National Library of Energy BETA

Sample records for nuclear research institute

  1. Nuclear Structure - Research - Cyclotron Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Structure depiction of giant resonance modes (ref. Xinfeng Chen, "Giant Resonance Study By 6Li Scattering" Nuclear structure studies at the Institute explore a wide range ...

  2. Nuclear Astrophysics - Research - Cyclotron Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Astrophysics 7Be(p,)8B: A PROTON-CAPTURE REACTION. Nuclear astrophysics research measures reaction rates for proton-capture reactions such as 7Be(p,)8B, which is the ...

  3. institutional research | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    institutional research Sniffing out danger from above NNSA's efforts to prevent, counter, and respond to the dangers of nuclear proliferation and terrorism are vital to U.S. national security. Terrorist attacks in the past year in Europe and the United States have highlighted the evolving and unpredictable nature of the threat. Science,... Institutional Research & Development Functions The Office of Advanced Simulation and Computing and Institutional R&D, a program office part of the

  4. SNERDI Shanghai Nuclear Engineering Research and Design Institute...

    OpenEI (Open Energy Information) [EERE & EIA]

    SNERDI Shanghai Nuclear Engineering Research and Design Institute Jump to: navigation, search Name: SNERDI (Shanghai Nuclear Engineering Research and Design Institute) Place:...

  5. Institute of Nuclear Energy Research Taiwan INER | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Nuclear Energy Research Taiwan INER Jump to: navigation, search Name: Institute of Nuclear Energy Research (Taiwan) (INER) Place: Taoyuan, Taiwan Zip: 32546 Sector: Renewable...

  6. Institutional Research & Development | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    office part of the NNSA Office of Defense Programs, advocates for and manages ... & Development Reports Related Topics defense programs institutional research R&D ...

  7. Institutional Research & Development | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Institutional Research & Development Functions The Office of Advanced Simulation and Computing and Institutional R&D, a program office part of the NNSA Office of Defense Programs, advocates for and manages NNSA's Laboratory Directed Research and Development (LDRD) and Site Directed Research and Development (SDRD) Programs, with SDRD work performed at the Nevada National Security Site (NNSS). This includes providing strategic R&D guidance and support,

  8. Theoretical Nuclear Physics - Research - Cyclotron Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Theoretical Nuclear Physics By addressing this elastic scattering indirect technique, we ... The theoretical physics program concentrates on the development of fundamental and ...

  9. NNSA, Philippine Nuclear Research Institute to Prevent Radiological...

    National Nuclear Security Administration (NNSA)

    to our shared efforts to prevent nuclear and radiological terrorism and the proliferation of nuclear weapons," said NNSA Deputy Administrator for Defense Nuclear ...

  10. Computer Security for Commercial Nuclear Power Plants - Literature Review for Korea Hydro Nuclear Power Central Research Institute

    SciTech Connect

    Duran, Felicia Angelica; Waymire, Russell L.

    2013-10-01

    Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documents have also been provided to KHNP-CRI.

  11. Institutional Research & Development Reports | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Reports Above Image: Los Alamos Lab Directed Research and Development (LDRD) supports experiment studies that combine irradiation and corrosion effects: (Left) Irradiation and corrosion experiments chamber; (right) Lead bismuth eutectic corrodes through HT-9 concave shaped disk after 60 hours irradiation with 5.5 MeV protons to an accumulated dose of 3.8 displacements per atom (dpa). (Los Alamos Principal Associate Director of Science, Technology, and Engineering

  12. Nuclear Energy Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    (NEI) Summit Presentation University-Industry- Laboratory Partnerships: Gauging Effectiveness Douglas Kothe, CASL Director Oak Ridge National Laboratory February 26, 2014 CASL-U-2014-0355-000 CASL-U-2014-0355-000 University-Industry-Laboratory Partnerships Gauging Effectiveness CASL: The Consortium for Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub Douglas B. Kothe Oak Ridge National Laboratory Director, CASL 9 th Nuclear Energy R&D Summit Nuclear Energy Institute

  13. Southern Research Institute Visit

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Southern Reaserch Engineering Capabilities Briefing 2010 Southern Research Institute Pharmaceutical and Biotechnology Research Briefing 2010 CAMD Introduction - Richard Kurtz Mary ...

  14. Research Groups - Cyclotron Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Groups Research Group Homepages: Nuclear Theory Group Dr. Sherry Yennello's Research Group Dr. Dan Melconian's Research Group Dr. Cody Folden's Group...

  15. Cyclotron Institute » Nuclear Structure

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Structure Nuclear Vibrations Nuclear structure studies at the Institute explore a wide range of single-particle and collective properties of the nucleus. The most extensive study in this area is centered about the determination of the nuclear compressibility with measurements of the properties of giant resonance states in a variety of nuclei. The nuclear compressibility is a quantity of great importance to the understanding of the nuclear equation of state and plays a critical role in the

  16. Research - Cyclotron Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Overview Viewing gamma ray spectra. The Institute research program focuses on the atomic nucleus, a many-body system of strongly interacting constituents bound together by the...

  17. Research | Critical Materials Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Four Research Thrusts organizational chart of four research thrusts (A click on the org chart image will lead to a pdf version that includes hotlinks for the e-mail addresses for leaders.) CMI has more than 30 projects focused in four areas. Project titles are available in a table, which can be sorted by project leader, location of project leader, project title or project number. CMI research is conducted at partner institutions, including national laboratories, universities and

  18. DEVELOPMENT, INSTALLATION AND OPERATION OF THE MPC&A OPERATIONS MONITORING (MOM) SYSTEM AT THE JOINT INSTITUTE FOR NUCLEAR RESEARCH (JINR) DUBNA, RUSSIA

    SciTech Connect

    Kartashov,V.V.; Pratt,W.; Romanov, Y.A.; Samoilov, V.N.; Shestakov, B.A.; Duncan, C.; Brownell, L.; Carbonaro, J.; White, R.M.; Coffing, J.A.

    2009-07-12

    The Material Protection, Control and Accounting (MPC&A) Operations Monitoring (MOM) systems handling at the International Intergovernmental Organization - Joint Institute for Nuclear Research (JINR) is described in this paper. Category I nuclear material (plutonium and uranium) is used in JINR research reactors, facilities and for scientific and research activities. A monitoring system (MOM) was installed at JINR in April 2003. The system design was based on a vulnerability analysis, which took into account the specifics of the Institute. The design and installation of the MOM system was a collaborative effort between JINR, Brookhaven National Laboratory (BNL) and the U.S. Department of Energy (DOE). Financial support was provided by DOE through BNL. The installed MOM system provides facility management with additional assurance that operations involving nuclear material (NM) are correctly followed by the facility personnel. The MOM system also provides additional confidence that the MPC&A systems continue to perform effectively.

  19. Cyclotron Institute » Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Student Analyzing Data The Institute research program focuses on the atomic nucleus, a many-body system of strongly interacting constituents bound together by the strongest forces known in nature. The properties investigated often can be described in terms of the motions of single nucleons (neutrons and protons), the correlated motions of several nucleons, and the collective motions of many nucleons. On a finer scale, they can be understood in terms of the degrees of freedom of quarks

  20. Ethiopian Development Research Institute | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethiopian Development Research Institute Jump to: navigation, search Logo: Ethiopian Development Research Institute Name: Ethiopian Development Research Institute Address: Ethiopia...

  1. Form:Research Institution | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Research Institution Jump to: navigation, search Add a Research or Development Institution Input your research or development institution name below to add to the registry. If your...

  2. Industrial Technology Research Institute | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technology Research Institute Jump to: navigation, search Logo: Industrial Technology Research Institute Name: Industrial Technology Research Institute Address: Rm. 112, Bldg. 24,...

  3. Sustainable Europe Research Institute | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Europe Research Institute Jump to: navigation, search Logo: Sustainable Europe Research Institute Name: Sustainable Europe Research Institute Address: Garnisongasse 721 A -1090...

  4. Low Carbon Research Institute | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Research Institute Jump to: navigation, search Logo: Low Carbon Research Institute Name: Low Carbon Research Institute Address: King Edward VII Avenue CF10 3NB Place: Cardiff,...

  5. Nuclear Physics: Experiment Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Physics Home Seminars & Colloquia Experiment Research UserResearcher Information print version Research Highlights Public Interest Nuclear Physics Accelerator Free Electron Laser ...

  6. Hitachi Research Institute | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Institute Jump to: navigation, search Name: Hitachi Research Institute Place: Tokyo, Japan Zip: 101-8010 Product: Hitachi Research Institute is the think tank of the Hitachi...

  7. Honda Research Institute | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Honda Research Institute Place: Mountain View, California Sector: Biofuels, Solar Product: California-based research institute of Honda. The institute conducts...

  8. New institute promotes nuclear security | Y-12 National Security...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New institute promotes ... New institute promotes nuclear security Posted: February 11, ... experience to help solve international nuclear challenges? "A lot of the keys for ...

  9. Cyclotron Institute » Nuclear Astrophysics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Astrophysics Astrophysical Cycle The deployment of new ground-based and satellite-based observatories, including the Hubble space telescope, has led to an explosion of information in astrophysics over the past decade, ranging from a glimpse at the earliest events in our universe to details about the continual evolution in stellar systems that surround us. Popular cosmology theories tell us that, within an instant after the Big Bang, nuclear synthesis has driven the evolution of the universe. To

  10. Institute for Energy Research | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Research Jump to: navigation, search Logo: Institute for Energy Research Name: Institute for Energy Research Address: 1415 S. Voss Rd. Place: Houston, Texas Zip: 77057...

  11. Effect of the size of experimental channels of the lead slowing-down spectrometer SVZ-100 (Institute for Nuclear Research, Moscow) on the moderation constant

    SciTech Connect

    Latysheva, L. N.; Bergman, A. A.; Sobolevsky, N. M.; Ilic, R. D.

    2013-04-15

    Lead slowing-down (LSD) spectrometers have a low energy resolution (about 30%), but their luminosity is 10{sup 3} to 10{sup 4} times higher than that of time-of-flight (TOF) spectrometers. A high luminosity of LSD spectrometers makes it possible to use them to measure neutron cross section for samples of mass about several micrograms. These features specify a niche for the application of LSD spectrometers in measuring neutron cross sections for elements hardly available in macroscopic amounts-in particular, for actinides. A mathematical simulation of the parameters of SVZ-100 LSD spectrometer of the Institute for Nuclear Research (INR, Moscow) is performed in the present study on the basis of the MCNPX code. It is found that the moderation constant, which is the main parameter of LSD spectrometers, is highly sensitive to the size and shape of detecting volumes in calculations and, hence, to the real size of experimental channels of the LSD spectrometer.

  12. Nuclear Physics: Experiment Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Highlights Public Interest Nuclear Physics Accelerator Free Electron Laser (FEL) Medical Imaging ... Short Term Schedule (MCC Whiteboard) Nominal Dates for Bi-annual Beam ...

  13. Shaoxing Jinggong Mechanical and Electrical Research Institute...

    OpenEI (Open Energy Information) [EERE & EIA]

    Shaoxing Jinggong Mechanical and Electrical Research Institute Company SJMERI Jump to: navigation, search Name: Shaoxing Jinggong Mechanical and Electrical Research Institute...

  14. EMei Semiconductor Materials Plant Research Institute | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    EMei Semiconductor Materials Plant Research Institute Jump to: navigation, search Name: EMei Semiconductor Materials Plant & Research Institute Place: Emei, Sichuan Province, China...

  15. Electronics and Telecommunications Research Institute ETRI |...

    OpenEI (Open Energy Information) [EERE & EIA]

    and Telecommunications Research Institute ETRI Jump to: navigation, search Name: Electronics and Telecommunications Research Institute (ETRI) Place: Daejeon, Korea (Republic) Zip:...

  16. National Environmental Research Institute | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Research Institute Jump to: navigation, search Name: National Environmental Research Institute Address: Box. 358 Frederiksborgvej 399 DK 4000 Place: Roskilde, Denmark Phone Number:...

  17. PROJECT PROFILE: Southwest Research Institute

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Southwest Research Institute (SwRI) will design, manufacture, and test an ultra-high efficiency supercritical carbon dioxide (sCO2) compressor-expander, or “compander,” for power generation at CSP plants. SwRI will collaborate with Samsung Techwin America to develop the technology.

  18. Nuclear Physics: Experiment Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Events Experiment Research User/Researcher Information print version Research Highlights Public Interest Nuclear Physics Accelerator Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Additional Information Computing at JLab Operations Logbook Accelerator and Experimental Schedule Beam Time Request Form Experiment Scheduling and General Information Radiation Budget Form (pdf) Interactive beam request form (for contact persons / spokespersons)

  19. World Institute for Nuclear Security Workshop at Y-12 Brings...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    World Institute for Nuclear ... World Institute for Nuclear Security Workshop at Y-12 Brings Together More than 20 Countries Posted: June 28, 2012 - 4:30pm This week, more than 20 ...

  20. World Institute for Nuclear Security Workshop at Y-12 Brings...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    World Institute for Nuclear Security Workshop at Y-12 Brings Together More than 20 ... at the Y-12 National Security Complex for the World Institute for Nuclear Security (WINS). ...

  1. Research Group Websites - Links - Cyclotron Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Group Websites Dr. Sherry J. Yennello's Research Group Nuclear Theory Group Dr. Dan Melconian's Research Group Dr. Cody Folden's Research Group...

  2. Applications from Universities and Other Research Institutions...

    Office of Science (SC)

    Applications from Universities and Other Research Institutions Basic Energy Sciences (BES) BES Home ... Award Search Public Abstracts Additional Requirements and ...

  3. CASL - Electric Power Research Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for the benefit of the public. Our members include operators of all U.S. nuclear power plants and a large fraction of the nuclear plants worldwide. Key Contributions Leading...

  4. Ushasi Datta Pramanik Saha Institute Of Nuclear Physics, Kolkata...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Coulomb Breakup as a novel spectroscopic tool to probe directly the quantum numbers of valence nucleon of the exotic nuclei Ushasi Datta Pramanik Saha Institute Of Nuclear Physics,...

  5. Research and Institutional Integrity Office

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    about any of these ethics policies and related procedures, please contact Meredith Montgomery, Director of Institutional Assurance and Integrity, at 510-486-4453 or...

  6. Assessing the Institution of the Nuclear Nonproliferation Regime

    SciTech Connect

    Toomey, Christopher

    2010-05-14

    The nuclear nonproliferation regime is facing a crisis of effectiveness. During the Cold War, the regime was relatively effective in stemming the proliferation of nuclear weapons and building an institutional structure that could, under certain conditions, ensure continued success. However, in the evolving global context, the traditional approaches are becoming less appropriate. Globalization has introduced new sets of stresses on the nonproliferation regime, such as the rise of non-state actors, broadening extensity and intensity of supply chains, and the multipolarization of power. This evolving global context demands an analytical and political flexibility in order to meet future threats. Current institutional capabilities established during the Cold War are now insufficient to meet the nonproliferation regime’s current and future needs. The research was based on information gathered through interviews and reviews of the relevant literature, and two dominant themes emerged. First, that human security should be integrated into the regime to account for the rise of non-state actors and networked violence. Second, confidence in the regime’s overall effectiveness has eroded at a time where verification-based confidence is becoming more essential. The research postulates that a critical analysis of the regime that fully utilizes institutional theory, with its focus on rules, normative structures, and procedures will be essential to adapting the regime to the current global context, building mechanisms for generating trust, creating better enforcement, and providing flexibility for the future.

  7. Member Institutions | Photosynthetic Antenna Research Center

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    institutions and 21 principal investigators that comprise the Photosynthetic Antenna Research Center (PARC) are listed below. Washington University in St. Louis -- PARC's...

  8. Nuclear Energy Institute (NEI) Ex Parte | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nuclear Energy Institute (NEI) Ex Parte Nuclear Energy Institute (NEI) Ex Parte Mr. Harris and Ms. Ginsberg discussed DOE's Notice of Proposed Rulemaking (NOPR) regarding the Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation,10 CFR Part 951, Docket No DOE-HQ-2014-0021, 79 Fed. Reg. 75076 (December 17, 2014). NEI CSC Ex Parte (169.8 KB) More Documents & Publications EX PARTE COMMUNICATION MEETING WITH THE DEPARTMENT OF ENERGY AHT Ex Parte NEI Request for

  9. QER- Comment of Institute for Energy Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Institute for Energy Research would like to submit a comment for the DOE's Quadrennial Energy Review. You will find the comment attached, and we would like to be listed as: Institute for Energy Research 1155 15th St Nw, Suite 1900 Washington, D.C. 20005 Thank you for the opportunity to comment!

  10. Experiments ✚ Simulations = Better Nuclear Power Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Experiments + Simulations Better Nuclear Power Research Experiments Simulations Better Nuclear Power Research Atomic Level Simulations Enhance Characterization of Radiation ...

  11. Taiwan Institute of Economic Research | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Economic Research Jump to: navigation, search Name: Taiwan Institute of Economic Research Place: Taipei, Taiwan Product: Idependent research institute engaged in research on...

  12. Institutional research and development, FY 1987

    SciTech Connect

    Struble, G.L.; Lawler, G.M.; Crawford, R.B.; Kirvel, R.D.; Peck, T.M.; Prono, J.K.; Strack, B.S.

    1987-01-01

    The Institutional Research and Development program at Lawrence Livermore National Laboratory fosters exploratory work to advance science and technology, disciplinary research to develop innovative solutions to problems in various scientific fields, and long-term interdisciplinary research in support of defense and energy missions. This annual report describes research funded under this program for FY87. (DWL)

  13. Electric Power Research Institute (EPRI)

    SciTech Connect

    Goldstein, R.

    1996-04-01

    This paper describes the performance and fuel cell durability of various solid oxide fuel cell units. Research on thin films of new electrolyte materials (zirconia) is also discussed.

  14. Project Management Institute Highlights Savannah River Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to the train derailment EM Contractor Responds to Train Derailment SRNS Solid Waste Management Director John Gilmour presents on nuclear waste management at the information ...

  15. Crosscutting Research | Critical Materials Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Crosscutting Research diagram for focus area four, crosscutting research (A click on the org chart image will lead to a pdf version that includes hotlinks for the e-mail addresses of the leaders.) The Ames Laboratory offers more information about the rapid assessment project in this news release and video

  16. Project Management Institute Highlights Savannah River Nuclear Solutions in Publication

    Energy.gov [DOE]

    AIKEN, S.C. – Project Management Institute (PMI) — the world’s largest not-for-profit membership association for the project management profession — features a story on Savannah River Nuclear Solutions (SRNS).

  17. SHINES Kickoff Presentation- Electric Power Research Institute

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Electric Power Research Institute delivered this presentation at the SHINES Technical Kickoff Meeting on May 19, 2016. Click the link below to download the slides in a PDF.

  18. Minority Serving Institution Internship Program | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Minority Serving Institution Internship Program NNSA strives to recruit and hire a highly ... The MSI Internship Program could be right for you. The MSI Internship Program is a great ...

  19. Minority Serving Institutions Internship Program | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Minority Serving Institutions Internship Program Our Minority Serving Institutions (MSI) Internship Program positions are located in the Washington, D.C. metropolitan area and at our Federal field offices, laboratories, and manufacturing plants. NNSA has facilities in Albuquerque, N.M.; Kansas City, Mo.; Livermore, Calif.; Los Alamos, N.M.; Las Vegas, Nev.; Amarillo, Texas; Aiken, S.C.; and Oak Ridge, Tenn. Selections are made each spring for summer

  20. Sandia Energy - Gulf Nuclear Energy Infrastructure Institute...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    topics of nuclear safety, safeguards, and security. Read the rest of the article at AME Info.com. By Todd Heinrichs|2015-05-11T20:43:37+00:00March 7th, 2012|Energy Assurance,...

  1. Cyclotron Institute » Theoretical Nuclear Physics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Theoretical Nuclear Physics Coulomb Barrier Progress toward understanding the structure and behavior of strongly interacting many-body systems requires detailed theoretical study. The theoretical physics program concentrates on the development of fundamental and phenomenological models of nuclear behavior. In some systems, the nucleons move quite freely and independently, while in others they behave in a very cooperative and coherent manner. To understand this dichotomy and search for new modes

  2. Institutional Research and Development: (Annual report), FY 1986

    SciTech Connect

    Strack, B.

    1987-01-01

    The Institutional Research and Development (IR and D) program was established at the Lawrence Livermore National Laboratory (LLNL) by the Director in October 1984. The IR and D program fosters exploratory work to advance science and technology; disciplinary research to create varied, innovative approaches to selected scientific fields; and long-term research in support of the defense and energy missions at LLNL. Each project in the IR and D program was selected after personal interviews by the Director and his delegates and was deemed to show unusual promise. These projects include research in the following fields: chemistry and materials science, computation, earth sciences, engineering, nuclear chemistry, biotechnology, environmental consequences of nuclear war, geophysics and planetary physics, and supercomputer research and development. A separate section of the report is devoted to research projects receiving individual awards.

  3. Final Report: Performance Engineering Research Institute

    SciTech Connect

    Mellor-Crummey, John

    2014-10-27

    This document is a final report about the work performed for cooperative agreement DE-FC02-06ER25764, the Rice University effort of Performance Engineering Research Institute (PERI). PERI was an Enabling Technologies Institute of the Scientific Discovery through Advanced Computing (SciDAC-2) program supported by the Department of Energy's Office of Science Advanced Scientific Computing Research (ASCR) program. The PERI effort at Rice University focused on (1) research and development of tools for measurement and analysis of application program performance, and (2) engagement with SciDAC-2 application teams.

  4. Center for Renewable Energy Development of Energy Research Institute...

    OpenEI (Open Energy Information) [EERE & EIA]

    Research Institute China Jump to: navigation, search Name: Center for Renewable Energy Development of Energy Research Institute (China) Place: Beijing Municipality, China...

  5. Mexican Electric Research Institute IIE | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Mexican Electric Research Institute IIE Jump to: navigation, search Name: Mexican Electric Research Institute (IIE) Place: Mexico Sector: Services Product: General Financial &...

  6. Gansu Natural Energy Research Institute GNERI | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Research Institute GNERI Jump to: navigation, search Name: Gansu Natural Energy Research Institute (GNERI) Place: Lanzhou, Gansu Province, China Zip: 730000 Sector: Renewable...

  7. The Energy Research and Modernization Institute ICEMENERG | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Research and Modernization Institute ICEMENERG Jump to: navigation, search Name: The Energy Research and Modernization Institute (ICEMENERG) Place: Bucharest, Romania Sector:...

  8. Colorado School of Mines - Colorado Energy Research Institute...

    OpenEI (Open Energy Information) [EERE & EIA]

    Mines - Colorado Energy Research Institute Jump to: navigation, search Name: Colorado School of Mines - Colorado Energy Research Institute Address: 1500 Illinois Street Place:...

  9. University of Dayton Research Institute | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Research Institute Jump to: navigation, search Name: University of Dayton Research Institute Address: 300 College Park Place: Dayton, Ohio Zip: 45469-0101 Website:...

  10. Electric Power Research Institute EPRI | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Research Institute EPRI Jump to: navigation, search Name: Electric Power Research Institute (EPRI) Place: Palo Alto, California Zip: 94304 Product: EPRI is an independent,...

  11. IREC Catalan Institute for Energy Research | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Catalan Institute for Energy Research Jump to: navigation, search Name: IREC (Catalan Institute for Energy Research) Place: Barcelona, Spain Sector: Renewable Energy, Wind energy...

  12. CSR Zhuzhou Electric Locomotive Research Institute | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    CSR Zhuzhou Electric Locomotive Research Institute Jump to: navigation, search Name: CSR Zhuzhou Electric Locomotive Research Institute Place: Zhuzhou, Hunan Province, China Zip:...

  13. International Crops Research Institute for the Semi Arid Tropics...

    OpenEI (Open Energy Information) [EERE & EIA]

    Crops Research Institute for the Semi Arid Tropics Jump to: navigation, search Name: International Crops Research Institute for the Semi-Arid Tropics Place: India Sector: Biofuels...

  14. Environmental Research Institute Tokyo ERIT | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Name: Environmental Research Institute Tokyo (ERIT) Place: Tokyo, Japan Product: Japanese research institute analysing the country's energy and environmental...

  15. Beijing Solar Energy Research Institute BSERI | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Research Institute BSERI Jump to: navigation, search Name: Beijing Solar Energy Research Institute (BSERI) Place: Beijing, Beijing Municipality, China Zip: 100083 Sector:...

  16. Solar Energy Research Institute of Singapore | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Research Institute of Singapore Jump to: navigation, search Name: Solar Energy Research Institute of Singapore Place: Singapore, Singapore Zip: 117574 Sector: Solar Product: The...

  17. Polytechnic Institute of New York University Researchers Represented...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    E-print Network ResearcherResearch Institution Web page Aronov, Boris - Department of Computer Science and Engineering, Polytechnic Institute of New York University http:...

  18. Boise State University, CAES Energy Efficiency Research Institute...

    OpenEI (Open Energy Information) [EERE & EIA]

    State University, CAES Energy Efficiency Research Institute Jump to: navigation, search Name: Boise State University, CAES Energy Efficiency Research Institute Address: 1910...

  19. 48th Research Institute of China Electronics Technology Group...

    OpenEI (Open Energy Information) [EERE & EIA]

    8th Research Institute of China Electronics Technology Group Corporation Jump to: navigation, search Name: 48th Research Institute of China Electronics Technology Group Corporation...

  20. FA 4: Crosscutting Research | Critical Materials Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4: Crosscutting Research Focus Area 4 - Lograsso, Schwegler CMI Org Chart with Hotlinks: Focus Area 4 File: Read more about CMI Org Chart with Hotlinks: Focus Area 4 CMI Org Chart with Hotlinks: Research Overview File: Read more about CMI Org Chart with Hotlinks: Research Overview CMI org chart for FA4 File: Read more about CMI org chart for FA4 CMI org chart for research with hotlinks (pdf) File: Read more about CMI org chart for research with hotlinks (pdf) Critical Materials Institute

  1. Nuclear Explosion Monitoring Research and Engineering Program...

    Office of Scientific and Technical Information (OSTI)

    Program Document: Nuclear Explosion Monitoring Research and Engineering Program - Strategic Plan Citation Details In-Document Search Title: Nuclear Explosion Monitoring Research ...

  2. Letter from the Nuclear Energy Institute to DOE GC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Nuclear Energy Institute to DOE GC Letter from the Nuclear Energy Institute to DOE GC Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation; Request for Extension of Public Comment Period Letter from the Nuclear Energy Institute to DOE GC (122.44 KB) More Documents & Publications NEI Letter CSC_Extension.PDF SuppCompensationNuclearDamage_ExtensionComments.PDF

  3. Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Energy Institute (NEI) Attachment, Integrated Safety Analysis Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis This paper addresses why the use of an Integrated Safety Analysis ("ISA") is appropriate for fuel recycling facilities1 which would be licensed under new regulations currently being considered by NRC. The use of the ISA for fuel facilities under Part 70 is described and compared to the use of a Probabilistic Risk Assessment

  4. Ushasi Datta Pramanik Saha Institute Of Nuclear Physics, Kolkata , India

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Coulomb Breakup as a novel spectroscopic tool to probe directly the quantum numbers of valence nucleon of the exotic nuclei Ushasi Datta Pramanik Saha Institute Of Nuclear Physics, Kolkata , India 100 years after discovery of the nucleus by Rutherford, the limits of the existence of the nuclei are still uncertain. Study of nuclear shell structure around the drip line and validation of the theoretical predictions with the experimental data may provide important information on nucleon-nucleon

  5. DOE Representative to World Institute of Nuclear Safety (WINS) | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) DOE Representative to World Institute of Nuclear Safety (WINS) Lisa G. Hilliard Lisa Hilliard August 2009 NNSA Administrator's Silver Award Lisa G. Hilliard has received the NNSA Administrator's Silver Award for her sustained distinguished accomplishments as the Office Director of the DOE office to the U.S. Mission to International Organizations in Vienna from May 1993 to April 2009, serving four Ambassadors, two interim Representatives, and six

  6. Institute of Nuclear Power Operations annual report, 1993

    SciTech Connect

    1993-12-31

    This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen`s joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO`s 1993 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry.

  7. Paul Blom: Research Director, Max Planck Institute for Polymer Research |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center for Energy Efficient Materials Paul Blom: Research Director, Max Planck Institute for Polymer Research Jan 22, 2014 | 2:00 PM - 3:00 PM Paul Blom Research Director, Max Planck Institute for Polymer Research Transport and Recombination in Polymer:fullerene bulk Heterojunction Solar Cells January 22, 2014 | 2:00pm | ESB 2001 Faculty host: Thuc Quyen-Nguyen >>>Video and Slides available after the presentation* Abstract In solar cells, free charge carriers can recombine both via

  8. Nuclear methods in environmental and energy research

    SciTech Connect

    Vogt, J R

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

  9. Shenzhen Institute of Building Research SIBR | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    technology research institute for buildings and urban development. The body is working on solar panel design and installation in China. References: Shenzhen Institute of Building...

  10. GE Key Partner in Innovation Institutes | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    GE Is Key Partner in Manufacturing Innovation Institutes Click to email this to a friend ... GE Is Key Partner in Manufacturing Innovation Institutes GE Global Research ...

  11. Joint Global Change Research Institute | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    solutions. Joint Institute staff bring decades of experience and expertise to bear in science, technology, economics, and policy. "The Joint Global Change Research Institute...

  12. International Institute for Carbon-Neutral Energy Research Outline...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... z International Institute for Carbon-Neutral Energy Research (Kyushu University) Advanced Institute for ... Physics and Mathematics of the ... International journal of Hydrogen ...

  13. Nuclear Science Research facility at LANSCE

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Neutron and Nuclear Science (WNR) Facility at LANSCE lansce facility at LANL Introduction ... Neutron Scattering Center (Target-1) and the Neutron and Nuclear Science Research facility ...

