National Library of Energy BETA

Sample records for nuclear power company

  1. China Guangdong Nuclear Power Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Company Jump to: navigation, search Name: China Guangdong Nuclear Power Company Place: Guangzhou, China Coordinates: 23.129075, 113.264423 Show Map Loading map......

  2. Korea Hydro and Nuclear Power Company, Ltd Training

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Korea Hydro and Nuclear Power Co., Ltd. (KHNP), a large electric company based in the Republic of Korea, operates 20 nuclear power plants and has 8 more planned or under ...

  3. Owners of nuclear power plants: Percentage ownership of commercial nuclear power plants by utility companies

    SciTech Connect

    Wood, R.S.

    1987-08-01

    The following list indicates percentage ownership of commercial nuclear power plants by utility companies as of June 1, 1987. The list includes all plants licensed to operate, under construction, docked for NRC safety and environmental reviews, or under NRC antitrust review. It does not include those plants announced but not yet under review or those plants formally canceled. In many cases, ownership may be in the process of changing as a result of altered financial conditions, changed power needs, and other reasons. However, this list reflects only those ownership percentages of which the NRC has been formally notified. Part I lists plants alphabetically with their associated applicants/licensees and percentage ownership. Part II lists applicants/licensees alphabetically with their associated plants and percentage ownership. Part I also indicates which plants have received operating licenses (OL's). Footnotes for both parts appear at the end of this document.

  4. Vulcan Power Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Vulcan Power Company Jump to: navigation, search Name: Vulcan Power Company Place: Bend, Oregon Zip: 97702 Sector: Geothermal energy Product: Oregon-based geothermal power plant...

  5. Delmarva Power Light Company Delmarva Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Delmarva Power Light Company Delmarva Power Jump to: navigation, search Name: Delmarva Power & Light Company (Delmarva Power) Place: Wilmington, Delaware Zip: 19886 Product:...

  6. Indiabulls Power Ltd formerly Sophia Power Company | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Indiabulls Power Ltd formerly Sophia Power Company Jump to: navigation, search Name: Indiabulls Power Ltd. (formerly Sophia Power Company) Place: New Delhi, Delhi (NCT), India Zip:...

  7. Redlands Water & Power Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Redlands Water & Power Company Jump to: navigation, search Name: Redlands Water & Power Company Place: Colorado Website: www.redlandswaterandpower.com Outage Hotline: 970-243-2173...

  8. Hemphill Power Light Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Light Company Jump to: navigation, search Name: Hemphill Power & Light Company Place: Springfield, New Hampshire Sector: Biomass Product: Owner and operator of a 16MW...

  9. Bozrah Light & Power Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bozrah Light & Power Company Jump to: navigation, search Name: Bozrah Light & Power Company Place: Connecticut Phone Number: (860) 889-7388 Website: www.grotonutilities.comblp.as...

  10. Willwood Light & Power Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Willwood Light & Power Company Jump to: navigation, search Name: Willwood Light & Power Company Place: Wyoming Phone Number: (307) 754-3831 Facebook: https:www.facebook.com...

  11. Garland Light & Power Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Light & Power Company Jump to: navigation, search Name: Garland Light & Power Company Place: Wyoming Phone Number: 307-754-2881 Website: garlandpower.orgcontactus.cf Outage...

  12. Inland Power & Light Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power & Light Company Jump to: navigation, search Name: Inland Power & Light Company Address: 10110 W. Hallett Road Place: Spokane, WA Zip: 99224 Phone Number: (877) 668-8243...

  13. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY OCTOBER 2014

    Energy.gov [DOE] (indexed site)

    ... Korea Hydro and Nuclear Power Company and KEPCO plan ... Westinghouse AP1000 - Amended design certified on December ... There are currently 100 reactor units operating. ...

  14. Guangdong Nuclear Power and New Energy Industrial Investment...

    OpenEI (Open Energy Information) [EERE & EIA]

    Investment Fund Management Company Jump to: navigation, search Name: Guangdong Nuclear Power and New Energy Industrial Investment Fund Management Company Place: Shenzhen,...

  15. HL Power Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector: Biomass Product: A power company located in California, the company main focus of energy is directed to biomass production. Coordinates: 40.293339, -79.687036...

  16. Heber Light & Power Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Company Jump to: navigation, search Name: Heber Light & Power Company Place: Utah Phone Number: 435.654.1581 Website: heberpower.com Facebook: https:www.facebook.compages...

  17. Safer nuclear power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Safer nuclear power 1663 Los Alamos science and technology magazine Latest Issue:July 2016 past issues All Issues » submit Safer nuclear power Experiments at Los Alamos reveal that alternative fuel rod cladding materials can make nuclear power plants dramatically less likely to suffer a Fukushima-type explosion in the event of a nuclear accident March 25, 2013 Safer nuclear power Nuclear generating station Los Alamos scientists, in collaboration with scientists from the Idaho and Oak Ridge

  18. New England Power Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    New England Power Company Jump to: navigation, search Name: New England Power Company Place: New York References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form...

  19. Havana Power & Light Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Havana Power & Light Company Jump to: navigation, search Name: Havana Power & Light Company Place: Florida References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA...

  20. Nuclear Power & Engineering

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management ...

  1. Maharashtra State Power Generation Company Limited MAHAGENCO...

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Maharashtra State Power Generation Company Limited (MAHAGENCO) Place: Mumbai, Maharashtra, India Zip: 400051 Product: Power generating firm planning to set up a...

  2. Peninsula Power Company Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ltd Place: Crediton, United Kingdom Zip: EX17 6AE Sector: Renewable Energy Product: CHP renewable power project developer. References: Peninsula Power Company Ltd1 This...

  3. Owners of nuclear power plants

    SciTech Connect

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  4. Owners of Nuclear Power Plants

    SciTech Connect

    Reid, R.L.

    2000-01-12

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of November 1999. The report is divided into sections representing different aspects of nuclear plant ownership.

  5. DOE Announces Loan Guarantee Applications for Nuclear Power Plant...

    Energy.gov [DOE] (indexed site)

    I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power plants in response to its June 30, 2008 solicitation. ...

  6. PP-45 Northern States Power Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Northern States Power Company PP-45 Northern States Power Company Presidential Permit ... PDF icon PP-45 Northern States Power Company More Documents & Publications PP-45-2 ...

  7. Clearwater Power Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Company Place: Idaho Phone Number: 1-888-743-1501 Website: www.clearwaterpower.com Twitter: @ClearwaterPower Facebook: https:www.facebook.comClearwaterPower Outage...

  8. Texas Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Comanche Peak Unit 1, Unit 2","2,406","20,208",48.9,"Luminant Generation Company LLC" "South Texas Project Unit 1, Unit 2","2,560","21,127",51.1,"STP Nuclear

  9. PP-94 Central Power & Light Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - Mexico Border. PDF icon PP-94 Central Power & Light Company More Documents & Publications PP-92 El Paso Electric Company (EPE) PP-82 Vermont Electric Power Company, Inc. (VELCO)

  10. Solar Power Company Limited SPC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Power Company Limited SPC Jump to: navigation, search Name: Solar Power Company Limited (SPC) Place: Thailand Sector: Solar Product: Thailand-based company that designs,...

  11. PP-62 Central Maine Power Company

    Energy.gov [DOE]

    Presidential Permit authorizing Central Maine Power Company to construct, operate, and maintain transmission facilities at the U.S. -Ca nada Border.

  12. Will Power Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Place: Kullu Dist., Himachal Pradesh, India Sector: Hydro Product: Kullu-based small hydro project developer. References: Will Power Company1 This article is a stub. You can...

  13. Delta Power Company LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Company LLC Place: Morristown, New Jersey Zip: NJ 07960 Product: Develops, acquires, finances, and manages independent power projects throughout the US. Coordinates: 44.555834,...

  14. Alaska Power Telephone Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Alaska Power Telephone Company Address: 193 Otto Street PO Box 3222 Place: Port Townsend Zip: 98368 Region: United States Sector: Marine and Hydrokinetic Phone Number:...

  15. Ohio Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    "Davis Besse Unit 1",894,"5,185",32.8,"FirstEnergy Nuclear Operating Company" "Perry Unit 1","1,240","10,620",67.2,"FirstEnergy Nuclear Operating Company" "2 Plants 2 ...

  16. At Vogtle, Big Results with Nuclear Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    At Vogtle, Big Results with Nuclear Power At Vogtle, Big Results with Nuclear Power February 20, 2014 - 1:29pm Addthis Construction work inside the Vogtle 3 and 4 module assembly building. | Photo courtesy of Georgia Power Company. Construction work inside the Vogtle 3 and 4 module assembly building. | Photo courtesy of Georgia Power Company. A look inside the Vogtle Unite 3 containment vessel bottom head. | Photo courtesy of Georgia Power Company. A look inside the Vogtle Unite 3 containment

  17. Owners of nuclear power plants

    SciTech Connect

    Not Available

    1982-11-01

    The list indicates percentage ownership of commercial nuclear power plants by utility companies as of September 1, 1982. The list includes all plants licensed to operate, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review. Part I lists plants alphabetically with their associated applicants and percentage ownership. Part II lists applicants alphabetically with their associated plants and percentage ownership. Part I also indicates which plants have received operating licenses.

  18. Obero Brasileira Power Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Company Place: Brazil Sector: Solar Product: Joint venture developing a 50MW solar thermal power plant worth BRL 500m (USD 289m) in Coremas, Paraiba. References: Obero...

  19. EA-82 Vermont Electric Power Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    82 Vermont Electric Power Company EA-82 Vermont Electric Power Company Order authorizing Vermont Electric Power Company to export electric energy to Canada EA-82 Vermont Electric Power Company (960.38 KB) More Documents & Publications EA-288 Vermont Electric Cooperative, Inc. EA-186 New England Power Pool EA-282 Northern States Power Company

  20. Renewable Power Generation JV Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    JV Company Jump to: navigation, search Name: Renewable Power Generation JV Company Place: India Product: India-based JV to develop green power projects. References: Renewable Power...

  1. Nuclear Power in Space

    DOE R&D Accomplishments

    1994-01-01

    In the early years of the United States space program, lightweight batteries, fuel cells, and solar modules provided electric power for space missions. As missions became more ambitious and complex, power needs increased and scientists investigated various options to meet these challenging power requirements. One of the options was nuclear energy. By the mid-1950s, research had begun in earnest on ways to use nuclear power in space. These efforts resulted in the first radioisotope thermoelectric generators (RTGs), which are nuclear power generators build specifically for space and special terrestrial uses. These RTGs convert the heat generated from the natural decay of their radioactive fuel into electricity. RTGs have powered many spacecraft used for exploring the outer planets of the solar system and orbiting the sun and Earth. They have also landed on Mars and the moon. They provide the power that enables us to see and learn about even the farthermost objects in our solar system.

  2. Commercial nuclear power 1990

    SciTech Connect

    Not Available

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  3. PP-63 Northern States Power Company (NSP) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Northern States Power Company (NSP) PP-63 Northern States Power Company (NSP) ... at the U.S. - Canada Border. PDF icon PP-63 Northern States Power Company (NSP) More ...

  4. DOE Cites Bechtel Jacobs Company for Nuclear Safety Violations | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Jacobs Company for Nuclear Safety Violations DOE Cites Bechtel Jacobs Company for Nuclear Safety Violations August 4, 2005 - 2:36pm Addthis WASHINGTON, D.C. - The Department of Energy (DOE) today notified the Bechtel Jacobs Company (BJC) that it will fine the company $247,500 for violations of the department's nuclear safety requirements. The company is the department's contractor responsible for environmental cleanup and waste management at its Oak Ridge Reservation in Tennessee.

  5. Georgia Power Company (GPC), Oglethorpe Power Corporation (OPC), Municipal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Authority of Georgia (MEAG) | Department of Energy Georgia Power Company (GPC), Oglethorpe Power Corporation (OPC), Municipal Electric Authority of Georgia (MEAG) Georgia Power Company (GPC), Oglethorpe Power Corporation (OPC), Municipal Electric Authority of Georgia (MEAG) Location: Waynesboro, GA Eligibility: 1703 Snapshot In February 2014, the Department of Energy issued $6.5 billion in loan guarantees to support the construction of the nation's next generation of advanced

  6. Harbin Wind Power Equipment Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Equipment Company Jump to: navigation, search Name: Harbin Wind Power Equipment Company Place: Harbin, Heilongjiang Province, China Sector: Wind energy Product: A wind...

  7. Nantong Kailian Wind Power Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kailian Wind Power Company Jump to: navigation, search Name: Nantong Kailian Wind Power Company Place: Nantong, Jiangsu Province, China Zip: 226009 Sector: Wind energy Product:...

  8. Guodian Hefeng Wind Power Development Company | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hefeng Wind Power Development Company Jump to: navigation, search Name: Guodian Hefeng Wind Power Development Company Place: Huludao, Liaoning Province, China Sector: Wind energy...

  9. Huaneng Shouguang Wind Power Company Limited | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Huaneng Shouguang Wind Power Company Limited Jump to: navigation, search Name: Huaneng Shouguang Wind Power Company Limited Place: Shouguang, Shandong Province, China Sector: Wind...

  10. PP-231 Northern States Power Company | Department of Energy

    Energy.gov [DOE] (indexed site)

    Northern States Power Company to construct, operate, and maintain electric transmission facilities at the U.S-Canadian border. PDF icon PP-231 Northern States Power Company More ...

  11. PP-43 Maine Electric Power Company, Inc. | Department of Energy

    Energy.gov [DOE] (indexed site)

    Maine Electric Power Company, Inc. to construct, operate, and maintain electric transmission facilities at the U.S. - Canada Border. PDF icon PP-43 Maine Electric Power Company, ...

  12. PP-78 Minnesota Power & Light Company | Department of Energy

    Energy.gov [DOE] (indexed site)

    Minnesota Power & Light Company to construct, operate, and maintain electric transmission facilities at the U.S. - Canada Border. PDF icon PP-78 Minnesota Power & Light Company ...

  13. Jinxiu Guangneng Hydro Power Company Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guangneng Hydro Power Company Ltd Jump to: navigation, search Name: Jinxiu Guangneng Hydro Power Company Ltd. Place: Guangxi Autonomous Region, China Zip: 530022 Sector: Hydro...

  14. Joint Maintenance Status Report of Potomac Electric Power Company...

    Energy Saver

    Joint Maintenance Status Report of Potomac Electric Power Company amd PJM Interconnection, LLC Joint Maintenance Status Report of Potomac Electric Power Company amd PJM Interconnection, ...

  15. Huadian Inner Mongolia Kailu Wind Power Company Limited | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Inner Mongolia Kailu Wind Power Company Limited Jump to: navigation, search Name: Huadian Inner Mongolia Kailu Wind Power Company Limited Place: Jinan, Inner Mongolia Autonomous...

  16. Thamna Bio power and Organic Producers Company TBPOPC | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Thamna Bio power and Organic Producers Company TBPOPC Jump to: navigation, search Name: Thamna Bio-power and Organic Producers Company (TBPOPC) Place: Thamna, Gujarat, India...

  17. Lintan Luertai Hydroelectric Power Company Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Luertai Hydroelectric Power Company Ltd Jump to: navigation, search Name: Lintan Luertai Hydroelectric Power Company, Ltd Place: Lintan County, Gansu Province, China Sector: Hydro...

  18. Beijing LN Green Power Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Beijing LN Green Power Company Jump to: navigation, search Name: Beijing LN Green Power Company Place: Beijing, Beijing Municipality, China Zip: 100000 Sector: Vehicles Product:...

  19. Orient Green Power Company Ltd OGPL | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Orient Green Power Company Ltd OGPL Jump to: navigation, search Name: Orient Green Power Company Ltd (OGPL) Place: Chennai, Tamil Nadu, India Zip: 600 095 Sector: Biomass, Hydro,...

  20. Joint Motion to Intervene of Northern States Power Company (Minnesota...

    Energy Saver

    States Power Company (Minnesota) et al. on the Proposed Open Access Requirements Joint Motion to Intervene of Northern States Power Company (Minnesota) et al. on the Proposed ...

  1. NUCLEAR POWER PLANT

    DOEpatents

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  2. Owners of nuclear power plants

    SciTech Connect

    Wood, R.S.

    1991-07-01

    This report indicates percentage ownership of commercial nuclear power plants by utility companies. The report includes all plants operating, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review, but does not include those plants announced but not yet under review or those plants formally cancelled. Part 1 of the report lists plants alphabetically with their associated applicants or licensees and percentage ownership. Part 2 lists applicants or licensees alphabetically with their associated plants and percentage ownership. Part 1 also indicates which plants have received operating licenses (OLS).

  3. Sabotage at Nuclear Power Plants

    SciTech Connect

    Purvis, James W.

    1999-07-21

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  4. Nuclear criticality safety at Babcock & Wilcox Company

    SciTech Connect

    Alcorn, F.M.

    1996-12-31

    The Babcock & Wilcox Company (B&W) operates a nuclear fuel production plant in Virginia. It is a privately owned facility licensed by the U.S. Nuclear Regulatory Commission (NRC). The NRC maintains a resident inspector on-site. The plant produces highly enriched fuel for both certain defense programs and the various U.S. research and test reactors. The plant also produces nuclear fuel at an intermediate enrichment (20 wt%) for research and test reactors in the United States and overseas. B&W operates a highly enriched uranium recovery operation for its scrap and as a service to various U.S. Department of Energy sites. B&W`s downblending operations are designed to produce low-enriched fuel (5 wt%); the company is currently under contract to clean up and downblend Sapphire material. Operations within the facility include ceramic (oxides, silicide, and carbides), foundry (metal), chemical (nitrates, ADUN, etc.), and mechanical assembly with extensive laboratory and quality assurance operations. Also located on-site is a hot cell facility for the examination of irradiated fuel. This report discusses B&W`s license renewal considerations.

  5. Labor and nuclear power

    SciTech Connect

    Logan, R.; Nelkin, D.

    1980-03-01

    The AFL-CIO is officially pro-nuclear, but tensions within unions are taking issue over ideological differences. The Labor movement, having looked to nuclear power development as an economic necessity to avoid unemployment, has opposed efforts to delay construction or close plants. As many as 42% of union members or relatives of members, however, were found to oppose new power plants, some actively working against specific construction projects. The United Mine Workers and Teamsters actively challenged the nuclear industry while the auto workers have been ambivalent. The differences between union orientation reflects the history of unionism in the US and explains the emergence of social unionism with its emphasis on safety and working conditions as well as economic benefits. Business union orientation trends to prevail during periods of prosperity; social unions during recessions. The labor unions and the environmentalists are examined in this conext and found to be hopeful. 35 references. (DCK)

  6. Alternative Fuels Data Center: Companies Power up Through Workplace

    Alternative Fuels and Advanced Vehicles Data Center

    Charging Challenge Companies Power up Through Workplace Charging Challenge to someone by E-mail Share Alternative Fuels Data Center: Companies Power up Through Workplace Charging Challenge on Facebook Tweet about Alternative Fuels Data Center: Companies Power up Through Workplace Charging Challenge on Twitter Bookmark Alternative Fuels Data Center: Companies Power up Through Workplace Charging Challenge on Google Bookmark Alternative Fuels Data Center: Companies Power up Through Workplace

  7. Topics in nuclear power

    SciTech Connect

    Budnitz, Robert J.

    2015-03-30

    The 101 nuclear plants operating in the US today are far safer than they were 20-30 years ago. For example, there's been about a 100-fold reduction in the occurrence of 'significant events' since the late 1970s. Although the youngest of currently operating US plants was designed in the 1970s, all have been significantly modified over the years. Key contributors to the safety gains are a vigilant culture, much improved equipment reliability, greatly improved training of operators and maintenance workers, worldwide sharing of experience, and the effective use of probabilistic risk assessment. Several manufacturers have submitted high quality new designs for large reactors to the U.S. Nuclear Regulatory Commission (NRC) for design approval, and several companies are vigorously working on designs for smaller, modular reactors. Although the Fukushima reactor accident in March 2011 in Japan has been an almost unmitigated disaster for the local population due to their being displaced from their homes and workplaces and also due to the land contamination, its 'lessons learned' have been important for the broader nuclear industry, and will surely result in safer nuclear plants worldwide - indeed, have already done so, with more safety improvements to come.

  8. Michigan Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ... Nuclear Palisades LLC" "3 Plants 4 Reactors","3,947","29,625",100.0 "Note: ...

  9. Maryland Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant ...

  10. Ohio Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  11. Pennsylvania Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  12. Tampa Electric Company`s Polk Power Station IGCC project

    SciTech Connect

    Jenkins, S.D.

    1995-12-31

    Tampa Electric Company (TEC) is in the construction phase of its new Polk Power Station Unit No. 1. This unique project incorporates the use of Integrated Gasification Combined Cycle (IGCC) technology for electric power production. The project is being partially funded by the US Department of Energy (DOE), as part of the Clean Coal Technology Program. This will help to demonstrate this state-of-the-art technology, providing utilities with the ability to use a wide range of coals in an efficient, environmentally superior manner. During the summer of 1994, TEC began site development at the new Polk Power Station. Since that time, most of the Site work has been completed, and erection and installation of the power plant equipment is well underway. This is the first time that IGCC technology will be installed at a new unit at a greenfield site. This is a major endeavor for TEC in that Polk Unit No. 1 is a major addition to the existing generating capacity and it involves the demonstration of technology new to utility power generation. As a part of the Cooperative Agreement with the DOE, TEC will also be demonstrating the use of a new Hot Gas Clean-Up System which has a potential for greater IGCC efficiency.

  13. PP-219 Central Power and Light Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    19 Central Power and Light Company PP-219 Central Power and Light Company Presidential permit authorizing Central Power and Light Company to construct, operate, and maintain electric transmission facilities at the U.S-Mexican border. PP-219 Central Power and Light Company (946.17 KB) More Documents & Publications PP-234-1 Baja California Power Inc PP-234 Baja California Power Inc PP-16 Alendatory Permit

  14. Virginia Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ... Electric & Power Co" "2 Plants 4 Reactors","3,501","26,572",100.0 "Note: ...

  15. Minnesota Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant name... States Power Co - Minnesota" "2 Plants 3 Reactors","1,594","13,478",100.0

  16. Overview paper on nuclear power

    SciTech Connect

    Spiewak, I.; Cope, D.F.

    1980-09-01

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power.

  17. Texas Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Unit 1, Unit 2","2,406","20,208",48.9,"Luminant Generation Company LLC" "South Texas Project Unit 1, Unit 2","2,560","21,127",51.1,"STP Nuclear Operating Co" "2 Plants 4 ...

  18. DOE Announces Loan Guarantee Applications for Nuclear Power Plant

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Construction | Department of Energy Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has received 19 Part I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power plants in response to its June 30, 2008 solicitation. The

  19. Secretary Chu Visits Vogtle Nuclear Power Plant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vogtle Nuclear Power Plant Secretary Chu Visits Vogtle Nuclear Power Plant February 15, 2012 - 3:54pm Addthis Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in the United States in three decades. | Image credit: Southern Company. Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in

  20. Nuclear Security for Floating Nuclear Power Plants

    SciTech Connect

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  1. BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Vulcan Power Company Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Vulcan Power Company Salt Wells...

  2. CECIC HKC Wind Power Company Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    HKC Wind Power Company Ltd Jump to: navigation, search Name: CECIC HKC Wind Power Company Ltd Place: China Sector: Wind energy Product: HKC are in a joint venture with China Energy...

  3. EA-243 Tenaska Power Services Company | Department of Energy

    Energy.gov [DOE] (indexed site)

    EA-243 Tenaska Power Services Company (31.57 KB) More Documents & Publications EA-232 OGE Energy Resources Inc EA-249 Exelon Generation Company LLC EA-122-A Dynegy Power Marketing, ...

  4. HOMOGENEOUS NUCLEAR POWER REACTOR

    DOEpatents

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  5. Experiments ✚ Simulations = Better Nuclear Power Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Experiments + Simulations Better Nuclear Power Research Experiments Simulations Better Nuclear Power Research Atomic Level Simulations Enhance Characterization of Radiation ...

  6. NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS...

    Office of Scientific and Technical Information (OSTI)

    Title list of documents made publicly available, January 1-31, 1998 NONE 21 NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS; BIBLIOGRAPHIES; NUCLEAR POWER PLANTS;...

  7. Shanghai Municipal Electric Power Company SMEPC | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Shanghai Municipal Electric Power Company is a large enterprise engaging in Shanghai electric power transmission, distribution and sales. Coordinates: 31.247709,...

  8. Consolidated Water Power Company CWPCo | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    CWPCo Jump to: navigation, search Name: Consolidated Water Power Company (CWPCo) Place: Wisconsin Sector: Hydro Product: Wisconsin-based owner and operator of hydroelectric power...

  9. Illinois Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ... 2","1,774","14,796",15.4,"Exelon Nuclear" "6 Plants 11 Reactors","11,441","96,190",100.0

  10. EA-282 Northern States Power Company | Department of Energy

    Energy.gov [DOE] (indexed site)

    energy to Canada. PDF icon EA-282 Northern States Power Company More Documents & Publications EA-63-C Northern States Power EA-196-B Minnesota Power EA-196-C Minnesota Power

  11. Topics in nuclear power (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    NUCLEAR POWER STATION; GAIN; JAPAN; NATURAL DISASTERS; NUCLEAR INDUSTRY; NUCLEAR POWER; NUCLEAR POWER PLANTS; PROBABILISTIC ESTIMATION; REACTOR ACCIDENTS; REACTOR MAINTENANCE;...

  12. California Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  13. Pennsylvania Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  14. Connecticut Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  15. Georgia Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ...,302","19,610",58.5,"Georgia Power Co" "2 Plants 4 Reactors","4,061","33,512",100.0 "Note: ...

  16. Alabama Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ...,734","13,170",34.7,"Alabama Power Co" "2 Plants 5 Reactors","5,043","37,941",100.0 "Note: ...

  17. Florida Power and Light Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    and Light Company Jump to: navigation, search Name: Florida Power and Light Company Place: Juno Beach, Florida Zip: 33408 Product: US utility serving 4.4 million customers in...

  18. Competitive economics of nuclear power

    SciTech Connect

    Hellman, R.

    1981-03-02

    Some 12 components of a valid study of the competitive economics of a newly ordered nuclear power plant are identified and explicated. These are then used to adjust the original cost projections of four authoritative studies of nuclear and coal power economics.

