National Library of Energy BETA

Sample records for network jin kumasi

  1. Joint Implementation Network (JIN) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2.2 JIN Programs 3 References About Joint Implementation Network (JIN) was established in 1995 as knowledge centre for climate change policy issues in general and the concept of...

  2. Joint Implementation Network (JIN) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    knowledge centre for climate change policy issues in general and the concept of emissions trading in particular. During the first five years of its operation, JIN regularly...

  3. Deborah S. Jin

    Energy.gov [DOE]

    Ā Dr. Deborah S. Jin is a fellow of the National Institute of Standards and Technology (NIST) and an adjoint professor of physics at the University of Colorado Boulder. Dr. Jin is also a fellow...

  4. Institute of Development Studies Feed | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    International Institute for Sustainable Development (IISD) International Renewable Energy Agency (IRENA) Joint Implementation Network (JIN) Kumasi Institute of Technology and...

  5. International Energy Agency Feed | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    International Institute for Sustainable Development (IISD) International Renewable Energy Agency (IRENA) Joint Implementation Network (JIN) Kumasi Institute of Technology and...

  6. Centro de Energķas Renovables (CER) Feed | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    International Institute for Sustainable Development (IISD) International Renewable Energy Agency (IRENA) Joint Implementation Network (JIN) Kumasi Institute of Technology and...

  7. Gengbang Jin | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Gengbang Jin Assistant Chemist Telephone (630) 252-3658 E-mail gjin@anl.gov

  8. Jae Jin Kim | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Jae Jin Kim Postdoctoral Appointee Telephone (630) 252-4386 E-mail jaekim

  9. Jiangxi Jinli Permanent Magnet Technology Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jinli Permanent Magnet Technology Co Ltd Jump to: navigation, search Name: Jiangxi Jinli Permanent Magnet Technology Co Ltd Place: Ganzhou, Jiangxi Province, China Sector: Wind...

  10. Wuyishan Jinning Hydropower Development Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jinning Hydropower Development Co Ltd Jump to: navigation, search Name: Wuyishan Jinning Hydropower Development Co., Ltd. Place: Wuyishan, Fujian Province, China Zip: 354300...

  11. Xiao-Yong Jin | Argonne Leadership Computing Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Xiao-Yong Jin Postdoctoral Appointee - Lattice QCD Xiao-Yong Jin Argonne National Laboratory 9700 S. Cass Avenue Building 240 - Wkstn. 1C6 Argonne, IL 60439 630-252-0049 xjin

  12. Solar EnerTech PAIS Jin Yu Silicon Wuhai Municipal Gvrnt JV ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar EnerTech PAIS Jin Yu Silicon Wuhai Municipal Gvrnt JV Jump to: navigation, search Name: Solar EnerTech, PAIS, Jin Yu Silicon, & Wuhai Municipal Gvrnt JV Place: Inner Mongolia...

  13. The second-phase development of the China JinPing underground laboratory

    SciTech Connect

    Li, Jianmin; Ji, Xiangdong; Haxton, Wick; Wang, Joseph S.Y.

    2015-03-24

    During 2013-2015 an expansion of the China JinPing underground Laboratory (CJPL) will be undertaken along a main branch of a bypass tunnel in the JinPing tunnel complex. This second phase of CJPL will increase laboratory space to approximately 96,000 mĀ³, which can be compared to the existing CJPL-I volume of ~ 4,000 mĀ³. One design configuration has eight additional hall spaces, each over 60 m long and approximately 12 m in width, with overburdens of about 2.4 km of rock, oriented parallel to and away from the main water transport and auto traffic tunnels. There are additional possibilities for further expansions at a nearby second bypass tunnel and along the entrance and exit branches of both bypass tunnels, potentially leading to an expanded CJPL comparable in size to Gran Sasso. Concurrent with the excavation activities, planning is underway for dark matter and other rare-event detectors, as well as for geophysics/engineering and other coupled multi-disciplinary sensors. In the town meeting on 8 September, 2013 at Asilomar, CA, associated with the 13th International Conference on Topics in Astroparticle and Underground Physics (TAUP), presentations and panel discussions addressed plans for one-ton expansions of the current CJPL germanium detector array of the China Darkmatter EXperiment (CDEX) collaboration and of the duel-phase xenon detector of the Panda-X collaboration, as well as possible new detector initiatives for dark matter studies, low-energy solar neutrino detection, neutrinoless double beta searches, and geoneutrinos. JinPing was also discussed as a site for a low-energy nuclear astrophysics accelerator. Geophysics/engineering opportunities include acoustic and micro-seismic monitoring of rock bursts during and after excavation, coupled-process in situ measurements, local, regional, and global monitoring of seismically induced radon emission, and electromagnetic signals. Additional ideas and projects will likely be developed in the

  14. The second-phase development of the China JinPing underground laboratory

    DOE PAGES [OSTI]

    Li, Jianmin; Ji, Xiangdong; Haxton, Wick; Wang, Joseph S.Y.

    2015-03-24

    During 2013-2015 an expansion of the China JinPing underground Laboratory (CJPL) will be undertaken along a main branch of a bypass tunnel in the JinPing tunnel complex. This second phase of CJPL will increase laboratory space to approximately 96,000 mĀ³, which can be compared to the existing CJPL-I volume of ~ 4,000 mĀ³. One design configuration has eight additional hall spaces, each over 60 m long and approximately 12 m in width, with overburdens of about 2.4 km of rock, oriented parallel to and away from the main water transport and auto traffic tunnels. There are additional possibilities for furthermoreĀ Ā» expansions at a nearby second bypass tunnel and along the entrance and exit branches of both bypass tunnels, potentially leading to an expanded CJPL comparable in size to Gran Sasso. Concurrent with the excavation activities, planning is underway for dark matter and other rare-event detectors, as well as for geophysics/engineering and other coupled multi-disciplinary sensors. In the town meeting on 8 September, 2013 at Asilomar, CA, associated with the 13th International Conference on Topics in Astroparticle and Underground Physics (TAUP), presentations and panel discussions addressed plans for one-ton expansions of the current CJPL germanium detector array of the China Darkmatter EXperiment (CDEX) collaboration and of the duel-phase xenon detector of the Panda-X collaboration, as well as possible new detector initiatives for dark matter studies, low-energy solar neutrino detection, neutrinoless double beta searches, and geoneutrinos. JinPing was also discussed as a site for a low-energy nuclear astrophysics accelerator. Geophysics/engineering opportunities include acoustic and micro-seismic monitoring of rock bursts during and after excavation, coupled-process in situ measurements, local, regional, and global monitoring of seismically induced radon emission, and electromagnetic signals. Additional ideas and projects will likely be developed in the next few

  15. Browse by Discipline -- E-print Network Subject Pathways: Mathematics...

    Office of Scientific and Technical Information (OSTI)

    Jaillet, Patrick (Patrick Jaillet) - Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT) Jin, Wenlong (Wenlong Jin) - Department of Civil ...

  16. Network Maps

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Network Maps Engineering Services The Network Network Maps Network Traffic Volume Historical Network Maps Network Facts & Stats Connected Sites Peering Connections ESnet...

  17. Network Activity

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Statistics Network Activity Network Activity PDSF Network Uplinks to NERSC (dual 10 Gbps) NERSC Uplink to ESnet Last edited: 2011-03-31 22:20:59...

  18. The Network

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Network Engineering Services The Network Network Maps Network Facts & Stats Connected Sites Peering Connections ESnet Site Availabiliy OSCARS Fasterdata IPv6 Network Network Performance Tools The ESnet Engineering Team Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net The Network A Nationwide Platform for Science Discovery The

  19. Kumasi Institute of Technology and Environment Feed | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    US Savannah River National Laboratory (SRNL) UNEP-Risoe Centre on Energy, Climate and Sustainable Development United Nations Environment Programme (UNEP) United Nations...

  20. Experimental Network Testbeds

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Galleries ESnet Awards and Honors Blog ESnet Live Home Network R&D Experimental Network Testbeds Network R&D Overview Experimental Network Testbeds 100G SDN...

  1. Jing Jin Electric JJE | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Beijing Municipality, China Sector: Vehicles Product: Develops and manufactures high-performance electric motors and electric drive components for hybrid electric vehicles (HEV),...

  2. Anhui Jinli Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Corporation Place: Anhui Province, China Zip: 230088 Product: A company engages in manufacturing pv product, electric equipment installation and building construction. References:...

  3. Developer Network

    Energy Science and Technology Software Center

    2012-08-21

    NREL's Developer Network, developer.nrel.gov, provides data that users can access to provide data to their own analyses, mobile and web applications. Developers can retrieve the data through a Web services API (application programming interface). The Developer Network handles overhead of serving up web services such as key management, authentication, analytics, reporting, documentation standards, and throttling in a common architecture, while allowing web services and APIs to be maintained and managed independently.

  4. Sentient networks

    SciTech Connect

    Chapline, G.

    1998-03-01

    The engineering problems of constructing autonomous networks of sensors and data processors that can provide alerts for dangerous situations provide a new context for debating the question whether man-made systems can emulate the cognitive capabilities of the mammalian brain. In this paper we consider the question whether a distributed network of sensors and data processors can form ``perceptions`` based on sensory data. Because sensory data can have exponentially many explanations, the use of a central data processor to analyze the outputs from a large ensemble of sensors will in general introduce unacceptable latencies for responding to dangerous situations. A better idea is to use a distributed ``Helmholtz machine`` architecture in which the sensors are connected to a network of simple processors, and the collective state of the network as a whole provides an explanation for the sensory data. In general communication within such a network will require time division multiplexing, which opens the door to the possibility that with certain refinements to the Helmholtz machine architecture it may be possible to build sensor networks that exhibit a form of artificial consciousness.

  5. Neural Networks

    SciTech Connect

    Smith, Patrick I.

    2003-09-23

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  6. Historical Network Maps

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Network Maps Network Traffic Volume Historical Network Maps Network Facts & Stats Connected Sites Peering Connections ESnet Site Availabiliy OSCARS Fasterdata IPv6 Network Network Performance Tools The ESnet Engineering Team Network R&D Software-Defined Networking (SDN) Experimental Network Testbeds Performance (perfSONAR) Software & Tools Development Data for Researchers Partnerships Publications Workshops Science Engagement Move your data Programs & Workshops Science

  7. Nothing But Networking for Residential Network Members | Department...

    Energy Saver

    Nothing But Networking for Residential Network Members Nothing But Networking for Residential Network Members Better Buildings Residential Network Peer Exchange Call: Nothing But ...

  8. HPSS Yearly Network Traffic

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    HPSS Yearly Network Traffic HPSS Yearly Network Traffic Yearly Summary of IO Traffic Between Storage and Network Destinations These bar charts show the total transfer traffic for...

  9. EIA - Natural Gas Pipeline Network - Network Configuration &...

    Energy Information Administration (EIA) (indexed site)

    Network Configuration & System Design About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Network Configuration and ...

  10. NetworkX

    Energy Science and Technology Software Center

    2004-05-17

    NetworkX (abbreviated NX in the software and documentation) is a package for studying network structure using graph theory.

  11. Groundwater Monitoring Network

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Groundwater Monitoring Network Groundwater Monitoring Network The network includes 92 natural sources, 102 regional aquifer wells, 41 intermediate-depth wells and springs, and 67 wells in alluvium in canyons. August 1, 2013 Map of LANL's groundwater monitoring network Map of LANL's groundwater monitoring network

  12. Interconnection networks

    DOEpatents

    Faber, V.; Moore, J.W.

    1988-06-20

    A network of interconnected processors is formed from a vertex symmetric graph selected from graphs GAMMA/sub d/(k) with degree d, diameter k, and (d + 1)exclamation/ (d /minus/ k + 1)exclamation processors for each d greater than or equal to k and GAMMA/sub d/(k, /minus/1) with degree d /minus/ 1, diameter k + 1, and (d + 1)exclamation/(d /minus/ k + 1)exclamation processors for each d greater than or equal to k greater than or equal to 4. Each processor has an address formed by one of the permutations from a predetermined sequence of letters chosen a selected number of letters at a time, and an extended address formed by appending to the address the remaining ones of the predetermined sequence of letters. A plurality of transmission channels is provided from each of the processors, where each processor has one less channel than the selected number of letters forming the sequence. Where a network GAMMA/sub d/(k, /minus/1) is provided, no processor has a channel connected to form an edge in a direction delta/sub 1/. Each of the channels has an identification number selected from the sequence of letters and connected from a first processor having a first extended address to a second processor having a second address formed from a second extended address defined by moving to the front of the first extended address the letter found in the position within the first extended address defined by the channel identification number. The second address is then formed by selecting the first elements of the second extended address corresponding to the selected number used to form the address permutations. 9 figs.

  13. Valley Entrepreneurs' Network (VEN) Monthly Network Meeting

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    VEN Monthly Network Meeting Valley Entrepreneurs' Network (VEN) Monthly Network Meeting WHEN: Mar 05, 2015 5:30 PM - 7:00 PM WHERE: Anthony's At the Delta North Paseo De Onate, EspaƱola, NM CATEGORY: Community INTERNAL: Calendar Login Event Description An evening of exciting enterprise networking with like-minded entrepreneurs. For more information, contact Alejandro, VEN Coordinator, at (505) 410-0959

  14. Damselfly Network Simulator

    Energy Science and Technology Software Center

    2014-04-01

    Damselfly is a model-based parallel network simulator. It can simulate communication patterns of High Performance Computing applications on different network topologies. It outputs steady-state network traffic for a communication pattern, which can help in studying network congestion and its impact on performance.

  15. HPSS Yearly Network Traffic

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    HPSS Yearly Network Traffic HPSS Yearly Network Traffic Yearly Summary of I/O Traffic Between Storage and Network Destinations These bar charts show the total transfer traffic for each year between storage and network destinations (systems within and outside of NERSC). Traffic for the current year is an estimate derived by scaling the known months traffic up to 12 months. The years shown are calendar years. The first graph shows the overall growth in network traffic to storage over the years.

  16. Network II Database

    Energy Science and Technology Software Center

    1994-11-07

    The Oak Ridge National Laboratory (ORNL) Rail and Barge Network II Database is a representation of the rail and barge system of the United States. The network is derived from the Federal Rail Administration (FRA) rail database.

  17. Class network routing

    DOEpatents

    Bhanot, Gyan; Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.

    2009-09-08

    Class network routing is implemented in a network such as a computer network comprising a plurality of parallel compute processors at nodes thereof. Class network routing allows a compute processor to broadcast a message to a range (one or more) of other compute processors in the computer network, such as processors in a column or a row. Normally this type of operation requires a separate message to be sent to each processor. With class network routing pursuant to the invention, a single message is sufficient, which generally reduces the total number of messages in the network as well as the latency to do a broadcast. Class network routing is also applied to dense matrix inversion algorithms on distributed memory parallel supercomputers with hardware class function (multicast) capability. This is achieved by exploiting the fact that the communication patterns of dense matrix inversion can be served by hardware class functions, which results in faster execution times.

  18. Virtualized Network Control (VNC)

    SciTech Connect

    Lehman, Thomas; Guok, Chin; Ghani, Nasir

    2013-01-31

    The focus of this project was on the development of a "Network Service Plane" as an abstraction model for the control and provisioning of multi-layer networks. The primary motivation for this work were the requirements of next generation networked applications which will need to access advanced networking as a first class resource at the same level as compute and storage resources. A new class of "Intelligent Network Services" were defined in order to facilitate the integration of advanced network services into application specific workflows. This new class of network services are intended to enable real-time interaction between the application co-scheduling algorithms and the network for the purposes of workflow planning, real-time resource availability identification, scheduling, and provisioning actions.

  19. Energy Efficient Digital Networks

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficient Digital Networks Rich Brown Lawrence Berkeley National Laboratory Presentation to DOE State Energy Advisory Board Meeting August 14, 2007 REBrown@LBL.gov - efficientnetworks.LBL.gov Overview * Background on Electronics and Digital Networks * LBNL Project: "Energy Efficient Digital Networks * Future Directions Electronics and Networks * Electronics are an end-use of electricity -"Devices whose primary function is Information (obtain, store, manage, present)" -Includes

  20. Science-Driven Network

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Science-Driven Network Requirements for ESnet Update to the 2002 Office of Science Networking Requirements Workshop Report February 21, 2006 1-1 Science-Driven Network Requirements for ESnet Update to the 2002 Office of Science Networking Requirements Workshop Report February 21, 2006 Contributors Paul Adams, LBNL (Advanced Light Source) Shane Canon, ORNL (NLCF) Steven Carter, ORNL (NLCF) Brent Draney, LBNL (NERSC) Martin Greenwald, MIT (Magnetic Fusion Energy) Jason Hodges, ORNL (Spallation

  1. BER Science Network Requirements

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Network Requirements Report of the Biological and Environmental Research Network Requirements Workshop Conducted July 26 and 27, 2007 BER Science Network Requirements Workshop Biological and Environmental Research Program Office, DOE Office of Science Energy Sciences Network Bethesda, MD - July 26 and 27, 2007 ESnet is funded by the US Dept. of Energy, Office of Science, Advanced Scientific Computing Research (ASCR) program. Dan Hitchcock is the ESnet Program Manager. ESnet is operated by

  2. BES Science Network Requirements

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Network Requirements Report of the Basic Energy Sciences Network Requirements Workshop Conducted June 4-5, 2007 BES Science Network Requirements Workshop Basic Energy Sciences Program Office, DOE Office of Science Energy Sciences Network Washington, DC - June 4 and 5, 2007 ESnet is funded by the US Dept. of Energy, Office of Science, Advanced Scientific Computing Research (ASCR) program. Dan Hitchcock is the ESnet Program Manager. ESnet is operated by Lawrence Berkeley National Laboratory, which

  3. Evangelos Chaniotakis, Network Engineer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Evangelos Chaniotakis About ESnet Our Mission The Network ESnet History Governance & Policies Career Opportunities ESnet Staff & Org Chart ESnet Leadership Administration Advanced Network Technologies Cybersecurity Infrastructure, Identity & Collaboration Network Engineering Network Planning Operational Enhancements Office of the CTO Science Engagement Tools Team Contact Us Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600

  4. Nothing But Networking for Residential Network Members | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Nothing But Networking for Residential Network Members Nothing But Networking for Residential Network Members Better Buildings Residential Network Peer Exchange Call: Nothing But Networking for Residential Network Members, Call Slides and Discussion Summary, March 12, 2015. Call Slides and Discussion Summary (733 KB) More Documents & Publications Better Buildings Residential Network Orientation Webinar Community Organizing and Outreach Outreach to Multifamily Landlords and Tenants

  5. Calorimetry Network Program

    Energy Science and Technology Software Center

    1998-01-30

    This is a Windows NT based program to run the SRTC designed calorimeters. The network version can communicate near real time data and final data values over the network. This version, due to network specifics, can function in a stand-alone operation also.

  6. Metallic nanowire networks

    DOEpatents

    Song, Yujiang; Shelnutt, John A.

    2012-11-06

    A metallic nanowire network synthesized using chemical reduction of a metal ion source by a reducing agent in the presence of a soft template comprising a tubular inverse micellar network. The network of interconnected polycrystalline nanowires has a very high surface-area/volume ratio, which makes it highly suitable for use in catalytic applications.

  7. Enerlogics Networks | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Networks Name: Enerlogics Networks Place: Pittsburgh, Pennsylvania Product: buidling automation control systems to utility software solutions to telecommunication systems...

  8. Internet protocol network mapper

    DOEpatents

    Youd, David W.; Colon III, Domingo R.; Seidl, Edward T.

    2016-02-23

    A network mapper for performing tasks on targets is provided. The mapper generates a map of a network that specifies the overall configuration of the network. The mapper inputs a procedure that defines how the network is to be mapped. The procedure specifies what, when, and in what order the tasks are to be performed. Each task specifies processing that is to be performed for a target to produce results. The procedure may also specify input parameters for a task. The mapper inputs initial targets that specify a range of network addresses to be mapped. The mapper maps the network by, for each target, executing the procedure to perform the tasks on the target. The results of the tasks represent the mapping of the network defined by the initial targets.

  9. Reconfigureable network node

    DOEpatents

    Vanderveen, Keith B.; Talbot, Edward B.; Mayer, Laurence E.

    2008-04-08

    Nodes in a network having a plurality of nodes establish communication links with other nodes using available transmission media, as the ability to establish such links becomes available and desirable. The nodes predict when existing communications links will fail, become overloaded or otherwise degrade network effectiveness and act to establish substitute or additional links before the node's ability to communicate with the other nodes on the network is adversely affected. A node stores network topology information and programmed link establishment rules and criteria. The node evaluates characteristics that predict existing links with other nodes becoming unavailable or degraded. The node then determines whether it can form a communication link with a substitute node, in order to maintain connectivity with the network. When changing its communication links, a node broadcasts that information to the network. Other nodes update their stored topology information and consider the updated topology when establishing new communications links for themselves.

  10. Seven Deadliest Network Attacks

    SciTech Connect

    Prowell, Stacy J; Borkin, Michael; Kraus, Robert

    2010-05-01

    Do you need to keep up with the latest hacks, attacks, and exploits effecting networks? Then you need "Seven Deadliest Network Attacks". This book pinpoints the most dangerous hacks and exploits specific to networks, laying out the anatomy of these attacks including how to make your system more secure. You will discover the best ways to defend against these vicious hacks with step-by-step instruction and learn techniques to make your computer and network impenetrable. Attacks detailed in this book include: Denial of Service; War Dialing; Penetration 'Testing'; Protocol Tunneling; Spanning Tree Attacks; Man-in-the-Middle; and, Password Replay. Knowledge is power, find out about the most dominant attacks currently waging war on computers and networks globally. Discover the best ways to defend against these vicious attacks; step-by-step instruction shows you how. Institute countermeasures, don't be caught defenseless again, learn techniques to make your computer and network impenetrable.

  11. National Highway Planning Network

    Energy Science and Technology Software Center

    1992-02-02

    NHPN, the National Highway Planning Network, is a database of major highways in the continental United States that is used for national-level analyses of highway transportation issues that require use of a network, such as studies of highway performance, network design, social and environmental impacts of transportation, vehicle routing and scheduling, and mapping. The network is based on a set of roadways digitized by the U. S. Geological Survey (USGS) from the 1980 National AtlasmoreĀ Ā» and has been enhanced with additional roads, attribute detail, and topological error corrections to produce a true analytic network. All data have been derived from or checked against information obtained from state and Federal governmental agencies. Two files comprise this network: one describing links and the other nodes. This release, NHPN1.0, contains 44,960 links and 28,512 nodes representing approximately 380,000 miles of roadway.Ā«Ā less

  12. Rooftop Unit Network Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    part load performance - equipment maintenance * RTUs cannot easily interact with the ... Diagnostics - RTU Network Platform * Smart Monitoring and Diagnostics - Cloud * Autonomous ...

  13. battery electrode percolating network

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    battery electrode percolating network - Sandia Energy Energy Search Icon Sandia Home ... Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel ...

  14. Energy Sciences Network (ESnet)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    making it the standard for research institutions today. Read More ESnet Releases Open Source Software from MyESnet Portal for Building Online Interactive Network Portals ESnet...

  15. Better Buildings Residential Network | Department of Energy

    Energy Saver

    Residential Buildings Better Buildings Residential Network Better Buildings Residential Network Better Buildings Residential Network Explore Latest Peer Exchange Call Summaries ...

  16. Solar Training Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Soft Costs Solar Training Network Solar Training Network Solar Training Network The Solar Training Network addresses a critical need for high-quality, local, accessible training ...

  17. Form:Networking Organization | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Networking Organization Jump to: navigation, search Add a Networking Organization Input your networking organization name below to add to the registry. If your networking...

  18. Solar Training Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Training Network Solar Training Network Solar Training Network The Solar Training Network addresses a critical need for high-quality, local, accessible training in solar ...

  19. National Laboratory]; Kim, Young Jin [Los Alamos National Laboratory...

    Office of Scientific and Technical Information (OSTI)

    EDM Abstract Not Provided Los Alamos National Laboratory (LANL) DOELANL United States 2014-11-05 English Conference Conference: Challenges of the worldwide experimental search...

  20. Woo-Jin An | Photosynthetic Antenna Research Center

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Department of Energy Wondering What All the "Innovation" Buzz is About This Week? Wondering What All the "Innovation" Buzz is About This Week? February 28, 2012 - 10:08am Addthis Steven Chu, Secretary of the United States Department of Energy, holds a model of the wave disk engine at the 2011 ARPA-E Summit's Technology Showcase. | Photo by Ken Shipp. Steven Chu, Secretary of the United States Department of Energy, holds a model of the wave disk engine at the 2011 ARPA-E

  1. Collective network routing

    DOEpatents

    Hoenicke, Dirk

    2014-12-02

    Disclosed are a unified method and apparatus to classify, route, and process injected data packets into a network so as to belong to a plurality of logical networks, each implementing a specific flow of data on top of a common physical network. The method allows to locally identify collectives of packets for local processing, such as the computation of the sum, difference, maximum, minimum, or other logical operations among the identified packet collective. Packets are injected together with a class-attribute and an opcode attribute. Network routers, employing the described method, use the packet attributes to look-up the class-specific route information from a local route table, which contains the local incoming and outgoing directions as part of the specifically implemented global data flow of the particular virtual network.

  2. Residential Network Members Unite to Form Green Bank Network...

    Energy.gov [DOE] (indexed site)

    The NY Green Bank logo. Residential Network members Connecticut Green Bank and NY Green Bank, a division of Residential Network member New York State Energy Research and ...

  3. BES Science Network Requirements

    SciTech Connect

    Biocca, Alan; Carlson, Rich; Chen, Jackie; Cotter, Steve; Tierney, Brian; Dattoria, Vince; Davenport, Jim; Gaenko, Alexander; Kent, Paul; Lamm, Monica; Miller, Stephen; Mundy, Chris; Ndousse, Thomas; Pederson, Mark; Perazzo, Amedeo; Popescu, Razvan; Rouson, Damian; Sekine, Yukiko; Sumpter, Bobby; Dart, Eli; Wang, Cai-Zhuang -Z; Whitelam, Steve; Zurawski, Jason

    2011-02-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivityfor the US Department of Energy Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of the Office ofScience programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years.

  4. Thermal network reduction

    SciTech Connect

    Balcomb, J.D.

    1983-01-01

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  5. Thermal network reduction

    SciTech Connect

    Balcomb, J.D.

    1983-06-01

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  6. Networking and Application Strategies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Networking and Application Strategies Networking and Application Strategies Los Alamos Lab recruits the best minds on the planet and offers job search information and assistance to our dual career spouses or partners. Contact Us dualcareers@lanl.gov You know more people than you think you do Having strong existing connections and building new ones is essential to finding a job-especially for a dual career family that is new to the Los Alamos area. Networking is a proven and effective way to

  7. Exploiting Network Parallelism

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research and Education (R&E) backbones, including the Energy Sciences Network and Internet... GridFTP extensions provide for, among other things, striping (i.e., the use of multiple ...

  8. NP Science Network Requirements

    SciTech Connect

    Dart, Eli; Rotman, Lauren; Tierney, Brian

    2011-08-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. To support SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In August 2011, ESnet and the Office of Nuclear Physics (NP), of the DOE SC, organized a workshop to characterize the networking requirements of the programs funded by NP. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.