  14. Strategic Nuclear Research Collaboration - FY99 Annual Report

    SciTech Connect

    T. J. Leahy

    1999-07-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) has created the Strategic Nuclear Research Collaboration. The SNRC brings together some of America's finest laboratory and university nuclear researchers in a carefully focused research program intended to produce ''breakthrough'' solutions to the difficult issues of nuclear economics, safety, non-proliferation, and nuclear waste. This integrated program aims to address obstacles that stand in the way of nuclear power development in the US These include fuel cycle concerns related to waste and proliferation, the need for more efficient regulatory practices, and the high cost of constructing and operating nuclear power plants. Funded at an FY99 level of $2.58M, the SNRC is focusing the efforts of scientists and engineers from the INEEL and the Massachusetts Institute of Technology to solve complex nuclear energy challenges in a carefully chosen, integrated portfolio of research topics. The result of this collaboration will be research that serves as a catalyst for future direct-funded nuclear research and technology development and which preserves and enhances the INEEL's role as America's leading national laboratory for nuclear power research. In its first year, the SNRC has focused on four research projects each of which address one or more of the four issues facing further nuclear power development (economics, safety, waste disposition and proliferation-resistance). This Annual Report describes technical work and accomplishments during the first year of the SNRC's existence.

  15. Institutional research and development, FY 1988

    SciTech Connect

    Not Available

    1988-01-01

    The Laboratory's Institutional Research and Development (IR and D) Program was established in 1984 to foster exploratory work to advance science and technology, disciplinary research to develop innovative solutions to support our national defense and energy missions. In FY 1988, the IR and D Program was funded by a 2% assessment on the Laboratory's operating budget. Our policy is to use these funds for researching innovative ideas in LLNL's areas of expertise and for developing new areas of expertise that we perceive to be in the national interest. The technical and scientific accomplishments of each project and of each institute funded this year are presented in this report. The projects were selected because they are expected to advance research in important areas that are too basic or too time consuming to be funded by the developmental programs or because they are somewhat risky projects that have the promise of high payoff. We are continually reappraising the IR and D Program. In particular, we seek new candidates for the Director's Initiatives, and we constantly reassess the work in progress. Each year, we make adjustments to further the Laboratory's policy of using the IR and D Program to fund innovative ideas with high potential for enhancing programmatic activities of national importance.

  16. New Nuclear Energy Awards Give Students Hands-On Research Experience |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Nuclear Energy Awards Give Students Hands-On Research Experience New Nuclear Energy Awards Give Students Hands-On Research Experience September 28, 2012 - 9:33am Addthis Bojan Petrovic, a senior researcher at Georgia Institute of Technology, will lead an IRP team in developing a high-power light water reactor design with inherent safety features. | Photo courtesy of Georgia Institute of Technology Bojan Petrovic, a senior researcher at Georgia Institute of Technology,

  17. Institutional Research & Development Reports | National Nuclear...

    National Nuclear Security Administration (NNSA)

    ASC Logo Use Guidelines ASC Program Elements Facility Operations and User Support Computational Systems & Software Environment Verification & Validation Physics and Engineering ...

  18. Institutional Research & Development News | National Nuclear...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    News Above Images: On the left, the "Sandia Cooler" - also known as the "Air Bearing Heat Exchanger" will significantly reduce the energy needed to cool the processor chips in data ...

  19. Sandia-Electric Power Research Institute Partnership Publishes...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electric Power Research Institute Partnership Publishes Photovoltaic Reliability Report - ... Energy Systems LaboratoryBrayton Lab Photovoltaic Systems Evaluation Laboratory PV ...

  20. NREL Joins Global Alliance of Solar Research Institutes - News Releases |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL NREL Joins Global Alliance of Solar Research Institutes July 10, 2012 The U.S. Department of Energy's (DOE)'s National Renewable Energy Laboratory (NREL) has joined the newly-formed Global Alliance of Solar Energy Research Institutes comprising three internationally renowned research institutions. As part of the opening session of Intersolar North America in San Francisco today, NREL Director Dan Arvizu signed a Memorandum of Understanding (MOU) with Germany's Fraunhofer Institute for

  1. Nuclear waste repository research at the micro- to nanoscale

    SciTech Connect

    Schaefer, T.; Denecke, M. A.

    2010-04-06

    Micro- and nano-focused synchrotron radiation techniques to investigate determinant processes in contaminant transport in geological media are becoming especially an increasingly used tool in nuclear waste disposal research. There are a number of reasons for this but primarily they are driven by the need to characterize actinide speciation localized in components of heterogeneous natural systems. We summarize some of the recent research conducted by researchers of the Institute of Nuclear Waste Disposal (INE) at the Karlsruhe Institute of Technology using micro- and nano-focused X-ray beams for characterization of colloids and their interaction with minerals and of elemental and phase distributions in potential repository host rocks and actinide speciation in a repository natural analogues sample. Such investigations are prerequisite to ensuring reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.

  2. University Research Reactor Task Force to the Nuclear Energy Research

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advisory Committee | Department of Energy University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee In mid-February, 2001 The University Research Reactor (URR) Task Force (TF), a sub-group of the Department of Energy (DOE) Nuclear Energy Research Advisory Committee (NERAC), was asked to: * Analyze information collected by DOE, the NERAC "Blue Ribbon Panel,"

  3. PROJECT PROFILE: Electric Power Research Institute | Department of Energy

    Energy Saver

    Electric Power Research Institute PROJECT PROFILE: Electric Power Research Institute Project Name: Leveraging Industry Research to Educate a Future Electric Grid Workforce in the Western U.S. Funding Opportunity: Solar Training and Education for Professionals (STEP) SunShot Subprogram: Soft Costs Location: Knoxville, TN SunShot Award Amount: $1,000,000 Awardee Cost Share: $250,000 The Electric Power Research Institute (EPRI) along with university, utility, and electric industry partners

  4. 2006 Nuclear Energy Research Initiative Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nuclear Energy Research Initiative Awards 2006 Nuclear Energy Research Initiative Awards This is the list of winners from the 2006 Nuclear Energy Research Initiative Awards. 2006 Nuclear Energy Research Initiative Awards (38.93 KB) More Documents & Publications 2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS International Nuclear Energy Research Initiative: 2010 Annual Report NEET Awards for FY2012

  5. PROJECT PROFILE: Southern Research Institute | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Southern Research Institute PROJECT PROFILE: Southern Research Institute Funding Opportunity: CSP: APOLLO SunShot Subprogram: CSP Location: Birmingham, AL Amount Awarded: $2,000,000 Awardee Cost Share: $998,966 SR Logo.jpg The Southern Research Institute and its partners will support the scale-up and demonstration of an innovative thermochemical energy storage (TCES) system that will allow CSP facilities to operate around the clock. The work builds on developments from a previously funded

  6. Midwest Research Institute Receives Contract Extension to Manage NREL -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    News Releases | NREL Midwest Research Institute Receives Contract Extension to Manage NREL February 9, 2004 Golden, Colo. - Midwest Research Institute (MRI) in Kansas City has received a four-year contract extension to manage and operate the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). The NREL contract was last competed in 1998 and this extends MRI's management for the full 10 years. Midwest Research Institute has managed NREL since the Laboratory's founding as

  7. Critical Materials Institute Gains Ten Industrial and Research Affiliates |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Critical Materials Institute Gains Ten Industrial and Research Affiliates Critical Materials Institute Gains Ten Industrial and Research Affiliates April 12, 2016 - 10:32am Addthis News release from the Ames Laboratory, April 11, 2016. The Critical Materials Institute, a U.S. Department of Energy Innovation Hub led by the Ames Laboratory, has gained ten new affiliates to its research program, seeking ways to eliminate and reduce reliance on rare-earth metals and other

  8. Nuclear Safety Research and Development Proposal Review and Prioritiza...

    Energy Saver

    Nuclear Safety Research and Development Proposal Review and Prioritization Process and Criteria Nuclear Safety Research and Development Program Office of Nuclear Safety Office of ...

  9. Korea Research Institute of Chemical Technology KRICT | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    of Chemical Technology KRICT Jump to: navigation, search Name: Korea Research Institute of Chemical Technology (KRICT) Place: Yooseong-gu, Daejeon, Korea (Republic) Zip: 305-600...

  10. Second Annual Electric Power Research Institute/Sandia Photovoltaic...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Annual Electric Power Research InstituteSandia Photovoltaic Systems Symposium - Sandia ... Energy Systems LaboratoryBrayton Lab Photovoltaic Systems Evaluation Laboratory PV ...

  11. A Brief Summary of Research Results Supported by Institutional...

    Office of Scientific and Technical Information (OSTI)

    Title: A Brief Summary of Research Results Supported by Institutional Computing under Project W11MagUniv Authors: Li, Hui 1 + Show Author Affiliations Los Alamos National ...

  12. A Brief Summary of Research Results Supported by Institutional...

    Office of Scientific and Technical Information (OSTI)

    Title: A Brief Summary of Research Results Supported by Institutional Computing under Project W11Exoplanet Authors: Li, Hui 1 + Show Author Affiliations Los Alamos National ...

  13. Sandia Energy - Solar Energy Research Institute for India and...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Energy Research Institute for India and the United States Kick-Off Home Renewable Energy Energy Partnership News SunShot News & Events Concentrating Solar Power Photovoltaic...

  14. Van Andel Research Institute, Los Alamos National Laboratory...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Computational model to study lung cancer Van Andel Research Institute, Los Alamos National Laboratory to develop detailed computational model to study lung cancer Scientists are ...

  15. Research and Institutional Integrity Office at Berkeley Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    policy on scientific and technical publications is found here. Contacts Meredith Montgomery, Research Integrity Officer, Director of Institutional Assurance and Integrity,...

  16. Meeting Between the Department of Energy and the Nuclear Energy Institute

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Regarding Proposed Revision of 10 CFR 810 | Department of Energy Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Pursuant to DOE's Guidance on Ex Parte Communications (74 Fed. Reg. 52,795; Oct. 14, 2009), this letter is to memorialize the meeting between the Department of Energy (DOE) and the Nuclear Energy Institute

  17. PIK M.S. Onegin Petersburg Nuclear Physics Institute 2015 Super...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    isotopes production in high-flux reactor PIK M.S. Onegin Petersburg Nuclear Physics Institute 2015 Super Heavy Elements Symposium Reactor PIK 2011 - Criticality reached 2013 - ...

  18. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    SciTech Connect

    Akimoto, Hajime; Kukita; Ohnuki, Akira

    1997-07-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.

  19. World Institute for Nuclear Security Workshop at Y-12 Brings Together More

    National Nuclear Security Administration (NNSA)

    than 20 Countries | National Nuclear Security Administration | (NNSA) World Institute for Nuclear Security Workshop at Y-12 Brings Together More than 20 Countries June 27, 2012 OAK RIDGE, TENN. - This week, more than 20 countries are represented at the first-ever workshop conducted in the United States at the Y-12 National Security Complex for the World Institute for Nuclear Security (WINS). The workshop is jointly sponsored by the National Nuclear Security Administration (NNSA) and the

  20. DOE/NV/10845 IT U S VECAS LIBRARY UC-703 I?. DESERT RESEARCH INSTITUTE

    Office of Legacy Management (LM)

    0845 IT U S VECAS LIBRARY UC-703 I?. DESERT RESEARCH INSTITUTE 3 I 'UNIVERSITY OF . ? .NEVADA SYSTEM Jenny B. Chapman Sam L. Hokett EVALUATION OF GROUNDWATER MONITORING AT O F F S m NUCLEAR TEST AREAS March 1991 WATER RESOURCES CENTER Publication #45085 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. EVALUATION OF GROUNDWATER MONITORING AT OFFSITE NUCLEAR TEST AREAS b-r Jenny B. Chapman Sam L

  1. Experiments ✚ Simulations = Better Nuclear Power Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Experiments + Simulations = Better Nuclear Power Research Experiments ✚ Simulations = Better Nuclear Power Research Atomic Level Simulations Enhance Characterization of Radiation Damage July 31, 2015 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov Radiation Damage PNNL In a study featured on the cover of a Journal of Materials Research focus issue, an international research collaboration used molecular dynamics simulations run at NERSC to identify atomic-level details of early-stage

  2. Research Institutions, Businesses Launch Renewable Fuels Venture - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Releases | NREL Research Institutions, Businesses Launch Renewable Fuels Venture March 19, 2007 A joint venture among businesses and Colorado research institutions to further develop renewable fuels was announced today at the state capitol in Denver. The new Colorado Center for Biorefining and Biofuels (C2B2) is a research venture between large and small businesses and the newly formed Colorado Renewable Energy Collaboratory, the association of four of Colorado's premier research

  3. Papers by CMI Researchers | Critical Materials Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Papers by CMI Researchers CMI researchers submit their research for consideration in a variety of research publications. The following research papers have been submitted, and/or published by CMI researchers. 2016 S.H. Zhou, M.J. Kramer, F.Q. Meng, R.W. McCallum and R.T. Ott "Chemical partitioning for the Co-Pr system: First-principles, experiments and energetic calculations to investigate the hard magnetic phase," Materials & Design, doi:10.1016/j.matdes.2015.11.058 M-H. Du,

  4. Institute for Scientific Computing Research Annual Report: Fiscal Year 2004

    SciTech Connect

    Keyes, D E

    2005-02-07

    Large-scale scientific computation and all of the disciplines that support and help to validate it have been placed at the focus of Lawrence Livermore National Laboratory (LLNL) by the Advanced Simulation and Computing (ASC) program of the National Nuclear Security Administration (NNSA) and the Scientific Discovery through Advanced Computing (SciDAC) initiative of the Office of Science of the Department of Energy (DOE). The maturation of computational simulation as a tool of scientific and engineering research is underscored in the November 2004 statement of the Secretary of Energy that, ''high performance computing is the backbone of the nation's science and technology enterprise''. LLNL operates several of the world's most powerful computers--including today's single most powerful--and has undertaken some of the largest and most compute-intensive simulations ever performed. Ultrascale simulation has been identified as one of the highest priorities in DOE's facilities planning for the next two decades. However, computers at architectural extremes are notoriously difficult to use efficiently. Furthermore, each successful terascale simulation only points out the need for much better ways of interacting with the resulting avalanche of data. Advances in scientific computing research have, therefore, never been more vital to LLNL's core missions than at present. Computational science is evolving so rapidly along every one of its research fronts that to remain on the leading edge, LLNL must engage researchers at many academic centers of excellence. In Fiscal Year 2004, the Institute for Scientific Computing Research (ISCR) served as one of LLNL's main bridges to the academic community with a program of collaborative subcontracts, visiting faculty, student internships, workshops, and an active seminar series. The ISCR identifies researchers from the academic community for computer science and computational science collaborations with LLNL and hosts them for short- and

  5. research | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Sniffing out danger from above NNSA's efforts to prevent, counter, and respond to the dangers of nuclear proliferation and terrorism are vital to U.S. national security. Terrorist ...

  6. Laboratory Directed Research & Development | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Laboratory Directed Research & Development The U.S. Department of Energy (DOE) is charged with a large and complex mission: to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The DOE executes this mission to a large extent at its 17 national laboratories, a group of institutions which were created and are supported by the federal government to perform

  7. Cyclotron Institute » Research Experience for Undergraduates

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Experience for Undergraduates REU Student Our Research Experience for Undergraduates program is designed to give undergraduate students an opportunity to work with one of our faculty on a cutting edge research project for the summer. Information on the 2017 REU program has been posted. The application deadline is February 3, 2017. Information on previous years: REU 2016 REU 2015 REU 2014 REU 2013 REU 2012 REU 2011 REU 2010 REU 2009 REU 2008 REU 2007 REU 2006 REU 2005 REU 2004

  8. Institute for Nuclear Theory. Annual report No. 3, 1 March 1992--28 February 1993

    SciTech Connect

    Haxton, W.; Bertsch, G.; Henley, E.M.

    1993-07-01

    This report briefly discussion the following programs of the Institute for Nuclear Theory: fundamental interactions in nuclei; strangeness in hadrons and nuclei; microscopic nuclear structure theory; nuclear physics in atoms and molecules; phenomenology and lattice QCD; and large amplitude collective motion.

  9. Meet the CMI Researchers | Critical Materials Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Meet the CMI Researchers CMI researchers create new phosphors At left, Nerine Cherepy of Lawrence Livermore National Laboratory displays commercial phosphors (six samples from bottom left of semi-circle) and phosphors being developed by LLNL and collaborators as replacements (five on right). LLNL, Oak Ridge National Laboratory and GE are working to improve the efficiency of the new phosphors to replace commercial phosphors. Inset: The CMI phosphor team members include (from left) Paul Martinez,

  10. Current Research at the University of Chicago Enrico Fermi Institute and James Franck Institute

    ScienceCinema

    Simon Swordy

    2016-07-12

    These talks will give an overview of physics research at the University of Chicago centered in two research institutes. The Enrico Fermi Institute pursues research in some core areas of the physical sciences. These include cosmology, particle physics, theoretical physics, particle astrophysics, and cosmochemistry. The EFI talk will focus on some examples of these activities which together will provide a broad overview of EFI science. Research at the James Franck Institute centers on the intersection between physics, chemistry and materials science, with the aim to unravel the complex connections between structure and dynamics in condensed matter systems. The JFI is also home to the Chicago Materials Research Science and Engineering Center. The JFI talk will provide highlights of current projects by JFI members.

  11. Peninsula Research Institute for Marine Renewable Energy PRIMaRE...

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy PRIMaRE Jump to: navigation, search Name: Peninsula Research Institute for Marine Renewable Energy (PRIMaRE) Place: United Kingdom Sector: Renewable Energy Product: UK-based...

  12. Genomics at the Ontario Institute for Cancer Research

    SciTech Connect

    Ali, Johar

    2010-06-02

    Johar Ali of the Ontario Institute for Cancer Research discusses genomics and next-gen applications at the OICR on June 2, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  13. Biodiversity Research Institute Mid-Atlantic Baseline Study Webinar

    Energy.gov [DOE]

    Carried out by the Biodiversity Research Institute (BRI) and funded by the U.S. Department of Energy Wind and Water Power Technology Office and other partners, the goal of the Mid-Atlantic Baseline...

  14. World Institute for Nuclear Security Workshop at Y-12 Brings...

    National Nuclear Security Administration (NNSA)

    Nuclear Security (WINS). The workshop is jointly sponsored by the National Nuclear Security Administration (NNSA) and the Department of Defense (DoD). File 2012-06-27 WINS Workshop

  15. PROJECT PROFILE: Electric Power Research Institute (SHINES) | Department of

    Energy Saver

    Energy Electric Power Research Institute (SHINES) PROJECT PROFILE: Electric Power Research Institute (SHINES) Title: Beneficial Integration of Energy Storage and Load Management with Photovoltaics epri-logo.jpg Funding Opportunity: Sustainable and Holistic Integration of Energy Storage and Solar PV SunShot Subprogram: Systems Integration Location: Knoxville, Tennessee Partners: FirstEnergy, NYPA, Con Edison, Southern Company, Gulf Power, Case Western Reserve University, Queens College of the

  16. Webinars Highlight CMI Research | Critical Materials Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Webinars Highlight CMI Research CMI research is the topic of most of the CMI webinars, created by the CMI education/outreach team at Colorado School of Mines. Future topics are listed, and people can register for these with no charge. Archive files for past webinars are available online. November 16: Tim McIntyre, Oak Ridge National Laboratory: "Rare Earth Magnet Recovery and Reuse from Computer Hard Disk Drives (HDDs)" Link to register October 12: Ryan Ott, Ames Laboratory,

  17. Nuclear Safety Research and Development Program Proposal Submittal...

    Energy Saver

    5 Nuclear Safety Research and Development Program Proposal Submittal Instructions for Fiscal Year 2016 1.0 INTRODUCTION The Nuclear Safety Research and Development (NSR&D) Program ...

  18. Future challenges for nuclear data research in fission (u) (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Future challenges for nuclear data research in fission (u) Citation Details In-Document Search Title: Future challenges for nuclear data research in fission (u) I ...

  19. Research in theoretical nuclear and neutrino physics. Final report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Research in theoretical nuclear and neutrino physics. Final report Citation Details In-Document Search Title: Research in theoretical nuclear and neutrino physics...

  20. Nuclear Safety Research and Development Annual Report, December...

    Office of Environmental Management (EM)

    Nuclear Safety Research and Development Annual Report, December 2014 Nuclear Safety Research and Development Annual Report, December 2014 December 8, 2014 This document is the ...

  1. Nuclear Materials Research and Technology/Los Alamos National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... dication (nitrogen atoms in blue). 2 Nuclear Materials Research and TechnologyLos ... A. Bartsch (Texas Tech University). 3 Nuclear Materials Research and TechnologyLos ...

  2. Research in theoretical nuclear and neutrino physics. Final report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Research in theoretical nuclear and neutrino physics. Final report Citation Details In-Document Search Title: Research in theoretical nuclear and neutrino ...

  3. 2009 Annual Reports Issued for Nuclear Energy Research Initiative...

    Energy Saver

    2009 Annual Reports Issued for Nuclear Energy Research Initiative and International Nuclear ... research projects and provide abstracts of new I-NERI projects awarded in FY ...

  4. Future challenges for nuclear data research in fission (u) (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Future challenges for nuclear data research in fission (u) Citation Details In-Document Search Title: Future challenges for nuclear data research in fission (u) ...

  5. World Institute for Nuclear Security Workshop at Y-12 Brings Together

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    World Crude Oil Prices (Dollars per Barrel) The data on this page are no longer available. More than 20 Countries | Y-12 National Security Complex

    World Institute for Nuclear ... World Institute for Nuclear Security Workshop at Y-12 Brings Together More than 20 Countries Posted: June 28, 2012 - 4:30pm This week, more than 20 countries are represented at the first-ever workshop conducted in the United States at the Y-12 National Security Complex for the World Institute for Nuclear

  6. Research and Development | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Research, Development, Test, and Evaluation Research and Development Photo: DARHT's Accelerators help create the x-rays at DARHT, the world's most advanced radiography facility. Mission Ensure the safety, security, and effectiveness of the nuclear weapons stockpile through well-managed scientific research, technology development, and advantageous international collaborations. The Office of Research and Development is responsible for managing the Science Campaign which conducts new

  7. Researcher, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Sandia National Laboratories Paul Dodd Paul Dodd February 2010 Fellow of the Institute of Electrical & Electronics Engineers (IEEE) Paul Dodd, a Sandia National Laboratories researcher, has been named a Fellow of the Institute of Electrical & Electronics Engineers (IEEE) "for contributions to the understanding and simulation of single-event effects in microelectronic," according to a notification sent out by the organization. Learn more about this

  8. Advanced research workshop: nuclear materials safety

    SciTech Connect

    Jardine, L J; Moshkov, M M

    1999-01-28

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  9. Nuclear Materials Research and Technology/Los Alamos National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    In the early 1990s, a Russian team at the Joint Institute of Nuclear Re- search at Dubna ... In this experimental setup, nuclear reaction products re- coil out of the thin 233 U ...

  10. Energy-Efficiency & Water Institute Research Facility, Purdue University, (IN)

    SciTech Connect

    Nnanna, Agbai

    2015-01-30

    The renovation of the Schneider Avenue Building to construct two research laboratories within the building is complete. The research laboratories are for the Purdue Calumet Water Institute and the Energy Efficiency and Reliability Center. The Water Institute occupies approximately 1000+ SF of research space plus supporting offices. The Energy-Efficiency Center occupies approximately 1000+ SF that houses the research space. The labs will enhance the Water & Energy Institute’s research capabilities necessary to tackle these issues through the development of practical approaches critical to local government and industry. The addition of these research laboratories to the Purdue University Calumet campus is in both direct support of the University’s Strategic Plan as well as the 2008 Campus Master Plan that identifies a 20% shortage of research space.

  11. research and development | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    research and development NNSA Administrator honors nonproliferation research leader Last week DOE Under Secretary for Nuclear Security and NNSA Administrator Lt. Gen. Frank G. Klotz (Ret.) presented the agency's Assistant Deputy Administrator for Nonproliferation Research and Development (R&D) Dr. Rhys Williams with the Distinguished Service Gold Medal Award at a... Global Material Security The mission of the Office of Global Material Security (GMS) is to help partner countries secure and

  12. NNSA's Minority Serving Institutions Internship Program | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) NNSA's Minority Serving Institutions Internship Program Friday, July 17, 2015 - 1:26pm On Thursday, July 16, NNSA Administrator Klotz had a brown bag lunch with the 14 high school and college students participating in NNSA's Minority Serving Institutions' (MSI) Internship Program assigned to NNSA headquarters. The MSI Internship Program targets students who are majoring in STEM (Science, Technology, Engineering, and Math) disciplines, as well as non-technical

  13. The Eleventh Design Research Institute of IT Co Ltd EDRI | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Eleventh Design Research Institute of IT Co Ltd EDRI Jump to: navigation, search Name: The Eleventh Design & Research Institute of IT Co Ltd (EDRI) Place: Chengdu, Sichuan...

  14. International Nuclear Energy Research Initiative: 2010 Annual Report |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 0 Annual Report International Nuclear Energy Research Initiative: 2010 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is a research-oriented collaborative program that supports the advancement of nuclear science and technology in the United States and the world. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment. The 2010 Nuclear Energy Research and

  15. Portuguese research program on nuclear fusion

    SciTech Connect

    Varandas, C.A.F.; Cabral, J.A.C.; Manso, M.E.

    1994-12-01

    The Portuguese research program on nuclear fusion is presented. The experimental activity associated with the tokamak ISTTOK as well as the work carried out in the frame of international collaboration are summarized. The main technological features of ISTTOK are described along with studies on microwave reflectometry. Future plans are briefly described.

  16. Reactivity Transients in Nuclear Research Reactors

    Energy Science and Technology Software Center

    2015-01-01

    Version 01 AIREMOD-RR is a point kinetics code which can simulate fast transients in nuclear research reactor cores. It can also be used for theoretical reactor dynamics studies. It is used for research reactor kinetic analysis and provides a point neutron kinetic capability. The thermal hydraulic behavior is governed by a one-dimensional heat balance equation. The calculations are restricted to a single equivalent unit cell which consists of fuel, clad and coolant.

  17. Nuclear engineer Stauff awarded for excellence in research and...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear engineer Stauff awarded for excellence in research and early-career leadership ... Argonne National Laboratory nuclear engineer Nicolas Stauff has risen to the challenge. ...

  18. Nuclear Materials Research and Technology/Los Alamos National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Crown Ether Complex 6 "Excess" Nuclear Materials Hold Keys to Medicine, ... that culminates in plutonium. 2 Nuclear Materials Research and TechnologyLos ...

  19. 2012 Monitoring Research Review: Ground-Based Nuclear Explosion...

    Office of Scientific and Technical Information (OSTI)

    Review: Ground-Based Nuclear Explosion Monitoring Technologies Citation Details In-Document Search Title: 2012 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring ...

  20. Proceedings of the 24th Seismic Research Review: Nuclear Explosion...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Explosion Monitoring: Innovation and Integration Citation Details In-Document Search Title: Proceedings of the 24th Seismic Research Review: Nuclear Explosion ...

  1. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion...

    Office of Scientific and Technical Information (OSTI)

    -- Nuclear Explosion Monitoring: Building the Knowledge Base Citation Details In-Document Search Title: Proceedings of the 25th Seismic Research Review -- Nuclear Explosion ...

  2. Nuclear Safety Research and Development Annual Report, December 2014 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Nuclear Safety Research and Development Annual Report, December 2014 Nuclear Safety Research and Development Annual Report, December 2014 December 8, 2014 - 1:22pm Addthis Nuclear Safety Research and Development Annual Report, December 2014 This document is the first annual report of DOE's Nuclear Safety Research and Development (NSR&D) Program, managed by the Office of Nuclear Safety in the Office of Environment, Health, Safety and Security. The report includes a

  3. Nuclear Safety Research and Development Committee Charter | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Committee Charter Nuclear Safety Research and Development Committee Charter July 5, 2012 Nuclear Safety Research and Development Committee Charter The intent of the Nuclear Safety Research and Development (NSR&D) Committee is to identify nuclear safety research needs and opportunities within the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) and their program offices. The Committee promotes communication and coordination among DOE and NNSA program

  4. Matthew Mumpower University of Notre Dame / Joint Institute for Nuclear Astrophysics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    r-process and nuclear masses near closed shells Matthew Mumpower University of Notre Dame / Joint Institute for Nuclear Astrophysics Thursday May 15 th 2014 ATLAS User Meeting The r-Process "rapid" neutron capture (as compared to beta decay) Far from stable isotopes → nuclides participating are short lived → little to no experimental data e.g. Uranium Z=92, N=146 → need lots of neutrons Neutron Capture / Photo-dissociation Beta Decay Nuclear Data The Nuclear Chart Number of

  5. International Nuclear Energy Research Initiative (I-NERI) Annual Reports |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy International Nuclear Energy Policy and Cooperation » Bilateral Cooperation » International Nuclear Energy Research Initiative (I-NERI) Annual Reports International Nuclear Energy Research Initiative (I-NERI) Annual Reports May 19, 2015 International Nuclear Energy Research Initiative: 2013 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated

  6. Performance Engineering Research Institute SciDAC-2 Enabling Technologies Institute: Final Report for the University of North Carolina

    SciTech Connect

    Fowler, Robert J

    2014-06-30

    This is the final technical report for the University of North Carolina activities under SciDAC-2 Performance Engineering Research Institute.

  7. Van Andel Research Institute, Los Alamos National Laboratory to develop

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    detailed computational model to study lung cancer Computational model to study lung cancer Van Andel Research Institute, Los Alamos National Laboratory to develop detailed computational model to study lung cancer Scientists are developing a new tool to better study one of the deadliest types of lung cancer. September 14, 2015 Even the most carefully crafted science projects starts with a rough brainstorm session. This whiteboard is from an early Los Alamos National Laboratory and Van Andel

  8. Department of Energy Announces 24 Nuclear Energy Research Awards...

    Energy Saver

    24 Nuclear Energy Research Awards to U.S. Universities Department of Energy Announces 24 Nuclear Energy Research Awards to U.S. Universities December 15, 2005 - 4:46pm Addthis 12 ...