  19. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JULY 2015

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 Updates available at: www.energy.gov/ne NEXT UPDATE - October 2015 Page 1 News Updates  DTE Energy has received a license to build and operate an ESBWR light water reactor at its Fermi site in Newport, Michigan; the company has not committed to building a new plant, but is retaining the option for long-term planning purposes.  The Nuclear Regulatory Commission has voted to grant the Director of Nuclear Reactor Regulation authority to issue a full power operating license to Tennessee

  20. PP-63-3 Northern States Power Company (NSP) | Department of Energy

    Energy.gov [DOE] (indexed site)

    3 Northern States Power Company (NSP) More Documents & Publications PP-63 Northern States Power Company (NSP) PP-63-4

  1. Working Group Report on - Space Nuclear Power Systems and Nuclear...

    Energy Saver

    Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even ...

  2. Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    & Touts Robust Economy | Department of Energy Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy August 4, 2006 - 8:42am Addthis ATLANTA, GA - After touring Georgia Power and speaking to its employees, U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced completion of the final rule that establishes the process for utility companies building

  3. International Power Girasolar joint company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: International Power Girasolar joint company Sector: Solar Product: Joint venture announced between US IPWG and Netherlands-headquartered Girasolar, to...

  4. Dutch Company Powers Streetlights With Living Plants; Will Your...

    OpenEI (Open Energy Information) [EERE & EIA]

    Dutch Company Powers Streetlights With Living Plants; Will Your Cell Phone Be Next? Home > Groups > OpenEI Community Central Dc's picture Submitted by Dc(266) Contributor 16...

  5. Shanghai Wind Power Company SWPC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    SWPC Jump to: navigation, search Name: Shanghai Wind Power Company (SWPC) Place: Shanghai, Shanghai Municipality, China Sector: Wind energy Product: It is set up for running the...

  6. PP-82 Vermont Electric Power Company, Inc. (VELCO)

    Energy.gov [DOE]

    Presidental Permit authorizing Vermont Electric Power Company, Inc. (VELCO) to construct, operate, and maintain electric transmission facilities at the U.S. - Canada Border.

  7. Dishergarh Power Supply Company Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Dishergarh Power Supply Company Ltd. Place: Kolkata, India Product: Generation and distribution of electricity. Coordinates: 22.52667, 88.34616 Show Map...

  8. PP-45-1 Northern States Power Company

    Energy.gov [DOE]

    Presidential Permit authorizing Northern States Power Company to construct, operate, and maintain elextric transmission facilities at the U.S. - Canada Border.

  9. Guangxi Sanjubaotan Power Company Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    China Zip: 530022 Sector: Hydro Product: Guanxi Autonomous Region developer of small hydro plants. References: Guangxi Sanjubaotan Power Company Ltd1 This article is a stub....

  10. Sandur Power Company Pvt Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Pvt Ltd. Place: Hyderabad, Karnataka, India Sector: Hydro Product: Hyderabad based Mini-Hydro project developer. References: Sandur Power Company Pvt Ltd.1 This article is a...

  11. Guangnan Shangshilong Power Plant Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Yunnan Province, China Zip: 663300 Sector: Hydro Product: Yunnan-based developer of small hydro plants. References: Guangnan Shangshilong Power Plant Company1 This article is a...

  12. Gill Power Generation Company Pvt Ltd GPGC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Chandigarh, Chandigarh, India Zip: 160010, Sector: Hydro Product: Chandigarh-based small hydro project developer. References: Gill Power Generation Company Pvt. Ltd. (GPGC)1...

  13. Enforcement Letter, Controlled Power Company- WEL-2012-02

    Energy.gov [DOE]

    Issued to Controlled Power Company related to an Electrical Shock Near Miss that occurred in the Radiological Laboratory Utility Office Building at the Los Alamos National Laboratory

  14. PowerSHIFT Energy Company Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: PowerSHIFT Energy Company Inc Place: Casper, Wyoming Zip: 82605 Sector: Biofuels Product: Wyoming-based biofuels producer. Coordinates: 42.850095, -106.327734...

  15. Maguan Daliangzi Power Company Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ma Guan, Yunnan Province, China Sector: Hydro Product: Owner of Yunnan Maguan hydroelectric facility. References: Maguan Daliangzi Power Company Ltd.1 This article is a...

  16. Arava Power Company APC Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ltd Jump to: navigation, search Name: Arava Power Company (APC) Ltd Place: DN Eilot, Israel Zip: 88840 Sector: Solar Product: Israel-based solar developer. Subsidiary of Global...

  17. PP-45-2 Northern States Power Company

    Energy.gov [DOE]

    Presidential Permit authorizing Northern States Power Company to construct, operate, and maintain elextric transmission facilities at the U.S. - Canada Border.

  18. Maryland Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant Unit 1, Unit 2","1,705","13,994",100.0,"Calvert Cliffs Nuclear PP Inc" "1 Plant 2 Reactors","1,705","13,994",100.0 "Note: Totals

  19. Massachusetts Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Pilgrim Nuclear Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal sum of components due to

  20. Siemens Nuclear Power GmbH AREVA Nuclear Power | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Nuclear Power GmbH AREVA Nuclear Power Jump to: navigation, search Name: Siemens Nuclear Power GmbH (AREVA Nuclear Power) Place: Erlangen, Germany Zip: 91058 Sector: Services...

  1. Tennessee Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant name...23","9,738",35.1,"Tennessee Valley Authority" "2 Plants 3 Reactors","3,401","27,739",100.0

  2. Wisconsin Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant name..."8,291",62.4,"NextEra Energy Point Beach LLC" "2 Plants 3 Reactors","1,584","13,281",100.0

  3. Louisiana Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant Name..."1,168","10,276",55.1,"Entergy Louisiana Inc" "2 Plants 2 Reactors","2,142","18,639",100.0

  4. Nebraska Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Cooper Unit 1",767,"6,793",61.4,"Nebraska Public Power District" "Fort Calhoun Unit ...

  5. Massachusetts Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal sum of components due to independent ...

  6. Nuclear power reactor instrumentation systems handbook. Volume...

    Office of Scientific and Technical Information (OSTI)

    Nuclear power reactor instrumentation systems handbook. Volume 1 Citation Details In-Document Search Title: Nuclear power reactor instrumentation systems handbook. Volume 1 You ...

  7. VES-0071- In the Matter of Mississippi Power Company

    Energy.gov [DOE]

    On May 1, 2000, the Mississippi Power Company, of Gulfport, Mississippi (Mississippi Power), filed with the Office of Hearings and Appeals (OHA) of the Department of Energy an Application for...

  8. Minnesota Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Monticello Unit 1",554,"4,695",34.8,"Northern States Power Co - Minnesota" "Prairie Island Unit 1, Unit 2","1,040","8,783",65.2,"Northern States Power Co -

  9. Nebraska Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Cooper Unit 1",767,"6,793",61.4,"Nebraska Public Power District" "Fort Calhoun Unit 1",478,"4,261",38.6,"Omaha Public Power District" "2 Plants 2

  10. Virginia Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "North Anna Unit 1, Unit 2","1,863","13,399",50.4,"Virginia Electric & Power Co" "Surry Unit 1, Unit 2","1,638","13,172",49.6,"Virginia Electric & Power

  11. Georgia Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Edwin I Hatch Unit 1, Unit 2","1,759","13,902",41.5,"Georgia Power Co" "Vogtle Unit 1, Unit 2","2,302","19,610",58.5,"Georgia Power Co" "2 Plants 4

  12. (Nuclear power engineering in space)

    SciTech Connect

    Cooper, R.H. Jr.

    1990-06-18

    The principal purpose of this trip was to participate in the Anniversary Specialist Conference on Nuclear Power Engineering in Space hosted by the USSR Ministry of Atomic Power Engineering and Industry. The conference was held in Obninsk, USSR. A secondary purpose of the trip was to meet with the French Commissariat A L'Energie Atomique in Paris regarding the status of their space power program.

  13. Dynamic Simulation Nuclear Power Plants

    Energy Science and Technology Software Center

    1992-03-03

    DSNP (Dynamic Simulator for Nuclear Power-Plants) is a system of programs and data files by which a nuclear power plant, or part thereof, can be simulated. The acronym DSNP is used interchangeably for the DSNP language, the DSNP libraries, the DSNP precompiler, and the DSNP document generator. The DSNP language is a special-purpose, block-oriented, digital-simulation language developed to facilitate the preparation of dynamic simulations of a large variety of nuclear power plants. It is amore » user-oriented language that permits the user to prepare simulation programs directly from power plant block diagrams and flow charts by recognizing the symbolic DSNP statements for the appropriate physical components and listing these statements in a logical sequence according to the flow of physical properties in the simulated power plant. Physical components of nuclear power plants are represented by functional blocks, or modules. Many of the more complex components are represented by several modules. The nuclear reactor, for example, has a kinetic module, a power distribution module, a feedback module, a thermodynamic module, a hydraulic module, and a radioactive heat decay module. These modules are stored in DSNP libraries in the form of a DSNP subroutine or function, a block of statements, a macro, or a combination of the above. Basic functional blocks such as integrators, pipes, function generators, connectors, and many auxiliary functions representing properties of materials used in nuclear power plants are also available. The DSNP precompiler analyzes the DSNP simulation program, performs the appropriate translations, inserts the requested modules from the library, links these modules together, searches necessary data files, and produces a simulation program in FORTRAN.« less

  14. Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station

    Energy Information Administration (EIA) (indexed site)

    Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License expiration date" 1,685,"5,918",98.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,685,"5,918",98.7

  15. New York Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Mile Point Nuclear Sta LLC" "R E Ginna Nuclear Power Plant Unit 1",581,"4,948",11.8,"R.E. Ginna Nuclear Power Plant, LLC" "4 Plants 6 Reactors","5,271","41,870",100.0 ...

  16. Company Name Company Name Address Place Zip Sector Product Website

    OpenEI (Open Energy Information) [EERE & EIA]

    operates a number of power stations including the largest coal fired power station in the world as well as the Koeberg nuclear power station Esmeralda Energy Company Esmeralda...

  17. Arkansas Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Arkansas Nuclear One Unit 1, Unit 2","1,835","15,023",100.0,"Entergy Arkansas Inc" "1 Plant 2 Reactors","1,835","15,023",100.0

  18. California Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    California nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Diablo Canyon Unit 1, Unit 2","2,240","18,430",57.2,"Pacific Gas & Electric Co" "San Onofre Nuclear Generating Station Unit 2, Unit

  19. Tennessee Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Sequoyah Unit 1, Unit 2","2,278","18,001",64.9,"Tennessee Valley Authority" "Watts Bar Nuclear Plant Unit 1","1,123","9,738",35.1,"Tennessee Valley

  20. Vermont Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Vermont Yankee Unit 1",620,"4,782",100.0,"Entergy Nuclear Vermont Yankee" "1 Plant 1 Reactor",620,"4,782",100.0

  1. Wisconsin Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Kewaunee Unit 1",566,"4,990",37.6,"Dominion Energy Kewaunee Inc." "Point Beach Nuclear Plant Unit 1, Unit 2","1,018","8,291",62.4,"NextEra Energy Point Beach

  2. Connecticut Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Millstone Unit 2, Unit 3","2,103","16,750",100.0,"Dominion Nuclear Conn Inc" "1 Plant 2 Reactors","2,103","16,750",100.0

  3. Illinois Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Braidwood Generation Station Unit 1, Unit 2","2,330","19,200",20.0,"Exelon Nuclear" "Byron Generating Station Unit 1, Unit 2","2,300","19,856",20.6,"Exelon

  4. Kansas Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Wolf Creek Generating Station Unit 1","1,160","9,556",100.0,"Wolf Creek Nuclear Optg Corp" "1 Plant 1 Reactor","1,160","9,556",100.0

  5. Michigan Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Donald C Cook Unit 1, Unit 2","2,069","15,646",52.8,"Indiana Michigan Power Co" "Fermi Unit 2","1,085","7,738",26.1,"Detroit Edison Co" "Palisades Unit

  6. Alabama Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Browns Ferry Unit 1, Unit 2, Unit 3","3,309","24,771",65.3,"Tennessee Valley Authority" "Joseph M Farley Unit 1, Unit 2","1,734","13,170",34.7,"Alabama Power

  7. Florida Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Crystal River Unit 3",860,0,"--","Progress Energy Florida Inc" "St Lucie Unit 1, Unit 2","1,678","12,630",52.8,"Florida Power & Light Co" "Turkey Point

  8. Hallam Nuclear Power Facility, NE

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hallam Nuclear Power Facility, NE 1969 1998 2. Piqua Nuclear Power Facility, OH 1969 1998 3. Bayo Canyon, NM 1982 1998 4. Kellex/Pierpont, NJ 1982 1998 5. University of California, CA 1982 1998 6. Acid/Pueblo Canyons, NM 1984 1999 7. Chupadera Mesa, NM 1984 1999 8. Canonsburg, PA 1986 1999 9.Shiprock, NM 1987 2000 10. Middlesex Municipal Landfill, NJ 1987 2000 11. Niagara Falls Storage Site Vicinity Properties, NY 1987 2001 12. Salt Lake City, UT 1989 2001 13. Spook, WY 1989 2001 14. National

  9. Otter Tail Power Company- Commercial & Industrial Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Information regarding rebate program eligibility and product and equipment requirements may be found on the web site listed above. Contact Otter Tail Power Company for more information on this ...

  10. XingYi Power Generation Company Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    City, Guizhou Province, China Sector: Hydro Product: Guizhou-based developer of a small hydro plant. References: XingYi Power Generation Company Ltd.1 This article is a stub....

  11. Otter Tail Power Company- Residential Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Information regarding rebate program eligibility and product and equipment requirements may be found on the web site listed above. Contact Otter Tail Power Company for more information on this pr...

  12. Answer of Potomac Electric Power Company and PJM lnterconnection...

    Office of Environmental Management (EM)

    6, 2005 motion filed by the Virginia Department of Environmental Quality Answer of Potomac Electric Power Company and PJM lnterconnection, L.L.C. to the October 6, 2005 motion ...

  13. Potomac Electric Power Company's Motion for Leave to Answer and...

    Office of Environmental Management (EM)

    Compliance Plan Answer of Potomac Electric Power Company and PJM lnterconnection, L.L.C. to the October 6, 2005 motion filed by the Virginia Department of Environmental Quality

  14. PUCT - Registration Form for Power Generation Companies and Self...

    OpenEI (Open Energy Information) [EERE & EIA]

    PUCT - Registration Form for Power Generation Companies and Self-Generators Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: PUCT - Registration Form for...

  15. PP-63-4 Northern States Power Company (NSP) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    -4 Northern States Power Company (NSP) PP-63-4 Northern States Power Company (NSP) ... at the U.S. - Canada Border. PDF icon PP-63-4 Northern States Power Company (NSP) ...

  16. PRESIDENTIAL PERMIT NORTHERN STATES POWER COMPANY ORDER NO. PP-231

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    NORTHERN STATES POWER COMPANY ORDER NO. PP-231 I. BACKGROUND The Office of Fossil Energy (FE) of the Department of Energy (DOE) has the responsibility for implementing Executive Order (EO) 10485, as amended by EO 12038, which requires the issuance of Presidential permits for the construction, operation, maintenance, and connection of electric transmission facilities at the United States international border. On November 2, 2000, Northern States Power Company (NSP) filed an application with the

  17. Helping nuclear power help us

    SciTech Connect

    Schecker, Jay A

    2009-01-01

    After a prolonged absence, the word 'nuclear' has returned to the lexicon of sustainable domestic energy resources. Due in no small part to its demonstrated reliability, nuclear power is poised to playa greater role in the nation's energy future, producing clean, carbon-neutral electricity and contributing even more to our energy security. To nuclear scientists, the resurgence presents an opportunity to inject new technologies into the industry to maximize the benefits that nuclear energy can provide. 'By developing new options for waste management and exploiting new materials to make key technological advances, we can significantly impact the use of nuclear energy in our future energy mix,' says Chris Stanek, a materials scientist at Los Alamos National Laboratory. Stanek approaches the big technology challenges by thinking way small, all the way down to the atoms. He and his colleagues are using cutting edge atomic-scale simulations to address a difficult aspect of nuclear waste -- predicting its behavior far into the future. Their research is part of a broader, coordinated effort on the part of the Laboratory to use its considerable experimental, theoretical, and computational capabilities to explore advanced materials central to not only waste issues, but to nuclear fuels as well.

  18. North Carolina Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  19. New York Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  20. Nuclear power high technology colloquium: proceedings

    SciTech Connect

    Not Available

    1984-12-10

    Reports presenting information on technology advancements in the nuclear industry and nuclear power plant functions have been abstracted and are available on the energy data base.

  1. Global warming and nuclear power

    SciTech Connect

    Wood, L., LLNL

    1998-07-10

    Nuclear fission power reactors represent a potential solution to many aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth`s atmosphere. Of proven technological feasibility, they presently produce high-grade heat for large-scale electricity generation, space heating and industrial process-energizing around the world, without emitting greenhouse gases or atmospheric particulates; importantly, electricity production costs from the best nuclear plants presently are closely comparable with those of the best fossil-fired plants. However, a substantial number of issues currently stand between nuclear power and widespread substitution for large stationary fossil fuel-fired systems. These include perceptual ones regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps most seriously- readily quantifiable concerns regarding long-term fuel supply and total unit electrical energy cost. We sketch a road-map for proceeding from the present situation toward a nuclear power-intensive world, addressing along the way each of the concerns which presently impede widespread nuclear substitution for fossil fuels, particularly for coal in the most populous and rapidly developing portions of the world, e.g., China and India. This `design to societal specifications` approach to large-scale nuclear fission power systems may lead to energy sources meeting essentially all stationary demands for high-temperature heat. Such advanced options offer a human population of ten billion the electricity supply levels currently enjoyed by Americans for 10,000 years. Nuclear power systems tailored to local needs-and-interests and having a common advanced technology base could reduce present-day world-wide C0{sub 2} emissions by two-fold, if universally employed. By application to small mobile demands, a second two

  2. Louisiana Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant Name/Total Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (Pprcent)","Owner" "River Bend Unit 1",974,"8,363",44.9,"Entergy Gulf States - LA LLC" "Waterford 3 Unit 3","1,168","10,276",55.1,"Entergy Louisiana Inc" "2 Plants 2

  3. Mississippi Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Grand Gulf Unit 1","1,251","9,643",100.0,"System Energy Resources, Inc" "1 Plant 1 Reactor","1,251","9,643",100.0

  4. Missouri Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Callaway Unit 1","1,190","8,996",100.0,"Union Electric Co" "1 Plant 1 Reactor","1,190","8,996",100.0 "Note: Totals may not equal sum of components due to

  5. Arizona Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Palo Verde Unit 1, Unit 2, Unit 3","3,937","31,200",100.0,"Arizona Public Service Co" "1 Plant 3 Reactors","3,937","31,200",100.0 "Note: Totals may not equal sum of

  6. Washington Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Washington nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Columbia Generating Station Unit 2","1,097","9,241",100.0,"Energy Northwest" "1 Plant 1 Reactor","1,097","9,241",100.0

  7. Iowa Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Duane Arnold Energy Center Unit 1",601,"4,451",100.0,"NextEra Energy Duane Arnold LLC" "1 Plant 1 Reactor",601,"4,451",100.0

  8. Seahorse Power Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zip: 2492 Sector: Solar Product: Manufactures and markets the BigBelly solar powered trash compactor. Coordinates: 42.28107, -71.236054 Show Map Loading map......

  9. Electric Power Produced from Nuclear Reactor | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Electric Power Produced from Nuclear Reactor Electric Power Produced from Nuclear Reactor Arco, ID The Experimental Breeder Reactor No. 1 located at the National Reactor Testing Station near Arco, Idaho, produces the first electric power from a nuclear reactor

  10. PP-6 Puget Sound Power & Light Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Puget Sound Power & Light Company PP-6 Puget Sound Power & Light Company Presidential permit authorizing Puget Sound Power & Light Company to construct, operate, and maintain electric transmission facilities at the U.S-Canada border. - Signed 4/28/1981 PP-6 Puget Sound Power & Light Company (1.07 MB) More Documents & Publications PP-29-1 Maine Public Service Company PP-12 Maine Public Service Company PP-10 Bonneville Power Administrator

  11. Nuclear Power: High Hopes, Unfulfilled Promise (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    Power: High Hopes, Unfulfilled Promise Citation Details In-Document Search Title: Nuclear Power: High Hopes, Unfulfilled Promise You are accessing a document from the Department ...

  12. The Bowersock Mills and Power Company 1874

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Incremental Hydroelectric Energy The Bowersock Mills and Power Co., Lawrence, KS ... It comes from putting in better turbines in existing dams, it comes from run-of-the-river ...

  13. Role of nuclear power in the Philippine power development program

    SciTech Connect

    Aleta, C.R.

    1994-12-31

    The reintroduction of nuclear power in the Philippines is favored by several factors such as: the inclusion of nuclear energy in the energy sector of the science and technology agenda for national development (STAND); the Large gap between electricity demand and available local supply for the medium-term power development plan; the relatively lower health risks in nuclear power fuel cycle systems compared to the already acceptable power systems; the lower environmental impacts of nuclear power systems compared to fossil fuelled systems and the availability of a regulatory framework and trained personnel who could form a core for implementing a nuclear power program. The electricity supply gap of 9600 MW for the period 1993-2005 could be partly supplied by nuclear power. The findings of a recent study are described, as well as the issues that have to be addressed in the reintroduction of nuclear power.

  14. Infrastructure development assistance modeling for nuclear power plant

    SciTech Connect

    Park, J. H.; Hwang, K.; Park, K. M.; Kim, S. W.; Lee, S. M.

    2012-07-01

    The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task would be to

  15. Final Technical Report. Upgrades to Alabama Power Company Hydroelectric Developments

    SciTech Connect

    Crew, James F.; Johnson, Herbie N.

    2015-03-31

    From 2010 to 2014, Alabama Power Company (“Alabama Power”) performed upgrades on four units at three of the hydropower developments it operates in east-central Alabama under licenses issued by the Federal Energy Regulatory Commission (“FERC”). These three hydropower developments are located on the Coosa River in Coosa, Chilton, and Elmore counties in east-central Alabama.

  16. Operation of Grand Gulf Nuclear Station, Units 1 and 2, Dockets Nos. 50-416 and 50-417: Mississippi Power and Light Company, Middle South Energy, Inc. , South Mississippi Electric Power Association. Final environmental statement

    SciTech Connect

    Not Available

    1981-09-01

    The information in this Final Environmental Statement is the second assessment of the environmental impacts associated with the construction and operation of the Grand Gulf Nuclear Station, Units 1 and 2, located on the Mississippi River in Claiborne County, Mississippi. The Draft Environmental Statement was issued in May 1981. The first assessment was the Final Environmental Statement related to construction, which was issued in August 1973 prior to issuance of the Grand Gulf Nuclear Station construction permits. In September 1981 Grand Gulf Unit 1 was 92% complete and Unit 2 was 22% complete. Fuel loading for Unit 1 is scheduled for December 1981. The present assessment is the result of the NRC staff review of the activities associated with the proposed operation of the Station, and includes the staff responses to comments on the Draft Environmental Statement.

  17. New York Nuclear Profile - R E Ginna Nuclear Power Plant

    Energy Information Administration (EIA) (indexed site)

    R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License ...

  18. Powering the Nuclear Navy | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Programs Powering the Nuclear Navy The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission requires the combination of fully trained U.S. Navy men and women with ships that excel in endurance, stealth, speed, and independence from supply chains. The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and

  19. New Jersey Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ...,332","18,731",57.2,"PSEG Nuclear LLC" "3 Plants 4 Reactors","4,108","32,771",100.0 "Note: ...

  20. Anhui Wuhu Nuclear Power Co | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wuhu Nuclear Power Co Jump to: navigation, search Name: Anhui Wuhu Nuclear Power Co. Place: Shenzhen, Guangdong Province, China Zip: 518031 Product: JV between Guangdong Nuclear...

  1. South Carolina Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  2. Secretary Chu's Remarks at Vogtle Nuclear Power Plant -- As Prepared for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Delivery | Department of Energy at Vogtle Nuclear Power Plant -- As Prepared for Delivery Secretary Chu's Remarks at Vogtle Nuclear Power Plant -- As Prepared for Delivery February 15, 2012 - 12:27pm Addthis It's great to be with all of you today. I want to acknowledge the many people who are playing a role here: Tom Fanning, President of Southern Company Paul Bowers, President and Chief Executive Officer of Georgia Power Tom Smith, Chief Executive Officer of Oglethorpe Power Bob Johnston,

  3. Tampa Electric Company`s Polk Power Station Integrated Gasification Combined Cycle Project

    SciTech Connect

    Jenkins, S.D.; Shafer, J.R.

    1994-12-31

    Tampa Electric Company (TEC) is in the construction phase for the new Polk Power Station, Unit {number_sign}1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) technology for power generation. The unit will utilize oxygen-blown entrained-flow coal gasification, along with combined cycle technology, to provide nominal net 26OMW of generation. As part of the environmental features of this process, the sulfur species in the coal will be recovered as a commercial grade sulfuric acid by-product. The sulfur will be removed from the synthesis gas utilizing a cold gas clean-up system (CGCU).

  4. Nuclear power in the Soviet Union

    SciTech Connect

    Ponomarev-Stepnoi, N.N.

    1989-01-01

    The pros and cons of nuclear power are similar in many countries, but the following pro factors are specific to the Soviet Union: the major sources of conventional fuel are in one area of the country, but energy consumption is concentrated in another; and a large portion of energy is generated using oil and gas. The arguments against nuclear power are as follows: safety requirements and expectations have been increased; and public opinion is negative. A program of nuclear power generation has been developed. New techniques are being implemented to increase safety and enhance operations of different types of nuclear power plants. Its should be obvious in the future that a nuclear power plant has better economic and environmental parameters than existing methods of power generation.

  5. Powering the Nuclear Navy | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Powering the Nuclear Navy The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. NNSA's Naval Reactors Program provides the design, development and operational support required to provide militarily effective nuclear propulsion plants and ensure their safe, reliable and long-lived operation. Learn More USS George H.W. Bush conducts flight operations USS George H.W. Bush conducts flight

  6. KiloPower Project - KRUSTY Experiment Nuclear Design (Technical...

    Office of Scientific and Technical Information (OSTI)

    KiloPower Project - KRUSTY Experiment Nuclear Design Citation Details In-Document Search Title: KiloPower Project - KRUSTY Experiment Nuclear Design This PowerPoint presentation ...

  7. EIS-0210: Tampa Electric Company-Polk Power Station (Adopted)

    Energy.gov [DOE]

    The U.S. Environmental Protection Agency prepared this statement to fulfill its National Environmental Policy Act requirements with respect to the potential issuance of a permit to the Tampa Electric Company under the National Pollutant Discharge Elimination System for the 1,150-MW Polk Power Station, a new pollutant source. The U.S. Department of Energy served as a cooperating agency in the development of this document due to its potential role to provide cost-shared financial assistance for a 260-MW Integrated Gasification Combined Cycle unit at the Power Station under its Clean Coal Technology Demonstration Project, and adopted the document by August 1994.