  9. Energy Materials Network Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    30 th , 2016 2 MGI - Framework New Material Innovations for Clean Energy 2X Faster and 2X Cheaper Predictive Simulation Across Scales Synthesis & Characterization Rapid Screening End Use Performance Process Scalability Process Control Real-time Characterization Reliability Validation Data Management & Informatics Coordinated resource network with a suite of capabilities for advanced materials R&D In Support of the Materials Genome Initiative (MGI) 3 Network Requirements 1. WORLD

  10. Network Requirements Reviews

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reviews Science Engagement Move your data Programs & Workshops Science Requirements Reviews Network Requirements Reviews Documents and Background Materials FAQ for Case Study Authors BER Requirements Review 2015 ASCR Requirements Review 2015 Previous Reviews Requirements Review Reports Case Studies Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site

  11. Software-Defined Networking (SDN)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ENOS Experimental Network Testbeds Performance (perfSONAR) Software & Tools Development Data for Researchers Partnerships Publications Workshops Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies News & Publications ESnet News Publications and Presentations Galleries ESnet Awards and Honors Blog ESnet Live Home Ā» Network R&D Ā» Software-Defined Networking (SDN) Network R&D Software-Defined Networking (SDN) ENOS Experimental

  12. ESnet Network Operating System (ENOS)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ENOS Experimental Network Testbeds Performance (perfSONAR) Software & Tools Development Data for Researchers Partnerships Publications Workshops Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies News & Publications ESnet News Publications and Presentations Galleries ESnet Awards and Honors Blog ESnet Live Home Ā» Network R&D Ā» Software-Defined Networking (SDN) Ā» ENOS Network R&D Software-Defined Networking (SDN) ENOS

  13. High Density Sensor Network Development | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    High Density Sensor Network Development

  14. Network topology mapper

    DOEpatents

    Quist, Daniel A.; Gavrilov, Eugene M.; Fisk, Michael E.

    2008-01-15

    A method enables the topology of an acyclic fully propagated network to be discovered. A list of switches that comprise the network is formed and the MAC address cache for each one of the switches is determined. For each pair of switches, from the MAC address caches the remaining switches that see the pair of switches are located. For each pair of switches the remaining switches are determined that see one of the pair of switches on a first port and the second one of the pair of switches on a second port. A list of insiders is formed for every pair of switches. It is determined whether the insider for each pair of switches is a graph edge and adjacent ones of the graph edges are determined. A symmetric adjacency matrix is formed from the graph edges to represent the topology of the data link network.

  15. Self-Configuring Network Monitor

    Energy Science and Technology Software Center

    2004-05-01

    Self-Configuring Network Monitor (SCNM) is a passive monitoring that can collect packet headers from any point in a network path. SCNM uses special activation packets to automatically activate monitors deployed at the layer three ingress and egress routers of the wide-area network, and at critical points within the site networks. Monitoring output data is sent back to the application data source or destination host. No modifications are required to the application or network routing infrastructuremoreĀ Ā» in order to activate monitoring of traffic for an application. This ensures that the monitoring operation does not add a burden to the networks administrator.Ā«Ā less

  16. Network resilience; A measure of network fault tolerance

    SciTech Connect

    Najjar, W. . Dept. of Computer Science); Gaudoit, J.L. . Dept. of Electrical Engineering)

    1990-02-01

    The failure of a node in a multicomputer system will not only reduce the computational power but also alter the network's topology. Network fault tolerance is a measure of the number of failures the network can sustain before a disconnection occurs. It is expressed traditionally as the network's node degree. In this paper, the authors propose a probabilistic measure of network fault tolerance expressed as the probability f a disconnection. Qualitative evaluation of this measure is presented. As expected, the single-node disconnection probability is the dominant factor irrespective of the topology under consideration. They derive an analytical approximation of the disconnection probability and verify it with Monte Carlo simulation. Based on this model, the measures of network resilience and relative network resilience are proposed as probabilistic measures of network fault tolerance. These are then used to evaluate the effects of the disconnection probability on the reliability of the system.

  17. ASCR Science Network Requirements

    SciTech Connect

    Dart, Eli; Tierney, Brian

    2009-08-24

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In April 2009 ESnet and the Office of Advanced Scientific Computing Research (ASCR), of the DOE Office of Science, organized a workshop to characterize the networking requirements of the programs funded by ASCR. The ASCR facilities anticipate significant increases in wide area bandwidth utilization, driven largely by the increased capabilities of computational resources and the wide scope of collaboration that is a hallmark of modern science. Many scientists move data sets between facilities for analysis, and in some cases (for example the Earth System Grid and the Open Science Grid), data distribution is an essential component of the use of ASCR facilities by scientists. Due to the projected growth in wide area data transfer needs, the ASCR supercomputer centers all expect to deploy and use 100 Gigabit per second networking technology for wide area connectivity as soon as that deployment is financially feasible. In addition to the network connectivity that ESnet provides, the ESnet Collaboration Services (ECS) are critical to several science communities. ESnet identity and trust services, such as the DOEGrids certificate authority, are widely used both by the supercomputer centers and by collaborations such as Open Science Grid (OSG) and the Earth System Grid (ESG). Ease of use is a key determinant of the scientific utility of network-based services. Therefore, a key enabling aspect for scientists beneficial use of high

  18. Northwest Biodiesel Network | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biodiesel Network Jump to: navigation, search Logo: Northwest Biodiesel Network Name: Northwest Biodiesel Network Address: 6532 Phinney Ave N Place: Seattle, Washington Zip: 98103...

  19. Sustainable Agriculture Network | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Agriculture Network Jump to: navigation, search Logo: Sustainable Agriculture Network Name: Sustainable Agriculture Network Website: clima.sanstandards.org References: Sustainable...

  20. Clean Economy Network Foundation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean Economy Network Foundation Jump to: navigation, search Logo: Clean Economy Network Foundation Name: Clean Economy Network Foundation Address: 1301 Pennsylvania Ave NW, Suite...

  1. Energy Materials Network Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Materials Network Workshop Energy Materials Network Workshop The Energy Materials ... Energy Materials Network - Solar Presentation (3.5 MB) More Documents & Publications Call ...

  2. Vehicle Technologies Office: National Idling Reduction Network...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    National Idling Reduction Network News Archives Vehicle Technologies Office: National Idling Reduction Network News Archives The National Idling Reduction Network brings together ...

  3. Benefits of Better Buildings Residential Network Reporting |...

    Energy Saver

    Benefits of Better Buildings Residential Network Reporting Benefits of Better Buildings Residential Network Reporting Better Buildings Residential Network All-Member Peer Exchange ...

  4. Residential Network Members Unite to Form Green Bank Network

    Energy.gov [DOE]

    Residential Network members Connecticut Green Bank and NY Green Bank, a division of Residential Network member New York State Energy Research and Development Authority, have helped launch the Green Bank Network, a new international organization focused on collaborating to scale up private financing to meet the challenge of climate change.

  5. Microsystem process networks

    SciTech Connect

    Wegeng, Robert S.; TeGrotenhuis, Ward E.; Whyatt, Greg A.

    2006-10-24

    Various aspects and applications of microsystem process networks are described. The design of many types of microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having exergetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.

  6. BER Science Network Requirements

    SciTech Connect

    Alapaty, Kiran; Allen, Ben; Bell, Greg; Benton, David; Brettin, Tom; Canon, Shane; Dart, Eli; Cotter, Steve; Crivelli, Silvia; Carlson, Rich; Dattoria, Vince; Desai, Narayan; Egan, Richard; Tierney, Brian; Goodwin, Ken; Gregurick, Susan; Hicks, Susan; Johnston, Bill; de Jong, Bert; Kleese van Dam, Kerstin; Livny, Miron; Markowitz, Victor; McGraw, Jim; McCord, Raymond; Oehmen, Chris; Regimbal, Kevin; Shipman, Galen; Strand, Gary; Flick, Jeff; Turnbull, Susan; Williams, Dean; Zurawski, Jason

    2010-11-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In April 2010 ESnet and the Office of Biological and Environmental Research, of the DOE Office of Science, organized a workshop to characterize the networking requirements of the science programs funded by BER. The requirements identified at the workshop are summarized and described in more detail in the case studies and the Findings section. A number of common themes emerged from the case studies and workshop discussions. One is that BER science, like many other disciplines, is becoming more and more distributed and collaborative in nature. Another common theme is that data set sizes are exploding. Climate Science in particular is on the verge of needing to manage exabytes of data, and Genomics is on the verge of a huge paradigm shift in the number of sites with sequencers and the amount of sequencer data being generated.

  7. Microsystem process networks

    DOEpatents

    Wegeng, Robert S [Richland, WA; TeGrotenhuis, Ward E [Kennewick, WA; Whyatt, Greg A [West Richland, WA

    2010-01-26

    Various aspects and applications or microsystem process networks are described. The design of many types of microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having energetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.

  8. Microsystem process networks

    DOEpatents

    Wegeng, Robert S.; TeGrotenhuis, Ward E.; Whyatt, Greg A.

    2007-09-18

    Various aspects and applications of microsystem process networks are described. The design of many types of Microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having energetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.

  9. Transactional Network Platform: Applications

    SciTech Connect

    Katipamula, Srinivas; Lutes, Robert G.; Ngo, Hung; Underhill, Ronald M.

    2013-10-31

    In FY13, Pacific Northwest National Laboratory (PNNL) with funding from the Department of Energyā€™s (DOEā€™s) Building Technologies Office (BTO) designed, prototyped and tested a transactional network platform to support energy, operational and financial transactions between any networked entities (equipment, organizations, buildings, grid, etc.). Initially, in FY13, the concept demonstrated transactions between packaged rooftop air conditioners and heat pump units (RTUs) and the electric grid using applications or "agents" that reside on the platform, on the equipment, on a local building controller or in the Cloud. The transactional network project is a multi-lab effort with Oakridge National Laboratory (ORNL) and Lawrence Berkeley National Laboratory (LBNL) also contributing to the effort. PNNL coordinated the project and also was responsible for the development of the transactional network (TN) platform and three different applications associated with RTUs. This document describes two applications or "agents" in details, and also summarizes the platform. The TN platform details are described in another companion document.

  10. Software Defined Networking (SDN) Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Software Defined Networking (SDN) Project Energy sector-focused SDN flow controller to manage control system networks centrally and securely Background Traditional information technology (IT) approaches to network administration and packet delivery are not always appropriate for electric industry applications. The nondeterministic latency and configuration complexity make network design difficult for the deterministic, static control systems of the energy sector. In the electric industry, it is

  11. Multiple network interface core apparatus and method

    DOEpatents

    Underwood, Keith D.; Hemmert, Karl Scott

    2011-04-26

    A network interface controller and network interface control method comprising providing a single integrated circuit as a network interface controller and employing a plurality of network interface cores on the single integrated circuit.

  12. Better Buildings Network View | January 2015

    Energy.gov [DOE]

    The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

  13. Instructions for Using Virtual Private Network (VPN)

    Energy.gov [DOE]

    Virtual Private Network (VPN) provides access to network drives and is recommended for use only from a EITS provided laptop.

  14. Better Buildings Network View | November 2015

    Energy.gov [DOE]

    The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

  15. Renewable Energy Nongovernmental Organization Network (RENOVE...

    OpenEI (Open Energy Information) [EERE & EIA]

    Nongovernmental Organization Network (RENOVE) Jump to: navigation, search Name: Renewable Energy Nongovernmental Organization Network (RENOVE) Place: Brasilia, Brazil Phone Number:...

  16. Better Buildings Network View | October 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

  17. Better Buildings Network View | April 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

  18. Better Buildings Network View | March 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

  19. Better Buildings Network View | February 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

  20. Better Buildings Network View | December 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

  1. Better Buildings Network View | June 2014

    Energy.gov [DOE]

    The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

  2. Better Buildings Network View | May 2015

    Energy.gov [DOE]

    The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

  3. Better Buildings Network View | June 2015

    Energy.gov [DOE]

    The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

  4. Better Buildings Network View | October 2015

    Energy.gov [DOE]

    The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

  5. Better Buildings Network View | January 2016

    Energy.gov [DOE]

    The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

  6. Better Buildings Network View | February 2016

    Energy.gov [DOE]

    The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

  7. Better Buildings Network View | January 2014

    Energy.gov [DOE]

    The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

  8. Better Buildings Network View | May 2014

    Energy.gov [DOE]

    The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

  9. Modular sensor network node

    DOEpatents

    Davis, Jesse Harper Zehring; Stark, Jr., Douglas Paul; Kershaw, Christopher Patrick; Kyker, Ronald Dean

    2008-06-10

    A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.

  10. Bicriteria network design problems

    SciTech Connect

    Marathe, M.V.; Ravi, R.; Sundaram, R.; Ravi, S.S.; Rosenkrantz, D.J.; Hunt, H.B. III

    1997-11-20

    The authors study a general class of bicriteria network design problems. A generic problem in this class is as follows: Given an undirected graph and two minimization objectives (under different cost functions), with a budget specified on the first, find a subgraph from a given subgraph class that minimizes the second objective subject to the budget on the first. They consider three different criteria -- the total edge cost, the diameter and the maximum degree of the network. Here, they present the first polynomial-time approximation algorithms for a large class of bicriteria network design problems for the above mentioned criteria. The following general types of results are presented. First, they develop a framework for bicriteria problems and their approximations. Second, when the two criteria are the same they present a black box parametric search technique. This black box takes in as input an (approximation) algorithm for the criterion situation and generates an approximation algorithm for the bicriteria case with only a constant factor loss in the performance guarantee. Third, when the two criteria are the diameter and the total edge costs they use a cluster based approach to devise approximation algorithms. The solutions violate both the criteria by a logarithmic factor. Finally, for the class of treewidth-bounded graphs, they provide pseudopolynomial-time algorithms for a number of bicriteria problems using dynamic programming. The authors show how these pseudopolynomial-time algorithms can be converted to fully polynomial-time approximation schemes using a scaling technique.

  11. Insecurity of Wireless Networks

    SciTech Connect

    Sheldon, Frederick T; Weber, John Mark; Yoo, Seong-Moo; Pan, W. David

    2012-01-01

    Wireless is a powerful core technology enabling our global digital infrastructure. Wi-Fi networks are susceptible to attacks on Wired Equivalency Privacy, Wi-Fi Protected Access (WPA), and WPA2. These attack signatures can be profiled into a system that defends against such attacks on the basis of their inherent characteristics. Wi-Fi is the standard protocol for wireless networks used extensively in US critical infrastructures. Since the Wired Equivalency Privacy (WEP) security protocol was broken, the Wi-Fi Protected Access (WPA) protocol has been considered the secure alternative compatible with hardware developed for WEP. However, in November 2008, researchers developed an attack on WPA, allowing forgery of Address Resolution Protocol (ARP) packets. Subsequent enhancements have enabled ARP poisoning, cryptosystem denial of service, and man-in-the-middle attacks. Open source systems and methods (OSSM) have long been used to secure networks against such attacks. This article reviews OSSMs and the results of experimental attacks on WPA. These experiments re-created current attacks in a laboratory setting, recording both wired and wireless traffic. The article discusses methods of intrusion detection and prevention in the context of cyber physical protection of critical Internet infrastructure. The basis for this research is a specialized (and undoubtedly incomplete) taxonomy of Wi-Fi attacks and their adaptations to existing countermeasures and protocol revisions. Ultimately, this article aims to provide a clearer picture of how and why wireless protection protocols and encryption must achieve a more scientific basis for detecting and preventing such attacks.

  12. The international RESPO network

    SciTech Connect

    1997-12-01

    Winrock International, with sponsorship from the Center for Environment of the U.S. Agency for International Development (USAID) and the U.S. Export Council for Renewable Energy (US/ECRE), is building a global network of non-governmental organizations to help catalyze the use of renewable energy technologies for rural energy supply in developing countries. Known as the Renewable Energy Project Support Offices (REPSOs), these in-country facilities are managed by local institutions in coordination with Winrock. REPSOs provide an array of technical and financial support services to help developers identify and evaluate opportunities for renewable energy projects.

  13. Computer Networking Group | Stanford Synchrotron Radiation Lightsource

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Networking Group Do you need help? For assistance please submit a CNG Help Request ticket. CNG Logo Chris Ramirez SSRL Computer and Networking Group (650) 926-2901 | email Jerry Camuso SSRL Computer and Networking Group (650) 926-2994 | email Networking Support The Networking group provides connectivity and communications services for SSRL. The services provided by the Networking Support Group include: Local Area Network support for cable and wireless connectivity. Installation and maintenance

  14. Operating Innovative Networks Workshop Series

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Operating Innovative Networks Workshop Series Science Engagement Move your data Programs & Workshops CrossConnects Workshop Series Operating Innovative Networks Workshop Series Enlighten Your Research Global Program Science Requirements Reviews Case Studies Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Operating Innovative

  15. United States National Seismographic Network

    SciTech Connect

    Buland, R.

    1993-09-01

    The concept of a United States National Seismograph Network (USNSN) dates back nearly 30 years. The idea was revived several times over the decades. but never funded. For, example, a national network was proposed and discussed at great length in the so called Bolt Report (U. S. Earthquake Observatories: Recommendations for a New National Network, National Academy Press, Washington, D.C., 1980, 122 pp). From the beginning, a national network was viewed as augmenting and complementing the relatively dense, predominantly short-period vertical coverage of selected areas provided by the Regional Seismograph Networks (RSN`s) with a sparse, well-distributed network of three-component, observatory quality, permanent stations. The opportunity finally to begin developing a national network arose in 1986 with discussions between the US Geological Survey (USGS) and the Nuclear Regulatory Commission (NRC). Under the agreement signed in 1987, the NRC has provided $5 M in new funding for capital equipment (over the period 1987-1992) and the USGS has provided personnel and facilities to develop. deploy, and operate the network. Because the NRC funding was earmarked for the eastern United States, new USNSN station deployments are mostly east of 105{degree}W longitude while the network in the western United States is mostly made up of cooperating stations (stations meeting USNSN design goals, but deployed and operated by other institutions which provide a logical extension to the USNSN).

  16. Software Defined Networking (SDN) Project

    Energy.gov [DOE] (indexed site)

    Project Description This project is developing an energy ... appliances. The SDN abstracts the network into three ... May 2015 Figure 1: SDN Applications Phase 1: Research and ...

  17. Regional Networks for Energy Efficiency

    Energy.gov [DOE]

    Better Buildings Neighborhood Program Sustainability Peer Exchange Call: Regional Networks for Energy Efficiency, call slides and discussion summary, December 6, 2012.

  18. Network interdiction with budget constraints

    SciTech Connect

    Santhi, Nankakishore; Pan, Feng

    2009-01-01

    Several scenarios exist in the modern interconnected world which call for efficient network interdiction algorithms. Applications are varied, including computer network security, prevention of spreading of Internet worms, policing international smuggling networks, controlling spread of diseases and optimizing the operation of large public energy grids. In this paper we consider some natural network optimization questions related to the budget constrained interdiction problem over general graphs. Many of these questions turn out to be computationally hard to tackle. We present a particularly interesting practical form of the interdiction question which we show to be computationally tractable. A polynomial time algorithm is then presented for this problem.

  19. High Performance Network Monitoring

    SciTech Connect

    Martinez, Jesse E

    2012-08-10

    Network Monitoring requires a substantial use of data and error analysis to overcome issues with clusters. Zenoss and Splunk help to monitor system log messages that are reporting issues about the clusters to monitoring services. Infiniband infrastructure on a number of clusters upgraded to ibmon2. ibmon2 requires different filters to report errors to system administrators. Focus for this summer is to: (1) Implement ibmon2 filters on monitoring boxes to report system errors to system administrators using Zenoss and Splunk; (2) Modify and improve scripts for monitoring and administrative usage; (3) Learn more about networks including services and maintenance for high performance computing systems; and (4) Gain a life experience working with professionals under real world situations. Filters were created to account for clusters running ibmon2 v1.0.0-1 10 Filters currently implemented for ibmon2 using Python. Filters look for threshold of port counters. Over certain counts, filters report errors to on-call system administrators and modifies grid to show local host with issue.

  20. Vector Network Analysis

    Energy Science and Technology Software Center

    1997-10-20

    Vector network analyzers are a convenient way to measure scattering parameters of a variety of microwave devices. However, these instruments, unlike oscilloscopes for example, require a relatively high degree of user knowledge and expertise. Due to the complexity of the instrument and of the calibration process, there are many ways in which an incorrect measurement may be produced. The Microwave Project, which is part of Sandia National Laboratories Primary Standards Laboratory, routinely uses check standardsmoreĀ Ā» to verify that the network analyzer is operating properly. In the past, these measurements were recorded manually and, sometimes, interpretation of the results was problematic. To aid our measurement assurance process, a software program was developed to automatically measure a check standard and compare the new measurements with an historical database of measurements of the same device. The program acquires new measurement data from selected check standards, plots the new data against the mean and standard deviation of prior data for the same check standard, and updates the database files for the check standard. The program is entirely menu-driven requiring little additional work by the user.Ā«Ā less

  1. Network Upgrade for the SLC: PEP II Network

    SciTech Connect

    Crane, M.; Call, M.; Clark, S.; Coffman, F.; Himel, T.; Lahey, T.; Miller, E.; Sass, R.; /SLAC

    2011-09-09

    The PEP-II control system required a new network to support the system functions. This network, called CTLnet, is an FDDI/Ethernet based network using only TCP/IP protocols. An upgrade of the SLC Control System micro communications to use TCP/IP and SLCNET would allow all PEP-II control system nodes to use TCP/IP. CTLnet is private and separate from the SLAC public network. Access to nodes and control system functions is provided by multi-homed application servers with connections to both the private CTLnet and the SLAC public network. Monitoring and diagnostics are provided using a dedicated system. Future plans and current status information is included.

  2. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    SciTech Connect

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  3. Better Buildings Network View | February 2015 | Department of...

    Office of Environmental Management (EM)

    newsletter from the U.S. Department of Energy's Better Buildings Residential Network. ... Better Buildings Network View | June 2015 Nothing But Networking for Residential Network ...

  4. RNEDE: Resilient Network Design Environment

    SciTech Connect

    Venkat Venkatasubramanian, Tanu Malik, Arun Giridh; Craig Rieger; Keith Daum; Miles McQueen

    2010-08-01

    Modern living is more and more dependent on the intricate web of critical infrastructure systems. The failure or damage of such systems can cause huge disruptions. Traditional design of this web of critical infrastructure systems was based on the principles of functionality and reliability. However, it is increasingly being realized that such design objectives are not sufficient. Threats, disruptions and faults often compromise the network, taking away the benefits of an efficient and reliable design. Thus, traditional network design parameters must be combined with self-healing mechanisms to obtain a resilient design of the network. In this paper, we present RNEDEa resilient network design environment that that not only optimizes the network for performance but tolerates fluctuations in its structure that result from external threats and disruptions. The environment evaluates a set of remedial actions to bring a compromised network to an optimal level of functionality. The environment includes a visualizer that enables the network administrator to be aware of the current state of the network and the suggested remedial actions at all times.

  5. Global interrupt and barrier networks

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E; Heidelberger, Philip; Kopcsay, Gerard V.; Steinmacher-Burow, Burkhard D.; Takken, Todd E.

    2008-10-28

    A system and method for generating global asynchronous signals in a computing structure. Particularly, a global interrupt and barrier network is implemented that implements logic for generating global interrupt and barrier signals for controlling global asynchronous operations performed by processing elements at selected processing nodes of a computing structure in accordance with a processing algorithm; and includes the physical interconnecting of the processing nodes for communicating the global interrupt and barrier signals to the elements via low-latency paths. The global asynchronous signals respectively initiate interrupt and barrier operations at the processing nodes at times selected for optimizing performance of the processing algorithms. In one embodiment, the global interrupt and barrier network is implemented in a scalable, massively parallel supercomputing device structure comprising a plurality of processing nodes interconnected by multiple independent networks, with each node including one or more processing elements for performing computation or communication activity as required when performing parallel algorithm operations. One multiple independent network includes a global tree network for enabling high-speed global tree communications among global tree network nodes or sub-trees thereof. The global interrupt and barrier network may operate in parallel with the global tree network for providing global asynchronous sideband signals.

  6. Wellbore Integrity Network

    SciTech Connect

    Carey, James W.; Bachu, Stefan

    2012-06-21

    In this presentation, we review the current state of knowledge on wellbore integrity as developed in the IEA Greenhouse Gas Programme's Wellbore Integrity Network. Wells are one of the primary risks to the successful implementation of CO{sub 2} storage programs. Experimental studies show that wellbore materials react with CO{sub 2} (carbonation of cement and corrosion of steel) but the impact on zonal isolation is unclear. Field studies of wells in CO{sub 2}-bearing fields show that CO{sub 2} does migrate external to casing. However, rates and amounts of CO{sub 2} have not been quantified. At the decade time scale, wellbore integrity is driven by construction quality and geomechanical processes. Over longer time-scales (> 100 years), chemical processes (cement degradation and corrosion) become more important, but competing geomechanical processes may preserve wellbore integrity.

  7. Toward quantum plasmonic networks

    DOE PAGES [OSTI]

    Holtfrerich, M. W.; Dowran, M.; Davidson, R.; Lawrie, B. J.; Pooser, R. C.; Marino, A. M.

    2016-08-30

    Here, we demonstrate the transduction of macroscopic quantum entanglement by independent, distant plasmonic structures embedded in separate thin silver films. In particular, we show that the plasmon-mediated transmission through each film conserves spatially dependent, entangled quantum images, opening the door for the implementation of parallel quantum protocols, super-resolution imaging, and quantum plasmonic sensing geometries at the nanoscale level. The conservation of quantum information by the transduction process shows that continuous variable multi-mode entanglement is momentarily transferred from entangled beams of light to the space-like separated, completely independent plasmonic structures, thus providing a first important step toward establishing a multichannel quantummoreĀ Ā» network across separate solid-state substrates.Ā«Ā less

  8. Distributed downhole drilling network

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Fox, Joe; Pixton, David S.

    2006-11-21

    A high-speed downhole network providing real-time data from downhole components of a drilling strings includes a bottom-hole node interfacing to a bottom-hole assembly located proximate the bottom end of a drill string. A top-hole node is connected proximate the top end of the drill string. One or several intermediate nodes are located along the drill string between the bottom-hole node and the top-hole node. The intermediate nodes are configured to receive and transmit data packets transmitted between the bottom-hole node and the top-hole node. A communications link, integrated into the drill string, is used to operably connect the bottom-hole node, the intermediate nodes, and the top-hole node. In selected embodiments, a personal or other computer may be connected to the top-hole node, to analyze data received from the intermediate and bottom-hole nodes.