  9. International Nuclear Energy Research Initiative: Annual Report 2005

    Office of Energy Efficiency and Renewable Energy (EERE)

    The International Nuclear Energy Research Initiative (I‐NERI) supports the National Energy Policy by conducting research to advance the state of nuclear science and technology in the United States....

  10. Nuclear reactions used for superheavy element research

    SciTech Connect

    Stoyer, M A

    2008-02-26

    Some of the most fascinating questions about the limits of nuclear stability are confronted in the heaviest nuclei. How many more new elements can be synthesized? What are the nuclear and chemical properties of these exotic nuclei? Does the 'Island of Stability' exist and can we ever explore the isotopes inhabiting that nuclear region? This paper will focus on the current experimental research on the synthesis and characterization of superheavy nuclei with Z > 112 from the Dubna/Livermore collaboration. Reactions using 48Ca projectiles from the U400 cyclotron and actinide targets ({sup 233,238}U, {sup 237}Np, {sup 242,244}Pu, {sup 243}Am, {sup 245,248}Cm, {sup 249}Cf) have been investigated using the Dubna Gas Filled Recoil Separator in Dubna over the last 8 years. In addition, several experiments have been performed to investigate the chemical properties of some of the observed longer-lived isotopes produced in these reactions. Some comments will be made on nuclear reactions used for the production of the heaviest elements. A summary of the current status of the upper end of the chart of nuclides will be presented.

  11. Enterprise SRS: leveraging ongoing operations to advance nuclear fuel cycles research and development programs

    SciTech Connect

    Murray, A.M.; Marra, J.E.; Wilmarth, W.R.; McGuire, P.W.; Wheeler, V.B.

    2013-07-01

    The Savannah River Site (SRS) is re-purposing its vast array of assets (including H Canyon - a nuclear chemical separation plant) to solve issues regarding advanced nuclear fuel cycle technologies, nuclear materials processing, packaging, storage and disposition. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into SRS facilities but also in other facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, a center for applied nuclear materials processing and engineering research has been established in SRS.

  12. Computer Science Research Institute 2004 annual report of activities.

    SciTech Connect

    DeLap, Barbara J.; Womble, David Eugene; Ceballos, Deanna Rose

    2006-03-01

    This report summarizes the activities of the Computer Science Research Institute (CSRI) at Sandia National Laboratories during the period January 1, 2004 to December 31, 2004. During this period the CSRI hosted 166 visitors representing 81 universities, companies and laboratories. Of these 65 were summer students or faculty. The CSRI partially sponsored 2 workshops and also organized and was the primary host for 4 workshops. These 4 CSRI sponsored workshops had 140 participants--74 from universities, companies and laboratories, and 66 from Sandia. Finally, the CSRI sponsored 14 long-term collaborative research projects and 5 Sabbaticals.

  13. Computer Science Research Institute 2005 annual report of activities.

    SciTech Connect

    Watts, Bernadette M.; Collis, Samuel Scott; Ceballos, Deanna Rose; Womble, David Eugene

    2008-04-01

    This report summarizes the activities of the Computer Science Research Institute (CSRI) at Sandia National Laboratories during the period January 1, 2005 to December 31, 2005. During this period, the CSRI hosted 182 visitors representing 83 universities, companies and laboratories. Of these, 60 were summer students or faculty. The CSRI partially sponsored 2 workshops and also organized and was the primary host for 3 workshops. These 3 CSRI sponsored workshops had 105 participants, 78 from universities, companies and laboratories, and 27 from Sandia. Finally, the CSRI sponsored 12 long-term collaborative research projects and 3 Sabbaticals.

  14. Computer Science Research Institute 2003 annual report of activities.

    SciTech Connect

    DeLap, Barbara J.; Womble, David Eugene; Ceballos, Deanna Rose

    2006-03-01

    This report summarizes the activities of the Computer Science Research Institute (CSRI) at Sandia National Laboratories during the period January 1, 2003 to December 31, 2003. During this period the CSRI hosted 164 visitors representing 78 universities, companies and laboratories. Of these 78 were summer students or faculty members. The CSRI partially sponsored 5 workshops and also organized and was the primary host for 3 workshops. These 3 CSRI sponsored workshops had 178 participants--137 from universities, companies and laboratories, and 41 from Sandia. Finally, the CSRI sponsored 18 long-term collaborative research projects and 5 Sabbaticals.

  15. 3-D Printer Speeds Metals Research | Critical Materials Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3-D Printer Speeds Metals Research The Critical Materials Institute has a new 3D printer for metals research. Ryan Ott, principal investigator at the Ames Laboratory and the CMI, is using 3D printing technology to discover new materials. He uses the printer to produce a large variety of alloys in less time than needed in traditional casting methods. "Metal 3D printers are slowly becoming more commonplace," Ott said. "They can be costly, and are often limited to small-scale

  16. Office of Nuclear Energy Research and Development Benefits Analysis Activities

    SciTech Connect

    Stamos, John; Bhatt, Vatsal; Friley, Paul

    2006-12-20

    A presentation for the FY 2007 GPRA methodology review from the Office of Nuclear Energy Research and Development.

  17. 2012 Monitoring Research Review: Ground-Based Nuclear Explosion...

    Office of Scientific and Technical Information (OSTI)

    ... regional seismic monitoring; research management; scattering; secondary waves; seismic ... Comprehensive Nuclear-Test-Ban Treaty Organization; IMS; International Monitoring System; ...

  18. Performance Engineering Research Institute SciDAC-2 Enabling Technologies Institute Final Report

    SciTech Connect

    Lucas, Robert

    2013-04-20

    Enhancing the performance of SciDAC applications on petascale systems had high priority within DOE SC at the start of the second phase of the SciDAC program, SciDAC-2, as it continues to do so today. Achieving expected levels of performance on high-end computing (HEC) systems is growing ever more challenging due to enormous scale, increasing architectural complexity, and increasing application complexity. To address these challenges, the University of Southern California?s Information Sciences Institute organized the Performance Engineering Research Institute (PERI). PERI implemented a unified, tripartite research plan encompassing: (1) performance modeling and prediction; (2) automatic performance tuning; and (3) performance engineering of high profile applications. Within PERI, USC?s primary research activity was automatic tuning (autotuning) of scientific software. This activity was spurred by the strong user preference for automatic tools and was based on previous successful activities such as ATLAS, which automatically tuned components of the LAPACK linear algebra library, and other recent work on autotuning domain-specific libraries. Our other major component was application engagement, to which we devoted approximately 30% of our effort to work directly with SciDAC-2 applications. This report is a summary of the overall results of the USC PERI effort.

  19. (Coordinated research programs in nuclear medicine)

    SciTech Connect

    Knapp, F.F. Jr.

    1990-10-03

    The traveler visited the Clinic for Nuclear Medicine at the University of Bonn, West Germany, to review, organize, and plan collaborative studies. He also met with the editorial board of the journal NucCompact -- European/American Communications in Nuclear Medicine, on which he serves as US editor. He also visited colleagues at the Cyclotron Research Center (CRC) at the University of Liege, Belgium, to coordinate clinical applications of the ultrashort-lived iridium-191m radionuclide obtained from the osmium-190/iridium-191m generator system. The traveler planned and coordinated continuing collaboration with colleagues at the CRC for further applications of this generator system. He also visited the University of Metz, Metz, France, to organize a three-center project for the synthesis and evaluation of various receptor-specific cerebral imaging agents, involving the Oak Ridge National Laboratory (ORNL), CRC, and the University of Metz.

  20. Iowa State Mining and Mineral Resources Research Institute

    SciTech Connect

    Not Available

    1990-08-01

    This final report describes the activities of the Iowa State Mining and Mineral Resources Research Institute (ISMMRRI) at Iowa State University for the period July 1, 1989, to June 30, 1990. Activities include research in mining- and mineral-related areas, education and training of scientists and engineers in these fields, administration of the Institute, and cooperative interactions with industry, government agencies, and other research centers. During this period, ISMMRRI has supported research efforts to: (1) Investigate methods of leaching zinc from sphalerite-containing ores. (2) Study the geochemistry and geology of an Archean gold deposit and of a gold-telluride deposit. (3) Enchance how-quality aggregates for use in construction. (4) Pre-clean coal by triboelectric charging in a fluidized-bed. (5) Characterize the crystal/grain alignment during processing of yttrium-barium-copper-perovskite (1-2-3) superconductors. (5) Study the fluid inclusion properties of a fluorite district. (6) Study the impacts of surface mining on community planning. (7) Assess the hydrophobicity of coal and pyrite for beneficiation. (8) Investigate the use of photoacoustic absorption spectroscopy for monitoring unburnt carbon in the exhaust gas from coal-fired boilers. The education and training program continued within the interdepartmental graduate minor in mineral resources includes courses in such areas as mining methods, mineral processing, industrial minerals, extractive metallurgy, coal science and technology, and reclamation of mined land. In addition, ISMMRRI hosted the 3rd International Conference on Processing and Utilization of High-Sulfur Coals in Ames, Iowa. The Institute continues to interact with industry in order to foster increased cooperation between academia and the mining and mineral community.

  1. The role of research in nuclear regulation: A French perspective

    SciTech Connect

    Livolant, M.

    1997-01-01

    Roughly speaking, the French Nuclear Protection and Safety Institute`s role is similar in the French situation to the NRC administration role but with less authority role, which corresponds to another body in France. They define themselves as a technical support of the safety authorities. On the other hand, they have their own research laboratories. Among them, the most famous are the Phebus reactor and the Cabri reactor about which we have heard a lot these two days. They work on safety but also on protection of man and environment, management of accident conditions, security of transport, and safeguards. They have a relationship with utilities and with government authorities. With the utilities they have two types of technical evaluations. They make detailed technical studies of the safety reports presented to the authorities by the utility. On the research side, they participate in common research programs to resolve issues and to increase knowledge and understanding about safety related questions. With the governmental authorities, their role is to give advice on safety reports of existing or being-built installations and on more general policy questions like, for example, the safety principle to apply to the next generation of power plants. The decisions are left to the safety authorities, but they give a lot of advice and detailed studies about questions of safety.

  2. FY 2014 Consolidated Innovative Nuclear Research FOA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. NE strives to promote

  3. Nuclear Safety Research and Development Annual Report, December 2014 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Nuclear Safety Research and Development Annual Report, December 2014 Nuclear Safety Research and Development Annual Report, December 2014 December 8, 2014 This document is the first annual report of DOE's Nuclear Safety Research and Development (NSR&D) Program, managed by the Office of Nuclear Safety in the Office of Environment, Health, Safety and Security. The report includes a description of the program and summaries of R&D projects related to DOE (including

  4. International Nuclear Energy Research Initiative: 2007 Annual Report |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 7 Annual Report International Nuclear Energy Research Initiative: 2007 Annual Report The International Nuclear Energy Research Initiative (I-NERI) supports the National Energy Policy by pursuing international collaborations to conduct research that will advance the state of nuclear science and technology in the United States. I-NERI promotes bilateral and multilateral scientific and engineering research and development (R&D) with other nations. Innovative research

  5. International Nuclear Energy Research Initiative: 2008 Annual Report |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 8 Annual Report International Nuclear Energy Research Initiative: 2008 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is an international, research-oriented initiative that supports the advancement of nuclear science and technology in the United States and the world. I-NERI promotes bilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key

  6. International Nuclear Energy Research Initiative: 2009 Annual Report |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 9 Annual Report International Nuclear Energy Research Initiative: 2009 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is an international, research-oriented collaboration that supports advancement of nuclear science and technology in the United States and the world. I-NERI promotes bilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key

  7. International Nuclear Energy Research Initiative: Annual Report 2006 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 6 International Nuclear Energy Research Initiative: Annual Report 2006 The International Nuclear Energy Research Initiative (I-NERI) supports the National Energy Policy by conducting research to advance the state of nuclear science and technology in the United States. I-NERI sponsors innovative scientific and engineering research and development (R&D) in cooperation with participating countries. The research performed under the I-NERI umbrella addresses key issues

  8. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669

    SciTech Connect

    Not Available

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  9. Research and Development | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA reduces the threat to national security posed by nuclear weapons proliferation and possible detonation or the illicit trafficking of nuclear materials through the long-term...

  10. Research and Development | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA reduces the threat to national security posed by nuclear weapons proliferation and ... NNSA reduces the threat to national security posed by nuclear weapons proliferation and ...

  11. Meet CMI Researcher Corby Anderson | Critical Materials Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    His career includes positions with Morton Thiokol, Key Tronic Corporation, Sunshine Mining ... the Institution of Chemical Engineers and the Institute of Materials, Minerals and Mining. ...

  12. Meet CMI Researcher Lynn Boatner | Critical Materials Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    International, and the Institute of Materials, Minerals, and Mining of the United Kingdom. ... the Institute of Materials, Minerals, and Mining of the United Kingdom; the Francis F. ...

  13. Institute for Scientific Computing Research Fiscal Year 2002 Annual Report

    SciTech Connect

    Keyes, D E; McGraw, J R; Bodtker, L K

    2003-03-11

    The Institute for Scientific Computing Research (ISCR) at Lawrence Livermore National Laboratory is jointly administered by the Computing Applications and Research Department (CAR) and the University Relations Program (URP), and this joint relationship expresses its mission. An extensively externally networked ISCR cost-effectively expands the level and scope of national computational science expertise available to the Laboratory through CAR. The URP, with its infrastructure for managing six institutes and numerous educational programs at LLNL, assumes much of the logistical burden that is unavoidable in bridging the Laboratory's internal computational research environment with that of the academic community. As large-scale simulations on the parallel platforms of DOE's Advanced Simulation and Computing (ASCI) become increasingly important to the overall mission of LLNL, the role of the ISCR expands in importance, accordingly. Relying primarily on non-permanent staffing, the ISCR complements Laboratory research in areas of the computer and information sciences that are needed at the frontier of Laboratory missions. The ISCR strives to be the ''eyes and ears'' of the Laboratory in the computer and information sciences, in keeping the Laboratory aware of and connected to important external advances. It also attempts to be ''feet and hands, in carrying those advances into the Laboratory and incorporating them into practice. In addition to conducting research, the ISCR provides continuing education opportunities to Laboratory personnel, in the form of on-site workshops taught by experts on novel software or hardware technologies. The ISCR also seeks to influence the research community external to the Laboratory to pursue Laboratory-related interests and to train the workforce that will be required by the Laboratory. Part of the performance of this function is interpreting to the external community appropriate (unclassified) aspects of the Laboratory's own contributions

  14. Report of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements

    Office of Energy Efficiency and Renewable Energy (EERE)

    As an element of its plans to return the U.S. Department of Energy (DOE) site in eastern Idaho to its historic mission of nuclear technology development, the DOE asked its Nuclear Energy Research...

  15. Report, Long-Term Nuclear Technology Research and Development Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Report, Long-Term Nuclear Technology Research and Development Plan Report, Long-Term Nuclear Technology Research and Development Plan This document constitutes the first edition of a long-term research and development (R&D) plan for nuclear technology in the United States. The federally-sponsored nuclear technology programs of the United States are almost exclusively the province of the U.S. Department of Energy (DOE). The nuclear energy areas in DOE include, but are

  16. Summary, Long-Term Nuclear Technology Research and Development Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Summary, Long-Term Nuclear Technology Research and Development Plan Summary, Long-Term Nuclear Technology Research and Development Plan In 1998, DOE established the Nuclear Energy Research Advisory Committee (NERAC) to provide advice to the Secretary and to the Director, Office of Nuclear Energy, Science, and Technology (NE), on the broad range of non-defense DOE nuclear technology programs. The NERAC recommended development of a long-range R&D program. This R&D

  17. Electric Power Research Institute Cooperation to Increase Energy Efficiency, March 6, 2008

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) strengthened cooperation for research, development and deployment of energy technologies aimed at promoting...

  18. Energy Department- Electric Power Research Institute Cooperation to Increase Energy Efficiency

    Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) strengthened cooperation for research, development and deployment of energy technologies aimed...

  19. Environmental Survey preliminary report, Solar Energy Research Institute, Golden, Colorado

    SciTech Connect

    Not Available

    1988-10-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the US Department of Energy's (DOE) Solar Energy Research Institute (SERI), conducted December 14 through 18, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by private contractors. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with SERI. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at SERI, and interviews with site personnel. 33 refs., 22 figs., 21 tabs.

  20. International Nuclear Energy Research Initiative 2008 Annual...

    Energy Saver

    of Nuclear Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585 Printed with soy ink on recycled paper. I-NERI - 2008 Annual Report i Foreword The International Nuclear ...

  1. Safer nuclear reactors could result from Los Alamos research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    March » Safer nuclear reactors could result from research Safer nuclear reactors could result from Los Alamos research Self-repairing materials within nuclear reactors may one day become a reality. March 25, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National

  2. Nuclear Safety Research and Development Program Operating Plan | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Program Operating Plan Nuclear Safety Research and Development Program Operating Plan July 5, 2012 Nuclear Safety Research and Development Program Operating Plan This operating plan outlines the mission, goals, and processes for the Department of Energy's (DOE) Nuclear Safety Research & Development (NSR&D) Program. This first version of the operating plan also discusses the startup phase of the program. NSR&D involves a systematic search for knowledge to advance the

  3. Research Reactor Conversion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Reactor Conversion | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  4. Institutional Research & Development News | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) News Above Images: On the left, the "Sandia Cooler" - also known as the "Air Bearing Heat Exchanger" will significantly reduce the energy needed to cool the processor chips in data centers and large-scale computing environments (NNSA Press Release 6/20/12). The Sandia Cooler was one of 11 2012 R&D 100 Awards received by NNSA labs and was one of the nine awarded projects made possible by LDRD and SDRD. On the right, a poster presentation at the

  5. Research on long term safety of nuclear waste disposal at the research center Karlsruhe, Germany

    SciTech Connect

    Gompper, Klaus; Bosbach, Dirk; Denecke, Melissa A.; Geckeis, Horst; Kienzler, Bernhard; Klenze, Reinhardt

    2007-07-01

    In Germany the safe disposal of radioactive waste is in the responsibility of the federal government. The R and D performed in the Institute for Nuclear Waste Disposal (INE) at the Research Center Karlsruhe contributes to the German provident research in the field of long-term safety for final disposal of high level heat producing nuclear wastes. INE's research is focused on the actinide elements and long lived fission products since these dominate the radiotoxicity over a long time. The research strategy synergistically combines fundamental science of aquatic radionuclide chemistry with applied investigations of real systems (waste form, host rock, aquifer), studied on laboratory scale and in underground laboratories. Because Germany has not yet selected a site for a high-level waste repository, all host rock formations under discussion in the international community (salt, hard rock, clay/tone) are investigated. Emphasis in long-term safety R and D at INE is on the development of actinide speciation methods and techniques in the trace concentration range. (authors)

  6. Rainer Held > Guest Researcher - Max-Planck Institute for Solid State

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research > Center Alumni > The Energy Materials Center at Cornell Rainer Held Guest Researcher - Max-Planck Institute for Solid State Research heldrain@gmail.com Formerly a member of the Schlom Group, he joined the Max-Planck Institute for Solid State Research as a guest postdoc in September 2014

  7. Research and Development | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA scientists find more effective ways to detect nuclear explosions near and far NNSA Deputy Administrator Creedon Travels to China NNSA Delivers Annual Reports to Congress on ...

  8. Research and Development | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    R&D is organized into two offices: Proliferation Detection develops technologies to detect ... Learn More Proliferation Detection Nuclear Detonation Detection Related Topics ...

  9. Nuclear Physics: User/Researcher Information

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Accelerator Operations Orientation CEBAF @ 12GeV CEBAF Status Screen Conferences, Workshops, and Summer Schools Nuclear Physics CUGA Archive Directory of Members Member ...

  10. Research and Development | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    R&D is organized into two offices: Proliferation Detection develops technologies to detect ... Learn More Proliferation Detection Nuclear Detonation Detection Related Topics ...

  11. Nuclear Energy Research and Development Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Research and Development Roadmap Nuclear Energy Research and Development Roadmap NuclearEnergy_Roadmap_Final.pdf (7.03 MB) More Documents & Publications Before the House Science and Technology Committee A Review of the NGNP Project: February 2006 GNEP Element:Demonstrate More Proliferation-Resistant Recycling

  12. Climate Models from the Joint Global Change Research Institute

    DOE Data Explorer

    Staff at the Joint Institute develop and use models to simulate the economic and physical impacts of global change policy options. The GCAM, for example, gives analysts insight into how regional and national economies might respond to climate change mitigation policies including carbon taxes, carbon trading, and accelerated deployment of energy technology. Three available models are Phoenix, GCAM, and EPIC. Phoenix is a global, dynamic recursive, computable general equilibrium model that is solved in five-year time steps from 2005 through 2100 and divides the world into twenty-four regions. Each region includes twenty-six industrial sectors. Particular attention is paid to energy production in Phoenix. There are nine electricity-generating technologies (coal, natural gas, oil, biomass, nuclear, hydro, wind, solar, and geothermal) and four additional energy commodities: crude oil, refined oil products, coal, and natural gas. Phoenix is designed to answer economic questions related to international climate and energy policy and international trade. Phoenix replaces the Second Generation Model (SGM) that was formerly used for general equilibrium analysis at JGCRI. GCAM is the Global Change Assessment Model, a partial equilibrium model of the world with 14 regions. GCAM operates in 5 year time steps from 1990 to 2095 and is designed to examine long-term changes in the coupled energy, agriculture/land-use, and climate system. GCAM includes a 151-region agriculture land-use module and a reduced form carbon cycle and climate module in addition to its incorporation of demographics, resources, energy production and consumption. The model has been used extensively in a number of assessment and modeling activities such as the Energy Modeling Forum (EMF), the U.S. Climate Change Technology Program, and the U.S. Climate Change Science Program and IPCC assessment reports. GCAM is now freely available as a community model. The Environmental Policy Integrated Climate (EPIC) Model

  13. Meet CMI Researcher Scott Herbst | Critical Materials Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    With well over 100 publications and several patents in the field of chemical separations and nuclear waste processing, he is a recognized separation expert in the DOE, industrial, ...

  14. Sandia Researchers Win Best Paper Award from the American Institute...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage Nuclear Power & Engineering Grid ... High-Speed Air-Breathing Propulsion Technical Committee for ... transport, and access-to-space applications. "The results ...

  15. Fresh and Spent Nuclear Fuel Repatriation from the IRT-2000 Research Reactor Facility, Sofia, Bulgaria

    SciTech Connect

    K. J. Allen; T. G. Apostolov; I. S. Dimitrov

    2009-03-01

    The IRT 2000 research reactor, operated by the Bulgarian Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped all of their Russian-origin nuclear fuel from the Republic of Bulgaria to the Russian Federation beginning in 2003 and completing in 2008. These fresh and spent fuel shipments removed all highly enriched uranium (HEU) from Bulgaria. The fresh fuel was shipped by air in December 2003 using trucks and a commercial cargo aircraft. One combined spent fuel shipment of HEU and low enriched uranium (LEU) was completed in July 2008 using high capacity VPVR/M casks transported by truck, barge, and rail. The HEU shipments were assisted by the Russian Research Reactor Fuel Return Program (RRRFR) and the LEU spent fuel shipment was funded by Bulgaria. This report describes the work, approvals, organizations, equipment, and agreements required to complete these shipments and concludes with several major lessons learned.

  16. Research, Development, Test, and Evaluation | National Nuclear...

    National Nuclear Security Administration (NNSA)

    About Our Programs Defense Programs Research, Development, Test, and Evaluation ... The Office of Research, Development, Test, and Evaluation directs research, development, ...

  17. Laboratory Directed Research & Development | National Nuclear...

    National Nuclear Security Administration (NNSA)

    The U.S. Department of Energy (DOE) is charged with a large and complex mission: to ensure America's security and prosperity by addressing its energy, environmental, and nuclear ...

  18. Institutional

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Expand Utility Resources News & Events Expand News & Events Skip navigation links Marketing Resources Reports, Publications, and Research Agricultural Commercial Consumer...

  19. International Nuclear Energy Research Initiative: 2012 Annual Report |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 2 Annual Report International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with

  20. International Nuclear Energy Research Initiative: 2013 Annual Report |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 3 Annual Report International Nuclear Energy Research Initiative: 2013 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with

  1. Research in theoretical nuclear and neutrino physics. Final report

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Research in theoretical nuclear and neutrino physics. Final report Citation Details In-Document Search Title: Research in theoretical nuclear and neutrino physics. Final report The main focus of the research supported by the nuclear theory grant DE-FG02-04ER41319 was on studying parton dynamics in high-energy heavy ion collisions, perturbative approach to charm production and its contribution to atmospheric neutrinos, application of AdS/CFT approach to

  2. DOE - Office of Legacy Management -- Southern Research Institute...

    Office of Legacy Management (LM)

    AL.03-4 AL.03-1 AL.03-5 Site Disposition: Eliminated - No Authority - AEC license to handle nuclear materials AL.03-3 AL.03-6 Radioactive Materials Handled: Yes Primary Radioactive ...

  3. Cyclotron Institute » Education

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Education The Cyclotron Institute provides education and training in nuclear science at the undergraduate, graduate, and postdoctoral levels. Faculty teach a variety of courses in nuclear chemistry and nuclear physics. Research is emphasized at the graduate and postdoctoral levels, although we also have a Research Experience for Undergraduates Program each summer. Finally, we also participate in the Saturday Morning Physics program for high school students each spring.

  4. Fiscal Year 2016 Call for Nuclear Safety Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FROM: SUBJECT: Fiscal Year 2016 Call for Nuclear Safety Research and Development Proposals The purpose of this memorandum is to inform you of the Fiscal Year 2016 Call for ...

  5. International Nuclear Energy Research Initiative: 2011 Annual Report

    Energy.gov [DOE]

    Fiscal year (FY) 2011 marks the ten-year anniversary of the founding of the International Nuclear Energy Research Initiative, or I-NERI. Designed to foster international partnerships that address...

  6. On-Going International Research Program on Irradiated Concrete Conducted by DOE, EPRI and Japan Research Institutions. Roadmap, Achievements and Path Forward

    SciTech Connect

    Le Pape, Yann; Rosseel, Thomas M.

    2015-10-01

    The Joint Department of Energy (DOE)-Electric Power Research Institute (EPRI) Program (Light Water Reactor Sustainability (LWRS) Program–Material Pathway–Concrete and Long-Term Operation (LTO) Program) and US Nuclear Regulatory Commission (NRC) research studies aim at understanding the most prominent degradation modes and their effects on the long-term operation of concrete structures to nuclear power generation. Based on the results of the Expanded Materials Degradation Analysis (EMDA), (NUREG/CR-7153, ORNL/TM-2011/545), irradiated concrete and alkali-silica reaction (ASR)-affected concrete structures are the two prioritized topics of on-going research. This report focuses specifically on the topic of irradiated concrete and summarizes the main accomplishments obtained by this joint program, but also provides an overview of current relevant activities domestically and internationally. Possible paths forward are also suggested to help near-future orientation of this program.

  7. Energy Department/Electric Power Research Institute Cooperation to Increase Energy Efficiency

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) strengthened cooperation for research, development and deployment of energy technologies aimed at promoting increased energy efficiency.

  8. Nuclear Forensics Research and Development | Y-12 National Security Complex

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Forensics Research ... Nuclear Forensics Research and Development The Department of Energy has named Y-12 the National Uranium Materials Archive. This storage center holds physical samples that can be retrieved when, for example, smuggled uranium materials are interdicted and the evidence has to be analyzed and compared with samples having known histories. Y-12 is working with nuclear forensics experts throughout the U.S. - at Los Alamos, Pacific Northwest, Oak Ridge and Savannah River national

  9. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative,

  10. Research in nuclear astrophysics: Stellar collapse and supernovae

    SciTech Connect

    Lattimer, J.M.; Yahil, A.

    1992-01-01

    This progress report describes the nuclear astrophysics research activities in the Earth and Space Sciences Department at Stony Brook during the last year. Our research focused on three aspects of nuclear astrophysics: (1) the equation of state of hot, dense matter, (2) the origin of supernovae and neutron stars, (3) the early cooling epoch of neutron stars. The following contains detailed reports which summarize each completed project.

  11. Meet CMI Researcher Ikenna Nlebedim | Critical Materials Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Researcher Ikenna Nlebedim Image: left, CMI researcher Ikenna Nlebedim, and right, Summer 2015 SULI student Gavin Hester CMI researcher Ikenna Nlebedim researches magnets. His research led to a new method for recycling rare earth magnetic material from manufacturing waste. This Ames Laboratory news release describes the process. Also, in this Ames Lab 101 video file, Nlebedim describes recycling rare earths from magnet scraps on the factory floor. Nlebedim led a student researcher for one of the

  12. PAPERS PUBLISHED / 2005-2006 Progress in Research / Cyclotron Institute /

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Texas A&M University (links to abstracts/articles provided if available) April 1, 2005 - March 31, 2006 Isoscalar Giant Resonance for Nuclei with Mass between 56 and 60, Y.-W. Lui, D.H. Youngblood, H.L. Clark, Y. Tokimoto, and B. John, Phys. Rev. C 73, 014314 (2006). Indirect Techniques in Nuclear Astrophysics: the ANC Method, R.E. Tribble, Nucl. Instrum. Methods Phys. Res. B241, 204 (2005). Indirect Techniques in Nuclear Astrophysics: Asymptotic Normalization Coefficient and Trojan

  13. Korea Institute of Energy Research KIER | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Daejeon, Korea (Republic) Zip: 305-343 Product: Specialises in energy research, providing research and development in new technologies that support national energy policies....

  14. Meet CMI Researcher David Reed | Critical Materials Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    CMI researcher David Reed is the principal investigator for the CMI project bioleaching for recovery of recycled rare earth elements. CMI Researcher David Reed is the PI for ...

  15. International Food Policy Research Institute | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    mission flows from the CGIAR mission: "To achieve sustainable food security and reduce poverty in developing countries through scientific research and research-related activities...

