapon production process. PREP was conducted from 1984-89. This document is an unclassified summary of the effort.

  10. January 2016 | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    technical and engineering capabilities and know-how that exist at both sites. Your work sets the standard for nuclear weapons production. I encourage you to keep raising the...

  11. Tag: nuclear deterrence | Y-12 National Security Complex

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    deterrence Tag: nuclear deterrence Displaying 1 - 10 of 36... Category: Nuclear Deterrence Completing the connection A team from Malmstrom Air Force Base recently toured Y-12's production facilities. More... Category: News Y-12 closes out NFRR project ahead of schedule, under budget NFRR project provides critical infrastructure upgrades in Building 9212. More... Category: News Y-12 hosts visit from directors of weapons labs Weapons lab directors toured production buildings and the Nuclear

  12. United States, International Partners Remove Last Remaining Weapons...

    Energy Saver

    Enriched Uranium from Hungary, Set Nuclear Security Milestone United States, International Partners Remove Last Remaining Weapons-Usable Highly Enriched Uranium from Hungary, ...

  13. Software quality assurance at the weapons engineering tritium facility

    SciTech Connect

    Hart, O.

    1997-11-01

    This report contains viewgraphs on the evolution of software quality assurance at the Weapons Engineering Tritium Facility in relation to DOE`s requirements for nuclear facilities.

  14. Weapon interns return as tomorrow's leaders | Y-12 National Security

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Complex Weapon interns return as ... Weapon interns return as tomorrow's leaders Posted: October 4, 2016 - 9:03am Tyler McClary (left) shares with Colby Yeary about participating in the WIP. Consolidated Nuclear Security (CNS) once again has two employees participating in the Sandia National Laboratories Weapon Intern Program (WIP): Tyler McClary, Mission Engineering, and Brandon Pehrson, Y-12 Operations. This highly sought-after internship teaches the technical details of weapon systems and

  15. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    SciTech Connect

    Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

    2002-02-25

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  16. Jeffrey R. Johnson | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    In that position, he was responsible for nuclear weapons security policy, security evaluations of Navy nuclear weapons facilities, and provided policy while coordinating security ...

  17. Abraham Announces Second Major Nuclear Nonproliferation

    National Nuclear Security Administration (NNSA)

    technicians at a former nuclear weapons plant in Kazakhstan will turn their talents to ... The ULBA Metallurgical Plant, a former nuclear weapons facility in Kazahkstan, will expand ...

  18. National Nuclear Security Administration Announces University...

    National Nuclear Security Administration (NNSA)

    maintains the U.S. nuclear weapons stockpile, promotes international nuclear non-proliferation and safety, reduces global danger from weapons of mass destruction, provides the ...

  19. Research and Development | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA reduces the threat to national security posed by nuclear weapons proliferation and ... NNSA reduces the threat to national security posed by nuclear weapons proliferation and ...

  20. NNSA Announces University Contracts | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    ... maintains the U.S. nuclear weapons stockpile, promotes international nuclear non-proliferation and safety, reduces global danger from weapons of mass destruction, provides the ...

  1. Our Leadership | National Nuclear Security Administration | ...

    National Nuclear Security Administration (NNSA)

    reducing the global danger from the proliferation of nuclear weapons and materials; ... reducing the global danger from the proliferation of nuclear weapons and materials; ...

  2. Nuclear Nonproliferation Treaty | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... Nuclear Nonproliferation Treaty The Treaty on the Non-Proliferation of Nuclear Weapons off ...

  3. American press coverage of US-Soviet relations, the Soviet Union, nuclear weapons, arms control, and national security: A bibliography

    SciTech Connect

    Dorman, W.A.; Manoff, R.K.; Weeks, J.

    1988-01-01

    This bibliography covers work that addresses coverage of nuclear and arms control issues, defense, the Soviet Union, and Soviet-American relations by the American news media between 1965 and 1988. Material selected for inclusion either discusses press performance or addresses conditions -- such as classification of information -- that directly impact on media coverage of such issues. Bodies of literature on media coverage of conflict elsewhere in the world lie outside the Center's current mandate (which has shaped the parameters of this bibliography) except insofar as such conflicts are presented by the news media specifically in the context of US-Soviet relations. Much the same is true of such issues as the North-South flow of information and the debate over calls for a New World Information Order. However, the authors have decided to include assessments of American media coverage of the Vietnam War as a case study of a watershed conflict that raised many of the issues discussed throughout this literature in a particularly compelling way.

  4. The nuclear materials control technology briefing book

    SciTech Connect

    Hartwell, J.K.; Fernandez, S.J.

    1992-03-01

    As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

  5. Mission | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Mission Mission Statement "Enhancing and ensuring the future of the Nuclear Security Enterprise through effective nuclear production operations" Mission Execute effective contract management and oversight to safely and securely maintain the nuclear weapon stockpile for the Nuclear Security Enterprise; provide enriched uranium for naval, research, and isotope production reactors, and support nonproliferation activities to reduce the global nuclear threat. Vision Make the world safer by

  6. A Safer Nuclear Enterprise - Application to Nuclear Explosive Safety (NES)(U)

    SciTech Connect

    Morris, Tommy J.

    2012-07-05

    Activities and infrastructure that support nuclear weapons are facing significant challenges. Despite an admirable record and firm commitment to make safety a primary criterion in weapons design, production, handling, and deployment - there is growing apprehension about terrorist acquiring weapons or nuclear material. At the NES Workshop in May 2012, Scott Sagan, who is a proponent of the normal accident cycle, presented. Whether a proponent of the normal accident cycle or High Reliability Organizations - we have to be diligent about our safety record. Constant vigilance is necessary to maintain our admirable safety record and commitment to Nuclear Explosive Safety.

  7. NNSA Production Office Open for Business | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Production Office Open for Business June 18, 2012 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) Production Office (NPO) is now in operation, providing federal oversight of nuclear production missions at the Pantex Site in Amarillo, Texas, and the Y-12 National Security Complex in Oak Ridge, Tenn. File NPO Open Release 06.18

  8. Nonproliferation | National Nuclear Security Administration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    community face is the possibility that terrorists or rogue nations will acquire nuclear weapons or other weapons of mass destruction (WMD). NNSA, through its Office of...

  9. National Nuclear Security Administration Product Aids in Anthrax...

    National Nuclear Security Administration (NNSA)

    Product Aids in Anthrax Clean-up | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  10. Introduction to Pits and Weapons Systems (U)

    SciTech Connect

    Kautz, D.

    2012-07-02

    A Nuclear Explosive Package includes the Primary, Secondary, Radiation Case and related components. This is the part of the weapon that produces nuclear yield and it converts mechanical energy into nuclear energy. The pit is composed of materials that allow mechanical energy to be converted to electromagnetic energy. Fabrication processes used are typical of any metal fabrication facility: casting, forming, machining and welding. Some of the materials used in pits include: Plutonium, Uranium, Stainless Steel, Beryllium, Titanium, and Aluminum. Gloveboxes are used for three reasons: (1) Protect workers and public from easily transported, finely divided plutonium oxides - (a) Plutonium is very reactive and produces very fine particulate oxides, (b) While not the 'Most dangerous material in the world' of Manhattan Project lore, plutonium is hazardous to health of workers if not properly controlled; (2) Protect plutonium from reactive materials - (a) Plutonium is extremely reactive at ambient conditions with several components found in air: oxygen, water, hydrogen, (b) As with most reactive metals, reactions with these materials may be violent and difficult to control, (c) As with most fabricated metal products, corrosion may significantly affect the mechanical, chemical, and physical properties of the product; and (3) Provide shielding from radioactive decay products: {alpha}, {gamma}, and {eta} are commonly associated with plutonium decay, as well as highly radioactive materials such as {sup 241}Am and {sup 238}Pu.

  11. A simple method for rapidly processing HEU from weapons returns

    SciTech Connect

    McLean, W. II; Miller, P.E.

    1994-01-01

    A method based on the use of a high temperature fluidized bed for rapidly oxidizing, homogenizing and down-blending Highly Enriched Uranium (HEU) from dismantled nuclear weapons is presented. This technology directly addresses many of the most important issues that inhibit progress in international commerce in HEU; viz., transaction verification, materials accountability, transportation and environmental safety. The equipment used to carry out the oxidation and blending is simple, inexpensive and highly portable. Mobile facilities to be used for point-of-sale blending and analysis of the product material are presented along with a phased implementation plan that addresses the conversion of HEU derived from domestic weapons and related waste streams as well as material from possible foreign sources such as South Africa or the former Soviet Union.

  12. NNSA Production Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA's safety office accredited and recognized for leadership in safe operation of defense nuclear facilities Part of NNSA's commitment to maintaining the nation's safe, secure, ...

  13. Weapons Program Associate Directors

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    integration we have achieved between the various components of the program," said Bret Knapp, Principal Associate Director for Weapons Programs. "They have both done an...

  14. NNSA Conducts Radiological Training in Malaysia | National Nuclear...

    National Nuclear Security Administration (NNSA)

    ... NNSA maintains and enhances the safety, security, reliability, and performance of the U.S. nuclear weapons stockpile without nuclear testing; reduces the global danger from weapons ...

  15. National Nuclear Security Administration ENERGY U.S. DEPARTMENT...

    National Nuclear Security Administration (NNSA)

    Under Article III of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), each ... pillars designed to limit weapons proliferation, encourage nuclear disarmament, and ...

  16. Virtual Tours | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Virtual Tours Nuclear Weapons Mission at Sandia Sandia Labs: Who we are Related Topics apm

  17. LANL Reaches Waste Shipment Milestone: Waste from Cold War-era weapons production being shipped to WIPP

    Energy.gov [DOE]

    LOS ALAMOS, New Mexico, May 31, 2011 — Los Alamos National Laboratory has reached an important milestone in its campaign to ship transuranic (TRU) waste from Cold War-era nuclear operations to the U.S. Department of Energy’s Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico.

  18. High Temperature Electrolysis for Efficient Hydrogen Production from Nuclear Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Electrolysis for Efficient Hydrogen Production from Nuclear Energy - INL Research Program Summary Jim O'Brien Idaho National Laboratory Electrolytic Hydrogen Production Workshop National Renewable Energy Laboratory Golden, CO February 27-28, 2014 NGNP/VHTR Concept for Large-Scale Centralized Nuclear Hydrogen Production based on High-Temperature Steam Electrolysis * Directly coupled to high-temperature gas-cooled reactor for electrical power and process heat * 600 MWth reactor

  19. Daniel Hoag Named NNSA Production Office Deputy Manager | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Daniel Hoag Named NNSA Production Office Deputy Manager July 20, 2012 OAK RIDGE, Tenn. - Daniel Hoag has been named deputy manager for the National Nuclear Security Administration's Production Office (NPO) that was established in June to provide federal oversight of nuclear production missions at the Pantex Plant in Amarillo, Texas, and the Y-12 National Security Complex in Oak Ridge, Tennessee. File 2012-07-20 Hoag NPO Deputy Manager

  20. United States, International Partners Remove Last Remaining Weapons-Usable

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Highly Enriched Uranium from Hungary, Set Nuclear Security Milestone | Department of Energy International Partners Remove Last Remaining Weapons-Usable Highly Enriched Uranium from Hungary, Set Nuclear Security Milestone United States, International Partners Remove Last Remaining Weapons-Usable Highly Enriched Uranium from Hungary, Set Nuclear Security Milestone November 4, 2013 - 2:09pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The U.S. Department of Energy today announced

  1. Secretary Bodman Celebrates Clean Up Completion of Three Former Weapons

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research and Production Sites in Ohio | Department of Energy Clean Up Completion of Three Former Weapons Research and Production Sites in Ohio Secretary Bodman Celebrates Clean Up Completion of Three Former Weapons Research and Production Sites in Ohio January 19, 2007 - 9:59am Addthis Over 1,100 Acres in Fernald, Columbus and Ashtabula Restored CROSBY TOWNSHIP, OH - U.S. Secretary of Energy Samuel W. Bodman today certified that environmental cleanup is complete at three former weapons

  2. NNSA Production Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NNSA Production Office NNSA Production Office FY15 Year End Report Semi Annual...

  3. Nuclear Hydrogen for Peak Electricity Production and Spinning Reserve

    SciTech Connect

    Forsberg, C.W.

    2005-01-20

    Nuclear energy can be used to produce hydrogen. The key strategic question is this: ''What are the early markets for nuclear hydrogen?'' The answer determines (1) whether there are incentives to implement nuclear hydrogen technology today or whether the development of such a technology could be delayed by decades until a hydrogen economy has evolved, (2) the industrial partners required to develop such a technology, and (3) the technological requirements for the hydrogen production system (rate of production, steady-state or variable production, hydrogen purity, etc.). Understanding ''early'' markets for any new product is difficult because the customer may not even recognize that the product could exist. This study is an initial examination of how nuclear hydrogen could be used in two interconnected early markets: the production of electricity for peak and intermediate electrical loads and spinning reserve for the electrical grid. The study is intended to provide an initial description that can then be used to consult with potential customers (utilities, the Electric Power Research Institute, etc.) to better determine the potential real-world viability of this early market for nuclear hydrogen and provide the starting point for a more definitive assessment of the concept. If this set of applications is economically viable, it offers several unique advantages: (1) the market is approximately equivalent in size to the existing nuclear electric enterprise in the United States, (2) the entire market is within the utility industry and does not require development of an external market for hydrogen or a significant hydrogen infrastructure beyond the utility site, (3) the technology and scale match those of nuclear hydrogen production, (4) the market exists today, and (5) the market is sufficient in size to justify development of nuclear hydrogen production techniques independent of the development of any other market for hydrogen. These characteristics make it an ideal

  4. High-value use of weapons-plutonium by burning in molten salt accelerator-driven subcritical systems or reactors

    SciTech Connect

    Bowman, C.D.; Venneri, F.

    1993-11-01

    The application of thermal-spectrum molten-salt reactors and accelerator-driven subcritical systems to the destruction of weapons-return plutonium is considered from the perspective of deriving the maximum societal benefit. The enhancement of electric power production from burning the fertile fuel {sup 232}Th with the plutonium is evaluated. Also the enhancement of destruction of the accumulated waste from commercial nuclear reactors is considered using the neutron-rich weapons plutonium. Most cases examined include the concurrent transmutation of the long-lived actinide and fission product waste ({sup 99}Tc, {sup 129}I, {sup 135}Cs, {sup 126}Sn and {sup 79}Se).

  5. NNSA Nuclear/Radiological Incident Response | National Nuclear...

    National Nuclear Security Administration (NNSA)

    NNSA NuclearRadiological Incident Response December 01, 2008 The National Nuclear Security Administration (NNSA) has over 60 years of nuclear weapons experience in responding to ...

  6. NNSA Nuclear/Radiological Incident Response | National Nuclear...

    National Nuclear Security Administration (NNSA)

    December 01, 2008 The National Nuclear Security Administration (NNSA) has over 60 years of nuclear weapons experience in responding to nuclear and radiological accidents and ...

  7. NNSA Nuclear/Radiological Incident Response | National Nuclear...

    National Nuclear Security Administration (NNSA)

    January 01, 2009 The National Nuclear Security Administration (NNSA) has more than 60 years of nuclear weapons experience in responding to nuclear and radiological accidents and ...

  8. Engineering | National Nuclear Security Administration | (NNSA...

    National Nuclear Security Administration (NNSA)

    reliability and performance of the current and future U.S. nuclear weapons stockpile. ... engineering components of both the non-nuclear and nuclear explosive package in nuclear ...