  9. Network Information System

    Energy Science and Technology Software Center

    1996-05-01

    The Network Information System (NWIS) was initially implemented in May 1996 as a system in which computing devices could be recorded so that unique names could be generated for each device. Since then the system has grown to be an enterprise wide information system which is integrated with other systems to provide the seamless flow of data through the enterprise. The system Iracks data for two main entities: people and computing devices. The following aremoreĀ Ā» the type of functions performed by NWIS for these two entities: People Provides source information to the enterprise person data repository for select contractors and visitors Generates and tracks unique usernames and Unix user IDs for every individual granted cyber access Tracks accounts for centrally managed computing resources, and monitors and controls the reauthorization of the accounts in accordance with the DOE mandated interval Computing Devices Generates unique names for all computing devices registered in the system Tracks the following information for each computing device: manufacturer, make, model, Sandia property number, vendor serial number, operating system and operating system version, owner, device location, amount of memory, amount of disk space, and level of support provided for the machine Tracks the hardware address for network cards Tracks the P address registered to computing devices along with the canonical and alias names for each address Updates the Dynamic Domain Name Service (DDNS) for canonical and alias names Creates the configuration files for DHCP to control the DHCP ranges and allow access to only properly registered computers Tracks and monitors classified security plans for stand-alone computers Tracks the configuration requirements used to setup the machine Tracks the roles people have on machines (system administrator, administrative access, user, etc...) Allows systems administrators to track changes made on the machine (both hardware and software) Generates an

  10. Network Information System

    SciTech Connect

    1996-05-01

    The Network Information System (NWIS) was initially implemented in May 1996 as a system in which computing devices could be recorded so that unique names could be generated for each device. Since then the system has grown to be an enterprise wide information system which is integrated with other systems to provide the seamless flow of data through the enterprise. The system Iracks data for two main entities: people and computing devices. The following are the type of functions performed by NWIS for these two entities: People Provides source information to the enterprise person data repository for select contractors and visitors Generates and tracks unique usernames and Unix user IDs for every individual granted cyber access Tracks accounts for centrally managed computing resources, and monitors and controls the reauthorization of the accounts in accordance with the DOE mandated interval Computing Devices Generates unique names for all computing devices registered in the system Tracks the following information for each computing device: manufacturer, make, model, Sandia property number, vendor serial number, operating system and operating system version, owner, device location, amount of memory, amount of disk space, and level of support provided for the machine Tracks the hardware address for network cards Tracks the P address registered to computing devices along with the canonical and alias names for each address Updates the Dynamic Domain Name Service (DDNS) for canonical and alias names Creates the configuration files for DHCP to control the DHCP ranges and allow access to only properly registered computers Tracks and monitors classified security plans for stand-alone computers Tracks the configuration requirements used to setup the machine Tracks the roles people have on machines (system administrator, administrative access, user, etc...) Allows systems administrators to track changes made on the machine (both hardware and software) Generates an adjustment

  11. Collective network for computer structures

    DOEpatents

    Blumrich, Matthias A.; Coteus, Paul W.; Chen, Dong; Gara, Alan; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Takken, Todd E.; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos M.

    2011-08-16

    A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices ate included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network and class structures. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to needs of a processing algorithm.

  12. Collective network for computer structures

    DOEpatents

    Blumrich, Matthias A; Coteus, Paul W; Chen, Dong; Gara, Alan; Giampapa, Mark E; Heidelberger, Philip; Hoenicke, Dirk; Takken, Todd E; Steinmacher-Burow, Burkhard D; Vranas, Pavlos M

    2014-01-07

    A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to the needs of a processing algorithm.

  13. Phoebus: Network Middleware for Next-Generation Network Computing

    SciTech Connect

    Martin Swany

    2012-06-16

    The Phoebus project investigated algorithms, protocols, and middleware infrastructure to improve end-to-end performance in high speed, dynamic networks. The Phoebus system essentially serves as an adaptation point for networks with disparate capabilities or provisioning. This adaptation can take a variety of forms including acting as a provisioning agent across multiple signaling domains, providing transport protocol adaptation points, and mapping between distributed resource reservation paradigms and the optical network control plane. We have successfully developed the system and demonstrated benefits. The Phoebus system was deployed in Internet2 and in ESnet, as well as in GEANT2, RNP in Brazil and over international links to Korea and Japan. Phoebus is a system that implements a new protocol and associated forwarding infrastructure for improving throughput in high-speed dynamic networks. It was developed to serve the needs of large DOE applications on high-performance networks. The idea underlying the Phoebus model is to embed Phoebus Gateways (PGs) in the network as on-ramps to dynamic circuit networks. The gateways act as protocol translators that allow legacy applications to use dedicated paths with high performance.

  14. Better Buildings Network View February 2016

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BetterBuildings Network View News From the Field Residential Network Members Unite to Form Green Bank Network Residential Network member Connecticut Green Bank and NY Green Bank, a division of Residential Network member New York State Energy Research and Development Authority, have helped launch the Green Bank Network, a new international organization focused on collaborating to scale up private financing to meet the challenge of climate change. During the United Nations Climate Change

  15. Rural Innovations Network | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Network Jump to: navigation, search Name: Rural Innovations Network Place: India Sector: Services Product: General Financial & Legal Services ( Charity Non-profit Association...

  16. Residential Energy Services Network (RESNET) Conference | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Residential Energy Services Network (RESNET) Conference Residential Energy Services Network (RESNET) Conference February 29, 2016 9:00AM EST to March 2, 2016 5:0

  17. Indigenous Environmental Network | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Indigenous Environmental Network Name: Indigenous Environmental Network Address: PO Box 485 Place: Bemidji, MN Year Founded: 1990 Phone Number: (218) 751-4967 Website:...

  18. Networks, smart grids: new model for synchronization

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Networks, smart grids: new model for synchronization Networks, smart grids: new model for synchronization Researchers developed a surprisingly simple mathematical model that ...

  19. Clean Economy Network | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Network Jump to: navigation, search Name: Clean Economy Network Place: Washington, Washington, DC Zip: 20004 Product: Washingt (DC-based advocacy group focused on clean energy and...

  20. Silver Spring Networks Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Spring Networks Inc Jump to: navigation, search Name: Silver Spring Networks Inc Place: Redwood City, California Zip: 94063 Product: California-based, developer of utility...

  1. Mesoscale Simulations of Coarsening in GB Networks

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Mukul Kumar is the Principal Investigator for Mesoscale Simulations of Coarsening in GB Networks LLNL BES Programs Highlight Mesoscale Simulations of Coarsening in GB Networks The...

  2. Southeast Energy Efficiency Alliance Launches Finance Network...

    Energy Saver

    Southeast Energy Efficiency Alliance Launches Finance Network Southeast Energy Efficiency Alliance Launches Finance Network Photo of two hands holding dollar bills shaped like a ...

  3. Better Buildings Network View, March 2015

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... sent to Residential Network members or via the Residential Network Group on Home Energy Pros. ... renewable energy systems (e.g., solar panels, small wind power systems) ...

  4. EA-1964: National Ecological Observation Network (NEON)

    Energy.gov [DOE]

    The National Science Foundation (NSF) prepared an EA that evaluated potential environmental impacts of the proposed National Ecological Observation Network (NEON), a continental-scale network of...

  5. Better Buildings Residential Network Membership Form | Department...

    Energy.gov [DOE] (indexed site)

    of Energy's Better Buildings Residential Network. BBRN Membership Form (138.55 KB) More Documents & Publications Better Buildings Residential Network Orientation Fact Sheet: ...

  6. Better Buildings Residential Network Case Study: Partnerships...

    Energy Saver

    Better Buildings Residential Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships, from the U.S. Department of Energy's Office of Energy ...

  7. Better Buildings Residential Network Orientation Webinar | Department...

    Energy Saver

    September 11, 2014. Call Slides and Discussion Summary (2.44 MB) More Documents & Publications Better Buildings Residential Network Orientation Better Buildings Residential Network ...

  8. Better Buildings Residential Network Orientation | Department...

    Energy Saver

    Orientation Better Buildings Residential Network Orientation Better Buildings Residential Network (BBRN) Orientation Call Slides and Summary, March 27, 2014. Call Slides and ...

  9. Better Buildings Residential Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Better Buildings Residential Network Better Buildings Residential Network Explore Peer ... programs can implement and leverage to quickly show energy and utility dollar savings. ...

  10. Better Buildings Residential Network (BBRN) Orientation Call...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... 11 Better Buildings Residential Network (BBRN) Better Buildings Residential Network: Connects energy efficiency programs and partners to share best practices to increase the ...

  11. Structure Learning in Power Distribution Networks (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Structure Learning in Power Distribution Networks Citation Details In-Document Search Title: Structure Learning in Power Distribution Networks Authors: Deka, ...

  12. Grencubator. Ukrainian energy innovation network | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Grencubator. Ukrainian energy innovation network Jump to: navigation, search Name: Greencubator. Ukrainian energy innovation network Place: Kyiv, Ukraine Number of Employees: 1-10...

  13. Creative Environmental Networks | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Environmental Networks Jump to: navigation, search Name: Creative Environmental Networks Place: United Kingdom Zip: CR7 7JG Sector: Biomass, Renewable Energy, Services Product:...

  14. Towards A Network-of-Networks Framework for Cyber Security

    SciTech Connect

    Halappanavar, Mahantesh; Choudhury, Sutanay; Hogan, Emilie A.; Hui, Peter SY; Johnson, John R.; Ray, Indrajit; Holder, Lawrence B.

    2013-06-07

    Networks-of-networks (NoN) is a graph-theoretic model of interdependent networks that have distinct dynamics at each network (layer). By adding special edges to represent relationships between nodes in different layers, NoN provides a unified mechanism to study interdependent systems intertwined in a complex relationship. While NoN based models have been proposed for cyber-physical systems, in this paper we build towards a three-layer NoN model for an enterprise cyber system. Each layer captures a different facet of a cyber system. We then discuss the potential benefits of graph-theoretic analysis enabled from such a model. Our goal is to provide a novel and powerful tool for modeling and analyzing problems in cyber security.

  15. Biomass Rapid Analysis Network (BRAN)

    SciTech Connect

    Not Available

    2003-10-01

    Helping the emerging biotechnology industry develop new tools and methods for real-time analysis of biomass feedstocks, process intermediates and The Biomass Rapid Analysis Network is designed to fast track the development of modern tools and methods for biomass analysis to accelerate the development of the emerging industry. The network will be led by industry and organized and coordinated through the National Renewable Energy Lab. The network will provide training and other activities of interest to BRAN members. BRAN members will share the cost and work of rapid analysis method development, validate the new methods, and work together to develop the training for the future biomass conversion workforce.

  16. ARM - Field Campaign - COSMOS Network

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    or call us at 1-888-ARM-DATA. Send Campaign : COSMOS Network 2010.08.05 - 2013.08.01 Lead Scientist : Marek Zreda For data sets, see below. Abstract Cosmic-ray soil moisture...

  17. Program for Online Network Inversion

    Energy Science and Technology Software Center

    2009-12-21

    PONI determines the source location of a contamination incident in a water distribution network. PONI uses large scale optimization methods to predict likely source locations by reconciling the differences between observations and numerical predictions of possible contamination incidents.

  18. The Ad Lucem Research Network

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ad Lucem Research Network Lada Adamic Associate Professor, School of Information & Center for the Study of Complex Systems University of Michigan Research interests: structure and dynamics of social and information networks, with a particular emphasis on information diffusion, expertise sharing, and online communities D. Lazer et al. "Computational Social Science." Science 323, 5915 (2009). J. Leskovec, L. A. Adamic, and B. A. Huberman. "The dynamics of viral marketing."

  19. Fact Sheet: Better Buildings Residential Network

    Energy.gov [DOE]

    Fact Sheet: Better Buildings Residential Network, increasing the number of American Homes that are energy efficient.

  20. Better Buildings Residential Network Orientation Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Better Buildings Residential Network Orientation Webinar, call slides and discussion summary, May 14, 2015.

  1. Better Buildings Residential Network Orientation Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Better Buildings Residential Network Orientation Webinar, call slides and discussion summary, September 11, 2014.

  2. Anomaly Detection in Dynamic Networks

    SciTech Connect

    Turcotte, Melissa

    2014-10-14

    Anomaly detection in dynamic communication networks has many important security applications. These networks can be extremely large and so detecting any changes in their structure can be computationally challenging; hence, computationally fast, parallelisable methods for monitoring the network are paramount. For this reason the methods presented here use independent node and edge based models to detect locally anomalous substructures within communication networks. As a first stage, the aim is to detect changes in the data streams arising from node or edge communications. Throughout the thesis simple, conjugate Bayesian models for counting processes are used to model these data streams. A second stage of analysis can then be performed on a much reduced subset of the network comprising nodes and edges which have been identified as potentially anomalous in the first stage. The first method assumes communications in a network arise from an inhomogeneous Poisson process with piecewise constant intensity. Anomaly detection is then treated as a changepoint problem on the intensities. The changepoint model is extended to incorporate seasonal behavior inherent in communication networks. This seasonal behavior is also viewed as a changepoint problem acting on a piecewise constant Poisson process. In a static time frame, inference is made on this extended model via a Gibbs sampling strategy. In a sequential time frame, where the data arrive as a stream, a novel, fast Sequential Monte Carlo (SMC) algorithm is introduced to sample from the sequence of posterior distributions of the change points over time. A second method is considered for monitoring communications in a large scale computer network. The usage patterns in these types of networks are very bursty in nature and donā€™t fit a Poisson process model. For tractable inference, discrete time models are considered, where the data are aggregated into discrete time periods and probability models are fitted to the

  3. Virtual Private Network (VPN) | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Virtual Private Network (VPN) Use a VPN connection for secure access to Argonne's internal networks. To protect Argonne's computing networks, resources, and data, many applications and computing resources on Laboratory networks are not available from offsite without the use of a Virtual Private Network (VPN) connection.The use of a VPN connection allows services to pass through an encrypted "tunnel" to and from the Laboratory, thus giving authenticated users offsite access to internal

  4. The Science DMZ: A Network Design Pattern

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Science DMZ: A Network Design Pattern for Data-Intensive Science Eli Dart Energy Sciences Network Lawrence Berkeley National Laboratory Berkeley, CA 94720 eddart@lbl.gov Lauren Rotman Energy Sciences Network Lawrence Berkeley National Laboratory Berkeley, CA 94720 lbrotman@lbl.gov Brian Tierney Energy Sciences Network Lawrence Berkeley National Laboratory Berkeley, CA 94720 bltierney@lbl.gov Mary Hester Energy Sciences Network Lawrence Berkeley National Laboratory Berkeley, CA 94720

  5. Business networking and coaching at your doorstep

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Business networking and coaching at your doorstep Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:November 2, 2016 all issues All Issues Ā» submit Business networking and coaching at your doorstep Network facilitators lend a helping hand to northern New Mexico entrepreneurs June 1, 2014 Andrea Gottschalk, Los Alamos Connect network facilitator for San Miguel County. Andrea Gottschalk, Los Alamos Connect network facilitator for San

  6. Flexible network wireless transceiver and flexible network telemetry transceiver

    DOEpatents

    Brown, Kenneth D.

    2008-08-05

    A transceiver for facilitating two-way wireless communication between a baseband application and other nodes in a wireless network, wherein the transceiver provides baseband communication networking and necessary configuration and control functions along with transmitter, receiver, and antenna functions to enable the wireless communication. More specifically, the transceiver provides a long-range wireless duplex communication node or channel between the baseband application, which is associated with a mobile or fixed space, air, water, or ground vehicle or other platform, and other nodes in the wireless network or grid. The transceiver broadly comprises a communication processor; a flexible telemetry transceiver including a receiver and a transmitter; a power conversion and regulation mechanism; a diplexer; and a phased array antenna system, wherein these various components and certain subcomponents thereof may be separately enclosed and distributable relative to the other components and subcomponents.

  7. Better Buildings Network View | April 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Better Buildings Network View | April 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. Better Buildings Network View April 2014 (130.28 KB) More Documents & Publications Better Buildings Network View | December 2014 Better Buildings Residential Network Orientation Webinar Better Buildings Network View | May

  8. Better Buildings Network View | April 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 Better Buildings Network View | April 2016 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. Better Buildings Network View April 2016 (154.45 KB) More Documents & Publications Better Buildings Network View | May 2016 Better Buildings Network View | June 2016 Better Buildings Network View | October 2016

  9. Better Buildings Network View | February 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Better Buildings Network View | February 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. Better Buildings Network View February 2014 (173.15 KB) More Documents & Publications Better Buildings Network View | January 2014 Better Buildings Network View | May 2015 Better Buildings Network View | June 2015

  10. Better Buildings Network View | June 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 Better Buildings Network View | June 2016 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. Better Buildings Network View June 2016 (235.96 KB) More Documents & Publications Better Buildings Network View | July-August 2016 Better Buildings Network View | September 2016 Better Buildings Network View | November

  11. Better Buildings Network View | March 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Better Buildings Network View | March 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. Better Buildings Network View March 2014 (129.73 KB) More Documents & Publications Better Buildings Network View | May 2015 Better Buildings Network View | June 2015 Better Buildings Network View | April 2014

  12. Better Buildings Network View | March 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 Better Buildings Network View | March 2016 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. Better Buildings Network View March 2016 (211.92 KB) More Documents & Publications Better Buildings Network View | April 2016 Better Buildings Network View | May 2016 Better Buildings Network View | January 2016

  13. Better Buildings Network View | May 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 Better Buildings Network View | May 2016 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. Better Buildings Network View May 2016 (196.19 KB) More Documents & Publications Better Buildings Network View | April 2016 Better Buildings Network View | June 2016 Better Buildings Network View | September 2016

  14. Better Buildings Network View | November 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Better Buildings Network View | November 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. Better Buildings Network View November 2014 (162.63 KB) More Documents & Publications Better Buildings Network View | July-August 2014 Better Buildings Residential Network Orientation Webinar Better Buildings Network View | December 2014

  15. Better Buildings Network View | October 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 Better Buildings Network View | October 2016 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. Better Buildings Network View October 2016 (176.3 KB) More Documents & Publications Better Buildings Network View | April 2016 Better Buildings Network View | June 2016 Better Buildings Network View | September 2016

  16. Better Buildings Network View | September 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 Better Buildings Network View | September 2016 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. Better Buildings Network View September 2016 (121.63 KB) More Documents & Publications Better Buildings Network View | June 2016 Better Buildings Network View | July-August 2016 Better Buildings Network View | October 2016

  17. Northeast Hydrogen Station Network Summary

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    World leader in gases, technologies and services for Industry and Health June 10, 2016 NE Hydrogen Station Network Summary DOE AMR 2016 2 World leader in gases, technologies and services for Industry and Health East Coast Planned Fueling network- Stations 12 Stations for the North East ļƒ˜ NYC and Long Island- (4) ļƒ˜ Boston Area - (4) ļƒ˜ Connecter Stations - (1) Hartford, CT & (1) Providence, RI ļƒ˜ Northern New Jersey- (2) 6/18/2016 3 World leader in gases, technologies and services for

  18. Network user`s guide

    SciTech Connect

    McGrady, P.W.

    1994-12-01

    NETWORK is a FORTRAN code used to model process flow systems in the gaseous diffusion plants at Portsmouth, Ohio and Paducah, Kentucky, operated by the United States Enrichment Corporation. It can handle a wide range of components and several different types of controllers. NETWORK can be run in either a steady-state mode or a transient mode. In the transient mode many different types of perturbations may be modeled. It is currently being used to model taking a cell off-stream in a gaseous diffusion plant. A brief description of the code is given, and process equipment models and input data are discussed.

  19. Virtualized Network Control. Final Report

    SciTech Connect

    Ghani, Nasir

    2013-02-01

    This document is the final report for the Virtualized Network Control (VNC) project, which was funded by the United States Department of Energy (DOE) Office of Science. This project was also informally referred to as Advanced Resource Computation for Hybrid Service and TOpology NEtworks (ARCHSTONE). This report provides a summary of the project's activities, tasks, deliverable, and accomplishments. It also provides a summary of the documents, software, and presentations generated as part of this projects activities. Namely, the Appendix contains an archive of the deliverables, documents, and presentations generated a part of this project.

  20. ESnet: Advanced Networking for Science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    N E R G Y S C I E N C E S N E T W O R K Researchers around the world using advanced computing for scientific discovery are connected via the DOE-operated Energy Sciences Network (ESnet). By providing a reliable, high-performance communications infrastructure, ESnet facilitates the large-scale, collaborative science endeavors fundamental to Office of Science missions. Energy Sciences Network In many ways, the dramatic achievements of 21st century scientific discovery-often involving enormous data

  1. BER Science Network Requirements (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: BER Science Network Requirements Citation Details In-Document Search Title: BER Science Network Requirements The Energy Sciences Network (ESnet) is the primary ...

  2. UNEP-Southeast Asia Climate Change Network | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Southeast Asia Climate Change Network Jump to: navigation, search Logo: UNEP-Southeast Asia Climate Change Network Name UNEP-Southeast Asia Climate Change Network AgencyCompany...

  3. Renewable Energy Business Network - Boston | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Network - Boston Jump to: navigation, search Name: Clean Economy Network FoundationRenewable Energy Business Network - Boston Address: 55 Union Street Place: Boston, MA Zip: 02108...

  4. Austin Solar Energy Entrepreneurs Network | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Entrepreneurs Network Jump to: navigation, search Logo: Austin Solar Energy Entrepreneurs Network Name: Austin Solar Energy Entrepreneurs Network Place: Austin, Texas Zip: 78701...

  5. Better Buildings Network View | November 2015 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 Better Buildings Network View | November 2015 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF...

  6. Better Buildings Network View | January 2016 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 Better Buildings Network View | January 2016 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF ...

  7. Better Buildings Network View | June 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Better Buildings Network View | June 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF icon ...

  8. Better Buildings Network View | January 2015 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 Better Buildings Network View | January 2015 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF ...

  9. Better Buildings Network View | February 2014 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Better Buildings Network View | February 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF ...

  10. Better Buildings Network View | July-August 2014 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Better Buildings Network View | July-August 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. ...

  11. Better Buildings Network View | February 2016 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 Better Buildings Network View | February 2016 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF ...

  12. Better Buildings Network View | May 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Better Buildings Network View | May 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF icon ...

  13. Better Buildings Network View | March 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Better Buildings Network View | March 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF ...

  14. Better Buildings Network View | April 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 Better Buildings Network View | April 2015 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF ...

  15. Better Buildings Network View | December 2014 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Better Buildings Network View | December 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF ...

  16. Better Buildings Network View | March 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 Better Buildings Network View | March 2015 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF ...

  17. Better Buildings Network View | January 2014 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Better Buildings Network View | January 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF ...

  18. Better Buildings Network View | October 2015 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 Better Buildings Network View | October 2015 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF ...

  19. Better Buildings Network View | March 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 Better Buildings Network View | March 2016 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF ...

  20. Better Buildings Network View | June 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 Better Buildings Network View | June 2015 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF icon ...

  1. Better Buildings Network View | July-August 2015 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 Better Buildings Network View | July-August 2015 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. ...

  2. United Nations Energy Knowledge Network (UN-Energy) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Knowledge Network (UN-Energy) Jump to: navigation, search Logo: United Nations Energy Knowledge Network (UN-Energy) Name: United Nations Energy Knowledge Network (UN-Energy)...

  3. ARM: Baseline Solar Radiation Network (BSRN): solar irradiances...

    Office of Scientific and Technical Information (OSTI)

    Baseline Solar Radiation Network (BSRN): solar irradiances Title: ARM: Baseline Solar Radiation Network (BSRN): solar irradiances Baseline Solar Radiation Network (BSRN): solar ...

  4. Better Buildings Network View | November 2014 | Department of...

    Office of Environmental Management (EM)

    newsletter from the U.S. Department of Energy's Better Buildings Residential Network. ... Better Buildings Network View | July-August 2014 Better Buildings Residential Network ...

  5. Better Buildings Network View | December 2015 | Department of...

    Office of Environmental Management (EM)

    newsletter from the U.S. Department of Energy's Better Buildings Residential Network. ... Network View | July-August 2015 Better Buildings Residential Network Orientation Webinar

  6. Better Buildings Network View | April 2014 | Department of Energy

    Office of Environmental Management (EM)

    Residential Network. Better Buildings Network View April 2014 (130.28 KB) More Documents & Publications Better Buildings Network View | December 2014 Better Buildings Residential ...

  7. Better Buildings Network View | May 2015 | Department of Energy

    Office of Environmental Management (EM)

    Residential Network. Better Buildings Network View May 2015 (548.9 KB) More Documents & Publications Better Buildings Network View | June 2015 Home Performance with ENERGY STAR ...

  8. Organization of growing random networks

    SciTech Connect

    Krapivsky, P. L.; Redner, S.

    2001-06-01

    The organizational development of growing random networks is investigated. These growing networks are built by adding nodes successively, and linking each to an earlier node of degree k with an attachment probability A{sub k}. When A{sub k} grows more slowly than linearly with k, the number of nodes with k links, N{sub k}(t), decays faster than a power law in k, while for A{sub k} growing faster than linearly in k, a single node emerges which connects to nearly all other nodes. When A{sub k} is asymptotically linear, N{sub k}(t){similar_to}tk{sup {minus}{nu}}, with {nu} dependent on details of the attachment probability, but in the range 2{lt}{nu}{lt}{infinity}. The combined age and degree distribution of nodes shows that old nodes typically have a large degree. There is also a significant correlation in the degrees of neighboring nodes, so that nodes of similar degree are more likely to be connected. The size distributions of the in and out components of the network with respect to a given node{emdash}namely, its {open_quotes}descendants{close_quotes} and {open_quotes}ancestors{close_quotes}{emdash}are also determined. The in component exhibits a robust s{sup {minus}2} power-law tail, where s is the component size. The out component has a typical size of order lnt, and it provides basic insights into the genealogy of the network.

  9. Host Event Based Network Monitoring

    SciTech Connect

    Jonathan Chugg

    2013-01-01

    The purpose of INLā€™s research on this project is to demonstrate the feasibility of a host event based network monitoring tool and the effects on host performance. Current host based network monitoring tools work on polling which can miss activity if it occurs between polls. Instead of polling, a tool could be developed that makes use of event APIs in the operating system to receive asynchronous notifications of network activity. Analysis and logging of these events will allow the tool to construct the complete real-time and historical network configuration of the host while the tool is running. This research focused on three major operating systems commonly used by SCADA systems: Linux, WindowsXP, and Windows7. Windows 7 offers two paths that have minimal impact on the system and should be seriously considered. First is the new Windows Event Logging API, and, second, Windows 7 offers the ALE API within WFP. Any future work should focus on these methods.

  10. Nano Communication Networks Update | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nano Communication Networks Update Click to email this to a friend (Opens in new window) ... Nano Communication Networks Update Steve Bush 2011.12.09 Hi everybody, In my last blog I ...

  11. Computer network control plane tampering monitor

    DOEpatents

    Michalski, John T.; Tarman, Thomas D.; Black, Stephen P.; Torgerson, Mark D.

    2010-06-08

    A computer network control plane tampering monitor that detects unauthorized alteration of a label-switched path setup for an information packet intended for transmission through a computer network.

  12. Energy Materials Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Materials Network LightMat LightMat Established as part of the Energy Materials Network, the mission of the Lightweight Materials National Lab Consortium (LightMat) is to ...

  13. Global Renewable Energy Network | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Renewable Energy Network (GReEN) Name: Global Renewable Energy Network (GReEN) Address: P.O. Box 1999 Place: Massapequa, NY Zip: 11758 Region: Northeast - NY NJ CT PA Area Number...

  14. Better Buildings Residential Network Orientation Webinar Call...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Rural Ulster Preservation Company Solar and Energy Loan Fund Southeast Energy ... Consortium Upper Peninsula of Michigan Green Development Network Vermont ...