  16. Research Areas | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Research Areas National Laser Users' Facility Grant Program Research Areas The research tools and resources of the Omega Laser Facility, and the Laboratory for Laser Energetics, are available to National Laser Users' Facilities (NLUF) scientists for state-of-the-art basic research experiments in laser-matter interaction and related diagnostics. This includes, but is not limited to, inertial fusion, high energy density physics, plasma physics, spectroscopy of highly ionized atoms, laboratory

  17. Research Areas | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Research Areas National Laser Users' Facility Grant Program Research Areas The research tools and resources of the Omega Laser Facility, and the Laboratory for Laser Energetics, are available to National Laser Users' Facilities (NLUF) scientists for state-of-the-art basic research experiments in laser-matter interaction and related diagnostics. This includes, but is not limited to, inertial fusion, high energy density physics, plasma physics, spectroscopy of highly ionized atoms, laboratory

  18. Advanced Resources for Catalysis Science; Recommendations for a National Catalysis Research Institute

    SciTech Connect

    Peden, Charles HF.; Ray, Douglas

    2005-10-05

    Catalysis is one of the most valuable contributors to our economy and historically an area where the United States has enjoyed, but is now losing, international leadership. While other countries are stepping up their work in this area, support for advanced catalysis research and development in the U.S. has diminished. Yet, more than ever, innovative and improved catalyst technologies are imperative for new energy production processes to ease our dependence on imported resources, for new energy-efficient and environmentally benign chemical production processes, and for new emission reduction technologies to minimize the environmental impact of an active and growing economy. Addressing growing concerns about the future direction of U.S. catalysis science, experts from the catalysis community met at a workshop to determine and recommend advanced resources needed to address the grand challenges for catalysis research and development. The workshop's primary conclusion: To recapture our position as the leader in catalysis innovation and practice, and promote crucial breakthroughs, the U.S. must establish one or more well-funded and well-equipped National Catalysis Research Institutes competitively selected, centered in the national laboratories and, by charter, networked to other national laboratories, universities, and industry. The Institute(s) will be the center of a national collaboratory that gives catalysis researchers access to the most advanced techniques available in the scientific enterprise. The importance of catalysis to our energy, economic, and environmental security cannot be overemphasized. Catalysis is a vital part of our core industrial infrastructure, as it is integral to chemical processing and petroleum refining, and is critical to proposed advances needed to secure a sustainable energy future. Advances in catalysis could reduce our need for foreign oil by making better use of domestic carbon resources, for example, allowing cost-effective and zero

  19. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    SciTech Connect

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

    2012-09-01

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

  20. Systems Sustainability: Implementation of Enhanced Maintenance Programs at the Kurchatov Institute, the All-Russian Research Institute of Experimental physics and the All-Russian Scientific Institute for Technical Physics

    SciTech Connect

    Coppinger, M.; Pikula, M.; Randolph, J.D.; Windham, M.

    1999-09-20

    Implementation of quality maintenance programs is essential to enhancing sustainable continuous operations of United States funded Materials Protection, Control and Accountability (MPC and A) equipment/systems upgrades at various Russian nuclear facilities. An effective maintenance program is expected to provide assurances to both parties for achieving maximum continuous systems operations with minimum down time. To be effective, the program developed must focus on minimum down time for any part of a system. Minimum down time is realized through the implementation of a quality maintenance program that includes preventative maintenance, necessary diagnostic tools, properly trained technical staff, and an in-house inventory of required spare parts for repairing the impacted component of the system. A centralized maintenance management program is logistically essential for the success of this effort because of the large volume of MPC and A equipment/systems installed at those sites. This paper will discuss current programs and conditions at the Russian Research Center-Kurchatov Institute, the All-Russian Scientific Institute for Technical Physics and the All-Russian Research Institute of Experimental Physics and will address those steps necessary to implement an upgraded program at those sites.

  1. Research and Development | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Awards Mo-99 Cooperative Agreement to General Atomics Stewardship Science Academic Alliances Awards Research, Development, Test, and Evaluation Material Management and...

  2. Research Areas | National Nuclear Security Administration | ...

    National Nuclear Security Administration (NNSA)

    Energy Density Laboratory Plasmas (HEDLP) Research Areas During open solicitations proposals are sought in the following subfields and cross-cutting areas of HEDLP: High Energy ...

  3. Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689Nuclear Energy Institute (NEI) Letter, 9/10/10

    Energy.gov [DOE]

    Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is...

  4. Applications from Universities and Other Research Institutions | U.S. DOE

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Office of Science (SC) Applications from Universities and Other Research Institutions Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search / Public Abstracts Additional Requirements and Guidance for Digital Data Management Peer Review Policies EFRCs FOA Applications from Universities and Other Research Institutions Construction Review EPSCoR

  5. Nuclear plant-aging research on reactor protection systems

    SciTech Connect

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed.

  6. Research Areas | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Research Areas High Energy Density Laboratory Plasmas (HEDLP) Research Areas During open solicitations proposals are sought in the following subfields and cross-cutting areas of HEDLP: High Energy Density Hydrodynamics Specific areas of interest include, but are not limited to, turbulent mixing, probing properties of high energy density (HED) matter through hydrodynamics, solid-state hydrodynamics at high pressures, new hydrodynamic instabilities, and hydrodynamic scaling. Radiation-Dominated

  7. Research Areas | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Research Areas Properties of Materials under Extreme Conditions and Hydrodynamics During open solicitations research proposals are solicited for grants and Centers of Excellence in the area of fundamental properties and response of materials under extreme conditions (condensed matter physics and materials science, hydrodynamics and fluid dynamics). Extreme conditions include material response when subjected to one or more of the following: high-pressure (> 100 kbar), high-temperature (near

  8. Researcher, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Researcher, Lawrence Livermore National Laboratory Placeholder for Bruce Macintosh image Bruce Macintosh February 2010 AAAS Newcomb Cleveland Prize A Lawrence Livermore National Laboratory researcher's paper published in November 2008 is co-winner of this year's American Association for the Advancement of Science (AAAS) Newcomb Cleveland Prize. The Paper is one of two outstanding papers published in Science from June 1, 2008 through May 31, 2009. Bruce

  9. Researcher, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Researcher, Lawrence Livermore National Laboratory Placeholder for Mike Fitzgerald image Mike Fitzgerald February 2010 AAAS Newcomb Cleveland Prize A Lawrence Livermore National Laboratory researcher's paper published in November 2008 is co-winner of this year's American Association for the Advancement of Science (AAAS) Newcomb Cleveland Prize. The Paper is one of two outstanding papers published in Science from June 1, 2008 through May 31, 2009. Another

  10. Researcher, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Researcher, Sandia National Laboratories David Haaland David Haaland December 2009 Fellows of the American Association for the Advancement of Science Sandia researchers David Haaland and David Myers have been elected Fellows of the American Association for the Advancement of Science. Election as a Fellow is an honor bestowed upon AAAS members by their peers. Haaland was cited for "distinguished contributions in the area of chemometrics and spectral imaging,

  11. Researcher, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Researcher, Sandia National Laboratories David Myers David Myers December 2009 Fellow of the American Association for the Advancement of Science Sandia researchers David Haaland and David Myers have been elected Fellows of the American Association for the Advancement of Science. Election as a Fellow is an honor bestowed upon AAAS members by their peers. Myers was cited for "contributions to the science, management, and early application of ion implantation,

  12. Eastern Europe Research Reactor Initiative nuclear education and training courses - Current activities and future challenges

    SciTech Connect

    Snoj, L.; Sklenka, L.; Rataj, J.; Boeck, H.

    2012-07-01

    The Eastern Europe Research Reactor Initiative was established in January 2008 to enhance cooperation between the Research Reactors in Eastern Europe. It covers three areas of research reactor utilisation: irradiation of materials and fuel, radioisotope production, neutron beam experiments, education and training. In the field of education and training an EERRI training course was developed. The training programme has been elaborated with the purpose to assist IAEA Member States, which consider building a research reactor (RR) as a first step to develop nuclear competence and infrastructure in the Country. The major strength of the reactor is utilisation of three different research reactors and a lot of practical exercises. Due to high level of adaptability, the course can be tailored to specific needs of institutions with limited or no access to research reactors. (authors)

  13. Meet CMI Researcher Vitalij Pecharsky | Critical Materials Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    metallurgy of rare earths. The course offered at Iowa State University is available as a distance education course for researchers and industry representatives. It is offered...

  14. Meet CMI Researcher Theresa Windus | Critical Materials Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    in August of 2006. She develops new methods and algorithms for high performance computational chemistry as well as applying those techniques to both basic and applied research. ...

  15. Meet CMI Researcher Patrick Zhang | Critical Materials Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Patrick Zhang CMI Researcher Patrick Zhang is at the Florida Industrial and Phosphate ... Recovery of Rare Earths and Uranium from Florida Phosphate Ore Processing. A recording of ...

  16. Meet CMI Researcher Brian Sales | Critical Materials Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Brian is internationally recognized for his research on new thermoelectric materials that convert heat directly into electricity with no moving parts. Brian is also known for his ...

  17. Critical Materials Institute announces multi-faceted research...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    new research initiative in partnership with Rio Tinto, a mining and metals company. ... Tinto's fully-integrated copper mining and refining operations in Salt Lake City, Utah. ...

  18. Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND...

    Office of Science (SC)

    Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear ...

  19. UNLV Information Science Research Institute quarterly progress report

    SciTech Connect

    Nartker, T.A.

    1994-03-31

    Sections of this report include: symposium activity, staff activity, document analysis program, text-retrieval program, institute activity, etc. It is believed that as large, complete collections of documents become available in digital libraries, users will demand complete interaction with the information; document access mechanisms will have to grow beyond keywords and full-text searches to include browsing, searching of images, and searching on basis of abstract concepts. It is proposed to study the microform document conversion process, including image preprocessing, recognition, postprocessing for extracting information, and natural language techniques. Characterization of algorithms will allow generation of a system that automatically adapts to a wide range of image quality, thereby allowing large-scale conversion efforts. It is proposed to focus first on the NSF Antarctic database (approx. 55,000 documents).

  20. Performance Engineering Research Institute SciDAC-2 Enabling Technologies Institute Final Report

    SciTech Connect

    Hall, Mary

    2014-09-19

    Enhancing the performance of SciDAC applications on petascale systems has high priority within DOE SC. As we look to the future, achieving expected levels of performance on high-end com-puting (HEC) systems is growing ever more challenging due to enormous scale, increasing archi-tectural complexity, and increasing application complexity. To address these challenges, PERI has implemented a unified, tripartite research plan encompassing: (1) performance modeling and prediction; (2) automatic performance tuning; and (3) performance engineering of high profile applications. The PERI performance modeling and prediction activity is developing and refining performance models, significantly reducing the cost of collecting the data upon which the models are based, and increasing model fidelity, speed and generality. Our primary research activity is automatic tuning (autotuning) of scientific software. This activity is spurred by the strong user preference for automatic tools and is based on previous successful activities such as ATLAS, which has automatically tuned components of the LAPACK linear algebra library, and other re-cent work on autotuning domain-specific libraries. Our third major component is application en-gagement, to which we are devoting approximately 30% of our effort to work directly with Sci-DAC-2 applications. This last activity not only helps DOE scientists meet their near-term per-formance goals, but also helps keep PERI research focused on the real challenges facing DOE computational scientists as they enter the Petascale Era.

  1. Cyclotron Institute » Graduate Studies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Graduate Studies Students wishing to carry out their dissertation research at the Cyclotron Institute must be formally enrolled in the graduate program in the departments of Physics, Chemistry, or Nuclear Engineering, but may elect to work with any Institute faculty research advisor, irrespective of that advisor's departmental affiliation. Research programs at the Cyclotron Institute are generally funded by the U.S. Department of Energy, the National Science Foundation, and the Robert A. Welch

  2. INSTITUTE COLLOQUIA AND SEMINARS

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    09-March 31, 2010 2009 April 17 Professor Jian-Wei Qiu, Department of Physics and Astronomy, Iowa State University, Ames, Iowa and Brookhaven National Laboratory, Upton, New York QCD and High Energy Nuclear Collisions April 21 Dr. Peter Levai, KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary Can We Find Quark-Gluon Plasma in pp Collision at LHC? April 28 Professor Wolfgang Mittig, NSCL, Michigan State University, East Lansing, Michigan Nuclear Power and Global Energy

  3. A Strategy for Nuclear Energy Research and Development

    SciTech Connect

    Ralph G. Bennett

    2008-12-01

    The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: 1) Increase the electricity generated by non-emitting sources to mitigate climate change, 2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, 3) Reduce the transportation sector’s dependence on imported fossil fuels, and 4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energy’s share will require a coordinated research effort—combining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R&D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R&D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally.

  4. Critical Materials Institute Gains Ten Industrial and Research...

    Energy.gov [DOE] (indexed site)

    The Mosaic Company NASA Glenn Research Center Niron Magnetics, Inc. REEcycle, Inc. Rio Tinto J.R. Simplot Company Urban Mining The new affiliates have been welcomed by CMI since a ...

  5. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    SciTech Connect

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-21

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  6. EM’s Minority Serving Institutions Partnership Program Issues Fiscal Year 2015 Research Contracts

    Energy.gov [DOE]

    WASHINGTON, D.C. – EM recently awarded contracts worth $3.3 million to support applied research and technology development projects at eight minority-serving institutions (MSIs).

  7. Inhalation Toxicology Research Institute. Annual report, October 1, 1992--September 30, 1993

    SciTech Connect

    Nikula, K.J.; Belinsky, S.A.; Bradley, P.L.

    1993-11-01

    This annual report for the Inhalation Toxicology Research Institute for 1992-1993 consists of 60 individual reports prepared separately by investigators describing progress in their own projects. Most papers are 2-5 pages long.

  8. Institute for Scientific Computing Research Annual Report for Fiscal Year 2003

    SciTech Connect

    Keyes, D; McGraw, J

    2004-02-12

    The University Relations Program (URP) encourages collaborative research between Lawrence Livermore National Laboratory (LLNL) and the University of California campuses. The Institute for Scientific Computing Research (ISCR) actively participates in such collaborative research, and this report details the Fiscal Year 2003 projects jointly served by URP and ISCR.

  9. National Institute for Petroleum and Energy Research 1989 annual report

    SciTech Connect

    Not Available

    1990-11-01

    Research programs on reservoir rocks petroleum, and enhanced recovery are briefly presented. Topics include: Geotechnology; reservoir assessment and characterization; TORIS Research Support; three phase relative permeability; static pore structure analysis of reservoir rocks; effects of pore structure on oil/contaminants ganglia distribution; development of improved microbial flooding methods; development of improved surfactant flooding systems; development of improved alkaline flooding methods; development of improved mobility-control methods; gas miscible displacement; development of improved immiscible gas displacement methodology; thermal processes for light oil recovery; thermal processes for heavy oil recovery; an application of natural isotopes in groundwater for solving environmental problems; processing and thermodynamics research; thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds; in situ hydrogenation; and fuel chemistry.

  10. Meet CMI Researcher Anja Mudring | Critical Materials Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Anja Mudring CMI researcher Anja Mudring CMI researcher Anja Mudring is a materials chemist who is harmessing the promising qualities of ionic liquids, salts in a liquid state, to optimize processes for critical materials. "Ionic liquids have a lot of useful qualities, but most useful for materials processing is that ionic liquids are made up of two parts: the cation and the anion. We can play around with the chemical identities of each of those components and that opens the doors to huge

  11. The role of research in nuclear regulation: A Korean perspective

    SciTech Connect

    Yoon, Won-Hyo

    1997-01-01

    Korea has carried out a very ambitious nuclear power program since the 1970`s as part of the nation`s industrialization policy. Ever since, Korea has also maintained a strong commitment to nuclear power development as an integral part of the national energy policy which aims at reducing external vulnerability and ensuring against a global fossil fuel shortage. The introduction of nuclear power into Korea has progressed through three stages: the first was a turn-key package supplied by the manufacturer; the second involved a major contractor who was responsible for project management, and design and construction was contracted out, with Korean industry becoming more involved; the third stage has seen Korean industries involved as main contractors based on experience gained from earlier plants. The success of Korea`s nuclear power program depends in large part on how to insure safety. Safety has the highest priority in nuclear energy development. Public acceptance has been the most critical problem faced by the nuclear industry in Korea. The public demands the highest level of safety all through the design, construction, and operation of nuclear power plants. Korea has learned that a nuclear plant designed with well addressed safety, implementation of a well grounded QA program during construction, and operated with a proven record of safety, are the only ways to earn public support. Competent and efficient regulation with a strong safety culture and openness in all issues is the most desirable image for regulators to strive for. Korea established a ten year R & D program to obtain self-reliance in nuclear technology and international competitiveness by the early 2000`s in 1992. It has actively participated in coordinated research programs in safety issues with bodies including the USNRC, AECB of Canada, IAEA, and OECD/NEA.

  12. The radioisotope complex project “RIC-80” at the Petersburg Nuclear Physics Institute

    SciTech Connect

    Panteleev, V. N. Barzakh, A. E.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Moroz, F. V.; Molkanov, P. L.; Orlov, S. Yu.; Volkov, Yu. M.

    2015-12-15

    The high current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed at Petersburg Nuclear Physics Institute. One of the main goals of the C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. The project development of the radioisotope complex RIC-80 (radioisotopes at the cyclotron C-80) at the beam of C-80 has been completed. The RIC-80 complex is briefly discussed in this paper. The combination of the mass-separator with the target-ion source device, available at one of the new target stations for on-line or semi on-line production of a high purity separated radioisotopes, is explored in greater detail. The results of target and ion source tests for a mass-separator method for the production of high purity radioisotopes {sup 82}Sr and {sup 223,224}Ra are also presented.

  13. Meet CMI Researcher Ed Jones | Critical Materials Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ed Jones CMI focus area deputy leader Ed Jones CMI researcher Ed Jones has been at Lawrence Livermore National Laboratory (LLNL) for 22 years, where his work has centered on the analysis, engineering, reliability and performance of energy, environmental, and national asset systems, including infrastructure and materials. He has developed extensive capabilities in the application of probabilistic methods and models to complex performance problems. Recent innovations have been applied to carbon

  14. Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL | U.S.

    Office of Science (SC)

    DOE Office of Science (SC) Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown

  15. Nuclear weapons research holds benefits for tech industry | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) weapons research holds benefits for tech industry Tuesday, May 31, 2016 - 5:05pm Sandia National Laboratories' Alec Talin inspects a silicon chip coated with a thin oxide layer, an array of platinum electrodes and a MOF film. Optical absorption and interference in the MOF and silicon-dioxide layers give it the deep blue color. Research work performed at NNSA's national laboratories generates fervor among scientists worldwide because it produces new

  16. Proceedings of the 26th Seismic Research Review: Trends in Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Review: Trends in Nuclear Explosion Monitoring Citation Details In-Document Search Title: Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring ...

  17. Inhalation Toxicology Research Institute. Annual report, October 1, 1995--September 30, 1996

    SciTech Connect

    Bice, D.E.; Hahn, F.F.; Henderson, R.F.

    1996-12-01

    The Inhalation Toxicology Research Institute (ITRI) is a Government-owned facility leased and operated by the Lovelace Biomedical and Environmental Research Institute (LBERI) as a private, nonprofit research and testing laboratory. LBERI is an operating subsidiary of the Lovelace Respiratory Research Institute. Through September 30, 1996, ITRI was a Federally Funded Research and Development Center operated by Lovelace for the US Department of Energy (DOE) as a {open_quotes}Single Program Laboratory{close_quotes} within the DOE Office of Health and Environmental Research, Office of Energy Research. Work for DOE continues in the privatized ITRI facility under a Cooperative Agreement. At the time of publication, approximately 70% of the Institute`s research is funded by DOE, and the remainder is funded by a variety of Federal agency, trade association, individual industry, and university customers. The principal mission of ITRI is to conduct basic and applied research to improve our understanding of the nature and magnitude of the human health impacts of inhaling airborne materials in the home, workplace, and general environment. Institute research programs have a strong basic science orientation with emphasis on the nature and behavior of airborne materials, the fundamental biology of the respiratory tract, the fate of inhaled materials and the mechanisms by which they cause disease, and the means by which data produced in the laboratory can be used to estimate risks to human health. Disorders of the respiratory tract continue to be a major health concern, and inhaled toxicants are thought to contribute substantially to respiratory morbidity. As the country`s largest facility dedicated to the study of basic inhalation toxicology, ITRI provides a national resource of specialized facilities, personnel, and educational activities serving the needs of government, academia, and industry.

  18. INSTITUTE COLLOQUIA AND SEMINARS

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1-March 31, 2002 2001 April 10 Dr. Massimo Di Toro, LNS/INFN and the University of Catania, Italy Isospin Effects on Nuclear Dynamics April 12 Dr. C. Lewis, U.S. Environmental Protection Agency, Research Triangle, North Carolina Air Pollution Research Using Radiocarbon Measurements April 17 Professor Olga Kocharovskaya, Department of Physics, Texas A&M University, College Station, Texas Laser Control of Mossbauer Nuclear Transitions May 1 Dr. Bency John, Cyclotron Institute, Texas A&M

  19. Nuclear Safety Research and Development (NSR&D) Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Safety Research and Development (NSR&D) Program Nuclear Safety Research and Development (NSR&D) Program The Nuclear Safety Research and Development (NSR&D) Program is managed by the Office of Nuclear Safety, within the Office of Environment, Health, Safety and Security (AU) to provide corporate-level leadership supporting nuclear safety research and development throughout the Department of Energy (DOE). The NSR&D Program also consults with the Nuclear Safety Council,

  20. EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel

    Office of Energy Efficiency and Renewable Energy (EERE)

    This study analyzes the potential environmental impacts of adopting a policy to manage foreign research reactor spent nuclear fuel containing uranium enriched in the United States. In particular, the study examines the comparative impacts of several alternative approaches to managing the spent fuel.

  1. Final Report: Northeastern Regional Center of the DOE's National Institute for Climatic Change Research

    SciTech Connect

    Davis, Kenneth

    2014-01-14

    Administration of the NERC of NICCR began at Penn State in December of 2005 and ended in December of 2011. During that time, five requests for proposals were released and five rounds of proposals were reviewed, awarded and administered. Throughout this award, 203 pre-proposals have been received by the NERC in five RFPS and 110 full proposals invited. Of the 110 full proposals reviewed, 53 were funded (most in full, some partially) resulting in 51 subcontracts. These awards were distributed among 17 universities and 3 non-governmental research institutes. Full proposals have been received from 29 universities and 5 non-governmental research institutes. Research activities have now been completed.

  2. National Institute for Petroleum and Energy Research monthly progress report for December 1990

    SciTech Connect

    Not Available

    1991-01-22

    Research programs from the National Institute for Petroleum and Energy Research (NIPER) are briefly described. Topics include enhanced recovery, studies on reservoir rock, microbial EOR, development of analytical techniques for petroleum analysis, and imaging techniques applied to fluids study in porous media. (CBS)

  3. The role of research in nuclear regulation: Opening remarks

    SciTech Connect

    Taylor, J.M.

    1997-01-01

    More than 20 years ago, the Energy Reorganization Act of 1974 created the USNRC and that same act provided for an office of nuclear regulatory research. It`s what is called a statutory office within the NRC. In providing for an NRC research program, our Congress had several things to say about the character of the research that would be performed. First, NRC should perform such research as is necessary for the effective performance of the Commission`s licensing and related regulatory functions. Second, the research may be characterized as confirmatory reassessment related to the safe operation and the protection of commercial reactors and other nuclear materials. Third, the NRC should have an independent capability for developing and analyzing technical information related to reactor safety, safeguards, and environmental protection in support of both the licensing and regulatory processes. Fourth, the research should not go beyond the need for confirmatory assessment, because the NRC should never be place in a position of having generated and then having to defend basic design data of its own. This has been and continues to be the role of research at the NRC. Somewhat different purposes might apply for regulatory agencies in other countries. Several regulatory agencies are represented here on this panel, so some of these difference may be discussed.

  4. Joint Actinide Shock Physics Experimental Research | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Joint Actinide Shock Physics Experimental Research The JASPER gas gun at the Nevada National Security Site is used to fire a projectile at a plutonium target. The shock wave produced by the impact passes through the plutonium, and diagnostic equipment measures the properties of the shocked plutonium. Shock physics experiments such as this are critical to maintaining the safety and security of the nation's stockpile in the absence of underground nuclear

  5. institutional research

    National Nuclear Security Administration (NNSA)

    leadership on issues and matters related to R&D.

    Please select the links below for more information:

    • Nuclear power and the public: an update of collected survey research on nuclear power

      SciTech Connect

      Rankin, W.L.; Melber, B.D.; Overcast, T.D.; Nealey, S.M.

      1981-12-01

      The purpose of this research was to collect, analyze, and summarize all of the nuclear power-related surveys conducted in the United States through June 1981, that we could obtain. The surveys collected were national, statewide, and areawide in scope. Slightly over 100 surveys were collected for an earlier, similar effort carried out in 1977. About 130 new surveys were added to the earlier survey data. Thus, about 230 surveys were screened for inclusion in this report. Because of space limitations, national surveys were used most frequently in this report, followed distantly by state surveys. In drawing our conclusions about public beliefs and attitudes toward nuclear power, we placed most of our confidence in survey questions that were used by national polling firms at several points in time. A summary of the research findings is presented, beginning with general attitudes toward nuclear power, followed by a summary of beliefs and attitudes about nuclear power issues, and ended by a summary of beliefs and attitudes regarding more general energy issues.

    • Emerging battery research in Indonesia: The role of nuclear applications

      SciTech Connect

      Kartini, E.

      2015-12-31

      Development of lithium ion batteries will play an important role in achieving innovative sustainable energy. To reduce the production cost of such batteries, the Indonesian government has instituted a strategy to use local resources. Therefore, this technology is now part of the National Industrial Strategic Plan. One of the most important scientific challenges is to improve performance of lithium batteries. Neutron scattering is a very important technique to investigate crystal structure of electrode materials. The unique properties of neutrons, which allow detection of light elements such as lithium ions, are indispensable. The utilization of neutron scattering facilities at the Indonesian National Nuclear Energy Agency will provide significant contributions to the development of improved lithium ion battery technologies.

    • Pantex to Become Wind Energy Research Center | National Nuclear Security

      National Nuclear Security Administration (NNSA)

      Administration | (NNSA) Pantex to Become Wind Energy Research Center May 01, 2014 Officials from the National Nuclear Security Administration Production Office (NPO) and Texas Tech University (TTU) signed an agreement today that could pave the way for the Pantex Plant to become a leading force in the drive to increase use of renewable wind energy. File 2014-05-01 NPO Wind Research.docx NPO Press Releases September 2016 (1) August 2016 (1) May 2016 (1) February 2016 (1) January 2016 (1) March

    • Cyclotron Institute » Facilities Overview

      U.S. Department of Energy (DOE) - all webpages (Extended Search)

      Facilities Overview Facility Layout The Cyclotron Institute has expanded steadily since commissioning the original cyclotron in 1967 and is currently upgrading again. The diagram to the left shows the variety of sophisticated detectors and spectrometers that enhance the Institute's capacity for nuclear research. Follow the links in the menu for more detailed information about our facilities

    • An overview of criticality safety research at the All-Russian Research Institute of Experimental Physics

      SciTech Connect

      Kuvshinov, M.I.; Voinov, A.M.; Yuferev, V.I.

      1997-06-01

      This paper presents a summary of experimental and calculational activities conducted at VNIIEF from the late 1940s to now to study the critical conditions of systems as part of a nuclear safety program. 9 refs., 1 tab.

    • Secretary Chu Announces Funding for 71 University-Led Nuclear Research and

      Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

      Development Projects | Department of Energy 71 University-Led Nuclear Research and Development Projects Secretary Chu Announces Funding for 71 University-Led Nuclear Research and Development Projects May 6, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Energy Secretary Steven Chu today announced the selection of 71 university research project awards as part of the Department of Energy's investments in cutting-edge nuclear energy research and development (R&D). Under the Nuclear Energy

    • Characteristics of potential repository wastes: Volume 4, Appendix 4A, Nuclear reactors at educational institutions of the United States; Appendix 4B, Data sheets for nuclear reactors at educational institutions; Appendix 4C, Supplemental data for Fort St. Vrain spent fuel; Appendix 4D, Supplemental data for Peach Bottom 1 spent fuel; Appendix 4E, Supplemental data for Fast Flux Test Facility

      SciTech Connect

      Not Available

      1992-07-01

      Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility.

    • 2008 Summer Research Institute Interfacial and Condensed Phase Chemical Physics Annual Report

      SciTech Connect

      Garrett, Bruce C.; Tonkyn, Russell G.; Avery, Nachael B.

      2008-11-01

      For the fifth year, the Pacific Northwest National Laboratory in Richland, Washington, invited graduate students, postdoctoral fellows, university faculty, and students entering graduate students from around the world to participate in the Summer Research Institute in Interfacial and Condensed Phase Chemical Physics. The institute offers participants the opportunity to gain hands-on experience in top-notch research laboratories while working along internationally respected mentors. Of the 38 applicants, 20 were accepted for the 8- to 10-week program. The participants came from universities as close as Seattle and Portland and as far away as Germany and Singapore. At Pacific Northwest National Laboratory, the 20 participants were mentored by 13 scientists. These mentors help tailor the participant’s experience to the needs of that person. Further, the mentors provide guidance on experimental and theoretical techniques, research design and completion, and other aspects of scientific careers in interfacial and condensed phase chemical physics. The research conducted at the institute can result in tangible benefits for the participants. For example, many have co-authored papers that have been published in peer-reviewed journals, including top-rated journals such as Science. Also, they have presented their research at conferences, such as the Gordon Research Conference on Dynamics at Surfaces and the AVS national meeting. Beyond that, many of the participants have started building professional connections with researchers at Pacific Northwest National Laboratory, connections that will serve them well during their careers.

    • [Climate implications of terrestrial paleoclimate]. Quaternary Sciences Center, Desert Research Institute annual report, fiscal year 1994/1995

      SciTech Connect

      Wigand, P.E.