  8. Tampa Electric Company, Polk Power Station IGCC Project: Project Status

    SciTech Connect

    Berry, T.E.; Shelnut, C.A.; McDaniel, J.E.

    1999-07-01

    Over the last ten years, Tampa Electric Company (TEC) has taken the Polk Power Station from a concept to a reality. The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy Clean Coal Technology Program pursuant to a Round III award. The Polk Power Station achieved first fire of the gasification system on schedule in mid-July, 1996. It was placed in commercial operation on September 30, 1996. Since start-up in July, 1996, significant advances have occurred in the design and operation of the entire IGCC train. This presentation will feature an up-to-the-minute update of actual performance parameters achieved by the Polk Power Station. These parameters include overall capacity, heat rate, and availability. Several different coal feedstocks have been tested and the resulting performance will be compared to that achieved on the base coal. This paper also provides an update of the general operating experiences and shutdown causes of the gasification facility. Finally, the future plans for improving the reliability and efficiency of the Unit will be addressed, as well as plans for future additional alternate fuel test burns.

  9. Portland Company to Receive $1.3 Million to Improve Hydro Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Portland Company to Receive 1.3 Million to Improve Hydro Power Technologies Portland Company to Receive 1.3 Million to Improve Hydro Power Technologies September 15, 2009 -...

  10. HydroVenturi Ltd previously RV Power Company Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    RV Power Company Ltd Jump to: navigation, search Name: HydroVenturi Ltd (previously RV Power Company Ltd) Place: London, Greater London, United Kingdom Zip: SW7 1NA Sector:...

  11. Kansas Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear net generation (percent)","Owner" "Wolf Creek Generating Station Unit 1","1,160","9,556",100.0,"Wolf Creek Nuclear Optg Corp" "1 Plant 1 Reactor","1,160","9,556",100.0

  12. Vermont Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    mwh)","Share of State nuclear net generation (percent)","Owner" "Vermont Yankee Unit 1",620,"4,782",100.0,"Entergy Nuclear Vermont Yankee" "1 Plant 1 Reactor",620,"4,782",100.0

  13. U.S. Spent Nuclear Fuel Data as of December 31, 1998

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Mile Island 1 12 GPU Nuclear Corporation Trojan Portland General Electric Company Turkey Point 3 Florida Power and Light Company Turkey Point 4 Florida Power and Light Company...

  14. U.S. Forward Operating Base Applications of Nuclear Power

    SciTech Connect

    Griffith, George W.

    2015-01-01

    This paper provides a high level overview of current nuclear power technology and the potential use of nuclear power at military bases. The size, power ranges, and applicability of nuclear power units for military base power are reviewed. Previous and current reactor projects are described to further define the potential for nuclear power for military power.

  15. Joint Motion to Intervene of Northern States Power Company (Minnesota) et

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    al. on the Proposed Open Access Requirements | Department of Energy Motion to Intervene of Northern States Power Company (Minnesota) et al. on the Proposed Open Access Requirements Joint Motion to Intervene of Northern States Power Company (Minnesota) et al. on the Proposed Open Access Requirements Joint motion to intervene of the Northern States Power Company (Minnesota), the Northern States Power Company (Wisconsin), and NRG Energy, Incl on the Proposed Open Access Requirements for

  16. Public opinion factors regarding nuclear power

    SciTech Connect

    Benson, B.

    1991-01-01

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry's practices are aligned with public opinion, a more favorable regulatory climate is possible.

  17. Public opinion factors regarding nuclear power

    SciTech Connect

    Benson, B.

    1991-12-31

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry`s practices are aligned with public opinion, a more favorable regulatory climate is possible.

  18. Workshop on nuclear power growth and nonproliferation

    SciTech Connect

    Pilat, Joseph F

    2010-01-01

    It is widely viewed that an expansion of nuclear power would have positive energy, economic and environmental benefits for the world. However, there are concerns about the economic competitiveness, safety and proliferation and terrorism risks of nuclear power. The prospects for a dramatic growth in nuclear power will depend on the ability of governments and industry to address these concerns, including the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen nonproliferation, nuclear materials accountability and nuclear security. In his Prague speech, President Obama stated: 'we should build a new framework for civil nuclear cooperation, including an international fuel bank, so that countries can access peaceful power without increasing the risks of proliferation. That must be the right of every nation that renounces nuclear weapons, especially developing countries embarking on peaceful programs. And no approach will succeed if it's based on the denial of rights to nations that play by the rules. We must harness the power of nuclear energy on behalf of our efforts to combat climate change, and to advance peace opportunity for all people.' How can the President's vision, which will rekindle a vigorous public debate over the future of nuclear power and its relation to proliferation, be realized? What critical issues will frame the reemerging debate? What policies must be put into place to address these issues? Will US policy be marked more by continuity or change? To address these and other questions, the Los Alamos National Laboratory in cooperation with the Woodrow Wilson International Center for Scholars will host a workshop on the future of nuclear power and nonproliferation.

  19. Relative Movements for Design of Commodities in Nuclear Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE)

    Relative Movements for Design of Commodities in Nuclear Power Plants Javad Moslemian, Vice President, Nuclear Power Technologies, Sargent & Lundy LLC Nezar Abraham, Senior Associate II, Nuclear Power Technologies, Sargent & Lundy LLC

  20. Expanding Options for Nuclear Power | Department of Energy

    Office of Environmental Management (EM)

    Expanding Options for Nuclear Power Expanding Options for Nuclear Power April 15, 2013 - 10:12am Addthis The development of clean, affordable nuclear power options is a key element ...

  1. Tampa Electric Company Polk Power Station IGCC Project -- Project status

    SciTech Connect

    Berry, T.E.

    1998-12-31

    The Tampa Electric Company Polk Power Station is a nominal 25 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located southeast of Tampa in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round III award. The Polk Power Station uses oxygen-blown, entrained-flow coal gasification technology licensed from Texaco Development Corporation in conjunction with a General Electric combined cycle with an advanced combustion turbine. This IGCC configuration demonstrates significant reductions of SO{sub 2} and NOx emissions when compared to existing and future conventional coal-fired power plants. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. It was placed into commercial operation on September 30, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. The presentation features an up-to-the-minute update of actual performance parameters achieved by the Polk Power Station. These parameters include overall capacity, heat rate, and availability. Tests of four alternate feedstocks were conducted, and the resulting performance is compared to that achieved on their base coal. This paper also provides an update of the general operating experiences and shutdown causes of the gasification facility throughout 1997. Finally, the future plans for improving the reliability and efficiency of the Unit will be addressed, as well as plans for future additional alternate fuel test burns.

  2. Fresh nuclear fuel measurements at Ukrainian nuclear power plants

    SciTech Connect

    Kuzminski, Jozef; Ewing, Tom; Dickman, Debbie; Gavrilyuk, Victor; Drapey, Sergey; Kirischuk, Vladimir; Strilchuk, Nikolay

    2009-01-01

    In 2005, the Provisions on Nuclear Material Measurement System was enacted in Ukraine as an important regulatory driver to support international obligations in nuclear safeguards and nonproliferation. It defines key provisions and requirements for material measurement and measurement control programs to ensure the quality and reliability of measurement data within the framework of the State MC&A System. Implementing the Provisions requires establishing a number of measurement techniques for both fresh and spent nuclear fuel for various types of Ukrainian reactors. Our first efforts focused on measurements of fresh nuclear fuel from a WWR-1000 power reactor.

  3. North Carolina Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ...0","18,850",46.3,"Duke Energy Carolinas, LLC" "3 Plants 5 Reactors","4,958","40,740",100.0

  4. Washington Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    of State nuclear net generation (percent)","Owner" "Columbia Generating Station Unit 2","1,097","9,241",100.0,"Energy Northwest" "1 Plant 1 Reactor","1,097","9,241",100.0

  5. Mississippi Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    mwh)","Share of State nuclear net generation (percent)","Owner" "Grand Gulf Unit 1","1,251","9,643",100.0,"System Energy Resources, Inc" "1 Plant 1 Reactor","1,251","9,643",100.0

  6. Iowa Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    of State nuclear net generation (percent)","Owner" "Duane Arnold Energy Center Unit 1",601,"4,451",100.0,"NextEra Energy Duane Arnold LLC" "1 Plant 1 Reactor",601,"4,451",100.0

  7. Arizona Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Palo Verde Unit 1, Unit 2, Unit 3","3,937","31,200",100.0,"Arizona Public Service Co" "1 Plant 3 ...

  8. Florida Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Crystal River Unit 3",860,0,"--","Progress Energy Florida Inc" "St Lucie Unit 1, Unit ...

  9. Experiments ✚ Simulations = Better Nuclear Power Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Experiments + Simulations = Better Nuclear Power Research Experiments ✚ Simulations = Better Nuclear Power Research Atomic Level Simulations Enhance Characterization of Radiation Damage July 31, 2015 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov Radiation Damage PNNL In a study featured on the cover of a Journal of Materials Research focus issue, an international research collaboration used molecular dynamics simulations run at NERSC to identify atomic-level details of early-stage

  10. Deputy Secretary Poneman Delivers Remarks on Nuclear Power at...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo American Center in Japan Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo American Center in ...

  11. Deputy Secretary Poneman Delivers Remarks on Nuclear Power at...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Delivers Remarks on Nuclear Power at Tokyo American Center in Japan Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo American Center in Japan December 15, 2011 - ...

  12. Renewing America's Nuclear Power Partnership for Energy Security...

    Office of Environmental Management (EM)

    Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8,...

  13. China Guangdong Nuclear Power Holding Co Ltd CGNPC | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Nuclear Power Holding Co Ltd CGNPC Jump to: navigation, search Name: China Guangdong Nuclear Power Holding Co Ltd (CGNPC) Place: Shenzhen, Guangdong Province, China Zip: 518031...

  14. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY OCTOBER 2013 News...

    Office of Environmental Management (EM)

    close its single unit Vermont Yankee nuclear power plant in late 2014; sustained low ... procurement and construction (EPC) agreement for the Levy County nuclear power project. ...

  15. DOE - Office of Legacy Management -- Hallam Nuclear Power Facility...

    Office of Legacy Management (LM)

    Hallam Nuclear Power Facility - NE 01 FUSRAP Considered Sites Site: Hallam Nuclear Power Facility (NE.01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site ...

  16. Sandia Nuclear Power Safety Expert Elected to National Academy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Power Safety Expert Elected to National Academy of Engineering - Sandia Energy ... Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ...

  17. Renewing America's Nuclear Power Partnership for Energy Security...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8, ...

  18. DOE - Office of Legacy Management -- Piqua Nuclear Power Facility...

    Office of Legacy Management (LM)

    Piqua Nuclear Power Facility - OH 08 FUSRAP Considered Sites Site: Piqua Nuclear Power Facility (OH.08 ) Designated Name: Alternate Name: Location: Evaluation Year: Site ...

  19. Understanding seismic design criteria for Japanese nuclear power...

    Office of Scientific and Technical Information (OSTI)

    Understanding seismic design criteria for Japanese nuclear power plants Citation Details In-Document Search Title: Understanding seismic design criteria for Japanese nuclear power ...

  20. The American nuclear power industry. A handbook

    SciTech Connect

    Pearman, W.A.; Starr, P.

    1984-01-01

    This book presents an overview of the history and current organization of the American nuclear power industry. Part I focuses on development of the industry, including the number, capacity, and type of plants in commercial operation as well as those under construction. Part II examines the safety, environmental, antitrust, and licensing issues involved in the use of nuclear power. Part III presents case studies of selected plants, such as Three Mile Island and Seabrook, to illustrate some of the issues discussed. The book also contains a listing of the Nuclear Regulatory Commission libraries and a subject index.

  1. New Jersey Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Oyster Creek Unit 1",615,"4,601",14.0,"Exelon Nuclear" "PSEG Hope Creek Generating Station Unit 1","1,161","9,439",28.8,"PSEG Nuclear LLC" "PSEG Salem Generating

  2. Distribution automation pilot project at Georgia Power Company. Final report

    SciTech Connect

    Hall, J.M.

    1997-12-01

    This report includes a Benefit-Cost Study for Distribution Automation (DA) at Georgia Power Company, an Evaluation of two communication systems for Distribution Automation, and Development and Evaluation of a standards-based interface between an AM/FM system and SCADA. The Benefit-Cost Study addresses the functional requirements and performance of the major Distribution Automation functions under GPC`s conditions. Five implementation scenarios for Distribution Automation are analyzed. The performance of the DA functions is simulated for four prototype GPC substations in the Carrollton and Tucker areas. The results of the simulation are extrapolated for the entire GPC distribution system. A number of reliability related functions along with real-time modeling and volt/var control functions are recommended for implementation at GPC. GPC has installed two pilot communication systems for Distribution Automation. Both pilot systems use proprietary radio technologies for communications with pole-top power system devices and customer meters. One of these systems, in the Carrollton area, uses a Metricom{trademark} UtiliNet{trademark} radio system, and the other, in the Tucker area, uses a CellNet{trademark} Data Systems, Inc. CellNet radio system. The performance of these two systems is described and evaluated in the project. The advantages and disadvantages of the communication systems for the recommended distribution automation system at GPC are analyzed. A transfer format from a mapping and facilities database to a SCADA database for the Georgia Power Company was developed and tested for the project. The mapping and facilities database is implemented as an Oracle database in the ARC/Info AM/FM/GIS application by ESRI, and the SCADA database is implemented on the OASyS 5.0 SCADA platform provided by Valmet Automation. The National Transfer Format (NTF) is the vehicle for the transfer of data from the GIS to the SCADA system.

  3. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    SciTech Connect

    Robert J. Goldston

    2010-03-03

    Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

  4. Tampa Electric Company Polk Power Station IGCC project: Project status

    SciTech Connect

    McDaniel, J.E.; Carlson, M.R.; Hurd, R.; Pless, D.E.; Grant, M.D.

    1997-12-31

    The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC and Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.

  5. The Fukushima Nuclear Event and its Implications for Nuclear Power

    SciTech Connect

    Golay, Michael

    2011-07-06

    The combined strong earthquake and super tsunami of 12 March 2011 at the Fukushima nuclear power plant imposed the most severe challenges ever experienced at such a facility. Information regarding the plant response and status remains uncertain, but it is clear that severe damage has been sustained, that the plant staff have responded creatively and that the offsite implications are unlikely to be seriously threatening to the health, if not the prosperity, of the surrounding population. Re-examination of the regulatory constraints of nuclear power will occur worldwide, and some changes are likely, particularly concerning reliance upon active systems for achieving critical safety functions and concerning treatments of used reactor fuel. Whether worldwide expansion of the nuclear power economy will be slowed in the long run is perhaps unlikely and worth discussion.

  6. Nuclear power and public acceptance

    SciTech Connect

    Hirschmann, H.

    1989-01-01

    Public acceptance is a decisive factor of growing importance, although economics has been and will remain the most decisive factor in ordering new nuclear capacity. Nuclear energy can make an important contribution toward preventing and reducing the greenhouse effect. Many politicians tend to base their decisions not on facts but rather on so called public opinion and consequently to overreact in particular on environmental issues. The entire debate hinges on public confidence rather than on a lack of information. There is no 100% guarantee that technical facilities will operate completely accident-free. Therefore, standards should be harmonized, plants should be operated safely and consequences of possible accidents should be limited. There needs to be some kind of early information system between countries concerning upcoming issues as a prerequisite for acting instead of reacting, because this is an essential tool in convincing the public that they can have more confidence. Technical information alone does not answer the real questions of the public. Political, technical, and economic matters as well as public opinion are interwoven and cannot be separated from each. Therefore, the exchange of experience gained in all these sectors on an international basis must be improved.

  7. Joint Maintenance Status Report of Potomac Electric Power Company amd PJM

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Interconnection, LLC | Department of Energy Joint Maintenance Status Report of Potomac Electric Power Company amd PJM Interconnection, LLC Joint Maintenance Status Report of Potomac Electric Power Company amd PJM Interconnection, LLC Docket No. EO-05-01: Potomac Electric Power Company ("Pepco") and PJM Interconnection, L.L.C. ("PJM") hereby jointly submit this Maintenance Report to advise you of the work completed and findings made during the maintenance outages for

  8. Portland Company to Receive $1.3 Million to Improve Hydro Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies | Department of Energy Portland Company to Receive $1.3 Million to Improve Hydro Power Technologies Portland Company to Receive $1.3 Million to Improve Hydro Power Technologies September 15, 2009 - 12:00am Addthis Washington, DC - US Energy Secretary Steven Chu today awarded more than $1.3 million to Ocean Renewable Power Company in Portland, Maine to improve the efficiency, flexibility, and environmental performance of hydroelectric energy. The investment will further the

  9. Russian nuclear-powered submarine decommissioning

    SciTech Connect

    Bukharin, O.; Handler, J.

    1995-11-01

    Russia is facing technical, economic and organizational difficulties in dismantling its oversized and unsafe fleet of nuclear powered submarines. The inability of Russia to deal effectively with the submarine decommissioning crisis increases the risk of environmental disaster and may hamper the implementation of the START I and START II treaties. This paper discusses the nuclear fleet support infrastructure, the problems of submarine decommissioning, and recommends international cooperation in addressing these problems.

  10. Nuclear power and its environmental effects

    SciTech Connect

    Glasstone, S.; Jordan, W.H.

    1980-01-01

    The authors, veterans in the field of nuclear technology, attempt in this book to present the complexities of nuclear energy issues for the general public. Their coverage of the subject is very thorough, starting with the fundamentals of nuclear reactors and of electrical power generation and continuing into such environmental problem areas as the biological effects of radiation, radioactive waste management, diposal of waste heat, and transportation of nuclear materials. Generally, they reflect the optimism of the pro-nuclear establishment, to which their publisher belongs. However, their tone is calm and nonpolemical, and even antinuclear advocates should find the volume to be a handy compilation of many basic facts. Recommended for public and academic libraries.

  11. PP-63-1 Northern States Power Company (NSP) | Department of Energy

    Energy.gov [DOE] (indexed site)

    authorizing Northern States Power Company (NSP) to construct, operate, and maintain transmission facilities at the U.S. - Canada Border PDF icon PP-63-1

  12. PP-63-2 Northern States Power Company (NSP) | Department of Energy

    Energy.gov [DOE] (indexed site)

    Authorizing Northern States Power Company (NSP) to construct, operate, and maintain transmission facilities at the U.S. - Canada Border. PDF icon PP-63-2

  13. Texas-New Mexico Power Company - Residential, Hard-to-Reach,...

    Energy.gov [DOE] (indexed site)

    Insulation Windows Other EE Program Info Sector Name Utility Administrator Texas-New Mexico Power Company Website http:www.tnmpefficiency.com State Texas Program Type Rebate...

  14. Texas-New Mexico Power Company - SCORE/CitySmart, Commercial...

    Energy.gov [DOE] (indexed site)

    20% of program budget Program Info Sector Name Utility Administrator Texas-New Mexico Power Company Website http:www.tnmpefficiency.com Expiration Date 12312015 State...

  15. Application for Presidential Permit OE Docket No. PP-059 Central Power and Light Company (CPL)

    Energy.gov [DOE]

    Application from Central Power and Light Company (CPL) to construct, operate and maintain electric transmission facilities at the U.S. - Mexico Border

  16. MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR

    DOEpatents

    Balent, R.

    1963-03-12

    This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

  17. PP-82-2 Vermont Electric Power Company, Inc. (VELCO) | Department...

    Energy.gov [DOE] (indexed site)

    Vermont Electric Power Company, Inc. (VELCO) to construct, operate and maintain electric transmission facilities at the U.S.-Canada Border. PDF icon PP-82-2 Vermont Electric Power ...

  18. Nuclear power-accomplishments and prospects

    SciTech Connect

    Not Available

    1989-01-01

    Nuclear energy is probably unique in being an international endeavor. The US was correct in 1973 in embracing nuclear energy, and is correct even today in continuing to champion and push this technology. Several major events justify this view. They include: the world's growing dependence on oil and America's increasing dependence on the unstable Middle East; steady high growth in electricity demand; culminated in this summer's record peak demands across the country, and while it was a hot summer, most of that increased demand was industrial activity-economic activity-not due to heat and renewed emphasis on the environment. The job of nuclear utilities and manufacturers is to work with continuity towards greater reliability, safety, and economy of our plants as they exist today. Nuclear power offers clear objective advantages if one is able to look beyond the illusions of the immediate situation. Taipower believes that nuclear power should be the major energy resource for Taiwan in the future. The first problem facing Taipower is the long lead time required for project approval. The second problem Taipower faces is the difficulty in obtaining a public consensus. Three main rational and irrational reasons are decisive for this future development of nuclear energy in Germany: energy structure, economics, and public acceptance. The use of nuclear energy is ethically not irresponsible, but it is ethically irresponsible not to use nuclear energy. A lot of modifications on the European plants have taken place to try to minimize the chance of having an accident and, in case it should happen, to limit the consequences. Another problem is waste deposits. As long as there is no answer to this question, the public will continue to debate on this issue.

  19. SP-100, the US Space Nuclear Reactor Power Program. Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: SP-100, the US Space Nuclear Reactor Power Program. Technical information report Citation Details In-Document Search Title: SP-100, the US Space Nuclear Reactor ...

  20. Company's cogeneration effort conserves fuel, cuts power costs

    SciTech Connect

    Kingston, W.J.

    1983-05-01

    Kodak Park is Eastman Kodak Company's largest manufacturing complex. As temperatures drop here, steam - created as a by-product in producing electricity - will heat some 200 buildings.

  1. NRC (Nuclear Regulatory Commission) staff evaluation of the General Electric Company Nuclear Reactor Study (''Reed Report'')

    SciTech Connect

    1987-07-01

    In 1975, the General Electric Company (GE) published a Nuclear Reactor Study, also referred to as ''the Reed Report,'' an internal product-improvement study. GE considered the document ''proprietary'' and thus, under the regulations of the Nuclear Regulatory Commission (NRC), exempt from mandatory public disclosure. Nonetheless, members of the NRC staff reviewed the document in 1976 and determined that it did not raise any significant new safety issues. The staff also reached the same conclusion in subsequent reviews. However, in response to recent inquiries about the report, the staff reevaluated the Reed Report from a 1987 perspective. This re-evaluation, documented in this staff report, concluded that: (1) there are no issues raised in the Reed Report that support a need to curtail the operation of any GE boiling water reactor (BWR); (2) there are no new safety issues raised in the Reed Report of which the staff was unaware; and (3) although certain issues addressed by the Reed Report are still being studied by the NRC and the industry, there is no basis for suspending licensing and operation of GE BWR plants while these issues are being resolved.

  2. Transactions of the fifth symposium on space nuclear power systems

    SciTech Connect

    El-Genk, M.S.; Hoover, M.D.

    1988-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  3. Transactions of the fourth symposium on space nuclear power systems

    SciTech Connect

    El-Genk, M.S.; Hoover, M.D.

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  4. Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant

    Energy Information Administration (EIA) (indexed site)

    Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,855,"6,755",90.2,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  5. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    SciTech Connect

    Robert J. Goldston

    2011-04-28

    Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

  6. Management of National Nuclear Power Programs for assured safety

    SciTech Connect

    Connolly, T.J.

    1985-01-01

    Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

  7. Autonomous Control of Nuclear Power Plants

    SciTech Connect

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  8. New Hampshire Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Seabrook Unit 1","1,247","10,910",100.0,"NextEra Energy Seabrook LLC" "1 Plant 1 Reactor","1,247","10,910",100.0 "Note: Totals may not equal sum of components due

  9. South Carolina Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Catawba Unit 1, Unit 2","2,258","18,964",36.5,"Duke Energy Carolinas, LLC" "H B Robinson Unit 2",724,"3,594",6.9,"Progress Energy Carolinas Inc"

  10. Coal and nuclear power: Illinois' energy future

    SciTech Connect

    Not Available

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  11. Carbon pricing, nuclear power and electricity markets

    SciTech Connect

    Cameron, R.; Keppler, J. H.

    2012-07-01

    In 2010, the NEA in conjunction with the International Energy Agency produced an analysis of the Projected Costs of Electricity for almost 200 power plants, covering nuclear, fossil fuel and renewable electricity generation. That analysis used lifetime costs to consider the merits of each technology. However, the lifetime cost analysis is less applicable in liberalised markets and does not look specifically at the viewpoint of the private investor. A follow-up NEA assessment of the competitiveness of nuclear energy against coal- and gas-fired generation under carbon pricing has considered just this question. The economic competition in electricity markets is today between nuclear energy and gas-fired power generation, with coal-fired power generation not being competitive as soon as even modest carbon pricing is introduced. Whether nuclear energy or natural gas comes out ahead in their competition depends on a number of assumptions, which, while all entirely reasonable, yield very different outcomes. The analysis in this study has been developed on the basis of daily data from European power markets over the last five-year period. Three different methodologies, a Profit Analysis looking at historic returns over the past five years, an Investment Analysis projecting the conditions of the past five years over the lifetime of plants and a Carbon Tax Analysis (differentiating the Investment Analysis for different carbon prices) look at the issue of competitiveness from different angles. They show that the competitiveness of nuclear energy depends on a number of variables which in different configurations determine whether electricity produced from nuclear power or from CCGTs generates higher profits for its investors. These are overnight costs, financing costs, gas prices, carbon prices, profit margins (or mark-ups), the amount of coal with carbon capture and electricity prices. This paper will present the outcomes of the analysis in the context of a liberalised

  12. Analysis of nuclear power plant component failures

    SciTech Connect

    Not Available

    1984-01-01

    Items are shown that have caused 90% of the nuclear unit outages and/or deratings between 1971 and 1980 and the magnitude of the problem indicated by an estimate of power replacement cost when the units are out of service or derated. The funding EPRI has provided on these specific items for R and D and technology transfer in the past and the funding planned in the future (1982 to 1986) are shown. EPRI's R and D may help the utilities on only a small part of their nuclear unit outage problems. For example, refueling is the major cause for nuclear unit outages or deratings and the steam turbine is the second major cause for nuclear unit outages; however, these two items have been ranked fairly low on the EPRI priority list for R and D funding. Other items such as nuclear safety (NRC requirements), reactor general, reactor and safety valves and piping, and reactor fuel appear to be receiving more priority than is necessary as determined by analysis of nuclear unit outage causes.

  13. BPA, Power Services, Letter announcing Port Townsend Paper Company...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Power Administration (BPA) is proposing to offer a Firm Power Sales Agreement to Port Townsend Paper Corporation at the Industrial Firm Power (IP) rate. BPA currently has a...

