National Library of Energy BETA

Sample records for net capacity mw

  1. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh...

    Energy Information Administration (EIA) (indexed site)

    Technologies" ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"En...

  2. Property:Installed Capacity (MW) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Installed Capacity (MW) Jump to: navigation, search Property Name Installed Capacity (MW) Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:Insta...

  3. Working and Net Available Shell Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    Working and Net Available Shell Storage Capacity With Data for March 2016 | Release Date: May 31, 2016 | Next Release Date: November 30, 2016 Previous Issues Year: March 2016 September 2015 March 2015 September 2014 March 2014 September 2013 March 2013 September 2012 March 2012 September 2011 March 2011 September 2010 Go Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity

  4. Working and Net Available Shell Storage Capacity

    Reports and Publications

    2016-01-01

    Working and Net Available Shell Storage Capacity is the U.S. Energy Information Administration’s (EIA) report containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an important crude oil market center. Data are released twice each year near the end of May (data for March 31) and near the end of November (data for September 30).

  5. Property:Device Nameplate Capacity (MW) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects40MW Lewis project + 0 8MW 1MW Farms of multiple machines will be deployed with installed...

  6. Property:Project Installed Capacity (MW) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects40MW Lewis project + 0 + MHK ProjectsADM 5 + 1 + MHK ProjectsAWS II + 1 + MHK Projects...

  7. Property:Technology Nameplate Capacity (MW) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Modular Installation in a Grid Form Dozens of MW + MHK TechnologiesFloating anchored OTEC plant + The first technology demonstration ocean model is expected to be able to...

  8. United States Total Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Total Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United ... Gases",2256,2313,1995,1932,2700 "Nuclear",100334,100266,100755,101004,10116...

  9. Working and Net Available Shell Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    ... Source: Energy Information Administration, Form EIA-813 "Monthly Crude Oil Report", Form EIA-815 "Monthly Bulk Terminal and Blender Report" PAD Districts 1 EIAWorking and Net ...

  10. br Owner br Facility br Type br Capacity br MW br Commercial...

    OpenEI (Open Energy Information) [EERE & EIA]

    Owner br Facility br Type br Capacity br MW br Commercial br Online br Date br Geothermal br Area br Geothermal br Region Coordinates Ahuachapan Geothermal Power Plant LaGeo SA de...

  11. Working and Net Available Shell Storage Capacity

    Gasoline and Diesel Fuel Update

    Utilization rates for crude tank farms equals stocks divided by storage capacity of tanks and underground caverns. It does not include pipeline fill. 2 See http:www.eia.gov...

  12. Net Metering

    Energy.gov [DOE]

    Nevada's original net-metering law for renewable-energy systems was enacted in 1997 and amended in 2001, 2003, 2005, 2007, 2011, 2013, and 2015. Systems up to one megawatt (MW) in capacity that...

  13. Idaho Power- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    In July 2013, the PUC issued an order in response to Idaho Power's application to modify its net metering program. The ruling removed a previously existing service capacity cap of 2.9 MW and chan...

  14. Working and Net Available Shell Storage Capacity as of September...

    Gasoline and Diesel Fuel Update

    and also allows for tracking seasonal shifts in petroleum product usage of tanks and underground storage. Using the new storage capacity data, it will be possible to calculate...

  15. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable energy facilities established on military property for on-site military consumption may net meter for systems up to 2.2 megawatts (MW, AC). Aggregate Capacity Limit...

  16. Working and Net Available Shell Storage Capacity as of September...

    Annual Energy Outlook

    for PAD District 2 and the U.S. total have been revised to correct a processing error that caused some capacity data to be double counted in the original release of this...

  17. ,"Table 4.B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region,"

    Energy Information Administration (EIA) (indexed site)

    B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region," ,"2001-2010 Actual, 2011-2015 Projected" ,"(Megawatts and Percent)" ,"Interconnection","NERC Regional Assesment Area","Net Internal Demand[1] -- Winter" ,,,"Actual",,,,,,,,,,"Projected"

  18. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    SciTech Connect

    Not Available

    1984-10-01

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  19. United States Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Renewable Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United States" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",2274,2214,2229,2382,2405 "Hydro Conventional",77821,77885,77930,78518,78825 "Solar",411,502,536,619,941 "Wind",11329,16515,24651,34296,39135 "Wood/Wood Waste",6372,6704,6864,6939,7037 "MSW/Landfill Gas",3166,3536,3644,3645,3690

  20. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Delaware" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Hay Road","Natural gas","Calpine Mid-Atlantic Generation LLC",1136 2,"Edge ...

  1. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Florida" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Martin","Natural gas","Florida Power & Light Co",3695 2,"West County Energy ...

  2. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    There is no stated limit on the aggregate capacity of net-metered systems in a utility's service territory. Any net excess generation (NEG) during a monthly billing period is carried over to the...

  3. Campo Net Meter Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Campo Net Meter Project Michael Connolly Miskwish, MA Economist/Engineer Campo Kumeyaay Nation Location map Tribal Energy Planning  Current 50 MW project  Proposed 160 MW project  DOE energy grant  Land use planning, renewable energy zones overlay  Economic analysis  Transmission, queue, PPA  Energy Resource Agreement analysis  Tribal Net meter turbine planning California SGIP program  Self Generation Incentive Program  Requires utilities to allow net metering 

  4. Net Metering

    Energy.gov [DOE]

    Net metering in Virginia is available on a first-come, first-served basis until the rated generating capacity owned and operated by customer-generators reaches 1% of an electric distribution...

  5. Net Metering

    Energy.gov [DOE]

    With these regulations, renewable energy systems with a capacity up to 25 kilowatts (kW) are eligible for net metering. Overall enrollment is limited to 1.5% of a utility's retail sales from the...

  6. Net Metering

    Energy.gov [DOE]

    Net metering is available on a first-come, first-served basis until the cumulative generating capacity of net-metered systems equals 0.5% of a utility’s peak demand during 1996.* At least one-half...

  7. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the limit on individual system size from 100 kilowatts (kW) to 1 MW . Net Excess Generation: The District's net-metering rules specify that metering equipment must be capable...

  8. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    District of Columbia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"US GSA Heating and Transmission","Natural gas","US GSA Heating and Transmission",9

  9. Table 8.11b Electric Net Summer Capacity: Electric Power Sector, 1949-2011 (Subset of Table 8.11a; Kilowatts)

    Energy Information Administration (EIA) (indexed site)

    b Electric Net Summer Capacity: Electric Power Sector, 1949-2011 (Subset of Table 8.11a; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 9 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal Solar/PV 8 Wind Total Wood 6 Waste 7 1949 NA NA NA NA 44,887,000 0 [5] 18,500,000 13,000 [10] NA NA NA 18,513,000 NA 63,400,000 1950 NA NA NA NA 49,987,000 0 [5] 19,200,000 13,000 [10] NA

  10. Table 8.11c Electric Net Summer Capacity: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.11b; Kilowatts)

    Energy Information Administration (EIA) (indexed site)

    c Electric Net Summer Capacity: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.11b; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 8 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power Biomass Geo- thermal Solar/PV 7 Wind Total Wood 5 Waste 6 Electricity-Only Plants 9<//td> 1989 296,541,828 77,966,348 119,304,288 364,000 494,176,464 98,160,610 18,094,424 73,579,794

  11. Table 8.11d Electric Net Summer Capacity: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.11a; Kilowatts)

    Energy Information Administration (EIA) (indexed site)

    d Electric Net Summer Capacity: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.11a; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 8 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power Biomass Geo- thermal Solar/PV 7 Wind Total Wood 5 Waste 6 Commercial Sector 9<//td> 1989 258,193 191,487 578,797 – 1,028,477 [–] – 17,942 13,144 166,392 [–] – – 197,478 – 1,225,955 1990

  12. Net Metering | Department of Energy

    Energy.gov [DOE] (indexed site)

    customers who own or operate systems up to one megawatt (1 MW) in capacity that generate electricity using solar, wind, geothermal, hydro, tidal, wave, biomass, landfill gas,...

  13. Table 8.11a Electric Net Summer Capacity: Total (All Sectors), 1949-2011 (Sum of Tables 8.11b and 8.11d; Kilowatts)

    Energy Information Administration (EIA) (indexed site)

    a Electric Net Summer Capacity: Total (All Sectors), 1949-2011 (Sum of Tables 8.11b and 8.11d; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 9 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal Solar/PV 8 Wind Total Wood 6 Waste 7 1949 NA NA NA NA 44,887,000 0 [5] 18,500,000 13,000 [10] NA NA NA 18,513,000 NA 63,400,000 1950 NA NA NA NA 49,987,000 0 [5] 19,200,000 13,000

  14. Grays Harbor PUD- Net Metering

    Energy.gov [DOE]

    Washington's original net-metering law, which applies to all electric utilities, was enacted in 1998 and amended in 2006. Individual systems are limited to 100 kilowatts (kW) in capacity. Net...

  15. EWEB- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Eugene Water and Electric Board (EWEB) offers net metering for customers with renewable energy generation systems with an installed capacity of 25 kW or less. Eligible systems use solar power,...

  16. LADWP- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    LADWP allows its customers to net meter their photovoltaic (PV), wind, and hybrid systems with a capacity of not more than one megawatt. LADWP will provide the necessary metering equipment unless...

  17. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Kansas adopted the Net Metering and Easy Connection Act in May 2009, which established net metering for customers of investor-owned utilities (IOUs). 

  18. Net Metering

    Energy.gov [DOE]

    Note: Illinois is currently undergoing a rulemaking that would change its existing net metering rules. The proposed rules include provisions clarifying virtual net metering policies, facilitating...

  19. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas, hydropower, fu...

  20. Maibarara Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    1 Avg. Annual Gross Operating Capacity(MW) Summer Peak Net Capacity (MW) Winter Peak Net Capacity (MW) Avg. Annual GenerationConsumption Gross Generation (MWh) 60 1...

  1. Net Metering

    Energy.gov [DOE]

    Note: On October 12th, 2015 the Hawaii PUC voted to end net metering in favor of 3 alternative options: a grid supply option, a self-supply option, and a time of use tariff. Customers with net...

  2. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    NOTE: Although, this post is categorized as netmetering, the policy adopted by MS does not meet DSIRE's standards for a typical net metering policy. Net metering policy allows a customer to offset...

  3. Net Metering

    Energy.gov [DOE]

    NOTE: On October 21, 2015, the NY Public Service Commission denied the Orange and Rockland Utility’s petition to cease offering net-metering and interconnections once the 6% net-metering cap was...

  4. Net Metering

    Energy.gov [DOE]

    New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives) to offer net metering at non-...

  5. Net Metering

    Energy.gov [DOE]

    Net excess generation (NEG) is credited to the customer's next monthly bill. The customer may choose to start the net metering period at the beginning of January, April, July or October to match...

  6. Net Metering

    Energy.gov [DOE]

    NOTE: HB 8354/SB 2450 omnibus renewable energy bill enacted on June 2016 amended the net metering statute in the Rhode Island to i) establish community virtual net metering, ii) increase system...

  7. Net Metering

    Energy.gov [DOE]

    Missouri enacted legislation in June 2007 requiring all electric utilities—investor-owned utilities, municipal utilities, and electric cooperatives—to offer net metering to customers with systems...

  8. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Alaska" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Beluga","Natural gas","Chugach Electric Assn Inc",344.4 2,"George M Sullivan Generation Plant 2","Natural gas","Anchorage Municipal Light and Power",248.1 3,"Southcentral Power Project","Natural gas","Chugach Electric Assn Inc",169.7 4,"North

  9. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    California" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Dynegy Moss Landing Power Plant","Natural gas","Dynegy -Moss Landing LLC",2529 2,"Diablo Canyon","Nuclear","Pacific Gas & Electric Co",2240 3,"AES Alamitos LLC","Natural gas","AES Alamitos LLC",1997 4,"Castaic","Pumped storage","Los Angeles

  10. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Colorado" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Comanche (CO)","Coal","Public Service Co of Colorado",1410 2,"Craig (CO)","Coal","Tri-State G & T Assn, Inc",1304 3,"Fort St Vrain","Natural gas","Public Service Co of Colorado",969 4,"Rawhide","Natural gas","Platte River Power

  11. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Idaho" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Brownlee","Hydroelectric","Idaho Power Co",744 2,"Dworshak","Hydroelectric","USACE Northwestern Division",400 3,"Langley Gulch Power Plant","Natural gas","Idaho Power Co",299.7 4,"Evander Andrews Power Complex","Natural gas","Idaho Power

  12. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Louisiana" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Nine Mile Point","Natural gas","Entergy Louisiana LLC",2083.3 2,"Willow Glen","Natural gas","Entergy Gulf States - LA LLC",1748.9 3,"Big Cajun 2","Coal","Louisiana Generating LLC",1743 4,"Brame Energy Center","Petroleum","Cleco Power

  13. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Montana" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Colstrip","Coal","Talen Montana LLC",2094 2,"Noxon Rapids","Hydroelectric","Avista Corp",580.5 3,"Libby","Hydroelectric","USACE Northwestern Division",525 4,"Hungry Horse","Hydroelectric","U S Bureau of Reclamation",428

  14. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Oklahoma" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Northeastern","Coal","Public Service Co of Oklahoma",1830 2,"Redbud Power Plant","Natural gas","Oklahoma Gas & Electric Co",1784.3 3,"Seminole (OK)","Natural gas","Oklahoma Gas & Electric Co",1506.5 4,"Muskogee","Coal","Oklahoma Gas &

  15. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Tennessee" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Cumberland (TN)","Coal","Tennessee Valley Authority",2470 2,"Sequoyah","Nuclear","Tennessee Valley Authority",2277.7 3,"Johnsonville","Coal","Tennessee Valley Authority",2250.8 4,"Raccoon Mountain","Pumped storage","Tennessee Valley

  16. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Utah" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Intermountain Power Project","Coal","Los Angeles Department of Water & Power",1800 2,"Hunter","Coal","PacifiCorp",1361 3,"Lake Side Power Plant","Natural gas","PacifiCorp",1176 4,"Huntington","Coal","PacifiCorp",909 5,"Currant

  17. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Virginia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Bath County","Pumped storage","Virginia Electric & Power Co",3003 2,"North Anna","Nuclear","Virginia Electric & Power Co",1893 3,"Possum Point","Natural gas","Virginia Electric & Power Co",1733 4,"Surry","Nuclear","Virginia Electric

  18. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Washington" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 2,"Chief Joseph","Hydroelectric","USACE Northwestern Division",2456.2 3,"Transalta Centralia Generation","Coal","TransAlta Centralia Gen LLC",1340 4,"Rocky

  19. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    United States" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 2,"Palo Verde","Nuclear","Arizona Public Service Co",3937 3,"Martin","Natural gas","Florida Power & Light Co",3695 4,"W A Parish","Coal","NRG Texas Power LLC",3675

  20. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Florida" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",75.491,58.918,43.82,31.65,20.13 "Residential",36.417,26.769,20.99,17.278,11.39 ...

  1. 50MW extreme-scale turbine

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MW extreme-scale turbine - Sandia Energy Energy Search Icon Sandia Home Locations Contact ... SunShot Grand Challenge: Regional Test Centers 50MW extreme-scale turbine HomeTag:50MW ...

  2. bectso-10mw | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3 10-MW Demonstration of Gas Suspension Absorption - Project Brief PDF-342KB Airpol, ... Final Reports Clean Coal Technology III: 10-MW Demonstration of Gas Suspension Absorption, ...

  3. Net Metering

    Energy.gov [DOE]

    NOTE: On February 2016, the PA Public Service Commission (PUC) issued a final rulemaking order amending net metering regulations to provide clarity and to comply with the statutes. Changes include...

  4. Net Metering

    Energy.gov [DOE]

    Net metering is available to all "qualifying facilities" (QFs), as defined by the federal Public Utility Regulatory Policies Act of 1978 (PURPA), which pertains to renewable energy systems and co...

  5. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    In Delaware, net metering is available to any customer that generates electricity using solar, wind or hydro resources, anaerobic digesters, or fuel cells capable of being powered by renewable fu...

  6. Net Metering

    Energy.gov [DOE]

    Utah law requires their only investor-owned utility, Rocky Mountain Power (RMP), and most electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wi...

  7. Net Metering

    Energy.gov [DOE]

    Net excess generation (NEG) is treated as a kilowatt-hour (kWh) credit or other compensation on the customer's following bill.* At the beginning of the calendar year, a utility will purchase any...

  8. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

     NOTE: The program website listed above links to the Maryland Public Service Commission's Net Metering Working Group page, which contains a variety of information resources related to the ongoing...

  9. Net Metering

    Energy.gov [DOE]

    Net metering is available to all customers of investor-owned utilities and rural electric cooperatives, exempting TVA utilities. Kentucky's requires the use of a single, bi-directional meter for...

  10. Net Metering

    Energy.gov [DOE]

    Iowa's statutes do not explicitly authorize the Iowa Utilities Board (IUB) to mandate net metering, but this authority is implicit through the board's enforcement of PURPA and Iowa Code § 476.41 ...

  11. Net Metering

    Energy.gov [DOE]

    Customer net excess generation (NEG) is carried forward at the utility's retail rate (i.e., as a kilowatt-hour credit) to a customer's next bill for up to 12 months. At the end of a 12-month...

  12. Net Metering

    Energy.gov [DOE]

    In April 2001, Arkansas enacted legislation (HB 2325) directing the Arkansas Public Service Commission (PSC) to establish net-metering rules for certain renewable-energy systems.* The PSC approved...

  13. Net Metering

    Energy.gov [DOE]

    In October 2008, Michigan enacted P.A. 295, requiring the Michigan Public Service Commission (MPSC) to establish a statewide net metering program for renewable energy systems. On May 26, 2009 the...

  14. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    North Dakota's net metering policy, adopted in 1991 by the state Public Service Commission (PSC), applies to renewable energy systems and combined heat and power (CHP) systems up to 100 kilowatts...

  15. Net Metering

    Energy.gov [DOE]

    Note: The California Public Utilities Commission (CPUC) issued a decision in April 2016 establishing rules for net metering PV systems paired with storage devices 10 kW or smaller. See below for...

  16. Forward capacity market CONEfusion

    SciTech Connect

    Wilson, James F.

    2010-11-15

    In ISO New England and PJM it was assumed that sponsors of new capacity projects would offer them into the newly established forward centralized capacity markets at prices based on their levelized net cost of new entry, or ''Net CONE.'' But the FCCMs have not operated in the way their proponents had expected. To clear up the CONEfusion, FCCM designs should be reconsidered to adapt them to the changing circumstances and to be grounded in realistic expectations of market conduct. (author)

  17. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh...

    Energy Information Administration (EIA) (indexed site)

    ... 2016,1,"CO",27058,"High West Energy, Inc","Preliminary",".",".",".",".",0,"."... 2016,1,"FL",6455,"Duke Energy Florida, Inc","Preliminary",14.747,10.098...

  18. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh...

    Energy Information Administration (EIA) (indexed site)

    ... 2014,1,"CO",27058,"High West Energy, Inc","Final",".",".",".",".",0,".",".","... 2014,1,"FL",6455,"Duke Energy Florida, Inc","Final",6.619,6.641,0.284,0...

  19. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh...

    Energy Information Administration (EIA) (indexed site)

    ... 2015,1,"CO",27058,"High West Energy, Inc","Final",".",".",".",".",0,".",".","... 2015,1,"FL",6455,"Duke Energy Florida, Inc","Final",9.593,7.869,1.151,0...

  20. Working and Net Available Shell Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    -- 89,924 437 Strategic Petroleum Reserve - - - - 727,000 - - - - - 727,000 - 1 Idle tanks and caverns are those that were not capable of being used to hold stocks on the report ...

  1. The 1.5 MW wind turbine of tomorrow

    SciTech Connect

    De Wolff, T.J.; Sondergaard, H.