      1995-12-31

      The objective of this study is to collect terrestrial climate indicators for paleoclimate synthesis. The paleobiotic and geomorphic records are being examined for the local and regional impact of past climates to assess Yucca Mountain`s suitability as a high-level nuclear waste repository. In particular these data are being used to provide estimates of the timing, duration and extremes of past periods of moister climate for use in hydrological models of local and regional recharge that are being formulated by USGS and other hydrologists for the Yucca Mountain area. The project includes botanical, faunal, and geomorphic components that will be integrated to accomplish this goal. To this end personnel at the Quaternary Sciences Center of the Desert Research Institute in Reno, Nevada are conducting the following activities: Analyses of packrat middens; Analysis of pollen samples; and Determination of vegetation climate relationships.

    • Heavy Oil Database from the National Institute for Petroleum and Energy Research (NIPER)

      DOE Data Explorer

      The Heavy Oil Database resulted from work funded by DOE and performed at the National Institute for Petroleum and Energy Research (NIPER). It contains information on more than 500 resevoirs in a Microsoft Excel spreadsheet. The information was collected in 1992 and updated periodically through 2003. Save the zipped file to your PC, then open to access the data.

    • The role of research in nuclear regulation: An NRC perspective

      SciTech Connect

      Morrison, D.L.

      1997-01-01

      The role of research in the US Nuclear Regulatory Commission was broadly defined by the US Congress in the Energy Reorganization Act of 1975. This Act empowered the Commission to do research that it deems necessary for the performance of its licensing and regulatory functions. Congress cited a need for an independent capability that would support the licensing and regulatory process through the development and analysis of technical information related to reactor safety, safeguards and environmental protection. Motivation for establishing such a safety research function within the regulatory agency is the need to address the defects, abnormal occurrences and shutdowns involving light water reactors. Congress further stated that the NRC should limit its research to {open_quotes}confirmatory assessment{close_quotes} and that the Agency {open_quotes}should never be placed in a position to generate, and then have to defend, basic design data of its own.{close_quotes} The author reviews the activities of the research arm as related to regulatory research, performed in the past, today, and projected for the future. NRC`s public health and safety mission demands that its research products be developed independently from its licensees; be credible and of the highest technical quality as established through peer review; and open to the public scrutiny through publication in technical journals as well as NRC documents. A special trust is placed on regulatory research through the products it produces as well as the three dimensions that underlie the processes through which they are produced.

    • 2007 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

      SciTech Connect

      Beck, Kenneth M.

      2007-10-31

      The Pacific Northwest National Laboratory (PNNL) hosted its fourth annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from April through September 2007. During this time, 21 PNNL scientists hosted 23 participants from 20 different universities. Of the 23 participants, 20 were graduate students, 1 was a postdoctoral fellow, and 2 were university faculty members. This report covers the essense of the program and the research the participants performed.

    • About the Cyclotron Institute REU Program

      U.S. Department of Energy (DOE) - all webpages (Extended Search)

      About Our Program Dr. Rapp's group meeting. Each summer the Texas A&M Cyclotron Institute, in conjunction with the National Science Foundation, serves as a Research Experiences for Undergraduates (REU) site. The Institute's REU program focuses on research in nuclear physics and nuclear chemistry. Students are given the opportunity to work closely with internationally renowned scientists at our facility. Oral presentations are held at the end of the program. Undergraduates gain research

    • Basic Science Research to Support the Nuclear Materials Focus Area

      SciTech Connect

      Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

      2002-02-26

      The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

    • Basic science research to support the nuclear material focus area

      SciTech Connect

      Boak, J. M.; Eller, P. Gary; Chipman, N. A.; Castle, P. M.

      2002-01-01

      The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  1. Electric power research institute environmental control technology center report to the steering committee

    SciTech Connect

    1998-08-08

    Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DST) test block with the Carbon Injection System. The 1.0 MW Cold- Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini- Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future project work is identified.

  2. Nuclear physics detector technology applied to plant biology research

    SciTech Connect

    Weisenberger, Andrew G.; Kross, Brian J.; Lee, Seung Joo; McKisson, John E.; Xi, Wenze; Zorn, Carl J.; Howell, Calvin; Crowell, A.S.; Reid, C.D.; Smith, Mark

    2013-08-01

    The ability to detect the emissions of radioactive isotopes through radioactive decay (e.g. beta particles, x-rays and gamma-rays) has been used for over 80 years as a tracer method for studying natural phenomena. More recently a positron emitting radioisotope of carbon: {sup 11}C has been utilized as a {sup 11}CO{sub 2} tracer for plant ecophysiology research. Because of its ease of incorporation into the plant via photosynthesis, the {sup 11}CO{sub 2} radiotracer is a powerful tool for use in plant biology research. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using {sup 11}CO{sub 2}. Presently there are several groups developing and using new PET instrumentation for plant based studies. Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with the Duke University Phytotron and the Triangle Universities Nuclear Laboratory (TUNL) is involved in PET detector development for plant imaging utilizing technologies developed for nuclear physics research. The latest developments of the use of a LYSO scintillator based PET detector system for {sup 11}CO{sub 2} tracer studies in plants will be briefly outlined.

  3. FY 2013 Consolidated Innovative Nuclear Research FOA (DE-FOA-0000799) |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Consolidated Innovative Nuclear Research FOA (DE-FOA-0000799) FY 2013 Consolidated Innovative Nuclear Research FOA (DE-FOA-0000799) The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing

  4. Status of Activities on Rehabilitation Of Radioactively Contaminated Facilities and the Site of Russian Research Center ''Kurchatov Institute''

    SciTech Connect

    Volkov, V. G.; Ponomarev-Stepnoi, N. N.; Melkov, E. S; Ryazantsev, E. P.; Dikarev, V. S.; Gorodetsky, G. G.; Zverkov, Yu. A.; Kuznetsov, V. V.; Kuznetsova, T. I.

    2003-02-25

    This paper describes the program, the status, and the course of activities on rehabilitation of radioactively contaminated facilities and the territory of temporary radioactive waste (radwaste) disposal at the Russian Research Center ''Kurchatov Institute'' (RRC KI) in Moscow as performed in 2001-2002. The accumulation of significant amounts of radwaste at RRC KI territory is shown to be the inevitable result of Institute's activity performed in the days of former USSR nuclear weapons project and multiple initial nuclear power projects (performed from 1950's to early 1970's). A characterization of RRC KI temporary radwaste disposal site is given. Described is the system of radiation control and monitoring as implemented on this site. A potential hazard of adverse impacts on the environment and population of the nearby housing area is noted, which is due to possible spread of the radioactive plume by subsoil waters. A description of the concept and project of the RRC KI temporary radwaste disposal site is presented. Specific nature of the activities planned and performed stems from the nearness of housing area. This paper describes main stages of the planned activities for rehabilitation, their expected terms and sources of funding, as well as current status of the project advancement. Outlined are the problems faced in the performance and planning of works. The latter include: diagnostics of the concrete-grouted repositories, dust-suppression technologies, packaging of the fragmented ILW and HLW, soil clean-up, radioactive plume spread prevention, broad radiation monitoring of the work zone and environment in the performance of rehabilitation works. Noted is the intention of RRC KI to establish cooperation with foreign, first of all, the U.S. partners for the solution of problems mentioned above.

  5. Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs

    SciTech Connect

    Murray, Alice M.; Marra, John E.; Wilmarth, William R.; Mcguire, Patrick W.; Wheeler, Vickie B.

    2013-07-03

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS

  6. Summer 2008 Cyclotron Institute REU Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    8 Career Day Recap 2008 CEU Summer 2008 Program The Texas A&M Cyclotron Institute, in conjunction with the National Science Foundation, is serving as a Research Experiences for Undergraduates site during the summer of 2008. This REU site focuses on research in nuclear physics and nuclear chemistry. Students will have the opportunity to work closely with internationally renowned scientists at a major university-based nuclear facility. Undergraduates will gain research experience by carrying

  7. Summer 2009 Cyclotron Institute REU Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    9 Career Day Recap 2009 CEU 2009 Projects Summer 2009 Program The Texas A&M Cyclotron Institute, in conjunction with the National Science Foundation, is serving as a Research Experiences for Undergraduates site during the summer of 2009. This REU site focuses on research in nuclear physics and nuclear chemistry. Students will have the opportunity to work closely with internationally renowned scientists at a major university-based nuclear facility. Undergraduates will gain research experience

  8. Summer 2017 Cyclotron Institute REU Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Summer 2017 Program The Texas A&M Cyclotron Institute, in conjunction with the National Science Foundation, is serving as a Research Experiences for Undergraduates site during the summer of 2017. This REU site focuses on research in nuclear physics and nuclear chemistry. Students will have the opportunity to work closely with internationally renowned scientists at a major university-based nuclear facility. Undergraduates will gain research experience by carrying out specific projects under

  9. 2006 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    SciTech Connect

    Avery, Nikki B.; Barlow, Stephan E.

    2006-11-10

    The Pacific Northwest National Laboratory (PNNL) hosted its third annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2006. During this period, twenty PNNL scientists hosted twenty-seven scientists from twenty-five different universities. Of the twenty-seven participants, one was a graduating senior; twenty-one were graduate students; one was a postdoctoral fellow; and four were university faculty members.

  10. Refractory Research Group - U.S. DOE, Albany Research Center [Institution Profile

    SciTech Connect

    Bennett, James P.

    2004-09-01

    The refractory research group at the Albany Research Center (ARC) has a long history of conducting materials research within the U.S. Bureau of Mines, and more recently, within the U.S. Dept. of Energy. When under the U.S. Bureau of Mines, research was driven by national needs to develop substitute materials and to conserve raw materials. This mission was accomplished by improving refractory material properties and/or by recycling refractories using critical and strategic materials. Currently, as a U.S. Dept of Energy Fossil Energy field site, research is driven primarily by the need to assist DOE in meeting its vision to develop economically and environmentally viable technologies for the production of electricity from fossil fuels. Research at ARC impacts this vision by: Providing information on the performance characteristics of materials being specified for the current generation of power systems; Developing cost-effective, high performance materials for inclusion in the next generation of fossil power systems; and Solving environmental emission and waste problems related to fossil energy systems. A brief history of past refractory research within the U.S. Bureau of Mines, the current refractory research at ARC, and the equipment and capabilities used to conduct refractory research at ARC will be discussed.

  11. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    SciTech Connect

    Gerber, Richard A.; Wasserman, Harvey J.

    2012-03-02

    IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

  12. DECOMMISSIONING OF THE NUCLEAR FACILITIES OF VKTA AT THE ROSSENDORF RESEARCH SITE

    SciTech Connect

    U. Helwig, W. Boessert

    2003-02-27

    VKTA decommissioned the old nuclear facilities of former GDR's (German Democratic Republic) Central Institute of Nuclear Research which was closed end of 1991. VKTA is responsible for fissile material and waste management, environmental and radiation protection and runs an accredited laboratory for environmental and radionuclide analytics. The Rossendorf research site is located east of the city of Dresden. The period from 1982 to about 1997 was mainly characterized by obtaining the necessary licenses for decommissioning and developing a new infrastructure (i.e. waste treatment facility, interim storages for fissile material and waste, clearance monitoring facility). The decommissioning work has been in progress since that time. The decommissioning projects are concentrated on three complexes: (1) the reactors and a fuel development and testing facility, (2) the radioisotope production facilities, and (3) the former liquid and solid waste storage facilities. The status of decommissioning progress and treatment of the residues will be demonstrated. Finally an outlook will be given on the future tasks of VKTA based on the ''Conception VKTA 2000 plus'', which was confirmed by the Saxonian government last year.

  13. International Nuclear Energy Research Initiative Development of Computational Models for Pyrochemical Electrorefiners of Nuclear Waste Transmutation Systems

    SciTech Connect

    M.F. Simpson; K.-R. Kim

    2010-12-01

    In support of closing the nuclear fuel cycle using non-aqueous separations technology, this project aims to develop computational models of electrorefiners based on fundamental chemical and physical processes. Spent driver fuel from Experimental Breeder Reactor-II (EBR-II) is currently being electrorefined in the Fuel Conditioning Facility (FCF) at Idaho National Laboratory (INL). And Korea Atomic Energy Research Institute (KAERI) is developing electrorefining technology for future application to spent fuel treatment and management in the Republic of Korea (ROK). Electrorefining is a critical component of pyroprocessing, a non-aqueous chemical process which separates spent fuel into four streams: (1) uranium metal, (2) U/TRU metal, (3) metallic high-level waste containing cladding hulls and noble metal fission products, and (4) ceramic high-level waste containing sodium and active metal fission products. Having rigorous yet flexible electrorefiner models will facilitate process optimization and assist in trouble-shooting as necessary. To attain such models, INL/UI has focused on approaches to develop a computationally-light and portable two-dimensional (2D) model, while KAERI/SNU has investigated approaches to develop a computationally intensive three-dimensional (3D) model for detailed and fine-tuned simulation.

  14. Summer 2010 Cyclotron Institute REU Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Cyclotron Institute REU Program 2010 REU Lecture Notes Poster Guidelines 2010 Career Day Recap 2010 CEU 2010 Projects Summer 2010 Program The Texas A&M Cyclotron Institute, in conjunction with the National Science Foundation, is serving as a Research Experiences for Undergraduates site during the summer of 2010. This REU site focuses on research in nuclear physics and nuclear chemistry. Students will have the opportunity to work closely with internationally renowned scientists at a major

  15. Engineering Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Institute Engineering Institute Multidisciplinary engineering research that integrates advanced modeling and simulations, novel sensing systems and new developments in information technology. May 14, 2013 Los Alamos Research Park Los Alamos Research Park, the home of Engineering Institute Contact Institute Director Charles Farrar (505) 665-0860 Email UCSD EI Director Michael Todd (858) 534-5951 Executive Administrator Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505)

  16. Successful Completion of the Largest Shipment of Russian Research Reactor High-Enriched Uranium Spent Nuclear Fuel from Czech Republic to Russian Federation

    SciTech Connect

    Michael Tyacke; Dr. Igor Bolshinsky; Jeff Chamberlin

    2008-07-01

    On December 8, 2007, the largest shipment of high-enriched uranium spent nuclear fuel was successfully made from a Russian-designed nuclear research reactor in the Czech Republic to the Russian Federation. This accomplishment is the culmination of years of planning, negotiations, and hard work. The United States, Russian Federation, and the International Atomic Energy Agency have been working together on the Russian Research Reactor Fuel Return (RRRFR) Program in support of the Global Threat Reduction Initiative. In February 2003, RRRFR Program representatives met with the Nuclear Research Institute in Rež, Czech Republic, and discussed the return of their high-enriched uranium spent nuclear fuel to the Russian Federation for reprocessing. Nearly 5 years later, the shipment was made. This paper discusses the planning, preparations, coordination, and cooperation required to make this important international shipment.

  17. United States-Republic of Korea (ROK) International Nuclear Energy Research

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Initiative (INERI) Annual Steering Committee Meeting | Department of Energy States-Republic of Korea (ROK) International Nuclear Energy Research Initiative (INERI) Annual Steering Committee Meeting United States-Republic of Korea (ROK) International Nuclear Energy Research Initiative (INERI) Annual Steering Committee Meeting January 14, 2015 - 9:33am Addthis United States-Republic of Korea (ROK) International Nuclear Energy Research Initiative (INERI) Annual Steering Committee Meeting On

  18. Research in theoretical nuclear and neutrino physics. Final report

    Office of Scientific and Technical Information (OSTI)

    ANNIHILATION; FLAVOR MODEL; SUPERNOVAE; QUANTUM CHROMODYNAMICS; HEAVY ION REACTIONS; SUN; NUCLEAR THEORY; CONVERSION; CHARM PARTICLES; PROGRESS REPORT; NONLUMINOUS MATTER; STAR...

  19. Nuclear Safety Research and Development Status Workshop Summary

    Office of Environmental Management (EM)

    Department of Energy Nuclear Safety Regulatory Framework DOE's Nuclear Safety Enabling Legislation Regulatory Enforcement & Oversight Regulatory Governance Atomic Energy Act 1946 Atomic Energy Act 1954 Energy Reorganization Act 1974 DOE Act 1977 Authority and responsibility to regulate nuclear safety at DOE facilities 10 CFR 830 10 CFR 835 10 CFR 820 Regulatory Implementation Nuclear Safety Radiological Safety Procedural Rules ISMS-QA; Operating Experience; Metrics and Analysis Cross Cutting

  20. Opportunities for Russian Nuclear Weapons Institute developing computer-aided design programs for pharmaceutical drug discovery. Final report

    SciTech Connect

    1996-09-23

    The goal of this study is to determine whether physicists at the Russian Nuclear Weapons Institute can profitably service the need for computer aided drug design (CADD) programs. The Russian physicists` primary competitive advantage is their ability to write particularly efficient code able to work with limited computing power; a history of working with very large, complex modeling systems; an extensive knowledge of physics and mathematics, and price competitiveness. Their primary competitive disadvantage is their lack of biology, and cultural and geographic issues. The first phase of the study focused on defining the competitive landscape, primarily through interviews with and literature searches on the key providers of CADD software. The second phase focused on users of CADD technology to determine deficiencies in the current product offerings, to understand what product they most desired, and to define the potential demand for such a product.

  1. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented

  2. Inhalation Toxicology Research Institute annual report, October 1, 1987--September 30, 1988

    SciTech Connect

    Mewhinney, J.A.; Bechtold, W.E.; Sun, J.D.; Coons, T.A.

    1988-12-01

    The mission of the Inhalation Toxicology Research Institute is to investigate the nature and magnitude of human health effects that result from the inhalation of airborne materials at home, in the work place, or in the general environment. Diseases of the respiratory tract are major causes of suffering and death, and many of these diseases are directly related to the materials that people breathe. The Institute's research is directed toward obtaining a better understanding of the basic biology of the respiratory tract and the mechanisms by which inhaled materials produce respiratory disease. Special attention is focused on studying the airborne materials released by various energy technologies, as well as those associated with national defense activities. The research uses a wide-ranging, comprehensive array of investigative approaches that are directed toward characterizing the source of the airborne material, following the material through its potential transformation in the air, identifying the mechanisms that govern its inhalation and deposition in the respiratory tract, and determining the fate of these inhaled materials in the body and the health effects they produce. The ultimate objectives are to determine the roles played by inhaled materials in the development of disease processes and to estimate the risk they pose to humans who may be exposed to them.

  3. Cyclotron-based nuclear science. Progress report, April 1, 1979-March 31, 1980

    SciTech Connect

    Not Available

    1980-06-01

    Research at the cyclotron institute is summarized. These major areas are covered: nuclear structure; nuclear reactions and scattering; polarization studies; interdisciplinary nuclear science; instrumentation and systems development; and publications. (GHT)

  4. Summer 2011 Cyclotron Institute REU Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1 REU Lecture Notes Poster Guidelines 2011 Career Day Recap 2011 CEU 2011 Projects Summer 2011 Program The Texas A&M Cyclotron Institute, in conjunction with the National Science Foundation, is serving as a Research Experiences for Undergraduates site during the summer of 2011. This REU site focuses on research in nuclear physics and nuclear chemistry. Students will have the opportunity to work closely with internationally renowned scientists at a major university-based nuclear facility.

  5. Summer 2012 Cyclotron Institute REU Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2 REU Lecture Notes Poster Guidelines 2012 Career Day Recap 2012 CEU 2012 Projects Summer 2012 Program The Texas A&M Cyclotron Institute, in conjunction with the National Science Foundation, is serving as a Research Experiences for Undergraduates site during the summer of 2012. This REU site focuses on research in nuclear physics and nuclear chemistry. Students will have the opportunity to work closely with internationally renowned scientists at a major university-based nuclear facility.

  6. Summer 2013 Cyclotron Institute REU Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3 REU Lecture Notes Poster Guidelines 2013 Career Day Recap 2013 CEU 2013 Projects Summer 2013 Program The Texas A&M Cyclotron Institute, with support from the National Science Foundation, is serving as a Research Experiences for Undergraduates site during the summer of 2013. This REU site focuses on research in nuclear physics and nuclear chemistry. Students will have the opportunity to work closely with internationally renowned scientists at a major university-based nuclear facility.

  7. Summer 2014 Cyclotron Institute REU Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4 REU Lecture Notes Poster Guidelines 2014 Career Day Recap 2014 CEU 2014 Projects Summer 2014 Program The Texas A&M Cyclotron Institute, in conjunction with the National Science Foundation, is serving as a Research Experiences for Undergraduates site during the summer of 2014. This REU site focuses on research in nuclear physics and nuclear chemistry. Students will have the opportunity to work closely with internationally renowned scientists at a major university-based nuclear facility.

  8. Summer 2015 Cyclotron Institute REU Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    5 REU Lecture Notes Poster Guidelines 2015 Career Day Recap 2015 CEU 2015 Projects Summer 2015 Program The Texas A&M Cyclotron Institute, in conjunction with the National Science Foundation, is serving as a Research Experiences for Undergraduates site during the summer of 2014. This REU site focuses on research in nuclear physics and nuclear chemistry. Students will have the opportunity to work closely with internationally renowned scientists at a major university-based nuclear facility.

  9. Summer 2016 Cyclotron Institute REU Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    6 REU Lecture Series Poster Guidelines 2016 Career Day Recap 2016 CEU 2016 Projects Summer 2016 Program The Texas A&M Cyclotron Institute, in conjunction with the National Science Foundation, is serving as a Research Experiences for Undergraduates site during the summer of 2016. This REU site focuses on research in nuclear physics and nuclear chemistry. Students will have the opportunity to work closely with internationally renowned scientists at a major university-based nuclear facility.

  10. Respiratory diseases research at NIOSH: reviews of research programs of the National Institute for Occupational Safety and Health

    SciTech Connect

    2008-07-01

    Respiratory diseases caused by exposures to dangerous materials in the workplace have tremendous implications for worker health and, by extension, the national economy. The National Institute for Occupational Safety and Health (NIOSH) estimates that deaths from work-related respiratory diseases and cancers account for about 70% of all occupational disease deaths. NIOSH conducts research in order to detect and reduce work-related hazardous exposures, injuries, and diseases; its Respiratory Disease Research Program (RDRP) focuses on respiratory diseases. This National Research Council book reviews the RDRP to evaluate the 1) relevance of its work to improvements in occupational safety and health and 2) the impact of research in reducing workplace respiratory illnesses. The assessment reveals that the program has made essential contributions to preventing occupational respiratory disease. The National Research Council has rated the Program a 5 out of 5 for relevance, and a 4 out of 5 for impact. To further increase its effectiveness, the Respiratory Disease Research Program should continue and expand its current efforts, provide resources for occupational disease surveillance, and include exposure assessment scientists in its activities. There are numerous references to respiratory systems diseases caused by coal mining. 4 apps.

  11. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee, July 1996

    SciTech Connect

    1996-11-15

    Operations and maintenance continued this month at the Electric Power Research Institute's Environmental Control Technology Center. Testing for the Hazardous Air Pollutant (HAP) test block was conducted using the Carbon Injection System (the 4.0 MW Spray Dryer Absorber System and the Pulse Jet Fabric Filter). Testing also continued across the B and W/CHX Heat Exchanger project. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode. Inspections of these idled systems were conducted this month.

  12. Inhalation Toxicology Research Institute annual report, October 1, 1993--September 30, 1994

    SciTech Connect

    Belinsky, S. A.; Hoover, M. D.; Bradley, P. L.

    1994-11-01

    This document from the Inhalation Toxicology Research Institute includes annual reports in the following general areas: (I) Aerosol Technology and Characterization of Airborne Materials; (II) Deposition, transport, and clearance of inhaled Toxicants; (III) Metabolism and Markers of Inhaled Toxicants; (IV) Carcinogenic Responses to Toxicants; (V) Mechanisms of carcinogenic response to Toxicants; (VI) Non carcinogenic responses to inhaled toxicants; (VII) Mechanisms of noncarcinogenic Responses to Inhaled Toxicants; (VIII) The application of Mathematical Modeling to Risk Estimates. 9 appendices are also included. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  13. Electrical Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect

    None, None

    1998-02-18

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the EPRI/ADA Technologies dry sorbent sampling unit and the testing of Hg catalysts/sorbents in this low-flow, temperature controlled system. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future work is identified.

  14. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect

    None, None

    1998-01-12

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini-Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future project work is identified.

  15. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect

    None, None

    1997-10-01

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future work is identified.

  16. Nuclear engineer Stauff awarded for excellence in research and early-career

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    leadership | Argonne National Laboratory Nuclear engineer Stauff awarded for excellence in research and early-career leadership November 9, 2015 Tweet EmailPrint Launching a career in the sciences or engineering can be difficult, but Argonne National Laboratory nuclear engineer Nicolas Stauff has risen to the challenge. The American Nuclear Society (ANS) presented Stauff the 2015 Young Member Excellence Award for his contributions to innovative nuclear developments and collaborative

  17. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for

  18. Review of the Gas Research Institute's 1981 research and development program

    SciTech Connect

    Not Available

    1980-07-21

    The initial review, completed by a Board Study Group in 1979 contained general recommendations on GRI's R and D program, most of which were subsequently implemented by FERC and GRI. In 1980, a Study Group was formed once more and its report was reviewed individually by ERAB members. This report notes that particularly noteworthy was the response of GRI to ERAB's 1979 recommendations, which indicated an open-minded and flexible approach despite the somewhat complex internal review process employed by GRI. The report also notes favorably the shift in support towards the efficient utilization program. It advises caution in its methane from kelp program, and urges that GRI focus more sharply on the key questions that may eventually limit the technology. It also suggests that GRI would do well to place somewhat more emphasis on the development of phosphoric acid fuel cell technology and de-emphasize the molten carbonate technology. The Board was also pleased to find that the GRI program was in general well integrated with DOE and other research programs, despite uncertainties and delays arising from cost-sharing or funding by DOE.

  19. Foreign Research Reactor Spent Nuclear Fuel Acceptance Program

    National Nuclear Security Administration (NNSA)

    * Complete reactor control rod system. * Note: Does not include the steam turbine generator portion of the power plant. - Sensitive nuclear technology: Any information...

  20. Researchers put pressure on hydrogen | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    put pressure on hydrogen | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  1. Status of Recommendations from the Nuclear Energy Research Advisory...

    Energy Saver

    ... performance testing, electric vehicle data analysisperformance assessment, and wireless charging system performance testing INL lead the first Integrated Nuclear-Renewable ...

  2. Nuclear Physics: Experiment Research - Call for Beam Time Requests

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks ... Jefferson Lab Users Group From : Nuclear Physics Experiment Scheduling Committee Subject: ...

  3. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect

    P. E. MacDonald

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen

  4. Final Scientific/Technical Report: National Institute for Climatic Change Research Coastal Center

    SciTech Connect

    Tornqvist, Torbjorn; Chambers, Jeffrey

    2014-01-07

    It is widely recognized that coastal environments are under particular threat due to changes associated with climate change. Accelerated sea-level rise, in some regions augmented by land subsidence, plus the possibility of a changing storm climate, renders low-lying coastal landscapes and their ecosystems vulnerable to future change. This is a pressing problem, because these ecosystems commonly rank as some of the most valuable on the planet. The objective of the NICCR Coastal Center was to support basic research that aims at reducing uncertainty about ecosystem changes during the next century, carried out along the U.S. coastlines. The NICCR Coastal Center has funded 20 projects nationwide (carried out at 27 institutions) that addressed numerous aspects of the problems outlined above. The research has led to a variety of new insights, a significant number of which published in elite scientific journals. It is anticipated that the dissemination of this work in the scientific literature will continue for several more years, given that a number of projects have only recently reached their end date. In addition, NICCR funds have been used to support research at Tulane University. The lion’s share of these funds has been invested in the development of unique facilities for experimental research in coastal ecosystems. This aspect of the work could have a lasting impact in the future.

  5. Electric Power Research Institute Environmental Control Technology Center final monthly technical report, August 1995

    SciTech Connect

    1995-08-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit this month involved the Trace Element Removal (TER) test block, and the simultaneous testing of the Lime Forced Oxidation process with DBA addition (LDG). Additionally, the second phase of the 1995 Carbon Injection test block began this month with the SDA/PJFF test configuration. At the end of the LDG testing this month, a one-week baseline test was conducted to generate approximately 200 lbs. of magnesium-lime FGD solids for analysis. On the 1.0 MW Post-FGD Selective Catalytic Reduction (SCR) unit, performance testing was continued this month as measurements were taken for NO{sub x} removal efficiency, residual ammonia slip, and S0{sub 3} generation across the catalysts installed in the reactor. As a result of new directions received from EPRI, this will be the last scheduled month of testing for the SCR unit in 1995. At the completion of this month, the unit will be isolated from the flue gas path and placed in a cold-standby mode for future test activities. This report describes the status of facilities and test facilities at the pilot and mini-pilot plants.

  6. Electric Power Research Institute, Environmental Control Technology Center report to the steering committee. Final technical report

    SciTech Connect

    1995-12-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued with the Pilot High Velocity FGD (PHV) and the Trace Element Removal (TER) test blocks. In the High Velocity test block, SO{sub 2} removal and mist eliminator carryover rates were investigated while operating the absorber unit with various spray nozzle types and vertical mist eliminator sections. During the Trace Element Removal test block, the mercury measurements and control studies involving the EPA Method 29 continued with testing of several impinger capture solutions, and the use of activated carbon injection across the Pulse-Jet Fabric Filter (PJFF) unit. The 4.0 MW Spray Dryer Absorber System was utilized this month in the TER test configuration to inject and transfer activated carbon to the PJFF bags for downstream mercury capture. Work also began in December to prepare the 0.4 MW Mini-Pilot Absorber system for receipt of the B and W Condensing Heat Exchanger (CHX) unit to be used in the 1996 DOE/PRDA testing. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit remained in cold-standby this month.