  9. Y-12, Pantex employees selected for prestigious Weapons Internship Program

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration | (NNSA) Pantex employees selected for prestigious Weapons Internship Program Monday, November 30, 2015 - 12:00am NNSA Blog HaliAnne Crawford is the first women at Pantex or Y-12 to participate in the Weapons Internship Program. NNSA Blog Aaron Lee is the Y-12 participant in the Weapons Internship Program. Pantex and Y-12 will both be represented during the 2016 Weapons Internship Class. HaliAnne Crawford, a process engineer at Pantex, and Aaron

  10. Special nuclear material information, security classification guidance. Instruction

    SciTech Connect

    Flickinger, A.

    1982-12-03

    The Instruction reissues DoD Instruction 5210.67, July 5, 1979, and provides security classification guidance for information concerning significant quantities of special nuclear material, other than that contained in nuclear weapons and that used in the production of energy in the reactor plant of nuclear-powered ships. Security classification guidance for these data in the latter two applications is contained in Joint DoE/DoD Nuclear Weapons Classification Guide and Joint DoE/DoD Classification Guide for the Naval Nuclear Propulsion Program.

  11. NMR data feature: 1995 world nuclear electricity production

    SciTech Connect

    1996-09-01

    World-wide nuclear electricity generation data is presented for 1995. Total nuclear power reactors in operation and under construction are listed for each country, along with MW(e) output totals and percentages of total electrical production. Detailed data is presented for the regions of Western Europe, Eastern Europe, and the Commonwealth of Independent States. This data includes electricity generation by source (fossil fuel, nuclear power, and hydro power and other), net electricity consumption, and percent changes since 1994. Very brief summaries of electricity production in Canada, the United States, and the Far East are also provided.

  12. Converting Maturing Nuclear Sites to Integrated Power Production Islands

    DOE PAGES [OSTI]

    Solbrig, Charles W.

    2011-01-01

    Nuclear islands, which are integrated power production sites, could effectively sequester and safeguard the US stockpile of plutonium. A nuclear island, an evolution of the integral fast reactor, utilizes all the Transuranics (Pu plus minor actinides) produced in power production, and it eliminates all spent fuel shipments to and from the site. This latter attribute requires that fuel reprocessing occur on each site and that fast reactors be built on-site to utilize the TRU. All commercial spent fuel shipments could be eliminated by converting all LWR nuclear power sites to nuclear islands. Existing LWR sites have the added advantage ofmore » already possessing a license to produce nuclear power. Each could contribute to an increase in the nuclear power production by adding one or more fast reactors. Both the TRU and the depleted uranium obtained in reprocessing would be used on-site for fast fuel manufacture. Only fission products would be shipped to a repository for storage. The nuclear island concept could be used to alleviate the strain of LWR plant sites currently approaching or exceeding their spent fuel pool storage capacity. Fast reactor breeding ratio could be designed to convert existing sites to all fast reactors, or keep the majority thermal.« less

  13. Systems engineering analysis of kinetic energy weapon concepts

    SciTech Connect

    Senglaub, M.

    1996-06-01

    This study examines, from a systems engineering design perspective, the potential of kinetic energy weapons being used in the role of a conventional strategic weapon. Within the Department of Energy (DOE) complex, strategic weapon experience falls predominantly in the nuclear weapons arena. The techniques developed over the years may not be the most suitable methodologies for use in a new design/development arena. For this reason a more fundamental approach was pursued with the objective of developing an information base from which design decisions might be made concerning the conventional strategic weapon system concepts. The study examined (1) a number of generic missions, (2) the effects of a number of damage mechanisms from a physics perspective, (3) measures of effectiveness (MOE`s), and (4) a design envelope for kinetic energy weapon concepts. With the base of information a cut at developing a set of high-level system requirements was made, and a number of concepts were assessed against these requirements.

  14. Nuclear Materials Science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MST MST-16 Nuclear Materials Science Our multidisciplinary expertise comprises the core actinide materials science and metallurgical capability within the nuclear weapons ...

  15. Nuclear effects in squark production at the LHC

    SciTech Connect

    Espindola, Danusa B.; Mariotto, C. B.; Rodriguez, M. C.

    2013-03-25

    In this contribution we study the production of squarks. If squarks are found in proton-proton (pp) collisions at the LHC, they might also be produced in collisions involving nuclei (pA and AA collisions). Here we investigate the influence of nuclear effects in the production of squarks in nuclear collisions at the LHC, and estimate the transverse momentum dependence of the nuclear ratios R{sub pA} = (d{sigma}(pA)/d{sub pT})/A(d{sigma}(pp)/d{sub pT}) and R{sub AA} = (d{sigma}(AA)/d{sub pT})/A{sup 2}(d{sigma}(pp)/d{sub pT}). We demonstrate that depending on the magnitude of the nuclear effects, the production of squarks could be enhanced or suppressed, compared to proton-proton collisions at same energies.

  16. Examination of the role of nuclear deterrence in the 21st century: a systems analysis approach

    SciTech Connect

    Martz, Joseph C; Stevens, Patrice A; Branstetter, Linda; Hoover, Edward; O' Brien, Kevin; Slavin, Adam; Caswell, David

    2010-01-01

    competing objectives have been stated across the spectrum of political, social, and military thought. These objectives include goals of ratification of the Comprehensive Test Ban Treaty, recommitment to further downsizing of the nuclear arsenal, embracing a long-term goal of the elimination of nuclear weapons, limitations on both the production complex and upgrades to nuclear weapons and delivery systems, and controls and constraints to limit proliferation of nuclear materials and weapons, particularly to rogue states and terrorist groups.

  17. Hydrogen Production from Nuclear Energy via High Temperature Electrolysis

    SciTech Connect

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

    2006-04-01

    This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production.

  18. Isotope and Nuclear Chemistry Division annual report, FY 1983

    SciTech Connect

    Heiken, J.H.; Lindberg, H.A.

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  19. How the NWC handles software as product

    SciTech Connect

    Vinson, D.

    1997-11-01

    This tutorial provides a hands-on view of how the Nuclear Weapons Complex project should be handling (or planning to handle) software as a product in response to Engineering Procedure 401099. The SQAS has published the document SQAS96-002, Guidelines for NWC Processes for Handling Software Product, that will be the basis for the tutorial. The primary scope of the tutorial is on software products that result from weapons and weapons-related projects, although the information presented is applicable to many software projects. Processes that involve the exchange, review, or evaluation of software product between or among NWC sites, DOE, and external customers will be described.

  20. Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986

    SciTech Connect

    Heiken, J.H.

    1987-06-01

    This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

  1. Quality at Y-12, part 2Or: Looking at Y-12 weapons quality ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    After seeing how all the other contractor sites in the Nuclear Weapons Complex were organized, ... on quality to line managers, and monitor the manufacturing and inspection processes. ...

  2. List of Major Information Systems,National Nuclear Security Administration

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ADaPT Networked: | Department of Energy List of Major Information Systems,National Nuclear Security Administration ADaPT Networked: List of Major Information Systems,National Nuclear Security Administration ADaPT Networked: List of Major Information Systems, Defense Line of Business National Nuclear Security Administration ADaPT Networked: Develops and deploys emerging information networking technology to production processes in support of the U.S. nuclear weapons stockpile. National Nuclear

  3. Equipment for nuclear medical centers, production capabilities of Rosatom enterprises

    SciTech Connect

    Gavrish, Yu. N.; Koloskov, S. A.; Smirnov, V. P.; Strokach, A. P.

    2015-12-15

    Analysis of the capabilities of the State Corporation Rosatom enterprises on the development and production of diagnostic and therapeutic equipment for nuclear medicine centers is presented. Prospects of the development of accelerator equipment for the production of a wide range of radioisotope products are shown, and the trends of its development are determined. A comparative analysis of the technical parameters of domestic tomographs and devices for brachytherapy with foreign counterparts is given.

  4. H.R. 1511: A Bill to provide for the termination of nuclear weapons activities, and for other purposes. Introduced in the House of Representatives, One Hundred Fourth Congress, First session

    SciTech Connect

    1995-12-31

    This legislation proposes no funding from fiscal 1996 on for Department of Energy (DOE) falling under the heading `weapons activities` in the `Atomic Energy Defense Activities` in title III of the Energy and Water Development Appropriations Act, 1995, except for orderly termination activities. It proposes cold standby level funding for the Nevada Test Site. It proposes no funding for the advanced neutron source program of the DOE, except for termination. It proposes no funding for the Tokamak Physics Experiment program of the DOE, except for termination. It proposes no funding for the Gas Turbine-Modular Helium Reactor program of the DOE, except for termination. It proposes no funding for fossil and nuclear energy research and development for fiscal years after 1997.

  5. SOURCE OF PRODUCTS OF NUCLEAR FISSION

    DOEpatents

    Harteck, P.; Dondes, S.

    1960-03-15

    A source of fission product recoil energy suitable for use in radiation chemistry is reported. The source consists of thermal neutron irradiated glass wool having a diameter of 1 to 5 microns and containing an isotope fissionable by thermal neutrons, such as U/sup 235/.

  6. Integrated approach to economical, reliable, safe nuclear power production

    SciTech Connect

    Not Available

    1982-06-01

    An Integrated Approach to Economical, Reliable, Safe Nuclear Power Production is the latest evolution of a concept which originated with the Defense-in-Depth philosophy of the nuclear industry. As Defense-in-Depth provided a framework for viewing physical barriers and equipment redundancy, the Integrated Approach gives a framework for viewing nuclear power production in terms of functions and institutions. In the Integrated Approach, four plant Goals are defined (Normal Operation, Core and Plant Protection, Containment Integrity and Emergency Preparedness) with the attendant Functional and Institutional Classifications that support them. The Integrated Approach provides a systematic perspective that combines the economic objective of reliable power production with the safety objective of consistent, controlled plant operation.

  7. Non-Nuclear Treaties | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    the Chemical Weapons Convention off site link (CWC), which prohibits the development, production, stockpiling, and use of chemical weapons. The CWC entered into force in 1997....

  8. Deterrence versus Preemption: Assessing U.S. Nuclear Policy

    SciTech Connect

    Schwartz, Stephen

    2003-03-19

    Since coming into office in 2001, the Bush administration has enacted a series of controversial policies designed to create a more robust and more usable nuclear arsenal. From requiring new nuclear strike capabilities (including against non-nuclear countries), to threatening preemptive attacks, to investing billions of dollars in rebuilding the nuclear weapons production complex, the administration is systematically strengthening the role nuclear weapons play in defending the United States and its interests around the world. This presentation examines those policies and the thinking that underlies them. It questions the effectiveness of the administration's approach and explores some of the unintended consequences vis-a-vis U.S. policy toward North Korea, Iraq, Pakistan, and others. Finally, it takes a detailed look at current efforts to develop a new low-yield earth-penetrating nuclear weapon to destroy hardened underground facilities, assessing the feasibility of such a device and the potential effects of its use.

  9. The behavior of fission products during nuclear rocket reactor tests

    SciTech Connect

    Bokor, P.C.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    The experience base regarding fission product behavior developed during the Rover program, the nuclear rocket development program of 1955--1972, will be useful in planning a renewed nuclear rocket program. During the Rover program, 20 reactors were tested at the Nuclear Rocket Development Station in Nevada. Nineteen of these discharged effluent directly into the atmosphere; the last reactor tested, a non-flight-prototypic, fuel-element-testing reactor called the Nuclear Furnace (NF-1) was connected to an effluent cleanup system that removed fission products before the hydrogen coolant (propellant) was discharged to the atmosphere. In general, we are able to increase both test duration and fuel temperature during the test series. Therefore fission product data from the later part of the program are more interesting and more applicable to future reactors. We have collected fission product retention (and release) data reported in both formal and informal publications for six of the later reactor tests; five of these were Los Alamos reactors that were firsts of a kind in configuration or operating conditions. We have also, with the cooperation of Westinghouse, included fission product data from the NRX-A6 reactor, the final member of series of developmental reactors with the same basic geometry, but with significant design and fabrication improvements as the series continued. Table 1 lists the six selected reactors and the test parameters for each.

  10. National Nuclear Security Administration United States Department...

    National Nuclear Security Administration (NNSA)

    Control Program NPT Treaty on the Non-proliferation of Nuclear Weapons NRAT Nuclear... Meeting the Challenges of Nuclear Proliferation & Terrorism 1.1 Enduring Mission, ...

  11. Y-12 Completes Work to Remove Nuclear Materials from Historic Production

    National Nuclear Security Administration (NNSA)

    Facility | National Nuclear Security Administration | (NNSA) Work to Remove Nuclear Materials from Historic Production Facility May 05, 2009 Microsoft Office document icon R-09-01

  12. National Nuclear Security Administration ENERGY U.S. DEPARTMENT...

    National Nuclear Security Administration (NNSA)

    ... Prevent the proliferation of nuclear weapons, material, technology, and expertise "The ... efforts to prevent and counter the proliferation or use of weapons of mass destruction ...

  13. Environmental development plan for special nuclear materials production

    SciTech Connect

    Not Available

    1980-07-01

    The scope of this Environmental Development Plan (EDP) follows the Special Nuclear Materials (SNM) Production category of the Department of Energy budget. It includes the process steps and facilities necessary for the production of plutonium and tritium for Government needs and the production of some other radioactive materials that will be used for heat and radiation sources by domestic and international customers. Most of the SNM production is now carried out at the Savannah River Plant, but plutonium is still produced at Hanford. This EDP does not address the mining, milling, or enrichment of the uranium, but it does consider the reactor fuel (and target) fabrication facilities. The production reactors and the spent fuel processing plants and their effluents are discussed here, but the defense wastes from them are treated in a separate EDP. The scope does not include transportation, decontamination and decommissioning, safeguards and security, or use of the SNM products.

  14. Interim Management of Nuclear Materials

    Energy Saver

    of nuclear weapons for national defense. The Site produced other special isotopes (californium-252, plutonium-238, americium-241, etc.) to support research in nuclear ...

  15. New initiatives a condition of weapons lab's vitality

    SciTech Connect

    Crawford, M.

    1994-03-28

    Directors of the nation's three nuclear weapons research laboratories say shrinking budgets and loss of staff may seriously affect defense capabilities in the coming years. To safeguard this capacity, the steady recent erosion of funding for defense-related activities must be halted, and the federal government must commit to building large new research instruments that are needed to evaluate weapons performance and conduct fundamental science research, directors of Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and Sandia National Laboratories told the House Armed Services Committee's Military Application of Nuclear Energy Panel at a March 22 hearing. Attracting young researchers to the weapons labs takes more than money for salaries; there must be cutting-edge research opportunities that in many cases may have no direct relationship to weapons work.

  16. National Nuclear Security Administration honors Y-12 employees | Y-12

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    National Security Complex National Nuclear Security ... National Nuclear Security Administration honors Y-12 employees Posted: September 25, 2012 - 12:55pm Joining Oder (center) to present the awards was Mark Padilla, NNSA Production Office assistant manager for programs and projects (right) and Joe Henry, chief operating officer of B&W Y-12. National Nuclear Security Administration Office of Nuclear Weapons Stockpile Director Joseph Oder recently visited the Y-12 National Security

  17. Hydrogen Production from the Next Generation Nuclear Plant

    SciTech Connect

    M. Patterson; C. Park

    2008-03-01

    The Next Generation Nuclear Plant (NGNP) is a high temperature gas-cooled reactor that will be capable of producing hydrogen, electricity and/or high temperature process heat for industrial use. The project has initiated the conceptual design phase and when completed will demonstrate the viability of hydrogen generation using nuclear produced process heat. This paper explains how industry and the U.S. Government are cooperating to advance nuclear hydrogen technology. It also describes the issues being explored and the results of recent R&D including materials development and testing, thermal-fluids research, and systems analysis. The paper also describes the hydrogen production technologies being considered (including various thermochemical processes and high-temperature electrolysis).