    1996-12-31

    The Danish company Nordtank is one of the pioneers within the wind turbine industry. Since 1981 Nordtank has installed worldwide more than 2300 wind turbine generators with a total name plate capacity that is exceeding 350 MW. This paper will describe two major wind turbine technology developments that Nordtank has accomplished during the last year: Site Optimization of Nordtank wind turbines: Nordtank has developed a flexible design concept for its WTGs in the 500/600 kW range, in order to offer the optimal WTG solution for any given site and wind regime. Nordtank`s 1.5 MW wind turbine: In September 1995, Nordtank was the first company to install a commercial 1.5 NM WTG. This paper will document the development process, the design as well as operations of the Nordtank 1.5 MW WTG.

  2. 20-MW Magnicon for ILC

    SciTech Connect

    Jay L. Hirshfield

    2006-11-29

    The 1.3 GHz RF power to drive ILC is now planned to be supplied by 600-1200, 10-MW peak power multi-beam klystrons. In this project, a conceptual design for 1.3 GHz magnicons with 20 MW peak power was developed as an alternative to the klystrons, with the possibility of cutting in half the numbers of high-power tubes and associated components. Design of a conventional magnicon is described, using TM110 modes in all cavities, as well as design of a modified magnicon with a TE111 mode output cavity. The latter has the advantage of much lower surface fields than the TM110 mode, with no loss of output power or electronic efficiency.

  3. Palau- Net Metering

    Energy.gov [DOE]

    The Palau Net Metering Act of 2009 established net metering on the Island of Palau. Net metering was implemented in order to:

  4. U.S. Geothermal Energy Capacity Grew 6% in 2009

    Energy.gov [DOE]

    Geothermal energy capacity expanded 6% in the United States in 2009, due to six new geothermal plants which came online, adding 176.68 megawatts (MW).

  5. Farmington Electric Utility System- Net Metering

    Energy.gov [DOE]

    Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity. This option is available for photovoltaic (PV), wind, hydro...

  6. Murray City Power- Net Metering Pilot Program

    Energy.gov [DOE]

    Under a pilot program, Murray City Power offers net metering to customers that generate electricity using photovoltaic (PV), wind-electric or hydroelectric systems with a maximum capacity of 10...

  7. bectso-10mw | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3 10-MW Demonstration of Gas Suspension Absorption - Project Brief [PDF-342KB] Airpol, Inc., West Paducah, KY PROGRAM PUBLICATIONS Final Reports Clean Coal Technology III: 10-MW Demonstration of Gas Suspension Absorption, Final Project Performance and Economics Report [PDF-8.2MB] ((June 1995) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports 10-MW Demonstration of Gas Suspension Absorption, Project Performance Summary [PDF-2.0MB] ((June 1999) The Removal

  8. Rocky Mountain Oilfield Testing Center | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Summer Peak Net Capacity (MW) Winter Peak Net Capacity (MW) Avg. Annual GenerationConsumption Gross Generation (MWh) Generation Delivered to Grid (MWh) Plant Parasitic...

  9. Ormat's North Brawley plant with 17MW short of its 50MW potential...

    OpenEI (Open Energy Information) [EERE & EIA]

    Site: Ormat's North Brawley plant with 17MW short of its 50MW potential Author Think Geoenergy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI...

  10. ,"Weekly Blender Net Production"

    Energy Information Administration (EIA) (indexed site)

    Net Production of Finished Motor Gasoline (Thousand Barrels per Day)","Weekly East Coast (PADD 1) Blender Net Production of Finished Motor Gasoline (Thousand Barrels per ...

  11. 550 MW | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    this new 550 MW PV Solar Plant in Southern California is the latest feather in DOE's cap. Read more about it on Breaking Energy or checkout the info page from the California...

  12. Brigantine OffshoreMW Phase 1 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Brigantine OffshoreMW Phase 1 Jump to: navigation, search Name Brigantine OffshoreMW Phase 1 Facility Brigantine OffshoreMW Phase 1 Sector Wind energy Facility Type Offshore Wind...

  13. NetCDF

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NetCDF NetCDF NetCDF NetCDF (network Common Data Form) is a set of libraries and machine-independent data formats for creation, access, and sharing of array-oriented scientific data. Includes the NCO, NCCMP, and CDO tools. Read More » Climate Data Operators (CDO) Climate Data Operators (CDO) is a collection of command line Operators to manipulate and analyze Climate and forecast model Data. Read More » NCView NCVIEW is a visual browser for NetCDF format files. Read More » netCDF4-python a

  14. NetCDF

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NetCDF NetCDF Description and Overview NetCDF (Network Common Data Form) is a set of software libraries and machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data. This includes the libnetcdf.a library as well as the NetCDF Operators (NCO), Climate Data Operators (CDO), NCCMP, and NCVIEW packages. Files written with previous versions can be read or written with the current version. Using NetCDF on Cray System NetCDF libraries on the

  15. Ecosystem Solar Electric Corp aka Solar MW Energy Inc | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Electric Corp aka Solar MW Energy Inc Jump to: navigation, search Name: Ecosystem Solar Electric Corp, aka Solar MW Energy Inc Place: Ontario, California Zip: 91761 Product:...

  16. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced ...

  17. Spallation Neutron Source Power Level Exceeds 1 MW (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Spallation Neutron Source Power Level Exceeds 1 MW Citation Details In-Document Search Title: Spallation Neutron Source Power Level Exceeds 1 MW No abstract prepared. Authors: ...

  18. Refinery Capacity Report

    Reports and Publications

    2016-01-01

    Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 states, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions. The Refinery Capacity Report does not contain working and shell storage capacity data. This data is now being collected twice a year as of March 31 and September 30 on the Form EIA-810, "Monthly Refinery Report", and is now released as a separate report Working and Net Available Shell Storage Capacity.

  19. Ohio Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  20. Pennsylvania Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  1. New York Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  2. Demonstration of 5MW PAFC power plant

    SciTech Connect

    Usami, Yutaka; Takae, Toshio

    1996-12-31

    Phosphoric Acid Fuel Cell Technology Research Association, established in May 1991 by Japanese 10 electric power and 4 gas companies, started a new project in 1991 FY, with the object of PAFC realization and aiming the development of 5MW- class PAFC. power plant for urban energy center and 1 MW- class power plant for onsite use. This project is carried out as 6 years plan jointly with New Energy and Industrial Technology Development Organization. The targets of the project are to evaluate and resolve the development task, such as a high reliability, compactness and cost reduction throughout the engineering, manufacturing and field testing of PAFC power plants. PAC tests and power generating test operations of 5MW plant were completed in 1994. Conducting the 2 years continuous operations and studies since 1995, the plant operational performance, system control characteristics, waste heat recovery and environmental advantage will be demonstrated.

  3. summer_nid_cr_cm_2004.xls

    Energy Information Administration (EIA) (indexed site)

    Form EIA-411 for 2005 Released: February 7, 2008 Next Update: October 2007 Table 4. Summer Historic and Projected Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Council Regio (Megawatts and Percent) Projected Year Base Year Summer Contiguous U.S. ECAR FRCC MAAC Net Internal Demand (MW) Capacity Resources (MW) Capacity Margin (percent) Net Internal Demand (MW) Capacity Resources (MW) Capacity Margin (percent) Net Internal Demand (MW) Capacity

  4. Offshore Wind Energy Market Installed Capacity is Anticipated...

    OpenEI (Open Energy Information) [EERE & EIA]

    Offshore Wind Energy Market Installed Capacity is Anticipated to Reach 52,120.9 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...

  5. Biomass Power Generation Market Capacity is Estimated to Reach...

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass Power Generation Market Capacity is Estimated to Reach 122,331.6 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...

  6. SRP- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: Salt River Project (SRP) modified its existing net-metering program for residential customers in February 2015. These changes are effective with the April 2015 billing cycle.

  7. Economic Development Impact of 1,000 MW of Wind Energy in Texas

    SciTech Connect

    Reategui, S.; Hendrickson, S.

    2011-08-01

    Texas has approximately 9,727 MW of wind energy capacity installed, making it a global leader in installed wind energy. As a result of the significant investment the wind industry has brought to Texas, it is important to better understand the economic development impacts of wind energy in Texas. This report analyzes the jobs and economic impacts of 1,000 MW of wind power generation in the state. The impacts highlighted in this report can be used in policy and planning decisions and can be scaled to get a sense of the economic development opportunities associated with other wind scenarios. This report can also inform stakeholders in other states about the potential economic impacts associated with the development of 1,000 MW of new wind power generation and the relationships of different elements in the state economy.

  8. Application for a Certificate of Public Good for Net Metered...

    OpenEI (Open Energy Information) [EERE & EIA]

    Certificate of Public Good for Net Metered Power Systems that are Non-Photovoltaic Systems Up to 150 kW (AC) in Capacity Jump to: navigation, search OpenEI Reference LibraryAdd to...

  9. San Antonio City Public Service (CPS Energy)- Net Metering

    Energy.gov [DOE]

    Net metering is available to customers of CPS Energy. There is no aggregate capacity limit or maximum system size. There are also no commissioning fees or facilities charges for customers.

  10. summer_nid_cr_cm_1990_2004.xls

    Energy Information Administration (EIA) (indexed site)

    u Form EIA-411 for 2006 Released: February 7, 2008 Next Update: Not applicable for this table format Table 4a . Summer Historic Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Council Region, 1990 thro (Megawatts and Percent) Year Summer Contiguous U.S. ECAR FRCC MAAC Net Internal Demand (MW) Capacity Resources (MW) Capacity Margin (percent) Net Internal Demand (MW) Capacity Resources (MW) Capacity Margin (percent) Net Internal Demand (MW)

  11. summer_nid_cr_cm_2003.xls

    Energy Information Administration (EIA) (indexed site)

    t Form EIA-411 for 2005 Released: February 7, 2008 Next Update: October 2007 Table 4. Summer Historic and Projected Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Council Region, 1990 (Megawatts and Percent) Projected Year Base Year Summer Contiguous U.S. ECAR FRCC MAAC Net Internal Demand (MW) Capacity Resources (MW) Capacity Margin (percent) Net Internal Demand (MW) Capacity Resources (MW) Capacity Margin (percent) Net Internal Demand (MW)

  12. SAS Output

    Energy Information Administration (EIA) (indexed site)

    3. Quantity and Net Summer Capacity of Operable Cooling Systems, by Energy Source and Cooling System Type, 2004 - 2014 Once-Through Cooling Systems Recirculating Cooling Systems Cooling Ponds Dry Cooling Systems Hybrid Wet and Dry Cooling Systems Other Cooling System Types Energy Source Quantity Associated Net Summer Capacity (MW) Quantity Associated Net Summer Capacity (MW) Quantity Associated Net Summer Capacity (MW) Quantity Associated Net Summer Capacity (MW) Quantity Associated Net Summer

  13. Brigantine OffshoreMW Phase 2 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2 Jump to: navigation, search Name Brigantine OffshoreMW Phase 2 Facility Brigantine OffshoreMW Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  14. 10 MW Supercritical CO2 Turbine Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    10 MW Supercritical CO2 Turbine Project 10 MW Supercritical CO2 Turbine Project This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, ...

  15. 5-MW Dynamometer Ground Breaking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5-MW Dynamometer Ground Breaking 5-MW Dynamometer Ground Breaking December 19, 2011 - 3:04pm Addthis This is an excerpt from the Fourth Quarter 2011 edition of the Wind Program R&D ...

  16. Property:Permit/License Buildout (MW) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects40MW Lewis project + 40 + MHK ProjectsAlgiers Light Project + 20 + MHK ProjectsAnconia Point...

  17. Jamaica National Net-Billing Pilot Program Evaluation

    SciTech Connect

    Doris, Elizabeth; Stout, Sherry; Peterson, Kimberly

    2015-12-18

    This technical report discusses the effectiveness of the Jamaica Public Service Company Limited Net-Billing Pilot Program. The National Renewable Energy Laboratory (NREL) collected and analyzed data from a wide range of stakeholders, conducted in-country research, and compared program elements to common interconnection practices to form programmatic recommendations for the Jamaica context. NREL finds that the net-billing pilot program has successfully contributed to the support of the emerging solar market in Jamaica with the interconnection of 80 systems under the program for a total of 1.38 megawatts (MW) at the time of original analysis.

  18. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Manufacturing | Department of Energy Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing mw_rf_workshop_background_july2012.pdf (178.12 KB) More Documents & Publications Microwave and Radio Frequency Workshop Advanced Manufacturing Office Overview Manufacturing Demonstration Facility Workshop

  19. A 75 MW S-Band Klystron

    SciTech Connect

    Ferguson, Patrick; Read, Michael; Ives, Robert Lawrence; Marsden, David

    2013-12-16

    This program performed computational and preliminary mechanical design for a klystron producing 75 MW at 2.856 GHz using periodic permanent magnet (PPM) focusing. The performance specifications achieved were those for the Matter-Radiation Interactions in the Extremes (MaRIE) project at Los Alamos National Laboratory. The klystron is designed to provide 10 microsecond pulses at 60 Hz with 56 dB gain. The PPM-Focusing eliminates requirements for solenoids and their associated power supplies, cooling systems, interlocks, control and diagnostic instrumentation, and maintenance. The represents a significant in both acquisition and operating costs. It also increases reliability by eliminating many potential failure modes.

  20. Guam- Net Metering

    Energy.gov [DOE]

    Note: As of October 2015, the net metering program had around 700 customers. According to the Guam Daily Post, the program is expected to reach the current 1,000-customer cap in mid-2016. This cap...

  1. Net Energy Billing

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: On June 30, 2015, the Maine legislature enacted L.D. 1263/H.P. 863, directing the Public Utilities Commission to convene a stakeholder group to develop an alternative to net energy billing.

  2. NetState

    SciTech Connect

    Durgin, Nancy; Mai, Yuqing; Hutchins, James

    2005-09-01

    NetState is a distributed network monitoring system. It uses passive sensors to develop status information on a target network. Two major features provided by NetState are version and port tracking. Version tracking maintains information about software and operating systems versions. Port tracking identifies information about active TOP and UDP ports. Multiple NetState sniffers can be deployed, one at each entry point of the target network. The sniffers monitor network traffic, then send the information to the NetState server. The information is stored in centralized database which can then be accessed via standard SQL database queries or this web-based GUI, for further analysis and display.

  3. NetState

    Energy Science and Technology Software Center

    2005-09-01

    NetState is a distributed network monitoring system. It uses passive sensors to develop status information on a target network. Two major features provided by NetState are version and port tracking. Version tracking maintains information about software and operating systems versions. Port tracking identifies information about active TOP and UDP ports. Multiple NetState sniffers can be deployed, one at each entry point of the target network. The sniffers monitor network traffic, then send the information tomore » the NetState server. The information is stored in centralized database which can then be accessed via standard SQL database queries or this web-based GUI, for further analysis and display.« less

  4. Avista Utilities- Net Metering

    Energy.gov [DOE]

    For Avista Utilities customers, any net excess generation (NEG) during a monthly billing period is credited to the customer's next bill at the utility's retail rate. At the beginning of each ca...

  5. Austin Energy- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Austin Energy, the municipal utility of Austin Texas, offers net metering to its non-residential retail electricity customers for renewable energy systems up to 20 kilowatts (kW). Austin Energy o...

  6. SpawnNet

    Energy Science and Technology Software Center

    2014-12-23

    SpawnNet provides a networking interface similar to Linux sockets that runs natively on High-performance network interfaces. It is intended to be used to bootstrap parallel jobs and communication libraries like MPI.

  7. PSEG Long Island- Net Metering

    Energy.gov [DOE]

    Although PSEG Long Island’s net metering policy is not governed by the State’s net metering law, the provisions are similar to the State law. Net metering is available for residential, non-reside...

  8. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Arizona" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",601.915,447.596,252.66,126.57,120.74 "Residential",314.38,213.628,150.958,76.948,66.022 "Commercial",229.004,201.599,78.694,32.17,41.447 "Industrial",58.531,32.369,23.005,17.453,13.273 "Transportation",0,0,0,0,0 "Customers",53510,38281,24277,11328,8443 "Residential",51282,36234,23282,10753,8082

  9. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    California" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",2791.582,2040.944,1536.71,1129.19,790.74 "Residential",1592.605,1054.34,734.319,529.795,362.404 "Commercial",705.45,577.335,524.977,307.782,214.282 "Industrial",493.527,409.269,277.413,291.565,214.033 "Transportation",0,0,0,0,0 "Customers",337099,233181,158940,115139,85835

  10. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Colorado" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",257.969,204.61,166.4,129.78,53.43 "Residential",136.39,96.632,70.855,51.233,40.162 "Commercial",120.17,106.727,94.033,77.232,11.868 "Industrial",1.409,1.251,1.504,1.313,1.374 "Transportation",0,0,0,0,0 "Customers",27903,20814,16377,12491,9635 "Residential",25197,18362,14098,10622,8386

  11. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Connecticut" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",105.031,64.026,37.39,30.61,3.98 "Residential",47.298,25.608,16.666,13.336,1.465 "Commercial",52.13,35.816,19.387,15.931,1.371 "Industrial",5.603,2.602,1.345,1.345,1.145 "Transportation",0,0,0,0,0 "Customers",7904,4461,3092,2471,278 "Residential",7195,3923,2643,2107,247

  12. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Hawaii" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",291.115,220.565,121.11,55.38,28.85 "Residential",230.896,173.15,84.817,32.328,13.906 "Commercial",60.219,47.415,36.298,23.044,14.939 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",51895,40511,22264,9785,4302 "Residential",49946,39008,21007,9129,3905

  13. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Maryland" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",152.271,105.226,65.82,36.92,11.06 "Residential",69.546,36.071,22.582,11.629,5.159 "Commercial",78.128,66.138,42.245,24.284,5.891 "Industrial",4.597,3.017,1,1,0 "Transportation",0,0,0,0,0 "Customers",11277,6596,4146,2456,1155 "Residential",10675,6066,3734,2236,1051

  14. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Massachusetts" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",577.703,278.065,123.77,59.72,43.84 "Residential",119.594,54.325,25.025,13.334,18.958 "Commercial",434.013,203.506,86.325,38.241,23.26 "Industrial",24.096,20.234,12.398,8.133,1.617 "Transportation",0,0,0,0,0 "Customers",21628,11468,6109,3886,2829 "Residential",19246,9742,4884,2997,2142

  15. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Jersey" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",867.839,777.626,669.2,441.4,149.5 "Residential",207.295,161.917,129.036,85.734,40.127 "Commercial",610.222,578.461,506.592,327.977,101.744 "Industrial",50.322,37.248,33.572,27.688,7.629 "Transportation",0,0,0,0,0 "Customers",32689,25802,19205,12907,7481 "Residential",28473,21780,15755,10576,6156

  16. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Mexico" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",75.542,61.793,37.98,26.65,19.6 "Residential",34.052,25.504,16.995,11.126,7.151 "Commercial",40.944,35.713,20.636,15.173,12.435 "Industrial",0.546,0.576,0.35,0.35,0.02 "Transportation",0,0,0,0,0 "Customers",7968,6208,4348,3037,1789 "Residential",7305,5670,3957,2761,1657

  17. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    York" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",312.678,175.579,98.31,70.4,41.47 "Residential",165.349,83.781,50.708,37.822,25.153 "Commercial",143.619,89.631,47.52,32.29,16.318 "Industrial",3.71,2.167,0.08,0.29,0 "Transportation",0,0,0,0,0 "Customers",29175,15826,10785,8396,5619 "Residential",25637,13002,8829,7056,4802

  18. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Oregon" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",70.567,56.208,42.74,31.28,23.11 "Residential",34.851,26.301,20.326,14.076,9.618 "Commercial",33.41,28.319,21.164,16.171,13.015 "Industrial",2.306,1.588,1.242,1.015,0.483 "Transportation",0,0,0,0,0 "Customers",9108,7574,6269,4595,3115 "Residential",8086,6651,5514,4022,2730

  19. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Pennsylvania" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",181.733,170.669,155.21,137.1,34.1 "Residential",61.325,58.006,50.406,41.888,19.223 "Commercial",80.43,77.336,75.406,72.164,12.725 "Industrial",39.978,35.327,29.387,23.03,2.149 "Transportation",0,0,0,0,0 "Customers",9123,8536,7474,6408,2859 "Residential",7978,7450,6478,5547,2585

  20. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Texas" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",105.231,71.898,45.5,29.91,16.82 "Residential",61.414,41.839,23.363,14.826,9.433 "Commercial",43.582,29.851,21.913,14.856,7.363 "Industrial",0.235,0.208,0.182,0.212,0.01 "Transportation",0,0,0,0,0 "Customers",10997,8507,5219,3775,2501 "Residential",9993,7628,4559,3195,2134

  1. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Washington" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",36.102,25.428,17.09,10.65,7.38 "Residential",29.204,19.414,12.741,7.424,6.021 "Commercial",6.848,5.974,4.312,3.194,1.314 "Industrial",0.05,0.04,0.024,0.024,0.024 "Transportation",0,0,0,0,0 "Customers",6607,4751,3222,2150,1673 "Residential",6067,4299,2857,1884,1490

  2. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    United States" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",7096.828,5147.38,3679.63,2495.41,1459.11 "Residential",3452.987,2286.567,1542.226,1024.139,697.89 "Commercial",2933.122,2294.831,1741.821,1089.275,517.861 "Industrial",710.719,565.982,395.328,381.67,243.051 "Transportation",0,0,0,0,0 "Customers",688742,480054,323365,219018,150740

  3. 3 MW Solid Rotating Target Design

    SciTech Connect

    McManamy, Thomas J; Gallmeier, Franz X; Rennich, Mark J; Ferguson, Phillip D; Janney, Jim G

    2010-01-01

    A rotating solid target design concept is being developed for potential use at the second SNS target station (STS). A long pulse beam (~ 1 msec) at 1.3 GeV and 20 Hz is planned with power levels at or above 1 MW. Since the long pulse may give future opportunities for higher power, this study is looking at 3 MW to compare the performance of a solid rotating target to a mercury target. Unlike the case for stationary solid targets at such powers this study indicates that a rotating solid target, when used with large coupled hydrogen moderators, has neutronic performance equal to or better than that with a mercury target, and the solid target has a greatly increased lifetime. Design studies have investigated water cooled tungsten targets with tantalum cladding approximately 1.2 m in diameter, and 70mm thick. Operating temperatures are low ( < 150 C) with mid-plane, top and bottom surface cooling. In case of cooling system failure, the diameter gives enough surface area to remove the decay heat by radiation to the surrounding reflector assemblies while keeping the peak temperatures below approximately 700 C. This temperature should mitigate potential loss of coolant accidents and subsequent steam, tungsten interaction which has a threshold of approximately 800 C. Design layouts for the sealing systems and potential target station concepts have been developed.

  4. Net Metering | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gas Wind Biomass Geothermal Electric Anaerobic Digestion Small Hydroelectric Tidal Energy Wave Energy No Ashland Electric - Net Metering (Oregon) Net Metering Oregon Commercial...

  5. Grid Net | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Grid Net Jump to: navigation, search Name: Grid Net Address: 340 Brannan St Place: San Francisco, California Zip: 94107 Region: Bay Area Sector: Efficiency Product: Sells open,...

  6. netCDF4-python

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    netCDF4-python netCDF4-python Description and Overview netCDF4-python is an object oriented python interface to the netCDF C library. Loading netCDF4-python on Edison/Cori module load python/2.7-anaconda Using netCDF4-python in the codes from netCDF4 import Dataset fx = Dataset("mydir/test.nc","w",format="NETCDF4") Note that netCDF4-python supports various classic netcdf versions, e.g., netcdf3, netcdf3-classic, please make sure the format is consistent when you

  7. OpenNet Training | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    OpenNet Training OpenNet Training Training Instructions for Submitting Document to OpenNet Reference OpenNet

  8. WhaleNet/environet

    SciTech Connect

    Williamson, J.M.

    1994-12-31

    WhaleNet has established a network where students, educators, and scientists can interact and share data for use in interdisciplinary curricular and student research activities in classrooms around the world by utilizing telecommunication. This program enables students to participate in marine/whale research programs in real-time with WhaleNet data and supplementary curriculum materials regardless of their geographic location. Systems have been established with research organizations and whale watch companies whereby research data is posted by scientists and students participating in whale watches on the WhaleNet bulletin board and shared with participating classrooms. WhaleNet presently has contacts with classrooms across the nation, and with research groups, whale watch organizations, science museums, and universities from Alaska to North Carolina, Hawaii to Maine, and Belize to Norway. WhaleNet has plans to make existing whale and fisheries research databases available for classroom use and to have research data from satellite tagging programs on various species of whales available for classroom access in real-time.

  9. Delaware Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3367,3350,3344,3355,3379 " ... "Renewables",7,7,7,7,10 "Pumped Storage","-","-","-","-","-" ...

  10. Connecticut Total Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Connecticut" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5498,5361,5466,5582,5845 " ... "Renewables",316,285,287,287,281 "Pumped Storage",4,29,29,29,29 "Other",27,27,27,27,27 ...

  11. South Dakota Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1516,1463,1463,1594,1594 "Solar","-","-","-","-","-" "Wind",43,43,193,320,629 ...

  12. South Carolina Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1345,1337,1337,1337,1340 "Solar","-","-","-","-","-" "Wind","-","-","-","-"...

  13. Rhode Island Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Rhode Island" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",4,4,3,3,3 "Solar","-","-","-","-","-" "Wind","-","-","-","-",2 "Wood...

  14. Louisiana Total Electric Power Industry Net Summer Capacity,...

    Energy Information Administration (EIA) (indexed site)

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",23904,23379,23207,23087,23906 " Coal",3453,3482,3482,3482,3417 " Petroleum",285,346,346,346,881 " Natural ...

  15. Maryland Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10071,10028,10125,10050,10012 " Coal",4958,4958,4944,4876,4886 " Petroleum",3140,2965,2991,2986,2933 " Natural ...

  16. Illinois Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Illinois" "Energy Source",2006,2007,2008,2009,2010 "Fossil",30626,30435,30662,30795,30554 " Coal",15731,15582,15653,15852,15551 " Petroleum",1143,1097,1099,1090,1106 " Natural ...

  17. Kentucky Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Kentucky" "Energy Source",2006,2007,2008,2009,2010 "Fossil",19177,19088,19016,19268,19560 " Coal",14386,14374,14301,14553,14566 " Petroleum",135,77,77,77,70 " Natural ...

  18. Indiana Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Indiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",26899,26922,26850,26808,26186 " Coal",19718,19759,19721,19757,19096 " Petroleum",503,503,503,503,504 " Natural ...

  19. Kansas Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Kansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9592,9709,10017,10355,10302 " Coal",5203,5208,5190,5180,5179 " Petroleum",565,569,564,564,550 " Natural ...

  20. Iowa Total Electric Power Industry Net Summer Capacity, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Iowa" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9496,10391,10340,10467,10263 " Coal",6097,6967,6928,7107,6956 " Petroleum",1027,1023,1017,1014,1007 " Natural ...

  1. Massachusetts Total Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Massachusetts" "Energy Source",2006,2007,2008,2009,2010 "Fossil",11050,10670,10621,10770,10763 " Coal",1743,1744,1662,1668,1669 " Petroleum",3219,3137,3120,3125,3031 " Natural ...

  2. Maine Total Electric Power Industry Net Summer Capacity, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Maine" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2770,2751,2761,2738,2738 " Coal",85,85,85,85,85 " Petroleum",1030,1031,1031,1008,1008 " Natural Gas",1655,1636,1645,1645,16...

  3. Michigan Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Michigan" "Energy Source",2006,2007,2008,2009,2010 "Fossil",23693,23826,23805,23691,23205 " Coal",11860,11910,11921,11794,11531 " Petroleum",1499,673,667,684,640 " Natural ...

  4. New York Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    York" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",4307,4301,4299,4310,4314 "Solar","-","-","-","-","-" "Wind",370,425,707,1274,12...

  5. New Jersey Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Jersey" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",5,4,4,6,4 "Solar","-",2,4,13,28 "Wind",8,8,8,8,8 "WoodWood ...

  6. New Hampshire Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Hampshire" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",512,494,500,498,489 "Solar","-","-","-","-","-" "Wind","-","-",24,24,24 ...

  7. New Mexico Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Mexico" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",82,82,82,82,82 "Solar","-","-","-","-",30 "Wind",494,494,496,597,700 "Wood...

  8. North Dakota Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",443,486,486,508,508 "Solar","-","-","-","-","-" "Wind",164,383,776,1202,1423 ...

  9. North Carolina Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1954,1960,1952,1952,1956 "Solar","-","-",3,3,35 "Wind","-","-","-","-","-" ...

  10. Tennessee Total Electric Power Industry Net Summer Capacity,...

    Energy Information Administration (EIA) (indexed site)

    Tennessee" "Energy Source",2006,2007,2008,2009,2010 "Fossil",13051,12974,12999,12982,13517 ... " Other Gases","-","-","-","-","-" "Nuclear",3398,3397,3397,3401,3401 ...

  11. Missouri Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Missouri" "Energy Source",2006,2007,2008,2009,2010 "Fossil",18197,18099,18126,18101,18861 ... " Other Gases","-","-","-","-","-" "Nuclear",1190,1190,1190,1190,1190 ...

  12. Virginia Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Virginia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",14968,15080,15543,15740,15880 ... " Other Gases","-","-","-","-","-" "Nuclear",3432,3404,3404,3404,3501 ...

  13. Wyoming Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6105,6065,6150,6147,6253 " ... " Other Gases",92,92,92,92,92 "Nuclear","-","-","-","-","-" ...

  14. New Jersey Total Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Jersey" "Energy Source",2006,2007,2008,2009,2010 "Fossil",14363,13741,13771,13759,13676 " ... " Other Gases",44,44,44,44,44 "Nuclear",3984,3984,4108,4108,4108 ...

  15. Wisconsin Total Electric Power Industry Net Summer Capacity,...

    Energy Information Administration (EIA) (indexed site)

    Wisconsin" "Energy Source",2006,2007,2008,2009,2010 "Fossil",14000,13926,15015,14928,14964 ... " Other Gases","-","-","-","-","-" "Nuclear",1582,1582,1582,1583,1584 ...

  16. Utah Total Electric Power Industry Net Summer Capacity, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6398,6830,6819,6897,6969 " ... " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" ...

  17. Nebraska Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Nebraska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5478,5423,5459,6123,6169 " ... " Other Gases","-","-","-","-","-" "Nuclear",1238,1240,1252,1252,1245 ...

  18. New York Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    York" "Energy Source",2006,2007,2008,2009,2010 "Fossil",28071,27582,26726,27022,26653 " ... " Other Gases","-","-","-","-",45 "Nuclear",5156,5156,5264,5262,5271 ...

  19. Washington Total Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Washington" "Energy Source",2006,2007,2008,2009,2010 "Fossil",4436,4343,5130,5145,5183 " ... " Other Gases","-","-","-","-","-" "Nuclear",1131,1131,1131,1131,1097 ...

  20. South Dakota Total Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1374,1364,1449,1448,1401 " ... " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" ...

  1. Oregon Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Oregon" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3349,3686,3653,3626,3577 " ... " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" ...

  2. North Carolina Total Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Fossil",19673,20247,20305,20230,20081 ... " Other Gases","-","-","-","-","-" "Nuclear",4975,4975,4958,4958,4958 ...

  3. Vermont Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Vermont" "Energy Source",2006,2007,2008,2009,2010 "Fossil",108,101,101,100,100 " ... " Other Gases","-","-","-","-","-" "Nuclear",620,620,620,620,620 ...

  4. Texas Total Electric Power Industry Net Summer Capacity, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Texas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",92088,91494,91450,87547,92136 " ... " Other Gases",287,308,187,184,306 "Nuclear",4860,4860,4927,4927,4966 ...

  5. West Virginia Total Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    West Virginia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",16113,15769,15756,15766,1... " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" ...

  6. Ohio Total Electric Power Industry Net Summer Capacity, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Ohio" "Energy Source",2006,2007,2008,2009,2010 "Fossil",31582,31418,31154,31189,30705 " ... " Other Gases",100,100,100,100,123 "Nuclear",2120,2124,2124,2134,2134 ...

  7. Oklahoma Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Fossil",18301,18083,18364,18532,18350 ... " Other Gases","-","-",6,6,"-" "Nuclear","-","-","-","-","-" ...

  8. Mississippi Total Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Mississippi" "Energy Source",2006,2007,2008,2009,2010 "Fossil",15125,14707,14454,14340,142... " Other Gases",4,4,4,4,4 "Nuclear",1266,1268,1259,1251,1251 ...

  9. South Carolina Total Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Fossil",12100,12682,13281,13189,13207 ... " Other Gases","-","-","-","-","-" "Nuclear",6472,6472,6472,6486,6486 ...

  10. Montana Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Montana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2671,2671,2682,2701,2782 " ... " Other Gases","-","-",2,2,2 "Nuclear","-","-","-","-","-" ...

  11. North Dakota Total Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",4222,4212,4212,4243,4247 " ... " Other Gases",8,8,8,8,8 "Nuclear","-","-","-","-","-" ...

  12. Rhode Island Total Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Rhode Island" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1743,1754,1754,1754,1754 " ... " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" ...

  13. Nevada Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Nevada" "Energy Source",2006,2007,2008,2009,2010 "Fossil",8412,8638,9942,9950,9914 " Coal",2657,2689,2916,2916,2873 " Petroleum",45,45,45,45,45 " Natural Gas",5711,5905,6982,6990,6...

  14. Wisconsin Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Wisconsin" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",476,488,485,492,492 "Solar","-","-","-","-","-" "Wind",53,44,231,430,449 ...

  15. Wyoming Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",303,303,303,304,307 "Solar","-","-","-","-","-" "Wind",287,287,680,1104,1415 ...

  16. Connecticut Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "WoodWood Waste","-","-","-","-","-" "MSWLandfill Gas",170,163,166,166,159 "Other ...

  17. Delaware Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    ...l","-","-","-","-","-" "Solar","-","-","-","-","-" "Wind","-","-","-","-",2 "WoodWood Waste","-","-","-","-","-" "MSWLandfill Gas",7,7,7,7,8 "Other Biomass","-","-","-","-","-" ...

  18. Hawaii Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Hawaii" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2208,2209,2208,2223,2196 " Coal",180,180,180,180,180 " Petroleum",2019,2020,2019,2034,2007 " Natural Gas","-","-","-","-",...

  19. Florida Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Florida" "Energy Source",2006,2007,2008,2009,2010 "Fossil",48044,50280,50166,53733,53791 " Coal",10333,10297,10265,10261,9975 " Petroleum",11677,11671,13128,12602,12033 " Natural ...

  20. Connecticut Total Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Connecticut" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5498,5361,5466,5582,5845 " Coal",551,551,553,564,564 " Petroleum",2926,2709,2741,2749,2989 " Natural ...

  1. Georgia Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Georgia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",28238,28096,28078,28103,28087 " Coal",13438,13275,13256,13211,13230 " Petroleum",2182,2169,2187,2188,2189 " Natural ...

  2. Idaho Total Electric Power Industry Net Summer Capacity, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Idaho" "Energy Source",2006,2007,2008,2009,2010 "Fossil",667,667,828,834,834 " Coal",17,17,17,17,17 " Petroleum",5,5,5,5,5 " Natural Gas",645,645,805,812,812 " Other ...

  3. Delaware Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3367,3350,3344,3355,3379 " Coal",1083,1083,1083,1074,1054 " Petroleum",695,698,557,557,563 " Natural ...

  4. Colorado Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Colorado" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9644,9979,10229,10545,11204 " Coal",4939,4961,4965,5010,5702 " Petroleum",181,182,184,178,178 " Natural ...

  5. Idaho Renewable Electric Power Industry Net Summer Capacity,...

    Energy Information Administration (EIA) (indexed site)

    Idaho" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-",10,7,10 "Hydro Conventional",2378,2367,2346,2682,2704 "Solar","-","-","-","-","-" "Wind",75,75,117,146,352 ...

  6. Kentucky Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    "Hydro Conventional",815,817,824,824,824 "Solar","-","-","-","-","-" "Wind","-","-","-","-... Solar includes solar thermal and photovoltaic. MSW Municipal Solid Waste. Totals may not ...

  7. Georgia Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Georgia" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",2027,2032,2041,2046,2052 "Solar","-","-","-","-","-" "Wind","-","-","-","-",...

  8. Kansas Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Kansas" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",3,3,3,3,3 "Solar","-","-","-","-","-" "Wind",363,363,812,1011,1072 "WoodWood ...

  9. Indiana Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Indiana" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",60,60,60,60,60 "Solar","-","-","-","-","-" "Wind","-","-",131,1037,1340 ...

  10. Colorado Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Colorado" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",652,665,666,666,662 "Solar","-",8,11,14,41 "Wind",289,1063,1063,1238,1294 ...

  11. Connecticut Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Connecticut" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",147,122,122,122,122 "Solar","-","-","-","-","-" "Wind","-","-","-","-","...

  12. Hawaii Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Hawaii" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",31,31,31,31,31 "Hydro Conventional",24,24,24,24,24 "Solar","-","-",1,1,2 "Wind",43,64,64,64,62 "WoodWood ...

  13. Iowa Renewable Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Iowa" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",131,131,142,144,144 "Solar","-","-","-","-","-" "Wind",921,1170,2635,3352,3569 ...

  14. Delaware Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional","-","-","-","-","-" "Solar","-","-","-","-","-" "Wind","-","-","-","-",2 ...

  15. Illinois Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Illinois" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",33,33,34,34,34 "Solar","-","-","-",9,9 "Wind",105,740,962,1596,1946 "Wood...

  16. Florida Renewable Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Florida" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",55,55,55,55,55 "Solar","-","-","-",25,123 "Wind","-","-","-","-","-" "Wood...

  17. Property:NetProdCapacity | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric...

  18. New Hampshire Total Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    New Hampshire" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2411,2371,2235,2226,2262 " Coal",528,528,528,528,546 " Petroleum",529,503,503,501,501 " Natural ...

  19. New Mexico Total Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Mexico" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6520,6620,7366,7308,7312 " Coal",3957,3957,3957,3977,3990 " Petroleum",28,28,28,28,24 " Natural Gas",2535,2634,3381,3302,3...

  20. PG&E Plans for 500 MW of PV

    Energy.gov [DOE]

    PG&E has developed a plan to install 500 MW of PV by the year 2015. The plan calls for 250 MW to be acquired through Power Purchase Agreements (PPA) and the other 250 MW to be purchased and owned by the utility. PG&E presented the plan at a public forum on April 27, 2009. A copy of the power point presentation is attached.

  1. Northern Cheyenne Tribe30 MW Wind Energy Development Grant

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Northern Cheyenne Tribe 30 MW Wind Energy Development Grant Renewable Energy Development on Tribal lands Joe Little Coyote, Sr., Tribal Planner Dale Osborn, President Distributed Generation Systems, Inc. (Disgen) Contractor 10-18-04 Northern Cheyenne Tribe 30 MW Wind Energy Development Grant Discussion Outline Project Overview Objectives Project Location Project Participants Requested Technical Support 10-18-04 Northern Cheyenne Tribe 30 MW Wind Energy Development Grant Project Overview *

  2. South Carolina Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  3. California Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  4. Pennsylvania Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  5. Connecticut Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  6. North Carolina Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  7. New Jersey Nuclear Profile - All Fuels

    Energy Information Administration (EIA) (indexed site)

    total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net ...

  8. New York Nuclear Profile - All Fuels

    Energy Information Administration (EIA) (indexed site)

    total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net ...

  9. New Hampshire Nuclear Profile - All Fuels

    Energy Information Administration (EIA) (indexed site)

    total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net ...