  14. Nuclear energy is an important source of power, supplying 20

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    energy is an important source of power, supplying 20 percent of the nation's electricity. More than 100 nuclear power plants are operating in the U.S., and countries around the world are implementing nuclear power as a carbon-free alternative to fossil fuels. We can maximize the climate and energy security benefits provided by responsible global nuclear energy expansion by developing options to increase the energy extracted from nuclear fuel, improve waste management, and strengthen nuclear

  15. Howard Baker Center for Public Policy Nuclear Power Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Howard Baker Center for Public Policy Nuclear Power Conference Howard Baker Center for Public Policy Nuclear Power Conference October 4, 2007 - 3:14pm Addthis Remarks as Prepared...

  16. Nuclear Power Corp L T JV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Corp L T JV Jump to: navigation, search Name: Nuclear Power Corp-L&T JV Place: Mumbai, Maharashtra, India Zip: 400094 Product: JV between Nuclear Power Corp. and L&T. Coordinates:...

  17. Nuclear energy is an important source of power, supplying 20

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    More than 100 nuclear power plants are operating in the U.S., and countries around the world are implementing nuclear power as a carbon-free alternative to fossil fuels. We can ...

  18. EIS-0256: Sierra Pacific Power Company Alturas Transmission Line Project (adopted from BLM)

    Energy.gov [DOE]

    This EIS evaluates the environmental setting and consequences of the construction and operation of the proposal Alturas Transmission Line Project. Sierra Pacific Power Company (SPPCO) has proposed this electric power transmission line to improve the existing operational capacity and reliability of its power transmission system and provide for anticipated growth in demand for electric power.

  19. Linking Humans and Systems in Nuclear Power

    SciTech Connect

    Jacques Hugo

    2013-02-01

    Traditional engineering methods do not make provision for the integration of human considerations, while traditional human factors methods do not scale well to the complexity of large-scale nuclear power plant projects. Although the need for up-to-date human factors engineering processes and tools is recognised widely in industry, so far no formal guidance has been developed. This article proposes such a framework.

  20. Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant

    Energy.gov [DOE]

    NNSA presentation on Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant from May 13, 2011

  1. Seismic requirements for design of nuclear power plants and nuclear test facilities

    SciTech Connect

    Not Available

    1985-02-01

    This standard establishes engineering requirements for the design of nuclear power plants and nuclear test facilities to accommodate vibratory effects of earthquakes.

  2. Feasibility study for Zaporozhye Nuclear Power Plant spent fuel dry storage facility in Ukraine. Export trade information

    SciTech Connect

    1995-12-01

    This document reports the results of a Feasibility Study sponsored by a TDA grant to Zaporozhye Nuclear Power Plant (ZNPP) in Ukraine to study the construction of storage facilities for spent nuclear fuel. It provides pertinent information to U.S. companies interested in marketing spent fuel storage technology and related business to countries of the former Soviet Union or Eastern Europe.

  3. Nuclear power generation and fuel cycle report 1997

    SciTech Connect

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  4. Energy Department Announces New Investments in Advanced Nuclear Power Reactors

    Energy.gov [DOE]

    WASHINGTON – Today, as part of the President’s all-of-the-above energy approach and Climate Action Plan, the Energy Department announced awards for five companies to lead key nuclear energy...

  5. Motion for Leave to Answer and Answer of Potomac Electric Power Company |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Answer and Answer of Potomac Electric Power Company Motion for Leave to Answer and Answer of Potomac Electric Power Company Docket No. EO-05-01: Pursuant to Rule 213 of the Commission's Rules of Practice and Procedure, 18 C.F.R. § 385.213, Potomac Electric Power Company ("Pepco") hereby moves for leave to answer and answers the Motion for Leave to File Consolidated Answer and Consolidated Answer of Robert G. Burnley, Director of the Commonwealth of Virginia

  6. Nuclear power generation and fuel cycle report 1996

    SciTech Connect

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  7. Lesson 7 - Waste from Nuclear Power Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7 - Waste from Nuclear Power Plants Lesson 7 - Waste from Nuclear Power Plants This lesson takes a look at the waste from electricity production at nuclear power plants. It considers the different types of waste generated, as well as how we deal with each type of waste. Specific topics covered include: Nuclear Waste Some radioactive Types of radioactive waste Low-level waste High-level waste Disposal and storage Low-level waste disposal Spent fuel storage Waste isolation Reprocessing

  8. VEA-0012- In the Matter of American Electric Power Company, Inc.

    Energy.gov [DOE]

    This Decision and Order considers an Appeal filed by American Electric Power Company, Inc. (AEP) from a determination issued on October 15, 1999, by the Office of Energy Efficiency and Renewable...

  9. PP-66-1 Vermont Electric Power Company, Inc. | Department of...

    Energy.gov [DOE] (indexed site)

    operate, and maintain electric transmission facilities at the U.S. - Canada Border. PDF icon PP-66-1 Vermont Electric Power Company, Inc. More Documents & Publications PP-82 ...

  10. PP-66-2 Vermont Electric Power Company, Inc. | Department of...

    Energy.gov [DOE] (indexed site)

    operate and maintain electric transmission facilities at the U.S. - Canada Border. PDF icon PP-66-2 Vermont Electric Power Company, Inc. More Documents & Publications PP-66-1 ...

  11. VEA-0009- In the Matter of American Electric Power Company, Inc.

    Energy.gov [DOE]

    This Decision and Order considers an Appeal filed by American Electric Power Company, Inc. (AEP) from a determination issued on July 7, 1998, by the Office of Energy Efficiency and Renewable Energy...

  12. Colorado - C.R.S. 38-4-103 -Electric Power Companies | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Colorado - C.R.S. 38-4-103 -Electric Power Companies Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Colorado - C.R.S. 38-4-103...

  13. Power generation from nuclear reactors in aerospace applications

    SciTech Connect

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  14. Energy Department Nuclear Systems Are Powering Mars Rover | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Nuclear Systems Are Powering Mars Rover Energy Department Nuclear Systems Are Powering Mars Rover November 28, 2011 - 12:14pm Addthis Washington, D.C. - The Mars Science Laboratory rover, which launched from Cape Canaveral this weekend, is powered by nuclear systems developed by the U.S. Department of Energy (DOE), marking the 28th space mission supported by nuclear energy. This year also marks the 50th anniversary of nuclear-powered space exploration. To commemorate the launch, DOE

  15. A Nuclear Powered ISRU Mission to Mars

    SciTech Connect

    Finzi, Elvina; Davighi, Andrea; Finzi, Amalia

    2006-01-20

    Space exploration has always been drastically constrained by the masses that can be launched into orbit; Hence affordable planning and execution of prolonged manned space missions depend upon the utilization of local. Successful in-situ resources utilization (ISRU) is a key element to allow the human presence on Mars or the Moon. In fact a Mars ISRU mission is planned in the Aurora Program, the European program for the exploration of the solar system. Orpheus mission is a technological demonstrator whose purpose is to show the advantages of an In Situ Propellant Production (ISPP). Main task of this work is to demonstrate the feasibility of a nuclear ISPP plant. The mission designed has been sized to launch back form Mars an eventual manned module. The ISPP mission requires two different: the ISPP power plant module and the nuclear reactor module. Both modules reach the escape orbit thanks to the launcher upper stage, after a 200 days cruising phase the Martian atmosphere is reached thanks to small DV propelled manoeuvres, aerobreaking and soft landing. During its operational life the ISPP plant produces. The propellant is produced in one synodic year. 35000 kg of Ethylene are produced at the Martian equator. The resulting systems appear feasible and of a size comparable to other ISRU mission designs. This mission seems challenging not only for the ISPP technology to be demonstrated, but also for the space nuclear reactor considered; Though this seems the only way to allow a permanent human presence on Mars surface.

  16. Nuclear power and the public: an update of collected survey research on nuclear power

    SciTech Connect

    Rankin, W.L.; Melber, B.D.; Overcast, T.D.; Nealey, S.M.

    1981-12-01

    The purpose of this research was to collect, analyze, and summarize all of the nuclear power-related surveys conducted in the United States through June 1981, that we could obtain. The surveys collected were national, statewide, and areawide in scope. Slightly over 100 surveys were collected for an earlier, similar effort carried out in 1977. About 130 new surveys were added to the earlier survey data. Thus, about 230 surveys were screened for inclusion in this report. Because of space limitations, national surveys were used most frequently in this report, followed distantly by state surveys. In drawing our conclusions about public beliefs and attitudes toward nuclear power, we placed most of our confidence in survey questions that were used by national polling firms at several points in time. A summary of the research findings is presented, beginning with general attitudes toward nuclear power, followed by a summary of beliefs and attitudes about nuclear power issues, and ended by a summary of beliefs and attitudes regarding more general energy issues.

  17. Malana Power Company Ltd MPCL | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kullu Dist., Himachal Pradesh, India Sector: Hydro Product: Kullu-based firm formed as a joint venture between SN Power and LNJ Bhilwara Group that owns hydroelectric project....

  18. SEPCO - Solar Electric Power Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Place: Stuart, Florida Zip: 34994 Sector: Solar Product: Commercial Solar Lighting & Off Grid Solar Power Systems Year Founded: 1994 Phone Number: 772-220-6615 Website:...

  19. Florida Power & Light Company Smart Grid Project | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    will have the knowledge and skills to design, plan, construct, operate, and maintain a modern electricity delivery system, including power system infrastructure and information...

  20. Space nuclear power, propulsion, and related technologies.

    SciTech Connect

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already

  1. Novel Nuclear Powered Photocatalytic Energy Conversion

    SciTech Connect

    White,John R.; Kinsmen,Douglas; Regan,Thomas M.; Bobek,Leo M.

    2005-08-29

    The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and

  2. Energy Department Nuclear Systems Are Powering Mars Rover | Department...

    Energy.gov [DOE] (indexed site)

    by the U.S. Department of Energy (DOE), marking the 28th space mission supported by nuclear energy. This year also marks the 50th anniversary of nuclear-powered space exploration. ...

  3. UNDERSTANDING SEISMIC DESIGN CRITERIA FOR JAPANESE NUCLEAR POWER...

    Office of Scientific and Technical Information (OSTI)

    FOR JAPANESE NUCLEAR POWER PLANTS Y.J. Park and C.H. Hofmayer Brookhaven National Laboratory Upton, Long Island, New York 11973 J.F. Costello U.S. Nuclear Regulatory ...

  4. Nuclear Power 2010 Program: Combined Construction and Operating License &

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Design Certification Demonstration Projects Lessons Learned Report | Department of Energy Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report Nuclear Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report The Nuclear Power 2010 (NP 2010) Construction and Operating License/Design Certification (COL/DC) Demonstration program

  5. Nuclear Systems Powering a Mission to Mars | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Systems Powering a Mission to Mars Nuclear Systems Powering a Mission to Mars November 28, 2011 - 11:23am Addthis Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space exploration. Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy Curiosity Mission: investigate whether the Gale Crater on Mars has ever offered environmental conditions that support the

  6. President Obama Announces Loan Guarantees to Construct New Nuclear Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reactors in Georgia | Department of Energy Loan Guarantees to Construct New Nuclear Power Reactors in Georgia President Obama Announces Loan Guarantees to Construct New Nuclear Power Reactors in Georgia February 16, 2010 - 12:00am Addthis Washington D.C. --- Underscoring his Administration's commitment to jumpstarting the nation's nuclear power industry, President Obama today announced that the Department of Energy has offered conditional commitments for a total of $8.33 billion in loan

  7. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Field Workers | Department of Energy Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC)

  8. SUPERCRITICAL STEAM CYCLE FOR NUCLEAR POWER PLANT

    SciTech Connect

    Tsiklauri, Georgi V.; Talbert, Robert J.; Schmitt, Bruce E.; Filippov, Gennady A.; Bogojavlensky, Roald G.; Grishanin, Evgeny I.

    2005-07-01

    Revolutionary improvement of the nuclear plant safety and economy with light water reactors can be reached with the application of micro-fuel elements (MFE) directly cooled by a supercritical pressure light-water coolant-moderator. There are considerable advantages of the MFE as compared with the traditional fuel rods, such as: Using supercritical and superheated steam considerably increases the thermal efficiency of the Rankine cycle up to 44-45%. Strong negative coolant and void reactivity coefficients with a very short thermal delay time allow the reactor to shutdown quickly in the event of a reactivity or power excursion. Core melting and the creation of corium during severe accidents are impossible. The heat transfer surface area is larger by several orders of magnitude due to the small spherical dimensions of the MFE. The larger heat exchange surface significantly simplifies residual heat removal by natural convection and radiation from the core to a subsequent passive system of heat removal.

  9. Fatigue monitoring in Nuclear Power Plants

    SciTech Connect

    Ware, A.G.; Shah, V.N.

    1995-04-01

    This paper summarizes fatigue monitoring methods and surveys their application in the nuclear power industry. The paper is based on a review of the technical literature. Two main reasons for fatigue monitoring are more frequent occurrence of some transients than that assumed in the fatigue design analysis and the discovery of stressors that were not included in the fatigue design analysis but may cause significant fatigue damage at some locations. One fatigue monitoring method involves use of plant operating data and procedures to update the fatigue usage. Another method involves monitoring of plant operating parameters using existing, or if needed, supplementary plant instrumentation for online computation of fatigue usage. Use of fatigue monitoring has better defined the operational transients. Most operational transients have been found less severe and fewer in numbers than anticipated in the design fatigue analysis. Use of fatigue monitoring has assisted in quantifying newly discovered stressors and has helped in detecting the presence of thermal stratification of unsuspected locations.

  10. Inland Power & Light Company- Residential Energy Efficiency Rebate Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Inland Power & Light offers a variety of rebates for the purchase of energy efficient equipment. Customers should see the program web site for rebate applications and full program details.

  11. Microsoft Word - Department of Energy Nuclear Power Solicitation...

    Energy.gov [DOE] (indexed site)

    U.S. Department of Energy Loan Guarantee Program Office FEDERAL LOAN GUARANTEES FOR NUCLEAR POWER FACILITIES Reference Number: DE-FOA-0000006 Announcement Type: Amendment 1 Issue ...

  12. The Use of Thorium within the Nuclear Power Industry - 13472...

    Office of Scientific and Technical Information (OSTI)

    for their long term nuclear power programme. The feasibility of thorium utilization in high temperature gas cooled reactors (HTGR), light water reactors (LWR), pressurized ...

  13. International Working Group Meeting Focuses on Nuclear Power...

    Energy Saver

    Needs International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Needs June 2, 2010 - 12:02pm Addthis VIENNA, Austria - The multi-nation ...

  14. Guidance for Deployment of Mobile Technologies for Nuclear Power...

    Energy.gov [DOE] (indexed site)

    This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking ...

  15. Design Concept and Application of Small Nuclear Power Reactor

    SciTech Connect

    Minato, Akio; Sekimoto, Hiroshi

    2009-03-31

    The outline of the recent design concepts and those features of the small nuclear power rector are described, including specifications, present design status, application and so on.

  16. State Nuclear Power Technology Corporation SNPTC | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Technology Corporation SNPTC Jump to: navigation, search Name: State Nuclear Power Technology Corporation (SNPTC) Place: Beijing, Beijing Municipality, China Zip: 100032 Product:...

  17. Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear Reactor Wireless Sensor Networks Citation Details In-Document Search Title: Pyroelectric Energy ...

  18. Economic Conditions and Factors Affecting New Nuclear Power Deployment...

    Office of Scientific and Technical Information (OSTI)

    ... With a multiple-year lead time, nuclear power plants are acutely vulnerable to market corrections. less Authors: Harrison, Thomas J. 1 + Show Author Affiliations Oak Ridge ...

  19. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JANUARY 2014

    Office of Environmental Management (EM)

    reasons for the suspension. Unistar Nuclear Operating Co. has formally withdrawn its ... to withdraw the application. The Nuclear Regulatory Commission has formally ...

  20. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JULY 2014

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Toshiba's participation in Nuclear Innovation North America's South Texas Project does not violate federal rules on foreign ownership, control or domination of nuclear reactors. ...

  1. Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement- The Operator Viewpoints

    Energy.gov [DOE]

    Presenter: Akira Kawano, General Manager, Nuclear International Relations and Strategy Group, Nuclear Power and Plant Siting Administrative Department, Tokyo Electric Power Company

  2. Company, for the United States Department of Energy's National Nuclear Security

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Small Business Advocate Sandia National Laboratories 24 th Annual Briefing for Industry 2010 August 18, 2010 Small Business Utilization Department Small Business Program Don Devoti, Manager Small Business Utilization Sandia is a multiprogram laboratory operated by Sandia Corporation, a

  3. DC power transmission from the Leningradskaya Nuclear Power Plant to Vyborg

    SciTech Connect

    Koshcheev, L. A.; Shul'ginov, N. G.

    2011-05-15

    DC power transmission from the Leningradskaya Nuclear Power Plant (LAES) to city of Vyborg is proposed. This will provide a comprehensive solution to several important problems in the development and control of the unified power system (EES) of Russia.

  4. 1,"W A Parish","Coal","NRG Texas Power LLC",3675 2,"South Texas Project","Nuclear","STP Nuclear Operating Co",2560

    Energy Information Administration (EIA) (indexed site)

    Texas" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"W A Parish","Coal","NRG Texas Power LLC",3675 2,"South Texas Project","Nuclear","STP Nuclear Operating Co",2560 3,"Martin Lake","Coal","Luminant Generation Company LLC",2410 4,"Comanche Peak","Nuclear","Luminant Generation Company LLC",2400

  5. Inspection of Nuclear Power Plant Containment Structures

    SciTech Connect

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  6. Energy Department Nuclear Systems Are Powering Mars Rover

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    doe logo U.S. Department of Energy Office of Public Affairs Media Contact: 202-586-4940 For Immediate Release: Monday, November 28, 2011 Energy Department Nuclear Systems Are Powering Mars Rover 2011 Marks 50th Anniversary of Nuclear-Powered Space Missions Washington, D.C. � The Mars Science Laboratory rover, which launched from Cape Canaveral this weekend, is powered by nuclear systems developed by the U.S. Department of Energy (DOE), marking the 28th space mission supported by nuclear

  7. Florida Power & Light Company, 700 Universe Blvd. Juno Beach 33408

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Florida Power & Light Company, 700 Universe Blvd. Juno Beach 33408 Telephone: (561)691-2790, Fax: (561)691-7577 Page 1 of 19 November 1, 2010 U.S. Department of Energy Office of Electricity Delivery & Energy Reliability 1000 Independence Ave., S.W. Room 8H033 Washington, DC 20585 Via E-mail: smartgridpolicy@hq.doe.gov Re: Smart Grid Request For Information (RFI): Addressing Policy & Logistical Challenges Florida Power & Light Company ("FPL") appreciates the opportunity

  8. Potomac Electric Power Company's Motion for Leave to Answer and Answer to

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Comments and Protests | Department of Energy for Leave to Answer and Answer to Comments and Protests Potomac Electric Power Company's Motion for Leave to Answer and Answer to Comments and Protests Docket No. EO-05-01: Pursuant to Rules 212 and 213 of the Rules of Practice and Procedure of the Federal Energy Regulatory Commission ("FERC" or the "Commission"), 18 C.F.R. §§ 385.212 and 385.213 (2005), Potomac Electric Power Company ("Pepco") hereby (i) moves for

  9. Response of the Potomac Electric Power Company to the Operating Plan of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Mirant Potomac River, L.L.C. | Department of Energy of the Potomac Electric Power Company to the Operating Plan of Mirant Potomac River, L.L.C. Response of the Potomac Electric Power Company to the Operating Plan of Mirant Potomac River, L.L.C. Docket No. EO-05-01: In sum, although Pepco agrees wilh DOE's directive that Mirant "should immediately take the necessary steps to implement Option A of the intermediate phase proposed in the implementation plan,") that Option does not

  10. Answer of Potomac Electric Power Company and PJM lnterconnection, L.L.C. to

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the October 6, 2005 motion filed by the Virginia Department of Environmental Quality | Department of Energy Answer of Potomac Electric Power Company and PJM lnterconnection, L.L.C. to the October 6, 2005 motion filed by the Virginia Department of Environmental Quality Answer of Potomac Electric Power Company and PJM lnterconnection, L.L.C. to the October 6, 2005 motion filed by the Virginia Department of Environmental Quality Docket No. EO-05-01: Pursuant to Rule 213 of the rules of Practice

  11. EIS-0140: Ocean State Power Project, Tennessee Gas Pipeline Company

    Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to evaluate potential impacts of construction and operation of a new natural gas-fired, combined-cycle power plant which would be located on a 40.6-acre parcel in the town of Burrillville, Rhode Island, as well as construction of a 10-mile pipeline to transport process and cooling water to the plant from the Blackstone River and a 7.5-mile pipeline to deliver No. 2 fuel oil to the site for emergency use when natural gas may not be available. The Economic Regulatory Administration adopted the EIS on 7/15/1988.

  12. Regulatory guidance for lightning protection in nuclear power plants

    SciTech Connect

    Kisner, R. A.; Wilgen, J. B.; Ewing, P. D.; Korsah, K.; Antonescu, C. E.

    2006-07-01

    Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects. (authors)

  13. Regulatory Guidance for Lightning Protection in Nuclear Power Plants

    SciTech Connect

    Kisner, Roger A; Wilgen, John B; Ewing, Paul D; Korsah, Kofi; Antonescu, Christina E

    2006-01-01

    Abstract - Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.

  14. The future of nuclear power and nuclear safety in the former Soviet Union

    SciTech Connect

    Potter, W.C.

    1993-03-01

    Although the international community is rightly concerned about the dangers of nuclear weapons proliferation in the former Soviet Union, the greatest nuclear threat emanating from that region has nothing to do with weapons. It stems, rather, from the deteriorating state of nuclear safety at the civilian nuclear power plants in Kazakhstan, Lithuanian, Russia, and Ukraine. This situation, caused by a combination of economic, political, and social factors, threatens to undermine the future of nuclear power in the former Soviet Union at the very time when the proponents of nuclear energy appear to be staging a remarkable comeback.

  15. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles

  16. Important technology considerations for space nuclear power systems

    SciTech Connect

    Kuspa, J.P.; Wahlquist, E.J.; Bitz, D.A.

    1988-03-01

    This paper discusses the technology considerations that guide the development of space nuclear power sources (NPS) by the Department of Energy (DOE) to meet a wide variety of applications. The Department and its predecessor agencies have been developing NPS since the 1950s and producing NPS for spacecraft for the National Aeronautics and Space Administration (NASA) and the Department of Defense (DOD) since the early 1960s. No one nuclear power type, isotope or reactor, will suffice over the entire range of mission power required. Nor is one type of power conversion system, be it static or dynamic, the optimum choice of all space nuclear power system applications. There is a need for DOE, in partnership with its users, NASA and DOD, to develop a variety of types of space nuclear power sources -- isotope-static, isotope-dynamic, reactor-static, and reactor-dynamic -- to meet mission requirements well into the next century. 2 figs., 1 tab.

  17. Economic Conditions and Factors Affecting New Nuclear Power Deployment

    SciTech Connect

    Harrison, Thomas J.

    2014-10-01

    This report documents work performed in support of the US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (AdvSMR) program. The report presents information and results from economic analyses to describe current electricity market conditions and those key factors that may impact the deployment of AdvSMRs or any other new nuclear power plants. Thus, this report serves as a reference document for DOE as it moves forward with its plans to develop advanced reactors, including AdvSMRs. For the purpose of this analysis, information on electricity markets and nuclear power plant operating costs will be combined to examine the current state of the nuclear industry and the process required to successfully move forward with new nuclear power in general and AdvSMRs in particular. The current electricity market is generally unfavorable to new nuclear construction, especially in deregulated markets with heavy competition from natural gas and subsidized renewables. The successful and profitable operation of a nuclear power plant (or any power plant) requires the rate at which the electricity is sold to be sufficiently greater than the cost to operate. The wholesale rates in most US markets have settled into values that provide profits for most operating nuclear power plants but are too low to support the added cost of capital recovery for new nuclear construction. There is a strong geographic dependence on the wholesale rate, with some markets currently able to support new nuclear construction. However, there is also a strong geographic dependence on pronuclear public opinion; the areas where power prices are high tend to have unfavorable views on the construction of new nuclear power plants. The use of government-backed incentives, such as subsidies, can help provide a margin to help justify construction projects that otherwise may not seem viable. Similarly, low interest rates for the project will also add a positive margin to the economic

  18. Klotz visits Bettis Atomic Power Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Klotz visits Bettis Atomic Power Laboratory Wednesday, July 8, 2015 - 1:03pm Lt. Gen. Frank G. Klotz, DOE Undersecretary for Nuclear Security and NNSA Administrator, visited the Bettis Atomic Power Laboratory in West Mifflin, PA on July 2, 2015. NNSA Blog Gen. Klotz toured through several test facilities where Bettis personnel reviewed ongoing development efforts to qualify techniques for in-situ repairs of nuclear powered submarine components, discussed full scale

  19. EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington

    Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide an American Recovery Act and Reinvestment Act of 2009 financial assistance grant to Seattle Steam Company to facilitate the installation of a combined heat and power plant in downtown Seattle, Washington. NOTE: This Project has been cancelled.

  20. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JANUARY 2015

    Energy Saver

    Comanche Peak 3&4, Nine Mile Point 3 (later withdrawn) ... (DC) Summary: Three reactor designs that are ... Unit 3 nuclear and turbine island; progress on Unit 4 ...

  1. Nuclear power program and technology development in Korea

    SciTech Connect

    Cho, Byung-Oke

    1994-12-31

    KEPCO has successfully implemented the construction and operation of nuclear power plants since the early 1970s, and will continue to build safer and more efficient nuclear plants in the future in accordance with the nuclear power development plan previously established. KEPCO will also make every effort to enhance nuclear safety and obtain the public`s acceptance for nuclear power. We are, however, facing the same difficulties, as United States and other countries have, in strengthened regulatory requirements, public acceptance, radwaste disposal, and acquisition of new plant sites despite an active nuclear power program. Story of Ted Turner, CNN; {open_quotes}It ain`t as easy as it looks.{close_quotes} Yes! It is difficult. But we will cope with these issues so that we can promote the nuclear power development and continue to supply a highly economical and clean energy to the world. In this regard, it is my sincere wish that each organization participating in the nuclear industry, especially Korea and United States strengthen their ties and help each other so that we together can successfully accomplish our goals.