  18. CONTROLLED DOCUMENT OFFICE OF PRIMARY INTEREST (OPI): AVAILABLE ON-LINE AT: Weapon Quality Division

    National Nuclear Security Administration (NNSA)

    ON-LINE AT: Weapon Quality Division http://www.nnsa.energy.gov printed copies are uncontrolled NNSA POLICY LETTER Approved: 11-24-15 WEAPON QUALITY POLICY NATIONAL NUCLEAR SECURITY ADMINISTRATION Office of Defense Programs NAP-24A THIS PAGE INTENTIONALLY LEFT BLANK NAP-24A 1 11-24-15 WEAPON QUALITY POLICY 1. PURPOSE. The purpose of this document, NAP-24A, Weapon Quality Policy, is to identify the quality requirements applicable to weapon activities of the NNSA Federal personnel, contractors and

  19. Nuclear Material Recovery | Y-12 National Security Complex

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Recovery Nuclear Material Recovery Securing nuclear material domestically and internationally is one part of Y-12's nuclear nonproliferation business. Miscellaneous scrap material is a diverse group of scrap materials generated from reactor fuel production, weapons production, research and development activities and other uses by the U.S. Department of Energy. The majority of this material will require additional processing before it is down blended for low-enriched uranium reactor fuel. This

  20. NNSA Achieves 50 Percent Production for W76-1 Units | National...

    National Nuclear Security Administration (NNSA)

    ... NNSA maintains and enhances the safety, security, reliability, and performance of the U.S. nuclear weapons stockpile without nuclear testing; reduces the global danger from weapons ...

  1. Program to Prevent Accidental or Unauthorized Nuclear Explosive Detonations

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1980-12-18

    The order establishes the DOE program to prevent accidental or unauthorized nuclear explosive detonations, and to define responsibilities for DOE participation in the Department of Defense program for nuclear weapon and nuclear weapon system safety. Does not cancel other directives.

  2. President Truman Increases Production of Uranium and Plutonium | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Increases Production of Uranium and Plutonium President Truman Increases Production of Uranium and Plutonium Washington, DC President Truman approves a $1.4 billion expansion of Atomic Energy Commission facilities to produce uranium and plutonium for nuclear weapons

  3. Metabonomics for detection of nuclear materials processing.

    SciTech Connect

    Alam, Todd Michael; Luxon, Bruce A.; Neerathilingam, Muniasamy; Ansari, S.; Volk, David; Sarkar, S.; Alam, Mary Kathleen

    2010-08-01

    Tracking nuclear materials production and processing, particularly covert operations, is a key national security concern, given that nuclear materials processing can be a signature of nuclear weapons activities by US adversaries. Covert trafficking can also result in homeland security threats, most notably allowing terrorists to assemble devices such as dirty bombs. Existing methods depend on isotope analysis and do not necessarily detect chronic low-level exposure. In this project, indigenous organisms such as plants, small mammals, and bacteria are utilized as living sensors for the presence of chemicals used in nuclear materials processing. Such 'metabolic fingerprinting' (or 'metabonomics') employs nuclear magnetic resonance (NMR) spectroscopy to assess alterations in organismal metabolism provoked by the environmental presence of nuclear materials processing, for example the tributyl phosphate employed in the processing of spent reactor fuel rods to extract and purify uranium and plutonium for weaponization.

  4. Nuclear Explosive Safety

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2014-07-10

    The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

  5. Independent Oversight Activity Report, National Nuclear Security Administration Production Office- March 10-14, 2014

    Energy.gov [DOE]

    Contractor Transition Activities for the National Nuclear Security Administration Production Office [IAR-NPO-2014-03-10

  6. SYSTEM ANALYSIS OF NUCLEAR-ASSISTED SYNGAS PRODUCTION FROM COAL

    SciTech Connect

    E. A. Harvego; M. G. McKellar; J. E. O'Brien

    2008-09-01

    A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 66.1% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

  7. Weapons Program Associate Directors named

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    integration we have achieved between the various components of the program," said Bret Knapp, Principal Associate Director for Weapons Programs. "They have both done an...

  8. Issues in the use of Weapons-Grade MOX Fuel in VVER-1000 Nuclear Reactors: Comparison of UO2 and MOX Fuels

    SciTech Connect

    Carbajo, J.J.

    2005-05-27

    The purpose of this report is to quantify the differences between mixed oxide (MOX) and low-enriched uranium (LEU) fuels and to assess in reasonable detail the potential impacts of MOX fuel use in VVER-1000 nuclear power plants in Russia. This report is a generic tool to assist in the identification of plant modifications that may be required to accommodate receiving, storing, handling, irradiating, and disposing of MOX fuel in VVER-1000 reactors. The report is based on information from work performed by Russian and U.S. institutions. The report quantifies each issue, and the differences between LEU and MOX fuels are described as accurately as possible, given the current sources of data.

  9. TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION

    SciTech Connect

    Allender, J.; Beams, J.; Sanders, K.; Myers, L.

    2013-07-16

    Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

  10. PIA - Weapons Data Control Systems | Department of Energy

    Office of Environmental Management (EM)

    Weapons Data Control Systems PIA - Weapons Data Control Systems PIA - Weapons Data Control Systems PIA PIA - Weapons Data Control Systems (465.55 KB) More Documents & Publications ...

  11. Weapon interns: Where are they now? | Y-12 National Security Complex

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Weapon interns: Where are ... Weapon interns: Where are they now? The mp4 video format is not supported by this browser. Download video Captions: On Time: 4:14 min. HaliAnne Crawford and Aaron Lee, the Consolidated Nuclear Security, LLC employees participating in the Weapon Intern Program, are now several months into their training. Watch this video where they talk about how the program compares to their expectations and their plans for the future. Read more about the internship program

  12. Charles McMillan to lead Los Alamos National Laboratory's Weapons Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    McMillan to Lead Weapons Program Charles McMillan to lead Los Alamos National Laboratory's Weapons Program He will provide oversight and direction for the nuclear weapons program at Los Alamos to accomplish the Laboratory's core mission. July 28, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and

  13. US Releases Updated Plutonium Inventory Report | National Nuclear...

    National Nuclear Security Administration (NNSA)

    ... application of nuclear science. NNSA maintains and enhances the safety, security, reliability and performance of the U.S. nuclear weapons stockpile without nuclear testing; works ...

  14. Nuclear Materials Safeguards and Security Upgrade Project Completed...

    National Nuclear Security Administration (NNSA)

    application of nuclear science. NNSA maintains and enhances the safety, security, reliability and performance of the U.S. nuclear weapons stockpile without nuclear testing; works ...

  15. NNSA, Philippine Nuclear Research Institute to Prevent Radiological...

    National Nuclear Security Administration (NNSA)

    to our shared efforts to prevent nuclear and radiological terrorism and the proliferation of nuclear weapons," said NNSA Deputy Administrator for Defense Nuclear ...

  16. Savannah River Site hosts military interns | National Nuclear...

    National Nuclear Security Administration (NNSA)

    complex dedicated to environmental cleanup, nuclear weapons stockpile stewardship, and nuclear materials disposition in support of the U.S. nuclear non-proliferation efforts. ...

  17. NNSA Releases New Nuclear Prevent, Counter, and Respond Report...

    National Nuclear Security Administration (NNSA)

    on NNSA's efforts to prevent nuclear proliferation and terrorism, Prevent, Counter, and ... and responding to nuclear weapons proliferation and nuclear and radiological terrorism ...

  18. GIS Symbology for FRMAC/CMHT Radiological/Nuclear Products

    SciTech Connect

    Walker, H; Aluzzi, F; Foster, K; Pobanz, B; Sher, B

    2008-10-06

    and deposition patterns and related products correctly. This document is focusing on the products produced by the GIS Division of the Remove Sensing Laboratory (RSL) and by the National Atmospheric Release Advisory Center (NARAC), both separately and in combination. The expectation is that standard products produced by either group independently or in combination should use the same key attributes in displaying the same kinds of data so that products of a given type generally look similar in key aspects of the presentation, thereby minimizing any confusion of users when a variety of products from these groups may be needed. This document is dealing with the set of common standard products used in responding to radiological/nuclear releases. There are a number of less standard products that are used occasionally or in certain specific situations that are not addressed here. This includes special products that are occasionally produced by both NARAC and RSL in responses and major exercises to meet immediate and unanticipated requirements. At some future time, it may be appropriate to review the handling of such special products by both organizations to determine if there are any areas that would benefit from being integrated with the conventions described here. A particular area that should be addressed in the near-term is that of Derived Response Levels (DRLs) calculated by the Consequence Management Home Team (CMHT) or FRMAC Assessment Scientists. A new calculation is done for every event assigning contour levels, or break-points, based upon field measurements. These contour levels can be applied to deposition or dose rate NARAC calculations. Because these calculations are different every time, they can not be stored in a database.

  19. NNSA Timeline | National Nuclear Security Administration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    agency within the U.S. Department of Energy, responsible for the management and security of the nation's nuclear weapons, nuclear nonproliferation, and naval reactor programs. ...

  20. Research and Development | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA reduces the threat to national security posed by nuclear weapons proliferation and possible detonation or the illicit trafficking of nuclear materials through the long-term...

  1. Energy Secretary Abraham Announces Nuclear Nonproliferation Effort...

    National Nuclear Security Administration (NNSA)

    Energy Secretary Abraham Announces Nuclear Nonproliferation Effort with Kazakhstan for Former Soviet Nuclear Weapons Facility January 30, 2002 Energy Secretary Abraham Announces ...

  2. Nuclear disarmament, disposal of military plutonium and international security problems

    SciTech Connect

    Slipchenko, V.S.; Rybatchenkov, V.

    1995-12-31

    One of the major issues of the current debate deals with the question: what does real nuclear disarmament actually involve? It becomes more and more obvious for many experts that it can no longer be limited to the reduction or elimination of delivery vehicles alone, but must necessarily cove the warheads and the fissile materials recovered from them, which should totally or partially be committed to peaceful use and placed under appropriate international safeguards, thus precluding their re-use for as weapons. There are various options as to how to solve the problems of disposal of fissile materials released from weapons. The optimal choice can only be made on the basis of a thorough study. This study should treat the disposal of weapon-grade plutonium and weapon-grade uranium as separate problems. The possible options for plutonium disposition currently discussed are as follows: (a) Storage in a form or under conditions not suitable for use in the production of new types of nuclear weapons. This option seems to be most natural and inevitable at the first phase, subject to determination of storage period, volume, and technology. Besides, the requirements of the international nuclear weapons nonproliferation regime could be met easily. Safe, secure, and controlled temporary storage may provide an appropriate solution of disposal of weapon-grade plutonium in the near future. (b) Energy utilization (conversion) of weapon-grade plutonium. The most efficient option of utilization of plutonium appears to be for nuclear power generation. This option does not exclude storage, but considers it as a temporary phase, which can, however, be a prolonged one: its length is determined by the political decisions made and possibilities existing to transfer plutonium for processing.

  3. Plutonium Pits | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Plutonium Pits Plutonium pits are a critical core component of a nuclear weapon. To ensure the reliability, safety, and security of nuclear weapons without underground nuclear testing; weapons go through a surveillance process, where they are regularly taken apart, examined, and tests run on their components. Most of the weapons are reassembled and returned to the stockpile; however, some of the inspections are so thorough that the pit and other components are destroyed during evaluation. In

  4. Weapons assessment efficiencies through use of nondestructive...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Weapons assessment efficiencies through use of nondestructive laser gas sampling Weapons assessment efficiencies through use of nondestructive laser gas sampling Nondestructive ...

  5. CRAD, Configuration Management- Los Alamos National Laboratory Weapons Facility

    Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Configuration Management program at the Los Alamos National Laboratory, Weapons Facility.

  6. Nuclear Verification | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Control Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: Develop and deploy measures to ensure verifiable compliance with treaties and other international agreements, implement regimes to reduce nuclear weapons, and detect and dismantle undeclared nuclear programs. Specific subprogram activities include: Implementing current and developing future

  7. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants

    SciTech Connect

    Stephen Schey

    2009-07-01

    Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 – Produce Data and Analyses Task 2 – Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 – Commercial-Scale Hydrogen Production Task 4 – Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study

  8. Modeling of the performance of weapons MOX fuel in light water reactors

    SciTech Connect

    Alvis, J.; Bellanger, P.; Medvedev, P.G.; Peddicord, K.L.; Gellene, G.I.

    1999-05-01

    Both the Russian Federation and the US are pursing mixed uranium-plutonium oxide (MOX) fuel in light water reactors (LWRs) for the disposition of excess plutonium from disassembled nuclear warheads. Fuel performance models are used which describe the behavior of MOX fuel during irradiation under typical power reactor conditions. The objective of this project is to perform the analysis of the thermal, mechanical, and chemical behavior of weapons MOX fuel pins under LWR conditions. If fuel performance analysis indicates potential questions, it then becomes imperative to assess the fuel pin design and the proposed operating strategies to reduce the probability of clad failure and the associated release of radioactive fission products into the primary coolant system. Applying the updated code to anticipated fuel and reactor designs, which would be used for weapons MOX fuel in the US, and analyzing the performance of the WWER-100 fuel for Russian weapons plutonium disposition are addressed in this report. The COMETHE code was found to do an excellent job in predicting fuel central temperatures. Also, despite minor predicted differences in thermo-mechanical behavior of MOX and UO{sub 2} fuels, the preliminary estimate indicated that, during normal reactor operations, these deviations remained within limits foreseen by fuel pin design.

  9. Arms Control: US and International efforts to ban biological weapons

    SciTech Connect

    Not Available

    1992-12-01

    The Bacteriological (Biological) and Toxin Weapons Convention, the treaty that bans the development, production, and stockpiling and acquisition of biological weapons was opened for signature in 1972 and came into force in 1975 after being ratified by 22 governments, including the depository nations of the USA, the United Kingdom, and the former Soviet Union. In support of the Convention, the USA later established export controls on items used to make biological weapons. Further, in accordance with the 1990 President`s Enhanced Proliferation Control Initiative, actions were taken to redefine and expand US export controls, as well as to encourage multilateral controls through the Australia Group. Thus far, the Convention has not been effective in stopping the development of biological weapons. The principal findings as to the reasons of the failures of the Convention are found to be: the Convention lacks universality, compliance measures are effective, advantage of verification may outweigh disadvantages. Recommendations for mitigating these failures are outlined in this report.

  10. Working toward a world without nuclear weapons

    SciTech Connect

    Drell, Sidney D.

    2014-05-09

    Limiting the number of warheads is a good beginning, but getting to the end state calls for new thinking. Six specific steps can start us down that path.

  11. Innovative applications of technology for nuclear power plant productivity improvements

    SciTech Connect

    Naser, J. A.

    2012-07-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  12. Nuclear stockpile stewardship and Bayesian image analysis (DARHT...

    Office of Scientific and Technical Information (OSTI)

    Subject: 45 MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE; 42 ENGINEERING; HYDRODYNAMICS; IMAGE PROCESSING; NUCLEAR WEAPONS; RELIABILITY; STOCKPILES; TESTING; TEST FACILITIES ...

  13. Los Alamos National Laboratory | National Nuclear Security Administrat...

    National Nuclear Security Administration (NNSA)

    package in nuclear weapons. This laboratory possesses unique capabilities in neutron scattering, enhanced surveillance, radiography, and plutonium science and...