  10. North Carolina Nuclear Profile - All Fuels

    Energy Information Administration (EIA) (indexed site)

    total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net ...

  11. Status of Net Metering: Assessing the Potential to Reach Program Caps

    SciTech Connect

    Heeter, J.; Gelman, R.; Bird, L.

    2014-09-01

    Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

  12. Status of Net Metering: Assessing the Potential to Reach Program Caps (Poster)

    SciTech Connect

    Heeter, J.; Bird, L.; Gelman, R.

    2014-10-01

    Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

  13. 10MW Class Direct Drive HTS Wind Turbine: Cooperative Research...

    Office of Scientific and Technical Information (OSTI)

    SEMICONDUCTOR; 20MW CLASS DIRECT DRIVE HTS WIND TURBINE; Commercialization and Technology Transfer Word Cloud More Like This Full Text preview image File size NAView Full Text ...

  14. FERC Handbook for Hydroelectric Project Licensing and 5 MW Exemptions...

    OpenEI (Open Energy Information) [EERE & EIA]

    Handbook for Hydroelectric Project Licensing and 5 MW Exemptions from Licensing Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  15. A miniaturized mW thermoelectric generator for nw objectives...

    Office of Scientific and Technical Information (OSTI)

    reliable power for decades. Citation Details In-Document Search Title: A miniaturized mW thermoelectric generator for nw objectives: continuous, autonomous, reliable power for ...

  16. 20 MW Maibarara Geothermal Power Project Starts Commercial Operations...

    OpenEI (Open Energy Information) [EERE & EIA]

    02092014 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for 20 MW Maibarara Geothermal Power Project Starts Commercial Operations...

  17. Development of a 5 MW reference gearbox for offshore wind turbines: 5 MW reference gearbox

    SciTech Connect

    Nejad, Amir Rasekhi; Guo, Yi; Gao, Zhen; Moan, Torgeir

    2015-07-27

    This paper presents detailed descriptions, modeling parameters and technical data of a 5MW high-speed gearbox developed for the National Renewable Energy Laboratory offshore 5MW baseline wind turbine. The main aim of this paper is to support the concept studies and research for large offshore wind turbines by providing a baseline gearbox model with detailed modeling parameters. This baseline gearbox follows the most conventional design types of those used in wind turbines. It is based on the four-point supports: two main bearings and two torque arms. The gearbox consists of three stages: two planetary and one parallel stage gears. The gear ratios among the stages are calculated in a way to obtain the minimum gearbox weight. The gearbox components are designed and selected based on the offshore wind turbine design codes and validated by comparison to the data available from large offshore wind turbine prototypes. All parameters required to establish the dynamic model of the gearbox are then provided. Moreover, a maintenance map indicating components with high to low probability of failure is shown. The 5 MW reference gearbox can be used as a baseline for research on wind turbine gearboxes and comparison studies. It can also be employed in global analysis tools to represent a more realistic model of a gearbox in a coupled analysis.

  18. A 500 MW annular beam relativistic klystron

    SciTech Connect

    Fazio, M.V.; Haynes, W.B.; Carlsten, B.E.; Stringfield, R.M.

    1994-10-01

    This paper describes the experimental development of a long pulse, high current, annular beam relativistic klystron amplifier. The desired performance parameters are 1 GW output power and 1 {mu}s pulse length with an operating frequency of 1.3 GHz. The electron beam voltage and current are nominally 600 kV and 5 kA. Peak powers approaching 500 MW have been achieved in pulses of 1 {mu}s nominal baseline-to-baseline duration. The half power pulse width is 0.5 {mu}s. These pulses contain an energy of about 160 J. The design of this class of tube presents some unique challenges, particularly in the output cavity. The output cavity must exhibit a very low gap shunt impedance in order to obtain reasonable conversion efficiency from the low impedance modulated electron beam to microwave power, while still maintaining a reasonable loaded Q for mode purity. The physics of this device is dominated by space charge effects which strongly impact the design. Current experimental results and theoretical design considerations for this class of tube, and scaling to higher frequency operation, suitable for the Next Linear Collider are discussed.

  19. N. Mariana Islands- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: The Commonwealth Utility Corporation issued a moratorium on net metering. However, Public Law 18-62 signed September 6, 2014 states that net metering should be available to all residential...

  20. Washington City Power- Net Metering

    Energy.gov [DOE]

    Washington City adopted a net-metering program, including interconnection procedures, in January 2008, and updated the policy in December 2014.* Net metering is available to any customer of...

  1. Montana Electric Cooperatives- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Montana Electric Cooperatives' Association (MECA) adopted model interconnection guidelines in 2001 and a revised net-metering policy in September 2008. Net metering is available in whole or...

  2. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Alaska" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",0.613,0.401,0.27,0.17,0.01 "Residential",0.417,0.253,0.157,0.1,0.005 "Commercial",0.177,0.129,0.082,0.041,0.008 "Industrial",0.019,0.019,0.028,0.028,0.002 "Transportation",0,0,0,0,0 "Customers",138,90,62,39,5 "Residential",110,68,44,27,3 "Commercial",25,19,14,8,1 "Industrial",3,3,4,4,1

  3. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Delaware" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",27.237,22.224,19.05,14.1,8.52 "Residential",12.306,8.361,6.918,5.043,3.523 "Commercial",12.353,11.858,10.184,7.13,4.533 "Industrial",2.578,2.005,1.932,1.926,0.465 "Transportation",0,0,0,0,0 "Customers",2217,1617,1246,919,783 "Residential",1950,1372,1049,780,651 "Commercial",253,231,189,133,112

  4. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    District of Columbia" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",10.095,7.664,5.44,3.55,1.71 "Residential",5.954,4.141,2.841,1.829,0.94 "Commercial",4.141,3.523,2.603,1.72,0.765 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",1522,1124,638,418,276 "Residential",1425,1049,586,389,256 "Commercial",97,75,52,29,20

  5. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Georgia" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",6.209,9.614,7.94,4.8,2.74 "Residential",2.883,2.929,2.066,2.692,2.107 "Commercial",2.416,5.058,4.468,1.78,0.62 "Industrial",0.91,1.627,1.413,0.311,0 "Transportation",0,0,0,0,0 "Customers",641,690,556,342,193 "Residential",533,509,398,249,144 "Commercial",100,165,145,89,49

  6. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Idaho" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",3.685,2.836,2.22,1.57,0.31 "Residential",1.897,1.37,1.016,0.594,0.212 "Commercial",1.788,1.466,1.186,0.94,0.106 "Industrial",0,0,0.001,0.032,0.001 "Transportation",0,0,0,0,0 "Customers",548,428,349,207,76 "Residential",439,331,265,180,66 "Commercial",109,97,83,24,9 "Industrial",0,0,1,3,1

  7. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Illinois" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",9.99,5.167,4.35,2.74,1.05 "Residential",4.524,2.88,2.626,1.808,0.75 "Commercial",5.336,2.157,1.725,0.938,0.301 "Industrial",0.13,0.13,0,0,0 "Transportation",0,0,0,0,0 "Customers",927,716,682,506,233 "Residential",749,535,544,414,210 "Commercial",175,178,138,92,23 "Industrial",3,3,0,0,0

  8. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Indiana" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",5.139,3.331,2.19,1.32,0.56 "Residential",3.565,2.223,1.127,0.716,0.366 "Commercial",1.558,1.082,1.06,0.602,0.168 "Industrial",0.016,0.026,0.01,0,0.005 "Transportation",0,0,0,0,0 "Customers",736,551,335,238,131 "Residential",629,454,260,180,90 "Commercial",106,95,74,58,40

  9. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Iowa" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",20.568,5.998,1.77,0.65,9.43 "Residential",8.343,2.885,0.794,0.268,9.289 "Commercial",11.676,2.91,0.947,0.373,0.116 "Industrial",0.549,0.203,0.036,0,0 "Transportation",0,0,0,0,0 "Customers",1448,534,148,79,65 "Residential",880,388,111,59,49 "Commercial",543,136,35,20,16

  10. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Kansas" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",2.617,1.36,0.92,0.61,0 "Residential",1.364,0.576,0.324,0.206,0.004 "Commercial",1.253,0.784,0.588,0.405,0 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",326,164,106,76,2 "Residential",265,124,75,49,2 "Commercial",61,40,31,27,0 "Industrial",0,0,0,0,0

  11. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Kentucky" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",2.612,1.834,1.37,1.14,0.51 "Residential",1.384,0.838,0.534,0.397,0.23 "Commercial",1.228,0.996,0.83,0.733,0.282 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",412,330,254,208,122 "Residential",355,284,221,180,100 "Commercial",57,46,33,28,22 "Industrial",0,0,0,0,0

  12. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Louisiana" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",88.904,51.156,23.19,8.44,6.25 "Residential",85.823,48.69,21.418,7.73,5.521 "Commercial",3.081,2.466,1.755,0.697,0.716 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",16305,9569,3899,1287,1656 "Residential",15571,9111,3835,1245,1512 "Commercial",734,458,64,42,144

  13. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Maine" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",10.883,7.74,5.04,5.95,2.57 "Residential",7.551,5.696,3.558,4.263,1.907 "Commercial",3.306,2.018,1.464,1.687,0.655 "Industrial",0.026,0.026,0.026,0,0 "Transportation",0,0,0,0,0 "Customers",1703,1344,967,683,446 "Residential",1519,1210,850,584,379 "Commercial",183,133,116,99,67

  14. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Michigan" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",13.915,11.493,8.69,5.54,3.42 "Residential",7.853,6.351,4.86,3.581,2.837 "Commercial",5.551,4.63,3.724,1.913,0.54 "Industrial",0.511,0.512,0.103,0.047,0.033 "Transportation",0,0,0,0,0 "Customers",1612,1299,996,769,383 "Residential",1299,1032,807,624,331 "Commercial",300,254,184,142,48

  15. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Minnesota" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",17.355,11.209,8.87,4.07,8.13 "Residential",6.922,5.001,3.851,2.302,5.203 "Commercial",9.516,5.728,4.484,1.505,2.774 "Industrial",0.917,0.48,0.52,0.25,0.114 "Transportation",0,0,0,0,0 "Customers",1575,1172,970,613,608 "Residential",1156,879,723,487,489 "Commercial",390,277,230,117,107

  16. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Mississippi" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",0.663,0.077,0.04,0.03,0 "Residential",0.553,0.077,0.036,0.024,0 "Commercial",0.11,0,0,0,0 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",23,13,5,4,0 "Residential",21,13,5,4,0 "Commercial",2,0,0,0,0 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0

  17. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Missouri" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",97.377,42.797,14.7,4.31,1.21 "Residential",40.811,21.508,6.129,1.602,0.786 "Commercial",55.989,21.115,8.547,2.693,0.424 "Industrial",0.577,0.174,0.03,0,0 "Transportation",0,0,0,0,0 "Customers",6105,2930,1260,512,200 "Residential",3581,1929,834,345,167 "Commercial",2505,994,425,167,33

  18. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Montana" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",5.634,7.52,3.57,2.29,2.18 "Residential",3.822,5.939,2.303,1.37,1.337 "Commercial",1.812,1.581,1.268,0.917,0.833 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",1383,1174,1010,676,664 "Residential",1109,930,795,508,497 "Commercial",274,244,215,168,167 "Industrial",0,0,0,0,0

  19. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Nebraska" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",0.855,0.651,0.55,0.19,0.08 "Residential",0.573,0.399,0.243,0.106,0.041 "Commercial",0.216,0.18,0.297,0.034,0.03 "Industrial",0.066,0.072,0.012,0.047,0.008 "Transportation",0,0,0,0,0 "Customers",133,104,73,32,13 "Residential",101,73,51,22,7 "Commercial",28,26,19,6,4

  20. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Nevada" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",59.397,44.618,41.66,28.33,0.02 "Residential",23.045,10.101,8.529,6.356,0.027 "Commercial",28.269,27.322,26.859,17.837,0 "Industrial",8.083,7.195,6.274,4.141,0 "Transportation",0,0,0,0,0 "Customers",4727,2500,2265,1663,13 "Residential",4198,1972,1757,1276,13 "Commercial",461,471,453,340,0

  1. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Hampshire" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",12.986,8.565,5.07,3.05,1.88 "Residential",8.347,5.005,2.668,1.791,1.223 "Commercial",4.165,3.064,2.097,0.959,0.343 "Industrial",0.474,0.496,0.293,0.299,0.313 "Transportation",0,0,0,0,0 "Customers",1899,1353,780,584,406 "Residential",1650,1155,647,481,343 "Commercial",239,188,125,94,31

  2. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Carolina" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",18.762,10.191,6.17,3.72,10.35 "Residential",8.683,4.661,2.56,1.368,8.591 "Commercial",8.968,5.352,3.604,2.353,1.757 "Industrial",1.111,0.178,0,0,0 "Transportation",0,0,0,0,0 "Customers",2215,1244,573,261,163 "Residential",1995,1097,487,224,136 "Commercial",218,146,86,37,27

  3. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Dakota" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",0.256,0.241,0.17,0.08,0.01 "Residential",0.206,0.191,0.114,0.063,0.008 "Commercial",0.05,0.05,0.05,0.02,0 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",24,22,15,9,2 "Residential",22,20,13,8,2 "Commercial",2,2,2,1,0 "Industrial",0,0,0,0,0

  4. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Ohio" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",65.663,59.06,46.45,19.33,10.37 "Residential",8.624,6.684,4.275,2.701,1.41 "Commercial",51.567,46.952,39.954,16.222,8.929 "Industrial",5.472,5.424,2.211,0.395,0.038 "Transportation",0,0,0,0,0 "Customers",2042,1684,1271,899,506 "Residential",1453,1145,814,546,318 "Commercial",552,502,434,344,185

  5. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Oklahoma" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",1.914,1.155,0.66,0.51,0.25 "Residential",1.472,0.779,0.405,0.311,0.163 "Commercial",0.442,0.376,0.253,0.187,0.082 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",423,243,147,115,60 "Residential",390,220,132,105,54 "Commercial",33,23,15,10,6 "Industrial",0,0,0,0,0

  6. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Rhode Island" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",4.701,3.361,2,1.43,1.97 "Residential",1.403,1.205,0.633,0.574,0.535 "Commercial",3.298,2.156,1.37,0.856,1.43 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",415,260,206,182,169 "Residential",322,187,150,135,128 "Commercial",93,73,56,47,41 "Industrial",0,0,0,0,0

  7. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Carolina" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",3.347,1.885,1.2,0.68,1.38 "Residential",2.609,1.56,1.034,0.604,1.312 "Commercial",0.694,0.322,0.162,0.056,0.065 "Industrial",0.044,0.003,0,0,0 "Transportation",0,0,0,0,0 "Customers",691,414,280,164,105 "Residential",634,388,262,155,94 "Commercial",56,25,18,9,11 "Industrial",1,1,0,0,0

  8. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Dakota" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",0.29,0.092,0.09,0.07,0.01 "Residential",0.066,0.02,0.017,0.012,0.005 "Commercial",0.224,0.072,0.072,0.06,0 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",21,9,9,7,1 "Residential",12,4,4,3,1 "Commercial",9,5,5,4,0 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0

  9. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Utah" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",31.823,17.151,10.78,5.73,3.45 "Residential",15.261,7.328,3.823,2.643,2.567 "Commercial",14.185,9.073,6.551,3.031,0.864 "Industrial",2.377,0.75,0.381,0.046,0.018 "Transportation",0,0,0,0,0 "Customers",3997,2483,1670,1199,795 "Residential",3561,2170,1441,1027,697 "Commercial",406,297,218,167,94

  10. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Vermont" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",31.62,19.874,18.9,8.33,6.32 "Residential",23.926,15.192,14.888,5.361,3.963 "Commercial",7.459,4.485,3.804,2.749,2.193 "Industrial",0.235,0.197,0.197,0.197,0.165 "Transportation",0,0,0,0,0 "Customers",3895,2676,2316,1187,827 "Residential",3649,2512,2184,1082,728 "Commercial",241,160,128,101,97

  11. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Virginia" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",16.438,11.378,9.9,6.55,3.68 "Residential",9.285,6.68,5.179,3.987,2.776 "Commercial",6.938,4.596,4.582,2.468,0.788 "Industrial",0.215,0.102,0.123,0.123,0.113 "Transportation",0,0,0,0,0 "Customers",2147,1610,1305,992,702 "Residential",1918,1420,1134,875,647 "Commercial",225,188,169,115,53

  12. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    West Virginia" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",2.588,2.163,1.77,0.75,0.3 "Residential",1.985,1.633,1.286,0.495,0.249 "Commercial",0.598,0.524,0.473,0.261,0.043 "Industrial",0.005,0.006,0.006,0,0 "Transportation",0,0,0,0,0 "Customers",389,325,245,151,75 "Residential",339,280,210,127,68 "Commercial",49,44,34,24,7

  13. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Wyoming" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",1.785,1.616,1.32,0.99,1.03 "Residential",1.021,0.923,0.754,0.515,0.409 "Commercial",0.551,0.516,0.413,0.323,0.613 "Industrial",0.213,0.177,0.151,0.151,0 "Transportation",0,0,0,0,0 "Customers",272,318,215,178,147 "Residential",211,261,173,147,120 "Commercial",54,49,38,27,27

  14. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Alabama" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",0.529,0.45,0.23,0.19,0.2 "Residential",0.324,0.25,0.145,0.107,0.1 "Commercial",0.205,0.2,0.087,0.085,0.1 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",86,74,45,25,19 "Residential",70,59,34,15,12 "Commercial",16,15,11,10,7 "Industrial",0,0,0,0,0

  15. Table 11. Net metering, 2010 through 2014

    Energy Information Administration (EIA) (indexed site)

    Arkansas" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",3.681,2.927,1.27,0.86,0.55 "Residential",1.843,1.43,1.086,0.718,0.487 "Commercial",1.838,1.497,0.179,0.144,0.052 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",404,330,260,184,122 "Residential",365,298,240,168,117 "Commercial",39,32,20,16,5 "Industrial",0,0,0,0,0

  16. Concentrating Solar Power Projects - Palen Solar Electric Generating...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Turbine Capacity (Gross): 500.0 MW Turbine Capacity (Net): 500.0 MW Turbine Description: Two 250-MW units Output Type: Steam Rankine Cooling Method: Dry cooling Cooling Method ...

  17. Puna Geothermal Venture's Plan for a 25 MW Commercial Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Venture's Plan for a 25 MW Commercial Geothermal Power Plant on Hawaii's Big Island Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Puna...

  18. OglNet

    Energy Science and Technology Software Center

    2010-03-10

    OglNet is designed to capture and visualize network packets as they move from their source to intended destination. This creates a three dimensional representation of an active network and can show misconfigured components, potential security breaches and possible hostile network traffic. This visual representation is customizable by the user and also includes how network components interact with servers around the world. The software is able to process live or real time traffic feeds as wellmore » as offline historical network packet captures. As packets are read into the system, they are processed and visualized in an easy to understand display that includes network names, IP addresses, and global positioning. The software can process and display up to six million packets per second.« less

  19. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    who generate electricity using solar, wind, hydroelectric, geothermal, biomass, biogas, combined heat and power, or fuel cell technologies.* A net metering facility must be...

  20. Net Metering | Department of Energy

    Energy.gov [DOE] (indexed site)

    of retail renewable distributed generation and net metering. Details will be posted once a final order is issued. Eligibility and Availability In December 2005 the Colorado...

  1. Net Metering | Department of Energy

    Energy.gov [DOE] (indexed site)

    Anaerobic Digestion Fuel Cells using Renewable Fuels Program Info Sector Name State State North Carolina Program Type Net Metering Summary The North Carolina Utilities Commission...

  2. Road to Net Zero (Presentation)

    SciTech Connect

    Glover, B.

    2011-05-01

    A PowerPoint presentation on NREL's Research Support Facility (RSF) and the road to achieving net zero energy for new construction.

  3. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    after 12312014) are eligible. Net-metered systems must be intended primarily to offset part or all of a customer's electricity requirements. Public utilities may not limit...

  4. SensorNet Node Suite

    Energy Science and Technology Software Center

    2004-09-01

    The software in the SensorNet Node adopts and builds on IEEE 1451 interface principles to read data from and control sensors, stores the data in internal database structures, and transmits it in adapted Web Feature Services protocol packets to the SensorNet database. Failover software ensures that at least one available mode of communication remains alive.

  5. winter_capacity_2010.xls

    Energy Information Administration (EIA) (indexed site)

    Table 4.B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2001-2010 Actual, 2011-2015 Projected (Megawatts and Percent) Interconnection NERC Regional Assesment Area 2001/2002 2002/2003 2003/2004 2004/2005 2005/2006 2006/2007 2007/2008 2008/2009 2009/2010 2010/ 2011 2011/2012E 2012/2013E 2013/2014E 2014/2015E 2015/2016E FRCC 39,699 42,001 36,229 41,449 42,493 45,993 46,093 45,042 51,703 45,954 44,196 44,750 45,350

  6. TacNet Tracker Software

    Energy Science and Technology Software Center

    2008-08-04

    The TacNet Tracker will be used for the monitoring and real-time tracking of personnel and assets in an unlimited number of specific applications. The TacNet Tracker software is a VxWorks Operating System based programming package that controls the functionality for the wearable Tracker. One main use of the TacNet Tracker is in Blue Force Tracking, the ability to track the good guys in an adversarial situation or in a force-on-force or real battle conditions. Themore » purpose of blue force tracking is to provide situational awareness to the battlefield commanders and personnel. There are practical military applications with the TacNet Tracker.The mesh network is a wireless IP communications network that moves data packets from source IP addresses to specific destination IP addresses. Addresses on the TacNet infrastructure utilize an 8-bit network mask (255.0.0.0). In other words, valid TacNet addresses range from 10.0.0.1 to 10.254.254.254. The TacNet software design uses uni-cast transmission techniques because earlier mesh network software releases did not provide for the ability to utilize multi-cast data movement. The TacNet design employs a list of addresses to move information within the TacNet infrastructure. For example, a convoy text file containing the IP addresses of all valid receivers of TacNet information could be used for transmitting the information and for limiting transmission to addresses on the list.« less

  7. summer_nid_cr_cm_2005.xls

    Energy Information Administration (EIA) (indexed site)

    d Form EIA-411 for 2005 Released: February 7, 2008 Next Update: October 2007 Table 4. Summer Historic and Projected Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Council Region, 2005 and 2006 through 2010 (Megawatts and Percent) Projected Year Base Year Summer Eastern Power Grid Contiguous U.S. FRCC MRO NPCC RFC Net Internal Demand (MW) Capacity Resources (MW) Capacity Margin (percent) Net Internal Demand (MW) Capacity Resources (MW)

  8. summer_nid_cr_cm_2006.xls

    Energy Information Administration (EIA) (indexed site)

    h c Form EIA-411 for 2006 Released: February 7, 2008 Next Update: October 2008 Table 4. Summer Historic and Projected Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2006 and 2007 throug (Megawatts and Percent) Projected Year Base Year Summer Eastern Power Grid Contiguous U.S. FRCC MRO NPCC RFC Net Internal Demand (MW) Capacity Resources (MW) Capacity Margin (percent) Net Internal Demand (MW) Capacity Resources (MW)

  9. 1-2 MW Community Scale Solar Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 MW Community Scale Solar Feasibility Study Ute Mountain Ute Tribe Ute Mountain Ute Tribe- Towaoc, CO Total Acres= 582,321.53 □ TRUST □ CO- 431,910.45 □ NM- 104,964.00 □ UT- 4,334.80 □ FEE □ CO- 39,429.96 □ UT- 1,682.28 Overview □ 1-2 MW Community Scale Solar Farm □ 18 sites □ Fixed Panel/Single Axis Project Location Project Participants UTE MOUNTAIN UTE TRIBE Gary Hayes- Tribal Chairman Bradley Height- Tribal Vice Chairman Troy Ralstin- Tribal Executive Director Terry

  10. Maryland Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant ...

  11. Development of a 50 MW 30 GHz Gyroklystron Amplifier

    SciTech Connect

    Michael Read; Wesely Lawson, Lawrence Ives, Jeff Neilson

    2009-05-20

    DOE requires sources for testing of high gradient accelerator structures. A power of 50 MW is required at K and Ka band. The pulse length must be ~ 1 microsecond and the pulse repetition frequency at least 100 Hz. At least some applications may require phase stability not offered by a free running oscillator. CCR proposed to build a 50 MW 30 GHz gyrklystron amplifier. This approach would give the required phase stability. The frequency was at the second harmonic of the cycltron frequency and used the TE02 mode. This makes it possible to design a device without an inner conductor, and with a conventional (non-inverted) MIG. This minimizes cost and the risk due to mechanical alignment issues. A detailed design of the gyroklystron was produced. The design was based on simulations of the cavity(ies), electron gun, output coupler and output window. Two designs were produced. One was at the fundamental of the cyclotron frequency. Simulations predicted an output power of 72 MW with an efficiency of 48%. The other was at the second harmonic, producing 37 MW with an efficiency of 37%.

  12. Net Metering | Department of Energy

    Energy.gov [DOE] (indexed site)

    commercial) as long as the base requirements are met. All net-metered facilities must be behind a customer's meter, but only a minimal amount of load located on-site is required....

  13. Valley Electric Association- Net Metering

    Energy.gov [DOE]

    The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

  14. Rocky Mountain Power- Net Metering

    Energy.gov [DOE]

    For residential and small commercial customers, net excess generation (NEG) is credited at Rocky Mountain Power's retail rate and carried forward to the next month. For larger commercial and...

  15. Net Zero Energy Installations (Presentation)

    SciTech Connect

    Booth, S.

    2012-05-01

    A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

  16. Blue Ridge EMC- Net Metering

    Energy.gov [DOE]

    The Blue Ridge Electric Membership Corporation offers net metering to its residential customers with solar photovoltaic, wind, or micro-hydro generators up to 25 kilowatts. There is no aggregate...

  17. Response of the Los Azufres Geothermal Field to Four Years of 25 MW Wellhead Generation

    SciTech Connect

    Kruger, P.; Ortiz, J.; Miranda, G.; Gallardo, M.

    1987-01-20

    Production and chemical data have been compiled and analyzed on a six-month averaged basis for the first four years of electric energy generation with five 5-MW wellhead generators at the Los Azufres geothermal field. The data were evaluated with respect to the extent of observable thermal drawdown of the reservoir from 25 MW of generation in relation to the estimated capacity of the field of several hundred megawatts of power. The analysis updates the previous one compiled after the first two years of continuous production, at which time the results indicated that differences in reservoir temperature estimated from geochemical thermometers and wellhead production data were not statistically significant based on the number of data and the standard deviations. Analysis of the data after four years of operation were made for the larger number of data and smaller standard deviations. The results review the adequacy of the sampling frequency and the reliability of the measurements from statistical t-Test of the means of the first and second two-year periods. 3 figs., 5 tabs., 20 refs.

  18. FAQs about Storage Capacity

    Annual Energy Outlook

    about Storage Capacity How do I determine if my tanks are in operation or idle or ... Do I have to report storage capacity every month? No, only report storage capacity with ...

  19. ,"U.S. Refinery Net Input"

    Energy Information Administration (EIA) (indexed site)

    ...petpnpinpt2dcnusmbbla.htm" ,"Source:","Energy Information Administration" ,"For Help, ... Barrels)","U.S. Refinery Net Input of Hydrogen (Thousand Barrels)","U.S. Refinery Net ...

  20. ,"Minnesota Natural Gas Underground Storage Net Withdrawals ...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Minnesota Natural Gas Underground Storage Net ... 7:00:48 AM" "Back to Contents","Data 1: Minnesota Natural Gas Underground Storage Net ...

  1. Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model

    SciTech Connect

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-03-01

    An important issue for electricity system operators is the estimation of renewables' capacity contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to the resource variability. Reliability-based methods, particularly assessment of the Effective Load-Carrying Capacity, are considered to be the most robust and widely-accepted techniques for addressing this resource variability. This report compares estimates of solar PV capacity value by the Regional Energy Deployment System (ReEDS) capacity expansion model against two sources. The first comparison is against values published by utilities or other entities for known electrical systems at existing solar penetration levels. The second comparison is against a time-series ELCC simulation tool for high renewable penetration scenarios in the Western Interconnection. Results from the ReEDS model are found to compare well with both comparisons, despite being resolved at a super-hourly temporal resolution. Two results are relevant for other capacity-based models that use a super-hourly resolution to model solar capacity value. First, solar capacity value should not be parameterized as a static value, but must decay with increasing penetration. This is because -- for an afternoon-peaking system -- as solar penetration increases, the system's peak net load shifts to later in the day -- when solar output is lower. Second, long-term planning models should determine system adequacy requirements in each time period in order to approximate LOLP calculations. Within the ReEDS model we resolve these issues by using a capacity value estimate that varies by time-slice. Within each time period the net load and shadow price on ReEDS's planning reserve constraint signals the relative importance of additional firm capacity.

  2. Picuris Pueblo 1-MW Community-Scale Solar Array

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PICURIS PUEBLO SOLAR ARRAY July, 2016 Picuris Pueblo 1MW Community-Scale Solar Array Northern Pueblos Housing Authority PICURIS PUEBLO SOLAR ARRAY July, 2016 Northern Pueblos Housing Authority Indian Energy Ten percent of the energy resources in the United States are located on Indian lands, which together occupy land areas the size of Texas (5% of US land area). Historically, these resources have been exploited for non-Indian use, with Indians receiving only a small portion of their potential

  3. Low Beam Voltage, 10 MW, L-Band Cluster Klystron

    SciTech Connect

    Teryaev, V.; Yakovlev, V.P.; Kazakov, S.; Hirshfield, J.L.; /Yale U. /Omega-P, New Haven

    2009-05-01

    Conceptual design of a multi-beam klystron (MBK) for possible ILC and Project X applications is presented. The chief distinction between this MBK design and existing 10-MW MBK's is the low operating voltage of 60 kV. There are at least four compelling reasons that justify development at this time of a low-voltage MBK, namely (1) no pulse transformer; (2) no oil tank for high-voltage components and for the tube socket; (3) no high-voltage cables; and (4) modulator would be a compact 60-kV IGBT switching circuit. The proposed klystron consists of four clusters containing six beams each. The tube has common input and output cavities for all 24 beams, and individual gain cavities for each cluster. A closely related optional configuration, also for a 10 MW tube, would involve four totally independent cavity clusters with four independent input cavities and four 2.5 MW output ports, all within a common magnetic circuit. This option has appeal because the output waveguides would not require a controlled atmosphere, and because it would be easier to achieve phase and amplitude stability as required in individual SC accelerator cavities.

  4. Net Metering Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Net Metering Resources Net Metering Resources State net metering policies allow customers to produce onsite electricity and sell excess generation to the utility at a set price, which creates an incentive for private investment in distributed renewable energy technologies by providing value to the electricity generation that, during certain times of day or season, exceeds the customer's electricity demand. Find net metering resources below. DOE Resource Net Metering Policy Development in

  5. New York Nuclear Profile - James A Fitzpatrick

    Energy Information Administration (EIA) (indexed site)

    James A Fitzpatrick" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" ...

  6. New Hampshire Nuclear Profile - Seabrook

    Energy Information Administration (EIA) (indexed site)

    Seabrook" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" ...

  7. South Carolina Nuclear Profile - Oconee

    Energy Information Administration (EIA) (indexed site)

    Oconee" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" ...

  8. New Jersey Nuclear Profile - Oyster Creek

    Energy Information Administration (EIA) (indexed site)

    Oyster Creek" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" ...

  9. North Carolina Nuclear Profile - Harris

    Energy Information Administration (EIA) (indexed site)

    Harris" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" ...

  10. New Jersey Nuclear Profile - PSEG Salem Generating Station

    Energy Information Administration (EIA) (indexed site)

    PSEG Salem Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License ...

  11. New York Nuclear Profile - Indian Point

    Energy Information Administration (EIA) (indexed site)

    Indian Point" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" ...

  12. South Carolina Nuclear Profile - H B Robinson

    Energy Information Administration (EIA) (indexed site)

    H B Robinson" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date" ...

  13. South Carolina Nuclear Profile - V C Summer

    Energy Information Administration (EIA) (indexed site)

    V C Summer" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" ...

  14. North Carolina Nuclear Profile - Brunswick

    Energy Information Administration (EIA) (indexed site)

    Brunswick" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" ...

  15. North Carolina Nuclear Profile - McGuire

    Energy Information Administration (EIA) (indexed site)

    McGuire" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" ...

  16. New Jersey Nuclear Profile - PSEG Hope Creek Generating Station

    Energy Information Administration (EIA) (indexed site)

    PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License ...

  17. South Carolina Nuclear Profile - Catawba

    Energy Information Administration (EIA) (indexed site)

    Catawba" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" ...

  18. Pennsylvania Nuclear Profile - PPL Susquehanna

    Energy Information Administration (EIA) (indexed site)

    PPL Susquehanna" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" ...

  19. Ohio Nuclear Profile - Davis Besse

    Energy Information Administration (EIA) (indexed site)

    Davis Besse" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date" ...

  20. Pennsylvania Nuclear Profile - Limerick

    Energy Information Administration (EIA) (indexed site)

    Limerick" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" ...

  1. Ohio Nuclear Profile - Perry

    Energy Information Administration (EIA) (indexed site)

    Perry" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" ...

  2. Pennsylvania Nuclear Profile - Beaver Valley

    Energy Information Administration (EIA) (indexed site)

    Beaver Valley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" ...

  3. New York Nuclear Profile - Nine Mile Point Nuclear Station

    Energy Information Administration (EIA) (indexed site)

    Nine Mile Point Nuclear Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License ...

  4. Pennsylvania Nuclear Profile - Peach Bottom

    Energy Information Administration (EIA) (indexed site)

    Peach Bottom" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" ...

  5. Pennsylvania Nuclear Profile - Three Mile Island

    Energy Information Administration (EIA) (indexed site)

    Three Mile Island" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" ...

  6. New York Nuclear Profile - R E Ginna Nuclear Power Plant

    Energy Information Administration (EIA) (indexed site)

    R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License ...

  7. INTEGRATED 15KV SIC VSD AND HIGH-SPEED MW MOTOR FOR GAS COMPRESSION...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    15KV SIC VSD AND HIGH-SPEED MW MOTOR FOR GAS COMPRESSION SYSTEMS INTEGRATED 15KV SIC VSD AND HIGH-SPEED MW MOTOR FOR GAS COMPRESSION SYSTEMS Eaton Corporation - Arden, NC A 15 ...

  8. SophiNet Version 12

    Energy Science and Technology Software Center

    2012-08-09

    SophiNet Version 12 is part of the code contained in the application ‘oglnet’ and comprises the portions that make ‘oglnet’ receive and display Sophia data from the Sophia Daemon ‘sophiad’. Specifically this encompasses the channel, host and alert receiving and the treeview HUD widget.

  9. "Interconnection","NERC Regional Assesment Area","Net Internal Demand[1] -- Winter"

    Energy Information Administration (EIA) (indexed site)

    B Winter net internal demand, capacity resources, and capacity margins by North American Electric Reliability Corporation" "Region, 2001/2002-2014/2015 actual, 2015-2017 projected" "megawatts and percent" "Interconnection","NERC Regional Assesment Area","Net Internal Demand[1] -- Winter" ,,"Actual",,,,,,,,,,,,,,,"Projected" ,,"2001/ 2002","2002/ 2003","2003/ 2004","2004/

  10. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    SciTech Connect

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water

  11. Refinery Capacity Report

    Annual Energy Outlook

    Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 9 Shell Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 10...

  12. Digital, remote control system for a 2-MW research reactor

    SciTech Connect

    Battle, R.E.; Corbett, G.K.

    1988-01-01

    A fault-tolerant programmable logic controller (PLC) and operator workstations have been programmed to replace the hard-wired relay control system in the 2-MW Bulk Shielding Reactor (BSR) at Oak Ridge National Laboratory. In addition to the PLC and remote and local operator workstations, auxiliary systems for remote operation include a video system, an intercom system, and a fiber optic communication system. The remote control station, located at the High Flux Isotope Reactor 2.5 km from the BSR, has the capability of rector startup and power control. The system was designed with reliability and fail-safe features as important considerations. 4 refs., 3 figs.

  13. COLLOQUIUM: Achieving 10MW Fusion Power in TFTR: a Retrospective |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Princeton Plasma Physics Lab November 18, 2014, 2:00pm to 3:00pm Colloquia MBG Auditorium COLLOQUIUM: Achieving 10MW Fusion Power in TFTR: a Retrospective Dr. Michael Bell Princeton Plasma Physics Laboratory "The Tokamak Fusion Test Reactor (TFTR) operated at the Princeton Plasma Physics Laboratory (PPPL) from 1982 to 1997. TFTR set a number of world records, including a plasma temperature of 510 million degrees centigrade -- the highest ever produced in a laboratory, and well beyond

  14. Latest developments on the Dutch 1MW free electron maser

    SciTech Connect

    Caplan, M. [Lawrence Livermore National Laboratory, 7000 East Ave, L-637 Livermore California, 94551 (United States); Verhoeven, A.G.; Urbanus, W. [FOM Instituut voor Plasma Fysica, Rijnhuizen, P.O. Box 1207, 3430 BE Nieuwegein (The Netherlands)

    1999-05-01

    The FOM Institute (Rijnhuizen, Netherlands), as part of their fusion technology program, has undertaken the development of a Free Electron Maser with the goal of producing 1MW long pulse to CW microwave output in the range 130 GHz{endash}250GHz with wall plug efficiencies of 60{percent}. This project has been carried out as a collaborative effort with Institute of Applied Physics, Nizhny Novgorod Russia, Kurchatov Institute, Moscow Russia, Lawrence Livermore Laboratory, U.S.A and CPI, U.S.A. The key design features of this FEM consists first of a conventional DC acceleration system at high voltage (2MV) which supplies only the unwanted beam interception current and a depressed collector system at 250kV which provides the main beam power. Low body current interception ({lt}25mA) is ensured by using robust inline beam focussing, a low emittance electron gun with halo suppression and periodic magnet side array focussing in the wiggler. The second key feature is use of a low-loss step corrugated waveguide circuit for broad band CW power handling and beam/RF separation. Finally, the required interaction efficiency and mode control is provided by a two stage stepped wiggler. The FEM has been constructed and recently undergone initial short pulse ({lt}10 usec) testing in an inverted mode with the depressed collector absent. Results to date have demonstrated 98.8{percent} beam transmission (over 5 Meters) at currents as high as 8.4 Amps, with 200GHz microwave output at 700kW. There has been good agreement between theory and experiment at the beam current levels tested so far. Details of the most recent experimental results will be presented, in particular the output frequency characteristics with detailed comparisons to theory. The immediate future plans are to operate the system at the design value of 12 Amps with at least 1MW output. The system will then be reconfigured with a 3 stage depressed collector to demonstrate, in the next year, long pulse operation (100 msec

  15. Property:MeanCapacity | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Area + 132 MW132,000 kW 132,000,000 W 132,000,000,000 mW 0.132 GW 1.32e-4 TW + B Bac-Man Laguna Geothermal Area + 150 MW150,000 kW 150,000,000 W 150,000,000,000 mW 0.15 GW...

  16. ,"California Natural Gas Underground Storage Net Withdrawals...

    Energy Information Administration (EIA) (indexed site)

    AM" "Back to Contents","Data 1: California Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070CA2" "Date","California Natural Gas Underground Storage Net ...

  17. Green Pricing and Net Metering Programs 2010

    Annual Energy Outlook

    294 2,971 650 Rhode Island 2 136 58 194 172 September 2012 U.S. Energy Information Administration | Green Pricing and Net Metering Programs 2010 6 Table 2. Estimated U.S. net ...

  18. ,"U.S. Refinery Net Production"

    Energy Information Administration (EIA) (indexed site)

    ... Kerosene-Type Jet Fuel (Thousand Barrels)","U.S. Refinery Net Production of Military Kerosene-Type Jet Fuel (Thousand Barrels)","U.S. Refinery Net Production of Kerosene ...

  19. American PowerNet | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PowerNet Jump to: navigation, search Name: American PowerNet Place: Pennsylvania Phone Number: (877) 977-2636 Website: www.americanpowernet.com Outage Hotline: (877) 977-2636...

  20. Wire-Net | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wire-Net Jump to: navigation, search Name: Wire-Net Address: 4855 W. 130th Street, Suite 1 Place: Cleveland, OHio Zip: 44135 Sector: Efficiency, Renewable Energy, Services Phone...

  1. ,"U.S. Refinery Net Input"

    Energy Information Administration (EIA) (indexed site)

    ...RONUS1","MO9RONUS1","MBARONUS1" "Date","U.S. Refinery Net Input of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Refinery Net Input of Crude Oil (Thousand ...

  2. ,"U.S. Refinery Net Production"

    Energy Information Administration (EIA) (indexed site)

    10:25:07 PM" "Back to Contents","Data 1: U.S. Refinery Net Production" ...US1","MMNRXNUS1","MPGRXNUS1" "Date","U.S. Refinery Net Production of Crude Oil and ...

  3. ,"U.S. Blender Net Production"

    Energy Information Administration (EIA) (indexed site)

    10:26:02 PM" "Back to Contents","Data 1: U.S. Blender Net Production" ...BNUSMBBL","MEPPGYPBNUSMBBL" "Date","U.S. Blender Net Production of Crude Oil and ...

  4. ,"U.S. Refinery Net Production"

    Energy Information Administration (EIA) (indexed site)

    10:25:08 PM" "Back to Contents","Data 1: U.S. Refinery Net Production" ...US1","MMNRXNUS1","MPGRXNUS1" "Date","U.S. Refinery Net Production of Crude Oil and ...

  5. ,"U.S. Blender Net Production"

    Energy Information Administration (EIA) (indexed site)

    10:26:03 PM" "Back to Contents","Data 1: U.S. Blender Net Production" ...BNUSMBBL","MEPPGYPBNUSMBBL" "Date","U.S. Blender Net Production of Crude Oil and ...

  6. Concentrating Solar Power Projects - Xina Solar One | Concentrating...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Turbine Capacity (Gross): 100.0 MW Turbine Capacity (Net): 100.0 MW Turbine Manufacturer: Siemens Output Type: Steam Rankine Thermal Storage Storage Type: 2-tank indirect Storage ...

  7. Concentrating Solar Power Projects - Crescent Dunes Solar Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Turbine Capacity (Gross): 110.0 MW Turbine Capacity (Net): 110.0 MW Turbine Manufacturer: Alstom Output Type: Steam Rankine Power Cycle Pressure: 115.0 bar Cooling Method: Hybrid ...

  8. Concentrating Solar Power Projects - Solana Generating Station...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Turbine Capacity (Gross): 280.0 MW Turbine Capacity (Net): 250.0 MW Turbine Description: 2x140 MWe gross Output Type: Steam Rankine Power Cycle Pressure: 100.0 bar Cooling Method: ...

  9. Refinery Capacity Report

    Energy Information Administration (EIA) (indexed site)

    Vacuum State/Refiner/Location Barrels per Atmospheric Crude Oil Distillation Capacity Barrels per Operating Idle Operating Idle Downstream Charge Capacity Thermal Cracking Delayed Fluid Coking Visbreaking Other/Gas Calendar Day Stream Day Distillation Coking Oil Table 3. Capacity of Operable Petroleum Refineries by State as of January 1, 2016 (Barrels per Stream Day, Except Where Noted) ......................................................... Alabama 131,675 0 140,500 0 47,000 32,000 0 0 0

  10. WINDExchange: Potential Wind Capacity

    WindExchange

    Potential Wind Capacity Potential wind capacity maps are provided for a 2014 industry standard wind turbine installed on a 110-m tower, which represents plausible current technology options, and a wind turbine on a 140-m tower, which represents near-future technology options. For more detailed information regarding the assumptions and calculations behind the wind potential capacity maps, see the Energy Department's Enabling Wind Power Nationwide report. Enlarge image This map shows the wind

  11. 2 MW upgrade of the Fermilab Main Injector

    SciTech Connect

    Weiren Chou

    2003-06-04

    In January 2002, the Fermilab Director initiated a design study for a high average power, modest energy proton facility. An intensity upgrade to Fermilab's 120-GeV Main Injector (MI) represents an attractive concept for such a facility, which would leverage existing beam lines and experimental areas and would greatly enhance physics opportunities at Fermilab and in the U.S. With a Proton Driver replacing the present Booster, the beam intensity of the MI is expected to be increased by a factor of five. Accompanied by a shorter cycle, the beam power would reach 2 MW. This would make the MI a more powerful machine than the SNS or the J-PARC. Moreover, the high beam energy (120 GeV) and tunable energy range (8-120 GeV) would make it a unique high power proton facility. The upgrade study has been completed and published. This paper gives a summary report.

  12. 120 MW, 800 MHz Magnicon for a Future Muon Collider

    SciTech Connect

    Jay L. Hirshfield

    2005-12-15

    Development of a pulsed magnicon at 800 MHz was carried out for the muon collider application, based on experience with similar amplifiers in the frequency range between 915 MHz and 34.3 GHz. Numerical simulations using proven computer codes were employed for the conceptual design, while established design technologies were incorporated into the engineering design. A cohesive design for the 800 MHz magnicon amplifier was carried out, including design of a 200 MW diode electron gun, design of the magnet system, optimization of beam dynamics including space charge effects in the transient and steady-state regimes, design of the drive, gain, and output cavities including an rf choke in the beam exit aperture, analysis of parasitic oscillations and design means to eliminate them, and design of the beam collector capable of 20 kW average power operation.

  13. A conceptual design of the 2+ MW LBNE beam absorber

    SciTech Connect

    Velev, G.; Childress, S.; Hurh, P.; Hylen, J.; Makarov, A.; Mohkhov, N.; Moore, C.D.; Novitski, I.; /Fermilab

    2011-03-01

    The Long Baseline Neutrino Experiment (LBNE) will utilize a neutrino beamline facility located at Fermilab. The facility will aim a beam of neutrinos, produced by 60-120 GeV protons from the Fermilab Main Injector, toward a detector placed at the Deep Underground Science and Engineering Laboratory (DUSEL) in South Dakota. Secondary particles that do not decay into muons and neutrinos as well as any residual proton beam must be stopped at the end of the decay region to reduce noise/damage in the downstream muon monitors and reduce activation in the surrounding rock. This goal is achieved by placing an absorber structure at the end of the decay region. The requirements and conceptual design of such an absorber, capable of operating at 2+ MW primary proton beam power, is described.

  14. The 125 MW Upper Mahiao geothermal power plant

    SciTech Connect

    Forte, N.

    1996-12-31

    The 125 MW Upper Mahiao power plant, the first geothermal power project to be financed under a Build-Own-Operate-and-Transfer (BOOT) arrangement in the Philippines, expected to complete its start-up testing in August of this year. This plant uses Ormat`s environmentally benign technology and is both the largest geothermal steam/binary combined cycle plant as well as the largest geothermal power plant utilizing air cooled condensers. The Ormat designed and constructed plant was developed under a fast track program, with some two years from the April 1994 contract signing through design, engineering, construction and startup. The plant is owned and operated by a subsidiary of CalEnergy Co., Inc. and supplies power to PNOC-Energy Development Corporation for the National Power Corporation (Napocor) national power grid in the Philippines.

  15. Refinery Capacity Report

    Energy Information Administration (EIA) (indexed site)

    6 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels ... Catalytic Cracking Downstream Charge Capacity (Barrels per Stream Day) Cracking Thermal ...

  16. Refinery Capacity Report

    Energy Information Administration (EIA) (indexed site)

    1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels ... Catalytic Cracking Downstream Charge Capacity (Barrels per Stream Day) Cracking Thermal ...

  17. El Paso Electric - Net Metering | Department of Energy

    Energy.gov [DOE] (indexed site)

    Website http:www.epelectric.comtxbusinessrollback-net-metering-approved-in-... State Texas Program Type Net Metering Summary El Paso Electric (EPE) has offered net metering to...

  18. Total Natural Gas Underground Storage Capacity

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Storage Capacity Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working...

  19. Natural Gas Underground Storage Capacity (Summary)

    Energy Information Administration (EIA) (indexed site)

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of ...

  20. Variable capacity gasification burner

    SciTech Connect

    Saxon, D.I.

    1985-03-05

    A variable capacity burner that may be used in gasification processes, the burner being adjustable when operating in its intended operating environment to operate at two different flow capacities, with the adjustable parts being dynamically sealed within a statically sealed structural arrangement to prevent dangerous blow-outs of the reactants to the atmosphere.

  1. Liquid heat capacity lasers

    DOEpatents

    Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  2. Knudsen heat capacity

    SciTech Connect

    Babac, Gulru; Reese, Jason M.

    2014-05-15

    We present a Knudsen heat capacity as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  3. Aquantis 2.5MW Ocean Current Generation Device | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Aquantis 2.5MW Ocean Current Generation Device Aquantis 2.5MW Ocean Current Generation Device Aquantis 2.5MW Ocean Current Generation Device 12_aquantisawp_da_alexfleming.pptx (2.06 MB) More Documents & Publications Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project 2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies 2014 Wind Program Peer Review Compiled Presentations

  4. Flutter Speed Predictions for MW-Sized Wind Turbine Blades Don...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Flutter Speed Predictions for MW-Sized Wind Turbine Blades Don W. Lobitz Sandia National ... Leishman, J. G., "Challenges in Modelling the Unsteady Aerodynamics of Wind Turbines," ...

  5. Project: 1.8 MW Wind Turbine on Tribal Common Lands Near Lake...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PAST ACTIVITIES & PROJECTS 1.8 MW Wind Turbine on Common Lands DOE First Steps Grant ... and Fossil Cattaraugus wind turbine project Repair and maintain NG ...

  6. MHK Projects/NJBPU 1 5 MW Demonstration Program | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    NJBPU 1 5 MW Demonstration Program < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3",...

  7. NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine

    Office of Scientific and Technical Information (OSTI)

    Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators (Poster) McDade, M.; Gevorgian, V.; Wallen, R.; Erdman, W. 17 WIND ENERGY WIND TURBINE TESTING;...

  8. Instructions for Submitting Document to OpenNet | Department...

    Energy Saver

    Instructions for Submitting Document to OpenNet Requesting an account to submit documents to OpenNet If you plan to load documents to OpenNet, you must have an OpenNet Logon Name ...

  9. Alstom 3-MW Wind Turbine Installed at NWTC (Fact Sheet)

    SciTech Connect

    Not Available

    2011-09-01

    The 3-MW Alstom wind turbine was installed at NREL's NWTC in October 2010. Test data will be used to validate advanced turbine design and analysis tools. NREL signed a Cooperative Research and Development Agreement with Alstom in 2010 to conduct certification testing on the company's 3-MW ECO 100 wind turbine and to validate models of Alstom's unique drivetrain concept. The turbine was installed at NREL's National Wind Technology Center (NWTC) in October 2010 and engineers began certification testing in 2011. Tests to be conducted by NREL include a power quality test to finalize the International Electrotechnical Commission (IEC) requirements for type certification of the 60-Hz unit. The successful outcome of this test will enable Alstom to begin commercial production of ECO 100 in the United States. NREL also will obtain additional measurements of power performance, acoustic noise, and system frequency to complement the 50 Hz results previously completed in Europe. After NREL completes the certification testing on the ECO 100, it will conduct long-term testing to validate gearbox performance to gain a better understanding of the machine's unique ALSTOM PURE TORQUE{trademark} drivetrain concept. In conventional wind turbines, the rotor is supported by the shaft-bearing gearbox assembly. Rotor loads are partially transmitted to the gearbox and may reduce gearbox reliability. In the ALSTOM PURE TORQUE concept, the rotor is supported by a cast frame running through the hub, which transfers bending loads directly to the tower. Torque is transmitted to the shaft through an elastic coupling at the front of the hub. According to Alstom, this system will increase wind turbine reliability and reduce operation and maintenance costs by isolating the gearbox from rotor loads. Gearbox reliability has challenged the wind energy industry for more than two decades. Gearbox failures require expensive and time-consuming replacement, significantly increasing the cost of wind plant

  10. Innovation and Success in Solar Net Metering and Interconnection...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Net Metering and Interconnection Innovation and Success in Solar Net Metering and ... More Documents & Publications webinarinnovationnetmeteringinterconnection.doc ...

  11. Fuel strategy for 2 MW SF-TMSR

    SciTech Connect

    Zhu, Zhiyong; Lin, Jun; Cao, Changqing; Zhang, Haiqing; Zhu, Tianbao; Li, Xiaoyun

    2013-07-01

    China has launched a series of projects for developing high performance nuclear energy systems. The 2 MW solid fuel thorium based molten salt reactor (TMSR-SF) is one of these projects, which uses TRISO fuel elements as the fuel carrier and the FLiBe molten salt (2LiF-BeF{sub 2}) as the coolant. TRISO fuel elements have been well developed in respect to manufacturing, testing experiments inside and outside reactors as well as their successful application in HTGRs. The application of LEU (low enriched uranium) spherical TRISO fuel elements in TMSR-SF can be safely conducted through careful control of temperature and power density. Although the soaking of molten salt into graphite has shown no damage to the graphite material as experienced by ORNL group in the sixties last century, the compatibility of FLiBe salt with graphite covering of the fuel elements should be tested before the application. It is expected that TMSR-SF can be an appropriate test reactor for high performance fuel element development. (authors)

  12. Development of a 50 MW Multiple Beam Klystron

    SciTech Connect

    Ives, R Lawrence; Ferguson, Patrick; Read, Michael; Collins, George

    2007-10-31

    The goal of this program was to develop a 50 MW, multiple beam klystron at 11.424 GHz. The device uses eight electron guns and beam lines to achieve the required power level at a beam voltage of 190 kV, consistent with solid state power supplies. The electron gun operates with confined flow focusing, which is unique among current multiple beam sources, and allows operation at power levels consistent with producing 10s of MWs of pulsed RF power. The circuit consists of a ring resonator input cavity, eight sets of buncher cavities, and a ring resonator output cavity. The RF output power is coupled into four rectangular waveguides equally spaced around the klystron. Eight individual collectors absorb the spent beam power in each beam. The klystron operates in a solenoid. The principle challenges in the design included development of the beam optics using confined flow focusing, shaping of the magnetic field in the gun region to avoid beam spiraling, coupling input power equally to all eight beam lines from a single input, and obtaining the required frequency and Q in the output cavity. The mechanical design was particularly complex due to the large parts count, number of braze and weld joints, and close proximity of the beam lines that limited access. Addressing vacuum leaks and cold testing the complex structures was particularly troublesome. At the conclusion of the program, the klystron is experiencing several vacuum leaks that are under repair. Efforts will continue to seal and test the klystron.

  13. Refinery Capacity Report

    Energy Information Administration (EIA) (indexed site)

    Table 6. Operable Crude Oil and Downstream Charge Capacity of Petroleum Refineries, January 1, 1987 to (Thousand Barrels per Stream Day, Except Where Noted) January 1, 2016 JAN 1, ...

  14. NASA Net Zero Energy Buildings Roadmap

    SciTech Connect

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  15. Millenial Net Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MA 01803 Sector: Services Product: Millennial Net is a US-based developer of wireless sensor networking software, systems, and services. Coordinates: 44.446275, -108.431704...

  16. ,"Mississippi Natural Gas Underground Storage Net Withdrawals...

    Energy Information Administration (EIA) (indexed site)

    Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","102015" ,"Release...

  17. City of St. George- Net Metering

    Energy.gov [DOE]

    The City of St. George Energy Services Department (SGESD) offers a net metering program to its customers, and updated program guidelines and fees in September 2015.* 

  18. VruiNet Version 12(SOPHIA)

    Energy Science and Technology Software Center

    2012-08-09

    VruiNet Version 12 is the code used exclusively by the executable ‘vruinet’. VruiNet Version 12 provides a wrapper around the code for ‘oglnet’ that makes it compatible for VRUI systems such as the CAVE at CAES.

  19. ,"U.S. Blender Net Input"

    Energy Information Administration (EIA) (indexed site)

    10:21:53 PM" "Back to Contents","Data 1: U.S. Blender Net Input" "Sourcekey","MTXRBNUS1...US1","MO7RBNUS1","MO9RBNUS1" "Date","U.S. Blender Net Input of Total Petroleum ...

  20. Dual capacity reciprocating compressor

    DOEpatents

    Wolfe, Robert W.

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  1. Dual capacity reciprocating compressor

    DOEpatents

    Wolfe, R.W.

    1984-10-30

    A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

  2. Geothermal Plant Capacity Factors

    SciTech Connect

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  3. Refinery Capacity Report

    Energy Information Administration (EIA) (indexed site)

    District and State Production Capacity Alkylates Aromatics Asphalt and Road Oil Isomers Lubricants Marketable Petroleum Coke Sulfur (short tons/day) Hydrogen (MMcfd) Table 2. Production Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2016 (Barrels per Stream Day, Except Where Noted) a 83,429 10,111 26,500 92,765 21,045 21,120 69 1,159 PAD District I Delaware 11,729 5,191 0 6,000 0 13,620 40 596 New Jersey 29,200 0 70,000 4,000 12,000 7,500 26 280 Pennsylvania

  4. Refinery Capacity Report

    Energy Information Administration (EIA) (indexed site)

    Alkylates Aromatics Road Oil and Lubricants Petroleum Coke (MMcfd) Hydrogen Sulfur (short tons/day) Production Capacity Asphalt Isomers Marketable Table 7. Operable Production Capacity of Petroleum Refineries, January 1, 1987 to January 1, 2016 (Thousand Barrels per Stream Day, Except Where Noted) a JAN 1, 1987 974 287 788 326 250 364 2,569 23,806 JAN 1, 1988 993 289 788 465 232 368 2,418 27,639 JAN 1, 1989 1,015 290 823 469 230 333 2,501 28,369 JAN 1, 1990 1,030 290 844 456 232 341 2,607 24,202

  5. Gamesa Installs 2-MW Wind Turbine at NWTC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gamesa Installs 2-MW Wind Turbine at NWTC Gamesa Installs 2-MW Wind Turbine at NWTC December 19, 2011 - 3:12pm Addthis This is an excerpt from the Fourth Quarter 2011 edition of the Wind Program R&D Newsletter. In October, the Department of Energy (DOE) National Renewable Laboratory (NREL) worked with Gamesa Wind US to complete the installation of Gamesa's G97-2 MW Class IIIA turbine at NREL's National Wind Technology Center. The turbine will be the fourth multimegawatt wind turbine to be

  6. Development and Production of a 201 MHz, 5.0 MW Peak Power Klystron

    SciTech Connect

    Aymar, Galen; Eisen, Edward; Stockwell, Brad; Begum, rasheda; Lenci, Steve; Eisner, Rick; Cesca, Eugene

    2016-01-01

    Communications & Power Industries LLC has designed and manufactured the VKP-8201A, a high peak power, high gain, VHF band klystron. The klystron operates at 201.25 MHz, with 5.0 MW peak output power, 34 kW average output power, and a gain of 36 dB. The klystron is designed to operate between 1.0 MW and 4.5 MW in the linear range of the transfer curve. The klystron utilizes a unique magnetic field which enables the use of a proven electron gun design with a larger electron beam requirement. Experimental and predicted performance data are compared.

  7. 1,"Kingdom Community Wind","Wind","Green Mountain Power Corp...

    Energy Information Administration (EIA) (indexed site)

    Vermont" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Kingdom Community Wind","Wind","Green Mountain Power Corp",65 2,"J C ...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    its net metering program. The ruling removed a previously existing service capacity cap of 2.9 MW and chan... Eligibility: Commercial, Residential, Federal Government,...

  9. How and why Tampa Electric Company selected IGCC for its next generating capacity addition

    SciTech Connect

    Pless, D.E. )

    1992-01-01

    As the title indicates, the purpose of this paper is to relate how and why Tampa Electric Company decided to select the Integrated Gasification Combined Cycle (IGCC) for their next capacity addition at Polk Power Station, Polk Unit No. 1. For a complete understanding of this process, it is necessary to review the history related to the initial formulation of the IGCC concept as it was proposed to the Department of Energy (DOE) Clean Coal Initiative Round Three. Further, it is important to understand the relationship between Tampa Electric Company and TECO Pay Services Corporation (TPS). TECO Energy, Inc. is an energy related holding company with headquarters in Tampa, Florida. Tampa Electric Company is the principal, wholly-owned subsidiary of TECO Energy, Inc. Tampa Electric Company is an investor-owned electric utility with about 3200 MW of generation capacity of which 97% is coal fired. Tampa Electric Company serves about 2,000 square miles and approximately 470,000 customers, in west central Florida, primarily in and around Hillsborough County and Tampa, Florida. Tampa Electric Company generating units consist of coal fired units ranging in size from a 110 MW coal fired cyclone unit installed in 1957 to a 450 MW pulverized coal unit with wet limestone flue gas desulfurization installed in 1985. In addition, Tampa Electric Company has six (6) No. 6 oil fired steam units totaling approximately 220 MW. Five (5) of these units, located at the Hookers Point Station, were installed in the late 1940's and early 1950's. Tampa Electric also has about 150 MW of No. 2 oil fired start-up and peaking combustion turbines. The company also owns a 1966 vintage 12 MW natural gas fired steam plant (Dinner Lake) and two nO. 6 oil fired diesel units with heat recovery equipment built in 1983 (Phillips Plant).

  10. Final report on the power production phase of the 10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant

    SciTech Connect

    Radosevich, L.G.

    1988-03-01

    This report describes the evaluations of the power production testing of Solar One, the 10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant near Barstow, California. The Pilot Plant, a cooperative project of the US Department of Energy and utility firms led by the Southern California Edison Company, began a three year period of power production operation in August 1984. During this period, plant performance indicators, such as capacity factor, system efficiency, and availability, were studied to assess the operational capability of the Pilot Plant to reliably supply electrical power. Also studied was the long-term performance of such key plant components as the heliostats and the receiver. During the three years of power production, the Pilot Plant showed an improvement in performance. Considerable increases in capacity factor, system efficiency, and availability were achieved. Heliostat operation was reliable, and only small amounts of mirror corrosion were observed. Receiver tube leaks did occur, however, and were the main cause of the plant's unscheduled outages. The Pilot Plant provided valuable lessons which will aid in the design of future solar central receiver plants. 53 refs., 46 figs., 4 tabs.

  11. U.S. Virgin Islands- Net Metering

    Energy.gov [DOE]

    In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energ...

  12. Green Pricing and Net Metering Programs 2010

    Annual Energy Outlook

    www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Green Pricing and Net Metering Programs 2010 i This report was prepared by ...

  13. Green Pricing and Net Metering Programs 2010

    Annual Energy Outlook

    30,060 27,750 Vermont 2 4,453 239 4,692 4,936 September 2012 U.S. Energy Information Administration | Green Pricing and Net Metering Programs 2010 4 Table 1. Estimated U.S. ...

  14. NETL Nets Environmental Sustainability Purchasing Award | netl...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    News NETL Nets Environmental Sustainability Purchasing Award greenbuy-award.jpg A key U.S. ... in achieving goals for environmental sustainability and the GreenBuy program is one key ...

  15. June 25 Webinar to Explore Net Metering

    Energy.gov [DOE]

    Register for the Net Metering webinar, which will be held on Wednesday, June 25, 2014, from 11 a.m. to 12:30 p.m. Mountain time.

  16. Definition of a 'Zero Net Energy' Community

    SciTech Connect

    Carlisle, N.; Van Geet, O.; Pless, S.

    2009-11-01

    This document provides a definition for a net zero-energy community. A community that offsets all of its energy use from renewables available within the community's built environment.

  17. Tennessee Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Tennessee" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",2638,2635,2639,2614,2624 "Solar","-","-","-","-","-" "Wind",29,29,29,29,29 "Wood/Wood Waste",147,165,165,165,185 "MSW/Landfill Gas",5,8,8,8,6 "Other Biomass",2,2,2,2,2

  18. Texas Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Texas" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",681,673,673,689,689 "Solar","-","-","-","-",14 "Wind",2738,4490,7427,9378,9952 "Wood/Wood Waste",130,130,180,180,215 "MSW/Landfill Gas",42,72,73,79,88 "Other Biomass",16,21,29,28,28

  19. Pennsylvania Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Pennsylvania" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",748,748,751,747,747 "Solar","-","-",2,2,9 "Wind",150,293,361,696,696 "Wood/Wood Waste",108,108,108,108,108 "MSW/Landfill Gas",359,379,397,419,424 "Other Biomass","-","-","-","-","-"

  20. Pennsylvania Total Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Pennsylvania" "Energy Source",2006,2007,2008,2009,2010 "Fossil",32893,32751,32654,32663,32530 " Coal",18771,18581,18513,18539,18481 " Petroleum",4664,4660,4540,4533,4534 " Natural Gas",9349,9410,9507,9491,9415 " Other Gases",110,100,94,101,100 "Nuclear",9234,9305,9337,9455,9540 "Renewables",1365,1529,1619,1971,1984 "Pumped Storage",1513,1521,1521,1521,1521

  1. Louisiana Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",192,192,192,192,192 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",318,380,380,373,311 "MSW/Landfill

  2. Maine Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Maine" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",719,718,730,738,738 "Solar","-","-","-","-","-" "Wind","-",42,47,170,263 "Wood/Wood Waste",609,612,612,606,600 "MSW/Landfill Gas",53,53,53,57,57 "Other Biomass",36,36,36,36,35

  3. Maryland Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",566,590,590,590,590 "Solar","-","-","-","-",1 "Wind","-","-","-","-",70 "Wood/Wood Waste",2,3,3,3,3 "MSW/Landfill Gas",126,130,132,135,135 "Other

  4. Massachusetts Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Massachusetts" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",259,259,258,261,262 "Solar","-","-","s","s",4 "Wind","-",2,2,5,10 "Wood/Wood Waste",26,26,26,26,26 "MSW/Landfill Gas",261,264,263,264,255 "Other Biomass",9,9,9,9,9 "Total",554,560,557,564,566

  5. Michigan Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Michigan" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",257,249,250,251,237 "Solar","-","-","-","-","-" "Wind",2,2,124,143,163 "Wood/Wood Waste",210,231,230,230,232 "MSW/Landfill Gas",149,156,169,168,176 "Other

  6. Minnesota Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Minnesota" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",175,176,194,194,193 "Solar","-","-","-","-","-" "Wind",827,1139,1460,1615,2009 "Wood/Wood Waste",129,161,170,177,177 "MSW/Landfill Gas",127,128,130,132,134 "Other Biomass","-",55,55,75,75

  7. Minnesota Total Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Minnesota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9714,9550,10548,10752,10519 " Coal",5444,5207,5235,4826,4789 " Petroleum",746,764,782,801,795 " Natural Gas",3524,3579,4531,5126,4936 " Other Gases","-","-","-","-","-" "Nuclear",1668,1668,1668,1668,1594 "Renewables",1259,1658,2008,2192,2588 "Pumped

  8. Mississippi Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Mississippi" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional","-","-","-","-","-" "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",229,229,229,229,235

  9. Missouri Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Missouri" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",552,552,566,564,564 "Solar","-","-","-","-","-" "Wind","-",57,163,309,459 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill Gas",3,3,5,8,8 "Other

  10. Montana Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Montana" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-",22,"-","-","-" "Hydro Conventional",2604,2620,2660,2692,2705 "Solar","-","-","-","-","-" "Wind",145,149,255,369,379 "Wood/Wood Waste",17,17,17,17,"-" "MSW/Landfill Gas","-","-","-","-","-" "Other

  11. Nebraska Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Nebraska" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",272,273,278,278,278 "Solar","-","-","-","-","-" "Wind",73,25,25,105,154 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill Gas",6,6,6,6,6 "Other

  12. Nevada Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Nevada" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",188,189,215,306,319 "Hydro Conventional",1047,1048,1051,1051,1051 "Solar","-",79,89,89,137 "Wind","-","-","-","-","-" "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill Gas","-","-","-","-","-"

  13. Ohio Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Ohio" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",101,101,101,101,101 "Solar","-","-","-","-",13 "Wind",7,7,7,7,7 "Wood/Wood Waste",64,64,65,65,60 "MSW/Landfill Gas",4,41,41,41,48 "Other Biomass","-","-","-",1,2

  14. Oklahoma Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",851,851,851,854,858 "Solar","-","-","-","-","-" "Wind",594,689,708,1130,1480 "Wood/Wood Waste",63,63,63,58,58 "MSW/Landfill Gas",16,16,16,16,16 "Other

  15. Oregon Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Oregon" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",8374,8385,8364,8430,8425 "Solar","-","-","-","-","-" "Wind",399,885,1059,1659,2004 "Wood/Wood Waste",195,215,230,241,221 "MSW/Landfill Gas",14,20,20,26,31 "Other Biomass",3,18,3,3,3

  16. Alabama Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",3271,3272,3272,3272,3272 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",581,574,593,591,583 "MSW/Landfill

  17. Alabama Total Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",21804,21784,22372,22540,23519 " Coal",11557,11544,11506,11486,11441 " Petroleum",43,43,43,43,43 " Natural Gas",10104,10098,10724,10912,11936 " Other Gases",100,100,100,100,100 "Nuclear",5008,4985,4985,4985,5043 "Renewables",3852,3846,3865,3863,3855 "Pumped Storage","-","-","-","-","-"

  18. Alaska Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Alaska" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",397,397,400,414,414 "Solar","-","-","-","-","-" "Wind",3,3,3,7,7 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  19. Alaska Total Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Alaska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1485,1561,1593,1591,1618 " Coal",105,105,112,111,111 " Petroleum",575,622,643,644,663 " Natural Gas",805,834,838,836,845 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",400,400,403,422,422 "Pumped

  20. Arizona Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",2720,2720,2720,2720,2720 "Solar",9,9,9,11,20 "Wind","-","-","-",63,128 "Wood/Wood Waste",3,3,29,29,29 "MSW/Landfill Gas",4,4,4,4,4 "Other Biomass","-","-","-","-","-"

  1. Arizona Total Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Fossil",18784,18756,18942,19351,19338 " Coal",5830,5818,5818,6227,6233 " Petroleum",90,93,93,93,93 " Natural Gas",12864,12845,13031,13031,13012 " Other Gases","-","-","-","-","-" "Nuclear",3872,3872,3942,3942,3937 "Renewables",2736,2736,2762,2826,2901 "Pumped Storage",216,216,216,216,216

  2. Arkansas Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Arkansas" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1389,1321,1321,1337,1341 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",292,292,312,312,312 "MSW/Landfill Gas",5,5,5,5,9 "Other

  3. Arkansas Total Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Arkansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10965,11807,11756,11753,12451 " Coal",3846,3846,3861,3864,4535 " Petroleum",23,22,22,22,22 " Natural Gas",7096,7939,7873,7867,7894 " Other Gases","-","-","-","-","-" "Nuclear",1824,1838,1839,1835,1835 "Renewables",1691,1623,1643,1659,1667 "Pumped Storage",28,28,28,28,28

  4. California Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    California" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",2032,1940,1940,2004,2004 "Hydro Conventional",10083,10041,10122,10144,10141 "Solar",402,404,416,450,475 "Wind",2255,2312,2368,2650,2812 "Wood/Wood Waste",584,596,616,646,639 "MSW/Landfill Gas",275,380,374,306,292 "Other Biomass",145,102,109,96,97 "Total",15776,15774,15945,16295,16460 "

  5. California Total Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    California" "Energy Source",2006,2007,2008,2009,2010 "Fossil",39351,39961,39950,41443,42654 " Coal",389,389,367,367,374 " Petroleum",789,754,752,734,701 " Natural Gas",38001,38556,38635,40146,41370 " Other Gases",171,262,197,197,209 "Nuclear",4390,4390,4390,4390,4390 "Renewables",15776,15774,15945,16295,16460 "Pumped Storage",3688,3688,3813,3813,3813 "Other",8,"-",7,7,11

  6. Utah Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",23,33,34,34,42 "Hydro Conventional",255,255,256,256,255 "Solar","-","-","-","-","-" "Wind","-","-",19,222,222 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill Gas",4,5,5,9,9 "Other

  7. Vermont Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Vermont" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",309,308,322,322,324 "Solar","-","-","-","-","-" "Wind",5,5,5,5,5 "Wood/Wood Waste",76,76,76,76,76 "MSW/Landfill Gas","-","-",3,3,3 "Other

  8. Virginia Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Virginia" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",671,675,677,716,866 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",410,418,422,409,331 "MSW/Landfill Gas",170,254,269,278,290 "Other

  9. Washington Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Washington" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",21156,21333,21203,21088,21181 "Solar","-",1,1,1,1 "Wind",821,1162,1365,2006,2296 "Wood/Wood Waste",326,296,314,369,368 "MSW/Landfill Gas",35,36,36,41,39 "Other Biomass",4,"-","-","-","-"

  10. West Virginia Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    West Virginia" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",264,264,264,264,285 "Solar","-","-","-","-","-" "Wind",66,66,330,330,431 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  11. Economics of a Conceptual 75 MW Hot Dry Rock Geothermal Electric...

    OpenEI (Open Energy Information) [EERE & EIA]

    Economics of a Conceptual 75 MW Hot Dry Rock Geothermal Electric Power-Station Abstract Man-made, hot dry rock (HDR) geothermal energy reservoirs have been investigated for over...

  12. ARM - Measurement - Longwave broadband net irradiance

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    net irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave broadband net irradiance The difference between upwelling and downwelling broadband longwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  13. ARM - Measurement - Net broadband total irradiance

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    govMeasurementsNet broadband total irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Net broadband total irradiance The difference between upwelling and downwelling, covering longwave and shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  14. ARM - Measurement - Shortwave broadband total net irradiance

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    net irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total net irradiance The difference between upwelling and downwelling broadband shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  15. TacNet Tracker - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Startup America Startup America Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search TacNet Tracker Handheld Tracking and Communications Device Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (877 KB) Technology Marketing SummaryThe TacNet Tracker is designed to transport information securely via portable handheld units without the need for fixed infrastructure.

  16. EIA - Electricity Generating Capacity

    Energy Information Administration (EIA) (indexed site)

    Electricity Glossary › FAQS › Overview Data Electricity Data Browser (interactive query tool with charting & mapping) Summary Sales (consumption), revenue, prices & customers Generation and thermal output Capacity of electric power plants Consumption of fuels used to generate electricity Receipts of fossil-fuels for electricity generation Average cost of fossil-fuels for electricity generation Fossil-fuel stocks for electricity generation Cost, revenue and expense statistics for...

  17. Working Gas Capacity

    Energy Information Administration (EIA) (indexed site)

    5 2015 Working Gas Capacity (billion cubic feet) ≥ 100 75 to 99 U.S. Energy Information Administration | Natural Gas Annual Figure 15. Locations of existing natural gas underground storage fields in the United States, 2015 50 to 74 Source: Energy Information Administration (EIA), Form EIA-191, "Monthly Underground Gas Storage Report." Reservoir Type Sites = Depleted Field 329 = Salt Cav

  18. Department of Energy (DOE) OpenNet documents

    Office of Scientific and Technical Information (OSTI)

    OpenNet Input System OpenNet is a U. S. Department of Energy computer system. Access to input to OpenNet is provided only for authorized U.S. Government use for the purpose of ...

  19. CSTI high capacity power

    SciTech Connect

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY88, the Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  20. Evaluation of a 1000 MW Commercial Ultra Super-Critical Coal Boiler |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Argonne Leadership Computing Facility Large eddy simulation prediction of instantaneous O2 mass fraction in a hypothetical commercial scale 1000 MW, Ultra Super-Critical (USC) coal boiler Large eddy simulation prediction of instantaneous O2 mass fraction in a hypothetical commercial scale 1000 MW, Ultra Super-Critical (USC) coal boiler. Simulation results may suggest new design features that can have an impact on the operation of current and next-generation USC boilers. Carbon Capture

  1. Design of a tunable 4-MW Free Electron Maser for heating fusion plasmas

    SciTech Connect

    Caplan, M.; Kamin, G.; Shang, C.C.; Lindquist, W.

    1993-09-01

    There is an ongoing program at the FOM institute, The Netherlands, to develop a 1-MW, long-pulse, 200-Ghz Free Electron Maser (FEM) using a DC accelerator system with depressed collector. We present an extrapolation of this design to more than 4MW of output microwave power in order to reduce the cost per kW and increase the power per module in a plasma heating system.

  2. Hazle Spindle, LLC Beacon Power 20 MW Flywheel Frequency Regulation Plant

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hazle Spindle, LLC Beacon Power 20 MW Flywheel Frequency Regulation Plant Project Description Beacon Power will design, build, and operate a utility-scale 20MW flywheel plant at the Humboldt Industrial Park in Hazle Township, Pennsylvania for the plant owner/operator, Hazle Spindle LLC The plant will provide frequency regulation services to grid operator PJM Interconnection. The Beacon Power technology uses flywheels to recycle energy from the grid in response to changes in demand and grid

  3. Nevada Renewable Energy Application For Net Metering Customers...

    OpenEI (Open Energy Information) [EERE & EIA]

    Renewable Energy Application For Net Metering Customers Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Nevada Renewable Energy Application For Net...

  4. US Crude Oil Production Surpasses Net Imports | Department of...

    Office of Environmental Management (EM)

    US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel...

  5. Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni Village Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni Village U.S. Department of Energy ...

  6. Alaska Natural Gas Underground Storage Net Withdrawals All Operators...

    Gasoline and Diesel Fuel Update

    Net Withdrawals All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  7. Idaho Natural Gas Underground Storage Net Withdrawals All Operators...

    Gasoline and Diesel Fuel Update

    Net Withdrawals All Operators (Million Cubic Feet) Idaho Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  8. Army Net Zero: Guide to Renewable Energy Conservation Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Army Net Zero: Guide to Renewable Energy Conservation Investment Program (ECIP) Projects Army Net Zero: Guide to Renewable Energy Conservation Investment Program (ECIP) Projects...

  9. Analysis: Targeting Zero Net Energy - 2014 BTO Peer Review |...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Analysis: Targeting Zero Net Energy - 2014 BTO Peer Review Analysis: Targeting Zero Net Energy - 2014 BTO Peer Review Presenter: Scott Horowitz, National Renewable Energy ...

  10. U.S. Energy Information Administration | Green Pricing and Net...

    Annual Energy Outlook

    Green Pricing and Net Metering Programs 2009 4 Green Pricing and Net Metering Programs ... Source: Energy Information Administration, Form EIA-861, "Annual Electric Power Industry ...

  11. Eastern Consuming Regions Natural Gas Underground Storage Net...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Eastern Consuming Regions Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Eastern Consuming Regions Natural Gas Underground Storage Net Withdrawals (Million...

  12. Wyoming Natural Gas Underground Storage Net Withdrawals (Million...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Underground Storage Net Withdrawals (Million Cubic Feet) Wyoming Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  13. Delaware Natural Gas Underground Storage Net Withdrawals All...