  7. Seaborg Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Institute Seaborg Institute The institute provides a primary mechanism for fostering cooperation and collaboration in actinide science among the national laboratories, university campuses, and the national and international actinide science community. Contact Director Albert Migliori (505) 663-5627 Email Deputy Director Franz Freibert (505) 667-6879 Email Professional Staff Assistant Susan Ramsay (505) 665-0858 Email actinide The Seaborg Institute at Los Alamos integrates research programs,

  8. MIDWESTERN REGIONAL CENTER OF THE DOE NATIONAL INSTITUTE FOR CLIMATIC CHANGE RESEARCH

    SciTech Connect

    Burton, Andrew J.

    2014-02-28

    The goal of NICCR (National Institute for Climatic Change Research) was to mobilize university researchers, from all regions of the country, in support of the climatic change research objectives of DOE/BER. The NICCR Midwestern Regional Center (MRC) supported work in the following states: North Dakota, South Dakota, Nebraska, Kansas, Oklahoma, Minnesota, Iowa, Missouri, Wisconsin, Illinois, Michigan, Indiana, and Ohio. The MRC of NICCR was able to support nearly $8 million in climatic change research, including $6,671,303 for twenty projects solicited and selected by the MRC over five requests for proposals (RFPs) and $1,051,666 for the final year of ten projects from the discontinued DOE NIGEC (National Institute for Global Environmental Change) program. The projects selected and funded by the MRC resulted in 135 peer-reviewed publications and supported the training of 25 PhD students and 23 Masters students. Another 36 publications were generated by the final year of continuing NIGEC projects supported by the MRC. The projects funded by the MRC used a variety of approaches to answer questions relevant to the DOE’s climate change research program. These included experiments that manipulated temperature, moisture and other global change factors; studies that sought to understand how the distribution of species and ecosystems might change under future climates; studies that used measurements and modeling to examine current ecosystem fluxes of energy and mass and those that would exist under future conditions; and studies that synthesized existing data sets to improve our understanding of the effects of climatic change on terrestrial ecosystems. In all of these efforts, the MRC specifically sought to identify and quantify responses of terrestrial ecosystems that were not well understood or not well modeled by current efforts. The MRC also sought to better understand and model important feedbacks between terrestrial ecosystems, atmospheric chemistry, and regional

  9. Environmental Survey preliminary report, National Institute for Petroleum and Energy Research, Bartlesville, Oklahoma

    SciTech Connect

    Not Available

    1989-01-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the US Department of Energy's (DOE) National Institute for Petroleum and Energy Research (NIPER), conducted February 29 through March 4, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Team members are being provided by private contractors. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NIPER. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NIPER and interviews with site personnel. 35 refs., 8 figs., 15 tabs.

  10. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect

    None, None

    1997-11-01

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. Also, several installation activities were initiated this month for the testing of a new EPRI/ADA Technologies sorbent sampling system in December. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future work is identified.

  11. About the Neutron and Nuclear Science Research (WNR) facility...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center (Target-1), and a proton reaction area (Target-2). ...

  12. Electric Power Research Institute Environmental Control Technology Center: Report to the Steering Committee, June 1996

    SciTech Connect

    1996-06-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the Hazardous Air Pollutant (HAP) test block was conducted using the 4.0 MW Spray Dryer Absorber System (SDA) and Pulse Jet Fabric Filter (PJFF) - Carbon Injection System. Investigations also continued across the B&W/CHX Heat Exchanger unit, while the 1.0 MW Selective Catalytic Reduction (SCR) unit remained idle this month in a cold-standby mode as monthly inspections were conducted. Pilot Testing Highlights Testing efforts in June were focused on the HAP test block and the Trace Elements Removal (TER) test block. Both programs were conducted on the 4.0 MW wet FGD pilot unit and PJFF unit. The HAP test block was temporarily concluded in June to further review the test data. This program began in March as part of the DOE Advanced Power Systems Program; the mission of this program is to accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. The 1996 HAP test block focuses on three research areas, including: Catalytic oxidation of vapor-phase elemental mercury; Enhanced particulate-phase HAPs removal by electrostatic charging of liquid droplets; and Enhanced mercury removal by addition of additives to FGD process liquor. The TER test block is part of EPRI`s overall program to develop control technology options for reduction of trace element emissions. This experimental program investigates mercury removal and mercury speciation under different operating conditions.

  13. Secretary Chu Announces $38 Million for 42 University-Led Nuclear Research

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Development Projects | Department of Energy 8 Million for 42 University-Led Nuclear Research and Development Projects Secretary Chu Announces $38 Million for 42 University-Led Nuclear Research and Development Projects May 20, 2010 - 12:00am Addthis Washington, D.C. - U.S. Secretary of Energy Steven Chu today announced the selection of 42 university-led research and development projects for awards totaling $38 million. These projects, funded over three to four years through the

  14. Project of a Super Charm-Tau factory at the Budker Institute of Nuclear Physics in Novosibirsk

    SciTech Connect

    Bondar, A. E.

    2013-09-15

    A project of a Super Charm-Tau factory is being developed at the Budker Institute of Nuclear Physics (Siberian Branch, Russian Academy of Sciences) in Novosibirsk. The electron-positron collider to be employed will operate at c.m. energies in the range between 2 and 5 GeV at an unprecedentedly high luminosity of 10{sup 35} cm{sup -2} s{sup -1} with a longitudinal electron polarization at the beam-interaction point. The main objective of experiments at the Super Charm-Tau factory is to study processes involving the production and properties of charmed quarks and tau leptons. A high luminosity of this setup will make it possible to obtain a statistical data sample that will be three to four orders of magnitude vaster than that from any other experiment performed thus far. Experiments at this setup are assumed to be sensitive to effects of new physics beyond the Standard Model. Investigations to be carried out at the Super-Charm-Tau factory will supplement future experiments at Super-B factories under construction in Italy and in Japan.

  15. International Source Book: Nuclear Fuel Cycle Research and Development Vol 1 Volume 1

    SciTech Connect

    Harmon, K. M.; Lakey, L. T.

    1983-07-01

    This document starts with an overview that summarizes nuclear power policies and waste management activities for nations with significant commercial nuclear fuel cycle activities either under way or planned. A more detailed program summary is then included for each country or international agency conducting nuclear fuel cycle and waste management research and development. This first volume includes the overview and the program summaries of those countries listed alphabetically from Argentina to Italy.

  16. Office of Nuclear Energy to Enhance Small Business Access to Research Facilities

    Energy.gov [DOE]

    Furthering efforts to encourage clean energy innovation in nuclear energy, the Department of Energy (DOE) released a draft Request for Assistance (RFA) today for the Nuclear Energy Voucher Program to be used by small business applicants. The voucher program will give businesses access to DOE’s unique, globally recognized facilities and researchers, which will help them further their efforts to develop next generation nuclear energy technologies.

  17. Department of Energy Announces 24 Nuclear Energy Research Awards to U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Universities | Department of Energy 24 Nuclear Energy Research Awards to U.S. Universities Department of Energy Announces 24 Nuclear Energy Research Awards to U.S. Universities December 15, 2005 - 4:46pm Addthis $12 Million in Support to Be Provided for Innovative R&D Projects WASHINGTON, D.C. - The U.S. Department of Energy (DOE) today announced 24 research awards totaling $12 million over three years to U.S. universities to engage students and professors in DOE's advanced nuclear

  18. Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report

    SciTech Connect

    Ritterbusch, S.E.

    2000-08-01

    The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

  19. 2015 Call for Proposals for the Department of Energy (DOE) Nuclear Safety Research and Development (NSR&D) Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    2015 Call for Proposals for the Department of Energy (DOE) Nuclear Safety Research and Development (NSR&D) Program.

  20. Cutting energy costs in public housing: Technical issues, institutional barriers, and research needs

    SciTech Connect

    Ritschard, R.; Goldman, C.; Vine, E.; Mills, E.; Greely, K.

    1986-11-01

    As part of a US Department of Energy (DOE) program on multifamily retrofit performance, Lawrence Berkeley Laboratory initiated an effort to learn what is known about energy use and conservation in the public housing sector. This report provides a summary of that information including a profile of the existing data on energy use patterns and conservation potential in public housing drawn from two major reports, from a survey of 40 large public housing authorities, from a 1983 Conference, and from contacts with various HUD staff. It presents the physical characteristics of existing public housing buildings, their energy use patterns, and the potential for conservation. Also described are technical, informational, economic, behavioral, and institutional barriers that hinder the efforts of local housing authorities and HUD to promote energy conservation. We identify a set of research topics that can help overcome existing barriers. For each topic, a brief research agenda, for pursuit by DOE over the next few years, is developed. Studies have been initiated on four of the areas (reported elsewhere) including analyses of baseline energy use, retrofit performance, conservation investments, and the monitoring of solar hot water retrofits at one San Francisco housing project.

  1. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  2. An Information Building on Radioactivity and Nuclear Energy for the French CEA Cadarache Research Center - 13492

    SciTech Connect

    Brunel, Guy; Denis, Dominique; Boulet, Alain

    2013-07-01

    The CEA Cadarache research center is one of the 10 research centers of the French Alternative Energies and Atomic Energy Commission (CEA). Distributed throughout various research platforms, it focuses on nuclear fission, nuclear fusion, new energy technologies (hydrogen, solar, biomass) and fundamental research in the field of vegetal biology. It is the most important technological research and development centers for energy in Europe. Considering the sensitive nature of nuclear activities, the questions surrounding the issue of radioactive waste, the nuclear energy and the social, economic and environmental concerns for present and future generations, the French Government asked nuclear actors to open communication and to give all the information asked by the Local Information Commission (CLI) and the public [1]. In this context, the CEA Cadarache has decided to better show and explain its expertise and experience in the area of nuclear energy and nuclear power plant design, and to make it available to stakeholders and to the public. CEA Cadarache receives each year more than 9000 visitors. To complete technical visits of the research facilities and laboratories, a scientific cultural center has been built in 2011 to inform the public on CEA Cadarache research activities and to facilitate the acceptance of nuclear energy in a way suited to the level of knowledge of the visitors. A modern interactive exhibition of 150 m{sup 2} allows visitors to find out more about energy, CEA Cadarache research programs, radioactive waste management and radiological impact on the research center activities. It also offers an auditorium for group discussions and for school groups to discover science through enjoyment. This communication center has received several thousand visitors since its opening on October 2011; the initial results of this experience are now available. It's possible to explain the design of this exhibition, to give some statistics on the number of the visitors

  3. Utility-industry restructuring and the future of state energy research and technology transfer institutions

    SciTech Connect

    Pye, M.; Nadel, S.

    1998-07-01

    State energy research and technology transfer institutions (SERTTI) are state and regional organizations that have historically filled in gaps when a state need was not met. SERTTI build on research of the federal government and universities and focus on technologies with potential for timely commercialization. They have made valuable contributions to the energy balance, economic development, and environment of their states and the nation. SERTTI prospects are uncertain given their dependency on funding from oil-overcharges and utilities in an era of utility restructuring, oil-overcharge fund depletion, and general declines in energy research and development (R and D). SERTTI are likely to continue following restructuring, with funding from traditional sources or systems benefits charges, however, the R{ampersand}D mix and SERTTI activities will probably change. Unless provisions are made, utility investments in public-benefit R and D are likely to fall precipitously, reducing benefits and diminishing state-level R and D efforts because there will be less utility funding for SERTTI to leverage. Many R and D issues emerge that all states will need to address as they make restructuring decisions: What is public-benefit R and D, how can it be more effective, how much funding should be provided, who should administer funds, how should funds be allocated? Is a dedicated R and D fund needed? Is there a role for SERTTI to be involved in technology transfer? This paper looks at the current situation of state-level R and D in regard to restructuring and suggests answers to these questions.

  4. Spain-Chile and Spain-Ecuador cooperation in the field of research nuclear reactors

    SciTech Connect

    Avendano, G.; Rodriguez, M.L.; Manas, L.; Masalleras, E.; Montes, J.

    1981-01-01

    The Spanish Board of Nuclear Energy (JEN) has been cooperating for the last several years with the Comision Chilena de Energia Nuclear (Chilean Commission of Nuclear Energy (CCHEN)), on the one hand, and with the Comision Ecuatoriana de Energia Atomica (Ecuadorian Commission of Atomic Energy (CEEA)), on the other. The result of this cooperation has been the implementation of projects in both countries to create research centers around a nuclear reactor as the main working tool: the Lo Aguirre reactor in Chile and the Ruminahui reactor in Ecuador.

  5. CASL - Massachusetts Institute of Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Massachusetts Institute of Technology Cambridge, MA The Department of Nuclear Science and Engineering at MIT has been a leader in the development of the nuclear engineering...

  6. Strategy/Approach for Qualification of Nuclear Components Produced Via AM„Project Objectives

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Power Research Institute, Inc. All rights reserved. David W. Gandy, FASM Nuclear Materials Electric Power Research Institute Davgandy@epri.com AMM Workshop October 17-18, 2016 Strategy/Approach for Qualification of Nuclear Components Produced Via AM 2 © 2016 Electric Power Research Institute, Inc. All rights reserved. Introduction  ASME, NRC, and industry are struggling to identify strategy/approach for nuclear quality components manufactured by AM.  Current approach requires

  7. Research in nuclear astrophysics: Stellar collapse and supernovae. Performance reports, December 1, 1991--November 30, 1992

    SciTech Connect

    Lattimer, J.M.; Yahil, A.

    1992-07-01

    This progress report describes the nuclear astrophysics research activities in the Earth and Space Sciences Department at Stony Brook during the last year. Our research focused on three aspects of nuclear astrophysics: (1) the equation of state of hot, dense matter, (2) the origin of supernovae and neutron stars, (3) the early cooling epoch of neutron stars. The following contains detailed reports which summarize each completed project.

  8. DOE and NRCan Agreement to Enhance Collaboration in Civilian Nuclear Energy Research and Development

    Energy.gov [DOE]

    U.S. Energy Secretary Ernest Moniz and Natural Resources of Canada Minister Greg Rickford signed an Implementing Arrangement on January 13, 2015 among the U.S. Department of Energy (DOE), the Department of Natural Resources of Canada (NRCan) and Atomic Energy of Canada Limited (AECL) to increase collaboration in the area of civilian nuclear energy research and development (R&D). Through the International Nuclear Energy Research Initiative (INERI), the Implementing Arrangement establishes a framework for R&D collaboration between the United States and Canada aimed at improving the cost, safety, efficiency and proliferation resistance of nuclear energy systems in the civilian sector. The Implementing Arrangement signed today provides for technical areas of collaboration in nuclear safety, reactor lifetime management, advanced reactor technologies, nuclear materials and fuels, modeling and simulation, and used fuel recycling and disposition technologies.

  9. Materials Issues in Advanced Nuclear Systems: Executive Summary of DOE Basic Research Needs Workshop, "Basic Research Needs for Advanced Nuclear Energy Systems"

    SciTech Connect

    Roberto, James B; Diaz de la Rubia, Tomas

    2007-01-01

    This article is reproduced from excerpts from the Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, U.S. Department of Energy, October 2006, www.sc.doe.gov/bes/reports/files/ANES_rpt.pdf.

  10. Indiana Manufacturing Institute Breaks Ground at Purdue University in support of Composites Manufacturing Research

    Energy.gov [DOE]

    The Institute for Advanced Composites Manufacturing Innovation (IACMI) that was officially launched by the Energy Departments Assistant Secretary for Energy Efficiency and Renewable Energy Dr....

  11. Small Business Independent Market Research Program | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Independent Market Research Program Researching, identifying, and evaluating, high-quality, top-performing, and competitively-priced small business suppliers for NNSA programs is the function of this tool. Once a program requirement is identified, an independent research task is activated to locate top-of-the-line small businesses with capabilities in the specific performance areas. Generally, four steps are taken before the final research results are

  12. Researcher, Los Alamos National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Researcher, Los Alamos National Laboratory Turab Lookman Turab Lookman 2009 LANL Fellows Prize for Outstanding Research in Science or Engineering Turab Lookman has received the 2009 LANL Fellows Prize for Outstanding Research in Science or Engineering, which commends individuals for exemplary research performed at the Laboratory within the past 10 years that has had a significant impact on a scientific discipline or program. The committee selected Lookman for

  13. Geothermal resource base of the world: a revision of the Electric Power Research Institute's estimate

    SciTech Connect

    Aldrich, M.J.; Laughlin, A.W.; Gambill, D.T.

    1981-04-01

    Review of the Electric Power Research Institute's (EPRI) method for calculating the geothermal resource base of a country shows that modifications are needed for several of the assumptions used in the calculation. These modifications include: (1) separating geothermal belts into volcanic types with a geothermal gradient of 50{sup 0}C/km and complex types in which 80% of the area has a temperature gradient of 30{sup 0}C/km and 20% has a gradient of 45{sup 0}C/km, (2) using the actual mean annual temperature of a country rather than an assumed 15{sup 0}C average ambient temperature, and (3) making separate calculations for the resource stored in water/brine and that stored in rock. Comparison of this method (Revised EPRI) for calculating a geothermal resource base with other resource base estimates made from a heat flow map of Europe indicates that the technique yields reasonable values. The calculated geothermal resource bases, stored in water and rock to a depth of 5 km, for each country in the world are given. Approximately five times as much energy is stored in rock as is stored in water.

  14. Comprehensive Baseline Environmental Audit of the Inhalation Toxicology Research Institute, Albuquerque, New Mexico

    SciTech Connect

    Not Available

    1993-06-01

    This report documents the results of the Comprehensive Baseline Environmental Audit conducted at the Inhalation Toxicology Research Institute (ITRI) in Albuquerque, New Mexico. The scope of the audit at the ITRI was comprehensive, addressing environmental activities in the technical areas of air; soils, sediments, and biota; surface water/drinking water; groundwater; waste management; toxic and chemical materials; quality assurance; radiation; inactive waste sites; environmental management; and environmental monitoring programs. Specifically assessed was the compliance of ITRI operations and activities with Federal, state, and local regulations; DOE Orders; internal operating standards; and best management practices. Onsite activities included inspection of ITRI facilities and operations; review of site documents; interviews with DOE and contractor personnel, as well as representatives from state regulatory agencies; and reviews of previous appraisals. Using these sources of information, the environmental audit team developed findings, which fell into two general categories: compliance findings and best management practice findings. Each finding also identifies apparent causal factor(s) that contributed to the finding and will assist line management in developing ``root causes`` for implementing corrective actions.

  15. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    SciTech Connect

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X

  16. Cyclotron Institute REU Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NOW TAKING APPLICATIONS FOR SUMMER 2017 REU! "Texas A&M Science - Labors of Lab." REU student Kassie Marble featured in TAMU College of Science Video The Texas A&M Cyclotron Institute, with support from the National Science Foundation, serves as a Research Experiences for Undergraduates site during the summer of each year. Alysssa Dibidad in the K150 control room. This REU site focuses on research in nuclear and particle science. Students will have the opportunity to work

  17. Nuclear Science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of...

  18. Research, Development, Test, and Evaluation | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Programs Research, Development, Test, and Evaluation Forty-eight final optic assemblies are symmetrically distributed around the upper and lower hemispheres of the target chamber of the National Ignition Facility at Lawrence Livermore National Laboratory The Office of Research, Development, Test, and Evaluation directs research, development, computer simulation, and inertial confinement fusion activities to maintain the safety, security and effectiveness of the

  19. Livermore team awarded for hydrogen production research | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) team awarded for hydrogen production research Thursday, August 28, 2014 - 1:19pm Three Lawrence Livermore researchers have received the Department of Energy's 2014 Hydrogen Production R&D Award for their research in producing hydrogen photoelectrochemically - by splitting water using sunlight. Shared with collaborators from the National Renewable Energy Laboratory (NREL) and the University of Nevada, Las Vegas (UNLV), the award recognizes the team for its

  20. Nuclear criticality research at the University of New Mexico

    SciTech Connect

    Busch, R.D.

    1997-06-01

    Two projects at the University of New Mexico are briefly described. The university`s Chemical and Nuclear Engineering Department has completed the final draft of a primer for MCNP4A, which it plans to publish soon. The primer was written to help an analyst who has little experience with the MCNP code to perform criticality safety analyses. In addition, the department has carried out a series of approach-to-critical experiments on the SHEBA-II, a UO{sub 2}F{sub 2} solution critical assembly at Los Alamos National Laboratory. The results obtained differed slightly from what was predicted by the TWODANT code.

  1. Progress in Research 2010 - 2011 / Cyclotron Institute / Texas A&M

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    University 0 - March 31, 2011 INTRODUCTION R.E. Tribble, Director SECTION I: NUCLEAR STRUCTURE, FUNDAMENTAL INTERACTIONS AND ASTROPHYSICS SECTION II: HEAVY ION REACTIONS SECTION III: NUCLEAR THEORY SECTION IV: ATOMIC AND MOLECULAR SCIENCE SECTION V: SUPERCONDUCTING CYCLOTRON AND INSTRUMENTATION

  2. Progress in Research 2011 - 2012 / Cyclotron Institute / Texas A&M

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    University 1 - March 31, 2012 INTRODUCTION R.E. Tribble, Director SECTION I: NUCLEAR STRUCTURE, FUNDAMENTAL INTERACTIONS AND ASTROPHYSICS SECTION II: HEAVY ION REACTIONS SECTION III: NUCLEAR THEORY SECTION IV: Miscellaneous SECTION V: SUPERCONDUCTING CYCLOTRON, INSTRUMENTATION, AND RIB UPGRADE

  3. The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Allen, Todd (Director, Center for Material Science of Nuclear Fuel); CMSNF Staff

    2016-07-12

    'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

  4. The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect

    Allen, Todd; CMSNF Staff

    2011-05-01

    'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

  5. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect

    Wetovsky, Marvin A.; Patterson, Eileen F.; Sandoval, Marisa N.

    2011-09-13

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  6. Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    SciTech Connect

    Wetovsky, Marv A; Aguilar-chang, Julio; Arrowsmith, Marie; Arrowsmith, Stephen; Baker, Diane; Begnaud, Michael; Harste, Hans; Maceira, Monica; Patton, Howard; Phillips, Scott; Randall, George; Revelle, Douglas; Rowe, Charlotte; Stead, Richard; Steck, Lee; Whitaker, Rod; Yang, Xiaoning

    2008-09-23

    These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  7. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2007-09-25

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  8. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect

    Wetovsky, Marvin A; Patterson, Eileen F

    2010-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  9. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2006-09-19

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  10. nuclear

    National Nuclear Security Administration (NNSA)

    2%2A en U.S-, Japan Exchange Best Practices on Nuclear Emergency Response http:nnsa.energy.govmediaroompressreleasesu.s-japan-exchange-best-practices-nuclear-emergency-respon...

  11. The role of research in nuclear regulation: Status and future activities in Japan

    SciTech Connect

    Soda, K.

    1997-01-01

    The role of nuclear regulation is grouped into the three categories in the Basic Safety Principles for Nuclear Power Plants, the INSAG-3 document of IAEA published in 1988. First category is to specify and develop standards and regulations for safety, and to issue licenses to operating organization. Second category is to inspect, monitor and review the safety performances of nuclear power plants and operating organizations. In the second category, corrective action may be ordered if it is found necessary after inspection, monitoring and review. The third category is to advocate safety research and disseminate safety information. Nuclear safety research is closely related to nuclear regulation. The licensing procedures of nuclear facilities requires a two step approach in Japan, that is, those who wish to construct and operate a nuclear plant must apply for a government approval for construction and operation. Safety examination is then performed first by the government, and the second examination is carried out by the Nuclear Safety Commission. In this process, research information is supplied to the Advisory Committee on Technical Matters which is under the Ministry of Trade and Industry and to the Committee on Examination of Reactor Safety which is under the Science and Technology Agency. Research organizations are asked by those Committees to provide data needed for safety examination and to perform safety analyses for verification of analyses submitted to the Committees by the licensees. in addition in the licensing procedures, examination guides needed for the safety examination are based on experimental data and analyses performed by research organizations by the government request.

  12. Progress in research, April 1, 1991--March 31, 1992, Texas A and M University Cyclotron Institute

    SciTech Connect

    1992-06-01

    Reports on research activities, facility operation, and facility development of the Texas A and M Cyclotron Institute for the period 1 April 1991--31 March 1992 are presented in this document. During the report period, the ECR-K500 Cyclotron Combination operated 4,377 hours. Of this time, 832 hours was used for beam development, 942 hours was used for tuning and optics, and the beam was available for experiments 2,603 hours. This time was used in a variety of studies including elastic and inelastic scattering, projectile break-up, the production and decay of giant resonances, fusion and fission dynamics, intermediate mass fragment emission, e{sup +}e{sup {minus}} production and molecular dissociation. In addition, studies of surfaces and metastable states in highly charged ions were carried out using the ECR source. Completion of two 19-element BaF{sub 2} arrays, of the focal plane detector for the proton spectrometer and installation of the HiLi multidetector have provided significant new experimental capabilities which have been further enhanced by major additions to the computer network. Progress on the Mass Achromat Recoil Spectrometer (MARS) is such that first operation of that device should occur this summer. Funding for installation of the MDM spectrometer was obtained at the beginning of this year. As this report is being completed, the Enge Split Pole Spectrometer is being disassembled and removed to make room for the MDM spectrometer. The split-pole will be shipped to CEBAF for use in experiments there. Installation of the MDM should be completed within the next year. Also expected in the next year is a 92 element plastic-CsI ball.

  13. National Institute for Petroleum and Energy Research quarterly technical report, July 1--September 30, 1992. Volume 2, Energy production research

    SciTech Connect

    Not Available

    1992-12-01

    Volume II includes: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology.

  14. The use of neutron scattering in nuclear weapons research

    SciTech Connect

    Juzaitis, R.J.

    1995-10-01

    We had a weapons science breakout session last week. Although it would have been better to hold it closer in time to this workshop, I think that it was very valuable. it may have been less of a {open_quotes}short-sleeve{close_quotes} workshop environment than we would have liked, but as the first time two communities-the weapons community and the neutron scattering community- got together, it was a wonderful opportunity to transfer information during the 24 presentations that were made. This report contains discussions on the fundamental analysis of documentation of the enduring stockpile; LANSCE`s contribution to weapons; spallation is critical to understanding; weapons safety assessments; applied nuclear physics requires cross section information; fission models need refinement; and establishing teams on collaborative projects.

  15. (National Institute for Petroleum and Energy Research) monthly progress report, February 1992

    SciTech Connect

    Not Available

    1992-03-01

    For this period, research is divided into Energy Production Research and Fuels Research. Energy Production Research includes reservoir characterization, microbial enhanced oil recovery, thermal EOR, alkaline flooding, gas flooding, flood process modelling, permeability and porosity research. Fuels Research included analysis of heavy crudes, and thermochemistry of organic nitrogen- and diheteroatom-containing compounds. The research of the Supplemental Government Program is also discussed.

  16. [National Institute for Petroleum and Energy Research] monthly progress report, February 1992

    SciTech Connect

    Not Available

    1992-03-01

    For this period, research is divided into Energy Production Research and Fuels Research. Energy Production Research includes reservoir characterization, microbial enhanced oil recovery, thermal EOR, alkaline flooding, gas flooding, flood process modelling, permeability and porosity research. Fuels Research included analysis of heavy crudes, and thermochemistry of organic nitrogen- and diheteroatom-containing compounds. The research of the Supplemental Government Program is also discussed.

  17. Associate Assistant Deputy Administrator, Defense Nuclear Nonproliferation Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    NNSA is a semi-autonomous agency of the Department of Energy (DOE). We manage highly visible U.S. National Security Programs, enhance U.S. national security through research, development,...

  18. Department of Energy Awards $3.8 Million in Funding to 38 U.S. Universities for Nuclear Research Infrastructure

    Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today strengthened its commitment to advancing nuclear power by awarding $100,000 to 38 universities to enhance nuclear research and development...

  19. Researcher, Los Alamos National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Los Alamos National Laboratory David S. Moore David Moore 2009 LANL Fellows Prize for Outstanding Leadership in Science or Engineering David S. Moore has received the 2009 LANL Fellows Prize for Outstanding Leadership in Science or Engineering, which commends individuals who stimulate the research interests of talented younger Laboratory staff members and who encourage junior researchers to make the personal sacrifices necessary to become effective leaders. The

  20. Procurement of State-of-the-Art Research Equipment to Support Faculty Members Within the RNAi Therapeutics Institute

    SciTech Connect

    Terence Flotte, MD; Patricia McNulty

    2010-06-29

    This project funded the procurement of state-of-the-art research equipment to support world class faculty members within the RNAi Therapeutics Institute, a central program of the Advanced Therapeutics Cluster (ATC) project. The equipment purchased under this grant supports the RNA Therapeutics Institute (RTI) at the University of Massachusetts Medical School which seeks to build a community of scientists passionate about RNA. By uniting researchers studying the fundamental biology and mechanisms of cellular RNAs with those working to devise human therapies using or targeting nucleic acids, the RTI represents a new model for scientific exploration. By interweaving basic and applied nucleic acid scientists with clinicians dedicated to finding new cures, our goal is to create a new paradigm for organizing molecular research that enables the rapid application of new biological discoveries to solutions for unmet challenges in human health.

  1. National Institute for Petroleum and Energy Research quarterly technical report, July 1--September 30, 1992

    SciTech Connect

    Gall, Bonnie L.; Liave, Feliciano M.; Noll, Leo A.

    1992-12-01

    Volume II includes: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology.

  2. Proceedings of the 23rd Seismic Research Symposium: Worldwide Monitoring of Nuclear Explosions

    SciTech Connect

    Warren, N. Jill; Chavez, Francesca C.

    2001-10-02

    These proceedings contain papers prepared for the 23rd Seismic Research Review: Worldwide Monitoring of Nuclear Explosions, held 2-5 October, 2001 in Jackson Hole, Wyoming. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  3. Dynamic nuclear polarization solid-state NMR in heterogeneous catalysis research

    DOE PAGES [OSTI]

    Kobayashi, Takeshi; Perras, Frédéric A.; Slowing, Igor I.; Sadow, Aaron D.; Pruski, Marek

    2015-10-20

    In this study, a revolution in solid-state nuclear magnetic resonance (SSNMR) spectroscopy is taking place, attributable to the rapid development of high-field dynamic nuclear polarization (DNP), a technique yielding sensitivity improvements of 2–3 orders of magnitude. This higher sensitivity in SSNMR has already impacted materials research, and the implications of new methods on catalytic sciences are expected to be profound.