  14. Office of Nuclear Threat Science | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | (NNSA) Nuclear Threat Science The Office of Nuclear Threat Science is responsible for overseeing the Nuclear Counterterrorism Program, an NNSA program that sustains specialized expertise and integrates and executes key activities to advise and enable technical aspects of U.S. Government nuclear counterterrorism and counterproliferation missions. Nuclear Counterterrorism The Nuclear Counterterrorism Program operates in partnership with weapons design-, stockpile science-, weapons surety-,

  15. forensics | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    forensics Nuclear forensics, explained: NNSA analytic chemists help keep the world safe One of the gravest threats the world faces is the possibility that terrorists will acquire nuclear weapons or the necessary materials to construct a weapon. Part of the work of NNSA's Office of Defense Nuclear Nonproliferation and the national laboratories is to support investigations into the

  16. Russian (C. I. S. ) strategic nuclear forces, end of 1992

    SciTech Connect

    Not Available

    1993-03-01

    Russian (C.I.S.) strategic nuclear forces are approximately the same size as a year ago. The SS-25 intercontinental ballistic missile (ICBM) is the only weapon system in production; it continues to be fielded. There are still approximately 3,100 warheads deployed in Ukraine, Kazakhstan, and Belarus.

  17. visit | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    (NNSA) hosted representatives from 11 States Parties to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) and one representative from the United Nations Office for ...

  18. National Security, Weapons Science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Safety National Security & Safety In the video above, three veterans discuss how the skills they learned in the service are helping them advance energy security and grow the clean energy economy. The veterans shared their experiences at a Champions of Change event at the White House. | Video by Matty Greene, Energy Department. The Energy Department plays an important and multifaceted role in protecting national security. In addition to our work to increase nuclear nonproliferation and ensure

  19. The Role of the DOE Weapons Laboratories in a Changing National Security Environment: CNSS Papers No. 8, April 1988

    DOE R&D Accomplishments

    Hecker, S. S.

    1988-04-01

    The contributions of the Department of Energy (DOE) nuclear weapons laboratories to the nation's security are reviewed in testimony before the Subcommittee on Procurement and Military Nuclear Systems of the House Armed Services Committee. Also presented are contributions that technology will make in maintaining the strategic balance through deterrence, treaty verification, and a sound nuclear weapons complex as the nation prepares for significant arms control initiatives. The DOE nuclear weapons laboratories can contribute to the broader context of national security, one that recognizes that military strength can be maintained over the long term only if it is built upon the foundations of economic strength and energy security.

  20. NNSA Labs host U.S. and Nuclear Non-Proliferation Treaty (NPT...

    National Nuclear Security Administration (NNSA)

    Labs host U.S. and Nuclear Non-Proliferation Treaty (NPT) Non-Nuclear Weapon State Representatives | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS...

  1. US strategic nuclear forces, end of 1996

    SciTech Connect

    Norris, R.S.; Arkin, W.M.

    1997-01-01

    Quantitative data on operational nuclear weapons is tabulated and described in some detail in the article. Nuclear weapons categories reported include intercontinental ballistic missiles, nuclear-powered ballistic missile submarines, submarine-launched ballistic missiles, and bombers and weapons. The total number of warheads in the U.S. arsenal is approximately 7150, slightly lower than last year`s level of almost 8000 warheads. There are 1085 launchers and nuclear-powered ballistic missile submarines.

  2. DOE battery program for weapon applications

    SciTech Connect

    Clark, R.P.; Baldwin, A.R.

    1992-11-01

    This report discusses the Department of Energy (DOE) Weapons Battery program which originates from Sandia National Laboratories (SNL) and involves activities ranging from research, design and development to testing, consulting and production support. The primary customer is the DOE/Office of Defense Programs, although work is also done for various Department of Defense agencies and their contractors. The majority of the SNL activities involve thermal battery (TB) and lithium ambient temperature battery (LAMB)technologies. Smaller efforts are underway in the areas of silver oxide/zinc and nickel oxide/cadmium batteries as well as double layer capacitors.

  3. DOE battery program for weapon applications

    SciTech Connect

    Clark, R.P.; Baldwin, A.R.

    1992-01-01

    This report discusses the Department of Energy (DOE) Weapons Battery program which originates from Sandia National Laboratories (SNL) and involves activities ranging from research, design and development to testing, consulting and production support. The primary customer is the DOE/Office of Defense Programs, although work is also done for various Department of Defense agencies and their contractors. The majority of the SNL activities involve thermal battery (TB) and lithium ambient temperature battery (LAMB)technologies. Smaller efforts are underway in the areas of silver oxide/zinc and nickel oxide/cadmium batteries as well as double layer capacitors.

  4. Iraq's nuclear hide-and-seek

    SciTech Connect

    Albright, D. ); Hibbs, M.

    1991-09-01

    The revelation that Iraq had spent as much as $8 billion on its calutron program implies that Iraq sought to develop a large and renewable weapons material stockpile. While the calutron revelations are alarming, a nuclear weapons program requires more than equipment to produce fissile materials. Iraq lacked the hands-on experience required to nudge its fledgling gas centrifuge program out of the laboratory and into the large-scale production phase. No information to date suggests that Iraq would have escaped serious difficulties as it moved from a calutron pilot stage to large-scale production of highly enriched uranium. The revelations have raised hard questions about the quality of reconnaissance information on Iraq's nuclear effort. But the heat fingerprints left by a large calutron production plant would become visible only after the facility was producing enriched uranium. Tracking down and eliminating Iraq's nuclear weapons capabilities under the terms of Resolution 687, and a continued embargo to halt imports of relevant technologies and equipment, will be the most effective way to prevent Iraq's nuclear program from resurfacing.

  5. Hans Bethe, Powering the Stars, and Nuclear Physics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hans Bethe, Energy Production in Stars, and Nuclear Physics Awards and Tributes * Resources with Additional Information Hans Bethe Courtesy of Cornell University "Hans Bethe was one of the great physicists not only of the twentieth century, but of all time. During his long life, he uncovered the secrets powering the stars, published the standard work on nuclear physics, built atomic weapons, and called for a halt to their proliferation. Bethe's dual legacy is one of genius and

  6. NNSA implements nondestructive gas sampling technique for nuclear...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    implements ... NNSA implements nondestructive gas sampling technique for nuclear weapon components Posted: June 12, 2012 - 1:34pm The National Nuclear Security Administration...

  7. News Release Closure of Russian Nuclear Plant.PDF

    National Nuclear Security Administration (NNSA)

    CONTACTS: FOR IMMEDIATE RELEASE Jonathan Kiell, 202586-7371 September 27, 2001 Date Set for Closure of Russian Nuclear Weapons Plant U.S. National Nuclear Security Administration ...

  8. Nuclear Materials Technology Division/Los Alamos National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    One of the new and daunting challenges in nuclear waste management is the disposition of plutonium recovered from dismantled nuclear weapons. Under the first and second Strategic ...

  9. Anne Harrington at Sandia National Labs | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... It work to reduce the threat to national security posed by nuclear weapons proliferation ...

  10. National Nuclear Science Week Day 4: NNSA Highlights Science...

    National Nuclear Security Administration (NNSA)

    all vulnerable material around the world, preventing nuclear smuggling, and strengthening international efforts to prevent the proliferation of nuclear weapons and material. ...

  11. Nuclear Materials Management and Safeguards System (NMMSS)

    SciTech Connect

    Jacobsen, S.E.; Matthews, W.B. III; McKamy, E.D.; Pedigo, R.B. )

    1991-01-01

    This paper describes the Nuclear Materials Management and Safeguards System (NMMSS) which is sponsored by the Department of Energy and the Nuclear Regulatory Commission. The system serves national security and program management interests, and international interests in the programs for the peaceful application of nuclear energy and non-proliferation of nuclear weapons. Within the scope of the NMMSS are found all nuclear materials applied and controlled under United States law and related international agreements, including U.S. nuclear materials production programs and U.S. private nuclear industrial activities. In addition, its national and international scope enables it to provide services to other organizations such as the Arms Control and Disarmament Agency, the Department of State, and the U.S. Congress.

  12. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    SciTech Connect

    NONE

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  13. QUARKONIUM PRODUCTION IN RELATIVISTIC NUCLEAR COLLISIONS. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 12

    SciTech Connect

    KHARZEEV,D.

    1999-04-20

    The RIKEN-BNL Workshop on Quarkonium Production in Relativistic Nuclear Collisions was held September 28--October 2, 1998, at Brookhaven National Laboratory. The Workshop brought together about 50 invited participants from around the world and a number of Brookhaven physicists from both particle and nuclear physics communities.

  14. arg | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    arg Emergency Response Planning for Emergencies Exercise Program Field Assistance and Oversight Liaison Homeland Security and Emergency Management Coordination HQ Emergency Management Team Responding to Emergencies Consequence Management First Responders Operations Render Safe Nuclear Forensics International... Accident Response Group NNSA's Accident Response Group (ARG) provides technical guidance and responds to U.S. nuclear weapons accidents. The team assists in assessing weapons damage and

  15. The Last W-79 Warhead Dismantled | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | (NNSA) The Last W-79 Warhead Dismantled The Last W-79 Warhead Dismantled Pantex, TX The Nuclear Security Administration's Pantex facility outside Amarillo, Texas, dismantles the last nuclear artillery shell, the W-79, in the U.S. nuclear stockpile. "This administration is committed to reducing the threat of nuclear weapons world wide," says Secretary Abraham. "We have completed dismantlement of another class of nuclear weapons-weapons that were a very important deterrent

  16. Sandia National Laboratory | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Sandia National Laboratory NNSA's Sandia National Laboratories are responsible for the development, testing, and production of specialized nonnuclear components and quality assurance and systems engineering for all of the United States' nuclear weapons. Sandia has locations in Albuquerque, New Mexico; Livermore, California; Kauai, Hawaii; and Tonopah, Nevada. Sandia Field Office Contact the Field Office Contract Administration & Business Management Emergency Information Facilities

  17. Sandia National Laboratories | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Sandia National Laboratories NNSA's Sandia National Laboratories are responsible for the development, testing, and production of specialized nonnuclear components and quality assurance and systems engineering for all of the United States' nuclear weapons. Sandia has locations in Albuquerque, NM; Livermore, CA; Kauai, HI; and Tonopah, NV. The labs are operated by Sandia Corporation. Visit our website Z-Machine Z-Machine Related News Hard work pays off at 2016 Sandia California Intern

  18. U.S. and Russia Reaffirm Commitment to Disposing of Weapon-Grade Plutonium

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Reaffirm Commitment to Disposing of Weapon-Grade Plutonium U.S. and Russia Reaffirm Commitment to Disposing of Weapon-Grade Plutonium July 13, 2006 - 3:05pm Addthis WASHINGTON, DC - U.S. Energy Secretary Samuel W. Bodman and Sergey Kiriyenko, the director of Russia's Federal Atomic Energy Agency, have signed a joint statement reaffirming their commitment to dispose of 34 metric tons of excess weapon-grade plutonium by irradiation in nuclear reactors. "This

  19. Method for forming nuclear fuel containers of a composite construction and the product thereof

    DOEpatents

    Cheng, Bo-Ching; Rosenbaum, Herman S.; Armijo, Joseph S.

    1984-01-01

    An improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof.

  20. Statement on Budget Priorities for NNSA Weapons Activities before the House

    National Nuclear Security Administration (NNSA)

    Committee on Appropriations Subcommittee on Energy & Water Development | National Nuclear Security Administration | (NNSA) Budget Priorities for NNSA Weapons Activities before the House Committee on Appropriations Subcommittee on Energy & Water Development February 14, 2013 INTRODUCTION Chairman Frelinghuysen, Ranking Member Kaptur, and distinguished members of the Subcommittee, thank you for having me here to discuss the NNSA programs funded in the Weapons Activities account. Your

  1. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  2. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  3. Hanford, WA Selected as Plutonium Production Facility | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Hanford, WA Selected as Plutonium Production Facility Hanford, WA Selected as Plutonium Production Facility Hanford, WA Groves selects Hanford, Washington, as site for full-scale plutonium production and separation facilities. Three reactors--B, D, and F--are built

  4. President Roosevelt Approves Production of Atomic Bomb | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Approves Production of Atomic Bomb President Roosevelt Approves Production of Atomic Bomb Washington, DC President Roosevelt approves production of the atomic bomb following receipt of a National Academy of Sciences report determining that a bomb is feasible

  5. nuclear reactors | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear reactors NNSA Researchers Advance Technology for Remote Reactor Monitoring NNSA's Defense Nuclear Nonproliferation Research and Development Program drives the innovation of technical capabilities to detect, identify, and characterize foreign nuclear weapons development activities. To achieve this, NNSA leverages the unique capabilities of the national laboratories

  6. design basis threat | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    design basis threat Design Basis Threat NNSA has taken aggressive action to improve the security of its nuclear weapons material (often referred to as special nuclear material, or SNM) and nuclear weapons in its custody. One major challenge has been, and remains, ensuring that SNM is well protected, while at the same time

  7. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    SciTech Connect

    Djurcic, Zelimir; Detwiler, Jason A.; Piepke, Andreas; Foster Jr., Vince R.; Miller, Lester; Gratta, Giorgio

    2008-08-06

    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in {bar {nu}}{sub e} detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties, and their relevance to reactor {bar {nu}}{sub e} experiments.

  8. NRC - regulator of nuclear safety

    SciTech Connect

    1997-05-01

    The U.S. Nuclear Regulatory Commission (NRC) was formed in 1975 to regulate the various commercial and institutional uses of nuclear energy, including nuclear power plants. The agency succeeded the Atomic Energy Commission, which previously had responsibility for both developing and regulating nuclear activities. Federal research and development work for all energy sources, as well as nuclear weapons production, is now conducted by the U.S. Department of Energy. Under its responsibility to protect public health and safety, the NRC has three principal regulatory functions: (1) establish standards and regulations, (2) issue licenses for nuclear facilities and users of nuclear materials, and (3) inspect facilities and users of nuclear materials to ensure compliance with the requirements. These regulatory functions relate to both nuclear power plants and to other uses of nuclear materials - like nuclear medicine programs at hospitals, academic activities at educational institutions, research work, and such industrial applications as gauges and testing equipment. The NRC places a high priority on keeping the public informed of its work. The agency recognizes the interest of citizens in what it does through such activities as maintaining public document rooms across the country and holding public hearings, public meetings in local areas, and discussions with individuals and organizations.

  9. Life Extension Programs | National Nuclear Security Administration...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Life Extension Programs The term "life extension program (LEP)" means a program to repairreplace components of nuclear weapons to ensure the ability to meet military requirements. ...

  10. November 2015 | National Nuclear Security Administration | (NNSA...

    National Nuclear Security Administration (NNSA)

    that will provide a comprehensive picture of the Nuclear Security Enterprise," said Colby Yeary, director of the stockpile program and chair of the Weapons Internship Program ...

  11. Sandia National Laboratories: National Security Missions: Nuclear...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    These science and engineering capabilities support Sandia's nuclear weapons program: Radiation Effects Sciences Sandia is a world leader in pulsed power science and technology. ...

  12. ORISE: Preparing Nations to Fight Nuclear Smuggling

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    smuggling remains a global security threat. How ORISE is Making a Difference Recent seizures of weapon-grade nuclear materials suggest such materials remain in illegal...

  13. Sandia National Laboratories | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    nuclear weapons Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge Sandia National Laboratories chemist Mark Allendorf, shown here at...

  14. Infrastructure and Facilities Management | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Home content Infrastructure and Facilities Management NNSA restores, rebuilds, and revitalizes the physical infrastructure of the nuclear weapons complex to ensure the vitality ...