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

  14. Arkansas Natural Gas Underground Storage Net Withdrawals (Million...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Underground Storage Net Withdrawals (Million Cubic Feet) Arkansas Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  15. Oregon Natural Gas Underground Storage Net Withdrawals (Million...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Underground Storage Net Withdrawals (Million Cubic Feet) Oregon Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  16. Georgia Natural Gas Underground Storage Net Withdrawals All Operators...

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals All Operators (Million Cubic Feet) Georgia Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

  17. Connecticut Natural Gas Underground Storage Net Withdrawals All...

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals All Operators (Million Cubic Feet) Connecticut Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

  18. Wisconsin Natural Gas Underground Storage Net Withdrawals All...

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals All Operators (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

  19. Illinois Natural Gas Underground Storage Net Withdrawals (Million...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Underground Storage Net Withdrawals (Million Cubic Feet) Illinois Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  20. East Regions Natural Gas Underground Storage Net Withdrawals...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    East Regions Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) East Regions Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Year Jan Feb Mar...

  1. Alaska Natural Gas Underground Storage Net Withdrawals (Million...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Underground Storage Net Withdrawals (Million Cubic Feet) Alaska Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  2. ,"Total Crude Oil and Petroleum Products Net Receipts by Pipeline...

    Energy Information Administration (EIA) (indexed site)

    Net Receipts by Pipeline, Tanker, Barge and Rail between PAD Districts" ,"Click worksheet ... and Petroleum Products Net Receipts by Pipeline, Tanker, Barge and Rail between PAD ...

  3. Army Net Zero: Guide to Renewable Energy Conservation Investment...

    Energy Saver

    Army Net Zero: Guide to Renewable Energy Conservation Investment Program (ECIP) Projects Army Net Zero: Guide to Renewable Energy Conservation Investment Program (ECIP) Projects ...

  4. New Jersey Natural Gas Underground Storage Net Withdrawals All...

    Annual Energy Outlook

    Net Withdrawals All Operators (Million Cubic Feet) New Jersey Natural Gas Underground ... Net Withdrawals of Natural Gas from Underground Storage - All Operators New Jersey ...

  5. North Carolina Natural Gas Underground Storage Net Withdrawals...

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals All Operators (Million Cubic Feet) North Carolina Natural Gas Underground ... Net Withdrawals of Natural Gas from Underground Storage - All Operators North Carolina ...

  6. US Crude Oil Production Surpasses Net Imports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel Wood.

  7. Minnesota Natural Gas Underground Storage Net Withdrawals (Million...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Underground Storage Net Withdrawals (Million Cubic Feet) Minnesota Natural Gas Underground ... Net Withdrawals of Natural Gas from Underground Storage - All Operators Minnesota ...

  8. A Green Prison: Santa Rita Jail Creeps Towards Zero Net Energy (ZNE)

    SciTech Connect

    Marnay, Chris; DeForest, Nicholas; Stadler, Michael; Donadee, Jon; Dierckxsens, Carlos; Mendes, Goncalo; Lai, Judy; Cardoso, Goncalo Ferreira

    2011-03-18

    A large project is underway at Alameda County's twenty-year old 45 ha 4,000-inmate Santa Rita Jail, about 70 km east of San Francisco. Often described as a green prison, it has a considerable installed base of distributed energy resources including a seven-year old 1.2 MW PV array, a four-year old 1 MW fuel cell with heat recovery, and efficiency investments. A current US$14 M expansion will add approximately 2 MW of NaS batteries, and undetermined wind capacity and a concentrating solar thermal system. This ongoing effort by a progressive local government with considerable Federal and State support provides some excellent lessons for the struggle to lower building carbon footprint. The Distributed Energy Resources Customer Adoption Model (DER-CAM) finds true optimal combinations of equipment and operating schedules for microgrids that minimize energy bills and/or carbon emissions without 2 of 12 significant searching or rules-of-thumb prioritization, such as"efficiency first then on-site generation." The results often recommend complex systems, and sensitivities show how policy changes will affect choices. This paper reports an analysis of the historic performance of the PV system and fuel cell, describes the complex optimization applied to the battery scheduling, and shows how results will affect the jail's operational costs, energy consumption, and carbon footprint. DER-CAM is used to assess the existing and proposed DER equipment in its ability to reduce tariff charges.

  9. Refinery Capacity Report

    Energy Information Administration (EIA) (indexed site)

    Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2015 CHS Inc./CHS McPherson Refinery Inc. CHS Inc./NCRA 9/15 McPherson, KS 86,000 PBF Energy Co LLC/Chalmette Refining LLC Chalmette Refining LLC 11/15 Chalmette, LA 192,500 bbl/cd= Barrels per calendar day Sources: Energy Information Administration (EIA) Form EIA-810, "Monthly Refinery Report" and Form EIA-820, "Annual Refinery

  10. Refinery Capacity Report

    Energy Information Administration (EIA) (indexed site)

    State/Refiner/Location Alkylates Aromatics Isobutane Lubricants Isomers Isopentane and Isohexane Asphalt and Road Oil Marketable Petroleum Coke Hydrogen (MMcfd) Sulfur (short tons per day) Table 4. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2016 (Barrels per Stream Day, Except Where Noted) Isooctane a ..................................................................... Alabama 0 0 15,000 1,150 4,200 0 7,120 40 228 0 Hunt Refining Co 0 0 15,000 0 4,200 0 7,120

  11. Ontological Annotation with WordNet

    SciTech Connect

    Sanfilippo, Antonio P.; Tratz, Stephen C.; Gregory, Michelle L.; Chappell, Alan R.; Whitney, Paul D.; Posse, Christian; Paulson, Patrick R.; Baddeley, Bob; Hohimer, Ryan E.; White, Amanda M.

    2006-06-06

    Semantic Web applications require robust and accurate annotation tools that are capable of automating the assignment of ontological classes to words in naturally occurring text (ontological annotation). Most current ontologies do not include rich lexical databases and are therefore not easily integrated with word sense disambiguation algorithms that are needed to automate ontological annotation. WordNet provides a potentially ideal solution to this problem as it offers a highly structured lexical conceptual representation that has been extensively used to develop word sense disambiguation algorithms. However, WordNet has not been designed as an ontology, and while it can be easily turned into one, the result of doing this would present users with serious practical limitations due to the great number of concepts (synonym sets) it contains. Moreover, mapping WordNet to an existing ontology may be difficult and requires substantial labor. We propose to overcome these limitations by developing an analytical platform that (1) provides a WordNet-based ontology offering a manageable and yet comprehensive set of concept classes, (2) leverages the lexical richness of WordNet to give an extensive characterization of concept class in terms of lexical instances, and (3) integrates a class recognition algorithm that automates the assignment of concept classes to words in naturally occurring text. The ensuing framework makes available an ontological annotation platform that can be effectively integrated with intelligence analysis systems to facilitate evidence marshaling and sustain the creation and validation of inference models.

  12. Automating Ontological Annotation with WordNet

    SciTech Connect

    Sanfilippo, Antonio P.; Tratz, Stephen C.; Gregory, Michelle L.; Chappell, Alan R.; Whitney, Paul D.; Posse, Christian; Paulson, Patrick R.; Baddeley, Bob L.; Hohimer, Ryan E.; White, Amanda M.

    2006-01-22

    Semantic Web applications require robust and accurate annotation tools that are capable of automating the assignment of ontological classes to words in naturally occurring text (ontological annotation). Most current ontologies do not include rich lexical databases and are therefore not easily integrated with word sense disambiguation algorithms that are needed to automate ontological annotation. WordNet provides a potentially ideal solution to this problem as it offers a highly structured lexical conceptual representation that has been extensively used to develop word sense disambiguation algorithms. However, WordNet has not been designed as an ontology, and while it can be easily turned into one, the result of doing this would present users with serious practical limitations due to the great number of concepts (synonym sets) it contains. Moreover, mapping WordNet to an existing ontology may be difficult and requires substantial labor. We propose to overcome these limitations by developing an analytical platform that (1) provides a WordNet-based ontology offering a manageable and yet comprehensive set of concept classes, (2) leverages the lexical richness of WordNet to give an extensive characterization of concept class in terms of lexical instances, and (3) integrates a class recognition algorithm that automates the assignment of concept classes to words in naturally occurring text. The ensuing framework makes available an ontological annotation platform that can be effectively integrated with intelligence analysis systems to facilitate evidence marshaling and sustain the creation and validation of inference models.

  13. Chapter 17: Estimating Net Savings: Common Practices

    SciTech Connect

    Violette, D. M.; Rathbun, P.

    2014-09-01

    This chapter focuses on the methods used to estimate net energy savings in evaluation, measurement, and verification (EM&V) studies for energy efficiency (EE) programs. The chapter provides a definition of net savings, which remains an unsettled topic both within the EE evaluation community and across the broader public policy evaluation community, particularly in the context of attribution of savings to particular program. The chapter differs from the measure-specific Uniform Methods Project (UMP) chapters in both its approach and work product. Unlike other UMP resources that provide recommended protocols for determining gross energy savings, this chapter describes and compares the current industry practices for determining net energy savings, but does not prescribe particular methods.

  14. Development of a 2 MW CW Waterload for Electron Cyclotron Heating Systems

    SciTech Connect

    R. Lawrence,Ives; Maxwell Mizuhara; George Collins; Jeffrey Neilson; Philipp Borchard

    2012-11-09

    Calabazas Creek Research, Inc. developed a load capable of continuously dissipating 2 MW of RF power from gyrotrons. The input uses HE11 corrugated waveguide and a rotating launcher to uniformly disperse the power over the lossy surfaces in the load. This builds on experience with a previous load designed to dissipate 1 MW of continuous RF power. The 2 MW load uses more advanced RF dispersion to double the capability in the same size device as the 1 MW load. The new load reduces reflected power from the load to significantly less than 1 %. This eliminates requirements for a preload to capture reflected power. The program updated control electronics that provides all required interlocks for operation and measurement of peak and average power. The program developed two version of the load. The initial version used primarily anodized aluminum to reduce weight and cost. The second version used copper and stainless steel to meet specifications for the ITER reactor currently under construction in France. Tests of the new load at the Japanese Atomic Energy Agency confirmed operation of the load to a power level of 1 MW, which is the highest power currently available for testing the load. Additional tests will be performed at General Atomics in spring 2013. The U.S. ITER organization will test the copper/stainless steel version of the load in December 2012 or early in 2013. Both loads are currently being marketed worldwide.

  15. net_energy_load_2006.xls

    Energy Information Administration (EIA) (indexed site)

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, 2006 and Projected 2007 through 2011 (Thousands of Megawatthours and 2006 Base Year) Net Energy For Load (Annual) Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP ERCOT WECC (U.S.) 2006 3,911,914 230,115 222,748 294,319 926,279 1,011,173 201,521 305,672 720,087 Projected Contiguous U.S. FRCC MRO (U.S.) NPCC

  16. Calculational criticality analyses of 10- and 20-MW UF[sub 6] freezer/sublimer vessels

    SciTech Connect

    Jordan, W.C.

    1993-02-01

    Calculational criticality analyses have been performed for 10- and 20-MW UF[sub 6] freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF[sub 6] in each vessel have been considered for uranium enriched between 2 and 5 wt % [sup 235]U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

  17. Calculational criticality analyses of 10- and 20-MW UF{sub 6} freezer/sublimer vessels

    SciTech Connect

    Jordan, W.C.

    1993-02-01

    Calculational criticality analyses have been performed for 10- and 20-MW UF{sub 6} freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF{sub 6} in each vessel have been considered for uranium enriched between 2 and 5 wt % {sup 235}U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

  18. Bragg Experimental SensorNet Testbed (BEST)

    SciTech Connect

    Gorman, Bryan

    2010-01-25

    The principal causative objectives of BEST were to consolidate the 9-1-1 and emergency response services into an Integrated Incident Management Center (I2MC) and to establish an 'Interoperability framework' based on SensorNet protocols to allow additional components to be added to the I2MC over time.

  19. Tucson Request for Proposal for 1-5 MW PV PPA

    Energy.gov [DOE]

    The mission of Tucson Water, a Department of the City of Tucson (the City), is to ensure that its customers receive high quality water and excellent service in a cost efficient, safe and environmentally responsible manner. In the interest of furthering Tucson Waters mission, the City is seeking a Contractor to finance, design, build, commission, own, operate and maintain up to a 1 megawatt (MW) DCSTC hotovoltaic (PV) system. The City also seeks an option for expanding the PV system up to a total of 5 MW DCSTC PV.

  20. High capacity oil burner

    SciTech Connect

    Pedrosa, O.A. Jr.; Couto, N.C.; Fanqueiro, R.C.C.

    1983-11-01

    The present invention relates to a high capacity oil burner comprising a cylindrical atomizer completely surrounded by a protective cylindrical housing having a diameter from 2 to 3 times greater than the diameter of said atomizer; liquid fuels being injected under pressure into said atomizer and accumulating within said atomizer in a chamber for the accumulation of liquid fuels, and compressed air being injected into a chamber for the accumulation of air; cylindrical holes communicating said chamber for the accumulation of liquid fuels with the outside and cylindrical holes communicating said chamber for the accumulation of air with said cylindrical holes communicating the chamber for the accumulation of liquids with the outside so that the injection of compressed air into said liquid fuel discharge holes atomizes said fuel which is expelled to the outside through the end portions of said discharge holes which are circumferentially positioned to be burnt by a pilot flame; said protecting cylindrical housing having at its ends perforated circular rings into which water is injected under pressure to form a protecting fan-like water curtain at the rear end of the housing and a fan-like water curtain at the flame to reduce the formation of soot; the burning efficiency of said burner being superior to 30 barrels of liquid fuel per day/kg of the apparatus.

  1. Arkansas Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation ...,"1,835","15,023",100.0,"Entergy Arkansas Inc" "1 Plant 2 Reactors","1,835","15,023",100.0

  2. Adaptive capacity and its assessment

    SciTech Connect

    Engle, Nathan L.

    2011-04-20

    This paper reviews the concept of adaptive capacity and various approaches to assessing it, particularly with respect to climate variability and change. I find that adaptive capacity is a relatively under-researched topic within the sustainability science and global change communities, particularly since it is uniquely positioned to improve linkages between vulnerability and resilience research. I identify opportunities for advancing the measurement and characterization of adaptive capacity by combining insights from both vulnerability and resilience frameworks, and I suggest several assessment approaches for possible future development that draw from both frameworks and focus on analyzing the governance, institutions, and management that have helped foster adaptive capacity in light of recent climatic events.

  3. CHP Installed Capacity Optimizer Software

    Energy Science and Technology Software Center

    2004-11-30

    The CHP Installed Capacity Optimizer is a Microsoft Excel spreadsheet application that determines the most economic amount of capacity of distributed generation and thermal utilization equipment (e.g., absorption chillers) to install for any user-defined set of load and cost data. Installing the optimum amount of capacity is critical to the life-cycle economic viability of a distributed generation/cooling heat and power (CHP) application. Using advanced optimization algorithms, the software accesses the loads, utility tariffs, equipment costs,more » etc., and provides to the user the most economic amount of system capacity to install.« less

  4. CHP Installed Capacity Optimizer Software

    SciTech Connect

    2004-11-30

    The CHP Installed Capacity Optimizer is a Microsoft Excel spreadsheet application that determines the most economic amount of capacity of distributed generation and thermal utilization equipment (e.g., absorption chillers) to install for any user-defined set of load and cost data. Installing the optimum amount of capacity is critical to the life-cycle economic viability of a distributed generation/cooling heat and power (CHP) application. Using advanced optimization algorithms, the software accesses the loads, utility tariffs, equipment costs, etc., and provides to the user the most economic amount of system capacity to install.

  5. Property:USGSMeanCapacity | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    USGSMeanCapacity Jump to: navigation, search Property Name USGSMeanCapacity Property Type String Description Mean capacity potential at location based on the USGS 2008 Geothermal...

  6. NASA Net Zero Energy Buildings Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Net Zero Energy Buildings Roadmap Shanti Pless, DOE NREL Wayne Thalasinos, NASA http://www.nrel.gov/docs/fy15osti/60838.pdf FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida Hosted by: ARC JPL AFRC JSC SSC KSC MSFC LaRC HQ GSFC GRC PBS MAF WFF WSTF GDSCC Field Centers & Component Facilities Sustain- able Design Policy Since 2003 Executive Order 13514 Goals "... establish an integrated strategy towards sustainability in the Federal Government

  7. Method for net-shaping using aerogels

    DOEpatents

    Brinker, C. Jeffrey; Ashey, Carol S.; Reed, Scott T.; Sriram, Chunangad S.; Harris, Thomas M.

    2001-01-01

    A method of net-shaping using aerogel materials is provided by first forming a sol, aging the sol to form a gel, with the gel having a fluid component and having been formed into a medium selected from the group consisting of a powder, bulk material, or granular aerobeads, derivatizing the surface of the gel to render the surface unreactive toward further condensation, removing a portion of the fluid component of the final shaped gel to form a partially dried medium, placing the medium into a cavity, wherein the volume of said medium is less that the volume of the cavity, and removing a portion of the fluid component of the medium. The removal, such as by heating at a temperature of approximately less than 50.degree. C., applying a vacuum, or both, causes the volume of the medium to increase and to form a solid aerogel. The material can be easily removed by exposing the material to a solvent, thereby reducing the volume of the material. In another embodiment, the gel is derivatized and then formed into a shaped medium, where subsequent drying reduces the volume of the shaped medium, forming a net-shaping material. Upon further drying, the material increases in volume to fill a cavity. The present invention is both a method of net-shaping and the material produced by the method.

  8. EIS-0171: Pacificorp Capacity Sale

    Energy.gov [DOE]

    The Bonneville Power Administration (BPA) EIS assesses the proposed action of providing surplus power from its facilites to PacifiCorp in response to its request for a continued supply of firm capacity. BPA has surplus electrical capacity (peakload energy) that BPA projects will not be required to meet its existing obligations.

  9. ,"Virginia Natural Gas Underground Storage Net Withdrawals (MMcf...

    Energy Information Administration (EIA) (indexed site)

    AM" "Back to Contents","Data 1: Virginia Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070VA2" "Date","Virginia Natural Gas Underground Storage Net ...

  10. Instructions for Submitting Document to OpenNet | Department...

    Energy Saver

    an OpenNet Logon Name and Password. If you don't already have one, go to the OpenNet web site at: http:www.osti.govopennet. Click on the LOGIN link on the top right. Read...

  11. The Intersection of Net Metering and Retail Choice: An Overview...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Intersection of Net Metering and Retail Choice: An Overview of Policy, Practice and Issues The Intersection of Net Metering and Retail Choice: An Overview of Policy, Practice and ...

  12. Washington Natural Gas LNG Storage Net Withdrawals (Million Cubic...

    Gasoline and Diesel Fuel Update

    Net Withdrawals (Million Cubic Feet) Washington Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  13. Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic...

    Gasoline and Diesel Fuel Update

    Net Withdrawals (Million Cubic Feet) Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  14. Iowa Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet...

    Gasoline and Diesel Fuel Update

    Net Withdrawals (Million Cubic Feet) Iowa Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

  15. Georgia Natural Gas LNG Storage Net Withdrawals (Million Cubic...

    Gasoline and Diesel Fuel Update

    Net Withdrawals (Million Cubic Feet) Georgia Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  16. Illinois Natural Gas LNG Storage Net Withdrawals (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals (Million Cubic Feet) Illinois Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  17. Indiana Natural Gas LNG Storage Net Withdrawals (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals (Million Cubic Feet) Indiana Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  18. Virginia Natural Gas LNG Storage Net Withdrawals (Million Cubic...

    Annual Energy Outlook

    Net Withdrawals (Million Cubic Feet) Virginia Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  19. Wisconsin Natural Gas LNG Storage Net Withdrawals (Million Cubic...

    Gasoline and Diesel Fuel Update

    Net Withdrawals (Million Cubic Feet) Wisconsin Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  20. Idaho Natural Gas LNG Storage Net Withdrawals (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals (Million Cubic Feet) Idaho Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...