  15. Better Buildings Residential Network Program Sustainability Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Buildings Residential Network Program Sustainability Peer Exchange Call: Complementary ... and more diverse 13 Future Program Sustainability Call Topics * Program Sustainability ...

  16. Social Network and Communications Institutional Change Principle |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Network and Communications Institutional Change Principle Social Network and Communications Institutional Change Principle Federal agencies can use social networks and communications to spark and reinforce behavior change for meeting sustainability goals. This principle is based on research findings showing that people and institutions often are strongly influenced by the behaviors and expectations of others. Methods The social network and communications behavior change

  17. Solar Instructor Training Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Instructor Training Network Solar Instructor Training Network The Solar Instructor Training Network promotes high-quality training in the installation of solar technologies. Nine regional resource and training providers support the professional development of trainers and instructors of solar photovoltaic and solar heating and cooling technologies across the country. The goal of the Solar Instructor Training Network is to accelerate market adoption of solar technologies by ensuring that

  18. Associative memory in phasing neuron networks

    SciTech Connect

    Nair, Niketh S; Bochove, Erik J.; Braiman, Yehuda

    2014-01-01

    We studied pattern formation in a network of coupled Hindmarsh-Rose model neurons and introduced a new model for associative memory retrieval using networks of Kuramoto oscillators. Hindmarsh-Rose Neural Networks can exhibit a rich set of collective dynamics that can be controlled by their connectivity. Specifically, we showed an instance of Hebb's rule where spiking was correlated with network topology. Based on this, we presented a simple model of associative memory in coupled phase oscillators.

  19. Fermilab | Science at Fermilab | Computing | Networking

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Detectors and Computing Detectors and Computing Computing Networking Physicists are constantly exchanging information, within Fermilab and between Fermilab and collaborating ...

  20. Better Buildings Network View, July 2014

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Better Buildings Network View | July 2014 Browse the New Better Buildings Residential Network Website We invite you to visit the new Better Buildings Residential Network website launched on July 14, 2014. Visitors can find everything from how to join the Residential Network to the benefits of becoming a member. Following are a few highlights: Upcoming Peer Exchange Call information is listed on our Home page. Our Resources page, devoted to materials such as program newsletters and the U.S.

  1. Better Buildings Network View, March 2014

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    From the Field Better Buildings Network View | March 2014 March 2014 Network Members Invited to Review Optional Program Benchmarking Guide The first Better Buildings Residential Network Next Steps voluntary initiative will Winter 2014: DOE finalizes benchmark programs so guide and pilots it with up to members can see how they nine Residential Network compare to others, and you members are invited to provide DOE evaluates feedback on a draft Guide Spring 2014: pilot and starts defining for

  2. Better Buildings Network View, May 2015

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Better Buildings Network View News From the Field May 2015 Nearly 50 Home Performance with ENERGY STAR Ā® Sponsors Join the Residential Network The U.S. Department of Energy's (DOE's) Home Performance with ENERGY STAR (HPwES) program announced this month that its 49 Sponsors will be considered members of the Better Buildings Residential Network and begin to receive Network membership benefits. The goal of Home Performance with ENERGY STAR is to help homeowners improve the efficiency and comfort

  3. Networks in Buildings: Which Path Forward?

    SciTech Connect

    Nordman, Bruce

    2008-08-17

    To date, digital networks have principally been installed for connecting information technology devices, with more modest use in consumer electronics, security, and large building control systems. The next 20 years will see much greater deployment of networks in buildings of all types, and across all end uses. Most of these are likely to be introduced primarily for reasons other than energy efficiency, and add energy use for network interfaces and network products. Widespread networking could easily lead to increased energy use, and experience with IT and CE networks suggests this may be likely. Active engagement by energy efficiency professionals in the architecture and design of future networks could lead to their being a large and highly cost-effective tool for efficiency. However, network standards are complex and take many years to develop and negotiate so that lack of action on this in the near term may foreclose important opportunities for years or decades to come. Digital networks need to be common globally, providing another challenge to building systems and elements that are more commonly designed only for national or regional markets. Key future networks are lighting, climate control, and security/presence. This paper reviews some examples of past network designs and use and the lessons they hold for future building networks. It also highlights key needed areas for research, policy, and standards development.

  4. Trace Replay and Network Simulation Tool

    Energy Science and Technology Software Center

    2015-03-23

    TraceR is a trace reply tool built upon the ROSS-based CODES simulation framework. TraceR can be used for predicting network performances and understanding network behavior by simulating messaging in High Performance Computing applications on interconnection networks.

  5. Network Security Mechanisms Utilizing Dynamic Network Address Translation LDRD Project

    SciTech Connect

    PRICE, CARRIE M.; STANTON, ERIC; LEE, ERIK J.; MICHALSKI, JOHN T.; CHUA, KUAN SEAH; WONG, YIP HENG; TAN, CHUNG PHENG

    2002-11-01

    A new protocol technology is just starting to emerge from the laboratory environment. Its stated purpose is to provide an additional means in which networks, and the services that reside on them, can be protected from adversarial compromise. This report has a two-fold objective. First is to provide the reader with an overview of this emerging Dynamic Defenses technology using Dynamic Network Address Translation (Dynat). This ''structure overview'' is concentrated in the body of the report, and describes the important attributes of the technology. The second objective is to provide a framework that can be used to help in the classification and assessment of the different types of dynamic defense technologies along with some related capabilities and limitations. This information is primarily contained in the appendices.

  6. Better Buildings Network View | July-August 2016

    Energy.gov [DOE]

    The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

  7. Better Buildings Residential Network Reporting and Benefits Template

    Energy.gov [DOE]

    Better Buildings Residential Network Reporting and Benefits Template, from the U.S. Department of Energy Better Buildings Residential Network.

  8. Better Buildings Residential Network Reporting and Benefits FAQ

    Energy.gov [DOE]

    Better Buildings Residential Network Reporting and Benefits FAQ, from the U.S. Department of Energy Better Buildings Residential Network.

  9. The Network Completion Problem: Inferring Missing Nodes and Edges in Networks

    SciTech Connect

    Kim, M; Leskovec, J

    2011-11-14

    Network structures, such as social networks, web graphs and networks from systems biology, play important roles in many areas of science and our everyday lives. In order to study the networks one needs to first collect reliable large scale network data. While the social and information networks have become ubiquitous, the challenge of collecting complete network data still persists. Many times the collected network data is incomplete with nodes and edges missing. Commonly, only a part of the network can be observed and we would like to infer the unobserved part of the network. We address this issue by studying the Network Completion Problem: Given a network with missing nodes and edges, can we complete the missing part? We cast the problem in the Expectation Maximization (EM) framework where we use the observed part of the network to fit a model of network structure, and then we estimate the missing part of the network using the model, re-estimate the parameters and so on. We combine the EM with the Kronecker graphs model and design a scalable Metropolized Gibbs sampling approach that allows for the estimation of the model parameters as well as the inference about missing nodes and edges of the network. Experiments on synthetic and several real-world networks show that our approach can effectively recover the network even when about half of the nodes in the network are missing. Our algorithm outperforms not only classical link-prediction approaches but also the state of the art Stochastic block modeling approach. Furthermore, our algorithm easily scales to networks with tens of thousands of nodes.

  10. Network Performance and Troubleshooting (perfSONAR)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Performance (perfSONAR) Network R&D Software-Defined Networking (SDN) Experimental Network Testbeds Performance (perfSONAR) Software & Tools Development Data for Researchers Partnerships Publications Workshops Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Network Performance and Troubleshooting (perfSONAR) perfSONAR:

  11. BetterBuildings Network View | September 2014

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    September 2014 News From the Field Reorient Yourself With the Better Buildings Residential Network Whether you are new to the Better Buildings Residential Network, new to your residential energy efficiency programs, or just looking for a refresher on what the Network has to offer, please join us this Thursday, September 11, from 3:00 to 4:30 p.m. Eastern for a Residential Network member orientation webinar. Hear about the Residential Network's origins and get the answers to your most frequently

  12. Multicast Reduction Network Source Code

    Energy Science and Technology Software Center

    2006-12-19

    MRNet is a software tree-based overlay network developed at the University of Wisconsin, Madison that provides a scalable communication mechanism for parallel tools. MRNet, uses a tree topology of networked processes between a user tool and distributed tool daemons. This tree topology allows scalable multicast communication from the tool to the daemons. The internal nodes of the tree can be used to distribute computation and alalysis on data sent from the tool daemons to themoreĀ Ā» tool. This release covers minor implementation to port this software to the BlueGene/L architecuture and for use with a new implementation of the Dynamic Probe Class Library.Ā«Ā less

  13. On Building Inexpensive Network Capabilities

    SciTech Connect

    Shue, Craig A; Kalafut, Prof. Andrew; Allman, Mark; Taylor, Curtis R

    2011-01-01

    There are many deployed approaches for blocking unwanted traffic, either once it reaches the recipient's network, or closer to its point of origin. One of these schemes is based on the notion of traffic carrying capabilities that grant access to a network and/or end host. However, leveraging capabilities results in added complexity and additional steps in the communication process: Before communication starts a remote host must be vetted and given a capability to use in the subsequent communication. In this paper, we propose a lightweight mechanism that turns the answers provided by DNS name resolution---which Internet communication broadly depends on anyway---into capabilities. While not achieving an ideal capability system, we show the mechanism can be built from commodity technology and is therefore a pragmatic way to gain some of the key benefits of capabilities without requiring new infrastructure.

  14. Better Buildings Network View | December 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 Better Buildings Network View | December 2015 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. Better Buildings Network View December 2015 (191.86 KB) More Documents & Publications BBRN Factsheet: Case Study: Community Engagement Better Buildings Network View | July-August 2015 Better Buildings Residential Network Orientation Webinar

  15. Better Buildings Residential Network Membership Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Network Membership Form Better Buildings Residential Network Membership Form Membership form from the U.S. Department of Energy's Better Buildings Residential Network. BBRN Membership Form (138.55 KB) More Documents & Publications Better Buildings Residential Network Orientation Fact Sheet: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network

  16. Membership Criteria: Better Buildings Residential Network | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Membership Criteria: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network of the U.S. Department of Energy. Membership Criteria (126.27 KB) More Documents & Publications Better Buildings Residential Network Orientation Better Buildings Residential Network Reporting and Benefits FAQ How Can the Network Meet Your Needs?

  17. Quantifying evolvability in small biological networks

    SciTech Connect

    Nemenman, Ilya; Mugler, Andrew; Ziv, Etay; Wiggins, Chris H

    2008-01-01

    The authors introduce a quantitative measure of the capacity of a small biological network to evolve. The measure is applied to a stochastic description of the experimental setup of Guet et al. (Science 2002, 296, pp. 1466), treating chemical inducers as functional inputs to biochemical networks and the expression of a reporter gene as the functional output. The authors take an information-theoretic approach, allowing the system to set parameters that optimise signal processing ability, thus enumerating each network's highest-fidelity functions. All networks studied are highly evolvable by the measure, meaning that change in function has little dependence on change in parameters. Moreover, each network's functions are connected by paths in the parameter space along which information is not significantly lowered, meaning a network may continuously change its functionality without completely losing it along the way. This property further underscores the evolvability of the networks.

  18. AERONET: The Aerosol Robotic Network

    DOE Data Explorer

    The AERONET (AErosol RObotic NETwork) program is a federation of ground-based remote sensing aerosol networks established by NASA and LOA-PHOTONS (CNRS) and is greatly expanded by collaborators from national agencies, institutes, universities, individual scientists, and partners. The program provides a long-term, continuous and readily accessible public domain database of aerosol optical, mircrophysical and radiative properties for aerosol research and characterization, validation of satellite retrievals, and synergism with other databases. The network imposes standardization of instruments, calibration, processing and distribution. AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

  19. Diagnosing Anomalous Network Performance with Confidence

    SciTech Connect

    Settlemyer, Bradley W; Hodson, Stephen W; Kuehn, Jeffery A; Poole, Stephen W

    2011-04-01

    Variability in network performance is a major obstacle in effectively analyzing the throughput of modern high performance computer systems. High performance interconnec- tion networks offer excellent best-case network latencies; how- ever, highly parallel applications running on parallel machines typically require consistently high levels of performance to adequately leverage the massive amounts of available computing power. Performance analysts have usually quantified network performance using traditional summary statistics that assume the observational data is sampled from a normal distribution. In our examinations of network performance, we have found this method of analysis often provides too little data to under- stand anomalous network performance. Our tool, Confidence, instead uses an empirically derived probability distribution to characterize network performance. In this paper we describe several instances where the Confidence toolkit allowed us to understand and diagnose network performance anomalies that we could not adequately explore with the simple summary statis- tics provided by traditional measurement tools. In particular, we examine a multi-modal performance scenario encountered with an Infiniband interconnection network and we explore the performance repeatability on the custom Cray SeaStar2 interconnection network after a set of software and driver updates.

  20. Cross-linked structure of network evolution

    SciTech Connect

    Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Porter, Mason A.; Mucha, Peter J.

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  1. Network

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    by more powerful supercomputers, global collaborations that can involve thousands of researchers, and specialized facilities like the Large Hadron Collider and digital sky surveys. ...

  2. Network

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    datasets reach their destinations in record time. Moving Datasets Equal to 20 Billion Books Experiments and simulations can produce enormous data sets that need to be...

  3. Zone routing in a torus network

    DOEpatents

    Chen, Dong; Heidelberger, Philip; Kumar, Sameer

    2013-01-29

    A system for routing data in a network comprising a network logic device at a sending node for determining a path between the sending node and a receiving node, wherein the network logic device sets one or more selection bits and one or more hint bits within the data packet, a control register for storing one or more masks, wherein the network logic device uses the one or more selection bits to select a mask from the control register and the network logic device applies the selected mask to the hint bits to restrict routing of the data packet to one or more routing directions for the data packet within the network and selects one of the restricted routing directions from the one or more routing directions and sends the data packet along a link in the selected routing direction toward the receiving node.

  4. Networks, smart grids: new model for synchronization

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    May Ā» Networks, smart grids: new model for synchronization Networks, smart grids: new model for synchronization Researchers developed a surprisingly simple mathematical model that accurately predicts synchronization as a function of the parameters and the topology of the underlying network. May 21, 2013 High voltage transmission lines carry electrical power. High voltage transmission lines carry electrical power. The researchers envision that their method could be applied to assess

  5. Better Buildings Network View March 2016

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Better Buildings Network View News From the Field New Toolkit Dives Into Training Techniques The U.S. Department of Energy (DOE) Better Buildings Residential Network has launched a Training Toolkit to help residential energy efficiency program managers identify resources and opportunities to help contractors, staff, and volunteers enhance their understanding of building science; sales and marketing; program offerings; and business development. This toolkit is the fourth Residential Network

  6. Better Buildings Network View, September 2016

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    September 2016 News From the Field New Network Case Study Shares Multifamily Finance Success The New York City Energy Efficiency Corporation (NYCEEC) is a Residential Network member that focuses on financing energy efficiency and clean energy upgrades for multifamily buildings in the city and surrounding communities. Following is one of the key takeaways from a recent Residential Network case study interview with NYCEEC Director of Business Development Jay Merves. What is your approach for

  7. Better Buildings Residential Network Social Media Toolkit

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Social Media Toolkit BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.gov/bbrn 1 T his Better Buildings Residential Network toolkit can be used to help residential energy efficiency programs learn to engage potential customers through social media. Social media can build brand awareness concerning home energy upgrades and the entities working on them, which can lead to more energy upgrade projects taking place in the long run. Residential Network members provided input

  8. BetterBuildings Network View | December 2014

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    December 2014 News From the Field December 2014 Residential Network Members Impact More Than 42,000 Households in 2013 Eligible Better Buildings Residential Network members reported completing 27,563 home energy upgrades during 2013 as part of the Residential Network's first reporting cycle. In addition, 13 Better Buildings Neighborhood Program partners completed 12,166 home energy upgrades, and six Home Performance with ENERGY STARĀ® Sponsors completed 2,540 home energy upgrades, which are

  9. BetterBuildings Network View, June 2014

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Better Buildings Network View | June 2014 More Than 60 Georgetown University Energy Prize Communities Join the Residential Network in Bulk The Better Buildings Residential Network announced an agreement with the Georgetown University Energy Prize (GUEP) competition to welcome all participating communities as members, which brings the total number to more than 130. More than 60 new members, representing cities and counties with populations between 5,000 and 250,000, will significantly expand the

  10. Better Buildings Residential Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Residential Network Members Residential Resources Download the Social Media Toolkit. New ... Successful Quality Assurance and Quality Control Programs (101) January 28, 2016 Einstein ...

  11. July 2016 National Idling Reduction Network News

    Energy.gov [DOE]

    The National Idling Reduction Network brings together trucking and transit companies; railroads; ports; equipment manufacturers; Federal, state, and local government agencies (including regulators)...

  12. Organizations and Networks | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Network (CLEAN) CLEAN aims to improve communication and coordination by bringing together national and international organizations that are assisting developing countries with...

  13. Social Network and Communications Institutional Change Principle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The following case studies demonstrate successful applications of the social network and communications principle by federal agencies. Data, Feedback, and Awareness Lead to Big ...

  14. Analysis of TPV Network Losses (a Presentation)

    SciTech Connect

    DM DePoy; MW Dashiell; DD Rahner; LR Danielson; JE Oppenlander; JL Vell; RJ Wehrer

    2004-12-08

    This talk focuses on the theoretical analysis of electrical losses associated with electrically networking large numbers of TPV cells to produce high power TPV power generators.

  15. Energy Systems Network ESN | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    associations and breakthroughs in cleantech which help promote growth in the local economy. References: Energy Systems Network (ESN)1 This article is a stub. You can help...

  16. Vihaan Networks Limited VNL | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name: Vihaan Networks Limited (VNL) Place: Gurgaon, Haryana, India Zip: 122015 Sector: Solar Product: Developer of solar-powered GSM system for rural...

  17. Photoresponsive Liquid Crystalline Epoxy Networks with Shape...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Photoresponsive Liquid Crystalline Epoxy Networks with Shape Memory ... Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud ...

  18. Aries Network Performance Counters Monitoring Library

    Energy Science and Technology Software Center

    2014-09-04

    AriesNCL is a library to monitor and record network router tile performance counters on the Aries router of Cray's Cascade/XC30 platform.

  19. Rainforest Action Network RAN | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    pressure corporations into publicly adopting policies that protect rainforests and the human rights of those living in those areas. References: Rainforest Action Network (RAN)1...

  20. Engine Combustion Network (ECN): Global sensitivity analysis...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    10 Date Published June 2015 Keywords diesel, Engine Combustion Network, global sensitivity ... The uncertainty in the fuel temperature was found to have a profound influence on the ...

  1. Better Buildings Residential Network Program Sustainability Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Residential Network Program Sustainability Peer Exchange Call: Operating as a Prime ... to Utilities: 50% Long-Term Sustainability of Loan Funds: 50% * Participants ...

  2. Porous Polymer Networks: Synthesis, Porosity, and Applications...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas StorageSeparation Previous Next List Weigang Lu, Daqiang Yuan, Dan Zhao, Christine Inge Schilling, Oliver...

  3. Better Buildings Residential Network Workforce Peer Exchange...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Community Power Works Program Senior Building Scientist at CLEAResult Community Power Works Quality Assurance Better Buildings Residential Network March, 2014 Dan Wildenhaus QC and ...

  4. Better Buildings Residential Network Membership Form, January...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Network members to create new resources to help them overcome implementation challenges Opportunities for shared, voluntary program benchmarking for comparing efforts...

  5. Thermoelectric properties of semiconductor nanowire networks

    DOE PAGES [OSTI]

    Roslyak, Oleksiy; Piryatinski, Andrei

    2016-03-28

    To examine the thermoelectric (TE) properties of a semiconductor nanowire (NW) network, we propose a theoretical approach mapping the TE network on a two-port network. In contrast to a conventional single-port (i.e., resistor)network model, our model allows for large scale calculations showing convergence of TE figure of merit, ZT, with an increasing number of junctions. Using this model, numerical simulations are performed for the Bi2Te3 branched nanowire (BNW) and Cayley tree NW (CTNW) network. We find that the phonon scattering at the network junctions plays a dominant role in enhancing the network ZT. Specifically, disordered BNW and CTNW demonstrate anmoreĀ Ā» order of magnitude higher ZT enhancement compared to their ordered counterparts. Formation of preferential TE pathways in CTNW makes the network effectively behave as its BNW counterpart. In conclusion, we provide formalism for simulating large scale nanowire networks hinged upon experimentally measurable TE parameters of a single T-junction.Ā«Ā less

  6. Broadband Energy Networks Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Darby, Pennsylvania Zip: 19082 Product: Provides automated equipment and usage monitoring systems for energy management. References: Broadband Energy Networks Inc1 This article...

  7. Neural network based system for equipment surveillance

    DOEpatents

    Vilim, Richard B.; Gross, Kenneth C.; Wegerich, Stephan W.

    1998-01-01

    A method and system for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process.

  8. Neural network based system for equipment surveillance

    DOEpatents

    Vilim, R.B.; Gross, K.C.; Wegerich, S.W.

    1998-04-28

    A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.

  9. Benefits of Better Buildings Residential Network Reporting

    Energy.gov [DOE]

    Better Buildings Residential Network All-Member Peer Exchange Call: Member Reporting and Benefits, Call Slides and Discussion Summary, May 22, 2014.

  10. Sensors, Controls, & Transactional Network Reports | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Network Reports Buildings-to-Grid Technical Opportunities: Introduction and Vision (Mar 2014) Buildings-to-Grid Technical Opportunities: From the Buildings Perspective (Mar...

  11. Better Buildings Residential Network Orientation Webinar, Call...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Juan Islands Conservation District Solar and Energy Loan Fund (SELF) Solar City ...ildings-residential-network Home Energy Pros Group Home Energy Pros Group (Cont.) ...

  12. Better Buildings Residential Network Financing & Revenue Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Residential Network Group on Home Energy Pros Join to access: Peer exchange call ... Efficiency Loans) * Connecticut's Solar Leasing Program * Kentucky Home ...

  13. Better Buildings Network View, November 2014

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Residential Network Group to participate in the online community on Home Energy Pros. ... PM EST Register now Combining Solar and Home Performance Services** 3:00-4:30 ...

  14. Better Buildings Residential Network Program Sustainability Mastermind...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nevada Philadelphia, Pennsylvania Portland, Oregon Solar and Energy Loan Fund (St. ... Network Group on Home Energy Pros Join to access: Peer exchange call ...

  15. Better Buildings Residential Network Marketing & Outreach Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Residential Network Group on Home Energy Pros Join to access: Peer exchange call ... Power and Light- now looking at solar * Energy champions and outreach materials. ...

  16. SkyPilot Networks | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    California Product: US-based provider of broadband wireless solutions to utilities, public service agencies and municipalities. References: SkyPilot Networks1 This article...

  17. Better Buildings Residential Network Orientation Webinar | Department...

    Energy Saver

    May 14, 2015. Call Slides and Discussion Summary (2.01 MB) More Documents & Publications Better Buildings Residential Network Orientation Webinar Better Buildings Residential ...

  18. Fact Sheet: Better Buildings Residential Network | Department...

    Energy.gov [DOE] (indexed site)

    Fact Sheet: Better Buildings Residential Network, increasing the number of American Homes that are energy efficient. BBRN Fact Sheet (428.79 KB) More Documents & Publications ...

  19. Membership Criteria: Better Buildings Residential Network | Department...

    Energy.gov [DOE] (indexed site)

    Membership Criteria: Better Buildings Residential Network of the U.S. Department of Energy. Membership Criteria (126.27 KB) More Documents & Publications Better Buildings ...

  20. Better Buildings Network View July 2015

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Buildings Residential Network has developed a Social Media Toolkit to help residential energy efficiency programs assess and determine the best social media platforms for their ...

  1. Understanding Sampling Network Coverage Maddalena, Damian; Hoffman...

    Office of Scientific and Technical Information (OSTI)

    and quantitative representativeness maps of individual and combined networks. ORNL Climate Change Science Institute (CCSI), Oak Ridge National Laboratory (ORNL), Oak Rdige,...

  2. Matching network for RF plasma source

    DOEpatents

    Pickard, Daniel S.; Leung, Ka-Ngo

    2007-11-20

    A compact matching network couples an RF power supply to an RF antenna in a plasma generator. The simple and compact impedance matching network matches the plasma load to the impedance of a coaxial transmission line and the output impedance of an RF amplifier at radio frequencies. The matching network is formed of a resonantly tuned circuit formed of a variable capacitor and an inductor in a series resonance configuration, and a ferrite core transformer coupled to the resonantly tuned circuit. This matching network is compact enough to fit in existing compact focused ion beam systems.

  3. How Can the Network Meet Your Needs?

    Energy.gov [DOE]

    Better Buildings Residential Program Peer Exchange Call: How Can the Network Meet Your Needs? Call Slides and Meeting Summary, February 27, 2014.

  4. ESnet: a Production IPv6 Network

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    IPv6 Network In anticipation of the scalability problems with IPv4 (the current Internet Protocol), the Internet Engineering Task Force (IETF) has produced a comprehensive...

  5. Epidemic Percolation Networks, Epidemic Outcomes, and Interventions

    DOE PAGES [OSTI]

    Kenah, Eben; Miller, Joel C.

    2011-01-01

    Epidemic percolation networks (EPNs) are directed random networks that can be used to analyze stochastic ā€œSusceptible-Infectious-Removedā€ (SIR) and ā€œSusceptible-Exposed-Infectious-Removedā€ (SEIR) epidemic models, unifying and generalizing previous uses of networks and branching processes to analyze mass-action and network-based S(E)IR models. This paper explains the fundamental concepts underlying the definition and use of EPNs, using them to build intuition about the final outcomes of epidemics. We then show how EPNs provide a novel and useful perspective on the design of vaccination strategies.

  6. Solar Action Network | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Solar Action Network Address: PO Box 15546 Place: San Luis Obispo, California Zip: 93401 Phone Number: 5058476527 Website:...

  7. Electronic networking and sustainable development

    SciTech Connect

    Daudpota, Q.I.

    1995-12-01

    To increase the capacity of institutions in various countries to implement the ambitious plans of Agenda 21, the United Nations Development Programme (UNDP) set up the Sustainable Development Networking Programme (SDNP) to help the process of sustainable development nationally and globally. Started initially in 15 developing countries, SDNPs are considered as a medium for individuals, organizations and governments to communicate ideas, share information resources, and exchange experiences among each other and globally to learn the appropriate ways to solve our ecological problems. The paper will review the idea of SDNPs globally and will describe in detail its successful implementation in Pakistan. In a country with, hitherto, virtually no electronic mail service, the SDNP has shown how its provision has had a significant impact on obtaining useful information on environmental problems, and in one case has helped save lives. SDNP Pakistan has made an effort to demonstrate the benefits of electronic communications to wide range users in the country. Some of these will be described. It is suggested how electronic networks linking organizations and people in the developing world with experts, organizations and data sources internationally, can greatly assist developmental effort globally.

  8. Better Buildings Residential Network Orientation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Orientation Better Buildings Residential Network Orientation Better Buildings Residential Network (BBRN) Orientation Call Slides and Summary, March 27, 2014. Call Slides and Summary (2.69 MB) More Documents & Publications Better Buildings Residential Network Orientation Webinar Better Buildings Residential Network Orientation Webinar How Can the Network Meet Your Needs?

  9. The second-phase development of the China JinPing underground...

    Office of Scientific and Technical Information (OSTI)

    away from the main water transport and auto traffic tunnels. ... well as for geophysicsengineering and other coupled ... Language: English Subject: deep underground laboratory; ...

  10. Hye Jin Choi | Center for Gas SeparationsRelevant to Clean Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    BA in Chemistry Education, Seoul National University, South Korea MS in Chemistry Education, Seoul National University, South Korea PhD in Chemistry, Seoul National University, ...

  11. Southeast Energy Efficiency Alliance Launches Finance Network

    Energy.gov [DOE]

    The Southeast Energy Efficiency Alliance (SEEA)ā€”a Better Buildings Residential Network member and Better Buildings Neighborhood Program partnerā€”and the University of North Carolina at Chapel Hill Environmental Finance Center recently announced the launch of the Southeast Energy Efficiency Finance Network.

  12. Analysis of complex networks using aggressive abstraction.

    SciTech Connect

    Colbaugh, Richard; Glass, Kristin.; Willard, Gerald

    2008-10-01

    This paper presents a new methodology for analyzing complex networks in which the network of interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is performed using the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit abstractions that are simultaneously dramatically simplifying and property preserving - we call these aggressive abstractions -- and which can therefore be analyzed using the proposed approach. We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) onedimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful way using a single scalar variable. In each case, the property preserving nature of the abstraction process is rigorously established and efficient algorithms are presented for computing the abstraction. The considerable potential of the proposed approach to complex networks analysis is illustrated through case studies involving vulnerability analysis of technological networks and predictive analysis for social processes.

  13. Network architecture functional description and design

    SciTech Connect

    Stans, L.; Bencoe, M.; Brown, D.; Kelly, S.; Pierson, L.; Schaldach, C.

    1989-05-25

    This report provides a top level functional description and design for the development and implementation of the central network to support the next generation of SNL, Albuquerque supercomputer in a UNIX{reg sign} environment. It describes the network functions and provides an architecture and topology.

  14. Biological and Environmental Research Network Requirements

    SciTech Connect

    Balaji, V.; Boden, Tom; Cowley, Dave; Dart, Eli; Dattoria, Vince; Desai, Narayan; Egan, Rob; Foster, Ian; Goldstone, Robin; Gregurick, Susan; Houghton, John; Izaurralde, Cesar; Johnston, Bill; Joseph, Renu; Kleese-van Dam, Kerstin; Lipton, Mary; Monga, Inder; Pritchard, Matt; Rotman, Lauren; Strand, Gary; Stuart, Cory; Tatusova, Tatiana; Tierney, Brian; Thomas, Brian; Williams, Dean N.; Zurawski, Jason

    2013-09-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet be a highly successful enabler of scientific discovery for over 25 years. In November 2012, ESnet and the Office of Biological and Environmental Research (BER) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the BER program office. Several key findings resulted from the review. Among them: 1) The scale of data sets available to science collaborations continues to increase exponentially. This has broad impact, both on the network and on the computational and storage systems connected to the network. 2) Many science collaborations require assistance to cope with the systems and network engineering challenges inherent in managing the rapid growth in data scale. 3) Several science domains operate distributed facilities that rely on high-performance networking for success. Key examples illustrated in this report include the Earth System Grid Federation (ESGF) and the Systems Biology Knowledgebase (KBase). This report expands on these points, and addresses others as well. The report contains a findings section as well as the text of the case studies discussed at the review.

  15. Advanced mobile networking, sensing, and controls.

    SciTech Connect

    Feddema, John Todd; Kilman, Dominique Marie; Byrne, Raymond Harry; Young, Joseph G.; Lewis, Christopher L.; Van Leeuwen, Brian P.; Robinett, Rush D. III; Harrington, John J.

    2005-03-01

    This report describes an integrated approach for designing communication, sensing, and control systems for mobile distributed systems. Graph theoretic methods are used to analyze the input/output reachability and structural controllability and observability of a decentralized system. Embedded in each network node, this analysis will automatically reconfigure an ad hoc communication network for the sensing and control task at hand. The graph analysis can also be used to create the optimal communication flow control based upon the spatial distribution of the network nodes. Edge coloring algorithms tell us that the minimum number of time slots in a planar network is equal to either the maximum number of adjacent nodes (or degree) of the undirected graph plus some small number. Therefore, the more spread out that the nodes are, the fewer number of time slots are needed for communication, and the smaller the latency between nodes. In a coupled system, this results in a more responsive sensor network and control system. Network protocols are developed to propagate this information, and distributed algorithms are developed to automatically adjust the number of time slots available for communication. These protocols and algorithms must be extremely efficient and only updated as network nodes move. In addition, queuing theory is used to analyze the delay characteristics of Carrier Sense Multiple Access (CSMA) networks. This report documents the analysis, simulation, and implementation of these algorithms performed under this Laboratory Directed Research and Development (LDRD) effort.

  16. Peeking Network States with Clustered Patterns

    SciTech Connect

    Kim, Jinoh; Sim, Alex

    2015-10-20

    Network traffic monitoring has long been a core element for effec- tive network management and security. However, it is still a chal- lenging task with a high degree of complexity for comprehensive analysis when considering multiple variables and ever-increasing traffic volumes to monitor. For example, one of the widely con- sidered approaches is to scrutinize probabilistic distributions, but it poses a scalability concern and multivariate analysis is not gen- erally supported due to the exponential increase of the complexity. In this work, we propose a novel method for network traffic moni- toring based on clustering, one of the powerful deep-learning tech- niques. We show that the new approach enables us to recognize clustered results as patterns representing the network states, which can then be utilized to evaluate ā€œsimilarityā€ of network states over time. In addition, we define a new quantitative measure for the similarity between two compared network states observed in dif- ferent time windows, as a supportive means for intuitive analysis. Finally, we demonstrate the clustering-based network monitoring with public traffic traces, and show that the proposed approach us- ing the clustering method has a great opportunity for feasible, cost- effective network monitoring.

  17. Energy efficient sensor network implementations

    SciTech Connect

    Frigo, Janette R; Raby, Eric Y; Brennan, Sean M; Kulathumani, Vinod; Rosten, Ed; Wolinski, Christophe; Wagner, Charles; Charot, Francois

    2009-01-01

    In this paper, we discuss a low power embedded sensor node architecture we are developing for distributed sensor network systems deployed in a natural environment. In particular, we examine the sensor node for energy efficient processing-at-the-sensor. We analyze the following modes of operation; event detection, sleep(wake-up), data acquisition, data processing modes using low power, high performance embedded technology such as specialized embedded DSP processors and a low power FPGAs at the sensing node. We use compute intensive sensor node applications: an acoustic vehicle classifier (frequency domain analysis) and a video license plate identification application (learning algorithm) as a case study. We report performance and total energy usage for our system implementations and discuss the system architecture design trade offs.

  18. Nanofluidic interfaces in microfluidic networks

    DOE PAGES [OSTI]

    Millet, Larry J.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-09-24

    The integration of nano- and microfluidic technologies enables the construction of tunable interfaces to physical and biological systems across relevant length scales. The ability to perform chemical manipulations of miniscule sample volumes is greatly enhanced through these technologies and extends the ability to manipulate and sample the local fluidic environments at subcellular, cellular and community or tissue scales. Here we describe the development of a flexible surface micromachining process for the creation of nanofluidic channel arrays integrated within SU-8 microfluidic networks. The use of a semi-porous, silicon rich, silicon nitride structural layer allows rapid release of the sacrificial silicon dioxidemoreĀ Ā» during the nanochannel fabrication. Nanochannel openings that form the interface to biological samples are customized using focused ion beam milling. The compatibility of these interfaces with on-chip microbial culture is demonstrated.Ā«Ā less

  19. Nanofluidic interfaces in microfluidic networks

    SciTech Connect

    Millet, Larry J.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-09-24

    The integration of nano- and microfluidic technologies enables the construction of tunable interfaces to physical and biological systems across relevant length scales. The ability to perform chemical manipulations of miniscule sample volumes is greatly enhanced through these technologies and extends the ability to manipulate and sample the local fluidic environments at subcellular, cellular and community or tissue scales. Here we describe the development of a flexible surface micromachining process for the creation of nanofluidic channel arrays integrated within SU-8 microfluidic networks. The use of a semi-porous, silicon rich, silicon nitride structural layer allows rapid release of the sacrificial silicon dioxide during the nanochannel fabrication. Nanochannel openings that form the interface to biological samples are customized using focused ion beam milling. The compatibility of these interfaces with on-chip microbial culture is demonstrated.

  20. Instantiating a Global Network Measurement Framework

    SciTech Connect

    Tierney, Brian L.; Boote, Jeff; Boyd, Eric; Brown, Aaron; Grigoriev, Maxim; Metzger, Joe; Swany, Martin; Zekauskas, Matt; Zurawski, Jason

    2008-12-15

    perfSONAR is a web services-based infrastructure for collecting and publishing network performance monitoring. A primary goal of perfSONAR is making it easier to solve end-to-end performance problems on paths crossing several networks. It contains a set of services delivering performance measurements in a federated environment. These services act as an intermediate layer, between the performance measurement tools and the diagnostic or visualization applications. This layer is aimed at making and exchanging performance measurements across multiple networks and multiple user communities, using well-defined protocols. This paper summarizes the key perfSONAR components, and describes how they are deployed by the US-LHC community to monitor the networks distributing LHC data from CERN. All monitoring data described herein is publicly available, and we hope the availability of this data via a standard schema will inspire others to contribute to the effort by building network data analysis applications that use perfSONAR.

  1. High-speed, intra-system networks

    SciTech Connect

    Quinn, Heather M; Graham, Paul S; Manuzzato, Andrea; Fairbanks, Tom; Dallmann, Nicholas; Desgeorges, Rose

    2010-06-28

    Recently, engineers have been studying on-payload networks for fast communication paths. Using intra-system networks as a means to connect devices together allows for a flexible payload design that does not rely on dedicated communication paths between devices. In this manner, the data flow architecture of the system can be dynamically reconfigured to allow data routes to be optimized for the application or configured to route around devices that are temporarily or permanently unavailable. To use intra-system networks, devices will need network controllers and switches. These devices are likely to be affected by single-event effects, which could affect data communication. In this paper we will present radiation data and performance analysis for using a Broadcom network controller in a neutron environment.

  2. ESnet - the energy sciences network strategic plan

    SciTech Connect

    1996-12-01

    The goal of the Energy Sciences Network (ESnet) Program is to provide a highly capable and reliable communications infrastructure that supports the Department of Energy`s (DOE) missions and enables DOE researchers to tap the power of leading-edge information technologies. ESnet provides an essential infrastructure that enhances national competitiveness and accelerates the development of future generations of high-performance, distributed computing systems and networks. These computing systems and networks are vital to modern scientific research. In addition, they enable development of new approaches to energy management, environmental restoration and waste management, national security, industrial processing, and health care, and also facilitate public access to government information. Extensive networks developed by the DOE`s high-energy physics and fusion energy research communities were the forerunners of the ESnet. These networks initially provided improved access to high-energy accelerator sites and to the Magnetic Fusion Energy Supercomputer Center, which opened at Lawrence Livermore National Laboratory in 1974.

  3. DOE Science Networking Challenge: Roadmap to 2008

    SciTech Connect

    R. Roy Whitney; Larry Price

    2003-06-01

    This report establishes a roadmap for a new approach to the DOE Science Networking and Services needed for science in the U.S. Department of Energy in the 21st century. It has become increasingly clear 2 that the network provided for DOE science in the past will not be adequate to keep that science competitive in the future. This roadmap, if implemented and followed during the next five years, will solve that problem. The past 5 years have seen a broad and general movement toward the assumption of and reliance on networked systems in all of the large new initiatives for DOE science. It is clear that the success of science depends increasingly on the ability of scientists to move large amounts of data, access computing and data resources, and collaborate in real time from multiple remote locations. It is also abundantly clear that business-as-usual in the network and information services that underpin the scientific collaborations will fall woefully short of what is needed. New capabilities such as computational and data grids, high-speed wireless networking, super-high-speed metro-scale networks, and cheap gigabit Ethernet have arrived in turn and have been enthusiastically incorporated into the arsenal of science, each permitting substantial new collaborative abilities and efficiencies. However, sophisticated structures and services using basic network connections can be used effectively only if the network infrastructure itself provides the necessary environment. Increasingly, the network must become a collaborative information exchange, with a core of higher-level services supported by network providers in addition to basic bandwidth and connectivity.

  4. E-print Network : Main View : Deep Federated Search

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    javascript. Home About Contact Us Help E-print Network Search Powered By Deep Web Technologies New Search Preferences E-print Network E-print Network Skip to main content FAQ *...

  5. Silver Spring Networks comments on DOE NBP RFI: Data Access ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Data Access Silver Spring Networks comments on DOE NBP RFI: Data Access Silver Spring Networks comments on DOE NBP RFI: Data Access Silver Spring Networks comments on DOE NBP RFI: ...

  6. High Energy Physics and Nuclear Physics Network Requirements...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: High Energy Physics and Nuclear Physics Network Requirements Citation Details In-Document Search Title: High Energy Physics and Nuclear Physics Network ...

  7. E-print Network home page -- Energy, science, and technology...

    Office of Scientific and Technical Information (OSTI)

    Energy, science, and technology for the research community Enter Search Terms Search Advanced Search The E-print Network is . . . . . . a vast, integrated network of electronic ...

  8. Best Practices for Fostering and Using Contractor Networks (101)

    Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Best Practices for Fostering and Using Contractor Networks (101), call slides and discussion summary.

  9. Active Network Management (Smart Grid Project) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Network Management (Smart Grid Project) Jump to: navigation, search Project Name Active Network Management Country United Kingdom Coordinates 55.378052, -3.435973 Loading...

  10. 21 Steps to Improve Cyber Security of SCADA Networks | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SCADA Networks 21 Steps to Improve Cyber Security of SCADA Networks Supervisory control ... natural gas, gasoline, water, waste treatment, transportation) to all Americans. ...

  11. Reducing Configuration Complexity with Next Gen IoT Networks

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reducing Configuration Complexity with Next Gen IoT Networks Orama Inc. November, 2015 1 Network Lighting Controls Low Penetration - Why? * Commissioning is very time-consuming & ...

  12. Clean Economy Network-Rockies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Economy Network-Rockies Jump to: navigation, search Name: Clean Economy Network-Rockies Place: Denver, CO Region: Rockies Area Website: rockies.cleaneconomynetwork.or Coordinates:...

  13. V-125: Cisco Connected Grid Network Management System Multiple...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5: Cisco Connected Grid Network Management System Multiple Vulnerabilities V-125: Cisco Connected Grid Network Management System Multiple Vulnerabilities April 3, 2013 - 1:44am...

  14. Solar Energy Sources SES Solar Inc formerly Electric Network...

    OpenEI (Open Energy Information) [EERE & EIA]

    SES Solar Inc formerly Electric Network com Jump to: navigation, search Name: Solar Energy Sources - SES Solar Inc (formerly Electric Network.com) Place: Vancouver, British...

  15. Renewable Energy Network of Entrepreneurs in Western New York...

    OpenEI (Open Energy Information) [EERE & EIA]

    York Jump to: navigation, search Logo: Renewable Energy Network of Entrepreneurs in Western New York Name: Renewable Energy Network of Entrepreneurs in Western New York Address:...

  16. World Renewable Energy Network WREN | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Renewable Energy Network WREN Jump to: navigation, search Name: World Renewable Energy Network (WREN) Place: Brighton, United Kingdom Zip: BN2 1YH Sector: Renewable Energy Product:...

  17. ESnet Support for WAN Data Movement Eli Dart, Network Engineer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... use of the network is now gated on two things * End system resources, particularly ... to major science networks (CENIC, Internet2) * Performance Assurance using ...

  18. Fusion Energy Sciences Network Requirements Review Final Report

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fusion Energy Sciences Network Requirements Review Final Report Office of Fusion Energy Sciences, DOE Office of Science Energy Sciences Network (ESnet) Germantown, Maryland August ...

  19. Wireless Sensor Network for Electric Transmission Line Monitoring...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Wireless Sensor Network for Electric Transmission Line Monitoring Citation Details In-Document Search Title: Wireless Sensor Network for Electric Transmission ...

  20. Blue Gene/Q Network Performance Counters Monitoring Library

    Energy Science and Technology Software Center

    2015-03-12

    BGQNCL is a library to monitor and record network performance counters on the 5D torus interconnection network of IBM's Blue Gene/Q platform.

  1. Representativeness-based Sampling Network Design for the State...

    Office of Scientific and Technical Information (OSTI)

    Representativeness-based Sampling Network Design for the State of Alaska Citation Details In-Document Search Title: Representativeness-based Sampling Network Design for the State...

  2. Representativeness-Based Sampling Network Design for the State...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Representativeness-Based Sampling Network Design for the State of Alaska Citation Details In-Document Search Title: Representativeness-Based Sampling Network...

  3. Better Buildings Network View | October 2014 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    October 2014 Better Buildings Network View | October 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential ...

  4. V-120: EMC Smarts Network Configuration Manager Java RMI Access...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0: EMC Smarts Network Configuration Manager Java RMI Access Control Flaw Lets Remote Users Gain Full Control V-120: EMC Smarts Network Configuration Manager Java RMI Access Control...

  5. Fact #855 January 12, 2015 Electric Vehicle Chargers by Network...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 January 12, 2015 Electric Vehicle Chargers by Network and State Fact 855 January 12, 2015 Electric Vehicle Chargers by Network and State The Department of Energy's Alternative ...

  6. Fact #855 January 12, 2015 Electric Vehicle Chargers by Network...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 January 12, 2015 Electric Vehicle Chargers by Network and State - Dataset Fact 855 January 12, 2015 Electric Vehicle Chargers by Network and State - Dataset Excel file with ...

  7. New York Industrial Partnership Network | Department of Energy

    Energy Saver

    York Industrial Partnership Network New York Industrial Partnership Network Map highlighting New York State Recognizing the potential for increased energy and cost savings, the New ...

  8. ASEM Green Independent Power Producers Network | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    ASEM Green Independent Power Producers Network Jump to: navigation, search Name: ASEM Green Independent Power Producers Network Place: Germany Sector: Renewable Energy Product: A...

  9. Network for ab initio Many-body Methods: Development, Education...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Miguel Morales is Prinicipal Investigator on Network for ab initio Many-body Methods: Development, Education and Training. Network for ab initio Many-body Methods: Development,...

  10. Emerson Network Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Co Ltd Jump to: navigation, search Name: Emerson Network Power Co Ltd Place: Canada Product: Power network developer. Involved in fuel cell power research consortia....

  11. Better Buildings Network View | September 2014 | Department of...

    Office of Environmental Management (EM)

    newsletter from the U.S. Department of Energy's Better Buildings Residential Network. ... Network View | December 2014 On-Bill Financing for Energy Efficiency Improvements Toolkit

  12. Better Buildings Residential Network: Lessons Learned: Peer Exchange...

    Energy Saver

    Buildings Residential Network: Lessons Learned: Peer Exchange Calls Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls, from the U.S. Department of Energy. ...

  13. How Can the Network Meet Your Needs? | Department of Energy

    Energy Saver

    How Can the Network Meet Your Needs? Better Buildings Residential Program Peer Exchange ... More Documents & Publications Better Buildings Residential Network Orientation Key ...

  14. Residential Network Members Impact More Than 42,000 Households...

    Energy.gov [DOE] (indexed site)

    row of townhomes. Eligible Better Buildings Residential Network members reported completing 27,563 home energy upgrades during 2013 as part of the Residential Network's first ...

  15. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 Better Buildings Residential Network Better Buildings Residential Network: Connects energy efficiency programs and partners to share best practices to increase the ...

  16. Silver Spring Networks comments on DOE NBP RFI: Comms Requirements...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Comms Requirements Silver Spring Networks comments on DOE NBP RFI: Comms Requirements Comments of Silver Spring Networks on Implementing the National Broadband Plan by Studying the ...

  17. Comments of Tendril Networks, Inc. on DOE Request for Information...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tendril Networks, Inc. on DOE Request for Information (RFI) from the Department of Energy ... Comments of Tendril Networks, Inc. on DOE Request for Information (RFI) from the ...

  18. New Incubator Network to Help Clean-Energy Entrepreneurs - News...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New Incubator Network to Help Clean-Energy Entrepreneurs February 4, 2015 The Energy ... Electric Power Research Institute (EPRI) have launched the Clean Energy Incubator Network. ...

  19. Kinetic analysis of complex metabolic networks

    SciTech Connect

    Stephanopoulos, G.

    1996-12-31

    A new methodology is presented for the analysis of complex metabolic networks with the goal of metabolite overproduction. The objective is to locate a small number of reaction steps in a network that have maximum impact on network flux amplification and whose rate can also be increased without functional network derangement. This method extends the concepts of Metabolic Control Analysis to groups of reactions and offers the means for calculating group control coefficients as measures of the control exercised by groups of reactions on the overall network fluxes and intracellular metabolite pools. It is further demonstrated that the optimal strategy for the effective increase of network fluxes, while maintaining an uninterrupted supply of intermediate metabolites, is through the coordinated amplification of multiple (as opposed to a single) reaction steps. Satisfying this requirement invokes the concept of the concentration control to coefficient, which emerges as a critical parameter in the identification of feasible enzymatic modifications with maximal impact on the network flux. A case study of aromatic aminoacid production is provided to illustrate these concepts.

  20. Integrated network design and scheduling problems :

    SciTech Connect

    Nurre, Sarah G.; Carlson, Jeffrey J.

    2014-01-01

    We consider the class of integrated network design and scheduling problems. These problems focus on selecting and scheduling operations that will change the characteristics of a network, while being speci cally concerned with the performance of the network over time. Motivating applications of INDS problems include infrastructure restoration after extreme events and building humanitarian distribution supply chains. While similar models have been proposed, no one has performed an extensive review of INDS problems from their complexity, network and scheduling characteristics, information, and solution methods. We examine INDS problems under a parallel identical machine scheduling environment where the performance of the network is evaluated by solving classic network optimization problems. We classify that all considered INDS problems as NP-Hard and propose a novel heuristic dispatching rule algorithm that selects and schedules sets of arcs based on their interactions in the network. We present computational analysis based on realistic data sets representing the infrastructures of coastal New Hanover County, North Carolina, lower Manhattan, New York, and a realistic arti cial community CLARC County. These tests demonstrate the importance of a dispatching rule to arrive at near-optimal solutions during real-time decision making activities. We extend INDS problems to incorporate release dates which represent the earliest an operation can be performed and exible release dates through the introduction of specialized machine(s) that can perform work to move the release date earlier in time. An online optimization setting is explored where the release date of a component is not known.

  1. Intrusion detection and monitoring for wireless networks.

    SciTech Connect

    Thomas, Eric D.; Van Randwyk, Jamie A.; Lee, Erik J.; Stephano, Amanda; Tabriz, Parisa; Pelon, Kristen; McCoy, Damon (University of Colorado, Boulder); Lodato, Mark; Hemingway, Franklin; Custer, Ryan P.; Averin, Dimitry; Franklin, Jason; Kilman, Dominique Marie

    2005-11-01

    Wireless computer networks are increasing exponentially around the world. They are being implemented in both the unlicensed radio frequency (RF) spectrum (IEEE 802.11a/b/g) and the licensed spectrum (e.g., Firetide [1] and Motorola Canopy [2]). Wireless networks operating in the unlicensed spectrum are by far the most popular wireless computer networks in existence. The open (i.e., proprietary) nature of the IEEE 802.11 protocols and the availability of ''free'' RF spectrum have encouraged many producers of enterprise and common off-the-shelf (COTS) computer networking equipment to jump into the wireless arena. Competition between these companies has driven down the price of 802.11 wireless networking equipment and has improved user experiences with such equipment. The end result has been an increased adoption of the equipment by businesses and consumers, the establishment of the Wi-Fi Alliance [3], and widespread use of the Alliance's ''Wi-Fi'' moniker to describe these networks. Consumers use 802.11 equipment at home to reduce the burden of running wires in existing construction, facilitate the sharing of broadband Internet services with roommates or neighbors, and increase their range of ''connectedness''. Private businesses and government entities (at all levels) are deploying wireless networks to reduce wiring costs, increase employee mobility, enable non-employees to access the Internet, and create an added revenue stream to their existing business models (coffee houses, airports, hotels, etc.). Municipalities (Philadelphia; San Francisco; Grand Haven, MI) are deploying wireless networks so they can bring broadband Internet access to places lacking such access; offer limited-speed broadband access to impoverished communities; offer broadband in places, such as marinas and state parks, that are passed over by traditional broadband providers; and provide themselves with higher quality, more complete network coverage for use by emergency responders and other

  2. Characterization of the Weatherization Assistance Program network

    SciTech Connect

    Mihlmester, P.E.; Koehler, W.C. Jr.; Beyer, M.A. . Applied Management Sciences Div.); Brown, M.A. ); Beschen, D.A. Jr. . Office of Weatherization Assistance Programs)

    1992-02-01

    The Characterization of the Weatherization Assistance Program (WAP) Network was designed to describe the national network of State and local agencies that provide WAP services to qualifying low-income households. The objective of this study was to profile the current WAP network. To achieve the objective, two national surveys were conducted: one survey collected data from 49 State WAP agencies (including the coterminous 48 States and the District of Columbia), and the second survey collected data from 920 (or 81 percent) of the local WAP agencies.

  3. Computationally Efficient Neural Network Intrusion Security Awareness

    SciTech Connect

    Todd Vollmer; Milos Manic

    2009-08-01

    An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.

  4. Web100-based Network Diagnostic Tool

    Energy Science and Technology Software Center

    2003-03-20

    NDT is a client/server based network diagnostic tool developed to aid in finding network performance and configuration problems. The tool measures data transfer rates between two internet hosts (client and server). It also gathers detailed TCP statistical variable counters supplied by the Web100 modified server and uses these TCP variables to compute the theoretical performance rate between the two internet hosts. It then compares these analytical results with the measured results to determine if performancemoreĀ Ā» or configuration problems exist and translates these results into plain text messages to aid users and network operators in resolving reported problems.Ā«Ā less

  5. Visual Matrix Clustering of Social Networks

    SciTech Connect

    Wong, Pak C.; Mackey, Patrick S.; Foote, Harlan P.; May, Richard A.

    2013-07-01

    The prevailing choices to graphically represent a social network in today’s literature are a node-link graph layout and an adjacency matrix. Both visualization techniques have unique strengths and weaknesses when applied to different domain applications. In this article, we focus our discussion on adjacency matrix and how to turn the matrix-based visualization technique from merely showing pairwise associations among network actors (or graph nodes) to depicting clusters of a social network. We also use node-link layouts to supplement the discussion.

  6. Software security for a network storage service

    SciTech Connect

    Haynes, R.A.; Kelly, S.M.

    1992-09-01

    In 1991, Sandia National Laboratories acquired a Network Storage Service (NSS) as a result of a fully competitive procurement. The Network Storage Service, which provides access to over a terabyte of data storage in a two-tiered hierarchy, had minimal software security features. Before the NSS could be placed into production, it had to be accredited by the Department of Energy, Sandia`s accrediting authority. Sandia was faced with implementing security features to allow the NSS to be operated in its secure computing network, which is a single security clearance, multiple data security level environment. This paper describes the software security design alternatives that were considered and what was ultimately implemented.

  7. Software security for a network storage service

    SciTech Connect

    Haynes, R.A.; Kelly, S.M.

    1992-01-01

    In 1991, Sandia National Laboratories acquired a Network Storage Service (NSS) as a result of a fully competitive procurement. The Network Storage Service, which provides access to over a terabyte of data storage in a two-tiered hierarchy, had minimal software security features. Before the NSS could be placed into production, it had to be accredited by the Department of Energy, Sandia's accrediting authority. Sandia was faced with implementing security features to allow the NSS to be operated in its secure computing network, which is a single security clearance, multiple data security level environment. This paper describes the software security design alternatives that were considered and what was ultimately implemented.

  8. Silicon-embedded copper nanostructure network for high energy storage

    DOEpatents

    Yu, Tianyue

    2016-03-15

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  9. December 2015 National Idling Reduction Network News

    Energy.gov [DOE]

    This is the December 2015 edition of the National Idling Reduction Network News, an e-newsletter that reports solicitations for funding, regulatory changes, awards and recognition, reports and other resources of interest, upcoming meetings and events, and manufacturersā€™ announcements.

  10. Wireless Sensor Networks: Monitoring and Control

    SciTech Connect

    Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio

    2013-05-31

    The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.

  11. Network Optimization Models (RNAS and ATOM) | NISAC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    been used to study policy options concerning the movement of toxic chemicals by rail. Air Transport Optimization Model (ATOM) The TOM is a network-optimization model designed to...

  12. Global Energy Network Institute | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    inlineLabel":"","visitedicon":"" Hide Map References: Global Energy Network Institute Web Site1 This article is a stub. You can help OpenEI by expanding it. Global Energy...

  13. EPA National Environmental Information Exchange Network Grant...

    Energy.gov [DOE] (indexed site)

    5 5:00PM EST U.S. Environmental Protection Agency The U.S. Environmental Protection Agency is accepting applications for the National Environmental Information Exchange Network...

  14. Belief network algorithms: A study of performance

    SciTech Connect

    Jitnah, N.

    1996-12-31

    This abstract gives an overview of the work. We present a survey of Belief Network algorithms and propose a domain characterization system to be used as a basis for algorithm comparison and for predicting algorithm performance.

  15. Data Network Weather Service Reporting - Final Report

    SciTech Connect

    Michael Frey

    2012-08-30

    A final report is made of a three-year effort to develop a new forecasting paradigm for computer network performance. This effort was made in co-ordination with Fermi Lab's construction of e-Weather Center.

  16. Advanced Scientific Computing Research Network Requirements

    SciTech Connect

    Bacon, Charles; Bell, Greg; Canon, Shane; Dart, Eli; Dattoria, Vince; Goodwin, Dave; Lee, Jason; Hicks, Susan; Holohan, Ed; Klasky, Scott; Lauzon, Carolyn; Rogers, Jim; Shipman, Galen; Skinner, David; Tierney, Brian

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  17. Solar Instructor Training Network Frequently Asked Questions

    Energy.gov [DOE]

    These frequently asked questions (FAQs) relate to the solar instructor training network. This project was launched by the U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP or...

  18. Effective Protocols for Mobile Communications and Networking

    SciTech Connect

    Espinoza, J.; Sholander, P.; Van Leeuwen, B,

    1998-12-01

    This report examines methods of mobile communications with an emphasis on mobile computing and wireless communications. Many of the advances in communications involve the use of Internet Protocol (IP), Asynchronous Transfer Mode (ATM), and ad hoc network protocols. However, many of the advances in these protocols have been focused on wired communications. Recently much focus has been directed at advancing communication technology in the area of mobile wireless networks. This report discusses various protocols used in mobile communications and proposes a number of extensions to existing protocols. A detailed discussion is also included on desirable protocol characteristics and evaluation criteria. In addition, the report includes a discussion on several network simulation tools that maybe used to evaluate network protocols.

  19. Synchronization in networks of spatially extended systems

    SciTech Connect

    Filatova, Anastasiya E.; Hramov, Alexander E.; Koronovskii, Alexey A.; Boccaletti, Stefano

    2008-06-15

    Synchronization processes in networks of spatially extended dynamical systems are analytically and numerically studied. We focus on the relevant case of networks whose elements (or nodes) are spatially extended dynamical systems, with the nodes being connected with each other by scalar signals. The stability of the synchronous spatio-temporal state for a generic network is analytically assessed by means of an extension of the master stability function approach. We find an excellent agreement between the theoretical predictions and the data obtained by means of numerical calculations. The efficiency and reliability of this method is illustrated numerically with networks of beam-plasma chaotic systems (Pierce diodes). We discuss also how the revealed regularities are expected to take place in other relevant physical and biological circumstances.

  20. E-print Network : User Account

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New Search | My Selections (0) | | | | Alerts | E-print Network Create User Account User Name: Email Address: I want to: Always receive emails Receive emails if there are new...

  1. Imbibition well stimulation via neural network design

    DOEpatents

    Weiss, William

    2007-08-14

    A method for stimulation of hydrocarbon production via imbibition by utilization of surfactants. The method includes use of fuzzy logic and neural network architecture constructs to determine surfactant use.

  2. Asian American Government Executives Network (AAGEN), Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Asian American Government Executives Network (AAGEN), Annual Leadership Development Training June 16, 2016 7:30AM to 4:00PM EDT Location: Crystal City Double Tree Hotel, 300 Army ...

  3. Dynamics on modular networks with heterogeneous correlations

    SciTech Connect

    Melnik, Sergey; Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG; CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP ; Porter, Mason A.; CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP ; Mucha, Peter J.; Institute for Advanced Materials, Nanoscience and Technology, University of North Carolina, Chapel Hill, North Carolina 27599-3216 ; Gleeson, James P.

    2014-06-15

    We develop a new ensemble of modular random graphs in which degree-degree correlations can be different in each module, and the inter-module connections are defined by the joint degree-degree distribution of nodes for each pair of modules. We present an analytical approach that allows one to analyze several types of binary dynamics operating on such networks, and we illustrate our approach using bond percolation, site percolation, and the Watts threshold model. The new network ensemble generalizes existing models (e.g., the well-known configuration model and Lancichinetti-Fortunato-Radicchi networks) by allowing a heterogeneous distribution of degree-degree correlations across modules, which is important for the consideration of nonidentical interacting networks.

  4. Network traffic analysis using dispersion patterns

    Energy Science and Technology Software Center

    2010-03-15

    The Verilog code us used to map a measurement solution on FPGA to analyze network traffic. It realizes a set of Bloom filters and counters, besides associated control logic that can quickly measure statistics like InDegree, OutDegree, Depth, in the context of Traffic Dispersion Graphs. Such patterns are helpful in classification of network activity, like Peer to Peer and Port-Scanning, in the traffic.

  5. On the exact evaluation of spin networks

    SciTech Connect

    Freidel, Laurent; Hnybida, Jeff; Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1

    2013-11-15

    We introduce a fully coherent spin network amplitude whose expansion generates all SU(2) spin networks associated with a given graph. We then give an explicit evaluation of this amplitude for an arbitrary graph. We show how this coherent amplitude can be obtained from the specialization of a generating functional obtained by the contraction of parametrized intertwiners ą la Schwinger. We finally give the explicit evaluation of this generating functional for arbitrary graphs.

  6. A connecting network with fault tolerance capabilities

    SciTech Connect

    Ciminiera, L.; Serra, A.

    1986-06-01

    A new multistage interconnection network is presented in this paper. It is able to handle the communications between the connected devices correctly, even in the presence of fault(s) in the network. This goal is achieved by using redundant paths with a fast procedure able to dynamically reroute the message. It is also shown that the rerouting properties are still valid when broadcasting transmission is used.

  7. Redundancy and Error Resilience in Boolean Networks

    SciTech Connect

    Peixoto, Tiago P.

    2010-01-29

    We consider the effect of noise in sparse Boolean networks with redundant functions. We show that they always exhibit a nonzero error level, and the dynamics undergoes a phase transition from nonergodicity to ergodicity, as a function of noise, after which the system is no longer capable of preserving a memory of its initial state. We obtain upper bounds on the critical value of noise for networks of different sparsity.

  8. Natural Gas Pipeline Network: Changing and Growing

    Reports and Publications

    1996-01-01

    This chapter focuses upon the capabilities of the national natural gas pipeline network, examining how it has expanded during this decade and how it may expand further over the coming years. It also looks at some of the costs of this expansion, including the environmental costs which may be extensive. Changes in the network as a result of recent regional market shifts are also discussed.

  9. Energy Materials Network News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    News Energy Materials Network News Below are news stories and blog posts related to the Energy Materials Network (EMN) from the Energy Department and the Office of Energy Efficiency and Renewable Energy. Please see the Consortia and National Labs news page to learn more about the latest on the EMN consortia's funding opportunities, public-private partnership activities, and materials development capabilities and projects. April 1, 2016 New Energy Department-supported technologies under

  10. Better Buildings Network View December 2015

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    News From the Field New Case Study Highlights Network Member's Community Engagement Better Buildings Residential Network member Community Home Energy Retrofit Project (CHERP) is a nonprofit, volunteer- supported organization based in Claremont, California, that unites homeowners, businesses, community organizations, and city governments to invigorate energy efficiency in California homes. Following are key takeaways from a case study interview with CHERP Executive Director Devon Hartman on ways

  11. Better Buildings Network View January 2016

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    News From the Field Network Members Make Multifamily Housing More Efficient - New Case Study Elevate Energy and the International Center for Appropriate and Sustainable Technology (ICAST) are Better Buildings Residential Network nonprofit members that develop energy efficiency solutions for multifamily and affordable housing communities. Following are key takeaways from case study interviews with Elevate Energy Director of Building Retrofits Peter Ludwig and ICAST Founder and President Ravi

  12. Better Buildings Network View, April 2014

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    April 2014 News From the Field Residential Network Member Pushes Energy- Efficient Affordable Housing in Buffalo, New York Better Buildings Residential Network member PUSH (People United for Sustainable Housing) Buffalo broke ground in March 2014 on its Massachusetts Avenue Sustainable Homes (MASH) project. The initiative will create energy- efficient, affordable housing by renovating two vacant historic buildings and building one new multifamily structure. Part of the project's Community

  13. Better Buildings Network View, February 2015

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    News From the Field New Lessons Learned Interview: GTECH Strategies Shares Partnership Successes Better Buildings Residential Network member GTECH Strategies' Healthy Homes Incentive Program (HHIP) is utilizing funding from Allegheny County, Partnerships Toolkit Pennsylvania's health Are you ready to start forming agency to increase strategic partnerships for your residents' home indoor air organization? Download the quality while saving energy Residential Network and money. To help

  14. Better Buildings Network View, June 2015

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Better Buildings Network View News From the Field June 2015 First-Ever Network Member Gathering Held at 2015 Better Buildings Summit More than 800 participants met at the 2015 Better Buildings Summit in Washington, D.C., to engage in dialogue focused on sharing proven approaches for greater energy efficiency in buildings. This year was the first to incorporate the residential sector with targeted sessions for energy efficiency program administrators and partners. Speakers included leaders from

  15. Better Buildings Network View, October 2014

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    October 2014 News From the Field Peer Exchange Call Takeaways Inspire New Lessons Learned Greatest Hits A new "Lessons Learned: Peer Exchange Calls" resource summarizes top takeaways shared by Better Buildings Residential Network members, from tips to collaborating with utilities to cost-effective rebate models. The Residential Network hosts a series of Peer Exchange Calls for members to discuss similar needs and challenges, and to collectively identify effective strategies and useful

  16. Downhole drilling network using burst modulation techniques

    DOEpatents

    Hall; David R. , Fox; Joe

    2007-04-03

    A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

  17. Impact of Network Activity Levels on the Performance of Passive Network Service Dependency Discovery

    SciTech Connect

    Carroll, Thomas E.; Chikkagoudar, Satish; Arthur-Durett, Kristine M.

    2015-11-02

    Network services often do not operate alone, but instead, depend on other services distributed throughout a network to correctly function. If a service fails, is disrupted, or degraded, it is likely to impair other services. The web of dependencies can be surprisingly complex---especially within a large enterprise network---and evolve with time. Acquiring, maintaining, and understanding dependency knowledge is critical for many network management and cyber defense activities. While automation can improve situation awareness for network operators and cyber practitioners, poor detection accuracy reduces their confidence and can complicate their roles. In this paper we rigorously study the effects of network activity levels on the detection accuracy of passive network-based service dependency discovery methods. The accuracy of all except for one method was inversely proportional to network activity levels. Our proposed cross correlation method was particularly robust to the influence of network activity. The proposed experimental treatment will further advance a more scientific evaluation of methods and provide the ability to determine their operational boundaries.

  18. Global-Address Space Networking (GASNet) Library

    Energy Science and Technology Software Center

    2011-04-06

    GASNet (Global-Address Space Networking) is a language-independent, low-level networking layer that provides network-independent, high-performance communication primitives tailored for implementing parallel global address space SPMD languages such as UPC and Titanium. The interface is primarily intended as a compilation target and for use by runtime library writers (as opposed to end users), and the primary goals are high performance, interface portability, and expressiveness. GASNet is designed specifically to support high-performance, portable implementations of global address spacemoreĀ Ā» languages on modern high-end communication networks. The interface provides the flexibility and extensibility required to express a wide variety of communication patterns without sacrificing performance by imposing large computational overheads in the interface. The design of the GASNet interface is partitioned into two layers to maximize porting ease without sacrificing performance: the lower level is a narrow but very general interface called the GASNet core API - the design is basedheavily on Active Messages, and is implemented directly on top of each individual network architecture. The upper level is a wider and more expressive interface called GASNet extended API, which provides high-level operations such as remote memory access and various collective operations. This release implements GASNet over MPI, the Quadrics "elan" API, the Myrinet "GM" API and the "LAPI" interface to the IBM SP switch. A template is provided for adding support for additional network interfaces.Ā«Ā less

  19. Analysis of Stochastic Response of Neural Networks with Stochastic Input

    Energy Science and Technology Software Center

    1996-10-10

    Software permits the user to extend capability of his/her neural network to include probablistic characteristics of input parameter. User inputs topology and weights associated with neural network along with distributional characteristics of input parameters. Network response is provided via a cumulative density function of network response variable.

  20. IEEE 342 Node Low Voltage Networked Test System

    SciTech Connect

    Schneider, Kevin P.; Phanivong, Phillippe K.; Lacroix, Jean-Sebastian

    2014-07-31

    The IEEE Distribution Test Feeders provide a benchmark for new algorithms to the distribution analyses community. The low voltage network test feeder represents a moderate size urban system that is unbalanced and highly networked. This is the first distribution test feeder developed by the IEEE that contains unbalanced networked components. The 342 node Low Voltage Networked Test System includes many elements that may be found in a networked system: multiple 13.2kV primary feeders, network protectors, a 120/208V grid network, and multiple 277/480V spot networks. This paper presents a brief review of the history of low voltage networks and how they evolved into the modern systems. This paper will then present a description of the 342 Node IEEE Low Voltage Network Test System and power flow results.

  1. Reliable Communication Models in Interdependent Critical Infrastructure Networks

    SciTech Connect

    Lee, Sangkeun; Chinthavali, Supriya; Shankar, Mallikarjun

    2016-01-01

    Modern critical infrastructure networks are becoming increasingly interdependent where the failures in one network may cascade to other dependent networks, causing severe widespread national-scale failures. A number of previous efforts have been made to analyze the resiliency and robustness of interdependent networks based on different models. However, communication network, which plays an important role in today's infrastructures to detect and handle failures, has attracted little attention in the interdependency studies, and no previous models have captured enough practical features in the critical infrastructure networks. In this paper, we study the interdependencies between communication network and other kinds of critical infrastructure networks with an aim to identify vulnerable components and design resilient communication networks. We propose several interdependency models that systematically capture various features and dynamics of failures spreading in critical infrastructure networks. We also discuss several research challenges in building reliable communication solutions to handle failures in these models.

  2. IPv6 Implementation at a Network Service Provider

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    IPv6 Implementation at a Network Service Provider 2010 Inter Agency IPv6 Information Exchange August 4, 2010 R. Kevin Oberman Sr. Network Engineer Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science Who Are We? ESnet is the network provider for the Department of Energy's Office of Science * ESnet is a networking pioneer with nearly a quarter century of networking * Began as MFEnet in 1976 * Became ESnet with broader mission in 1986 * Started support of BGP4 and

  3. Alternative Fuels Data Center: New York Broadens Network for Electric

    Alternative Fuels and Advanced Vehicles Data Center

    Vehicle Charging New York Broadens Network for Electric Vehicle Charging to someone by E-mail Share Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on Facebook Tweet about Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on Twitter Bookmark Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on Google Bookmark Alternative Fuels Data Center: New York Broadens Network for Electric

  4. Better Buildings Network View | September 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Better Buildings Network View | September 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. Better Buildings Network View September 2014 (160.55 KB) More Documents & Publications Focus Series: On-Bill Financing Brings Lenders and Homeowners On Board Better Buildings Network View | December 2014 On-Bill Financing for Energy Efficiency Improvements Toolkit

  5. Better Buildings Network View | September 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Network View | September 2015 Better Buildings Network View | September 2015 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. Better Buildings Network View September 2015 (528.19 KB) More Documents & Publications ITP Aluminum: Technical Working Group on Inert Anode Technologies EIS-0333: Draft Environmental Impact Statement ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry

  6. National Idling Reduction Network News - April 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 National Idling Reduction Network News - April 2014 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. apr14_network_news.pdf (745.96 KB) More Documents & Publications National Idling Reduction Network News Compendium National Idling Reduction Network News - January 2014 National Idling Reduction Network News - December 2013

  7. National Idling Reduction Network News - August 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    09 National Idling Reduction Network News - August 2009 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. aug09_network_news.pdf (533.75 KB) More Documents & Publications National Idling Reduction Network News - January 2009 National Idling Reduction Network News - October 2009 National Idling Reduction Network News - July 2009

  8. National Idling Reduction Network News - August 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 National Idling Reduction Network News - August 2010 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. aug10_network_news.pdf (588.52 KB) More Documents & Publications National Idling Reduction Network News - February 2011 National Idling Reduction Network News - May 2010 National Idling Reduction Network News - August

  9. National Idling Reduction Network News - August 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 National Idling Reduction Network News - August 2012 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. aug12_network_news.pdf (690.39 KB) More Documents & Publications National Idling Reduction Network News - January 2013 National Idling Reduction Network News - March 2012 National Idling Reduction Network News - June 2012

  10. National Idling Reduction Network News - August 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 National Idling Reduction Network News - August 2013 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. aug13_network_news.pdf (757.15 KB) More Documents & Publications National Idling Reduction Network News - October 2013 National Idling Reduction Network News - January 2013 National Idling Reduction Network News - August 2011

  11. National Idling Reduction Network News - December 2009 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 09 National Idling Reduction Network News - December 2009 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. dec09_network_news.pdf (462.62 KB) More Documents & Publications National Idling Reduction Network News - March 2011 National Idling Reduction Network News - December 2011 National Idling Reduction Network News - October 2009

  12. National Idling Reduction Network News - December 2010 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 0 National Idling Reduction Network News - December 2010 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. dec10_network_news.pdf (607.18 KB) More Documents & Publications National Idling Reduction Network News - August 2011 National Idling Reduction Network News - May 2010 National Idling Reduction Network News - January 2013

  13. National Idling Reduction Network News - December 2012 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 2 National Idling Reduction Network News - December 2012 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. dec12_network_news.pdf (619.31 KB) More Documents & Publications National Idling Reduction Network News - June 2011 National Idling Reduction Network News - April 2011 National Idling Reduction Network News - July 2010

  14. National Idling Reduction Network News - February 2010 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 0 National Idling Reduction Network News - February 2010 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. feb10_network_news.pdf (328.52 KB) More Documents & Publications National Idling Reduction Network News - March 2012 National Idling Reduction Network News - May 2010 National Idling Reduction Network News - July 2010

  15. National Idling Reduction Network News - February 2014 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 4 National Idling Reduction Network News - February 2014 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. feb14_network_news.pdf (579.38 KB) More Documents & Publications National Idling Reduction Network News Compendium National Idling Reduction Network News - April 2014 National Idling Reduction Network News - July 2013

  16. National Idling Reduction Network News - January 2009 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 09 National Idling Reduction Network News - January 2009 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. jan09_network_news.pdf (284.59 KB) More Documents & Publications National Idling Reduction Network News - Early Spring 2009 National Idling Reduction Network News - October 2009 National Idling Reduction Network News - September 2009

  17. National Idling Reduction Network News - January 2010 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 0 National Idling Reduction Network News - January 2010 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. jan10_network_news.pdf (341.47 KB) More Documents & Publications National Idling Reduction Network News - February 2012 National Idling Reduction Network News - September 2010 National Idling Reduction Network News - March

  18. National Idling Reduction Network News - June 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 National Idling Reduction Network News - June 2012 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. june12_network_news.pdf (593.22 KB) More Documents & Publications National Idling Reduction Network News - December 2013 National Idling Reduction Network News Compendium National Idling Reduction Network News - November 2010

  19. National Idling Reduction Network News - October 2009 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 09 National Idling Reduction Network News - October 2009 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. oct09_network_news.pdf (466.62 KB) More Documents & Publications National Idling Reduction Network News - January 2009 National Idling Reduction Network News - December 2011 National Idling Reduction Network News - November

  20. National Idling Reduction Network News - October 2010 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 10 National Idling Reduction Network News - October 2010 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. oct10_network_news.pdf (671.41 KB) More Documents & Publications National Idling Reduction Network News - July 2010 National Idling Reduction Network News - May 2010 National Idling Reduction Network News - October

  1. National Idling Reduction Network News - September 2010 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 0 National Idling Reduction Network News - September 2010 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. sep10_network_news.pdf (789.02 KB) More Documents & Publications National Idling Reduction Network News - August 2010 National Idling Reduction Network News - May 2010 National Idling Reduction Network News - August 2011

  2. Non-harmful insertion of data mimicking computer network attacks

    DOEpatents

    Neil, Joshua Charles; Kent, Alexander; Hash, Jr, Curtis Lee

    2016-06-21

    Non-harmful data mimicking computer network attacks may be inserted in a computer network. Anomalous real network connections may be generated between a plurality of computing systems in the network. Data mimicking an attack may also be generated. The generated data may be transmitted between the plurality of computing systems using the real network connections and measured to determine whether an attack is detected.

  3. BetterBuildings Network View | January 9, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Better Buildings Network View | January 9, 2014 Welcome to the First Issue Stop to Take in the (Network) View Welcome to the first issue of the Better Buildings Residential Network newsletter, the Better Buildings Network View . The Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to dramatically increase the number of homes that are energy efficient. It also expands on the legacy of the $500 million Better Buildings

  4. Cooperative UAV-Based Communications Backbone for Sensor Networks

    SciTech Connect

    Roberts, R S

    2001-10-07

    The objective of this project is to investigate the use of unmanned air vehicles (UAVs) as mobile, adaptive communications backbones for ground-based sensor networks. In this type of network, the UAVs provide communication connectivity to sensors that cannot communicate with each other because of terrain, distance, or other geographical constraints. In these situations, UAVs provide a vertical communication path for the sensors, thereby mitigating geographic obstacles often imposed on networks. With the proper use of UAVs, connectivity to a widely disbursed sensor network in rugged terrain is readily achieved. Our investigation has focused on networks where multiple cooperating UAVs are used to form a network backbone. The advantage of using multiple UAVs to form the network backbone is parallelization of sensor connectivity. Many widely spaced or isolated sensors can be connected to the network at once using this approach. In these networks, the UAVs logically partition the sensor network into sub-networks (subnets), with one UAV assigned per subnet. Partitioning the network into subnets allows the UAVs to service sensors in parallel thereby decreasing the sensor-to-network connectivity. A UAV services sensors in its subnet by flying a route (path) through the subnet, uplinking data collected by the sensors, and forwarding the data to a ground station. An additional advantage of using multiple UAVs in the network is that they provide redundancy in the communications backbone, so that the failure of a single UAV does not necessarily imply the loss of the network.

  5. Network Traffic Generator for Low-rate Small Network Equipment Software

    SciTech Connect

    Lanzisera, Steven

    2013-05-28

    Application that uses the Python low-level socket interface to pass network traffic between devices on the local side of a NAT router and the WAN side of the NAT router. This application is designed to generate traffic that complies with the Energy Star Small Network Equipment Test Method.

  6. STIMULUS: End-System Network Interface Controller for 100 Gb/s Wide Area Networks

    SciTech Connect

    Zarkesh-Ha, Payman

    2014-09-12

    The main goal of this research grant is to develop a system-level solution leveraging novel technologies that enable network communications at 100 Gb/s or beyond. University of New Mexico in collaboration with Acadia Optronics LLC has been working on this project to develop the 100 Gb/s Network Interface Controller (NIC) under this Department of Energy (DOE) grant.

  7. Parallel processing data network of master and slave transputers controlled by a serial control network

    DOEpatents

    Crosetto, D.B.

    1996-12-31

    The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor to a plurality of slave processors to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor`s status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer, a digital signal processor, a parallel transfer controller, and two three-port memory devices. A communication switch within each node connects it to a fast parallel hardware channel through which all high density data arrives or leaves the node. 6 figs.

  8. Parallel processing data network of master and slave transputers controlled by a serial control network

    DOEpatents

    Crosetto, Dario B.

    1996-01-01

    The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor (100) to a plurality of slave processors (200) to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor's status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer (104), a digital signal processor (114), a parallel transfer controller (106), and two three-port memory devices. A communication switch (108) within each node (100) connects it to a fast parallel hardware channel (70) through which all high density data arrives or leaves the node.

  9. Advance Network Reservation and Provisioning for Science

    SciTech Connect

    Balman, Mehmet; Chaniotakis, Evangelos; Shoshani, Arie; Sim, Alex

    2009-07-10

    We are witnessing a new era that offers new opportunities to conduct scientific research with the help of recent advancements in computational and storage technologies. Computational intensive science spans multiple scientific domains, such as particle physics, climate modeling, and bio-informatics simulations. These large-scale applications necessitate collaborators to access very large data sets resulting from simulations performed in geographically distributed institutions. Furthermore, often scientific experimental facilities generate massive data sets that need to be transferred to validate the simulation data in remote collaborating sites. A major component needed to support these needs is the communication infrastructure which enables high performance visualization, large volume data analysis, and also provides access to computational resources. In order to provide high-speed on-demand data access between collaborating institutions, national governments support next generation research networks such as Internet 2 and ESnet (Energy Sciences Network). Delivering network-as-a-service that provides predictable performance, efficient resource utilization and better coordination between compute and storage resources is highly desirable. In this paper, we study network provisioning and advanced bandwidth reservation in ESnet for on-demand high performance data transfers. We present a novel approach for path finding in time-dependent transport networks with bandwidth guarantees. We plan to improve the current ESnet advance network reservation system, OSCARS [3], by presenting to the clients, the possible reservation options and alternatives for earliest completion time and shortest transfer duration. The Energy Sciences Network (ESnet) provides high bandwidth connections between research laboratories and academic institutions for data sharing and video/voice communication. The ESnet On-Demand Secure Circuits and Advance Reservation System (OSCARS) establishes

  10. Scaling of multitension cosmic superstring networks

    SciTech Connect

    Tye, S.-H. Henry; Wasserman, Ira; Wyman, Mark

    2005-05-15

    Brane inflation in superstring theory ends when branes collide, initiating the hot big bang. Cosmic superstrings are produced during the brane collision. The cosmic superstrings produced in a D3-brane-antibrane inflationary scenario have a spectrum: (p,q) bound states of p fundamental (F) strings and q D-strings, where p and q are coprime. By extending the velocity-dependent one-scale network evolution equations for Abelian Higgs cosmic strings to allow a spectrum of string tensions, we construct a coupled (infinite) set of equations for strings that interact through binding and self-interactions. We apply this model to a network of (p,q) superstrings. Our numerical solutions show that (p,q) networks rapidly approach a stable scaling solution. We also extract the relative densities of each string type from our solutions. Typically, only a small number of the lowest tension states are populated substantially once scaling is reached. The model we study also has an interesting new feature: the energy released in (p,q) string binding is by itself adequate to allow the network to reach scaling. This result suggests that the scaling solution is robust. To demonstrate that this result is not trivial, we show that choosing a different form for string interactions can lead to network frustration.

  11. The Global Environment Radiation Monitoring Network (GERMON)

    SciTech Connect

    Zakheim, B.J.; Goellner, D.A.

    1994-12-31

    Following the Chernobyl accident in 1986, a group of experts from the World Health Organization (WHO) and the United Nations Environment Program (UNEP) met in France to discuss and develop the basic principles of a global environmental radiation monitoring network (GERMON). The basic functions of this network were to provide regular reports on environmental radiation levels and to be in a position to provide reliable and accurate radiation measurements on a quick and accurate radiation measurements on a quick turnaround basis in the event of a major radiation release. By 1992, although 58 countries had indicated an interest in becoming a part of the GERMON system, only 16 were providing data on a regular basis. This paper traces the history of GERMON from its inception in 1987 through its activities during 1993-4. It details the objectives of the network, describes functions, lists its participants, and presents obstacles in the current network. The paper examines the data requirements for radiological emergency preparedness and offers suggestions for the current system. The paper also describes the growing need for such a network. To add a domestic perspective, the authors present a summary of the environmental monitoring information system that was used by the NRC in 1986 in its analyses of the Chernobyl incident. Then we will use this 1986 experience to propose a method for the use of GERMON should a similar occasion arise in the future.

  12. Performance of wireless sensor networks under random node failures

    SciTech Connect

    Bradonjic, Milan; Hagberg, Aric; Feng, Pan

    2011-01-28

    Networks are essential to the function of a modern society and the consequence of damages to a network can be large. Assessing network performance of a damaged network is an important step in network recovery and network design. Connectivity, distance between nodes, and alternative routes are some of the key indicators to network performance. In this paper, random geometric graph (RGG) is used with two types of node failure, uniform failure and localized failure. Since the network performance are multi-facet and assessment can be time constrained, we introduce four measures, which can be computed in polynomial time, to estimate performance of damaged RGG. Simulation experiments are conducted to investigate the deterioration of networks through a period of time. With the empirical results, the performance measures are analyzed and compared to provide understanding of different failure scenarios in a RGG.

  13. Gigabit network technology. Final technical report

    SciTech Connect

    Davenport, C.M.C. [ed.

    1996-10-01

    Current digital networks are evolving toward distributed multimedia with a wide variety of applications with individual data rates ranging from kb/sec to tens and hundreds of Mb/sec. Link speed requirements are pushing into the Gb/sec range and beyond the envelop of electronic networking capabilities. There is a vast amount of untapped bandwidth available in the low-attenuation communication bands of an optical fiber. The capacity in one fiber thread is enough to carry more than two thousand times as much information as all the current radio and microwave frequencies. And while fiber optics has replaced copper wire as the transmission medium of choice, the communication capacity of conventional fiber optic networks is ultimately limited by electronic processing speeds.

  14. Better Buildings Network View | July-August 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 Better Buildings Network View | July-August 2015 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. Better Buildings Network View July-August 2015 (344.42 KB) More Documents & Publications Better Buildings Network View | May 2015 Better Buildings Network View | June 2015 Better Buildings Network View | April

  15. Scattering from polymer networks under elongational strain.

    SciTech Connect

    Grest, Gary Stephen; Svaneborg, Carsten; Everaers, Ralf

    2005-06-01

    Molecular-dynamics simulations are used to sample the single-chain form factor of labelled sub-chains in model polymer networks under elongational strain. We observe very similar results for randomly cross-linked and for randomly end-linked networks with the same average strand length and see no indication of lozenge-like scattering patterns reported for some experimental systems. Our data analysis shows that a recent variant of the tube model quantitatively describes scattering in the Guinier regime as well as the macroscopic elastic properties. The observed failure of the theory outside the Guinier regime is shown to be due to non-Gaussian pair-distance distributions.

  16. Position estimation of transceivers in communication networks

    DOEpatents

    Kent, Claudia A.; Dowla, Farid

    2008-06-03

    This invention provides a system and method using wireless communication interfaces coupled with statistical processing of time-of-flight data to locate by position estimation unknown wireless receivers. Such an invention can be applied in sensor network applications, such as environmental monitoring of water in the soil or chemicals in the air where the position of the network nodes is deemed critical. Moreover, the present invention can be arranged to operate in areas where a Global Positioning System (GPS) is not available, such as inside buildings, caves, and tunnels.

  17. Quantum stochastic thermodynamic on harmonic networks

    DOE PAGES [OSTI]

    Deffner, Sebastian

    2016-01-04

    Fluctuation theorems are symmetry relations for the probability to observe an amount of entropy production in a finite-time process. In a recent paper Pigeon et al (2016 New. J. Phys. 18 013009) derived fluctuation theorems for harmonic networks by means of the large deviation theory. Furthermore, their novel approach is illustrated with various examples of experimentally relevant systems. As a main result, however, Pigeon et al provide new insight how to consistently formulate quantum stochastic thermodynamics, and provide new and robust tools for the study of the thermodynamics of quantum harmonic networks.

  18. Network Markup Language Base Schema version 1

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    GFD-R-P.206 NML-WG nml-wg@ogf.org Jeroen van der Ham, UvA (editor) Freek Dijkstra, SURFsara Roman Łapacz, PSNC Jason Zurawski, Internet2 May 2013 Network Markup Language Base Schema version 1 Status of This Document Grid Final Draft (GFD), Proposed Recommendation (R-P). Copyright Notice Copyright c Open Grid Forum (2008-2013). Some Rights Reserved. Distribution is unlim- ited. Abstract This document describes a set of normative schemas which allow the description of computer network topologies.

  19. Multi-Tenant Isolation via Reconfigurable Networks

    SciTech Connect

    Aderholdt, Ferrol; Caldwell, Blake A.; Hicks, Susan Elaine; Koch, Scott M.; Pelfrey, Daniel S.; Pogge, James R.; Scott, Stephen L.; Shipman, Galen M.; Sorrillo, Lawrence

    2014-12-01

    High performance computing environments are often used for a wide variety of workloads ranging from simulation, data transformation and analysis, and complex workflows to name just a few. These systems may process data at various security levels but in so doing are often enclaved at the highest security posture. This approach places significant restrictions on the users of the system even when processing data at a lower security level and exposes data at higher levels of confidentiality to a much broader population than otherwise necessary. The traditional approach of isolation, while effective in establishing security enclaves poses significant challenges for the use of shared infrastructure in HPC environments. This report details current state-of-the-art in reconfigurable network enclaving through Software Defined Networking (SDN) and Network Function Virtualization (NFV) and their applicability to secure enclaves in HPC environments. SDN and NFV methods are based on a solid foundation of system wide virtualization. The purpose of which is very straight forward, the system administrator can deploy networks that are more amenable to customer needs, and at the same time achieve increased scalability making it easier to increase overall capacity as needed without negatively affecting functionality. The network administration of both the server system and the virtual sub-systems is simplified allowing control of the infrastructure through well-defined APIs (Application Programming Interface). While SDN and NFV technologies offer significant promise in meeting these goals, they also provide the ability to address a significant component of the multi-tenant challenge in HPC environments, namely resource isolation. Traditional HPC systems are built upon scalable high-performance networking technologies designed to meet specific application requirements. Dynamic isolation of resources within these environments has remained difficult to achieve. SDN and NFV methodology

  20. Implementing controlled-unitary operations over the butterfly network

    SciTech Connect

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.; Murao, Mio

    2014-12-04

    We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.

  1. Implementability of two-qubit unitary operations over the butterfly network and the ladder network with free classical communication

    SciTech Connect

    Akibue, Seiseki; Murao, Mio

    2014-12-04

    We investigate distributed implementation of two-qubit unitary operations over two primitive networks, the butterfly network and the ladder network, as a first step to apply network coding for quantum computation. By classifying two-qubit unitary operations in terms of the Kraus-Cirac number, the number of non-zero parameters describing the global part of two-qubit unitary operations, we analyze which class of two-qubit unitary operations is implementable over these networks with free classical communication. For the butterfly network, we show that two classes of two-qubit unitary operations, which contain all Clifford, controlled-unitary and matchgate operations, are implementable over the network. For the ladder network, we show that two-qubit unitary operations are implementable over the network if and only if their Kraus-Cirac number do not exceed the number of the bridges of the ladder.

  2. Development of Novel Random Network Theory-Based Approaches to Identify Network Interactions among Nitrifying Bacteria

    SciTech Connect

    Shi, Cindy

    2015-07-17

    The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.

  3. New 100Gbps Network Will Keep America on Cutting Edge of Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    New 100Gbps Network Will Keep America on Cutting Edge of Innovation November 15, 2011 - ... A new prototype network built by the Energy Department's Energy Sciences Network (ESnet), ...

  4. New Optical Fiber Network Being Installed at Lab to Expand Capacity...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Optical Fiber Network Being Installed at Lab to Expand Capacity Speed of New Optical Fiber Network Being Installed New Optical Fiber Network Being Installed at Lab to Expand ...

  5. Value Creation Through Integrated Networks and Convergence

    SciTech Connect

    De Martini, Paul; Taft, Jeffrey D.

    2015-04-01

    Customer adoption of distributed energy resources and public policies are driving changes in the uses of the distribution system. A system originally designed and built for one-way energy flows from central generating facilities to end-use customers is now experiencing injections of energy from customers anywhere on the grid and frequent reversals in the direction of energy flow. In response, regulators and utilities are re-thinking the design and operations of the grid to create more open and transactive electric networks. This evolution has the opportunity to unlock significant value for customers and utilities. Alternatively, failure to seize this potential may instead lead to an erosion of value if customers seek to defect and disconnect from the system. This paper will discuss how current grid modernization investments may be leveraged to create open networks that increase value through the interaction of intelligent devices on the grid and prosumerization of customers. Moreover, even greater value can be realized through the synergistic effects of convergence of multiple networks. This paper will highlight examples of the emerging nexus of non-electric networks with electricity.

  6. Itaipu network spans all EHV voltages

    SciTech Connect

    Not Available

    1985-01-01

    The large Itaipu hydroelectric project on the Brazil-Paraguay border called for the construction of an interrelated network of 345-kV, 500-kV, 750-kV, and HVDC lines and substations on an unprecedented scale. The civil engineering and the electrical design are discussed.

  7. GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM

    SciTech Connect

    Hagen Schempf, Ph.D.

    2003-02-27

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. A prototype system was built for low-pressure cast-iron mains and tested in a spider- and serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The prototype unit combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-slave architecture to collect data from a distributed spider-arrangement, and in a master-repeater-slave configuration in serial or ladder-network arrangements. It was found that the system was capable of performing all data-sampling and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and valuable data was collected in order to determine how to improve on range and data-quality in the future.

  8. Network Fault Tolerance in Open MPI

    SciTech Connect

    Shipman, Galen; Graham, Richard L; Bosilca, George

    2007-01-01

    High Performance Computing (HPC) systems are rapidly growing in size and complexity. As a result, transient and persistent network failures can occur on the time scale of application run times, reducing the productive utilization of these systems. The ubiquitous network protocol used to deal with such failures is TCP/IP, however, available implementations of this protocol provide unacceptable performance for HPC system users, and do not provide the high bandwidth, low latency communications of modern interconnects. This paper describes methods used to provide protection against several network errors such as dropped packets, corrupt packets, and loss of network interfaces while maintaining high-performance communications. Micro-benchmark experiments using vendor supplied TCP/IP and O/S bypass low-level communications stacks over InfiniBand and Myrinet are used to demonstrate the high-performance characteristics of our protocol. The NAS Parallel Benchmarks are used to demonstrate the scalability and the minimal performance impact of this protocol. The micro-benchmarks show that providing higher data reliability decrease performance by up to 30% relative to unprotected communications, but provide performance improvements of a factor of four over TCP/IP running over InfiniBand DDR. The NAS Parallel Benchmarks show virtually no impact of the data reliability protocol on overall run-time.

  9. Social Network and Communications Institutional Change Principle

    Energy.gov [DOE]

    Federal agencies can use social networks and communications to spark and reinforce behavior change for meeting sustainability goals. This principle is based on research findings showing that people and institutions often are strongly influenced by the behaviors and expectations of others.

  10. Portable control device for networked mobile robots

    DOEpatents

    Feddema, John T.; Byrne, Raymond H.; Bryan, Jon R.; Harrington, John J.; Gladwell, T. Scott

    2002-01-01

    A handheld control device provides a way for controlling one or multiple mobile robotic vehicles by incorporating a handheld computer with a radio board. The device and software use a personal data organizer as the handheld computer with an additional microprocessor and communication device on a radio board for use in controlling one robot or multiple networked robots.

  11. Interactivity vs. fairness in networked linux systems

    SciTech Connect

    Wu, Wenji; Crawford, Matt; ,

    2007-01-01

    In general, the Linux 2.6 scheduler can ensure fairness and provide excellent interactive performance at the same time. However, our experiments and mathematical analysis have shown that the current Linux interactivity mechanism tends to incorrectly categorize non-interactive network applications as interactive, which can lead to serious fairness or starvation issues. In the extreme, a single process can unjustifiably obtain up to 95% of the CPU! The root cause is due to the facts that: (1) network packets arrive at the receiver independently and discretely, and the 'relatively fast' non-interactive network process might frequently sleep to wait for packet arrival. Though each sleep lasts for a very short period of time, the wait-for-packet sleeps occur so frequently that they lead to interactive status for the process. (2) The current Linux interactivity mechanism provides the possibility that a non-interactive network process could receive a high CPU share, and at the same time be incorrectly categorized as 'interactive.' In this paper, we propose and test a possible solution to address the interactivity vs. fairness problems. Experiment results have proved the effectiveness of the proposed solution.

  12. Data: Better Buildings Residential Network Members

    Office of Energy Efficiency and Renewable Energy (EERE)

    Better Buildings Residential Network members come from all sectors of the energy efficiency industry to leverage one another's experiences and expertise in an effort to accelerate the pace of energy upgrades in existing homes. Members include state and local governments, nonprofit organizations, utilities, financial institutions, and private-sector companies involved in energy efficiency programs in their locality.

  13. Switch for serial or parallel communication networks

    DOEpatents

    Crosette, Dario B.

    1994-01-01

    A communication switch apparatus and a method for use in a geographically extensive serial, parallel or hybrid communication network linking a multi-processor or parallel processing system has a very low software processing overhead in order to accommodate random burst of high density data. Associated with each processor is a communication switch. A data source and a data destination, a sensor suite or robot for example, may also be associated with a switch. The configuration of the switches in the network are coordinated through a master processor node and depends on the operational phase of the multi-processor network: data acquisition, data processing, and data exchange. The master processor node passes information on the state to be assumed by each switch to the processor node associated with the switch. The processor node then operates a series of multi-state switches internal to each communication switch. The communication switch does not parse and interpret communication protocol and message routing information. During a data acquisition phase, the communication switch couples sensors producing data to the processor node associated with the switch, to a downlink destination on the communications network, or to both. It also may couple an uplink data source to its processor node. During the data exchange phase, the switch couples its processor node or an uplink data source to a downlink destination (which may include a processor node or a robot), or couples an uplink source to its processor node and its processor node to a downlink destination.

  14. Switch for serial or parallel communication networks

    DOEpatents

    Crosette, D.B.

    1994-07-19

    A communication switch apparatus and a method for use in a geographically extensive serial, parallel or hybrid communication network linking a multi-processor or parallel processing system has a very low software processing overhead in order to accommodate random burst of high density data. Associated with each processor is a communication switch. A data source and a data destination, a sensor suite or robot for example, may also be associated with a switch. The configuration of the switches in the network are coordinated through a master processor node and depends on the operational phase of the multi-processor network: data acquisition, data processing, and data exchange. The master processor node passes information on the state to be assumed by each switch to the processor node associated with the switch. The processor node then operates a series of multi-state switches internal to each communication switch. The communication switch does not parse and interpret communication protocol and message routing information. During a data acquisition phase, the communication switch couples sensors producing data to the processor node associated with the switch, to a downlink destination on the communications network, or to both. It also may couple an uplink data source to its processor node. During the data exchange phase, the switch couples its processor node or an uplink data source to a downlink destination (which may include a processor node or a robot), or couples an uplink source to its processor node and its processor node to a downlink destination. 9 figs.

  15. Functional performance requirements for seismic network upgrade

    SciTech Connect

    Lee, R.C.

    1991-08-18

    The SRL seismic network, established in 1976, was developed to monitor site and regional seismic activity that may have any potential to impact the safety or reduce containment capability of existing and planned structures and systems at the SRS, report seismic activity that may be relevant to emergency preparedness, including rapid assessments of earthquake location and magnitude, and estimates of potential on-site and off-site damage to facilities and lifelines for mitigation measures. All of these tasks require SRL seismologists to provide rapid analysis of large amounts of seismic data. The current seismic network upgrade, the subject of this Functional Performance Requirements Document, is necessary to improve system reliability and resolution. The upgrade provides equipment for the analysis of the network seismic data and replacement of old out-dated equipment. The digital network upgrade is configured for field station and laboratory digital processing systems. The upgrade consists of the purchase and installation of seismic sensors,, data telemetry digital upgrades, a dedicated Seismic Data Processing (SDP) system (already in procurement stage), and a Seismic Signal Analysis (SSA) system. The field stations and telephone telemetry upgrades include equipment necessary for three remote station upgrades including seismic amplifiers, voltage controlled oscillators, pulse calibrators, weather protection (including lightning protection) systems, seismometers, seismic amplifiers, and miscellaneous other parts. The central receiving and recording station upgrades will include discriminators, helicopter amplifier, omega timing system, strong motion instruments, wide-band velocity sensors, and other miscellaneous equipment.

  16. Complex growing networks with intrinsic vertex fitness

    SciTech Connect

    Bedogne, C.; Rodgers, G. J.

    2006-10-15

    One of the major questions in complex network research is to identify the range of mechanisms by which a complex network can self organize into a scale-free state. In this paper we investigate the interplay between a fitness linking mechanism and both random and preferential attachment. In our models, each vertex is assigned a fitness x, drawn from a probability distribution {rho}(x). In Model A, at each time step a vertex is added and joined to an existing vertex, selected at random, with probability p and an edge is introduced between vertices with fitnesses x and y, with a rate f(x,y), with probability 1-p. Model B differs from Model A in that, with probability p, edges are added with preferential attachment rather than randomly. The analysis of Model A shows that, for every fixed fitness x, the network's degree distribution decays exponentially. In Model B we recover instead a power-law degree distribution whose exponent depends only on p, and we show how this result can be generalized. The properties of a number of particular networks are examined.

  17. Arithmetic functions in torus and tree networks

    DOEpatents

    Bhanot, Gyan; Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos M.

    2007-12-25

    Methods and systems for performing arithmetic functions. In accordance with a first aspect of the invention, methods and apparatus are provided, working in conjunction of software algorithms and hardware implementation of class network routing, to achieve a very significant reduction in the time required for global arithmetic operation on the torus. Therefore, it leads to greater scalability of applications running on large parallel machines. The invention involves three steps in improving the efficiency and accuracy of global operations: (1) Ensuring, when necessary, that all the nodes do the global operation on the data in the same order and so obtain a unique answer, independent of roundoff error; (2) Using the topology of the torus to minimize the number of hops and the bidirectional capabilities of the network to reduce the number of time steps in the data transfer operation to an absolute minimum; and (3) Using class function routing to reduce latency in the data transfer. With the method of this invention, every single element is injected into the network only once and it will be stored and forwarded without any further software overhead. In accordance with a second aspect of the invention, methods and systems are provided to efficiently implement global arithmetic operations on a network that supports the global combining operations. The latency of doing such global operations are greatly reduced by using these methods.

  18. Ultra-wideband radar sensors and networks

    DOEpatents

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  19. HEP Science Network Requirements--Final Report

    SciTech Connect

    Bakken, Jon; Barczyk, Artur; Blatecky, Alan; Boehnlein, Amber; Carlson, Rich; Chekanov, Sergei; Cotter, Steve; Cottrell, Les; Crawford, Glen; Crawford, Matt; Dart, Eli; Dattoria, Vince; Ernst, Michael; Fisk, Ian; Gardner, Rob; Johnston, Bill; Kent, Steve; Lammel, Stephan; Loken, Stewart; Metzger, Joe; Mount, Richard; Ndousse-Fetter, Thomas; Newman, Harvey; Schopf, Jennifer; Sekine, Yukiko; Stone, Alan; Tierney, Brian; Tull, Craig; Zurawski, Jason

    2010-04-27

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In August 2009 ESnet and the Office of High Energy Physics (HEP), of the DOE Office of Science, organized a workshop to characterize the networking requirements of the programs funded by HEP. The International HEP community has been a leader in data intensive science from the beginning. HEP data sets have historically been the largest of all scientific data sets, and the communty of interest the most distributed. The HEP community was also the first to embrace Grid technologies. The requirements identified at the workshop are summarized below, and described in more detail in the case studies and the Findings section: (1) There will be more LHC Tier-3 sites than orginally thought, and likely more Tier-2 to Tier-2 traffic than was envisioned. It it not yet known what the impact of this will be on ESnet, but we will need to keep an eye on this traffic. (2) The LHC Tier-1 sites (BNL and FNAL) predict the need for 40-50 Gbps of data movement capacity in 2-5 years, and 100-200 Gbps in 5-10 years for HEP program related traffic. Other key HEP sites include LHC Tier-2 and Tier-3 sites, many of which are located at universities. To support the LHC, ESnet must continue its collaborations with university and international networks. (3) While in all cases the deployed 'raw' network bandwidth must exceed the user requirements in order to meet the data transfer and reliability requirements, network engineering for trans-Atlantic connectivity

  20. Ames Laboratory Network Rules of Behavior | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ames Laboratory Network Rules of Behavior Version Number: 6.0 Document Number: Form 48400.019 Effective Date: 07/2015 File (public): PDF icon Form 48400.019 Rev 6 Network Rules of Behavior (with signature lines)

  1. EPA National Environmental Information Exchange Network Grant Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Environmental Protection Agency is accepting applications for the National Environmental Information Exchange Network Grants Program to provide funding to state territories and federally recognized Indian tribes to support the development of the Environmental Information Exchange Network.

  2. Blending Hydrogen into Natural Gas Pipeline Networks: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues The United States has 11 ...

  3. DOE Inter-Tribal Technical Assistance Energy Provider Network...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Inter-Tribal Technical Assistance Energy Provider Network RFI DOE Inter-Tribal Technical Assistance Energy Provider Network RFI October 29, 2015 5:00PM EDT U.S. Department of...

  4. Microsoft Word - The_Advanced_Networks_and_Services_Underpinning...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... (e.g., ESnet connectivity to Internet2 and the US regional R&E networks, and ... are provided in IP networks by doing two things: First, the packets in a ...

  5. Progress of the Engine Combustion Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of the Engine Combustion Network Progress of the Engine Combustion Network ECN seeks to accelerate development of clean high-efficiency engines. deer09pickett.pdf (1.91 MB) More ...

  6. Ames Laboratory Network Rules of Behavior | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Network Rules of Behavior Version Number: 6.0 Document Number: Form 48400.019 Effective Date: 072015 File (public): PDF icon Form 48400.019 Rev 6 Network Rules of Behavior (CT)...

  7. Gas Main Sensor and Communications Network System

    SciTech Connect

    Hagen Schempf

    2006-05-31

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the Northeast Gas Association (NGA), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. This projected was completed in April 2006, and culminated in the installation of more than 2 dozen GasNet nodes in both low- and high-pressure cast-iron and steel mains owned by multiple utilities in the northeastern US. Utilities are currently logging data (off-line) and monitoring data in real time from single and multiple networked sensors over cellular networks and collecting data using wireless bluetooth PDA systems. The system was designed to be modular, using in-pipe sensor-wands capable of measuring, flow, pressure, temperature, water-content and vibration. Internal antennae allowed for the use of the pipe-internals as a waveguide for setting up a sensor network to collect data from multiple nodes simultaneously. Sensor nodes were designed to be installed with low- and no-blow techniques and tools. Using a multi-drop bus technique with a custom protocol, all electronics were designed to be buriable and allow for on-board data-collection (SD-card), wireless relaying and cellular network forwarding. Installation options afforded by the design included direct-burial and external polemounted variants. Power was provided by one or more batteries, direct AC-power (Class I Div.2) and solar-array. The utilities are currently in a data-collection phase and intend to use the collected (and processed) data to make capital improvement decisions, compare it to Stoner model predictions and evaluate the use of such a system for future expansion, technology-improvement and commercialization starting later in 2006.

  8. Connecting to the Internet Securely; Protecting Home Networks CIAC-2324

    SciTech Connect

    Orvis, W J; Krystosek, P; Smith, J

    2002-11-27

    With more and more people working at home and connecting to company networks via the Internet, the risk to company networks to intrusion and theft of sensitive information is growing. Working from home has many positive advantages for both the home worker and the company they work for. However, as companies encourage people to work from home, they need to start considering the interaction of the employee's home network and the company network he connects to. This paper discusses problems and solutions related to protection of home computers from attacks on those computers via the network connection. It does not consider protection of those systems from people who have physical access to the computers nor does it consider company laptops taken on-the-road. Home networks are often targeted by intruders because they are plentiful and they are usually not well secured. While companies have departments of professionals to maintain and secure their networks, home networks are maintained by the employee who may be less knowledgeable about network security matters. The biggest problems with home networks are that: Home networks are not designed to be secure and may use technologies (wireless) that are not secure; The operating systems are not secured when they are installed; The operating systems and applications are not maintained (for security considerations) after they are installed; and The networks are often used for other activities that put them at risk for being compromised. Home networks that are going to be connected to company networks need to be cooperatively secured by the employee and the company so they do not open up the company network to intruders. Securing home networks involves many of the same operations as securing a company network: Patch and maintain systems; Securely configure systems; Eliminate unneeded services; Protect remote logins; Use good passwords; Use current antivirus software; and Moderate your Internet usage habits. Most of these items

  9. Building A Science DMZ Eli Dart, Network Engineer ESnet Network Engineering Group

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A Science DMZ Eli Dart, Network Engineer ESnet Network Engineering Group Joint Techs, Winter 2013 Honolulu, HI January 13, 2013 Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science Outline of the Afternoon Eli Dart, ESnet * Science DMZ architecture, security Brian Tierney, ESnet * Data transfer node, tools overview Raj Kettimuthu, ANL and University of Chicago * Globus Online -Short break- Jason Zurawski, Internet2 * perfSONAR Guy Almes, Texas A&M University *

  10. DEFINING THE PLAYERS IN HIGHER-ORDER NETWORKS: PREDICTIVE MODELING FOR REVERSE ENGINEERING FUNCTIONAL INFLUENCE NETWORKS

    SciTech Connect

    McDermott, Jason E.; Costa, Michelle N.; Stevens, S.L.; Stenzel-Poore, Mary; Sanfilippo, Antonio P.

    2011-01-20

    A difficult problem that is currently growing rapidly due to the sharp increase in the amount of high-throughput data available for many systems is that of determining useful and informative causative influence networks. These networks can be used to predict behavior given observation of a small number of components, predict behavior at a future time point, or identify components that are critical to the functioning of the system under particular conditions. In these endeavors incorporating observations of systems from a wide variety of viewpoints can be particularly beneficial, but has often been undertaken with the objective of inferring networks that are generally applicable. The focus of the current work is to integrate both general observations and measurements taken for a particular pathology, that of ischemic stroke, to provide improved ability to produce useful predictions of systems behavior. A number of hybrid approaches have recently been proposed for network generation in which the Gene Ontology is used to filter or enrich network links inferred from gene expression data through reverse engineering methods. These approaches have been shown to improve the biological plausibility of the inferred relationships determined, but still treat knowledge-based and machine-learning inferences as incommensurable inputs. In this paper, we explore how further improvements may be achieved through a full integration of network inference insights achieved through application of the Gene Ontology and reverse engineering methods with specific reference to the construction of dynamic models of transcriptional regulatory networks. We show that integrating two approaches to network construction, one based on reverse-engineering from conditional transcriptional data, one based on reverse-engineering from in situ hybridization data, and another based on functional associations derived from Gene Ontology, using probabilities can improve results of clustering as evaluated by a

  11. Communication devices for network-hopping communications and methods of network-hopping communications

    DOEpatents

    Buttles, John W.

    2011-12-20

    Wireless communication devices include a software-defined radio coupled to processing circuitry. The processing circuitry is configured to execute computer programming code. Storage media is coupled to the processing circuitry and includes computer programming code configured to cause the processing circuitry to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.

  12. Communication devices for network-hopping communications and methods of network-hopping communications

    DOEpatents

    Buttles, John W

    2013-04-23

    Wireless communication devices include a software-defined radio coupled to processing circuitry. The system controller is configured to execute computer programming code. Storage media is coupled to the system controller and includes computer programming code configured to cause the system controller to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.

  13. Asset Score National Leadership Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Asset Score National Leadership Network Asset Score National Leadership Network The White House and DOE announce the Asset Score National Leadership Network at the Eisenhower Executive Office Building in Washington, D.C., on Jan. 28, 2016. Photo Credit: Amy Konigsburg, U.S. Department of Energy The White House and DOE announce the Asset Score National Leadership Network at the Eisenhower Executive Office Building in Washington, D.C., on Jan. 28, 2016. Photo Credit: Amy Konigsburg, U.S.

  14. Better Buildings Residential Network Case Study: Partnerships | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. BBRN Case Study: Partnerships (191.37 KB) More Documents & Publications Better Buildings Network View | February 2015 Complementary Energy and Health Strategies Voluntary Initiative: Partnering to Enhance Program Capacity

  15. Energy Materials Network (EMN) Lab Consortia Overview Webinar | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Materials Network (EMN) Lab Consortia Overview Webinar Energy Materials Network (EMN) Lab Consortia Overview Webinar Download the presentation slides from the Fuel Cell Technologies Office webinar "Energy Materials Network (EMN) Lab Consortia Overview" held on November 7, 2016. Energy Materials Network (EMN) Lab Consortia Overview Webinar Slides (5.25 MB) More Documents & Publications FCTO Lab Consortia Overview: ElectroCat and HyMARC Webinar Advanced Water Splitting

  16. Imaging, Characterizing, and Modeling of Fracture Networks and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reservoirs Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in ... and integrating imaging into modeling. seismicityhuangfracturenetworks.pdf ...

  17. PROJECT PROFILE: The Solar Foundation - Solar Training Network |

    Energy Saver

    Department of Energy Training Network PROJECT PROFILE: The Solar Foundation - Solar Training Network Project Name: Solar Training Network Funding Opportunity: Solar Training and Education for Professionals (STEP) SunShot Subprogram: Soft Costs Location: Washington, DC SunShot Award Amount: $2,107,862 Awardee Cost Share: $34,295 The Solar Foundation is administering the Solar Training Network, which connects solar workforce trainers, solar employers, and individuals interested in working in

  18. CTI-Private Financing Advisory Network | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Name Private Financing Advisory Network AgencyCompany Organization Climate Technology Initiative Topics Finance, Implementation, Market analysis Website...

  19. About the Energy Materials Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    About the Energy Materials Network About the Energy Materials Network Watch this introductory video to the Energy Materials Network (EMN) to learn more about this new model that aims to dramatically decrease the time-to-market for advanced materials innovations. Watch this introductory video to the Energy Materials Network (EMN) to learn more about this new model that aims to dramatically decrease the time-to-market for advanced materials innovations. Accelerating advanced materials development,

  20. Complex network synchronization of chaotic systems with delay coupling

    SciTech Connect

    Theesar, S. Jeeva Sathya Ratnavelu, K.

    2014-03-05

    The study of complex networks enables us to understand the collective behavior of the interconnected elements and provides vast real time applications from biology to laser dynamics. In this paper, synchronization of complex network of chaotic systems has been studied. Every identical node in the complex network is assumed to be in Lurā€™e system form. In particular, delayed coupling has been assumed along with identical sector bounded nonlinear systems which are interconnected over network topology.

  1. National Idling Reduction Network News Compendium | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Compendium National Idling Reduction Network News Compendium Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. idling_newsletter_portfolio.pdf (35.23 MB) More Documents & Publications National Idling Reduction Network News - January 2014 National Idling Reduction Network News - June 2012 National Idling Reduction Network News - December 2013

  2. National Laboratory Fukushima Support Network (NLFSN) Workflow | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Workflow National Laboratory Fukushima Support Network (NLFSN) Workflow This document illustrates the proposed distribution and workflow of any requests made through the NLFSN network. National Laboratory Fukushima Support Network (NLFSN) Workflow (176.39 KB) More Documents & Publications National Laboratory Fukushima Support Network (NLFSN) Pre-Decisional Fact Sheet Status of UFD Campaign International Activities in Disposal Research DFAS Wide-Area Workflow Issues

  3. RACEE Competition - Peer Exchange Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    RACEE Competition - Peer Exchange Network RACEE Competition - Peer Exchange Network The Peer Exchange Network will empower Alaska communities and native Alaska villages to develop effective tools to increase the use of reliable, affordable, and energy efficient solutions that are replicable throughout Alaska and other Arctic regions. The Network will provide an information sharing platform for the 64 Community Efficiency Champions (CECs) in the effort to reduce per capita energy usage by 15% by

  4. Networking and Solar Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Soft Costs Ā» Networking and Solar Technical Assistance Networking and Solar Technical Assistance Solar Business Innovation Networking and Solar Technical Assistance Solar Training Solar DATA ANALYSIS The SunShot Initiative provides state and local decision-makers with timely and actionable resources, peer networks, and technical assistance to lower local market barriers and establish best practices in order to expand solar power access throughout American communities. In the context of the

  5. Evolution of Grain Boundary Networks in Extreme Radiation Environments

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of the Evolution of Grain Boundary Networks in Extreme Radiation Environments. Evolution of Grain Boundary Networks in Extreme Radiation Environments Research Our objective is to understand the characteristics of an "optimal" grain boundary (GB) network that minimizes microstructural evolution in radiation environments. Through our research we have elucidated that this optimal network requires a balance between two populations of grain boundaries: low free volume (low free energy)

  6. Functional Ecological Gene Networks to Reveal the Changes Among...

    Office of Scientific and Technical Information (OSTI)

    indicating the potential importance of network interactions in ecosystem functioning. ... aremore fundamentally important for research in microbial ecology, systems ...

  7. Advancing reversible shape memory by tuning the polymer network

    Office of Scientific and Technical Information (OSTI)

    architecture (Journal Article) | DOE PAGES Advancing reversible shape memory by tuning the polymer network architecture This content will become publicly available on February 2, 2017 Title: Advancing reversible shape memory by tuning the polymer network architecture Because of counteraction of a chemical network and a crystalline scaffold, semicrystalline polymer networks exhibit a peculiar behavior-reversible shape memory (RSM), which occurs naturally without applying any external force

  8. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Overview Featured Speakers Andy Meyer, Residential Program Manager, Efficiency ... Efficiency Maine (Network Member) Andy Meyer, Residential Program Manager Efficiency ...

  9. Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls

    Energy.gov [DOE]

    Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls, from the U.S. Department of Energy.

  10. V-036: EMC Smarts Network Configuration Manager Database Authentication

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bypass Vulnerability | Department of Energy 6: EMC Smarts Network Configuration Manager Database Authentication Bypass Vulnerability V-036: EMC Smarts Network Configuration Manager Database Authentication Bypass Vulnerability November 29, 2012 - 3:30am Addthis PROBLEM: EMC Smarts Network Configuration Manager Database Authentication Bypass Vulnerability PLATFORM: EMC Smarts Network Configuration Manager (NCM) all versions prior 9.1 ABSTRACT: Two vulnerabilities were reported in EMC Smarts

  11. Cybersecurity Intrusion Detection and Security Monitoring for Field Area Networks

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Intrusion Detection and Security Monitoring for Field Area Networks Continuous security validation, intrusion detection, and situational awareness for advanced metering infrastructure and distribution automation Background Advanced metering infrastructure (AMI) and distribution automation (DA) field area networks (FANs) are among the largest, possibly most complex, networks operated by utilities in the United States. Exploitable vulnerabilities in AMI and DA systems may arise from weaknesses in

  12. Exploring network structure, dynamics, and function using networkx

    SciTech Connect

    Hagberg, Aric; Swart, Pieter; S Chult, Daniel

    2008-01-01

    NetworkX is a Python language package for exploration and analysis of networks and network algorithms. The core package provides data structures for representing many types of networks, or graphs, including simple graphs, directed graphs, and graphs with parallel edges and self loops. The nodes in NetworkX graphs can be any (hashable) Python object and edges can contain arbitrary data; this flexibility mades NetworkX ideal for representing networks found in many different scientific fields. In addition to the basic data structures many graph algorithms are implemented for calculating network properties and structure measures: shortest paths, betweenness centrality, clustering, and degree distribution and many more. NetworkX can read and write various graph formats for eash exchange with existing data, and provides generators for many classic graphs and popular graph models, such as the Erdoes-Renyi, Small World, and Barabasi-Albert models, are included. The ease-of-use and flexibility of the Python programming language together with connection to the SciPy tools make NetworkX a powerful tool for scientific computations. We discuss some of our recent work studying synchronization of coupled oscillators to demonstrate how NetworkX enables research in the field of computational networks.

  13. National Network for Manufacturing Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    National Network for Manufacturing Innovation National Network for Manufacturing Innovation Image of Energy Department's Assistant Secretary David Danielson standing at podium speaking in front of workshop participants. The National Network for Manufacturing Innovation (NNMI) is an interagency initiative made up of public/private partnerships devoted to manufacturing excellence. Under the NNMI, each institute will bring together innovative manufacturers, university engineering schools, community

  14. Open Problems in Network-aware Data Management in Exa-scale Computing and Terabit Networking Era

    SciTech Connect

    Balman, Mehmet; Byna, Surendra

    2011-12-06

    Accessing and managing large amounts of data is a great challenge in collaborative computing environments where resources and users are geographically distributed. Recent advances in network technology led to next-generation high-performance networks, allowing high-bandwidth connectivity. Efficient use of the network infrastructure is necessary in order to address the increasing data and compute requirements of large-scale applications. We discuss several open problems, evaluate emerging trends, and articulate our perspectives in network-aware data management.

  15. Multilevel method for modeling large-scale networks.

    SciTech Connect

    Safro, I. M.

    2012-02-24

    Understanding the behavior of real complex networks is of great theoretical and practical significance. It includes developing accurate artificial models whose topological properties are similar to the real networks, generating the artificial networks at different scales under special conditions, investigating a network dynamics, reconstructing missing data, predicting network response, detecting anomalies and other tasks. Network generation, reconstruction, and prediction of its future topology are central issues of this field. In this project, we address the questions related to the understanding of the network modeling, investigating its structure and properties, and generating artificial networks. Most of the modern network generation methods are based either on various random graph models (reinforced by a set of properties such as power law distribution of node degrees, graph diameter, and number of triangles) or on the principle of replicating an existing model with elements of randomization such as R-MAT generator and Kronecker product modeling. Hierarchical models operate at different levels of network hierarchy but with the same finest elements of the network. However, in many cases the methods that include randomization and replication elements on the finest relationships between network nodes and modeling that addresses the problem of preserving a set of simplified properties do not fit accurately enough the real networks. Among the unsatisfactory features are numerically inadequate results, non-stability of algorithms on real (artificial) data, that have been tested on artificial (real) data, and incorrect behavior at different scales. One reason is that randomization and replication of existing structures can create conflicts between fine and coarse scales of the real network geometry. Moreover, the randomization and satisfying of some attribute at the same time can abolish those topological attributes that have been undefined or hidden from

  16. Hybrid function projective synchronization in complex dynamical networks

    SciTech Connect

    Wei, Qiang; Wang, Xing-yuan, E-mail: wangxy@dlut.edu.cn; Hu, Xiao-peng [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024 (China)] [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024 (China)

    2014-02-15

    This paper investigates hybrid function projective synchronization in complex dynamical networks. When the complex dynamical networks could be synchronized up to an equilibrium or periodic orbit, a hybrid feedback controller is designed to realize the different component of vector of node could be synchronized up to different desired scaling function in complex dynamical networks with time delay. Hybrid function projective synchronization (HFPS) in complex dynamical networks with constant delay and HFPS in complex dynamical networks with time-varying coupling delay are researched, respectively. Finally, the numerical simulations show the effectiveness of theoretical analysis.

  17. PAC learning algorithms for functions approximated by feedforward networks

    SciTech Connect

    Rao, N.S.V.; Protopopescu, V.

    1996-06-01

    The authors present a class of efficient algorithms for PAC learning continuous functions and regressions that are approximated by feedforward networks. The algorithms are applicable to networks with unknown weights located only in the output layer and are obtained by utilizing the potential function methods of Aizerman et al. Conditions relating the sample sizes to the error bounds are derived using martingale-type inequalities. For concreteness, the discussion is presented in terms of neural networks, but the results are applicable to general feedforward networks, in particular to wavelet networks. The algorithms can be directly adapted to concept learning problems.

  18. Webinar November 7: Energy Materials Network (EMN) Lab Consortia Overview |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy November 7: Energy Materials Network (EMN) Lab Consortia Overview Webinar November 7: Energy Materials Network (EMN) Lab Consortia Overview November 3, 2016 - 9:44am Addthis The Fuel Cell Technologies Office will present a live webinar entitled "Energy Materials Network (EMN) Lab Consortia Overview" on Monday, November 7, from 12 to 1 p.m. Eastern Standard Time. This webinar will provide an overview of DOE's newly launched Energy Materials Network, a network of

  19. ESnet, NERSC Blaze 400G Production Network Path

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ESnet, NERSC Blaze 400G Production Network Path ESnet, NERSC Blaze 400G Production Network Path 400G Link is First Ever by R&E Network November 10, 2015 Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 NetworkMapIllustration.png This map shows the 400G production link between Wang Hall at the main LBNL site and the Oakland Scientific Facility. The Department of Energy's Energy Sciences Network (ESnet) and the National Energy Research Scientific Computing Center (NERSC) have built a 400

  20. A convolutional neural network neutrino event classifier

    DOE PAGES [OSTI]

    Aurisano, A.; Radovic, A.; Rocco, D.; Himmel, A.; Messier, M. D.; Niner, E.; Pawloski, G.; Psihas, F.; Sousa, A.; Vahle, P.

    2016-09-01

    Here, convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology withoutmoreĀ Ā» the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.Ā«Ā less

  1. Home Area Networks and the Smart Grid

    SciTech Connect

    Clements, Samuel L.; Carroll, Thomas E.; Hadley, Mark D.

    2011-04-01

    With the wide array of home area network (HAN) options being presented as solutions to smart grid challenges for the home, it is time to compare and contrast their strengths and weaknesses. This white paper examines leading and emerging HAN technologies. The emergence of the smart grid is bringing more networking players into the field. The need for low consistent bandwidth usage differs enough from the traditional information technology world to open the door to new technologies. The predominant players currently consist of a blend of the old and new. Within the wired world Ethernet and HomePlug Green PHY are leading the way with an advantage to HomePlug because it doesn't require installing new wires. In the wireless the realm there are many more competitors but WiFi and ZigBee seem to have the most momentum.

  2. System and method for networking electrochemical devices

    DOEpatents

    Williams, Mark C.; Wimer, John G.; Archer, David H.

    1995-01-01

    An improved electrochemically active system and method including a plurality of electrochemical devices, such as fuel cells and fluid separation devices, in which the anode and cathode process-fluid flow chambers are connected in fluid-flow arrangements so that the operating parameters of each of said plurality of electrochemical devices which are dependent upon process-fluid parameters may be individually controlled to provide improved operating efficiency. The improvements in operation include improved power efficiency and improved fuel utilization in fuel cell power generating systems and reduced power consumption in fluid separation devices and the like through interstage process fluid parameter control for series networked electrochemical devices. The improved networking method includes recycling of various process flows to enhance the overall control scheme.

  3. Structure Learning in Power Distribution Networks

    SciTech Connect

    Deka, Deepjyoti; Chertkov, Michael; Backhaus, Scott N.

    2015-01-13

    Traditionally power distribution networks are either not observable or only partially observable. This complicates development and implementation of new smart grid technologies, such as these related to demand response, outage detection and management, and improved load-monitoring. Here, inspired by proliferation of the metering technology, we discuss statistical estimation problems in structurally loopy but operationally radial distribution grids consisting in learning operational layout of the network from measurements, e.g. voltage data, which are either already available or can be made available with a relatively minor investment. Our newly suggested algorithms apply to a wide range of realistic scenarios. The algorithms are also computationally efficient ā€“ polynomial in time ā€“ which is proven theoretically and illustrated computationally on a number of test cases. The technique developed can be applied to detect line failures in real time as well as to understand the scope of possible adversarial attacks on the grid.

  4. Operations Plan for Support Network Development

    SciTech Connect

    2008-06-30

    This report describes the operational processes and strategies that are building a support network for the National Security Technology Incubator (NSTI) program. The NSTI program currently is under development as part of the National Security Preparedness Project (NSPP), funded by Department of Energy (DOE)/National Nuclear Security Administration (NNSA) Grant No. DE FG52-07NA28084. Although the NSTI program offers a wide array of in-house business services, there are a certain number of services that will be provided by entities outside of Arrowhead Center. This report identifies the steps needed to develop an appropriate support network. The Arrowhead Center is working with external service providers and key stakeholders to establish feasible referral and implementation mechanics offering NSTI program participants the most comprehensive incubation services possible.

  5. Resilient Core Networks for Energy Distribution

    SciTech Connect

    Kuntze, Nicolai; Rudolph, Carsten; Leivesley, Sally; Manz, David O.; Endicott-Popovsky, Barbara E.

    2014-07-28

    Abstractā€”Substations and their control are crucial for the availability of electricity in todayā€™s energy distribution. Ad- vanced energy grids with Distributed Energy Resources require higher complexity in substations, distributed functionality and communication between devices inside substations and between substations. Also, substations include more and more intelligent devices and ICT based systems. All these devices are connected to other systems by different types of communication links or are situated in uncontrolled environments. Therefore, the risk of ICT based attacks on energy grids is growing. Consequently, security measures to counter these risks need to be an intrinsic part of energy grids. This paper introduces the concept of a Resilient Core Network to interconnected substations. This core network provides essen- tial security features, enables fast detection of attacks and allows for a distributed and autonomous mitigation of ICT based risks.

  6. Optimal design of reverse osmosis module networks

    SciTech Connect

    Maskan, F.; Wiley, D.E.; Johnston, L.P.M.; Clements, D.J.

    2000-05-01

    The structure of individual reverse osmosis modules, the configuration of the module network, and the operating conditions were optimized for seawater and brackish water desalination. The system model included simple mathematical equations to predict the performance of the reverse osmosis modules. The optimization problem was formulated as a constrained multivariable nonlinear optimization. The objective function was the annual profit for the system, consisting of the profit obtained from the permeate, capital cost for the process units, and operating costs associated with energy consumption and maintenance. Optimization of several dual-stage reverse osmosis systems were investigated and compared. It was found that optimal network designs are the ones that produce the most permeate. It may be possible to achieve economic improvements by refining current membrane module designs and their operating pressures.

  7. Framework for Network Co-Simulation

    Energy Science and Technology Software Center

    2014-01-09

    The Framework for Network Co-Simulation (FNCS) uses a federated approach to integrate simulations which may have differing time scales. Special consideration is given to integration with a communication network simulation such that inter-simulation messages may be optionally routed through and delayed by such a simulation. In addition, FNCS uses novel time synchronization algorithms to accelerate co-simulation including the application of speculative multithreading. FNCS accomplishes all of these improvements with minimal end user intervention. Simulations canmoreĀ Ā» be integrated using FNCS while maintaining their original model input files simply by linking with the FNCS library and making appropriate calls into the FNCS API.Ā«Ā less

  8. System for testing properties of a network

    DOEpatents

    Rawle, Michael; Bartholomew, David B.; Soares, Marshall A.

    2009-06-16

    A method for identifying properties of a downhole electromagnetic network in a downhole tool sting, including the step of providing an electromagnetic path intermediate a first location and a second location on the electromagnetic network. The method further includes the step of providing a receiver at the second location. The receiver includes a known reference. The analog signal includes a set amplitude, a set range of frequencies, and a set rate of change between the frequencies. The method further includes the steps of sending the analog signal, and passively modifying the signal. The analog signal is sent from the first location through the electromagnetic path, and the signal is modified by the properties of the electromagnetic path. The method further includes the step of receiving a modified signal at the second location and comparing the known reference to the modified signal.

  9. Better Buildings Network View | July-August 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Better Buildings Network View | July-August 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. Better Buildings Network View July-August 2014 (288.12 KB) More Documents & Publications Opportunities through the PowerSaver Loan Program Better Buildings Network View | September 2014 Better Buildings Network View | March

  10. Artificial neural network cardiopulmonary modeling and diagnosis

    DOEpatents

    Kangas, L.J.; Keller, P.E.

    1997-10-28

    The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis. 12 figs.

  11. Artificial neural network cardiopulmonary modeling and diagnosis

    DOEpatents

    Kangas, Lars J.; Keller, Paul E.

    1997-01-01

    The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.

  12. SSRL Computer & Networking Support Requests

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    CNG Help Request To use this form - Please enter your contact information below and select a category for your request. Also, provide a brief description of your request. When purchasing items, please include an account number. Priority*: Normal Urgent Requestor: (Name of person to contact for this request) Email: Phone: Support Required: I don't know Computer Support Network Support Printer Support Select Type of Request I don't know Details of your request: Property Control #: PC# Account

  13. California Hydrogen Highway Network October 3, 2007

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Highway Network April 3, 2008 California Air Resources Board California Blueprint Plan * Phased approach to infrastructure implementation * Environmental goals * Shared risk CaH2Net Background * Governor's Executive Order, S-7-04 formed the CaH2Net in April 2004 * A Blueprint Plan, May 2005 * Legislative Authority - SB76, $6.5 Million, stations, vehicles, support - Budget Act 2006, $6.5 Million, ZBuses, stations - Budget Act 2007, $6 Million, stations, support The State's Contribution *

  14. Biological and Environmental Research Network Requirements Review

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Network Requirements Review Final Report September 18-19, 2015 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this doc- ument is believed to contain correct informa on, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness

  15. Resilience of complex networks to random breakdown

    SciTech Connect

    Paul, Gerald; Sreenivasan, Sameet; Stanley, H. Eugene

    2005-11-01

    Using Monte Carlo simulations we calculate f{sub c}, the fraction of nodes that are randomly removed before global connectivity is lost, for networks with scale-free and bimodal degree distributions. Our results differ from the results predicted by an equation for f{sub c} proposed by Cohen et al. We discuss the reasons for this disagreement and clarify the domain for which the proposed equation is valid.

  16. Network support for system initiated checkpoints

    DOEpatents

    Chen, Dong; Heidelberger, Philip

    2013-01-29

    A system, method and computer program product for supporting system initiated checkpoints in parallel computing systems. The system and method generates selective control signals to perform checkpointing of system related data in presence of messaging activity associated with a user application running at the node. The checkpointing is initiated by the system such that checkpoint data of a plurality of network nodes may be obtained even in the presence of user applications running on highly parallel computers that include ongoing user messaging activity.

  17. Using Graphite to view network data

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Graphite to Visualize Network Data Jon Dugan <jdugan@es.net> Summer ESCC 2010, Columbus, OH Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science ESnet Statistics Overview ESxSNMP (Data Collection) ESxSNMP (Data Collection) Graphite (Visualization) Graphite (Visualization) Analytics (Custom Reports) Analytics (Custom Reports) Net Almanac (Metadata) Net Almanac (Metadata) Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science What

  18. Better Buildings Network View November 2015

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BetterBuildings Network View News From the Field Capturing Efficiency in Residential Real Estate Transactions The U.S. Departmenr of Energy (DOE) has released More Real Estate Resources a new white paper that highlights how residential programs can help make home resale prices account for the value of high- performance energy efficiency features to appraisers, real estate agents, mortgage lenders, homebuyers, and sellers. Dig deeper into the hot topic of Multiple studies in recent valuing energy

  19. Better Buildings Network View, April 2015

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Better Buildings Network View News From the Field April 2015 On Earth Day, Discover Solutions in More Than 100 Past Peer Exchange Calls Mark Earth Day by going to a new interactive archive Expand Your Solutions containing 108 Peer Search Exchange Call summaries dating as far back as 2011 that is now available for residential energy efficiency program research and application. Users can sort summaries by call topic, title, and date, Find even more proven practices in the Better Buildings

  20. Better Buildings Network View, April 2016

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    View, April 2016 News From the Field Leverage Earth Day to Promote Energy Efficiency Learn how to leverage Earth Day and other holidays by visiting the Better Buildings Residential Program Solution Center for helpful peer exchange call summaries and case studies: Read the Peer Exchange Call summary "Leveraging Seasonal Opportunities for Marketing Energy Efficiency" featuring Better Buildings Residential Network member green spaces (Chattanooga, TN). Review the "Leveraging Holidays