  15. Physical Security Systems | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    from vehicle bombs and strengthened its facilities against attacks. NNSA has begun consolidating its nuclear weapons material which reduces the number of targets to be protected. ...

  16. stockpile modernization | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    stockpile modernization Sandia completes major overhaul of key nuclear weapons test facilities Sandia National Laboratories recently completed the renovation of five large-scale ...

  17. Treaties and Agreements | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... international mechanisms for preventing the proliferation of weapons of mass destruction. ...

  18. operations center | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Operations Center The Office of Emergency Operations Support maintains situational awareness of the nation's energy infrastructure and nuclear weapons complex and facilitates...

  19. Radiological Weapons: How Great Is The Danger?

    SciTech Connect

    Moore, G M

    2003-06-01

    One of the underlying purposes of this paper is to provoke thinking about the interplay between the regulation of radioactive materials and the risk of their use in an radiological weapon (RW). Also considered in this paper are the types of RWs that a terrorist might use, the nature of the threat and danger posed by the various types of RWs, the essential elements that must be considered in responding to the terrorist use of an RW, and what steps may need to be taken a priori to minimize the consequences of the inevitable use of an RW. Because radiological dispersal devices (RDDs) have been the focus of so much recent concern and because RDDs are arguably the most likely of RWs to be used by a terrorist group, a major focus of this paper will be on RDDs. Radiological weapons are going to be used by some individual or group, if not this year then next year, or at some time in the foreseeable future. A policy of focusing resources solely on prevention of their use would leave any government open to significant economic disruption when the inevitable use occurs. Preplanning can limit the injuries, property damage, and economic losses that might result from the use of an RW. Moreover, a combination of efforts to prevent and to minimize the impact of RWs may significantly discourage potential users. The dangers from RWs can be dealt with while society continues to enjoy the benefits of nuclear technology that were promised under Atoms for Peace. However, some restructuring of our use of radioactive materials is necessary to ensure that the current and future uses of radioactive materials outweigh the potential disruption caused by misuse of the materials in RWs.

  20. Reducing the Nuclear Weapons Stockpile | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  1. Nuclear Detonation Detection | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Research and Development Nuclear Detonation Detection The Office of Nuclear Detonation Detection (NDD) develops and provide continuous, global capabilities to detect foreign nuclear weapon detonations, including for test ban treaty monitoring needs and military requirements. These efforts are aligned along three functional areas: Space-based Detection of Nuclear Detonations: Develops and builds space sensors for the nation's operational nuclear test treaty monitoring and Integrated

  2. Product Lifecycle Management Architecture: A Model Based Systems Engineering Analysis.

    SciTech Connect

    Noonan, Nicholas James

    2015-07-01

    This report is an analysis of the Product Lifecycle Management (PLM) program. The analysis is centered on a need statement generated by a Nuclear Weapons (NW) customer. The need statement captured in this report creates an opportunity for the PLM to provide a robust service as a solution. Lifecycles for both the NW and PLM are analyzed using Model Based System Engineering (MBSE).

  3. Separation of the rare-earth fission product poisons from spent nuclear fuel

    DOEpatents

    Christian, Jerry D.; Sterbentz, James W.

    2016-08-30

    A method for the separation of the rare-earth fission product poisons comprising providing a spent nuclear fuel. The spent nuclear fuel comprises UO.sub.2 and rare-earth oxides, preferably Sm, Gd, Nd, Eu oxides, with other elements depending on the fuel composition. Preferably, the provided nuclear fuel is a powder, preferably formed by crushing the nuclear fuel or using one or more oxidation-reduction cycles. A compound comprising Th or Zr, preferably metal, is provided. The provided nuclear fuel is mixed with the Th or Zr, thereby creating a mixture. The mixture is then heated to a temperature sufficient to reduce the UO.sub.2 in the nuclear fuel, preferably to at least to 850.degree. C. for Th and up to 600.degree. C. for Zr. Rare-earth metals are then extracted to form the heated mixture thereby producing a treated nuclear fuel. The treated nuclear fuel comprises the provided nuclear fuel having a significant reduction in rare-earths.

  4. weapons

    National Nuclear Security Administration (NNSA)

    thanks to the vision and determination of its proponents and the significant investment in the necessary tools, facilities, and people. The men and women employed by the...

  5. Livermore team awarded for hydrogen production research | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) team awarded for hydrogen production research Thursday, August 28, 2014 - 1:19pm Three Lawrence Livermore researchers have received the Department of Energy's 2014 Hydrogen Production R&D Award for their research in producing hydrogen photoelectrochemically - by splitting water using sunlight. Shared with collaborators from the National Renewable Energy Laboratory (NREL) and the University of Nevada, Las Vegas (UNLV), the award recognizes the team for its

  6. The Nuclear Alternative: Energy Production within Ulaanbaatar, Mongolia

    SciTech Connect

    Liodakis, Emmanouel Georgiou

    2011-06-28

    Over ninety percent of Mongolia's energy load is run through the Central Energy System. This primary grid provides Mongolia's capital, Ulaanbaatar, with the power it uses to function. In the first half of 2010 the Central Energy System managed 1739.45 million kWhs, a 4.6 percent increase from 2009. If this growth rate continues, by 2015 Ulaanbaatar's three power plants will be unable to generate enough heat and electricity to meet the city's needs. Currently, plans have been proposed to rehabilitate the aging coal power plants. However, rising maintenance costs and growing emission levels make the long-term sustainability of this solution uncertain. The following paper analyzes the capital, maintenance, and decommissioning costs associated with the current rehabilitation plans and compares them with a nuclear alternative.

  7. President Truman Orders Development of Thermonuclear Weapon ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline President Truman Orders Development of Thermonuclear Weapon...

  8. Weapons Dismantlement and Disposition NNSS Capabilities

    SciTech Connect

    Pat Arnold

    2011-12-01

    The U.S. Department of Energy (DOE) has tasked the WDD working group to disposition the large inventory of legacy classified weapon components scattered across the complex.

  9. Detecting special nuclear materials in containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B.; Prussin, Stanley G.

    2007-10-02

    A method and a system for detecting the presence of special nuclear materials in a container. The system and its method include irradiating the container with an energetic beam, so as to induce a fission in the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  10. Proliferation Resistant Nuclear Reactor Fuel

    SciTech Connect

    Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

    2011-02-18

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and

  11. Hydrogen Production by High Temperature Electrolysis with Nuclear Reactor

    SciTech Connect

    Ogawa, Takashi; Fujiwara, Seiji; Kasai, Shigeo; Yamada, Kazuya

    2007-07-01

    In this paper, we report our design of high temperature electrolysis plant system and the analysis results. The system efficiency increases with the increase of the steam utilization in the solid oxide electrolysis cell (SOEC) or the decrease of the hydrogen recycle (hydrogen recycle flow to product hydrogen flow) ratio,. The system efficiency is nearly independent of the SOEC operating temperature and pressure, and the air to product O{sub 2} ratio. In this study, the maximum system efficiency is 56.3%. (authors)

  12. Nuclear Explosive Safety

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2015-01-26

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs). Supersedes DOE O 452.2D and DOE M 452.2-1A.

  13. Nuclear Explosive Safety

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2009-04-14

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

  14. Nuclear Explosive Safety

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2009-04-14

    This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

  15. U.S., Russia Agree to Extend Nuclear Security Cooperation | National...

    National Nuclear Security Administration (NNSA)

    "The United States and Russia remain committed partners in improving global nuclear security, combating weapons proliferation, and preventing dangerous nuclear equipment and ...

  16. Personnel Security Clearance Products and Services | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Personnel Security Clearance Products and Services Applicants An Applicant is anyone who is applying for a DOE security clearance (access authorization) that has not held one previously. Individuals who are U.S. citizens and are at least 18 years of age may be processed for or granted a clearance. Reinvestigation Reinvestigations are designed to ensure individuals with security clearances are periodically reevaluated at intervals, determined by national

  17. nuclear

    National Nuclear Security Administration (NNSA)

    2%2A en U.S-, Japan Exchange Best Practices on Nuclear Emergency Response http:nnsa.energy.govmediaroompressreleasesu.s-japan-exchange-best-practices-nuclear-emergency-respon...

  18. policy | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    policy DOE, NNSA leaders open summit on the physical security of nuclear weapons Deputy Secretary of Energy Elizabeth Sherwood-Randall, NNSA Principal Deputy Administrator Madelyn Creedon, and numerous speakers from throughout the Nuclear Security Enterprise spoke at the 2016 Nuclear Weapons Physical Security Collaboration Summit earlier this month at Joint Base Andrews in... NNSA Deputy promotes collaboration on global deterrence at USSTRATCOM deterrence symposium Last month more than 650

  19. DOE | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    DOE DOE, NNSA leaders open summit on the physical security of nuclear weapons Deputy Secretary of Energy Elizabeth Sherwood-Randall, NNSA Principal Deputy Administrator Madelyn Creedon, and numerous speakers from throughout the Nuclear Security Enterprise spoke at the 2016 Nuclear Weapons Physical Security Collaboration Summit earlier this month at Joint Base Andrews in... NNSA & DOE Employees Use Tiny Smartphone Microscopes to Teach STEM Users discovered items the device could magnify, such

  20. NNSA | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA DOE, NNSA leaders open summit on the physical security of nuclear weapons Deputy Secretary of Energy Elizabeth Sherwood-Randall, NNSA Principal Deputy Administrator Madelyn Creedon, and numerous speakers from throughout the Nuclear Security Enterprise spoke at the 2016 Nuclear Weapons Physical Security Collaboration Summit earlier this month at Joint Base Andrews in... Office of Secure Transportation Celebrates 40th Anniversary On Thursday morning, Dec. 17, NNSA's Office of Defense

  1. NPT | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NPT NNSA Labs host U.S. and Nuclear Non-Proliferation Treaty (NPT) Non-Nuclear Weapon State Representatives NNSA Principal Deputy Administrator Madelyn Creedon with SNL Director and President Jill Hruby welcome Department of State Representatives and seven NPT Non-Nuclear Weapon State Representatives for 2nd NPT Transparency Visit. WASHINGTON - On October 26 and 27, 2015, Los Alamos National... NNSA Hosts NPT Parties at Los Alamos and Sandia National Laboratories WASHINGTON D.C. - On March

  2. cdns | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    cdns Design Basis Threat NNSA has taken aggressive action to improve the security of its nuclear weapons material (often referred to as special nuclear material, or SNM) and nuclear weapons in its custody. One major challenge has been, and remains, ensuring that SNM is well protected, while at the same time,... Information Security Information security deals with requirements for the protection and control of information and matter required to be classified or controlled by statutes,

  3. KCP highlights first part production | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) highlights first part production Monday, April 21, 2014 - 4:21pm The first Kansas City Plant employees were hired in March 1949 and were faced with the task of getting the former Navy aircraft engine plant at the Bannister Federal Complex ready for its new role. First on the checklist was the removal of tons of sugar and tires being stored at the facility by a former tenant. By April 19, three machines had been wired and were ready for operation. Three short days

  4. HIGH-TEMPERATURE ELECTROLYSIS FOR HYDROGEN PRODUCTION FROM NUCLEAR ENERGY

    SciTech Connect

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Joseph J. Hartvigsen

    2005-10-01

    An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 90 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate.

  5. Nuclear Security Enterprise | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Nuclear Security Enterprise The Nuclear Security Enterprise (NSE) mission is to ensure the Nation sustains a safe, secure, and effective nuclear deterrent through the application of science, technology, engineering, (ST&E) and manufacturing. In the next 20 years, the U.S. nuclear weapons stockpile will be sustained and modernized through vigorous surveillance, assessment, life extension and dismantlement efforts. In addition, progress will be made in modernizing the physical

  6. Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952

    SciTech Connect

    Anne C. Fitzpatrick

    1999-07-01

    The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsible for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to scientific, politician, and military participants in this project. I

  7. Nuclear reaction products that would appear if substantial cold fusion occurred

    SciTech Connect

    Mueller, D.; Grisham, L.R. . Plasma Physics Lab.)

    1989-11-01

    This paper reports on recent claims of net energy production by cold fusion that have prompted an examination of all the positive Q value, two-body nuclear reactions that might result from the fusion of any of the isotopes in the apparatus used by Fleischmann and Pons. Any energy production that may result from cold fusion would be accompanied by copious production of nuclear reaction products (on the order of 10{sup 13}/s). Furthermore, the elementary properties of the alpha particle at the deuteron + deuteron threshold are discussed. An important property of the alpha at this high excitation is its nearly prompt (10{sup {minus}20} s) decay by particle emission to {sup 3}He + n or triton + proton.

  8. FAQS Reference Guide - Weapon Quality Assurance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Weapon Quality Assurance FAQS Reference Guide - Weapon Quality Assurance This reference guide addresses the competency statements in the August 2008 edition of DOE-STD-1025-2008, Weapon Quality Assurance Functional Area Qualification Standard. Weapon Quality Assurance Qualification Standard Reference Guide, August 2009 (382.42 KB) More Documents & Publications FAQS Qualification Card - Weapon Quality Assurance DOE-STD-1025-2008 FAQS Job Task Analyses - Weapons Quality Assurance

  9. Engineering, Weapons Physics Directorates at Los Alamos National

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bret Knapp to head combined Weapons Engineering, Weapons Physics Directorates at Los Alamos National Laboratory August 18, 2009 Los Alamos, New Mexico, August 18, 2009- Two of the three Los Alamos National Laboratory weapons programs directorates have been combined under the leadership of Bret Knapp as the associate director for the new weapons directorate. The new organization adds the Weapons Physics directorate to the Weapons Engineering directorate already under Knapp's leadership. The third

  10. treaty verification | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    treaty verification Global Material Security The mission of the Office of Global Material Security (GMS) is to help partner countries secure and account for nuclear weapons, weapons-useable nuclear and radiological materials, as well as to build capacity to deter, detect and interdict the illicit trafficking of such materials. GMS achieves

  11. Nuclear proliferation after the Cold War

    SciTech Connect

    Reiss, M.; Litwak, R.S.

    1994-01-01

    Today, former Soviet republics threaten to gain control over nuclear weapons sited on their territories, and reports on North Korea, Pakistan, India, and Iraq reveal current or recent weapon development programs. This document offers a timely assessment of the prospects for nuclear nonproliferation.

  12. Nuclear reaction modeling, verification experiments, and applications

    SciTech Connect

    Dietrich, F.S.

    1995-10-01

    This presentation summarized the recent accomplishments and future promise of the neutron nuclear physics program at the Manuel Lujan Jr. Neutron Scatter Center (MLNSC) and the Weapons Neutron Research (WNR) facility. The unique capabilities of the spallation sources enable a broad range of experiments in weapons-related physics, basic science, nuclear technology, industrial applications, and medical physics.

  13. EIS-0373: Proposed Consolidation of Nuclear Operations Related to the Production of Radioisotope Power Systems

    Energy.gov [DOE]

    NOTE: EIS-0373 has been cancelled. This EIS evaluates the environmental impacts of consolidating nuclear activities related to production of radioisotope power systems (RPS) for space and national security missions at a single DOE site: the preferred alternative is the Materials and Fuels Complex at Idaho National Laboratory.

  14. Assessement of Codes and Standards Applicable to a Hydrogen Production Plant Coupled to a Nuclear Reactor

    SciTech Connect

    M. J. Russell

    2006-06-01

    This is an assessment of codes and standards applicable to a hydrogen production plant to be coupled to a nuclear reactor. The result of the assessment is a list of codes and standards that are expected to be applicable to the plant during its design and construction.

  15. Pakistan’s nuclear Taj Mahal

    SciTech Connect

    Leslie, Stuart W.