  2. Federal Power Act section 202(c) - Cross-Sound Cable Company, August 2002 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 2 Federal Power Act section 202(c) - Cross-Sound Cable Company, August 2002 On August 16, 2002, due to concerns regarding the availability of electricity on Long Island in the State of New York, a 202(c) order was issued directing Cross-Sound Cable Company to operate the Cross-Sound Cable from Connecticut to Long Island and related facilities. The order expired on October 1, 2002, pursuant to its terms. 202(c) order 202-02-1 August 16, 2002 - CSC.pdf (92.92 KB) 202(c)

  3. Federal Power Act section 202(c) - Cross-Sound Cable Company, August 2003 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 3 Federal Power Act section 202(c) - Cross-Sound Cable Company, August 2003 On August 14, 2003, in response to the blackout on that day in the Northeast and Upper Midwest areas of the United States, as well as portion of Canada, the New York Independent System Operator and ISO New England were directed to require Cross-Sound Cable Company to operate the Cross-Sound Cable and related facilities. The Expiration date on that order was September 1, 2003, but on August 28,

  4. Computer Security for Commercial Nuclear Power Plants - Literature Review for Korea Hydro Nuclear Power Central Research Institute

    SciTech Connect

    Duran, Felicia Angelica; Waymire, Russell L.

    2013-10-01

    Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documents have also been provided to KHNP-CRI.

  5. Secretary Chu's Remarks at Vogtle Nuclear Power Plant -- As Prepared...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    60 years ago, scientists in Arco, Idaho successfully used nuclear energy to power four light bulbs. They laid the groundwork for decades of clean electricity and put the U.S. at...

  6. Business risks to utilities as new nuclear power costs escalate

    SciTech Connect

    Severance, Craig A.

    2009-05-15

    A nuclear power megaproject carries with it severe business risks. Despite attempts to shift these risks to taxpayers and ratepayers, ultimately there are no guarantees for utility shareholders. Utility management needs to keep some core principles in mind. (author)

  7. Annex: Attributes of Proliferation Resistance for Civilian Nuclear Power Systems

    Energy.gov [DOE]

    The NERAC1 Task Force on Technology Opportunities for Increasing the Proliferation Resistance of Global Civilian Nuclear Power Systems (TOPS) determined at its first meeting in November 1999 that a...

  8. Tampa Electric Company, Polk Power Station Unit No. 1, preliminary public design report

    SciTech Connect

    1994-06-01

    This preliminary Public Design Report (PDR) provides design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. This project is partially funded by the US Department of Energy (DOE) under Round III of its Clean Coal Technology (CCT) Program under the provisions of Cooperative Agreement between DOE and Tampa Electric Company, novated on March 5,1992. The project is highlighted by the inclusion of a new hot gas cleanup system. DOE`s project management is based at its Morgantown Energy Technology Center (METC) in West Virginia. This report is preliminary, and the information contained herein is subject to revision. Definitive information will be available in the final PDR, which will be published at the completion of detailed engineering.

  9. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JULY 2014

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Updates available at: www.energy.gov/ne NEXT UPDATE - October 2014 Page 1 News Updates  The NRC Atomic Safety and Licensing Board (ASLB) has ruled that Toshiba's participation in Nuclear Innovation North America's South Texas Project does not violate federal rules on foreign ownership, control or domination of nuclear reactors. NRC staff had previously stated that despite having only a 10% ownership stake in the project, Toshiba's level of financial support constituted an impermissible

  10. Nuclear stopping power in warm and hot dense matter

    SciTech Connect

    Faussurier, Gerald; Blancard, Christophe; Gauthier, Maxence

    2013-01-15

    We present a method to estimate the nuclear component of the stopping power of ions propagating in dense matter. Three kinds of effective pair potentials are proposed. Results from the warm dense matter regime and the domain of high energy density physics are presented and discussed for proton and helium. The role of ionic temperature is examined. The nuclear stopping power can play a noticeable role in hot dense matter.

  11. Prediction of Technological Failures in Nuclear Power Plant Operation

    SciTech Connect

    Salnykov, A. A.

    2015-01-15

    A method for predicting operating technological failures in nuclear power plants which makes it possible to reduce the unloading of the generator unit during the onset and development of an anomalous engineering state of the equipment by detecting a change in state earlier and taking suitable measures. With the circulating water supply loop of a nuclear power plant as an example, scenarios and algorithms for predicting technological failures in the operation of equipment long before their actual occurrence are discussed.

  12. Renewing America's Nuclear Power Partnership for Energy Security and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Economic Growth | Department of Energy Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8, 2008 - 4:14pm Addthis Remarks as Prepared for Delivery by Secretary Bodman Thank you, Jamie, for that kind introduction. And many thanks as well to Secretary Gutierrez, Deputy Secretary Sullivan and the entire Commerce team for convening this important event. As always, it's

  13. Erosion/corrosion-induced pipe wall thinning in US Nuclear Power...

    Office of Scientific and Technical Information (OSTI)

    Erosioncorrosion-induced pipe wall thinning in US Nuclear Power Plants Citation Details In-Document Search Title: Erosioncorrosion-induced pipe wall thinning in US Nuclear Power ...

  14. Converting Maturing Nuclear Sites to Integrated Power Production Islands

    DOE PAGES [OSTI]

    Solbrig, Charles W.

    2011-01-01

    Nuclear islands, which are integrated power production sites, could effectively sequester and safeguard the US stockpile of plutonium. A nuclear island, an evolution of the integral fast reactor, utilizes all the Transuranics (Pu plus minor actinides) produced in power production, and it eliminates all spent fuel shipments to and from the site. This latter attribute requires that fuel reprocessing occur on each site and that fast reactors be built on-site to utilize the TRU. All commercial spent fuel shipments could be eliminated by converting all LWR nuclear power sites to nuclear islands. Existing LWR sites have the added advantage ofmore » already possessing a license to produce nuclear power. Each could contribute to an increase in the nuclear power production by adding one or more fast reactors. Both the TRU and the depleted uranium obtained in reprocessing would be used on-site for fast fuel manufacture. Only fission products would be shipped to a repository for storage. The nuclear island concept could be used to alleviate the strain of LWR plant sites currently approaching or exceeding their spent fuel pool storage capacity. Fast reactor breeding ratio could be designed to convert existing sites to all fast reactors, or keep the majority thermal.« less

  15. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JANUARY 2016

    Energy.gov [DOE] (indexed site)

    ... AP1000 - Amended design certified on December 30, 2011. GEH ESBWR - Design ... Korea Electric Power Corporation (KEPCO) ... to their work on reactor restarts in Japan. ...

  16. Quarterly Nuclear Power Deployment Scorecard - January 2013 ...

    Energy Saver

    Power production will cease in the second ... focused on furthering small modular reactor efficiency, operations and design. ... Westinghouse AP1000 - Amended design certified ...

  17. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JULY 2015

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    authority to issue a full power operating license to ... US-EPR design certification application. A Reference COL (R-COL) application has been submitted for five reactor ...

  18. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY OCTOBER 2015

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... AP1000 - Amended design certified on December 30, 2011. GEH ESBWR - Design ... Korea Electric Power Corporation (KEPCO) ... to their work on reactor restarts in Japan. ...

  19. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY APRIL 2016

    Energy Saver

    ... AP1000 - Amended design certified on December 30, 2011. GEH ESBWR - Design ... Korea Electric Power Corporation (KEPCO) ... to their work on reactor restarts in Japan. ...

  20. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY APRIL 2015

    Energy Saver

    ... Korea Electric Power Corporation (KEPCO) ... Westinghouse AP1000 - Amended design certified on December ... for a small modular reactor at its Clinch River ...

  1. Working Group Report on - Space Nuclear Power Systems and Nuclear Waste

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology R&D | Department of Energy Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even though one cannot anticipate the answers in basic research, the return on the public's investment can be maximized through long-range planning of the most promising avenues to explore and the resources needed to explore them." (p. v) "Pursuit of this

  2. Tampa Electric Company Polk Power Station Unit Number 1. Annual report, January--December, 1993

    SciTech Connect

    Not Available

    1994-08-01

    This report satisfies the requirements of Cooperative Agreement DE-FC21-91MC27363, novated as of March 5, 1992, to provide an annual update report on the year`s activities associated with Tampa Electric Company`s 250 MW IGCC demonstration project for the year 1993. Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Approximately 50% of the raw, hot syngas is cooled to 900 F and passed through a moving bed of zinc-based sorbent which removes sulfur containing compounds from the syngas. The remaining portion of the raw, hot syngas is cooled to 400 F for conventional acid gas removal. Sulfur-bearing compounds from both cleanup systems are sent to a conventional sulfuric acid plant to produce a marketable, high-purity sulfuric acid by-product. The cleaned medium-BTU syngas from these processes is routed to the combined cycle power generation system where it is mixed with air and burned in the combustion section of the combustion turbine. Heat is extracted from the expanded exhaust gases in a heat recovery steam generator (HRSG) to produce steam at three pressure levels for use throughout the integrated process. A highly modular, microprocessor-based distributed control system (DCS) is being developed to provide continuous and sequential control for most of the equipment on PPS-1.

  3. Regulatory practices in India for establishing nuclear power stations

    SciTech Connect

    De, A.K.; Singh, S.P.

    1991-07-01

    The Atomic Energy Regulatory Board (AERB) of India was established as an independent regulatory authority charged with regulating radiation protection and nuclear safety. This article reviews the current state of India`s nuclear power reactor program and discusses the makeup of functions of the AERB, including the preparation of issuance of safety codes, guides, and other standards, with special recent emphasis on pressurized-heavy-water reactors (PHWRs). The AERB`s relationship to nuclear plant owners is discussed, as are the inspection and control functions the AERB performs, both for the construction and operation of nuclear plants and the licensing of operating personnel. 8 refs., 2 figs.

  4. Institute of Nuclear Power Operations annual report, 1993

    SciTech Connect

    1993-12-31

    This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen`s joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO`s 1993 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry.

  5. Assessment of ceramic composites for MMW space nuclear power systems

    SciTech Connect

    Besmann, T.M.

    1987-01-01

    Proposed multimegawatt nuclear power systems which operate at high temperatures, high levels of stress, and in hostile environments, including corrosive working fluids, have created interest in the use of ceramic composites as structural materials. This report assesses the applicability of several ceramic composites in both Brayton and Rankine cycle power systems. This assessment considers an equilibrium thermodynamic analysis and also a nonequilibrium assessment. (FI)

  6. Method for assigning sites to projected generic nuclear power plants

    SciTech Connect

    Holter, G.M.; Purcell, W.L.; Shutz, M.E.; Young, J.R.

    1986-07-01

    Pacific Northwest Laboratory developed a method for forecasting potential locations and startup sequences of nuclear power plants that will be required in the future but have not yet been specifically identified by electric utilities. Use of the method results in numerical ratings for potential nuclear power plant sites located in each of the 10 federal energy regions. The rating for each potential site is obtained from numerical factors assigned to each of 5 primary siting characteristics: (1) cooling water availability, (2) site land area, (3) power transmission land area, (4) proximity to metropolitan areas, and (5) utility plans for the site. The sequence of plant startups in each federal energy region is obtained by use of the numerical ratings and the forecasts of generic nuclear power plant startups obtained from the EIA Middle Case electricity forecast. Sites are assigned to generic plants in chronological order according to startup date.

  7. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants

    SciTech Connect

    Stephen Schey

    2009-07-01

    Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 – Produce Data and Analyses Task 2 – Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 – Commercial-Scale Hydrogen Production Task 4 – Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study

  8. solar power | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    power Lab employees, officials, business leaders dedicate Livermore Solar Center Employees and leaders from the government and private industry - and several invited guests - came together last month to dedicate the Lawrence Livermore Solar Center. The solar array occupies 10 acres in the northwest corner of Lawrence Livermore National Laboratory's (LLNL)... NNSA labs continue to lead national solar power evaluation effort NNSA's laboratories have unique capabilities in modeling, simulation,

  9. Nuclear heated and powered metal excimer laser

    SciTech Connect

    Womack, D. R.

    1985-03-19

    A laser using heat and thermionic electrical output from a nuclear reactor in which heat generated by the reactor is utilized to vaporize metal lasants. Voltage output from a thermionic converter is used to create an electric discharge in the metal vapors. In one embodiment the laser vapors are excited by a discharge only. The second embodiment utilizes fission coatings on the inside of heat pipes, in which fission fragment excitation and ionization is employed in addition to a discharge. Both embodiments provide efficient laser systems that are capable of many years of operation without servicing. Metal excimers are the most efficient electronic transition lasers known with output in the visible wavelengths. Use of metal excimers, in addition to their efficiency and wavelengths, allows utilization of reactor waste heat which plagues many nuclear pumped laser concepts.

  10. Nuclear heated and powered metal excimer laser

    SciTech Connect

    Womack, D.R.

    1982-02-11

    A laser uses heat and thermionic electrical output from a nuclear reactor in which heat generated by the reactor is utilized to vaporize metal lasants. Voltage output from a thermionic converter is used to create an electric discharge in the metal vapors. In one embodiment the laser vapors are excited by a discharge only. The second embodiment utilizes fission coatings on the inside of heat pipes, in which fission fragment excitation and ionization is employed in addition to a discharge. Both embodiments provide efficient laser systems that are capable of many years of operation without servicing. Metal excimers are the most efficient electronic transition lasers known with output in the visible wavelengths. Use of metal excimers, in addition to their efficiency and wavelengths, allows utilization of reactor waste heat which plagues many nuclear pumped laser concepts.

  11. Radioactive materials released from nuclear power plants

    SciTech Connect

    Tichler, J.; Norden, K.; Congemi, J. )

    1991-05-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1988 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1988 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  12. Radioactive materials released from nuclear power plants

    SciTech Connect

    Tichler, J.; Norden, K.; Congemi, J. )

    1989-10-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1987 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1987 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  13. Radioactive materials released from nuclear power plants

    SciTech Connect

    Tichler, J.; Benkovitz, C.

    1981-11-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1979 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1979 release data are compared with previous year's releases in tabular form. Data covering specific radionuclides are summarized.

  14. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    SciTech Connect

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-21

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  15. International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Financing of New Nuclear Projects

    Energy.gov [DOE]

    The multi-nation Infrastructure Development Working Group (IDWG) held its fifth meeting and also a workshop on the financing of international nuclear power projects in Vienna, Austria, on December 9-10, 2009.

  16. Probabilistic Soil-Structure Interaction Analysis of Nuclear Power Plant Structures for Seismic Probabilistic Risk Assessment

    Energy.gov [DOE]

    Probabilistic Soil-Structure Interaction Analysis of Nuclear Power Plant Structures for Seismic Probabilistic Risk Assessment

  17. What future for nuclear power? Workshop report

    SciTech Connect

    1998-12-31

    A Workshop on this highly controversial subject, organized by the Energy and Environment Programme of the RIIA, was held on 10th November 1997 at Green College, Oxford. The meeting was attended by some forty people from eight countries, coming from the nuclear and electricity generating industry, governments, research organizations, academic institutions, environmental pressure groups and inter-governmental organizations. In addition, subsequent to this Workshop, there have been a number of smaller, more informal discussions on various aspects of the subject. This paper summarizes the main conclusions arising from the Workshop and from these later discussions.

  18. HIGH TEMPERATURE, HIGH POWER HETEROGENEOUS NUCLEAR REACTOR

    DOEpatents

    Hammond, R.P.; Wykoff, W.R.; Busey, H.M.

    1960-06-14

    A heterogeneous nuclear reactor is designed comprising a stationary housing and a rotatable annular core being supported for rotation about a vertical axis in the housing, the core containing a plurality of radial fuel- element supporting channels, the cylindrical empty space along the axis of the core providing a central plenum for the disposal of spent fuel elements, the core cross section outer periphery being vertically gradated in radius one end from the other to provide a coolant duct between the core and the housing, and means for inserting fresh fuel elements in the supporting channels under pressure and while the reactor is in operation.

  19. Nuclear Archeology for CANDU Power Reactors

    SciTech Connect

    Broadhead, Bryan L

    2011-01-01

    The goal of this work is the development of so-called 'nuclear archeology' techniques to predict the irradiation history of both fuel-related and non-fuel-related materials irradiated in the CANDU (CANada Deuterium Uranium) family of nuclear reactors. In this application to CANDU-type reactors, two different scenarios for the collection of the appropriate data for use in these procedures will be assumed: the first scenario is the removal of the pressure tubes, calandria tubes, or fuel cladding and destructive analysis of the activation products contained in these structural materials; the second scenario is the nondestructive analysis (NDA) of the same hardware items via high-resolution gamma ray scans. There are obvious advantages and disadvantages for each approach; however, the NDA approach is the central focus of this work because of its simplicity and lack of invasiveness. The use of these techniques along with a previously developed inverse capability is expected to allow for the prediction of average flux levels and irradiation time, and the total fluence for samples where the values of selected isotopes can be measured.

  20. Hans Bethe, Powering the Stars, and Nuclear Physics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hans Bethe, Energy Production in Stars, and Nuclear Physics Awards and Tributes * Resources with Additional Information Hans Bethe Courtesy of Cornell University "Hans Bethe was one of the great physicists not only of the twentieth century, but of all time. During his long life, he uncovered the secrets powering the stars, published the standard work on nuclear physics, built atomic weapons, and called for a halt to their proliferation. Bethe's dual legacy is one of genius and

  1. Nuclear Power and the Environment - Energy Explained, Your Guide To

    Energy Information Administration (EIA) (indexed site)

    Understanding Energy - Energy Information Administration Nuclear > Nuclear Power & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on

  2. Solid state laser media driven by remote nuclear powered fluorescence

    DOEpatents

    Prelas, Mark A.

    1992-01-01

    An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.

  3. Integrated approach to economical, reliable, safe nuclear power production

    SciTech Connect

    Not Available

    1982-06-01

    An Integrated Approach to Economical, Reliable, Safe Nuclear Power Production is the latest evolution of a concept which originated with the Defense-in-Depth philosophy of the nuclear industry. As Defense-in-Depth provided a framework for viewing physical barriers and equipment redundancy, the Integrated Approach gives a framework for viewing nuclear power production in terms of functions and institutions. In the Integrated Approach, four plant Goals are defined (Normal Operation, Core and Plant Protection, Containment Integrity and Emergency Preparedness) with the attendant Functional and Institutional Classifications that support them. The Integrated Approach provides a systematic perspective that combines the economic objective of reliable power production with the safety objective of consistent, controlled plant operation.

  4. 2,"Donald C Cook","Nuclear","Indiana Michigan Power Co",2069

    Energy Information Administration (EIA) (indexed site)

    Michigan" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Monroe (MI)","Coal","DTE Electric Company",3078 2,"Donald C Cook","Nuclear","Indiana Michigan Power Co",2069 3,"Ludington","Pumped storage","Consumers Energy Co",1872 4,"Midland Cogeneration Venture","Natural gas","Midland Cogeneration

  5. Enhancement of NRC station blackout requirements for nuclear power plants

    SciTech Connect

    McConnell, M. W.

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50, Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended to

  6. Illinois Nuclear Profile - Clinton Power Station

    Energy Information Administration (EIA) (indexed site)

    Clinton Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,065","8,612",92.3,"BWR","application/vnd.ms-excel","application/vnd.ms-

  7. Report on aging of nuclear power plant reinforced concrete structures

    SciTech Connect

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs.

  8. Identifying and bounding uncertainties in nuclear reactor thermal power calculations

    SciTech Connect

    Phillips, J.; Hauser, E.; Estrada, H.

    2012-07-01

    Determination of the thermal power generated in the reactor core of a nuclear power plant is a critical element in the safe and economic operation of the plant. Direct measurement of the reactor core thermal power is made using neutron flux instrumentation; however, this instrumentation requires frequent calibration due to changes in the measured flux caused by fuel burn-up, flux pattern changes, and instrumentation drift. To calibrate the nuclear instruments, steam plant calorimetry, a process of performing a heat balance around the nuclear steam supply system, is used. There are four basic elements involved in the calculation of thermal power based on steam plant calorimetry: The mass flow of the feedwater from the power conversion system, the specific enthalpy of that feedwater, the specific enthalpy of the steam delivered to the power conversion system, and other cycle gains and losses. Of these elements, the accuracy of the feedwater mass flow and the feedwater enthalpy, as determined from its temperature and pressure, are typically the largest contributors to the calorimetric calculation uncertainty. Historically, plants have been required to include a margin of 2% in the calculation of the reactor thermal power for the licensed maximum plant output to account for instrumentation uncertainty. The margin is intended to ensure a cushion between operating power and the power for which safety analyses are performed. Use of approved chordal ultrasonic transit-time technology to make the feedwater flow and temperature measurements (in place of traditional differential-pressure- based instruments and resistance temperature detectors [RTDs]) allows for nuclear plant thermal power calculations accurate to 0.3%-0.4% of plant rated power. This improvement in measurement accuracy has allowed many plant operators in the U.S. and around the world to increase plant power output through Measurement Uncertainty Recapture (MUR) up-rates of up to 1.7% of rated power, while also

  9. POWER GENERATION FROM LIQUID METAL NUCLEAR FUEL

    DOEpatents

    Dwyer, O.E.

    1958-12-23

    A nuclear reactor system is described wherein the reactor is the type using a liquid metal fuel, such as a dispersion of fissile material in bismuth. The reactor is designed ln the form of a closed loop having a core sectlon and heat exchanger sections. The liquid fuel is clrculated through the loop undergoing flssion in the core section to produce heat energy and transferrlng this heat energy to secondary fluids in the heat exchanger sections. The fission in the core may be produced by a separate neutron source or by a selfsustained chain reaction of the liquid fuel present in the core section. Additional auxiliary heat exchangers are used in the system to convert water into steam which drives a turbine.

  10. Seismic risk management solution for nuclear power plants

    DOE PAGES [OSTI]

    Coleman, Justin; Sabharwall, Piyush

    2014-12-01

    Nuclear power plants should safely operate during normal operations and maintain core-cooling capabilities during off-normal events, including external hazards (such as flooding and earthquakes). Management of external hazards to expectable levels of risk is critical to maintaining nuclear facility and nuclear power plant safety. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components). Seismic isolation (SI) is one protective measure showing promise to minimize seismic risk. Current SI designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefitmore » of SI application in the nuclear industry is being recognized and SI systems have been proposed in American Society of Civil Engineer Standard 4, ASCE-4, to be released in the winter of 2014, for light water reactors facilities using commercially available technology. The intent of ASCE-4 is to provide criteria for seismic analysis of safety related nuclear structures such that the responses to design basis seismic events, computed in accordance with this standard, will have a small likelihood of being exceeded. The U.S. nuclear industry has not implemented SI to date; a seismic isolation gap analysis meeting was convened on August 19, 2014, to determine progress on implementing SI in the U.S. nuclear industry. The meeting focused on the systems and components that could benefit from SI. As a result, this article highlights the gaps identified at this meeting.« less

  11. Seismic risk management solution for nuclear power plants

    SciTech Connect

    Coleman, Justin; Sabharwall, Piyush

    2014-12-01

    Nuclear power plants should safely operate during normal operations and maintain core-cooling capabilities during off-normal events, including external hazards (such as flooding and earthquakes). Management of external hazards to expectable levels of risk is critical to maintaining nuclear facility and nuclear power plant safety. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components). Seismic isolation (SI) is one protective measure showing promise to minimize seismic risk. Current SI designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed in American Society of Civil Engineer Standard 4, ASCE-4, to be released in the winter of 2014, for light water reactors facilities using commercially available technology. The intent of ASCE-4 is to provide criteria for seismic analysis of safety related nuclear structures such that the responses to design basis seismic events, computed in accordance with this standard, will have a small likelihood of being exceeded. The U.S. nuclear industry has not implemented SI to date; a seismic isolation gap analysis meeting was convened on August 19, 2014, to determine progress on implementing SI in the U.S. nuclear industry. The meeting focused on the systems and components that could benefit from SI. As a result, this article highlights the gaps identified at this meeting.

  12. Howard Baker Center for Public Policy Nuclear Power Conference | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Howard Baker Center for Public Policy Nuclear Power Conference Howard Baker Center for Public Policy Nuclear Power Conference October 4, 2007 - 3:14pm Addthis Remarks as Prepared for Secretary Bodman Thank you, Ambassador Baker for that warm introduction and for all the good work you and the University of Tennessee are sponsoring through the Baker Center for Public Policy. I also want to thank Representative Hamilton and the Wilson Center for hosting this event on such an important

  13. The History of Nuclear Power in Space | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The History of Nuclear Power in Space The History of Nuclear Power in Space June 9, 2015 - 11:42am Addthis Marissa Newhall Marissa Newhall Director of Digital Strategy and Communications How can I participate? It's Space Week on Energy.gov -- and we're highlighting the contributions of the Energy Department and our National Labs to the U.S. space program. Join us for "The Energy of Star Wars: A Google+ Hangout" on Friday June 12 at 2 p.m. EDT. Ask questions now and during the Hangout

  14. The United States Naval Nuclear Propulsion Program - Over 151 Million Miles Safely Steamed on Nuclear Power

    SciTech Connect

    None, None

    2015-03-01

    NNSA’s third mission pillar is supporting the U.S. Navy’s ability to protect and defend American interests across the globe. The Naval Reactors Program remains at the forefront of technological developments in naval nuclear propulsion and ensures a commanding edge in warfighting capabilities by advancing new technologies and improvements in naval reactor performance and reliability. In 2015, the Naval Nuclear Propulsion Program pioneered advances in nuclear reactor and warship design – such as increasing reactor lifetimes, improving submarine operational effectiveness, and reducing propulsion plant crewing. The Naval Reactors Program continued its record of operational excellence by providing the technical expertise required to resolve emergent issues in the Nation’s nuclear-powered fleet, enabling the Fleet to safely steam more than two million miles. Naval Reactors safely maintains, operates, and oversees the reactors on the Navy’s 82 nuclear-powered warships, constituting more than 45 percent of the Navy’s major combatants.

  15. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JANUARY 2016

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 Updates available at: www.energy.gov/ne NEXT UPDATE - April 2016 Page 1 News Updates  The Tennessee Valley Authority has completed fuel loading of the Watts Bar Unit 2 reactor. TVA plans to begin commercial operation of the 1,150 MW reactor in early 2016 following completion of power ascension testing.  The final environmental impact statement for the PSEG Early Site Permit (ESP) has been completed; an ESP could be issued as early as mid- 2016. If approved, the permit will be valid for

  16. Potomac Electric Power Company's Motion to Intervene and Comment in Support

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Emergency Petition and Complaint | Department of Energy to Intervene and Comment in Support of Emergency Petition and Complaint Potomac Electric Power Company's Motion to Intervene and Comment in Support of Emergency Petition and Complaint Docket No. EO-05-01. Docket No. EL05-145-000: Pursuant to Rules 211 and 214 of the Rules of Practice and Procedure of the Federal Energy Regulatory Commission ("FERC" or the "Commission"), 18 C.F.R. §§ 385.211 and 385.214 (2004),

  17. Underground collocation of nuclear power plant reactors and repository to facilitate the post-renaissance expansion of nuclear power

    SciTech Connect

    Myers, Carl W; Elkins, Ned Z

    2008-01-01

    Underground collocation of nuclear power reactors and the nuclear waste management facilities supporting those reactors, termed an underground nuclear park (UNP), appears to have several advantages compared to the conventional approach to siting reactors and waste management facilities. These advantages include the potential to lower reactor capital and operating cost, lower nuclear waste management cost, and increase margins of physical security and safety. Envirorunental impacts related to worker health, facility accidents, waste transportation, and sabotage and terrorism appear to be lower for UNPs compared to the current approach. In-place decommissioning ofUNP reactors appears to have cost, safety, envirorunental and waste disposal advantages. The UNP approach has the potential to lead to greater public acceptance for the deployment of new power reactors. Use of the UNP during the post-nuclear renaissance time frame has the potential to enable a greater expansion of U.S. nuclear power generation than might otherwise result. Technical and economic aspects of the UNP concept need more study to determine the viability of the concept.

  18. Solar power purchase for DOE laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Solar power purchase for DOE laboratories January 13, 2015 WASHINGTON D.C. -- The U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) announced today it has finalized the license agreement with Whitethorn Solar, a wholly owned subsidiary of Juwi Solar Inc. (Juwi), for a solar electrical generation system onsite at Lawrence Livermore National Laboratory. When completed, the power generated by this system will represent the DOE/NNSA's largest

  19. Site Environmental Report for Calendar Year 2003 DOE Operations at The Boeing Company, Rocketdyne Propulsion & Power

    SciTech Connect

    Liu, Ning; Rutherford, Phil; Samuels, Sandy; Lee, Majelle

    2004-09-30

    This Annual Site Environmental Report (ASER) for 2003 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing Rocketdyne’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations at ETEC included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities at ETEC involved the operation of large-scale liquid metal facilities that were used for testing liquid metal fast breeder components. All nuclear work was terminated in 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2003 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  20. US nuclear power plant operating cost and experience summaries

    SciTech Connect

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  1. Radioactive Effluents from Nuclear Power Plants Annual Report 2007

    SciTech Connect

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2007. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  2. Radioactive Effluents from Nuclear Power Plants Annual Report 2008

    SciTech Connect

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2008. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  3. Presentation: Task Force Report on the Future of Nuclear Power

    Energy.gov [DOE]

    The Secretary of Energy Advisory Board received a presentation on the report by the SEAB Task Force on the Future of Nuclear Power. The presentation was given by Dr. John Deutch, SEAB Chairman and Institute Professor at the Massachusetts Institute of Technology , on September 22, 2016.

  4. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  5. Top 6 Things You Didn't Know About Nuclear Power | Department...

    Energy Saver

    Nuclear Power December 12, 2014 - 10:39am Addthis These are the first lightbulbs lit by nuclear fission at Argonne's EBR or Experimental Breeder Reactor.| Energy Department...

  6. Multimegawatt space nuclear power supply, Phase 1 Final report

    SciTech Connect

    Not Available

    1989-02-17

    This Specification establishes the performance, design, development, and test requirements for the Boeing Multimegawatt Space Nuclear Power System (MSNPS). The Boeing Multimegawatt Space Power System is part of the DOE/SDIO Multimegawatt Space Nuclear Power Program. The purpose of this program is to provide a space-based nuclear power system to meet the needs of SDIO missions. The Boeing MSNPS is a category 1 concept which is capable of delivering 10's of MW(e) for 100's of seconds with effluent permitted. A design goal is for the system to have growth or downscale capability for other power system concepts. The growth objective is to meet the category 3 capability of 100's of MW(e) for 100's of seconds, also with effluent permitted. The purpose of this preliminary document is to guide the conceptual design effort throughout the Phase 1 study effort. This document will be updated through out the study. It will thus result in a record of the development of the design effort.

  7. An Approach to Autonomous Control for Space Nuclear Power Systems

    SciTech Connect

    Wood, Richard Thomas; Upadhyaya, Belle R.

    2011-01-01

    Under Project Prometheus, the National Aeronautics and Space Administration (NASA) investigated deep space missions that would utilize space nuclear power systems (SNPSs) to provide energy for propulsion and spacecraft power. The initial study involved the Jupiter Icy Moons Orbiter (JIMO), which was proposed to conduct in-depth studies of three Jovian moons. Current radioisotope thermoelectric generator (RTG) and solar power systems cannot meet expected mission power demands, which include propulsion, scientific instrument packages, and communications. Historically, RTGs have provided long-lived, highly reliable, low-power-level systems. Solar power systems can provide much greater levels of power, but power density levels decrease dramatically at {approx} 1.5 astronomical units (AU) and beyond. Alternatively, an SNPS can supply high-sustained power for space applications that is both reliable and mass efficient. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of an SNPS must be able to provide continuous operatio for the mission duration with limited immediate human interaction and no opportunity for hardware maintenance or sensor calibration. In effect, the SNPS control system must be able to independently operate the power plant while maintaining power production even when subject to off-normal events and component failure. This capability is critical because it will not be possible to rely upon continuous, immediate human interaction for control due to communications delays and periods of planetary occlusion. In addition, uncertainties, rare events, and component degradation combine with the aforementioned inaccessibility and unattended operation to pose unique challenges that an SNPS control system must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design.

  8. Review of maintenance personnel practices at nuclear power plants

    SciTech Connect

    Chockie, A.D.; Badalamente, R.V.; Hostick, C.J.; Vickroy, S.C.; Bryant, J.L.; Imhoff, C.H.

    1984-05-01

    As part of the Nuclear Regulatory Commission (NRC) sponsored Maintenance Qualifications and Staffing Project, the Pacific Northwest Laboratory (PNL) has conducted a preliminary assessment of nuclear power plant (NPP) maintenance practices. As requested by the NRC, the following areas within the maintenance function were examined: personnel qualifications, maintenance training, overtime, shiftwork and staffing levels. The purpose of the assessment was to identify the primary safety-related problems that required further analysis before specific recommendations can be made on the regulations affecting NPP maintenance operations.

  9. Nuclear powered Mars cargo transport mission utilizing advanced ion propulsion

    SciTech Connect

    Galecki, D.L.; Patterson, M.J.

    1987-01-01

    Nuclear-powered ion propulsion technology was combined with detailed trajectory analysis to determine propulsion system and trajectory options for an unmanned cargo mission to Mars in support of manned Mars missions. A total of 96 mission scenarios were identified by combining two power levels, two propellants, four values of specific impulse per propellant, three starting altitudes, and two starting velocities. Sixty of these scenarios were selected for a detailed trajectory analysis; a complete propulsion system study was then conducted for 20 of these trajectories. Trip times ranged from 344 days for a xenon propulsion system operating at 300 kW total power and starting from lunar orbit with escape velocity, to 770 days for an argon propulsion system operating at 300 kW total power and starting from nuclear start orbit with circular velocity. Trip times for the 3 MW cases studied ranged from 356 to 413 days. Payload masses ranged from 5700 to 12,300 kg for the 300 kW power level, and from 72,200 to 81,500 kg for the 3 MW power level.

  10. Understanding the nature of nuclear power plant risk

    SciTech Connect

    Denning, R. S.

    2012-07-01

    This paper describes the evolution of understanding of severe accident consequences from the non-mechanistic assumptions of WASH-740 to WASH-1400, NUREG-1150, SOARCA and today in the interpretation of the consequences of the accident at Fukushima. As opposed to the general perception, the radiological human health consequences to members of the Japanese public from the Fukushima accident will be small despite meltdowns at three reactors and loss of containment integrity. In contrast, the radiation-related societal impacts present a substantial additional economic burden on top of the monumental task of economic recovery from the nonnuclear aspects of the earthquake and tsunami damage. The Fukushima accident provides additional evidence that we have mis-characterized the risk of nuclear power plant accidents to ourselves and to the public. The human health risks are extremely small even to people living next door to a nuclear power plant. The principal risk associated with a nuclear power plant accident involves societal impacts: relocation of people, loss of land use, loss of contaminated products, decontamination costs and the need for replacement power. Although two of the three probabilistic safety goals of the NRC address societal risk, the associated quantitative health objectives in reality only address individual human health risk. This paper describes the types of analysis that would address compliance with the societal goals. (authors)

  11. Design issues concerning Iran`s Bushehr nuclear power plant VVER-1000 conversion

    SciTech Connect

    Carson, C.F.

    1996-12-31

    On January 8, 1995, the Atomic Energy Organization of Iran (AEOI) signed a contract for $800 million with the Russian Federation Ministry for Atomic Energy (Minatom) to complete Bushehr nuclear power plant (BNPP) unit 1. The agreement called for a Russian VVER-1000/320 pressurized water reactor (PWR) to be successfully installed into the existing German-built BNPP facilities in 5 yr. System design differences, bomb damage, and environmental exposure are key issues with which Minatom must contend in order to fulfill the contract. The AEOI under the Shah of Iran envisioned Bushehr as the first of many nuclear power plants, with Iran achieving 24 GW(electric) by 1993 and 34 GW(electric) by 2000. Kraftwerk Union AG (KWU) began construction of the two-unit plant near the Persian Gulf town of Halileh in 1975. Unit 1 was {approx}80% complete and unit 2 was {approx}50% complete when construction was interrupted by the 1979 Iranian Islamic revolution. Despite repeated AEOI attempts to lure KWU and other companies back to Iran to complete the plant, Western concerns about nuclear proliferation in Iran and repeated bombings of the plant during the 1980-1988 Iran-Iraq war dissuaded Germany from resuming construction.

  12. Understanding seismic design criteria for Japanese Nuclear Power Plants

    SciTech Connect

    Park, Y.J.; Hofmayer, C.H.; Costello, J.F.

    1995-04-01

    This paper summarizes the results of recent survey studies on the seismic design practice for nuclear power plants in Japan. The seismic design codes and standards for both nuclear as well as non-nuclear structures have been reviewed and summarized. Some key documents for understanding Japanese seismic design criteria are also listed with brief descriptions. The paper highlights the design criteria to determine the seismic demand and component capacity in comparison with U.S. criteria, the background studies which have led to the current Japanese design criteria, and a survey of current research activities. More detailed technical descriptions are presented on the development of Japanese shear wall equations, design requirements for containment structures, and ductility requirements.

  13. Study of Fukushima Dai-ichi Nuclear Power Station Unit 4 Spent...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Study of Fukushima Dai-ichi Nuclear Power Station Unit 4 Spent Fuel Pool Citation Details In-Document Search Title: Study of Fukushima Dai-ichi Nuclear Power...

  14. Presentation: R&D for the Future of Nuclear Power | Department...

    Office of Environmental Management (EM)

    R&D for the Future of Nuclear Power Presentation: R&D for the Future of Nuclear Power The Secretary of Energy Advisory Board (SEAB) received a briefing on R&D for the future of ...

  15. Draft Report of the Task Force on the Future of Nuclear Power...

    Energy Saver

    the Future of Nuclear Power Draft Report of the Task Force on the Future of Nuclear Power This draft report presents the findings and recommendations of the Secretary of Energy ...

  16. Los Alamos turns its nuclear weapons power to war on cancer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Los Alamos turns its nuclear weapons power to war on cancer Los Alamos turns its nuclear weapons power to war on cancer Los Alamos Physicist Eva Birnbaum shows how the laboratory ...

  17. Cooling Water Issues and Opportunities at U.S. Nuclear Power...

    Energy Saver

    Cooling Water Issues and Opportunities at U.S. Nuclear Power Plants, December 2010 Cooling Water Issues and Opportunities at U.S. Nuclear Power Plants, December 2010 Energy and ...

  18. N.R. 20 FOSSIL-FUELED POWER PLANTS; 21 SPECIFIC NUCLEAR REACTORS...

    Office of Scientific and Technical Information (OSTI)

    20 FOSSIL-FUELED POWER PLANTS; 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; 14 SOLAR ENERGY; 15 GEOTHERMAL ENERGY; GEOTHERMAL POWER PLANTS; COMPUTERIZED SIMULATION; HEAT...

  19. Incidents at nuclear power plants caused by the human factor

    SciTech Connect

    Mashin, V. A.

    2012-09-15

    Psychological analysis of the causes of incorrect actions by personnel is discussed as presented in the report 'Methodological guidelines for analyzing the causes of incidents in the operation of nuclear power plants.' The types of incorrect actions and classification of the root causes of errors by personnel are analyzed. Recommendations are made for improvements in the psychological analysis of causes of incorrect actions by personnel.

  20. Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants

    SciTech Connect

    O'Connell, J. Michael

    2002-01-01

    OAK-B135 Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants

  1. 6,"Edwin I Hatch","Nuclear","Georgia Power Co",1759 7,"Thomas A Smith Energy Facility","Natural gas","Oglethorpe Power Corporation",1290

    Energy Information Administration (EIA) (indexed site)

    Georgia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Scherer","Coal","Georgia Power Co",3389 2,"Bowen","Coal","Georgia Power Co",3202 3,"Jack McDonough","Natural gas","Georgia Power Co",2578 4,"Vogtle","Nuclear","Georgia Power Co",2302 5,"Wansley","Coal","Georgia Power

  2. Human Factors Considerations in New Nuclear Power Plants: Detailed Analysis.

    SciTech Connect

    OHara,J.; Higgins, J.; Brown, W.; Fink, R.

    2008-02-14

    This Nuclear Regulatory Commission (NRC) sponsored study has identified human-performance issues in new and advanced nuclear power plants. To identify the issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were organized into seven high-level HFE topic areas: Role of Personnel and Automation, Staffing and Training, Normal Operations Management, Disturbance and Emergency Management, Maintenance and Change Management, Plant Design and Construction, and HFE Methods and Tools. The issues where then prioritized into four categories using a 'Phenomena Identification and Ranking Table' methodology based on evaluations provided by 14 independent subject matter experts. The subject matter experts were knowledgeable in a variety of disciplines. Vendors, utilities, research organizations and regulators all participated. Twenty issues were categorized into the top priority category. This Brookhaven National Laboratory (BNL) technical report provides the detailed methodology, issue analysis, and results. A summary of the results of this study can be found in NUREG/CR-6947. The research performed for this project has identified a large number of human-performance issues for new control stations and new nuclear power plant designs. The information gathered in this project can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas through regulatory research. Addressing human-performance issues will provide the technical basis from which regulatory review guidance can be developed to meet these challenges. The availability of this review guidance will help set clear expectations for how the NRC staff will evaluate new designs, reduce regulatory uncertainty, and provide a well-defined path to new nuclear power plant licensing.

  3. A Nuclear Renaissance: The Role of Nuclear Power in Mitigating Climate Change

    SciTech Connect

    Winslow, Anne

    2011-06-28

    The U. N. Framework Convention on Climate Change calls for the stabilization of greenhouse gas (GHG) emissions at double the preindustrial atmospheric carbon dioxide concentration to avoid dangerous anthropogenic interference with the climate system. To achieve this goal, carbon emissions in 2050 must not exceed their current level, despite predictions of a dramatic increase in global electricity demand. The need to reduce GHG emissions and simultaneously provide for additional electricity demand has led to a renewed interest in the expansion of alternatives to fossil fuels--particularly renewable energy and nuclear power. As renewable energy sources are often constrained by the intermittency of natural energy forms, scale-ability concerns, cost and environmental barriers, many governments and even prominent environmentalist turn to nuclear energy as a source of clean, reliable base-load electricity. Described by some as a ''nuclear renaissance'', this trend of embracing nuclear power as a tool to mitigate climate change will dramatically influence the feasibility of emerging nuclear programs around the world.

  4. Online Sensor Calibration Assessment in Nuclear Power Systems

    SciTech Connect

    Coble, Jamie B.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hashemian, Hash

    2013-06-01

    Safe, efficient, and economic operation of nuclear systems (nuclear power plants, fuel fabrication and storage, used fuel processing, etc.) relies on transmission of accurate and reliable measurements. During operation, sensors degrade due to age, environmental exposure, and maintenance interventions. Sensor degradation can affect the measured and transmitted signals, including sensor failure, signal drift, sensor response time, etc. Currently, periodic sensor recalibration is performed to avoid these problems. Sensor recalibration activities include both calibration assessment and adjustment (if necessary). In nuclear power plants, periodic recalibration of safety-related sensors is required by the plant technical specifications. Recalibration typically occurs during refueling outages (about every 18 to 24 months). Non-safety-related sensors also undergo recalibration, though not as frequently. However, this approach to maintaining sensor calibration and performance is time-consuming and expensive, leading to unnecessary maintenance, increased radiation exposure to maintenance personnel, and potential damage to sensors. Online monitoring (OLM) of sensor performance is a non-invasive approach to assess instrument calibration. OLM can mitigate many of the limitations of the current periodic recalibration practice by providing more frequent assessment of calibration and identifying those sensors that are operating outside of calibration tolerance limits without removing sensors or interrupting operation. This can support extended operating intervals for unfaulted sensors and target recalibration efforts to only degraded sensors.

  5. Nuclear power fleets and uranium resources recovered from phosphates

    SciTech Connect

    Gabriel, S.; Baschwitz, A.; Mathonniere, G.

    2013-07-01

    Current light water reactors (LWR) burn fissile uranium, whereas some future reactors, as Sodium fast reactors (SFR) will be capable of recycling their own plutonium and already-extracted depleted uranium. This makes them a feasible solution for the sustainable development of nuclear energy. Nonetheless, a sufficient quantity of plutonium is needed to start up an SFR, with the plutonium already being produced in light water reactors. The availability of natural uranium therefore has a direct impact on the capacity of the reactors (both LWR and SFR) that we can build. It is therefore important to have an accurate estimate of the available uranium resources in order to plan for the world's future nuclear reactor fleet. This paper discusses the correspondence between the resources (uranium and plutonium) and the nuclear power demand. Sodium fast reactors will be built in line with the availability of plutonium, including fast breeders when necessary. Different assumptions on the global uranium resources are taken into consideration. The largely quoted estimate of 22 Mt of uranium recovered for phosphate rocks can be seriously downscaled. Based on our current knowledge of phosphate resources, 4 Mt of recoverable uranium already seems to be an upper bound value. The impact of the downscaled estimate on the deployment of a nuclear fleet is assessed accordingly. (authors)

  6. The role and future of nuclear power in Canada

    SciTech Connect

    Runnalls, O.J.C.

    1989-01-01

    Canada is rich in energy. Hydraulic power is the main source of electricity in Canada. The availability of natural resources and energy has guided the economic development of all the provinces. The Canadian Nuclear Association sponsored a survey of public attitudes in May of 1988. There appears to be less understanding of the actual supply of electricity and of the future natural resource availability. One out of five Canadians strongly opposes the use of nuclear energy. The CANDU type reactor proven to be a very economical and reliable choice in Canada. With the attention now being focused on the greenhouse effect and acid rain in Canada, opinion leaders, even in the traditionally antinuclear environmental community, are reconsidering the nuclear option. A significant hurdle has to be cleared in the relatively near future: a public review of the deep geologic high-level waste disposal concept. Groundwork has been laid to prepare for significant participation in a nuclear renaissance, across Canada and around the world.

  7. Refractory alloy technology for space nuclear power applications

    SciTech Connect

    Cooper, R.H. Jr.; Hoffman, E.E.

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  8. Guidelines for inservice testing at nuclear power plants

    SciTech Connect

    Campbell, P.

    1995-04-01

    The staff of the U.S. Nuclear Regulatory Commission (NRC) gives licensees guidelines and recommendations for developing and implementing programs for the inservice testing of pumps and valves at commercial nuclear power plants. The staff discusses the regulations; the components to be included in an inservice testing program; and the preparation and content of cold shutdown justifications, refueling outage justifications, and requests for relief from the American Society of Mechanical Engineers Code requirements. The staff also gives specific guidance on relief acceptable to the NRC and advises licensees in the use of this information at their facilities. The staff discusses the revised standard technical specifications for the inservice testing program requirements and gives guidance on the process a licensee may follow upon finding an instance of noncompliance with the Code.

  9. Electric power transmission for a Hanford Nuclear Energy Center (HNEC)

    SciTech Connect

    Harty, H.; Dowis, W.J.

    1983-06-01

    The original study of transmission for a Hanford Nuclear Energy Center (HNEC), which was completed in September 1975, was updated in June 1978. The present 1983 revision takes cognizance of recent changes in the electric power situation of the PNW with respect to: (1) forecasts of load growth, (2) the feasibility of early use of 1100 kV transmission, and (3) the narrowing opportunities for siting nuclear plants in the region. The purpose of this update is to explore and describe additions to the existing transmission system that would be necessary to accommodate three levels of generation at HNEC. Comparisons with a PNW system having new thermal generating capacity distributed throughout the marketing region are not made as was done in earlier versions.

  10. DOE Summit on Improving the Economics of America's Nuclear Power Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Summit on Improving the Economics of America's Nuclear Power Plants DOE Summit on Improving the Economics of America's Nuclear Power Plants May 19, 2016 - 3:10pm Addthis 202-586-9680 DOE News WASHINGTON - Today, the Energy Department convened a summit on Improving the Economics of America's Nuclear Power Plants. Secretary Moniz, Members of Congress, stakeholders, and experts discussed potential solutions to address the unique challenges facing the nuclear industry in the

  11. Nuclear Safety Risk Management in Refueling Outage of Qinshan Nuclear Power Plant

    SciTech Connect

    Meijing Wu; Guozhang Shen

    2006-07-01

    The NPP is used to planning maintenance, in-service inspection, surveillance test, fuel handling and design modification in the refueling outage; the operator response capability will be reduced plus some of the plant systems out of service or loss of power at this time. Based on 8 times refueling outage experiences of the Qinshan NPP, this article provide some good practice and lesson learned for the nuclear safety risk management focus at four safety function areas of Residual Heat Removal Capability, Inventory Control, Power availability and Reactivity control. (authors)

  12. Surveys of organizational culture and safety culture in nuclear power

    SciTech Connect

    Brown, Walter S.

    2000-07-30

    The results of a survey of organizational culture at a nuclear power plant are summarized and compared with those of a similar survey which has been described in the literature on ''high-reliability organizations''. A general-purpose cultural inventory showed a profile of organizational style similar to that reported in the literature; the factor structure for the styles was also similar to that of the plant previously described. A specialized scale designed to measure ''safety culture'' did not distinguished among groups within the organization that would be expected to differ.

  13. Machinery monitoring system installed at nuclear power station

    SciTech Connect

    Piety, K.; Hamrick, L.; McCurdy, A.

    1981-10-01

    The Grand Gulf Nuclear Station under construction in Mississippi will have a computer-based system to monitor 300 process variables and 200 vibration signals in each of the two units. The system's functions include monitoring support, startup/shutdown, surveillance, and diagnostics. The tasks associated with machinery monitoring are broken down into the initial plant design, construction and startup testing, and power-operation phases. The value of this monitoring is discussed and summarized in a table showing the impact of component failure on plant availability. 4 figures, 3 tables. (DCK)

  14. Float level switch for a nuclear power plant containment vessel

    DOEpatents

    Powell, J.G.

    1993-11-16

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures.

  15. Aging management guideline for commercial nuclear power plants - heat exchangers

    SciTech Connect

    Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

    1994-06-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  16. Float level switch for a nuclear power plant containment vessel

    DOEpatents

    Powell, James G.

    1993-01-01

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

  17. Small Modular Reactors - Key to Future Nuclear Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Modular Reactors - Key to Future Nuclear Power Generation in the U.S. 1,2 Robert Rosner and Stephen Goldberg Energy Policy Institute at Chicago The Harris School of Public Policy Studies Contributor: Joseph S. Hezir, Principal, EOP Foundation, Inc. Technical Paper, Revision 1 November, 2011 1 The research described in this paper was funded by the U.S. DOE through Argonne National Laboratory, which is operated by UChicago Argonne, LLC under contract No. DE-AC02-06CH1357. This report was prepared

  18. Early Site Permit Demonstration Program: Nuclear Power Plant Siting Database

    Energy Science and Technology Software Center

    1994-01-28

    This database is a repository of comprehensive licensing and technical reviews of siting regulatory processes and acceptance criteria for advanced light water reactor (ALWR) nuclear power plants. The program is designed to be used by applicants for an early site permit or combined construction permit/operating license (10CFRR522, Subparts A and C) as input for the development of the application. The database is a complete, menu-driven, self-contained package that can search and sort the supplied datamore » by topic, keyword, or other input. The software is designed for operation on IBM compatible computers with DOS.« less

  19. Advanced maintenance, inspection & repair technology for nuclear power plants

    SciTech Connect

    Hinton, B.M.

    1994-12-31

    Maintenance, inspection, and repair technology for nuclear power plants is outlined. The following topics are discussed: technology for reactor systems, reactor refueling bridge, fuel inspection system, fuel shuffling software, fuel reconstitution, CEA/RCCA/CRA inspection, vessel inspection capabilities, CRDM inspection and repair, reactor internals inspection and repair, stud tensioning system, stud/nut cleaning system, EDM machining technology, MI Cable systems, core exit T/C nozzle assemblies, technology for steam generators, genesis manipulator systems, ECT, UT penetrant inspections, steam generator repair and cleaning systems, technology for balance of plant, heat exchangers, piping and weld inspections, and turbogenerators.

  20. Aiken Standard: Japanese company learns management techniques from SRNL

    Office of Energy Efficiency and Renewable Energy (EERE)

    As representatives from Tokyo Electric Power Company visited Aiken, they discussed the efforts they are making to help remediate the damage caused by the worst nuclear accident since the Chernobyl explosion in April 1986.

  1. U.S. Nuclear Power Plants: Continued Life or Replacement After 60? (released in AEO2010)

    Reports and Publications

    2010-01-01

    Nuclear power plants generate approximately 20% of U.S. electricity, and the plants in operation today are often seen as attractive assets in the current environment of uncertainty about future fossil fuel prices, high construction costs for new power plants (particularly nuclear plants), and the potential enactment of greenhouse gas regulations. Existing nuclear power plants have low fuel costs and relatively high power output. However, there is uncertainty about how long they will be allowed to continue operating.

  2. Chapter 4: Advancing Clean Electric Power Technologies | Hybrid Nuclear-Renewable Energy Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Hybrid Nuclear-Renewable Energy Systems Chapter 4: Technology Assessments Introduction and Background This Technology Assessment summarizes the current state of knowledge of nuclear-renewable hybrid

  3. Summary of space nuclear reactor power systems, 1983--1992

    SciTech Connect

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  4. NUCLEAR POWERED CO2 CAPTURE FROM THE ATMOSPHERE

    SciTech Connect

    Sherman, S

    2008-09-22

    A process for capturing CO{sub 2} from the atmosphere was recently proposed. This process uses a closed cycle of sodium and calcium hydroxide, carbonate, and oxide transformations to capture dilute CO{sub 2} from the atmosphere and to generate a concentrated stream of CO{sub 2} that is amenable to sequestration or subsequent chemical transformations. In one of the process steps, a fossil-fueled lime kiln is needed, which reduces the net CO{sub 2} capture of the process. It is proposed to replace the fossil-fueled lime kiln with a modified kiln heated by a high-temperature nuclear reactor. This will have the effect of eliminating the use of fossil fuels for the process and increasing the net CO{sub 2} capture. Although the process is suitable to support sequestration, the use of a nuclear power source for the process provides additional capabilities, and the captured CO{sub 2} may be combined with nuclear-produced hydrogen to produce liquid fuels via Fischer-Tropsch synthesis or other technologies. Conceivably, such plants would be carbon-neutral, and could be placed virtually anywhere without being tied to fossil fuel sources or geological sequestration sites.

  5. Regulatory process for decommissioning nuclear power reactors. Final report

    SciTech Connect

    1998-03-01

    This report provides regulatory guidance for utilities consistent with the changes in the decommissioning rule, 10 CFR50.82 as revised in July 1996. The purpose of this report is to explain the new rule in the context of related industry experience and to provide practical guidance to licensees contemplating or implementing a shutdown. Because the regulatory process is still rapidly evolving, this report reflects only a current status of the acceptable methods and practices derived from a review of the current regulations, guidance documents and industry experience for decommissioning a nuclear power reactor. EPRI anticipates periodic updates of this document to incorporate various utility experiences with decommissioning, and also to reflect any regulatory changes. The report provides a summary of ongoing federal agency and industry activities and the regulatory requirements that are currently applicable, or no longer applicable, to nuclear power plants at the time of permanent shutdown through the early decommissioning stage. The report describes the major components of a typical decommissioning action plan, providing industry experience and guidance for licensees considering or implementing permanent shutdown.

  6. QER- Comment of Southern Company

    Energy.gov [DOE]

    Southern Company Services, Inc., as agent for Alabama Power Company, Georgia Power Company, Gulf Power Company, and Mississippi Power Company, (collectively, “Southern Companies”), are pleased to hereby provide their comments to the Department of Energy as it prepares the Quadrennial Energy Review. If there is anything else that we can do in this regard, please feel free to contact us.

  7. The Use of Thorium within the Nuclear Power Industry - 13472

    SciTech Connect

    Miller, Keith

    2013-07-01

    Thorium is 3 to 4 times more abundant than uranium and is widely distributed in nature as an easily exploitable resource in many countries. Unlike natural uranium, which contains ∼0.7% fissile {sup 235}U isotope, natural thorium does not contain any fissile material and is made up of the fertile {sup 232}Th isotope only. Therefore thorium and thorium-based fuel as metal, oxide or carbide, has been utilized in combination with fissile {sup 235}U or {sup 239}Pu in nuclear research and power reactors for conversion to fissile {sup 233}U, thereby enlarging fissile material resources. During the pioneering years of nuclear energy, from the mid 1950's to mid 1970's, there was considerable interest worldwide to develop thorium fuels and fuel cycles in order to supplement uranium reserves. Thorium fuels and fuel cycles are particularly relevant to countries having large thorium deposits but very limited uranium reserves for their long term nuclear power programme. The feasibility of thorium utilization in high temperature gas cooled reactors (HTGR), light water reactors (LWR), pressurized heavy water reactors (PHWRs), liquid metal cooled fast breeder reactors (LMFBR) and molten salt breeder reactors (MSBR) were demonstrated. The initial enthusiasm for thorium fuels and fuel cycles was not sustained among the developing countries later, due to new discovery of uranium deposits and their improved availability. However, in recent times, the need for proliferation-resistance, longer fuel cycles, higher burnup, and improved waste form characteristics, reduction of plutonium inventories and in situ use of bred-in fissile material has led to renewed interest in thorium-based fuels and fuel cycles. (authors)

  8. Probabilistic Seismic Hazard Characterization and Design Parameters for the Sites of the Nuclear Power Plants of Ukraine

    SciTech Connect

    Savy, J.B.; Foxall, W.

    2000-01-26

    The U.S. Department of Energy (US DOE), under the auspices of the International Nuclear Safety Program (INSP) is supporting in-depth safety assessments (ISA) of nuclear power plants in Eastern Europe and the former Soviet Union for the purpose of evaluating the safety and upgrades necessary to the stock of nuclear power plants in Ukraine. For this purpose the Hazards Mitigation Center at Lawrence Livermore National Laboratory (LLNL) has been asked to assess the seismic hazard and design parameters at the sites of the nuclear power plants in Ukraine. The probabilistic seismic hazard (PSH) estimates were updated using the latest available data and knowledge from LLNL, the U.S. Geological Survey, and other relevant recent studies from several consulting companies. Special attention was given to account for the local seismicity, the deep focused earthquakes of the Vrancea zone, in Romania, the region around Crimea and for the system of potentially active faults associated with the Pripyat Dniepro Donnetts rift. Aleatory (random) uncertainty was estimated from the available data and the epistemic (knowledge) uncertainty was estimated by considering the existing models in the literature and the interpretations of a small group of experts elicited during a workshop conducted in Kiev, Ukraine, on February 2-4, 1999.

  9. Personnel supply and demand issues in the nuclear power industry. Final report of the Nuclear Manpower Study Committee

    SciTech Connect

    Not Available

    1981-01-01

    The anticipated personnel needs of the nuclear power industry have varied widely in recent years, in response to both increasing regulatory requirements and declining orders for new plants. Recent employment patterns in the nuclear energy field, with their fluctuations, resemble those of defense industries more than those traditionally associated with electric utilities. Reactions to the accident at Three Mile Island Unit 2 by industry and regulators have increased the demand for trained and experienced personnel, causing salaries to rise. Industry, for example, has established several advisory organizations like the Institute for Nuclear Power Operations (INPO). At the same time, the US Nuclear Regulatory Commission (NRC) has imposed many new construction and operating requirements in an effort to take advantage of lessons learned from the Three Mile Island incident and to respond to the perceived public interest in better regulation of nuclear power. Thus, at present, utilities, architect-engineer firms, reactor vendors, and organizations in the nuclear development community have heavy workloads.

  10. Regression analysis of technical parameters affecting nuclear power plant performances

    SciTech Connect

    Ghazy, R.; Ricotti, M. E.; Trueco, P.

    2012-07-01

    Since the 80's many studies have been conducted in order to explicate good and bad performances of commercial nuclear power plants (NPPs), but yet no defined correlation has been found out to be totally representative of plant operational experience. In early works, data availability and the number of operating power stations were both limited; therefore, results showed that specific technical characteristics of NPPs were supposed to be the main causal factors for successful plant operation. Although these aspects keep on assuming a significant role, later studies and observations showed that other factors concerning management and organization of the plant could instead be predominant comparing utilities operational and economic results. Utility quality, in a word, can be used to summarize all the managerial and operational aspects that seem to be effective in determining plant performance. In this paper operational data of a consistent sample of commercial nuclear power stations, out of the total 433 operating NPPs, are analyzed, mainly focusing on the last decade operational experience. The sample consists of PWR and BWR technology, operated by utilities located in different countries, including U.S. (Japan)) (France)) (Germany)) and Finland. Multivariate regression is performed using Unit Capability Factor (UCF) as the dependent variable; this factor reflects indeed the effectiveness of plant programs and practices in maximizing the available electrical generation and consequently provides an overall indication of how well plants are operated and maintained. Aspects that may not be real causal factors but which can have a consistent impact on the UCF, as technology design, supplier, size and age, are included in the analysis as independent variables. (authors)

  11. Report of the South Texas Project Allegations Review Team. Docket Nos. 50-498 and 50-499, Houston Lighting and Power Company et al.

    SciTech Connect

    Kokajko, L.; Skay, D.; Wang, H.; Murphy, D.

    1995-03-01

    This report provides the results of the South Texas Project Allegations Review Team of the US Nuclear Regulatory Commission. This team was formed to obtain and review allegations from individuals represented by three attorneys who had contacted Congressional staff members. The allegers were employed in various capacities at South Texas Project Electric Generating Station, licensed by Houston Lighting and Power Company, et al.; therefore, the allegations are confined to this site. The South Texas Project Allegations Review Team reviewed, referred, and dispositioned concerns related to discriminatory issues (harassment and intimidation), falsification of records and omission of information, and various technical issues. The team was able to substantiate certain technical issues of minor safety significance or regulatory concern at the South Texas Project facility, but it did not find widespread discriminatory practices such as harassment and intimidation.

  12. Nuclear power and the allocation of emissions allowances: a new hampshire case study

    SciTech Connect

    Space, William

    2007-04-15

    The Regional Greenhouse Gas Initiative's model rule allows states to allocate carbon allowances to nuclear power plants. New Hampshire's 2003 decision to include nuclear uprates in its NO{sub x} allocations represents a relevant precedent. (author)

  13. Aging assessment of surge protective devices in nuclear power plants

    SciTech Connect

    Davis, J.F.; Subudhi, M.; Carroll, D.P.

    1996-01-01

    An assessment was performed to determine the effects of aging on the performance and availability of surge protective devices (SPDs), used in electrical power and control systems in nuclear power plants. Although SPDs have not been classified as safety-related, they are risk-important because they can minimize the initiating event frequencies associated with loss of offsite power and reactor trips. Conversely, their failure due to age might cause some of those initiating events, e.g., through short circuit failure modes, or by allowing deterioration of the safety-related component(s) they are protecting from overvoltages, perhaps preventing a reactor trip, from an open circuit failure mode. From the data evaluated during 1980--1994, it was found that failures of surge arresters and suppressers by short circuits were neither a significant risk nor safety concern, and there were no failures of surge suppressers preventing a reactor trip. Simulations, using the ElectroMagnetic Transients Program (EMTP) were performed to determine the adequacy of high voltage surge arresters.

  14. Top 6 Things You Didn't Know About Nuclear Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nuclear Power Top 6 Things You Didn't Know About Nuclear Power December 12, 2014 - 10:39am Addthis These are the first lightbulbs lit by nuclear fission at Argonne's EBR or Experimental Breeder Reactor.| Energy Department photo. These are the first lightbulbs lit by nuclear fission at Argonne's EBR or Experimental Breeder Reactor.| Energy Department photo. Allison Lantero Allison Lantero Digital Content Specialist, Office of Public Affairs This article is part of the Energy.gov series

  15. Nuclear power plant simulators: their use in operator training and requalification

    SciTech Connect

    Jones, D.W.; Baer, D.K.; Francis, C.C.

    1980-07-01

    This report presents the results of a study performed for the Nuclear Regulatory Commission to evaluate the capabilities and use of nuclear power plant simulators either built or being built by the US nuclear power industry; to determine the adequacy of existing standards for simulator design and for the training of power plant operators on simulators; and to assess the issues about simulator training programs raised by the March 28, 1979, accident at Three Mile Island Unit 2.

  16. Los Alamos turns its nuclear weapons power to war on cancer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Los Alamos turns its nuclear weapons power to war on cancer Los Alamos turns its nuclear weapons power to war on cancer Los Alamos Physicist Eva Birnbaum shows how the laboratory is manufacturing a radioactive treatment that targets tumors, without killing the surrounding healthy tissue. December 20, 2015 Los Alamos physicist Eva Birnbaum Los Alamos physicist Eva Birnbaum Los Alamos turns its nuclear weapons power to war on cancer NBC News got exclusive access to Los Alamos National Laboratory

  17. Nuclear Regulatory Commission Handling of Beyond Design Basis Events for Nuclear Power Reactors

    Energy.gov [DOE]

    Presenter: Bill Reckley, Chief, Policy and Support Branch, Japan Lessons-Learned Project Directorate, Office of Nuclear Reactor Regulation, US Nuclear Regulatory Commission US Nuclear Regulatory Commission

  18. Vitrification of Polyvinyl Chloride Waste from Korean Nuclear Power Plants

    SciTech Connect

    Sheng, Jiawei [Kyoto University (Japan); Choi, Kwansik [Nuclear Environment Technology Institute (Korea, Republic of); Yang, Kyung-Hwa [Nuclear Environment Technology Institute (Korea, Republic of); Lee, Myung-Chan [Nuclear Environment Technology Institute (Korea, Republic of); Song, Myung-Jae [Nuclear Environment Technology Institute (Korea, Republic of)

    2000-02-15

    Vitrification is considered as an economical and safe treatment technology for low-level radioactive waste (LLW) generated from nuclear power plants (NPPs). Korea is in the process of preparing for its first ever vitrification plant to handle LLW from its NPPs. Polyvinyl chloride (PVC) has the largest volume of dry active wastes and is the main waste stream to treat. Glass formulation development for PVC waste is the focus of study. The minimum additive waste stabilization approach has been utilized in vitrification. It was found that glasses can incorporate a high content of PVC ash (up to 50 wt%), which results in a large volume reduction. A glass frit, KEP-A, was developed to vitrify PVC waste after the optimization of waste loading, melt viscosity, melting temperature, and chemical durability. The KEP-A could satisfactorily vitrify PVC with a waste loading of 30 to 50 wt%. The PVC-frit was tolerant of variations in waste composition.

  19. Fitness for duty in the nuclear power industry

    SciTech Connect

    Durbin, N.; Moore, C.; Grant, T.; Fleming, T.; Hunt, P.; Martin, R.; Murphy, S.; Hauth, J.; Wilson, R.; Bittner, A.; Bramwell, A.; Macaulay, J.; Olson, J.; Terrill, E.; Toquam, J. )

    1991-09-01

    This report presents an overview of the NRC licensees' implementation of the FFD program during the first full year of the program's operation and provides new information on a variety of FFD technical issues. The purpose of this document is to contribute to appropriate changes to the rule, to the inspection process, and to other NRC activities. It describes the characteristics of licensee programs, discusses the results of NRC inspections, updates technical information covered in previous reports, and identifies lessons learned during the first year. Overall, the experience of the first full year of licensees' FFD program operations indicates that licensees have functioning fitness for duty programs devoted to the NRC rule's performance objectives of achieving drug-free workplaces in which nuclear power plant personnel are not impaired as they perform their duties. 96 refs., 14 tabs.

  20. Aging management guideline for commercial nuclear power plants-pumps

    SciTech Connect

    Booker, S.; Katz, D.; Daavettila, N.; Lehnert, D.

    1994-03-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant pumps important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  1. Prognostics and Life Beyond 60 for Nuclear Power Plants

    SciTech Connect

    Leonard J. Bond; Pradeep Ramuhalli; Magdy S. Tawfik; Nancy J. Lybeck

    2011-06-01

    Safe, secure, reliable and sustainable energy supply is vital for advanced and industrialized life styles. To meet growing energy demand there is interest in longer term operation (LTO) for the existing nuclear power plant fleet and enhancing capabilities in new build. There is increasing use of condition based maintenance (CBM) for active components and periodic in service inspection (ISI) for passive systems: there is growing interest in deploying on-line monitoring. Opportunities exist to move beyond monitoring and diagnosis based on pattern recognition and anomaly detection to and prognostics with the ability to provide an estimate of remaining useful life (RUL). The adoption of digital I&C systems provides a framework within which added functionality including on-line monitoring can be deployed, and used to maintain and even potentially enhance safety, while at the same time improving planning and reducing both operations and maintenance costs.

  2. Ukraine Loads U.S. Nuclear Fuel into Power Plant as Part of DOE-Ukraine

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nuclear Fuel Qualification Program | Department of Energy Ukraine Loads U.S. Nuclear Fuel into Power Plant as Part of DOE-Ukraine Nuclear Fuel Qualification Program Ukraine Loads U.S. Nuclear Fuel into Power Plant as Part of DOE-Ukraine Nuclear Fuel Qualification Program April 9, 2010 - 12:11pm Addthis KYIV, UKRAINE - Officials from the U.S. Department of Energy's (DOE) Office of Nuclear Energy today (April 8, 2010) participated in a ceremony in Ukraine to mark the insertion of

  3. Closeout of IE Bulletin 83-05: ASME nuclear code pumps and spare parts manufactured by the Hayward Tyler Pump Company

    SciTech Connect

    Foley, W.J.; Dean, R.S.; Hennick, A. )

    1990-08-01

    Documentation is provided in this report to close IE Bulletin 83-05 regarding ASME nuclear code pumps and spare parts manufactured by the Hayward Tyler Pump Company (HTPC). The bulletin was issued (1) to alert holders of operating licenses and construction permits of nuclear power plants that HTPC failed to implement effectively their quality assurance (QA) program from 1977 to 1981 and (2) to require affected utilities to take action to resolve the potential for failure of the subject pumps and their spare parts. Evaluation of utility responses and NRC/Region inspection reports shows that reliability of the affected pumps was ensured by means of procedures and performance testing of the pumps as required by the bulletin. Based on the evaluation, in accordance with specific criteria, the bulletin is closed for 116 (98%) of the 118 facilities to which it was issued for action and which were not shut down indefinitely or permanently at the time of issuance of this report. A follow-up item is proposed for the two facilities with open bulletin status. Based on favorable results, a conclusion is presented to indicate that the bulletin concerns have been resolved.

  4. Small Modular Reactors- Key to Future Nuclear Power Generation in the U.S.

    Energy.gov [DOE]

    Small Modular Reactors - Key to Future Nuclear Power Generation in the U.S. University of Chicago, Energy Policy Institute at Chicago

  5. Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo American Center in Japan

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON, D.C. – Energy Deputy Secretary Daniel Poneman spoke at the Tokyo American Center today about nuclear power after Fukushima.

  6. EISPC White Paper on “State Approaches to Retention of Nuclear Power Plants” Now Available

    Energy.gov [DOE]

    The Eastern Interconnection States’ Planning Collaborative (EISPC) has released a white paper on “State Approaches to Retention of Nuclear Power Plants” that examines operational, economic, and...

  7. Analysis of Nuclear Power Plant Operating Costs: A 1995 Update, An

    Reports and Publications

    1995-01-01

    This report provides an analysis of nuclear power plant operating costs. The Energy Information Administration published three reports on this subject during the period 1988-1995.

  8. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JULY 2013 News Updates

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    has not yet committed to building a new nuclear unit at North Anna. NRC has ... having only a 10% ownership stake in Nuclear Innovation North America LLC (NINA), ...

  9. Microsoft PowerPoint - Nuclear Material Import Export License...

    National Nuclear Security Administration (NNSA)

    Material ImportExport License - Uses & Reporting processes Gary Langlie - Nuclear Regulatory Commission Karen Antizzo - Link Technologies Overview What is a Nuclear Regulatory ...

  10. Microsoft PowerPoint - NRC Nuclear Export Controls Implementing...

    National Nuclear Security Administration (NNSA)

    Legal Basis * Atomic Energy Act of 1954, as amended * Nuclear Non-Proliferation Act of 1978 * Treaties, Conventions and Agreements including: - Nuclear Non-Proliferation Treaty - ...

  11. Energy Department Announces New Investments in Advanced Nuclear Power Reactors to Help Meet America’s Carbon Emission Reduction Goal

    Energy.gov [DOE]

    In support of the Administration’s goal to produce more carbon-free energy, today the U.S. Department of Energy (DOE) announced the selection of two companies, X-energy and Southern Company, to further develop advanced nuclear reactor designs. These awards, with a multi-year cost share of up to $80 million for both companies, will support work to address key technical challenges to the design, construction, and operation of next generation nuclear reactors.

  12. Nuclear Power 2010 Program Dominion Virginia Power Cooperative Project U.S. Department of Energy Cooperative Agreement DE-FC07-05ID14635 Construction and Operating License Demonstration Project Final Report

    SciTech Connect

    Eugene S. Grecheck David P. Batalo

    2010-11-30

    This report serves to summarize the major activities completed as part of Virginia Electric and Power Company's North Anna construction and operating license demonstration project with DOE. Project successes, lessons learned, and suggestions for improvement are discussed. Objectives of the North Anna COL project included preparation and submittal of a COLA to the USNRC incorporating ESBWR technology for a third unit a the North Anna Power Station site, support for the NRC review process and mandatory hearing, obtaining NRC approval of the COLA and issuance of a COL, and development of a business case necessary to support a decision on building a new nuclear power plant at the North Anna site.

  13. Spallator and APEX nuclear fuel cycle: a new option for nuclear power

    SciTech Connect

    Steinberg, M.

    1982-01-01

    A new nuclear fuel cycle is described which provides a long term supply of nuclear fuel for the thermal LWR nuclear power reactors and eliminates the need for long-term storage of radioactive waste. Fissile fuel is produced by the Spallator which depends on the production of spallation neutrons by the interaction of high-energy (1 to 2 GeV) protons on a heavy-metal target. The neutrons are absorbed in a surrounding natural-uranium or thorium blanket in which fissile Pu-239 to U-233 is produced. Advances in linear accelerator technology makes it possible to design and construct a high-beam-current continuous-wave proton linac for production purposes. The target is similar to a sub-critical reactor and produces heat which is converted to electricity for supplying the linac. The Spallator is a self-sufficient fuel producer, which can compete with the fast breeder. The APEX fuel cycle depends on recycling the transuranics and long-lived fission products while extracting the stable and short-lived fission products when reprocessing the fuel. Transmutation and decay within the fuel cycle and decay of short-lived fission products external to the fuel cycle eliminates the need for long-term geological age shortage of fission-product waste.

  14. The Spallator and APEX nuclear fuel cycle: a new option for nuclear power

    SciTech Connect

    Steinberg, M.

    1983-02-01

    A new nuclear fuel cycle is described which provides a long term supply of nuclear fuel for the thermal LWR nuclear power reactors and eliminates the need for long-term storage of radioactive waste. Fissile fuel is produced by the Spallator which depends on the production of spallation neutrons by the interaction of high energy (1 to 2 GeV) protons on a heavy metal target. The neutrons are absorbed in a surrounding natural uranium or thorium blanket in which fissile Pu-239 or U-233 is produced. Advances in linear accelerator technology makes it possible to design and construct a high beam current continuous wave proton linac for production purposes. The target is similar to a sub-critical reactor and produces heat which is converted to electricity for supplying the linac. The Spallator is a selfsufficient fuel producer, which can compete with the fast breeder. The APEX fuel cycle depends on recycling the transuranics and long-lived fission products while extracting the stable and short-lived fission products when reprocessing the fuel. Transmutation and decay within the fuel cycle and decay of the short-lived fission products external to the fuel cycle eliminates the need for long-term geological age storage of fission product waste.

  15. Innovative applications of technology for nuclear power plant productivity improvements

    SciTech Connect

    Naser, J. A.

    2012-07-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  16. Nuclear Power Generation and Fuel Cycle Report 1996

    Reports and Publications

    1996-01-01

    This report provides information and forecasts important to the domestic and world nuclear and uranium industries.

  17. Nuclear economics 2000: Deterministic and probabilistic projections of nuclear and coal electric power generation costs for the year 2000

    SciTech Connect

    Williams, K.A.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1987-06-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base-load nuclear and coal-fired power plants with a startup date of January 2000. For the Midwest region a complete data set that specifies each parameter used to obtain the comparative results is supplied. When based on the reference set of input variables, the comparison of power generation costs is found to favor nuclear in most regions of the country. Nuclear power is most favored in the northeast and western regions where coal must be transported over long distances; however, coal-fired generation is most competitive in the north central region where large reserves of cheaply mineable coal exist. In several regions small changes in the reference variables could cause either option to be preferred. The reference data set reflects the better of recent electric utility construction cost experience (BE) for nuclear plants. This study assumes as its reference case a stable regulatory environment and improved planning and construction practices, resulting in nuclear plants typically built at the present BE costs. Today's BE nuclear-plant capital investment cost model is then being used as a surrogate for projected costs for the next generation of light-water reactor plants. An alternative analysis based on today's median experience (ME) nuclear-plant construction cost experience is also included. In this case, coal is favored in all ten regions, implying that typical nuclear capital investment costs must improve for nuclear to be competitive.

  18. Tucson Electric Power Company Sahuarita-Nogales Transmission Line Draft Environmental Impact Statement

    SciTech Connect

    N /A

    2003-08-27

    Tucson Electric Power Company (TEP) has applied to the U.S. Department of Energy (DOE) for a Presidential Permit to construct and operate a double-circuit, 345,000-volt (345-kV) electric transmission line across the United States border with Mexico. Under Executive Order (EO) 10485 of September 3, 1953, as amended by EO 12038 of February 3, 1978, a Presidential Permit is required to construct, connect, operate, or maintain facilities at the U.S. international border for the transmission of electric energy between the United States and a foreign country. DOE has determined that the issuance of a Presidential Permit to TEP for the proposed project would constitute a major Federal action that may have a significant impact on the environment within the meaning of the ''National Environmental Policy Act of 1969'' (NEPA) 42 United States Code (U.S.C.) {section}4321 et seq. For this reason, DOE has prepared this Draft Environmental Impact Statement (EIS) to evaluate potential environmental impacts from the proposed Federal action (granting a Presidential Permit for the proposed transmission facilities) and reasonable alternatives, including the No Action Alternative. This EIS was prepared in accordance with Section 102(2)(c) of NEPA, Council of Environmental Quality (CEQ) regulations (40 Code of Federal Regulations [CFR] 1500-1508), and DOE NEPA Implementing Procedures (10 CFR 1021). DOE is the lead Federal Agency, as defined by 40 CFR 1501.5. The U.S. Department of Agriculture Forest Service (USFS), the Bureau of Land Management (BLM) of the U.S. Department of the Interior, and the U.S. Section of the International Boundary and Water Commission, U.S. and Mexico (USIBWC), are cooperating agencies. Each of these organizations will use the EIS for its own NEPA purposes, as described in the Federal Agencies' Purpose and Need and Authorizing Actions section of this summary. The 345-kV double-circuit transmission line would consist of twelve transmission line wires, or

  19. Closed Brayton cycle power conversion systems for nuclear reactors :

    SciTech Connect

    Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.; Sanchez, Travis

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  20. Aging Management Guideline for commercial nuclear power plants: Power and distribution transformers

    SciTech Connect

    Toman, G.; Gazdzinski, R.