  4. International Source Book: Nuclear Fuel Cycle Research and Development Volume 2

    SciTech Connect

    Harmon, K. M.; Lakey, L. T.

    1982-11-01

    This document starts with an overview that summarizes nuclear power policies and waste management activities for nations with significant commercial nuclear fuel cycle activities either under way or planned. A more detailed program summary is then included for each country or international agency conducting nuclear fuel cycle and waste management research and development. This second volume includes the program summaries of those countries listed alphabetically from Japan to Yugoslavia. Information on international agencies and associations, particularly the IAEA, NEA, and CEC, is provided also.

  5. Annual Report Nucelar Energy Research and Development Program Nuclear Energy Research Initiative

    SciTech Connect

    Hively, LM

    2003-02-13

    NERI Project No.2000-0109 began in August 2000 and has three tasks. The first project year addressed Task 1, namely development of nonlinear prognostication for critical equipment in nuclear power facilities. That work is described in the first year's annual report (ORNLTM-2001/195). The current (second) project year (FY02) addresses Task 2, while the third project year will address Tasks 2-3. This report describes the work for the second project year, spanning August 2001 through August 2002, including status of the tasks, issues and concerns, cost performance, and status summary of tasks. The objective of the second project year's work is a compelling demonstration of the nonlinear prognostication algorithm using much more data. The guidance from Dr. Madeline Feltus (DOE/NE-20) is that it would be preferable to show forewarning of failure for different kinds of nuclear-grade equipment, as opposed to many different failure modes from one piece of equipment. Long-term monitoring of operational utility equipment is possible in principle, but is not practically feasible for the following reason. Time and funding constraints for this project do not allow us to monitor the many machines (thousands) that will be necessary to obtain even a few failure sequences, due to low failure rates (<10{sup -3}/year) in the operational environment. Moreover, the ONLY way to guarantee a controlled failure sequence is to seed progressively larger faults in the equipment or to overload the equipment for accelerated tests. Both of these approaches are infeasible for operational utility machinery, but are straight-forward in a test environment. Our subcontractor has provided such test sequences. Thus, we have revised Tasks 2.1-2.4 to analyze archival test data from such tests. The second phase of our work involves validation of the nonlinear prognostication over the second and third years of the proposed work. Recognizing the inherent limitations outlined in the previous paragraph, Dr

  6. Jefferson Lab, a forefront U.S. Department of Energy nuclear physics research fa

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lab, a forefront U.S. Department of Energy nuclear physics research facility, provides world- class, unique research capabilities and innovative technologies to serve an international scientific user community. Specifically, the laboratory's mission is to: * deliver discovery-caliber research by exploring the atomic nucleus and its fundamental constituents, including precise tests of their interactions; * apply advanced particle accelerator, detector and other technologies to develop new basic

  7. The universe in the laboratory - Nuclear astrophysics opportunity at the facility for antiproton and ion research

    SciTech Connect

    Langanke, K. [GSI Helmholtzzentrum fr Schwerionenforschung, Technische Universitt Darmstadt, Frankfurt Institute of Advanced Studies, D-64291 Darmstadt (Germany)

    2014-05-09

    In the next years the Facility for Antiproton and Ion Research FAIR will be constructed at the GSI Helmholtzze-ntrum fr Schwerionenforschung in Darmstadt, Germany. This new accelerator complex will allow for unprecedented and pathbreaking research in hadronic, nuclear, and atomic physics as well as in applied sciences. This manuscript will discuss some of these research opportunities, with a focus on supernova dynamics and nucleosynthesis.

  8. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    SciTech Connect

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  9. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect

    Wetovsky, Marv A; Aguilar - Chang, Julio; Anderson, Dale; Arrowsmith, Marie; Arrowsmith, Stephen; Baker, Diane; Begnaud, Michael; Harste, Hans; Maceira, Monica; Patton, Howard; Phillips, Scott; Randall, George; Rowe, Charlotte; Stead, Richard; Steck, Lee; Whitaker, Rod; Yang, Xiaoning

    2009-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  10. Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring

    SciTech Connect

    Chavez, Francesca C; Benson, Jody; Hanson, Stephanie; Mark, Carol; Wetovsky, Marvin A

    2004-09-21

    These proceedings contain papers prepared for the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring, held 21-23 September, 2004 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  11. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base

    SciTech Connect

    Chavez, Francesca C.; Mendius, E. Louise

    2003-09-23

    These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  12. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2005-09-20

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  13. National Institute for Petroleum and Energy Research quarterly technical report, April 1--June 30, 1992. Volume 2, Energy production research

    SciTech Connect

    Not Available

    1992-09-01

    Progress reports are presented for: chemical flooding--supporting research; gas displacement-supporting research; thermal recovery-supporting research; geoscience technology; resource assessment technology; and microbial technology. (AT)

  14. [National Institute for Petroleum and Energy Research] quarterly technical report, October 1--December 31, 1992. Volume 2, Energy production research

    SciTech Connect

    Not Available

    1993-04-01

    Accomplishments for the past quarter are described for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology.

  15. National Institute for Petroleum and Energy Research quarterly technical report, April 1--June 30, 1992

    SciTech Connect

    Not Available

    1992-09-01

    Progress reports are presented for: chemical flooding--supporting research; gas displacement-supporting research; thermal recovery-supporting research; geoscience technology; resource assessment technology; and microbial technology. (AT)

  16. [National Institute for Petroleum and Energy Research] quarterly technical report, October 1--December 31, 1992

    SciTech Connect

    Not Available

    1993-04-01

    Accomplishments for the past quarter are described for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology.

  17. Decommissioning of German Nuclear Research Facilities under the Governance of the Federal Ministry of Education and Research

    SciTech Connect

    Weigl, M. [Forschungszentrum Karlsruhe GmbH, Projekttragerforschungszentrum Karlsruhe (PTKA-WTE), Karlsruhe (Germany)

    2008-07-01

    Since the announcement of the first nuclear program in 1956, nuclear R and D in Germany has been supported by the Federal Government under four nuclear programs and later on under more general energy R and D programs. The original goal was to help German industry to achieve safe, low-cost generation of energy and self-sufficiency in the various branches of nuclear technology, including the fast breeder reactor and the fuel cycle. Several national research centers were established to host or operate experimental and demonstration plants. These are mainly located at the sites of the national research centers at Juelich and Karlsruhe. In the meantime, all these facilities were shut down and most of them are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactor with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. For two other projects the return to 'green field' sites will be reached by the end of this decade. These are the dismantling of the Multi-Purpose Research Reactor (MZFR) and the Compact Sodium Cooled Reactor (KNK) both located at the Forschungszentrum Karlsruhe. Within these projects a lot of new solutions und innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). For example, high performance underwater cutting technologies like plasma arc cutting and contact arc metal cutting. (authors)

  18. Proceedings of the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration

    SciTech Connect

    Warren, N. Jill

    2002-09-17

    These proceedings contain papers prepared for the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration, held 17-19 September, 2002 in Ponte Vedra Beach, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  19. Nuclear Energy Research Initiative Cooperative Agreement DE-FC03-99SF21902 Technical Progress Report 1Q00

    SciTech Connect

    2002-07-16

    OAK B188 Nuclear Energy Research Initiative Cooperative Agreement DE-FC03-99SF21902 Technical Progress Report 1Q00.

  20. Nuclear structure and nuclear reactions | Argonne Leadership...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear structure and nuclear reactions PI Name: James Vary PI Email: jvary@iastate.edu Institution: Iowa State University Allocation Program: INCITE Allocation Hours at ALCF: 15 ...

  1. INSTITUTE COLLOQUIA AND SEMINARS

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    INSTITUTE COLLOQUIA AND SEMINARS April 1, 2010-March 31, 2011 2010 May 11 Dr. J. J. Ressler, Lawrence Livermore National Laboratory, Livermore, California Surrogate Reactions for Nuclear Energy Application May 12 Professor Lie-Wen Chen, Institute of Nuclear, Particle Astronomy and Cosmology (INPAC) and Department of Physics, Shanghai Jiao Tong University, Shanghai, China Probing the Nuclear Symmetry Energy with Heavy-Ion Reactions and Neutron Skin Thickness of Heavy Nuclei May 13 Professor A. R.

  2. United States, Russia Sign Agreement to Further Research and Development Collaboration in Nuclear Energy and Security

    Energy.gov [DOE]

    U.S. Secretary of Energy Ernest Moniz and Director General of the Russian Federation State Corporation “Rosatom” Sergey Kirienko today signed the Agreement between the Government of the United States of America and the Government of the Russian Federation on Cooperation in Nuclear- and Energy-Related Scientific Research and Development

  3. Quantum Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Quantum Institute Quantum Institute A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. Contact Leader Malcolm Boshier (505) 665-8892 Email Two of LANL's most successful quantum technology initiatives: quantum cryptography and the race for quantum computer The area of quantum information, science, and technology is rapidly evolving, with important applications in the areas of quantum

  4. UCLA Intermediate Energy Nuclear and Particle Physics Research: Final Report

    SciTech Connect

    Nefkens, B M.K.; Goetz, J; Lapik, A; Korolija, M; Prakhov, S; Starostin, A

    2011-05-18

    This project covers the following research: (a) Investigations into the structure of the proton and neutron. This is done by investigating the different resonance states of nucleons with beams of tagged, polarized photons, linearly as well as circularly, incident on polarized hydrogen/deuterium targets and measuring the production of {pi}{sup 0}, 2{pi}{sup }0, 3{pi}{sup 0}, {eta} , {eta}', {omega}, etc. The principal detector is the Crystal Ball multiphoton spectrometer which has an acceptance of nearly 4 . It has been moved to the MAMI accelerator facility of the University of Mainz, Germany. We investigate the conversion of electromagnetic energy into mesonic matter and conversely. (b) We investigate the consequences of applying the "standard" symmetries of isospin, G-parity, charge conjugation, C, P, T, and chirality using rare and forbidden decays of light mesons such as the {eta} ,{eta}' and {omega}. We also investigate the consequences of these symmetries being slightly broken symmetries. We do this by studying selected meson decays using the Crystal Ball detector. (c) We determine the mass, or more precisely the mass difference of the three light quarks (which are inputs to Quantum Chromodynamics) by measuring the decay rate of specially selected {eta} and {eta}' decay modes, again we use the Crystal Ball. (d)We have started a new program to search for the 33 missing cascade baryons using the CLAS detector at the Thomas Jefferson Laboratory. Cascade resonances are very special: they have double strangeness and are quite narrow. This implies that they can be discovered by the missing mass technique in photoproduction reactions such as in {gamma}p{yields}{Xi}{sup}K{sup +}K{sup +}. The cascade program is of particular importance for the upgrade to 12 GeV of the CLAS detector and for design of the Hall D at JLab. (e) Finally, we are getting more involved in a new program to measure the hadronic matter form factor of complex nuclei, in particular the "neutron

  5. Electric Power Research Institute: Environmental Control Technology Center: Report to the Steering Committee, March 1996. Final technical report

    SciTech Connect

    1996-03-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Carbon Injection System for the Hazardous Air Pollutant (HAP) test block. With this testing, the mercury measurement (Method 29) studies also continued with various impinger capture solutions. Also, the installation of the B&W/CHX Heat Exchanger unit was completed in March. The 4.0 MW Spray Dryer Absorber System (Carbon Injection System) and the 4.0 MW Pilot Wet FGD Unit and were utilized in the HAP test configuration this month. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit remained idle this month in a cold- standby mode. Monthly inspections were conducted for all equipment in cold-standby, as well as for the fire safety systems, and will continue to be conducted by the ECTC Operations and Maintenance staff.

  6. Electric Power Research Institute: Environmental Control Technology Center. Report to the Steering Committee, February 1996. Final technical report

    SciTech Connect

    1996-02-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Carbon Injection System and the Trace Element Removal test blocks. With this testing, the mercury measurement (Method 29) studies also continued with impinger capture solutions. The 4.0 MW Spray Dryer Absorber System (Carbon Injection System) was utilized in the TER test configuration this month. The B&W/CHX Heat Exchanger unit is being installed utilizing the Mini Pilot Flue Gas System. The 1.0 MW Cold- Side Selective Catalytic Reduction (SCR) unit remained idle this month in a cold-standby mode. Monthly inspections were conducted for all equipment in cold-standby, as well as for the fire safety systems, and will continue to be conducted by the ECTC Operations and Maintenance staff.

  7. Performance Engineering Research Center and RECOVERY. Performance Engineering Research Institution SciDAC-e Augmentation. Performance enhancement

    SciTech Connect

    Hollingsworth, Jeffrey K.

    2015-10-12

    This project concentrated on various ways to improve the measurement and tuning large-scale parallel applications. This project was supplement to the project DE-FC0206ER25763 (“Performance Engineering Research Center”). The research conducted during this project is summarized in this report. The complete details of the work are available in the ten publications listed at the end of the report. It also supported the Ph.D. studies of three students and one research scientist.

  8. Audit Report - Cooperative Research and Development Agreements at National Nuclear Security Administration Laboratories, OAS-M-13-02

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cooperative Research and Development Agreements at National Nuclear Security Administration Laboratories OAS-M-13-02 March 2013 Department of Energy Washington, DC 20585 March 15, 2013 MEMO MEMORANDUM FOR THE ACTING ADMINISTRATOR, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Cooperative Research and Development Agreements at National Nuclear Security

  9. Department of Energy Awards $5.7 Million to U.S. Universities for Nuclear Energy Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it will award $5.7 million to nine universities for research grants under the Nuclear Energy Research Initiative (NERI).  These...

  10. [National Institute for Petroleum and Energy Research] quarterly technical report, July 1--September 30, 1991. Volume 2, Energy production research

    SciTech Connect

    Not Available

    1992-01-01

    The report is submitted in two volumes, Volume I representing the work accomplished under Fuels Research and Volume II the work for Energy Production Research during the period July 1--Sept. 30, 1991. Topics covered include: chemical flooding, gas displacement, thermal recovery, geoscience technology, resource assessment technology, microbial technology, environmental technology.

  11. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    SciTech Connect

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  12. Western Research Institute: Annual technical progress report, October 1986--September 1987

    SciTech Connect

    Not Available

    1987-10-01

    Accomplishments for the year are presented for the following five areas of research: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuel research. Oil shale research covers: chemical and physical characterization of reference shales; oil shale retorting studies; and environmental base studies for oil shale. Tar sand covers: reference resource (tar sand deposits) evaluation; chemical and physical propeerties of reference tar sand; recovery processes; mathematical modeling; product evaluation; and environmental base studies. Underground coal gasification covers environmental impact assessment and groundwater impact mitigation. Advanced process technology includes advanced process analysis (contaminant control and new technology) and advanced mitigation concepts. Advanced fuels research is on jet fuels from coal. (AT).

  13. COMMENTS ON "A NEW LOOK AT LOW-ENERGY NUCLEAR REACTION RESEARCH"

    SciTech Connect

    Shanahan, K.

    2009-12-30

    Cold fusion researchers have accumulated a large body of anomalous results over the last 20 years that they claim proves a new, mysterious nuclear reaction is active in systems they study. Krivit and Marwan give a brief and wholly positive view of this body of research. Unfortunately, cold fusion researchers routinely ignore conventional explanations of their observations, and claim much greater than real accuracy and precision for their techniques. This paper attempts to equally briefly address those aspects of the field with the intent of providing a balanced view of the field, and to establish some criteria for subsequent publications in this arena.

  14. (National Institute for Petroleum and Energy Research) quarterly technical report, July 1--September 30, 1991

    SciTech Connect

    Not Available

    1992-01-01

    The report is submitted in two volumes, Volume I representing the work accomplished under Fuels Research and Volume II the work for Energy Production Research during the period July 1--Sept. 30, 1991. Topics covered include: chemical flooding, gas displacement, thermal recovery, geoscience technology, resource assessment technology, microbial technology, environmental technology.

  15. Summer Research Fellowships

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Institute » Summer Research Fellowships Summer Research Fellowships Research Fellowships will be offered in Nuclear and Radiochemistry and Actinide Science. Contacts Director Albert Migliori Deputy Franz Freibert 505 667-6879 Email Professional Staff Assistant Susan Ramsay 505 665 0858 Email summer student We are pleased to announce a nationwide search for 8-10 outstanding graduate student candidates to participate in the Seaborg Institute Summer Research Fellowships Program at Los Alamos

  16. NRC - regulator of nuclear safety

    SciTech Connect

    1997-05-01

    The U.S. Nuclear Regulatory Commission (NRC) was formed in 1975 to regulate the various commercial and institutional uses of nuclear energy, including nuclear power plants. The agency succeeded the Atomic Energy Commission, which previously had responsibility for both developing and regulating nuclear activities. Federal research and development work for all energy sources, as well as nuclear weapons production, is now conducted by the U.S. Department of Energy. Under its responsibility to protect public health and safety, the NRC has three principal regulatory functions: (1) establish standards and regulations, (2) issue licenses for nuclear facilities and users of nuclear materials, and (3) inspect facilities and users of nuclear materials to ensure compliance with the requirements. These regulatory functions relate to both nuclear power plants and to other uses of nuclear materials - like nuclear medicine programs at hospitals, academic activities at educational institutions, research work, and such industrial applications as gauges and testing equipment. The NRC places a high priority on keeping the public informed of its work. The agency recognizes the interest of citizens in what it does through such activities as maintaining public document rooms across the country and holding public hearings, public meetings in local areas, and discussions with individuals and organizations.

  17. Experimental plan for investigating building-earth heat transfer at the Joint Institute for Heavy Ion Research Building

    SciTech Connect

    Childs, K.W.

    1980-11-01

    An experimental plan is presented for investigating heat transfer between below-grade portions of building envelopes and the surrounding soil. Included is a detailing of data to be collected at an earth-sheltered structure (Joint Institute for Heavy Ion Research Building) to be constructed at Oak Ridge National Laboratory. The attributes of the required data collection instrumentation are defined and a program to assure the accuracy of the collected data is discussed. The experimental plan is intended to be used as a guide to selection, installation, and maintenance of instrumentation as well as in data collection and verification.

  18. Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    SciTech Connect

    Not Available

    1994-04-01

    The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

  19. [National Institute for Petroleum and Energy Research] 1991 annual report, October 1, 1990--September 30, 1991

    SciTech Connect

    Not Available

    1993-05-01

    This Annual Report provides research accomplishments, publications, and presentations resulting from the FY91 research conducted under the following Base Program projects: reservoir assessment and characterization; TORIS research support; three-phase relative permeability; imaging techniques applied to the study of fluids in porous media; development of improved microbial flooding methods; development of improved surfactant flooding methods; development of improved alkaline flooding methods; development of improved mobility- control methods; gas flooding; mobility control and sweep improvement in gas flooding; thermal processes for light oil recovery; thermal processes for heavy oil recovery; thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom- containing compounds; and development of analytical methodology for analysis of heavy crudes.

  20. Data base on dose reduction research projects for nuclear power plants. Volume 5

    SciTech Connect

    Khan, T.A.; Yu, C.K.; Roecklein, A.K.

    1994-05-01

    This is the fifth volume in a series of reports that provide information on dose reduction research and health physics technology or nuclear power plants. The information is taken from two of several databases maintained by Brookhaven National Laboratory`s ALARA Center for the Nuclear Regulatory Commission. The research section of the report covers dose reduction projects that are in the experimental or developmental phase. It includes topics such as steam generator degradation, decontamination, robotics, improvements in reactor materials, and inspection techniques. The section on health physics technology discusses dose reduction efforts that are in place or in the process of being implemented at nuclear power plants. A total of 105 new or updated projects are described. All project abstracts from this report are available to nuclear industry professionals with access to a fax machine through the ACEFAX system or a computer with a modem and the proper communications software through the ACE system. Detailed descriptions of how to access all the databases electronically are in the appendices of the report.

  1. March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

    Energy.gov [DOE]

    The Global Nuclear Energy Partnership (GNEP) marks a major change in the direction of the DOE’s nuclear energy R&D program. It is a coherent plan to test technologies that promise to markedly...

  2. National Institute for Petroleum and Energy Research 1990 annual report, October 1, 1989--September 30, 1990

    SciTech Connect

    Not Available

    1992-05-01

    Research programs at NIPER cover a wide spectrum of specific technical tasks, all of which relate to three broad technology areas: (1) Enhanced oil recovery and all of the associated technical activities such as reservoir characterization and imaging techniques; (2) Alternative fuels evaluation and testing, including the supporting technologies of thermodynamics research and fuels characterization; (3) Environmentally technology related to production, transportation, and utilization of oil and gas.

  3. Western Research Institute quarterly technical progress report, July--September 1993

    SciTech Connect

    Not Available

    1993-12-31

    Accomplishments for the quarter are described briefly for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers process studies. Tar sand research is on recycle oil pyrolysis and extraction (ROPE{sup TM}) Process. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: CROW{sup TM} field demonstration with Bell Lumber and Pole; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid state NMR analysis of Mowry formation shale from different sedimentary basins; solid state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

  4. [National Institute for Petroleum and Energy Research], monthly progress report for March 1993

    SciTech Connect

    Not Available

    1993-04-01

    Accomplishments for the month of April are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; development of improved chemical flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuels Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nigrogen- and diheteroatom-containing compounds. Supplemental Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant- enhanced alkaline flooding field project; process- engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; DOE education initiative project; field application of foams of oil production symposium; technology transfer to independent producers; compilations and analysis of outcrop data from the Muddy and Almond formations; and horizontal well production from fractured reservoirs.

  5. National Institute for Petroleum and Energy Research monthly progress report, May 1993

    SciTech Connect

    Not Available

    1993-06-01

    Accomplishments for the month of May are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; development of improved chemical flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuels Research covers: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteratom-containing compounds. Supplemental Government Program covers: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; DOE education initiative project; field application of foams for oil production symposium; technology transfer to independent producers; compilation and analysis of outcrop data from the Muddy and Almond formations; implementation of oil and gas technology transfer initiative; horizontal well production from fractured reservoirs; and chemical EOR workshop.

  6. [National Institute for Petroleum and Energy Research] monthly progress report for June 1992

    SciTech Connect

    Not Available

    1992-08-01

    Accomplishments for this period are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluid in porous media. Fuels research includes; development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplemental Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1, unstructured, deltaic reservoirs; third international reservoir characterization technical conference; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; and analysis of the U. S. oil resource base and estimate of future recoverable oil.

  7. (National Institute for Petroleum and Energy Research) monthly progress report for June 1992

    SciTech Connect

    Not Available

    1992-08-01

    Accomplishments for this period are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluid in porous media. Fuels research includes; development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplemental Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1, unstructured, deltaic reservoirs; third international reservoir characterization technical conference; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; and analysis of the U. S. oil resource base and estimate of future recoverable oil.

  8. (National Institute for Petroleum and Energy Research) monthly progress report, July 1992

    SciTech Connect

    Not Available

    1992-09-01

    Accomplishments for the month of July are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuel Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplement Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1. unstructured, deltaic reservoirs; third international reservoir characterization technical conference; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; analysis of the US oil resource base and estimate of future recoverable oil; DOE education initiative project; and technology transfer to independent producers.

  9. [National Institute for Petroleum and Energy Research] monthly progress report, July 1992

    SciTech Connect

    Not Available

    1992-09-01

    Accomplishments for the month of July are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuel Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplement Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1. unstructured, deltaic reservoirs; third international reservoir characterization technical conference; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; analysis of the US oil resource base and estimate of future recoverable oil; DOE education initiative project; and technology transfer to independent producers.

  10. [National Institute for Petroleum and Energy Research] monthly progress report, January 1993

    SciTech Connect

    Not Available

    1993-03-01

    Accomplishments for the month of January are briefly described for the following tasks: energy production research; fuels research; and supplemental government programs. Energy production research includes: reservoir assessment and characterization; TORI research support; development of improved microbial flooding methods; development of improved chemical flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modifications, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluid in porous media. Fuel research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen and diheteroatom containing compounds. supplemental Government program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant- enhanced alkaline flooding field project; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; DOE education initiative project; field application of foams for oil production symposium; technology transfer to independent producers; and compilations and analysis of outcrop data from the Muddy and Almond formations.

  11. People - Cyclotron Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Overview Dr. Ralf Rapp meets with his research group. At the Institute we focus on conducting basic research, educating students in accelerator-based science and technology, and ...

  12. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    SciTech Connect

    P. Calderoni; P. Sharpe; M. Shimada

    2009-09-01

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  13. [National Institute for Petroleum and Energy Research] monthly progress report for April 1992

    SciTech Connect

    Not Available

    1992-06-01

    Accomplishments for this period are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved alkaline flooding methods, surfactant flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuel Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplemental Government Programs covers; field projects in microbial-enhanced waterflooding and surfactant-enhanced alkaline flooding; feasibility study of heavy oil recovery in the midcontinent region -- Oklahoma, Kansas, and Missouri; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1, unstructured, deltaic reservoirs; and process-engineering property measurements on heavy petroleum components.

  14. (National Institute for Petroleum and Energy Research) monthly progress report for April 1992

    SciTech Connect

    Not Available

    1992-06-01

    Accomplishments for this period are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved alkaline flooding methods, surfactant flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuel Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplemental Government Programs covers; field projects in microbial-enhanced waterflooding and surfactant-enhanced alkaline flooding; feasibility study of heavy oil recovery in the midcontinent region -- Oklahoma, Kansas, and Missouri; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1, unstructured, deltaic reservoirs; and process-engineering property measurements on heavy petroleum components.

  15. Nuclear Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Energy Curiosity's multi-mission radioisotope thermoelectric generator on Mars. ... Analysis, Capabilities, Energy, Highlights - Energy Research, News, News & Events, Nuclear ...

  16. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    SciTech Connect

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

  17. Nuclear safeguards research and development. Program status report, October 1980-January 1981

    SciTech Connect

    Henry, C.N.

    1981-11-01

    This report presents the status of the Nuclear Safeguards Research and Development Program pursued by the Energy, Chemistry-Materials Science, and Operational Security/Safeguards Divisions of the Los Alamos National Laboratory. Topics include nondestructive assay technology development and applications, international safeguards systems. Also discussed are training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security.

  18. Western Regional Center of the National Institute for Climatic Change Research

    SciTech Connect

    Hungate, Bruce A.

    2013-05-02

    The major goal of this project was fostering, integrating, synthesizing, and disseminating experimental, observational, and modeling research on predicted climate change in the western region of the U.S. and the impacts of that change on the structure, productivity, and climatic interactions of the region's natural and managed ecological systems. This was accomplished through administering a competitive grants program developed in collaboration with the other four regional centers of the NICCR. The activities supported included efforts to synthesize research on climate change in the western U.S. through meta-analysis studies, model comparisons, and data synthesis workshops. Results from this work were disseminated to the scientific and public media. This project also supported the development of the NICCR web site, hosted at NAU, which was used as the means to accept pre-proposal and proposal submissions for each funding cycle, and served as a clearing house for public outreach for results from NICCR-funded research

  19. National Institute for Petroleum and Energy Research annual report for October 1, 1991--September 30, 1992

    SciTech Connect

    Not Available

    1993-10-01

    This Annual Report provides research accomplishments, publications, resulting from the FY92 research conducted under the following Base Program projects: reservoir assessment and characterization; TORIS research support; three-phase relative permeability; imaging techniques applied to the study of fluids in porous media; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; development of improved microbial flooding methods; gas flooding performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; thermal processes for light oil recovery; thermal processes for heavy oil recovery; thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds; and development of analytical methodology for analysis of heavy crudes.

  20. Staff exchange with Spokane Intercollegiate Research and Technology Institute (SIRTI), final project report

    SciTech Connect

    Alexander, G.M.

    1994-12-01

    Staff exchanges, such as the one described in this report, are intended to facilitate communication and collaboration among scientists and engineers at Department of Energy (DOE) laboratories, in U.S. industry, and academia. Funding support for these exchanges is provided by the DOE, Office of Energy Research, Laboratory Technology Transfer Program. Funding levels for each exchange typically range from $20,000 to $40,000. The exchanges offer the opportunity for the laboratories to transfer technology and expertise to industry, gain a perspective on industry`s problems, and develop the basis for further cooperative efforts through Cooperative Research and Development Agreements (CRADAS) or other mechanisms.

  1. The Path to Sustainable Nuclear Energy. Basic and Applied Research Opportunities for Advanced Fuel Cycles

    SciTech Connect

    Finck, P.; Edelstein, N.; Allen, T.; Burns, C.; Chadwick, M.; Corradini, M.; Dixon, D.; Goff, M.; Laidler, J.; McCarthy, K.; Moyer, B.; Nash, K.; Navrotsky, A.; Oblozinsky, P.; Pasamehmetoglu, K.; Peterson, P.; Sackett, J.; Sickafus, K. E.; Tulenko, J.; Weber, W.; Morss, L.; Henry, G.