    2015-02-15

    Inspired by the promise of Atoms for Peace, the Pakistan Institute of Nuclear Science and Technology eventually succumbed to the demands of the country’s nuclear weapons program.

  16. Highly Enriched Uranium Disposition | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    the economic value of the material by using the resulting LEU as nuclear reactor fuel. ... HEU from Russian nuclear weapons into LEU used as fuel in U.S. commercial power reactors. ...

  17. NEW - DOE O 452.2E, Nuclear Explosive Safety

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

  18. Verification & Validation | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    ... The scope of this product includes integral validation of physical property data that that are used as inputs for various weapon relevant simulations. Additionally, this product ...

  19. The National Nuclear Security Administration's B61 Spin Rocket Motor

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Project, IG-0740 | Department of Energy cf Energy's Sandia National Laboratories are refurbishing the Spin Rocket Motor, a 1:rime component of the B61 nuclear weapon system. Both the originai motor produced i2 i906 and the version last produced in 1991 are the subjects of the refurbishment. Rvth motors, which are essentially identical, produce thrust to arm thz weapon. In Deceinber 2001, the National Nuclear Security Administration (NNSA) received Nuclear Weapons Council Standing and Safety

  20. γ production as a probe for early state dynamics in high energy nuclear collisions at RHIC

    DOE PAGES [OSTI]

    Liu, Yunpeng; Chen, Baoyi; Xu, Nu; Zhuang, Pengfei

    2011-02-01

    γ production in heavy ion collisions at RHIC energy is investigated. While the transverse momentum spectra of the ground state γ(1s) are controlled by the initial state Cronin effect, the excited bb⁻ states are characterized by the competition between the cold and hot nuclear matter effects and sensitive to the dissociation temperatures determined by the heavy quark potential. We emphasize that it is necessary to measure the excited heavy quark states in order to extract the early stage information in high energy nuclear collisions at RHIC.

  1. Separation Requirements for a Hydrogen Production Plant and High-Temperature Nuclear Reactor

    SciTech Connect

    Curtis Smith; Scott Beck; Bill Galyean

    2005-09-01

    This report provides the methods, models, and results of an evaluation for locating a hydrogen production facility near a nuclear power plant. In order to answer the risk-related questions for this combined nuclear and chemical facility, we utilized standard probabilistic safety assessment methodologies to answer three questions: what can happen, how likely is it, and what are the consequences? As part of answering these questions, we developed a model suitable to determine separation distances for hydrogen process structures and the nuclear plant structures. Our objective of the model-development and analysis is to answer key safety questions related to the placement of one or more hydrogen production plants in the vicinity of a high-temperature nuclear reactor. From a thermal-hydraulic standpoint we would like the two facilities to be quite close. However, safety and regulatory implications force the separation distance to be increased, perhaps substantially. Without answering these safety questions, the likelihood for obtaining a permit to construct and build such as facility in the U.S. would be questionable. The quantitative analysis performed for this report provides us with a scoping mechanism to determine key parameters related to the development of a nuclear-based hydrogen production facility. From our calculations, we estimate that when the separation distance is less than 100m, the core damage frequency is large enough (greater than 1E-6/yr) to become problematic in a risk-informed environment. However, a variety of design modifications, for example blast-deflection barriers, were explored to determine the impact of potential mitigating strategies. We found that these mitigating cases may significantly reduce risk and should be explored as the design for the hydrogen production facility evolves.

  2. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect

    Forsberg, C.

    2012-07-01

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing

  3. Y-12 employees receive awards recognizing excellence in nuclear...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    receive ... Y-12 employees receive awards recognizing excellence in nuclear weapons program Posted: October 6, 2014 - 9:09am Defense Programs 2013 Award of Excellence recipient ...

  4. First Irradiated Tritium Rods Arrive At SRS | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Tritium is a radioactive isotope of the element hydrogen. Tritium decays at about five percent per year and therefore must be periodically replaced in nuclear weapons. ...

  5. U.S. - Kazakhstan Cooperation on Nuclear Security and Nonproliferation...

    National Nuclear Security Administration (NNSA)

    In addition, both countries are strongly committed to preventing the proliferation of nuclear weapons and are working together to continue reducing the proliferation threats ...

  6. Nuclear stockpile stewardship and Bayesian image analysis (DARHT...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: DOE Country of Publication: United States Language: English Subject: 45 ... IMAGE PROCESSING; NUCLEAR WEAPONS; RELIABILITY; STOCKPILES; TESTING; TEST FACILITIES

  7. NNSA Issues Amended Record of Decision to Build Nuclear Facility...

    National Nuclear Security Administration (NNSA)

    only support the safety, security, and reliability of existing nuclear weapons but also ... NNSA maintains and enhances the safety, security, reliability, and performance of the U.S. ...

  8. Los Alamos National Laboratory to work on nuclear design, plutonium...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    LANL selected as preferred alternative site for plutonium research, development, and limited manufacturing, along with nuclear weapons design and engineering, and supercomputing. ...

  9. Wednesday, June 16, 2010 | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    To date, the program has downblended more than 12 metric tons -- enough for approximately 480 nuclear weapons -- of excess Russian highly enriched uranium (HEU) that is not from ...

  10. Los Alamos Neutron Science Center | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    for improved understanding of weapons system performance, materials science research, and development of tools for nuclear forensics. Related Topics lanl Maintaining the Stockpile

  11. Nuclear proliferation and testing: A tale of two treaties

    SciTech Connect

    Corden, Pierce S.; Hafemeister, David

    2014-04-01

    Despite progress in reducing stockpiles after the end of the Cold War, the disturbing actions of some nations could spread nuclear weapon capabilities and enlarge existing arsenals.

  12. Office of Defense Programs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    from 11 States Parties to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) and one representative from the United Nations Office for Disarmament Affairs. ...

  13. NPT Enters Into Force | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    NPT Enters Into Force New York, United States The Treaty on the Non-Proliferation of Nuclear Weapons (NPT) goes into effect

  14. NNSA Nuclear/Radiological Incident Response | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Accident Response Group (ARG) - The ARG response element is comprised of scientists, ... equipment ready for short-notice dispatch to the scene of a U.S. nuclear weapon accident. ...

  15. Nuclear Fission and Fission{minus}Product Spectroscopy: Second International Workshop. Proceedings

    SciTech Connect

    Fioni, G.; Faust, H.; Oberstedt, S.; Hambsch, F.

    1998-10-01

    These proceedings represent papers presented at the Second International Workshop on Nuclear Fission and Fission{minus}Product Spectroscopy held in Seyssins, France in April, 1998. The objective was to bring together the specialists in the field to overview the situation and to assess our present understanding of the fission process. The topics presented at the conference included nuclear waste management, incineration, neutron driven transmutation, leakage etc., radioactive beams, neutron{minus}rich nuclei, neutron{minus}induced and spontaneous fission, ternary fission phenomena, angular momentum, parity and time{minus}reversal phenomena, and nuclear fission at higher excitation energy. Modern spectroscopic tools for gamma spectroscopy as applied to fission were also discussed. There were 53 papers presented at the conference,out of which 3 have been abstracted for the Energy,Science and Technology database.(AIP)

  16. Controlling weapons of mass destruction through the rule of law

    SciTech Connect

    Tanzman, E.A.

    1995-08-08

    Many who speak of the end of the Cold War emphasize the improvement in international relations when they speak of the momentous consequences of this event. According to this image, the half century since Trinity has been a period of sparse international communication during which the Eastern and Western blocs hibernated in their isolated dens of security alliances. The emphasis in the phrase ``Cold War`` was on the word ``cold,`` and relations with the former Communist regimes are now ``warm`` by comparison. It is equally valid to consider what has happened to the word ``was` in this highly descriptive phrase. While meaningful international dialogue was in a state of relative lethargy during much of the last fifty years, the military establishments of the Great Powers were actively engaged in using as much force as possible in their efforts to control world affairs, short of triggering a nuclear holocaust. Out of these military postures a tense peace ironically emerged, but the terms by which decisions were made about controlling weapons of mass destruction (i.e., nuclear, chemical, and biological weapons) were the terms of war. The thesis of this paper is that the end of the Cold War marks a shift away from reliance on military might toward an international commitment to controlling weapons,of mass destruction through the ``rule of law.`` Rawls wrote that ``legal system is a coercive order of public rules addressed to rational persons for the purpose of regulating their conduct and providing the framework for social cooperation. The regular and impartial administration of public rules, becomes the rule of law when applied to the legal system.`` Inparticular, Rawls identifies as part of this system of public rules those laws that aim to prevent free riders on the economic system and those that aim to correct such externalities as environmental pollution.``

  17. Nuclear materials stewardship: Our enduring mission

    SciTech Connect

    Isaacs, T.H.

    1998-12-31

    The US Department of Energy (DOE) and its predecessors have handled a remarkably wide variety of nuclear materials over the past 50 yr. Two fundamental changes have occurred that shape the current landscape regarding nuclear materials. If one recognizes the implications and opportunities, one sees that the stewardship of nuclear materials will be a fundamental and important job of the DOE for the foreseeable future. The first change--the breakup of the Soviet Union and the resulting end to the nuclear arms race--altered US objectives. Previously, the focus was on materials production, weapon design, nuclear testing, and stockpile enhancements. Now the attention is on dismantlement of weapons, excess special nuclear material inventories, accompanying increased concern over the protection afforded to such materials; new arms control measures; and importantly, maintenance of the safety and reliability of the remaining arsenal without testing. The second change was the raised consciousness and sense of responsibility for dealing with the environmental legacies of past nuclear arms programs. Recognition of the need to clean up radioactive contamination, manage the wastes, conduct current operations responsibly, and restore the environment have led to the establishment of what is now the largest program in the DOE. Two additional features add to the challenge and drive the need for recognition of nuclear materials stewardship as a fundamental, enduring, and compelling mission of the DOE. The first is the extraordinary time frames. No matter what the future of nuclear weapons and no matter what the future of nuclear power, the DOE will be responsible for most of the country`s nuclear materials and wastes for generations. Even if the Yucca Mountain program is successful and on schedule, it will last more than 100 yr. Second, the use, management, and disposition of nuclear materials and wastes affect a variety of nationally important and diverse objectives, from national

  18. Accident Response Group | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Accident Response Group NNSA's Accident Response Group (ARG) provides technical guidance and responds to U.S. nuclear weapons accidents. ARG_Logo The team assists in assessing weapons damage and risk, and in developing and implementing procedures for safe weapon recovery, packaging, transportation, and disposal of damaged weapons. The ARG headquarters is located in Albuquerque, New Mexico and is supported by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Sandia National

  19. field | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    field Ten-Year Site Plans (TYSP) The FY 2016-2025 TYSPs are planning documents and as such, represent possible paths to support configuration of the nuclear weapons complex. The ...

  20. Joint US/Russian Studies of Population Exposures Resulting from Nuclear Production Activities in the Southern Urals

    SciTech Connect

    Napier, Bruce A.

    2014-01-01

    Beginning in 1948, the Soviet Union initiated a program for production of nuclear materials for a weapons program. The first facility for production of plutonium was constructed in the central portion of the country east of the southern Ural Mountains, about halfway between the major industrial cities of Ekaterinburg and Chelyabinsk. The facility now known as the Mayak Production Association and its associated town, now known as Ozersk, were built to irradiate uranium in reactors, separate the resulting plutonium in reprocessing plants, and prepare plutonium metal. The rush to production, coupled with inexperience in handling radioactive materials, lead to large radiation exposures, not only to the workers in the facilities, but also to the surrounding public. Fuel processing started with no controls on releases, and fuel dissolution and accidents in reactors resulted in release of about 37 PBq (1015 Bq) of 131I between 1948 and 1967. Designed disposals of low- and intermediate-level liquid radioactive wastes, and accidental releases via cooling water from tank farms of high-level liquid radioactive wastes, into the small Techa River caused significant contamination and exposures to residents of numerous small riverside villages downstream of the site. Discovery of the magnitude of the aquatic contamination in late 1951 caused revisions to the waste handling regimes, but not before over 200 PBq of radionuclides (with large contributions of 90Sr and 137Cs) were released. Liquid wastes were diverted to tiny Lake Karachay (which today holds over 4 EBq); cooling water was stopped in the tank farms. In 1957, one of the tanks in the tank farm overheated and exploded; over 70 PBq, disproportionately 90Sr, was blown over a large area to the northeast of the site; a large area was contaminated and many villages evacuated. This area today is known as the East Urals Radioactive Trace (EURT). Each of these releases was significant; together they have created a group of cohorts

  1. Lubricant replacement in rolling element bearings for weapon surety devices

    SciTech Connect

    Steinhoff, R.; Dugger, M.T.; Varga, K.S.

    1996-05-01

    Stronglink switches are a weapon surety device that is critical to the nuclear safety theme in modem nuclear weapons. These stronglink switches use rolling element bearings which contain a lubricant consisting of low molecular weight polytetrafluoroethylene (PTFE) fragments. Ozone-depleting solvents are used in both the manufacture and application of this lubricant. An alternate bearing lubrication for stronglink switches is needed that will provide long-term chemical stability, low migration and consistent performance. Candidates that were evaluated include bearings with sputtered MoS{sub 2} on the races and retainers, bearings with TiC-coated balls, and bearings with Si{sub 3}N{sub 4} balls and steel races. These candidates were compared to the lubricants currently used which are bearings lubricated with PTFE fragments of low molecular weight in a fluorocarbon solvent. The candidates were also compared to bearings lubricated with a diester oil which is representative of bearing lubricants used in industrial applications. Evaluation consisted of cycling preloaded bearings and subjecting them to 23 gRMS random vibration. All of the candidates are viable substitutes for low load application where bearing preload is approximately 1 pound. For high load applications where the bearing preload is approximately 10 pounds, bearings with sputtered MoS{sub 2} on the races and retainers appear to be the best substitutes. Bearings with TiC-coated balls also appear to be a viable candidate but these bearings did not perform as well as the sputtered MoS{sub 2}.

  2. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    SciTech Connect

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A. Ignatiev, V. V.; Subbotin, S. A. Tsibulskiy, V. F.

    2015-12-15

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  3. NNSA Marks Major Milestone For Tritium Production | National...

    National Nuclear Security Administration (NNSA)

    Tritium is a radioactive form of hydrogen gas that is an integral component in the nuclear weapons stockpile. It must be replenished in weapons periodically because it has a ...

  4. MORTALITY AMONG WORKERS AT THE SAVANNAH RIVER NUCLEAR FUELS PRODUCTION FACILITY

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MORTALITY AMONG WORKERS AT THE SAVANNAH RIVER NUCLEAR FUELS PRODUCTION FACILITY Donna L. Cragle and Janice P. Watkins, Center for Epidemiologic Research; Kathryn Robertson-DeMers, Bechtel Hanford, Inc. Donna Cragle, Oak Ridge Associated Universities, P.O. Box 117, Oak Ridge, TN 37831-0117 Key Words: mortality study, radiation exposure, leukemia, occupational cohort, trend test INTRODUCTION Since 1952 the Savannah River Site (SRS), located in Aiken, South Carolina, has operated as a Department of

  5. Application of proposed mutual reciprocal inspection measurement techniques to a weapon component

    SciTech Connect

    Johnson, M.W.; Frankle, C.M.; Gosnell, T.B.

    1997-04-01

    The shape-measurement technique proposed by Russian scientists for mutual reciprocal inspections (MRI) of plutonium from dismantled nuclear weapons has been applied to a US weapon component. Measurement procedures are described. Results of the measurements are {open_quotes}self-normalized{close_quotes} to remove any classified information and further renormalized to results of previous joint US/Russian measurements of an unclassified plutonium piece. Data are presented in tabular and graphical form, conforming to the method of presentation recommended by Russian experts during the previous measurements.

  6. Exploring the Possible Use of Information Barriers for future Biological Weapons Verification Regimes

    SciTech Connect

    Luke, S J

    2011-12-20

    This report describes a path forward for implementing information barriers in a future generic biological arms-control verification regime. Information barriers have become a staple of discussion in the area of arms control verification approaches for nuclear weapons and components. Information barriers when used with a measurement system allow for the determination that an item has sensitive characteristics without releasing any of the sensitive information. Over the last 15 years the United States (with the Russian Federation) has led on the development of information barriers in the area of the verification of nuclear weapons and nuclear components. The work of the US and the Russian Federation has prompted other states (e.g., UK and Norway) to consider the merits of information barriers for possible verification regimes. In the context of a biological weapons control verification regime, the dual-use nature of the biotechnology will require protection of sensitive information while allowing for the verification of treaty commitments. A major question that has arisen is whether - in a biological weapons verification regime - the presence or absence of a weapon pathogen can be determined without revealing any information about possible sensitive or proprietary information contained in the genetic materials being declared under a verification regime. This study indicates that a verification regime could be constructed using a small number of pathogens that spans the range of known biological weapons agents. Since the number of possible pathogens is small it is possible and prudent to treat these pathogens as analogies to attributes in a nuclear verification regime. This study has determined that there may be some information that needs to be protected in a biological weapons control verification regime. To protect this information, the study concludes that the Lawrence Livermore Microbial Detection Array may be a suitable technology for the detection of the

  7. Maximum Reasonable Radioxenon Releases from Medical Isotope Production Facilities and Their Effect on Monitoring Nuclear Explosions

    SciTech Connect

    Bowyer, Ted W.; Kephart, Rosara F.; Eslinger, Paul W.; Friese, Judah I.; Miley, Harry S.; Saey, Paul R.

    2013-01-01

    Fission gases such as 133Xe are used extensively for monitoring the world for signs of nuclear testing in systems such as the International Monitoring System (IMS). These gases are also produced by nuclear reactors and by fission production of 99Mo for medical use. Recently, medical isotope production facilities have been identified as the major contributor to the background of radioactive xenon isotopes (radioxenon) in the atmosphere (Saey, et al., 2009). These releases pose a potential future problem for monitoring nuclear explosions if not addressed. As a starting point, a maximum acceptable daily xenon emission rate was calculated, that is both scientifically defendable as not adversely affecting the IMS, but also consistent with what is possible to achieve in an operational environment. This study concludes that an emission of 5×109 Bq/day from a medical isotope production facility would be both an acceptable upper limit from the perspective of minimal impact to monitoring stations, but also appears to be an achievable limit for large isotope producers.

  8. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy – TechnologySummary

    SciTech Connect

    J. E. O'Brien; C. M. Stoots; J. S. Herring; M. G. McKellar; E. A. Harvego; M. S. Sohal; K. G. Condie

    2010-02-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  9. Active neutron interrogation for verification of storage of weapons components at the Oak Ridge Y-12 Plant

    SciTech Connect

    Mihalczo, J.T.; Valentine, T.E.; Mattingly, J.K.; Mullens, J.A.; Hughes, S.S.

    1998-02-23

    A nuclear weapons identification system (NWIS), under development since 1984 at the Oak Ridge Y-12 Plant and presently in use there, uses active neutron interrogation with low-intensity {sup 252}Cf sources in ionization chambers to provide a timed source of fission neutrons from the spontaneous fission of {sup 252}Cf. To date, measurements have been performed on {approximately}15 different weapons systems in a variety of configurations both in and out of containers. Those systems included pits and fully assembled systems ready for deployment at the Pantex Plant in Amarillo, Texas, and weapons components at the Oak Ridge Y-12 Plant. These measurements have shown that NWIS can identify nuclear weapons and/or components; nuclear weapons/components can be distinguished from mockups where fissile material has been replaced by nonfissile material; omissions of small amounts (4%) of fissile material can be detected; changes in internal configurations can be determined; trainer parts can be identified as was demonstrated by verification of 512 containers with B33 components at the Y-12 Plant (as many as 32 in one 8-hour shift); and nonfissile components can be identified. The current NWIS activities at the Oak Ridge Y-12 Plant include: (1) further development of the system for more portability and lower power consumption, (2) collection of reference signatures for all weapons components in containers, and (3) confirmation of a particular weapons component in storage and confirmation of receipts. This paper describes the recent measurements with NWIS for a particular weapons component in storage that have resolved an Inspector General (IG`s) audit finding with regard to performance of confirmation of inventory.

  10. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 6. Blast measurements. Part 5. Measurement of density, temperature, and material velocity in an air shock produced by a nuclear explosion

    SciTech Connect

    Porzel, F.B.; Whitener, J.E.

    1985-09-01

    The results from laboratory tests and test firing were quite encouraging. It was concluded that: (1) the beta densitometer is a feasible device for the measurement of density as a function of time in the shock wave from a nuclear explosion. It is limited to pressure levels of 6 or 8 psi for bombs in the range of 50 kt, but is capable of higher-pressure levels on larger bombs where the interference from gamma rays is less serious; (2) dust-loading behind the shock wave is a major perturbation to the ideal hydrodynamics and can change the density by as large a factor as the shock itself; (3) the rise time at distances of 7,500 feet on Easy Shot was sharp within a resolution of approximately 0.2 msec; and (4) the field calibration used on Operation Greenhouse appeared reasonably accurate and was worthy of subsequent development.

  11. Screening of Maritime Containers to Intercept Weapons of Mass Destruction

    SciTech Connect

    Manatt, D R; Sleaford, B; Schaffer, T; Accatino, M R; Slaughter, D; Mauger, J; Newmark, R; Prussin, S; Luke, J; Frank, M; Bernstein, A; Alford, O; Mattesich, G; Stengel, J; Hall, J; Descalle, M A; Wolford, J; Hall, H; Loshak, A; Sale, K; Trombino, D; Dougan, A D; Pohl, B; Dietrich, D; Weirup, D; Walling, R; Rowland, M; Johnson, D; Hagmann, C; Hankins, D

    2004-02-18

    The goal of our research was to address the problem of detection of weapons of mass destruction (WMD) materials within containers in common use on commercial cargo trafficking. LLNL has created an experimental test bed for researching potential solutions using (among other techniques) active interrogation with neutrons. Experiments and computational modeling were used to determine the effectiveness of the technique. Chemical weapons materials and high explosives can be detected using neutron activation and simple geometries with little or no intervening material. However in a loaded container there will be nuisance alarms from conflicting signatures resulting from the presence of material between the target and the detector (and the interrogation source). Identifying some elements may require long counting times because of the increased background. We performed some simple signature measurements and simulations of gamma-ray spectra from several chemical simulants. We identified areas where the nuclear data was inadequate to perform detailed computations. We concentrated on the detection of SNM in cargo containers, which will be emphasized here. The goal of the work reported here is to develop a concept for an active neutron interrogation system that can detect small targets of SNM contraband in cargo containers, roughly 5 kg HEU or 1 kg Pu, even when well shielded by a thick cargo. It is essential that the concept be reliable and have low false-positive and false-negative error rates. It also must be rapid to avoid interruption of commerce, completing the analysis in minutes. A potentially viable concept for cargo interrogation has been developed and its components have been evaluated experimentally. A new radiation signature unique to SNM has been identified that utilizes high-energy, fission-product gamma rays. That signature due to {gamma}-radiation in the range 3-6 MeV is distinct from normal background radioactivity that does not extend above 2.6 MeV. It

  12. Assessment of fission product yields data needs in nuclear reactor applications

    SciTech Connect

    Kern, K.; Becker, M.; Broeders, C.

    2012-07-01

    Studies on the build-up of fission products in fast reactors have been performed, with particular emphasis on the effects related to the physics of the nuclear fission process. Fission product yields, which are required for burn-up calculations, depend on the proton and neutron number of the target nucleus as well as on the incident neutron energy. Evaluated nuclear data on fission product yields are available for all relevant target nuclides in reactor applications. However, the description of their energy dependence in evaluated data is still rather rudimentary, which is due to the lack of experimental fast fission data and reliable physical models. Additionally, physics studies of evaluated JEFF-3.1.1 fission yields data have shown potential improvements, especially for various fast fission data sets of this evaluation. In recent years, important progress in the understanding of the fission process has been made, and advanced model codes are currently being developed. This paper deals with the semi-empirical approach to the description of the fission process, which is used in the GEF code being developed by K.-H. Schmidt and B. Jurado on behalf of the OECD Nuclear Energy Agency, and with results from the corresponding author's diploma thesis. An extended version of the GEF code, supporting the calculation of spectrum weighted fission product yields, has been developed. It has been applied to the calculation of fission product yields in the fission rate spectra of a MOX fuelled sodium-cooled fast reactor. Important results are compared to JEFF-3.1.1 data and discussed in this paper. (authors)

  13. Study of components and statistical reaction mechanism in simulation of nuclear process for optimized production of {sup 64}Cu and {sup 67}Ga medical radioisotopes using TALYS, EMPIRE and LISE++ nuclear reaction and evaporation codes

    SciTech Connect

    Nasrabadi, M. N. Sepiani, M.

    2015-03-30

    Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE and LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.

  14. testing | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    testing Meet a Machine: Explosive science is booming at Livermore Lab's Contained Firing Facility A key mission of the National Nuclear Security Administration is to maintain the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear explosive testing. Data gathered from experiments at the Contained Firing Facility (CFF) help validate computer

  15. US nuclear warhead facility profiles

    SciTech Connect

    Cochran, T.B.; Arkin, W.A.; Norris, R.S.; Hoenig, M.M.

    1987-01-01

    US Nuclear Warhead Facility Profiles is the third volume of the Nuclear Weapons Databook, a series published by the Natural Resources Defense Council. This volume reviews the different facilities in the US nuclear warhead complex. Because of the linkage between nuclear energy and nuclear weapons, the authors cover not only those facilities associated mainly with nuclear power research, but also those well known for weapons development. They are: the Argonne National Laboratory; the Hanford Reservation; the Oak Ridge National Laboratory; the Pantex plant; the Los Alamos Test Site; the Rocky Flats plant; the Sandia National Laboratories; and a host of others. Information on each facility is organized into a standard format that makes the book easy to use. The reader will find precise information ranging from a facility's address to its mission, management, establishment, budget, and staff. An additional, more in-depth presentation covers the activities and technical process of each facility. Maps, pictures, and figures complement the text.

  16. A survey of nuclear-related agreements and possibilities for nuclear cooperation in South Asia: Cooperative Monitoring Center Occasional Paper/15

    SciTech Connect

    RAJEN,GAURAV

    2000-04-01

    Several existing nuclear-related agreements already require India and Pakistan, as members, to share information. The agreements are bilateral, regional, and international. Greater nuclear transparency between India and Pakistan could be promoted by first understanding the information flows required by existing agreements. This understanding is an essential step for developing projects that can incrementally advance the sensitivity of the information being shared. This paper provides a survey of existing nuclear-related agreements involving India and Pakistan, and suggests future confidence-building projects using the frameworks provided by these agreements. The Bilateral Agreement on the Prohibition of Attack against Nuclear Reactors and Nuclear Facilities is discussed as a basis for creating further agreements on restricting the use and deployment of nuclear weapons. The author suggests options for enhancing the value of the list of nuclear facilities exchanged annually as a part of this agreement. The International Atomic Energy Agency's regional cooperation agreement among countries in the Asia-Pacific region is an opportunity for greater subregional nuclear cooperation in South Asia. Linking the regional agreement with South Asian environmental cooperation and marine pollution protection efforts could provide a framework for projects involving Indian and Pakistani coastal nuclear facilities. Programs of the Food and Agriculture Organization of the United Nations that use nuclear techniques to increase food and crop production and optimize water management in arid areas also provide similar opportunities for nuclear cooperation. Other frameworks for nuclear cooperation originate from international conventions related to nuclear safety, transportation of nuclear wastes, worker protection against ionizing radiation, and the nondeployment of nuclear weapons in certain areas. The information shared by existing frameworks includes: laws and regulations (including

  17. protective forces | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    protective forces Design Basis Threat NNSA has taken aggressive action to improve the security of its nuclear weapons material (often referred to as special nuclear material, or SNM) and nuclear weapons in its custody. One major challenge has been, and remains, ensuring that SNM is well protected, while at the same time,... Information Security Information security deals with requirements for the protection and control of information and matter required to be classified or controlled by

  18. Defense Programs | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Programs Defense Programs One of the primary missions of NNSA is to maintain and enhance the safety, security and reliability of the U.S. nuclear weapons stockpile. NNSA, through its Office of Defense Programs, ensures that the U.S. nuclear arsenal meets the country's national security requirements and continues to serve its essential deterrence role. One of the primary missions of NNSA is to maintain and enhance the safety, security and reliability of the U.S. nuclear weapons stockpile. NNSA,

  19. Engineering | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Engineering NNSA uses modern tools and capabilities in the engineering sciences field which are needed to ensure the safety, security, reliability and performance of the current and future U.S. nuclear weapons stockpile. It also provides the solid and sustained engineering basis for stockpile certification and assessments that are needed throughout the entire lifecycle of each weapon. NNSA develops capabilities to assess and improve the engineering components of both the non-nuclear and nuclear

  20. department of energy | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    energy DOE, NNSA leaders open summit on the physical security of nuclear weapons Deputy Secretary of Energy Elizabeth Sherwood-Randall, NNSA Principal Deputy Administrator Madelyn Creedon, and numerous speakers from throughout the Nuclear Security Enterprise spoke at the 2016 Nuclear Weapons Physical Security Collaboration Summit earlier this month at Joint Base Andrews in... REAC/TS celebrates 40 years as international leader in emergency medical response DOE NNSA-deployable asset provides 24/7

  1. Production of an English/Russian glossary of terminology for nuclear materials control and accounting

    SciTech Connect

    Schachowskoj, S.; Smith, H.A. Jr.

    1995-05-01

    The program plans for Former Soviet Union National Nuclear Materials Control and Accounting (MC and A) Systems Enhancements call for the development of an English/Russian Glossary of MC and A terminology. This glossary was envisioned as an outgrowth of the many interactions, training sessions, and other talking and writing exercises that would transpire in the course of carrying out these programs. This report summarizes the status of the production of this glossary, the most recent copy of which is attached to this report. The glossary contains over 950 terms and acronyms associated with nuclear material control and accounting for safeguards and nonproliferation. This document is organized as follows: English/Russian glossary of terms and acronyms; Russian/English glossary of terms and acronyms; English/Russian glossary of acronyms; and Russian/English glossary of acronyms.

  2. Emergence of the nuclear industry and associated crime. Master's thesis

    SciTech Connect

    Vaught, J.W.

    1991-08-01

    Nuclear energy, in weapons production and electrical power generation, is a technology that has endured public scrutiny since the late 1940s. Societal acceptance of this industry has been affected by controversy in the following areas: health effects of exposure to radiation, possible consequences resulting from accidents, and nuclear nonproliferation. The literature review begins in Chapter 2 by examining the changing public perceptions of nuclear energy over the last forty years. Support for the ideals and practices of the industry has often wavered, due to media representation of incidents, accidents, and potential catastrophic events. The second part of the chapter highlights the crimes associated with nuclear energy in a chronological order of concern by nuclear industry security specialists. Research has found certain types of crime to be more prevalent during particular eras than others. Crimes instigated by spies, peace activists, terrorists, and the insider (employee) are reviewed, with an emphasis on insider crime.

  3. Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-08-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

  4. Nuclear World Order and Nonproliferation

    SciTech Connect

    Joeck, N

    2007-02-05

    The decision by India and Pakistan in May 1998 to conduct nuclear weapon tests and declare themselves as nuclear weapon states challenged South Asian regional stability calculations, US nonproliferation policy, and prevailing assumptions about international security. A decade later, the effects of those tests are still being felt and policies are still adjusting to the changed global conditions. This paper will consider non- and counter-proliferation policy options for the United States and Pakistan as they work as partners to prevent the transfer of nuclear technology and further nuclear proliferation.

  5. The exact molecular wavefunction as a product of an electronic and a nuclear wavefunction

    SciTech Connect

    Cederbaum, Lorenz S.

    2013-06-14

    The Born-Oppenheimer approximation is a basic approximation in molecular science. In this approximation, the total molecular wavefunction is written as a product of an electronic and a nuclear wavefunction. Hunter [Int. J. Quantum Chem. 9, 237 (1975)] has argued that the exact total wavefunction can also be factorized as such a product. In the present work, a variational principle is introduced which shows explicitly that the total wavefunction can be exactly written as such a product. To this end, a different electronic Hamiltonian has to be defined. The Schroedinger equation for the electronic wavefunction follows from the variational ansatz and is presented. As in the Born-Oppenheimer approximation, the nuclear motion is shown to proceed in a potential which is the electronic energy. In contrast to the Born-Oppenheimer approximation, the separation of the center of mass can be carried out exactly. The electronic Hamiltonian and the equation of motion of the nuclei resulting after the exact separation of the center of mass motion are explicitly given. A simple exactly solvable model is used to illustrate some aspects of the theory.

  6. Sandia National Laboratories: Careers: Nuclear Engineering

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Engineering Nuclear Engineer Sandia's primary mission is ensuring that the U.S. nuclear arsenal is safe, secure, reliable, and capable of fully supporting our nation's deterrence policy. Nuclear engineers at Sandia work in multidisciplinary teams on a variety of projects that involve nuclear reactors, weapons, equipment, and information systems. For example, they design, develop, and test nuclear equipment and systems. They also monitor the testing, operation, and maintenance of nuclear

  7. Nuclear Astrophysics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. nuclear outages (interactive) Nuclear power plants Uranium & nuclear fuel Spent nuclear fuel All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud Current Issues & Trends See more › U.S. energy production, consumption has changed significantly since 1908 liquid

  8. Accelerator Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    SciTech Connect

    Brown, Nicholas R.; Heidet, Florent; Haj Tahar, Malek

    2016-01-01

    This article is a review of several accelerator–reactor interface issues and nuclear fuel cycle applications of acceleratordriven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systems on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.

  9. Accelerator Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    DOE PAGES [OSTI]

    Brown, Nicholas R.; Heidet, Florent; Haj Tahar, Malek

    2016-01-01

    This article is a review of several accelerator–reactor interface issues and nuclear fuel cycle applications of acceleratordriven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systemsmore » on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.« less

  10. National Nuclear Security Administration ENERGY U.S. DEPARTMENT...

    National Nuclear Security Administration (NNSA)

    to Article VI of the Nuclear Non-Proliferation Treaty. iii Table of Contents Overview ... Article VI of the Treaty on the Non- Proliferation of Nuclear Weapons (NPT), has proven ...

  11. Two CNS employees selected for prestigious Weapons Internship...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Weapons Internship Program Posted: November 2, 2015 - 5:54pm Print version Aaron Lee is the Y-12 participant in the Weapons Internship Program. Y-12 and Pantex will both be...

  12. Pantex Takes a Green Approach to Cleaning Weapons Parts | National...

    National Nuclear Security Administration (NNSA)

    Takes a Green Approach to Cleaning Weapons Parts At NNSA's Pantex Plant in Amarillo, Texas, a new green approach to cleaning weapons parts was brought online recently at the...

  13. Los Alamos National Laboratory names new head of weapons programs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    weapons programs Los Alamos National Laboratory names new head of weapons programs Bret Knapp has been acting in that position since June 2011. December 1, 2011 Los Alamos National...

  14. Energy Department Awards $40 Million for Research to Support Waste Cleanup at DOE Nuclear Sites

    Energy.gov [DOE]

    Four New Energy Frontier Research Centers Will Address Waste Challenge from Cold War-Era Weapons Production

  15. International safeguards: Accounting for nuclear materials

    SciTech Connect

    Fishbone, L.G.

    1988-09-28

    Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs.

  16. Proliferation Risks of Magneetic Fusion Energy: Clandestine Production, Covert Production and Breakout

    SciTech Connect

    A. Glaser and R.J. Goldston

    2012-03-13

    Nuclear proliferation risks from magnetic fusion energy associated with access to weapon-usable materials can be divided into three main categories: (1) clandestine production of weapon-usable material in an undeclared facility, (2) covert production of such material inn a declared facility, and (3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper we address each of these categories of risks from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if the fusion system is designed to accommodate appropriate safeguards.

  17. Nuclear Nonproliferation

    SciTech Connect

    Atkins-Duffin, C E

    2008-12-10

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  18. Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2010-06-01

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents

  19. Why is weapons grade plutonium more hazardous to work with than highly enriched uranium?

    SciTech Connect

    Cournoyer, Michael E.; Costigan, Stephen A.; Schake, Bradley S.

    2014-11-12

    Highly Enriched Uranium and Weapons grade plutonium have assumed positions of dominant importance among the actinide elements because of their successful uses as explosive ingredients in nuclear weapons and the place they hold as key materials in the development of industrial use of nuclear power. While most chemists are familiar with the practical interest concerning HEU and WG Pu, fewer know the subtleties among their hazards. In this study, a primer is provided regarding the hazards associated with working with HEU and WG Pu metals and oxides. The care that must be taken to safely handle these materials is emphasized and the extent of the hazards is described. The controls needed to work with HEU and WG Pu metals and oxides are differentiated. Given the choice, one would rather work with HEU metal and oxides than WG Pu metal and oxides.

  20. Why is weapons grade plutonium more hazardous to work with than highly enriched uranium?

    DOE PAGES [OSTI]

    Cournoyer, Michael E.; Costigan, Stephen A.; Schake, Bradley S.

    2015-08-01

    Highly Enriched Uranium and Weapons grade plutonium have assumed positions of dominant importance among the actinide elements because of their successful uses as explosive ingredients in nuclear weapons and the place they hold as key materials in the development of industrial use of nuclear power. While most chemists are familiar with the practical interest concerning HEU and WG Pu, fewer know the subtleties among their hazards. In this study, a primer is provided regarding the hazards associated with working with HEU and WG Pu metals and oxides. The care that must be taken to safely handle these materials is emphasizedmore » and the extent of the hazards is described. The controls needed to work with HEU and WG Pu metals and oxides are differentiated. Given the choice, one would rather work with HEU metal and oxides than WG Pu metal and oxides.« less

  1. Why is weapons grade plutonium more hazardous to work with than highly enriched uranium?

    SciTech Connect

    Cournoyer, Michael E.; Costigan, Stephen A.; Schake, Bradley S.

    2015-08-01

    Highly Enriched Uranium and Weapons grade plutonium have assumed positions of dominant importance among the actinide elements because of their successful uses as explosive ingredients in nuclear weapons and the place they hold as key materials in the development of industrial use of nuclear power. While most chemists are familiar with the practical interest concerning HEU and WG Pu, fewer know the subtleties among their hazards. In this study, a primer is provided regarding the hazards associated with working with HEU and WG Pu metals and oxides. The care that must be taken to safely handle these materials is emphasized and the extent of the hazards is described. The controls needed to work with HEU and WG Pu metals and oxides are differentiated. Given the choice, one would rather work with HEU metal and oxides than WG Pu metal and oxides.

  2. APEX nuclear fuel cycle for production of LWR fuel and elimination of radioactive waste

    SciTech Connect

    Steinberg, M.; Powell, J.R.

    1981-08-01

    The development of a nuclear fission fuel cycle is proposed which eliminates all the radioactive fission product waste effluent and the need for geological-age high level waste storage and provides a long term supply of fissile fuel for an LWR power reactor economy. The fuel cycle consists of reprocessing LWR spent fuel (1 to 2 years old) to remove the stable nonradioactive (NRFP, e.g. lanthanides, etc.) and short-lived fission products (SLFP e.g. half-lives of (1 to 2 years) and returning, in dilute form, the long-lived fission products, ((LLFPs, e.g. 30 y half-life Cs, Sr, and 10 y Kr, and 16 x 10/sup 6/ y I) and the transuranics (TUs, e.g. Pu, Am, Cm, and Np) to be refabricated into fresh fuel elements. Makeup fertile and fissile fuel are to be supplied through the use of a Spallator (linear accelerator spallation-target fuel-producer). The reprocessing of LWR fuel elements is to be performed by means of the Chelox process which consists of Airox treatment (air oxidation and hydrogen reduction) followed by chelation with an organic reagent (..beta..-diketonate) and vapor distillation of the organometallic compounds for separation and partitioning of the fission products.

  3. Bonus-- Cameras Designed to Strengthen Nuclear Security Can Also Detect Cancer

    Energy.gov [DOE]

    Technologies that are improving our ability to prevent the spread of nuclear weapons and material are also saving lives on a daily basis.

  4. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect

    James E. O'Brien

    2010-08-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  5. The Nuclear Non-Proliferation Treaty and the Comprehensive Nuclear-Test-Ban Treaty, the relationship

    SciTech Connect

    Graham, Thomas Jr.

    2014-05-09

    The Nuclear Non-Proliferation Treaty (NPT) is the most important international security arrangement that we have that is protecting the world community and this has been true for many years. But it did not happen by accident, it is a strategic bargain in which 184 states gave up the right forever to acquire the most powerful weapon ever created in exchange for a commitment from the five states allowed to keep nuclear weapons under the NPT (U.S., U.K., Russia, France and China), to share peaceful nuclear technology and to engage in disarmament negotiations aimed at the ultimate elimination of their nuclear stockpiles. The most important part of this is the comprehensive nuclear test ban (CTBT); the thinking by the 184 NPT non-nuclear weapon states was and is that they understand that the elimination of nuclear weapon stockpiles is a long way off, but at least the NPT nuclear weapon states could stop testing the weapons. The CTBT has been ratified by 161 states but by its terms it can only come into force if 44 nuclear potential states ratify; 36 have of the 44 have ratified it, the remaining eight include the United States and seven others, most of whom are in effect waiting for the United States. No state has tested a nuclear weapon-except for complete outlier North Korea-in 15 years. There appears to be no chance that the U.S. Senate will approve the CTBT for ratification in the foreseeable future, but the NPT may not survive without it. Perhaps it is time to consider an interim measure, for the UN Security Council to declare that any future nuclear weapon test any time, anywhere is a 'threat to peace and security', in effect a violation of international law, which in today's world it clearly would be.

  6. Italy Nuclear Security Summit: Fact Sheet | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Nuclear Security Summit: Fact Sheet March 26, 2012 Between the 1960s and mid-1980s, Italy had an ambitious nuclear power research program which included heavy water, boiling water, light water, and fast reactors. In 1979, Italy signed the NPT which reaffirmed its commitment to be nuclear weapons free. In 1987, through a referendum, Italy announced the end of its nuclear energy program, and the Società Gestione Impianti Nucleari (SOGIN) was created in 2001 to

  7. The Nuclear Posture Review (NPR) : are we safer?

    SciTech Connect

    Brune, Nancy E.

    2010-07-01

    Nuclear Posture Review (NPR) is designed to make world safer by reducing the role of U.S. nuclear weapons and reducing the salience of nuclear weapons. U.S. also seeks to maintain a credible nuclear deterrent and reinforce regional security architectures with missile defenses and other conventional military capabilities. But recent studies suggest that nuclear proliferation is a direct response to the perceived threat of U.S. conventional capabilities not U.S. nuclear stockpile. If this is true, then the intent of the NPR to reduce the role and numbers of nuclear weapons and strengthen conventional military capabilities may actually make the world less safe. First stated objective of NPR is to reduce the role and numbers of U.S. nuclear weapons, reduce the salience of nuclear weapons and move step by step toward eliminating them. Second stated objective is a reaffirmation of U.S. commitment to maintaining a strong deterrent which forms the basis of U.S. assurances to allies and partners. The pathway - made explicit throughout the NPR - for reducing the role and numbers of nuclear weapons while maintaining a credible nuclear deterrent and reinforcing regional security architectures is to give conventional forces and capabilities and missile defenses (e.g. non-nuclear elements) a greater share of the deterrence burden.

  8. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

    2009-05-05

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  9. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B.; Prussin, Stanley G.

    2009-01-06

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  10. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B.; Prussin, Stanley G.

    2009-01-27

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  11. explosives | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    explosives Meet a Machine: Explosive science is booming at Livermore Lab's Contained Firing Facility A key mission of the National Nuclear Security Administration is to maintain the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear explosive testing. Data gathered from experiments at the Contained Firing Facility (CFF) help validate computer... NNSA Conducts Fifth Experiment aimed to Improve U.S. Ability to Detect Foreign Nuclear Explosions WASHINGTON,

  12. Savannah River Site | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Tritium facilities at SRS to supply and process tritium, a radioactive form of hydrogen gas that is a vital component of nuclear weapons. The NNSA-SRS loads tritium and...

  13. Savannah River Site | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    Savannah River Site NNSA operates facilities at the Savannah River Site to supply and process tritium, a radioactive form of hydrogen that is a key component of nuclear weapons. ...

  14. Arms Reduction Treaties | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nations are on track to meet this obligation. In addition to this treaty, President Bush directed in 2004 that the size of the overall nuclear weapons stockpile (both reserve...

  15. July 2014 | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    B53 case on display in Texas "The Last of the Big Dogs" has a new home after Pantex workers recently delivered one of the few remaining B53 nuclear weapons cases to the Freedom...

  16. Conversion | National Nuclear Security Administration | (NNSA...

    National Nuclear Security Administration (NNSA)

    the world to convert, or verify the shutdown of, civilian research and test reactors that use or produce weapons-usable nuclear material to materials not of proliferation concern. ...

  17. START Signed | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    START Signed START Signed Russia Moscow, USSR President Bush signs the Strategic Arms Reduction Treaty (START), which will reduce nuclear weapon stockpiles to 6,000 "accountable" warheads

  18. The future of nuclear power and nuclear safety in the former Soviet Union

    SciTech Connect

    Potter, W.C.

    1993-03-01

    Although the international community is rightly concerned about the dangers of nuclear weapons proliferation in the former Soviet Union, the greatest nuclear threat emanating from that region has nothing to do with weapons. It stems, rather, from the deteriorating state of nuclear safety at the civilian nuclear power plants in Kazakhstan, Lithuanian, Russia, and Ukraine. This situation, caused by a combination of economic, political, and social factors, threatens to undermine the future of nuclear power in the former Soviet Union at the very time when the proponents of nuclear energy appear to be staging a remarkable comeback.

  19. Nuclear Explosive and Weapon Surety Program (Informational Purposes Only)

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2014-11-21

    This draft has been scheduled for final review before the Directives Review Board on 12-4-2014. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-4014). All major comments and concerns should be submitted by COB 12-2-2014.

  20. OSTIblog Articles in the nuclear weapons technology Topic | OSTI...

    Office of Scientific and Technical Information (OSTI)

    The NASA space program of the 1960s helped make modern communications possible. By helping ... technology of the cold war to launch satellites, NASA engineers deserve special praise. ...