    1994-05-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in power and distribution transformers important to license renewal in commercial nuclear power plants. The intent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  1. Final Report of the Task Force on the Future of Nuclear Power | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy the Future of Nuclear Power Final Report of the Task Force on the Future of Nuclear Power This final report presents the findings and recommendations of the Secretary of Energy Advisory Board (SEAB) Task Force on The Future of Nuclear Power. The Task Force was charged with describing the landscape that must be crossed to go from today's situation of reliance largely on light water reactors to a situation in the period 2030 to 2050 where one or many nuclear technologies have reached

  2. Safety of nuclear power reactors in the former Eastern European Countries

    SciTech Connect

    Chakraborty, S.

    1995-10-01

    This article discusses the safety of nuclear power plants in the former Eastern European countries (including the former Soviet Union). The current international design, fabrication, construction, operation, safety, regulatory standards and practices, and ways to resolve plant problems are addressed in light of experience with the Western nuclear power development programs.

  3. 1,"Chalk Point LLC","Petroleum","NRG Chalk Point LLC",2248 2,"Calvert Cliffs Nuclear Power Plant","Nuclear","Calvert Cliffs Nuclear PP LLC",1707.8

    Energy Information Administration (EIA) (indexed site)

    Maryland" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Chalk Point LLC","Petroleum","NRG Chalk Point LLC",2248 2,"Calvert Cliffs Nuclear Power Plant","Nuclear","Calvert Cliffs Nuclear PP LLC",1707.8 3,"Morgantown Generating Plant","Coal","GenOn Mid-Atlantic LLC",1423 4,"Brandon Shores","Coal","Raven

  4. Organizational Culture for Safety, Security, and Safeguards in New Nuclear Power Countries

    SciTech Connect

    Kovacic, Donald N

    2015-01-01

    This chapter will contain the following sections: Existing international norms and standards for developing the infrastructure to support new nuclear power programs The role of organizational culture and how it supports the safe, secure, and peaceful application of nuclear power Identifying effective and efficient strategies for implementing safety, security and safeguards in nuclear operations Challenges identified in the implementation of safety, security and safeguards Potential areas for future collaboration between countries in order to support nonproliferation culture

  5. Integration of Biorefineries and Nuclear Cogeneration Power Plants - A Preliminary Analysis

    SciTech Connect

    Greene, Sherrell R; Flanagan, George F; Borole, Abhijeet P

    2009-03-01

    Biomass-based ethanol and nuclear power are two viable elements in the path to U.S. energy independence. Numerous studies suggest nuclear power could provide a practical carbon-free heat source alternative for the production of biomass-based ethanol. In order for this coupling to occur, it is necessary to examine the interfacial requirements of both nuclear power plants and bioethanol refineries. This report describes the proposed characteristics of a small cogeneration nuclear power plant, a biochemical process-based cellulosic bioethanol refinery, and a thermochemical process-based cellulosic biorefinery. Systemic and interfacial issues relating to the co-location of either type of bioethanol facility with a nuclear power plant are presented and discussed. Results indicate future co-location efforts will require a new optimized energy strategy focused on overcoming the interfacial challenges identified in the report.

  6. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY APRIL 2013 News Updates

    Office of Environmental Management (EM)

    been docketed, ten of which (totaling 16 nuclear reactors) remain under active NRC review. ... Safety 4 Environ. 5 Issued Southern Nuclear Vogtle GA AP1000 2 033108 053008 02...

  7. Multiple-Reheat Brayton Cycles for Nuclear Power Conversion with...

    Office of Scientific and Technical Information (OSTI)

    Volume: 144; Journal Issue: 3; Other Information: Copyright (c) 2006 American Nuclear Society (ANS), United States, ... CAPITALIZED COST; CHEMICAL REACTIONS; ...

  8. Expert systems applied to two problems in nuclear power plants

    SciTech Connect

    Kim, K.Y.

    1988-01-01

    This dissertation describes two prototype expert systems applied to two problems in nuclear power plants. One problem is spare parts inventory control, and the other one is radionuclide release from containment during severe accident. The expert system for spare parts inventory control can handle spare parts requirements not only in corrective, preventive, or predictive maintenance, but also when failure rates of components or parts are updated by new data. Costs and benefits of spare parts inventory acquisition are evaluated with qualitative attributes such as spare part availability to provide the inventory manager with an improved basis for decision making. The expert system is implemented with Intelligence/Compiler on an IBM-AT. The other expert system for radionuclide release from containment can estimate magnitude, type, location, and time of release of radioactive materials from containment during a severe accident nearly on line, based on the actual measured physical parameters such as temperature and pressure inside the containment. The expert system has a function to check the validation of sensor data. The expert system is implemented with KEE on a Symbolics LISP machine.

  9. Assessment of ceramic composites for multimegawatt space nuclear power systems

    SciTech Connect

    Besmann, T.M.

    1986-12-01

    A calculational thermodynamic equilibrium analysis of the compatibility of ceramic-ceramic composites and a nonequilibrium assessment based on the literature of their use in proposed multimegawatt space nuclear power systems was performed. The five candidate composites included Al/sub 2/O/sub 3/-reinforced Al/sub 2/O/sub 3/, SiC-whisker-toughened Al/sub 2/O/sub 3/, SiC-whisker-toughened Si/sub 3/N/sub 4/, SiC-fiber-reinforced ZrC, and carbon-fiber-reinforced ZrC. The reactor concepts included Brayton cycle (continuous and burst mode) and Rankine cycle. It was determined that Al/sub 2/O/sub 3/-reinforced Al/sub 2/O/sub 3/ and carbon-fiber-reinforced ZrC are compatible in the Brayton-cycle continuous-mode system and that Al/sub 2/O/sub 3/-reinforced Al/sub 2/O/sub 3/, SiC-fiber-reinforced ZrC, and carbon-fiber-reinforced ZrC are compatible in the Rankine-cycle system. None of the candidate ceramic composite systems was likely to be sufficiently stable under Brayton-cycle burst-mode conditions.

  10. Diversity Strategies for Nuclear Power Plant Instrumentation and Control Systems

    SciTech Connect

    Wood, Richard Thomas; Belles, Randy; Cetiner, Mustafa Sacit; Holcomb, David Eugene; Korsah, Kofi; Loebl, Andy; Mays, Gary T; Muhlheim, Michael David; Mullens, James Allen; Poore III, Willis P; Qualls, A L; Wilson, Thomas L; Waterman, Michael E.

    2010-02-01

    This report presents the technical basis for establishing acceptable mitigating strategies that resolve diversity and defense-in-depth (D3) assessment findings and conform to U.S. Nuclear Regulatory Commission (NRC) requirements. The research approach employed to establish appropriate diversity strategies involves investigation of available documentation on D3 methods and experience from nuclear power and nonnuclear industries, capture of expert knowledge and lessons learned, determination of best practices, and assessment of the nature of common-cause failures (CCFs) and compensating diversity attributes. The research described in this report does not provide guidance on how to determine the need for diversity in a safety system to mitigate the consequences of potential CCFs. Rather, the scope of this report provides guidance to the staff and nuclear industry after a licensee or applicant has performed a D3 assessment per NUREG/CR-6303 and determined that diversity in a safety system is needed for mitigating the consequences of potential CCFs identified in the evaluation of the safety system design features. Succinctly, the purpose of the research described in this report was to answer the question, 'If diversity is required in a safety system to mitigate the consequences of potential CCFs, how much diversity is enough?' The principal results of this research effort have identified and developed diversity strategies, which consist of combinations of diversity attributes and their associated criteria. Technology, which corresponds to design diversity, is chosen as the principal system characteristic by which diversity criteria are grouped to form strategies. The rationale for this classification framework involves consideration of the profound impact that technology-focused design diversity provides. Consequently, the diversity usage classification scheme involves three families of strategies: (1) different technologies, (2) different approaches within the same

  11. Preliminary development of an integrated approach to the evaluation of pressurized thermal shock as applied to the Oconee Unit 1 Nuclear Power Plant

    SciTech Connect

    Burns, T J; Cheverton, R D; Flanagan, G F; White, J D; Ball, D G; Lamonica, L B; Olson, R

    1986-05-01

    An evaluation of the risk to the Oconee-1 nuclear plant due to pressurized thermal shock (PTS) has been Completed by Oak Ridge National Laboratory (ORNL). This evaluaion was part of a Nuclear Regulatory Commission (NRC) program designed to study the PTS risk to three nuclear plants: Oconee-1, a Babcock and Wilco reactor plant owned and operated by Duke Power Company; Calvert Cliffs-1, a Combustion Engineering reactor plant owned and operated by Baltimore Gas and Electric company; and H.B. Robinson-2, a Westinghouse reactor plant owned and operated by Carolina Power and Light Company. Studies of Calvert Cliffs-1 and H.B. Robinson-2 are still underway. The specific objectives of the Oconee-1 study were to: (1) provide a best estimate of the probability of a through-the-wall crack (TWC) occurring in the reactor pressure vessel as a result of PTS; (2) determine dominant accident sequences, plant features, operator and control actions and uncertainty in the PTS risk; and (3) evaluate effectiveness of potential corrective measures.

  12. The network architecture and site test of DCIS in Lungmen nuclear power station

    SciTech Connect

    Lee, C. K.

    2006-07-01

    The Lungmen Nuclear Power Station (LMNPS) is located in North-Eastern Seashore of Taiwan. LMNPP has two units. Each unit generates 1350 Megawatts. It is the first ABWR Plant in Taiwan and is under-construction now. Due to contractual arrangement, there are seven large I and C suppliers/designers, which are GE NUMAC, DRS, Invensys, GEIS, Hitachi, MHI, and Stone and Webster company. The Distributed Control and Information System (DCIS) in Lungmen are fully integrated with the state-of-the-art computer and network technology. General Electric is the leading designer for integration of DCIS. This paper presents Network Architecture and the Site Test of DCIS. The network architectures are follows. GE NUMAC System adopts the point to point architecture, DRS System adopts Ring type architecture with SCRAMNET protocol, Inevnsys system adopts IGiga Byte Backbone mesh network with Rapid Spanning Tree Protocol, GEIS adopts Ethernet network with EGD protocol, Hitachi adopts ring type network with proprietary protocol. MHI adopt Ethernet network with UDP. The data-links are used for connection between different suppliers. The DCIS architecture supports the plant automation, the alarm prioritization and alarm suppression, and uniform MMI screen for entire plant. The Test Program regarding the integration of different network architectures and Initial DCIS architecture Setup for 161KV Energization will be discussed. Test tool for improving site test schedule, and lessons learned from FAT will be discussed too. And conclusions are at the end of this paper. (authors)

  13. Site environmental report for calendar year 2002. DOE operations at the Boeing Company, Rocketdyne Propulsion and Power

    SciTech Connect

    2003-09-30

    This Annual Site Environmental Report (ASER) for 2002 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing' s Santa Susana Field Laboratory (SSFL)). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations at ETEC included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities at ETEC involved the operation of large-scale liquid metal facilities that were used for testing liquid metal fast breeder components. All nuclear work was terminated in 1988, and, subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2002 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property ( land, structures, waste), and recycling. All radioactive w astes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes are released into the environment, and no structural debris from buildings w as transferred to municipal landfills or recycled in 2002.

  14. A survey of fatigue monitoring in the nuclear power industry

    SciTech Connect

    Ware, A.G.

    1991-12-31

    The original design of nuclear power plants addressed fatigue concerns by including calculations of projected fatigue usage for specific components; the calculations were based on estimates of the number and severity of expected transients over the 40-year design life of the plants. In some cases, the transients occurring in the plants are not as severe as was anticipated in the original design analyses, while in other cases events have occurred that were not anticipated in the design basis documents. Field failures caused by fatigue have identified some of those cases. In response, several organizations in the United States and overseas have developed fatigue monitoring programs to more accurately estimate the fatigue usage. One basic approach consists of reconstructing the fatigue usage to date based on the transients recorded in the operating history instead of those projected in the design documents. Another approach includes monitoring the plant instrumentation to determine actual values for parameters such as temperature and pressure and using the measured values in the fatigue usage calculations instead of the values projected in the design documents. The use of existing plant instrumentation to measure temperature, pressure, flow rate, etc., along with the incorporation of conservative assumptions, had generally proven adequate for estimating fatigue usage; however, in some cases additional instrumentation installed for local monitoring can provide a more accurate estimate, especially where thermal stratification is known to occur. Fatigue monitoring can aid in identifying fatigue concerns not anticipated in the original design and for reducing the excessive conservatism in some of the original design calculations so that the fatigue lives of these components can be justified as they age. Fatigue monitoring can also assist efforts to reduce ongoing fatigue usage through design modifications and operating procedure changes.

  15. A survey of fatigue monitoring in the nuclear power industry

    SciTech Connect

    Ware, A.G.

    1991-01-01

    The original design of nuclear power plants addressed fatigue concerns by including calculations of projected fatigue usage for specific components; the calculations were based on estimates of the number and severity of expected transients over the 40-year design life of the plants. In some cases, the transients occurring in the plants are not as severe as was anticipated in the original design analyses, while in other cases events have occurred that were not anticipated in the design basis documents. Field failures caused by fatigue have identified some of those cases. In response, several organizations in the United States and overseas have developed fatigue monitoring programs to more accurately estimate the fatigue usage. One basic approach consists of reconstructing the fatigue usage to date based on the transients recorded in the operating history instead of those projected in the design documents. Another approach includes monitoring the plant instrumentation to determine actual values for parameters such as temperature and pressure and using the measured values in the fatigue usage calculations instead of the values projected in the design documents. The use of existing plant instrumentation to measure temperature, pressure, flow rate, etc., along with the incorporation of conservative assumptions, had generally proven adequate for estimating fatigue usage; however, in some cases additional instrumentation installed for local monitoring can provide a more accurate estimate, especially where thermal stratification is known to occur. Fatigue monitoring can aid in identifying fatigue concerns not anticipated in the original design and for reducing the excessive conservatism in some of the original design calculations so that the fatigue lives of these components can be justified as they age. Fatigue monitoring can also assist efforts to reduce ongoing fatigue usage through design modifications and operating procedure changes.

  16. NREL: Energy Analysis - Nuclear Power Results - Life Cycle Assessment...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... and Climate Change Mitigation: Renewable Energy in the Context of Sustainable Development Life Cycle Greenhouse Gas Emissions from Nuclear Electricity Generation: Systematic Review ...

  17. Nuclear Power Generation and Fuel Cycle Report 1997

    Reports and Publications

    1997-01-01

    Final issue. This report provides information and forecasts important to the domestic and world nuclear and uranium industries. 1997 represents the most recent publication year.

  18. Microsoft PowerPoint - Australian Nuclear Cooperation Agreements...

    National Nuclear Security Administration (NNSA)

    Australian Nuclear Cooperation Agreements Dr Vanessa Robertson, Australian Safeguards and Non-Proliferation Office The Australian Safeguards and Non-Proliferation Office 2 Director ...

  19. Advanced Energy Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Company Jump to: navigation, search Name: Advanced Energy Company Place: Japan Product: Established March 19, 2010, Advanced Energy Company (AEC) aims to install EV power stations...

  20. Statement from Deputy Secretary of Energy Elizabeth Sherwood-Randall after Visiting the Fukushima Dai-ichi Nuclear Power Station

    Office of Energy Efficiency and Renewable Energy (EERE)

    Deputy Secretary Elizabeth Sherwood-Randall's statement after visiting the Fukushima Dai-ichi Nuclear Power Station in Japan

  1. Prognostics Health Management and Life Beyond 60 for Nuclear Power Plants

    SciTech Connect

    Ramuhalli, Pradeep; Coble, Jamie B.; Meyer, Ryan M.; Bond, Leonard J.

    2013-12-01

    There is growing interest in longer-term operation of the current US nuclear power plant fleet. This paper will present an overview of prognostic health management (PHM) technologies that could play a role in the safe and effective operation of nuclear power plants during extended life. A case study in prognostics for materials degradation assessment, using laboratory-scale measurements, is briefly discussed, and technical gaps that need to be addressed prior to PHM system deployment for nuclear power life extension are presented.

  2. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume VII. International perspectives

    SciTech Connect

    Not Available

    1980-06-01

    The purpose of this volume is to assess the proliferation vulnerabilities of the present deployment of civilian nuclear-power systems within the current nonproliferation regime and, in light of their prospective deployment, to consider technical and institutional measures and alternatives which may contribute to an improved regime in which nuclear power could play a significant part. An assessment of these measures must include consideration of their nonproliferation effectiveness as well as their bearing upon energy security, and their operational, economic, and political implications. The nature of these considerations can provide some measure of their likely acceptability to various nations.

  3. Category:Green Button Utility Companies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Generating Company AEP Texas Central Company AEP Texas North Company Ameren Energy Marketing Ameren Illinois Company Appalachian Power Co Atlantic City Electric Co Austin Energy...

  4. New Technologies for Repairing Aging Cables in Nuclear Power Plants

    SciTech Connect

    Simmons, Kevin L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westman, Matthew P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-11

    The goal of this project is to demonstrate a proof-of-concept for a technique to repair aging cables that have been subjected to degradation associated with long-term thermal and radiation exposure in nuclear power plants. The physical degradation of the aging cables manifests itself primarily as cracking and increased brittleness of the polymeric electrical insulation. Therefore, the proposed cable-repair concept comprises development of techniques to impart a softening agent within the deteriorated polymer insulation jacket so as to regain the ability of the insulation to stretch without failing and possibly to heal existing cracks in the insulation. Our approach is to use commercially available ethylene-propylene rubber (EPR) as the relevant test material, demonstrate the adsorption of chemical treatments in the EPR and quantify changes in resulting physical and mechanical properties. EPR cable samples have been thermally treated in air to produce specimens corresponding to the full range of cable age-performance points from new (>350% elongation at break) to end-of-life (<50% elongation at break). The current focus is on two chemical treatments selected as candidates for restoring age-related cable elasticity loss: a rubber plasticizer and a reactive silane molecule. EPR specimens of 200, 150, 100, and 50% elongation at break have been soaked in the candidate chemical treatments and the kinetics of chemical uptake, measured by change in mass of the samples, has been determined. Mechanical properties as a function of aging and chemical treatment have been measured including ultimate tensile strength, tensile modulus at 50% strain, elongation at break, and storage modulus. Dimensional changes with treatment and changes in glass transition temperature were also investigated. These ongoing experiments are expected to provide insight into the physical-chemical nature of the effect of thermal degradation on EPR rejuvenation limits and to advance novel methods for

  5. Sierra Pacific Power Company Alturas Transmission Line Project. Final environmental impact report/environmental impact statement, Volume I

    SciTech Connect

    1995-11-01

    This Environmental Impact Report/Environmental Impact Statement (EIR/S) describes the environmental setting and consequences of the construction and operation of the proposed Alturas Transmission Line Project. Sierra Pacific Power Company (SPPCo) has proposed this electric power transmission line to improve the existing operational capacity and reliability of its power transmission system and provide for anticipated growth in demand for electric power. This document was prepared by the California Public Utilities Commission (CPUC) and the U.S. Department of the Interior, Bureau of Land Management (BLM), pursuant to the California Environmental Quality Act (CEQA) and the National Environmental Policy Act (NEPA), respectively. The purpose of this joint EIR/S is to report the results of the CPUC`s and BLM`s independent assessment of the potential environmental impacts that would result from the construction, operation, and maintenance of the proposed Alturas Transmission Line Project. The impact analysis is accompanied by the identification of feasible mitigation measures which, if incorporated into the project, would avoid or minimize impacts. This EIR/S also assesses alternatives to the Proposed Project and identifies those with the potential to eliminate or minimize impacts. This document considers comments made by agencies and the general public during the public scoping and Draft EIR/S comment periods.

  6. Tornado vs. Hurricane Which is More Critical for Design of U.S. Nuclear Power Plants?

    Office of Energy Efficiency and Renewable Energy (EERE)

    Tornado vs. Hurricane Which is More Critical for Design of U.S. Nuclear Power Plants? Javad Moslemian Sargent & Lundy, LLC U. S. Department of Energy Natural Phenomena Hazards Meeting October 21-22, 2014

  7. Probabilistic methods in seismic risk assessment for nuclear power plants: proceedings

    SciTech Connect

    Not Available

    1983-01-01

    The state-of-the-art in seismic risk analysis applied to the design and siting of nuclear power plants was addressed in this meeting. Presentations were entered individually into the date base. (ACR)

  8. Department of Energy to Co-Sponsor Workshop on Nuclear Power...

    Energy.gov [DOE] (indexed site)

    co-sponsor a "Second Workshop on U.S. Nuclear Power Plant Life Extension Research and Development" planned for February 22-24, 2011, in the Washington, D.C., metropolitan area. ...

  9. "Is There a Future for Nuclear Power After Fukushima?", Dr. Alexander...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    January 21, 2012, 9:30am Science On Saturday MBG Auditorium "Is There a Future for Nuclear Power After Fukushima?", Dr. Alexander Glaser, Woodrow Wilson School of Public and ...

  10. Prospects for Nuclear Power(Davis 2012) | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Prospects for Nuclear Power(Davis 2012) Home > Groups > Energy Systems Integration Qinsun's picture Submitted by Qinsun(35) Member 15 November, 2012 - 13:36 This paper analyzed the...

  11. An artificial neutral network fault-diagnostic adviser for a nuclear power plant with error prediction

    SciTech Connect

    Kim, Keehoon

    1992-12-31

    This thesis is part of an ongoing project at Iowa State University to develop ANN bases fault diagnostic systems to detect and classify operational transients at nuclear power plants.

  12. An artificial neutral network fault-diagnostic adviser for a nuclear power plant with error prediction

    SciTech Connect

    Kim, Keehoon.

    1992-01-01

    This thesis is part of an ongoing project at Iowa State University to develop ANN bases fault diagnostic systems to detect and classify operational transients at nuclear power plants.

  13. Coupling Ocean Thermal Energy Conversion technology (OTEC) with nuclear power plants

    SciTech Connect

    Goldstein, M.K.; Rezachek, D.; Chen, C.S.

    1981-01-01

    The prospects of utilizing an OTEC Related Bottoming Cycle to recover waste heat generated by a large nuclear (or fossil) power plant are examined. With such improvements, OTEC can become a major energy contributor. 12 refs.

  14. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  15. Yonggwang nuclear power plant units 3 and 4; Bridging the gap to the next generation

    SciTech Connect

    Heider, R.C.; Daley, T.J.; Green, K.J. )

    1991-01-01

    This paper reports on the use of nuclear energy since the oil embargo of 1973 has displaced the use of 4.3 billion barrels of imported oil, which helped conserve 1 billion tons of coal and 6.5 trillion cubic feet of natural gas for future generations, and helped protect the environment by reducing utility emissions of carbon dioxide by 20% a year. The current 112 operating nuclear energy plants generate more electricity than those of France, Japan, and the Soviet Union-nations that have made a national commitment to nuclear energy-combined. Yet it has been over 10 years since the last construction permit was issued for a nuclear power plant in the United States. Considering a projected shortfall in baseload electric generation capacity in the mid-1990s, new requirements for costly air pollution controls on coal plants, the concern over increased dependence on oil imports from the unstable Middle East region, and the increased concern over the possible long-term effects of greenhouse gas emissions, the Nuclear Power Oversight Committee (NPOC), the governing organization for the commercial nuclear energy industry, has developed a strategic plan with the goal of being able to order new nuclear power plants by the mid-1990s. The strategic plan, which contains 14 enabling conditions or building blocks, outlines an integrated effort to address the range of institutional and technical issues on which significant progress must be achieved to make nuclear power attractive in the United States for the 1990s.

  16. "Is There a Future for Nuclear Power After Fukushima?", Dr. Alexander

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Glaser, Woodrow Wilson School of Public and International Affairs and Department of Mechanical and Aerospace Engineering, Princeton University | Princeton Plasma Physics Lab January 21, 2012, 9:30am Science On Saturday MBG Auditorium "Is There a Future for Nuclear Power After Fukushima?", Dr. Alexander Glaser, Woodrow Wilson School of Public and International Affairs and Department of Mechanical and Aerospace Engineering, Princeton University Is There a Future for Nuclear Power

  17. Wisconsin Power and Light Company's wind energy research and demonstration program

    SciTech Connect

    DeWinkel, C.C.

    1982-03-01

    Wisconsin Power and Light's (WPL) Wind Energy Test Program, encompasses the purchase and installation of six windmills which are or will be installed on customers' premises. These windmills (2 Windworks, 2 United Technologies, 1 Jay Carter and 1 Jacobs) vary in size from 10 to 20 Kilowatts (kw) with rotor diameters from 7 to 10 meters.

  18. Tampa Electric Company, Polk Power Station Unit No. 1. Annual report, January--December 1992

    SciTech Connect

    1993-10-01

    As part of the Tampa Electric Polk Power Unit No. 1, a Texaco pressurized, oxygen-blown entrained-flow coal gasifier will convert approximately 2300 tons per day of coal (dry basis) into a medium-BTU fuel gas with a heat content of about 250 BTU/scf (LHV). Syngas produced in the gasifier flows through a high-temperature heat recovery unit which cools the gases prior to entering two parallel clean-up areas. A portion (up to 50%) of the hot syngas is cooled to 1000{degrees}F and passed through a moving bed of zinc titanate sorbent which removed sulfur containing components of the fuel gas. The project will be the first in the world to demonstrate this advanced metal oxide hot gas desulfurization technology at a commercial scale. The remaining portion of the syngas is cooled to 400{degrees}F for conventional acid gas removal. This portion of the plant is capable of processing between 50% and 100% of the dirty syngas. The cleaned low-BTU syngas is then routed to the combined cycle power generation system where it is mixed with air and burned in the gas turbine combustor. Heat is extracted from the expanded exhaust gases by a heat recovery steam generator to produce high pressure steam. This steam, along with the steam generated in the gasification process, drives a steam turbine to generate an additional 132MW of power. Internal process power consumption is approximately 62MW, and includes power for coal grinding, air separation, and feed pumps. Net output from the IGCC demonstration plant will be 260MW.

  19. Nuclear Power 2010 Program: Combined Construction and Operating...

    Energy.gov [DOE] (indexed site)

    Power 2010 (NP 2010) Construction and Operating LicenseDesign Certification (COLDC) Demonstration program together with the financial incentives provided by the Energy Policy Act...

  20. Nuclear power programs in developing countries of the world: Southeast Asia

    SciTech Connect

    1995-05-01

    This article reviews the present and future status of the nuclear industry in the developing nations of China, North Korea, Thailand, Indonesia, and the Philippines. Each of the countries has a booming export-driven economy, which is turn requires considerable new generating capacity. The nuclear option is being considered as a provider of much of this additional capacity. China is committed to an extensive nuclear power program, and Indonesia has an ambitious plan to have seven to twelve reactors in service by the year 2015. North Korea will receive two LWRs to replace its current non-power nuclear units. The nuclear option is still under discussion in the Philippines and in Thailand.