    2005-09-01

    The objective of this report is to identify new basic science that will be the foundation for advances in nuclear fuel-cycle technology in the near term, and for changing the nature of fuel cycles and of the nuclear energy industry in the long term. The goals are to enhance the development of nuclear energy, to maximize energy production in nuclear reactor parks, and to minimize radioactive wastes, other environmental impacts, and proliferation risks. The limitations of the once-through fuel cycle can be overcome by adopting a closed fuel cycle, in which the irradiated fuel is reprocessed and its components are separated into streams that are recycled into a reactor or disposed of in appropriate waste forms. The recycled fuel is irradiated in a reactor, where certain constituents are partially transmuted into heavier isotopes via neutron capture or into lighter isotopes via fission. Fast reactors are required to complete the transmutation of long-lived isotopes. Closed fuel cycles are encompassed by the Department of Energy?s Advanced Fuel Cycle Initiative (AFCI), to which basic scientific research can contribute. Two nuclear reactor system architectures can meet the AFCI objectives: a ?single-tier? system or a ?dual-tier? system. Both begin with light water reactors and incorporate fast reactors. The ?dual-tier? systems transmute some plutonium and neptunium in light water reactors and all remaining transuranic elements (TRUs) in a closed-cycle fast reactor. Basic science initiatives are needed in two broad areas: ? Near-term impacts that can enhance the development of either ?single-tier? or ?dual-tier? AFCI systems, primarily within the next 20 years, through basic research. Examples: Dissolution of spent fuel, separations of elements for TRU recycling and transmutation Design, synthesis, and testing of inert matrix nuclear fuels and non-oxide fuels Invention and development of accurate on-line monitoring systems for chemical and nuclear species in the nuclear

  2. COLLEGE OF SCIENCE CYCLOTRON INSTITUTE Cyclotron Institute, Texas...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Candidates must have experience with modern nuclear instrumentation and data analysis ... The position will be based at the Institute in College Station, Texas, USA. The Cyclotron ...

  3. 24th WRSM panel discussion: {open_quotes}The role of research in nuclear regulation: The case of qualified importers{close_quotes}

    SciTech Connect

    Alonso, A.

    1997-01-01

    Scientific knowledge and technological maturity are needed to establish regulatory requirements, what also needs talent and skills. Scientists are rarely interested in regulation and regulators not always are closely connected to scientific research. This has created gaps in regulations, mainly within qualified importers. A qualified importer, in the sense of this presentation, is a country who has acquired nuclear power plants from more technologically advanced exporters but with an increasing participation of its own industry and institutions in the design, construction, component manufacture and assembly of such nuclear power plants and is fully responsible for the operation of the nuclear units and the corresponding fuel cycle. These countries have also a long standing and independent nuclear regulatory organization and the corresponding technical body. Spain is a qualified importer. In the case of Spain, it originally adopted the codes and regulations of the UE which it was a member of, as well as the codes and standards of the country from which their reactors were produced. Since Spain added KWU plants they even went to German regulations. Plant operation rested with Spain. As problems began to appear in operating plants, local research projects were funded to study the problems, aimed at immediate solutions, but also providing training for local personnel in addition to information of use for regulators. Spain has participated in many joint research projects, which have trained people, and given confidence to Spaniards involved in science and regulations. Qualified importers, like Spain, participate in research, even though it may not translate itself into regulation. Such participation will always serve to give self-confidence and independence to regulators and licensees, to better understand the adopted regulations of the most advanced countries and to solve specific problems.

  4. Cable Polymer Aging and Condition Monitoring Research at Sandia National Laboratores Under the Nuclear Energy Plant Optimization (NEPO) Program

    SciTech Connect

    K. Gillen; R. Assink; R. Bernstein

    2005-12-23

    This report describes cable polymer aging and condition monitoring research performed at Sandia National Laboratories under the Nuclear Energy Plant Optimization (NEPO) Program from 2000 to 2005. The research results apply to low-voltage cable insulation and Program from 2000 to 2005. The research results apply to low-voltage cable insulation and jacket materials that are commonly used in U.S. nuclear power plants. The research builds upon and is liked to research performed at Sandia from 1977 through 1986, sponsored by the U.S. Nuclear Regulatory Commission. Aged and unaged specimens from that research remained available and were subjected to further testing under the NEPO research effort.The documented results from the earlier research were complemented by subjecting the specimens to new condition monitoring tests. Additional aging regimens were applied to additional specimens to develop aging models for key cable jacket and insulation materials

  5. Implementing Arrangement Between the U.S. Department of Energy and the Agency of Natural Resources and Energy of Japan Concerning Cooperation in the Joint Nuclear Energy Research Initiative

    Energy.gov [DOE]

    Sharing an interest in fostering advanced nuclear engineering and pursuing scientific research and development in the nuclear field; 

  6. Comments on Presentation on Industrial Nuclear Explosion Sites in the Russian Federation: Recovery and Institutional Monitoring Problems

    SciTech Connect

    Bradley, Donald J.

    2009-01-01

    The U.S. National Academy of Sciences selected 6 U.S. scientists to review papers prepared by Russian specialists in 6 specific areas of radioactive waste management concern. As one of the U.S. specialists selected, Don Bradley attended a meeting in Moscow, Russia where the papers were formally presented. Following the presentation, eah one was critiqued by the U.S. specialist. In Mr. Bradley's case the topic was contamination at Peaceful Nuclear Explosion test sites (PNE's). The formal title of the meeting was: "Cleaning Up Sites Contaminated with Radioactive Materials". Following discussions with the U.S. team, each of the U.S. specialists was charged with writing up a short comment paper for the U.S. Academy of Sciences. This is Mr. Bradley's comments on the presentation by Kasatkin V.V., Kamnev Ye.N. and Ilyichev V.A. (Rosatom, FGUP VNIPIpromtechnologii) .

  7. Cyclotron Institute » Journal Links

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Journal Links Acta Physica Polonica A Acta Physica Polonica B LANL e-Print Archive Nuclear Experiment Nuclear Theory Accelerator Physics Atomic Physics American Physical Society Physical Review A Physical Review C Physical Review D Physical Review Letters Reviews of Modern Physics Institute of Physics Journal of Physics B: Atomic, Molecular and Optical Physics Journal of Physics G: Nuclear and Particle Physics American Institute of Physics Applied Physics Letters Physics Today Nuclear Physics A

  8. A Resurgence of United Kingdom Nuclear Power Research (2011 EFRC Forum)

    ScienceCinema

    Grimes, Robin W. (Imperial College, London, UK)

    2016-07-12

    Robin W. Grimes, Professor at Imperial College, London,was the third speaker in the the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Grimes discussed recent research endeavors in advanced nuclear energy systems being pursued in the UK. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  9. ORNL Nuclear Safety Research and Development Program Bimonthly Report for July-August 1968

    SciTech Connect

    Cottrell, W.B.

    2001-08-17

    The accomplishments during the months of July and August in the research and development program under way at ORNL as part of the U.S. Atomic Energy Commission's Nuclear Safety Program are summarized, Included in this report are work on various chemical reactions, as well as the release, characterization, and transport of fission products in containment systems under various accident conditions and on problems associated with the removal of these fission products from gas streams. Although most of this work is in general support of water-cooled power reactor technology, including LOFT and CSE programs, the work reflects the current safety problems, such as measurements of the prompt fuel element failure phenomena and the efficacy of containment spray and pool-suppression systems for fission-product removal. Several projects are also conducted in support of the high-temperature gas-cooled reactor (HTGR). Other major projects include fuel-transport safety investigations, a series of discussion papers on various aspects of water-reactor technology, antiseismic design of nuclear facilities, and studies of primary piping and steel, pressure-vessel technology. Experimental work relative to pressure-vessel technology includes investigations of the attachment of nozzles to shells and the implementation of joint AEX-PVFX programs on heavy-section steel technology and nuclear piping, pumps, and valves. Several of the projects are directly related to another major undertaking; namely, the AEC's standards program, which entails development of engineering safeguards and the establishment of codes and standards for government-owned or -sponsored reactor facilities. Another task, CHORD-S, is concerned with the establishment of computer programs for the evaluation of reactor design data, The recent activities of the NSIC and the Nuclear Safety journal in behalf of the nuclear community are also discussed.

  10. Handbook of nuclear power plant seismic fragilities, Seismic Safety Margins Research Program

    SciTech Connect

    Cover, L.E.; Bohn, M.P.; Campbell, R.D.; Wesley, D.A.

    1983-12-01

    The Seismic Safety Margins Research Program (SSMRP) has a gola to develop a complete fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. As part of this program, calculations of the seismic risk from a typical commercial nuclear reactor were made. These calculations required a knowledge of the probability of failure (fragility) of safety-related components in the reactor system which actively participate in the hypothesized accident scenarios. This report describes the development of the required fragility relations and the data sources and data reduction techniques upon which they are based. Both building and component fragilities are covered. The building fragilities are for the Zion Unit 1 reactor which was the specific plant used for development of methodology in the program. Some of the component fragilities are site-specific also, but most would be usable for other sites as well.

  11. Geochemistry research planning for the underground storage of high-level nuclear waste

    SciTech Connect

    Apps, J.A.

    1983-09-01

    This report is a preliminary attempt to plan a comprehensive program of geochemistry research aimed at resolving problems connected with the underground storage of high-level nuclear waste. The problems and research needs were identified in a companion report to this one. The research needs were taken as a point of departure and developed into a series of proposed projects with estimated manpowers and durations. The scope of the proposed research is based on consideration of an underground repository as a multiple barrier system. However, the program logic and organization reflect conventional strategies for resolving technological problems. The projects were scheduled and the duration of the program, critical path projects and distribution of manpower determined for both full and minimal programs. The proposed research was then compared with ongoing research within DOE, NRC and elsewhere to identify omissions in current research. Various options were considered for altering the scope of the program, and hence its cost and effectiveness. Finally, recommendations were made for dealing with omissions and uncertainties arising from program implementation. 11 references, 6 figures, 4 tables.

  12. NRC Technical Research Program to Evaluate Extended Storage and Transportation of Spent Nuclear Fuel - 12547

    SciTech Connect

    Einziger, R.E.; Compton, K.; Gordon, M.; Ahn, T.; Gonzales, H.; Pan, Y.

    2012-07-01

    Any new direction proposed for the back-end of spent nuclear fuel (SNF) cycle will require storage of SNF beyond the current licensing periods. The Nuclear Regulatory Commission (NRC) has established a technical research program to determine if any changes in the 10 CFR part 71, and 72 requirements, and associated guidance might be necessary to regulate the safety of anticipated extended storage, and subsequent transport of SNF. This three part program of: 1) analysis of knowledge gaps in the potential degradation of materials, 2) short-term research and modeling, and 3) long-term demonstration of systems, will allow the NRC to make informed regulatory changes, and determine when and if additional monitoring and inspection of the systems is necessary. The NRC has started a research program to obtain data necessary to determine if the current regulatory guidance is sufficient if interim dry storage has to be extended beyond the currently approved licensing periods. The three-phased approach consists of: - the identification and prioritization of potential degradation of the components related to the safe operation of a dry cask storage system, - short-term research to determine if the initial analysis was correct, and - a long-term prototypic demonstration project to confirm the models and results obtained in the short-term research. The gap analysis has identified issues with the SCC of the stainless steel canisters, and SNF behavior. Issues impacting the SNF and canister internal performance such as high and low temperature distributions, and drying have also been identified. Research to evaluate these issues is underway. Evaluations have been conducted to determine the relative values that various types of long-term demonstration projects might provide. These projects or follow-on work is expected to continue over the next five years. (authors)

  13. [National Institute for Petroleum and Energy Research] monthly progress report, August 1992

    SciTech Connect

    Not Available

    1992-10-01

    Geological and engineering data from Patrick Draw field and Almond outcrops have been electronically formatted for the initial data base on the Almond formation. In addition, a number of research areas are identified. An annotated bibliography of selected references on barrier islands, with emphasis on Patrick Draw field, Sweetwater County, WY, has been prepared. The bibliography contains more than 200 references on barrier island systems worldwide. The results of laboratory experiments indicate that surfactant-enhanced flooding has potential use for the recovery of oil from Naval Petroleum Reserve NPR No. 3 reservoirs. Because of the highly fractured nature of these reservoirs, chemical flooding is expected to be more efficient if gels are applied to improve reservoir conformance. FY92 experiments to determine surfactant/polymer interactions that might occur during field tests have been finalized. The results show that interactions do occur in mixtures containing both surfactant and polymer and that the interactions are characterized by inhomogeneity; however, this effect is not as severe in systems containing crude oil. Thermodynamic property measurements are now complete for the four-ring, nitrogen-containing aromatic compounds benzo[c]carbazole and benzo[c]phenanthridine. High-temperature heat capacity and critical property determinations by differential scanning calorimetry were started in August for a series of dimethylpyridines. Results of studies on the dimethylpyridines will provide a reliable basis for estimating the properties of a wide variety of substituted aromatic nitrogen compounds. Heat capacity and enthalpy measurements were completed for the four-ring naphthene compound, 5,6-dihydro-4H-benz[de]anthracene.

  14. ADDRESSING POLLUTION PREVENTION ISSUES IN THE DESIGN OF A NEW NUCLEAR RESEARCH FACILITY

    SciTech Connect

    Cournoyer, Michael E.; Corpion, Juan; Nelson, Timothy O.

    2003-02-27

    The Chemistry and Metallurgical Research (CMR) Facility was designed in 1949 and built in 1952 at Los Alamos National Laboratory (LANL) to support analytical chemistry, metallurgical studies, and actinide research and development on samples of plutonium and other nuclear materials for the Atomic Energy Commission's nuclear weapons program. These primary programmatic uses of the CMR Facility have not changed significantly since it was constructed. In 1998, a seismic fault was found to the west of the CMR Facility and projected to extend beneath two wings of the building. As part of the overall Risk Management Strategy for the CMR Facility, the Department of Energy (DOE) proposed to replace it by 2010 with what is called the CMR Facility Replacement (CMRR). In an effort to make this proposed new nuclear research facility environmentally sustainable, several pollution prevention/waste minimization initiatives are being reviewed for potential incorporation during the design phase. A two-phase approach is being adopted; the facility is being designed in a manner that integrates pollution prevention efforts, and programmatic activities are being tailored to minimize waste. Processes and procedures that reduce waste generation compared to current, prevalent processes and procedures are identified. Some of these ''best practices'' include the following: (1) recycling opportunities for spent materials; (2) replacing lithium batteries with alternate current adaptors; (3) using launderable contamination barriers in Radiological Control Areas (RCAs); (4) substituting mercury thermometers and manometers in RCAs with mercury-free devices; (5) puncturing and recycling aerosol cans; (6) using non-hazardous low-mercury fluorescent bulbs where available; (7) characterizing low-level waste as it is being generated; and (8) utilizing lead alternatives for radiological shielding. Each of these pollution prevention initiatives are being assessed for their technical validity, relevancy

  15. INSTITUTE COLLOQUIA AND SEMINARS

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    6-March 31, 2007 2006 April 6 Dr. Jamal Jalilian-Marian, Institute for Nuclear Theory, University of Washington, Seattle, Washington An Introduction to Particle Production in High Energy Nuclear Collisions April 7 Professor Taka Kajino, National Astronomical Observatory, University of Tokyo, Tokyo, Japan A Frontier of Nuclear Astrophysics: Big-Bang Cosmology and Supernova Nucleosynthesis April 19 Dr. Anna Stasto, Brookhaven National Laboratory, Upton, New York High Energy Limit and Parton

  16. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    SciTech Connect

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  17. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  18. Melting of the metallic wastes generated by dismantling retired nuclear research facilities

    SciTech Connect

    Chong-Hun Jung; Pyung-Seob Song; Byung-Youn Min; Wang-Kyu Choi

    2008-01-15

    The decommissioning of nuclear installations results in considerably large amounts of radioactive metallic wastes such as stainless steel, carbon steel, aluminum, copper etc. It is known that the reference 1,000 MWe PWR and 881 MWe PHWR will generate metal wastes of 24,800 ton and 26,500 ton, respectively. In Korea, the D and D of KRR-2 and a UCP at KAERI have been performed. The amount of metallic wastes from the KRR-1 and UCP was about 160 ton and 45 ton, respectively, up to now. These radioactive metallic wastes will induce problems of handling and storing these materials from environmental and economical aspects. For this reason, prompt countermeasures should be taken to deal with the metal wastes generated by dismantling retired nuclear facilities. The most interesting materials among the radioactive metal wastes are stainless steel (SUS), carbon steel (CS) and aluminum wastes because they are the largest portions of the metallic wastes generated by dismantling retired nuclear research facilities. As most of these steels are slightly contaminated, if they are properly treated they are able to be recycled and reused in the nuclear field. In general, the technology of a metal melting is regarded as one of the most effective methods to treat metallic wastes from nuclear facilities. In conclusion: The melting of metal wastes (Al, SUS, carbon steel) from a decommissioning of research reactor facilities was carried out with the use of a radioisotope such as cobalt and cesium in an electric arc furnace. In the aluminum melting tests, the cobalt was captured at up to 75% into the slag phase. Most of the cesium was completely eliminated from the aluminum ingot phase and moved into the slag and dust phases. In the melting of the stainless steel wastes, the {sup 60}Co could almost be retained uniformly in the ingot phase. However, we found that significant amounts of {sup 60}Co remained in the slag at up to 15%. However the removal of the cobalt from the ingot phase was

  19. Annual Continuation And Progress Report For Low-Energy Nuclear Physics Research At Lawrence Livermore National Laboratory

    SciTech Connect

    Scielzo, N. D.; Wu, C.

    2015-10-27

    (I)In this project, the Beta-­decay Paul Trap, an open-­geometry RFQ ion trap that can be instrumented with sophisticated radiation detection arrays, is used for precision β-­decay studies. Measurements of β-­decay angular correlations, which are sensitive to exotic particles and other phenomena beyond the Standard Model (SM) of particle physics that may occur at the TeV-­energy scale, are being performed by taking advantage of the favorable properties of the mirror 8Li and 8B β± decays and the benefits afforded by using trapped ions. By detecting the β and two α particles emitted in these decays, the complete kinematics can be reconstructed. This allows a simultaneous measurement of the β-­n, β-­n-­α, and β-α correlations and a determination of the neutrino energy and momentum event by event. In addition, the 8B neutrino spectrum, of great interest in solar neutrino oscillation studies, can be determined in a new way. Beta-­delayed neutron spectroscopy is also being performed on neutron-­rich isotopes by studying the β-­decay recoil ions that emerge from the trap with high efficiency, good energy resolution, and practically no backgrounds. This novel technique is being used to study isotopes of mass-­number A~130 in the vicinity of the N=82 neutron magic number to help understand the rapid neutron-­capture process (r-­process) that creates many of the heavy isotopes observed in the cosmos. (II)A year-long CHICO2 campaign at ANL/ATLAS together with GRETINA included a total of 10 experiments, seven with the radioactive beams from CARIBU and three with stable beams, with 82 researchers involved from 27 institutions worldwide. CHICO2 performed flawlessly during this long campaign with achieved position resolution matching to that of GRETINA, which greatly enhances the sensitivity in the study of nuclear γ-­ray spectroscopy. This can be demonstrated in our results on 144Ba and 146

  20. Nuclear physics research at the University of Richmond. Progress report, November 1, 1994--October 31, 1995

    SciTech Connect

    Vineyard, M.F.; Gilfoyle, G.P.; Major, R.W.

    1995-12-31

    Summarized in this report is the progress achieved during the period from November 1, 1994 to October 31, 1995. The experimental work described in this report is in electromagnetic and heavy-ion nuclear physics. The effort in electromagnetic nuclear physics is in preparation for the research program at the Continuous Electron Beam Accelerator Facility (CEBAF) and is focused on the construction and use of the CEBAF Large Acceptance Spectrometer (CLAS). The heavy-ion experiments were performed at the Argonne National Laboratory ATLAS facility and SUNY, Stony Brook. The physics interests driving these efforts at CEBAF are in the study of the structure, interactions, and nuclear-medium modifications of mesons and baryons. This year, an extension of the experiment to measure the magnetic form factor of the neutron was approved by the CEBAF Program Advisory Committee Nine (PAC9) for beam at 6 GeV. The authors also submitted updates to PAC9 on the experiments to measure inclusive {eta} photoproduction in nuclei and electroproduction of the {Lambda}, {Lambda}*(1520), and f{sub 0}(975). In addition to these experiments, the authors collaborated on a proposal to measure rare radiative decays of the {phi} meson which was also approved by PAC9. Their contributions to the construction of the CLAS include the development of the drift-chamber gas system, drift-chamber software, and controls software. Major has been leading the effort in the construction of the gas system. In the last year, the Hall B gas shed was constructed and the installation of the gas system components built at the University of Richmond has begun. Over the last six years, the efforts in low-energy heavy-ion physics have decreased due to the change in focus to electromagnetic nuclear physics at CEBAF. Most of the heavy-ion work is completed and there are now new experiments planned. Included in this report are two papers resulting from collaborations on heavy-ion experiments.

  1. [Cyclotron based nuclear science]. Progress in research, April 1, 1992--March 31, 1993

    SciTech Connect

    Not Available

    1993-07-01

    The period 1 April 1992--31 March 1993 saw the initial runs of three new spectrometers, which constitute a major portion of the new detection capabilities developed for this facility. These devices are the Proton Spectrometer (PSP) (data from which are shown on the cover of this document), the Mass Achroniat Recoil Mass Spectrometer (MARS), and the Multipole Dipole Multipole (MDM) Particle Spectrometer. The ECR-K500 cyclotron combination operated 5,849 hours. The beam was on target 39% of this time. Studies of nuclear dynamics and nuclear thermodynamics using the neutron ball have come to fruition. A critical re-evaluation of the available data on the giant monopole resonance indicated that the incompressibility is not specified to a range smaller than 200--350 MeV by those data. New systematic experiments using the MDM spectrometer are now underway. The MEGA collaboration obtained the first data on the {mu} {yields} e{gamma} decay rate and determination of the Michel parameter in normal {mu} decay. Experiments appear to confirm the existence of monoenergetic pair peaks even for relatively low Z{sub projectile} -- Z{sub target} combinations. Studies of the ({alpha},2{alpha}) knockout reaction indicate that this reaction may prove to be a valuable tool for determination of reaction rates of astrophysical interest. Theoretical work reported in this document ranges from nuclear structure calculations using the IBM-2 model to calculations of kaon production and the in-medium properties of the rho and phi mesons. Nuclear dynamics and exotic shapes and fragmentation modes of hot nuclei are also addressed. New measurements of x-ray emission from highly ionized ions, of molecular dissociation and of surface interactions are reported. The research is presented in nearly 50 brief summaries usually including data and references.

  2. October 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Global Nuclear Energy Partnership (GNEP) program is still evolving. Since our report of March 22, 2006 the DOE has sought to gauge industry interest in participation in the program from its...

  3. The Joys of Nuclear Engineering

    ScienceCinema

    Jon Carmack

    2016-07-12

    Nuclear fuels researcher Jon Carmack talks about the satisfactions of a career in nuclear engineering.

  4. [The National Institute for Nano-Engineering : a public-private partnership for research, education, and innovation].

    SciTech Connect

    Stinnett, Regan White

    2010-10-01

    The National Institute for Nano-Engineering (NINE) is a government/university/industry collaboration formed to help develop the next generation of nano-engineering innovation leaders for the United States. NINE involves students in large scale multi-disciplinary research projects focused on developing nano-enabled solutions to important national problems. The NINE program is based on the growing understanding that science and engineering education and innovation can be strengthened by involvement of university students and faculty with the world-class capabilities and facilities of government laboratories supplemented by guidance and support from industry collaborators. A number of recent reports have highlighted global competitiveness issues that the Unites States faces in the coming decades. Technology innovation, the ability to progress from emerging technologies to products that change the way people live, is a key to global leadership and economic prosperity for nations and their people. One of the top technology and economic drivers for the coming decades will the spectrum of emerging capabilities that fall into the category of nanotechnologies. NINE was established as a national innovation hub in the exciting and rapidly developing field of nano-engineering. It is intended to be a model of a novel partnership between universities and companies throughout the nation and the Department of Energy, with Sandia National Laboratories as the host lab for NINE. Successful technology innovation requires the integration of technical research and development with additional expertise from other areas including manufacturing, business, marketing, intellectual property, and the interface between technology and society. NINE was created to address this need for a new integrated approach to science and engineering research, education and innovation in a way that takes advantage of the nation's investment in facilities and capabilities at the national laboratories.

  5. Research in theoretical nuclear physics. Progress report and research proposal, 1980-1981. [School of Physics and Astronomy, Univ. of Minnesota

    SciTech Connect

    Bayman, Benjamin F.; Ellis, P. J.; Tang, Y. C.

    1980-09-01

    Research performed during 1980 (and proposed for 1981) is summarized briefly in this administrative report. The main theme of the research is the mechanisms of light- and heavy-ion nuclear reactions and the relation between microscopic theories and phenomenological models. A publication list and budget are included. (RWR)

  6. DESERT RESEARCH INSTITUTE

    Office of Legacy Management (LM)

    CIRCULAR 1 2 CENTER FOR WATER R E S ~ U R C E ~ REHiARCH GROUND-WATER SERIES C - 1 GEOHYDROLOGIC DATA FROM THE PICEANCE CREEK B A S I N BETWEEN THE WHITE AND COLQRAD.0 RIVERS, NORTHWESTERN COLORADO D . L. C o f f i n , F . A. W e l d e r , R . K. G l a n z m a n , and X. W. D u t t o n U n i t e d S t a t e s G e o l o g i c a l Survey Prepared by T h e U n i t e d S t a t e s G e o l o g i c a l Survey i n c o o p e r a t i o n w i t h . 1 he C o l o r a . d o W a . t e r C o n s e r v a t i o

  7. Electric Power Research Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Department of Energy Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff November 24, 2014 - 12:13pm Addthis The electric kettle wins the final round of #EnergyFaceoff. | Graphic by Stacy Buchanan, National Renewable Energy Laboratory The electric kettle wins the final round of #EnergyFaceoff. | Graphic by Stacy Buchanan, National Renewable Energy Laboratory Allison Casey Senior Communicator, NREL How can

  8. UNCLASSIFIED Institute for Materials ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    professor in the Woodruff School of Mechanical Engineering at Georgia Institute of Technology. She was previously a postdoctoral research fellow at the Center for Integrated...

  9. Publications - Cyclotron Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    "Progress in Research", Cyclotron Institute Annual Reports View individual articles: 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 ...

  10. Department of Energy Issues Call for Proposals to U.S. Universities for Nuclear Energy-Related Integrated Research Project Proposals

    Energy.gov [DOE]

    The U.S. Department of Energy’s Nuclear Energy University Programs is now accepting applications from universities interested in conducting nuclear energy-related Integrated Research Projects.

  11. Department of Energy Issues Call for Proposals to U.S. Universities for Nuclear Energy-Related Integrated Research Project Proposals

    Energy.gov [DOE]

    The U.S. Department of Energys Nuclear Energy University Programs is now accepting applications from universities interested in conducting nuclear energy-related Integrated Research Projects.

  12. Department of Energy Issues FY 2012 Request for Pre-Applications from U.S. Universities for Nuclear Energy Research and Development Proposals

    Energy.gov [DOE]

    The U.S. Department of Energy today announced that its Nuclear Energy University Programs is now accepting pre-applications from universities interested in conducting nuclear energy research and development projects.

  13. UK Nuclear Cleanup and Research Experts Visit DOE to Expand Collaboration

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON, D.C. – The United Kingdom’s National Nuclear Laboratory (NNL) and the Nuclear Decommissioning Authority (NDA) met with senior members of EM and DOE’s Office of Nuclear Energy (NE) recently to amend a landmark Statement of Intent to include the NNL in collaborations on radioactive waste and nuclear materials cleanup and management.

  14. The role of research in nuclear regulation: A US industry perspective

    SciTech Connect

    Simard, R.L.

    1997-01-01

    The author reviews the focus of research efforts within the NRC following the development of nuclear energy. Initial work focused on research in support of rulemaking and generic-issue resolution largely to support the licensing of U.S. plants that was going on at the time, including study of design basis accidents. Going into the 1980`s there was a need for information on accidents beyond the design basis, following the TMI accident. Aging research became relevant with the plants accumulating years of operation. More recently effort has gone into work on more advanced reactor designs. Looking ahead the author argues there may be few unresolved safety issues, and analytic tools are presently very well developed. So the question of what to do in the future is relevant, especially when coupled with changing responsibilities, changing legislation, changing budgets, changing market forces, and changing expectations from consumers. So the author poses questions which should be addressed as one looks at planning for the role of research in the NRC in the future.

  15. Summer 2006 Cyclotron Institute REU Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    6 Program Conference Experience for Undergraduates Students that participate in our summer REU program have the opportunity to present their research at the annual Conference Experience for Undergraduates (CEU). The conference also provides students with a chance to discuss graduate school possibilities by talking with faculty and senior scientist from various graduate institutions. The CEU is usually held in conjunction with the Fall Meeting of the Division of Nuclear Physics of the American

  16. Proceedings of the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear Test-Ban Treaty

    SciTech Connect

    Warren, N. Jill

    1999-09-21

    These proceedings contain papers prepared for the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear-Test-Ban Treaty, held 21-24 September 1999 in Las Vegas, Nevada. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  17. DOE (Department of Energy) nuclear weapon R and T (research, development, and testing): Objectives, roles, and responsibilities

    SciTech Connect

    Otey, G.R.

    1989-07-01

    An overview of the DOE nuclear weapons research, development, and testing program is given along with a description of the program objectives and the roles and responsibilities of the various involved organizations. The relationship between the DoD and DOE is described and the division of responsibilities for weapon development as well as the coordinated planning and acquisition activities are reviewed. Execution of the RD T program at the nuclear weapons laboratories is outlined. 24 refs., 3 figs.

  18. Draft Supplement Analysis: Two Proposed Shipments of Commercial Spent Nuclear Fuel to Idaho National Laboratory for Research and Development Purposes

    Energy.gov [DOE]

    DOE is proposing to transport, in two separate truck shipments, small quantities of commercial power spent nuclear fuel (SNF) to the Idaho National Laboratory (INL) Site for research purposes consistent with the mission of the DOE Office of Nuclear Energy. DOE is preparing a Supplement Analysis to determine whether an existing environmental impact statement should be supplemented, a new environmental impact statement should be prepared, or that no further NEPA documentation is required for this proposed action.

  19. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect

    J. K. Wright; R. N. Wright

    2010-07-01

    The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

  20. Advanced Studies Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Institute » Advanced Studies Institute Science of Signatures Advanced Studies Institute Developing innovative solution strategies for problems that support the forward deployment theme of the Science of Signatures Pillar, and building skills needed for successful research program development. Contact Institute Director Charles Farrar (505) 665-0860 Email UCSD EI Director Michael Todd (858) 534-5951 Executive Administrator Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran