National Library of Energy BETA

Sample records for nems transportation sector

  1. Transportation Sector Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.

  2. NEMS Freight Transportation Module Improvement Study

    Energy Information Administration (EIA) (indexed site)

    NEMS Freight Transportation Module Improvement Study February 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | NEMS Freight Transportation Module Improvement Study i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other

  3. Transportation sector energy consumption

    Annual Energy Outlook

    Chapter 8 Transportation sector energy consumption Overview In the International Energy Outlook 2016 (IEO2016) Reference case, transportation sector delivered energy consumption ...

  4. Price Responsiveness in the AEO2003 NEMS Residential and Commercial Buildings Sector Models

    Reports and Publications

    2003-01-01

    This paper describes the demand responses to changes in energy prices in the Annual Energy Outlook 2003 versions of the Residential and Commercial Demand Modules of the National Energy Modeling System (NEMS). It updates a similar paper completed for the Annual Energy Outlook 1999 version of the NEMS.

  5. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ...

  6. Technologies for Climate Change Mitigation: Transport Sector...

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector...

  7. The Transportation Sector Model of the National Energy Modeling...

    Gasoline and Diesel Fuel Update

    Information Administration NEMS Transportation Demand Model Documentation Report 2005 25 manufacturing, and design advances. Manufacturing advances can generally be thought of as...

  8. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  9. Energy Outlook for the Transport Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Outlook for the Transport Sector Energy Outlook for the Transport Sector Energy Outlook for the Transport Sector PDF icon deer10karsner.pdf More Documents & Publications The ...

  10. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction ...

  11. Transitioning the Transportation Sector: Exploring the Intersection...

    Energy Saver

    the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas ...

  12. Residential Demand Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  13. A 2D/1D coupling neutron transport method based on the matrix MOC and NEM methods

    SciTech Connect

    Zhang, H.; Zheng, Y.; Wu, H.; Cao, L.

    2013-07-01

    A new 2D/1D coupling method based on the matrix MOC method (MMOC) and nodal expansion method (NEM) is proposed for solving the three-dimensional heterogeneous neutron transport problem. The MMOC method, used for radial two-dimensional calculation, constructs a response matrix between source and flux with only one sweep and then solves the linear system by using the restarted GMRES algorithm instead of the traditional trajectory sweeping process during within-group iteration for angular flux update. Long characteristics are generated by using the customization of commercial software AutoCAD. A one-dimensional diffusion calculation is carried out in the axial direction by employing the NEM method. The 2D and ID solutions are coupled through the transverse leakage items. The 3D CMFD method is used to ensure the global neutron balance and adjust the different convergence properties of the radial and axial solvers. A computational code is developed based on these theories. Two benchmarks are calculated to verify the coupling method and the code. It is observed that the corresponding numerical results agree well with references, which indicates that the new method is capable of solving the 3D heterogeneous neutron transport problem directly. (authors)

  14. Transportation Sector Model of the National Energy Modeling System. Volume 1

    SciTech Connect

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  15. Commercial Demand Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

  16. Fact #619: April 19, 2010 Transportation Sector Revenue by Industry |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 9: April 19, 2010 Transportation Sector Revenue by Industry Fact #619: April 19, 2010 Transportation Sector Revenue by Industry According the latest Economic Census (2002), the trucking industry is the largest contributor of revenue in the transportation sector, contributing more than one-quarter of the sectors revenue. The air industry contributes just under one-quarter, as does other transportation and support activities, which include sightseeing, couriers and

  17. Sustainable fuel for the transportation sector

    SciTech Connect

    Agrawal, R.; Singh, N.R.; Ribeiro, F.H.; Delgass, W.N.

    2007-03-20

    A hybrid hydrogen-carbon (H{sub 2}CAR) process for the production of liquid hydrocarbon fuels is proposed wherein biomass is the carbon source and hydrogen is supplied from carbon-free energy. To implement this concept, a process has been designed to co-feed a biomass gasifier with H{sub 2} and CO{sub 2} recycled from the H{sub 2}-CO to liquid conversion reactor. Modeling of this biomass to liquids process has identified several major advantages of the H{sub 2}CAR process. The land area needed to grow the biomass is <40% of that needed by other routes that solely use biomass to support the entire transportation sector. Whereras the literature estimates known processes to be able to produce {approx}30% of the United States transportation fuel from the annual biomass of 1.366 billion tons, the H{sub 2}CAR process shows the potential to supply the entire United States transportation sector from that quantity of biomass. The synthesized liquid provides H{sub 2} storage in an open loop system. Reduction to practice of the H{sub 2}CAR route has the potential to provide the transportation sector for the foreseeable future, using the existing infrastructure. The rationale of using H{sub 2} in the H{sub 2}CAR process is explained by the significantly higher annualized average solar energy conversion efficiency for hydrogen generation versus that for biomass growth. For coal to liquids, the advantage of H{sub 2}CAR is that there is no additional CO{sub 2} release to the atmosphere due to the replacement of petroleum with coal, thus eliminating the need to sequester CO{sub 2}.

  18. National Energy Modeling System (NEMS) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Modeling System (NEMS) AgencyCompany Organization: Energy Information Administration Sector: Energy Focus Area: Economic Development Phase: Develop Goals Topics: Policies...

  19. Land Transport Sector in Bangladesh: An Analysis Toward Motivating...

    OpenEI (Open Energy Information) [EERE & EIA]

    Toward Motivating GHG Emission Reduction Strategies Jump to: navigation, search Name Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction...

  20. Accounting for Co-benefits in Asia's Transportation Sector: Methods...

    OpenEI (Open Energy Information) [EERE & EIA]

    Methods and Applications Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Accounting for Co-benefits in Asia's Transportation Sector: Methods and Applications...

  1. Integrating Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

  2. International Energy Outlook 2016-Transportation sector energy consumption

    Gasoline and Diesel Fuel Update

    - Energy Information Administration 8. Transportation sector energy consumption print version Overview In the International Energy Outlook 2016 (IEO2016) Reference case, transportation sector delivered energy consumption increases at an annual average rate of 1.4%, from 104 quadrillion British thermal units (Btu) in 2012 to 155 quadrillion Btu in 2040. Transportation energy demand growth occurs almost entirely in regions outside of the Organization for Economic Cooperation and Development

  3. NEMS International Energy Module

    Gasoline and Diesel Fuel Update

    EIA NEMS International Energy Module Model Documentation Report vii Mr. G. Daniel Butler U.S. Department of Energy EI-812 1000 Independence Ave., SW Washington, DC 20585 Tel:...

  4. Agenda for Transitioning the Transportation Sector: Exploring...

    Energy.gov [DOE] (indexed site)

    ... natural gas and erent transport mental Science a e Public Affairs, s Manager, Ho scussion gen in direct co tion applicatio structure rollo ass of stations & uilt to ...

  5. Improving energy efficiency in the transportation sector

    SciTech Connect

    Plotkin, S.E.

    1994-12-31

    A primary characteristic of transportation in the United States is its high per capita energy consumption. The average US citizen consumes nearly five times as much energy for transportation as the average Japanese and nearly three times as much as the average citizen of France, Britain, or West Germany. The energy efficiency of US transportation has improved substantially over the past two decades (both absolutely and in comparison to Europe), and US travel volume has grown more slowly than in most of the developed world. However, the United States still consumes more than one-third of the world`s transport energy. Also, 96 percent of US transport energy is in the form of oil products. This is more oil than the United States produces, despite its position as one of the world`s largest oil producers. With current problems and expectation of continued growth in travel and energy use, Congress has increasingly turned to transportation energy conservation - in the form of improvements in the technical efficiency of travel, increases in load factors, reductions in travel demand, shifting to alternative fuels, and shifts to more efficient travel modes - as an important policy goal. For example, the Clean Air Amendments of 1990 incorporate transportation demand management as a critical tool in reducing urban air pollution. Legislation proposed in the 102d Congress sought rigorous new automobile and light truck fuel economy standards. With continued increases in U.S. oil imports, urban traffic congestion, and greenhouse gas emissions, and the failure of many urban areas to meet air quality standards, strong congressional interest in new energy conservation initiates is likely to continue.

  6. AEO2017 Modeling updates in the transportation sector

    Energy Information Administration (EIA) (indexed site)

    7 For AEO2017 Transportation Working Group August 31, 2016 | Washington, DC By Melissa Lynes, John Maples, Mark Schipper, and David Stone Office of Energy Consumption and Efficiency Analysis Modeling updates in the transportation sector Updates to the Annual Energy Outlook 2017 * Transportation demand model highlights - 10-year extension of last-year projection, AEO2016 is 2040 and AEO2017 is 2050 - Battery costs for electric vehicles - Phase 2 greenhouse gas and fuel efficiency standards for

  7. Impacts of Increased Diesel Penetration in the Transportation Sector, The

    Reports and Publications

    1998-01-01

    Requested by the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy. Analyzes the impacts on petroleum prices, demand, and refinery operations of a projected increase in demand for diesel fuel stemming from greater penetration of diesel-fueled engines in the light-duty vehicle fleet of the U.S. transportation sector.

  8. End use energy consumption data base: transportation sector

    SciTech Connect

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  9. International Energy Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Summarizes the overall structure of the International Energy Model and its interface with other NEMS modules, mathematical specifications of behavioral relationships, and data sources and estimation methods.

  10. NEMS Modeling of Coal Plants

    Annual Energy Outlook

    NEMS Modeling of Coal Plants Office of Electricity, Coal, Nuclear, and Renewable Analysis ... oil and gas steam plants, and 23 for nuclear plants regardless of age - Beyond 30 ...

  11. Annual Energy Outlook 2015 Modeling updates in the Transportation sector

    Energy Information Administration (EIA) (indexed site)

    For AEO2015 Working Group July 30, 2014 | Washington, DC By Nicholas Chase, Trisha Hutchins, John Maples Office of Energy Consumption and Efficiency Analysis Modeling updates in the transportation sector Data updates 2 * Update historical fuel consumption data to latest state energy data (2011), annual national data from Monthly Energy Review (2012), and most recent Short-Term Energy Outlook * Update historical light-duty vehicle attribute data through 2013 (pending) * Update historical

  12. NEMS Buildings Sector Working Group Meeting

    Gasoline and Diesel Fuel Update

    interconnection limitations, etc.) - Photovoltaic cost path * Residential projects - ... TO CHANGE Distributed generation 20 * Photovoltaic system cost path - Updated 2010 system ...

  13. Industrial Demand Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

  14. Renewable Fuels Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the Annual Energy Outlook forecasts.

  15. National Energy Modeling System (NEMS)

    DOE Data Explorer

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. through 2030. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). NEMS can be used to analyze the effects of existing and proposed government laws and regulations related to energy production and use; the potential impact of new and advanced energy production, conversion, and consumption technologies; the impact and cost of greenhouse gas control; the impact of increased use of renewable energy sources; and the potential savings from increased efficiency of energy use; and the impact of regulations on the use of alternative or reformulated fuels. NEMS has also been used for a number of special analyses at the request of the Administration, U.S. Congress, other offices of DOE and other government agencies, who specify the scenarios and assumptions for the analysis. Modules allow analyses to be conducted in energy topic areas such as residential demand, industrial demand, electricity market, oil and gas supply, renewable fuels, etc.

  16. Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Proceedings for the Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles workshop held September 9, 2014.

  17. Macroeconomic Activity Module - NEMS Documentation

    Reports and Publications

    2016-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Macroeconomic Activity Module (MAM) used to develop the Annual Energy Outlook for 2016 (AEO2016). The report catalogues and describes the module assumptions, computations, methodology, parameter estimation techniques, and mainframe source code

  18. Coal Market Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System's (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 2014 (AEO2014). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM's two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS).

  19. Macroeconomic Activity Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Macroeconomic Activity Module (MAM) used to develop the Annual Energy Outlook for 2014 (AEO2014). The report catalogues and describes the module assumptions, computations, methodology, parameter estimation techniques, and mainframe source code

  20. NEMS integrating module documentation report

    SciTech Connect

    Not Available

    1993-12-14

    The National Energy Modeling System (NEMS) is a computer modeling system that produces a general equilibrium solution for energy supply and demand in the US energy markets. The model achieves a supply and demand balance in the end-use demand regions, defined as the nine Census Divisions, by solving for the prices of each energy type such that the quantities producers are willing to supply equal the quantities consumers wish to consume. The system reflects market economics, industry structure, and energy policies and regulations that influence market behavior. The NEMS Integrating Module is the central integrating component of a complex modeling system. As such, a thorough understanding of its role in the modeling process can only be achieved by placing it in the proper context with respect to the other modules. To that end, this document provides an overview of the complete NEMS model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

  1. Multi-Path Transportation Futures Study: Vehicle Characterization and Scenario Analyses. Appendix E. Other NEMS-MP Results or the Base Case and Scenarios

    SciTech Connect

    Plotkin, Steve; Singh, Margaret; Patterson, Phil; Ward, Jake; Wood, Frances; Kydes, Niko; Holte, John; Moore, Jim; Miller, Grant; Das, Sujit; Greene, David

    2009-07-22

    This appendix examines additional findings beyond the primary results reported in the report for Phase 2 of the Multi-Path Transportation Futures Study.

  2. NEMS - National Energy Modeling System: An Overview

    Reports and Publications

    2009-01-01

    The National Energy Modeling System: An Overview 2009 a summary description of NEMS and each of its components. NEMS is a computer-based, energy-economy modeling system of energy markets for the midterm period through 2030. The NEMS is used to produce the Annual Energy Outlook.

  3. nem_spread Ver. 5.10

    Energy Science and Technology Software Center

    2009-06-08

    Nem_spread reads it's input command file (default name nem_spread.inp), takes the named ExodusII geometry definition and spreads out the geometry (and optionally results) contained in that file out to a parallel disk system. The decomposition is taken from a scalar Nemesis load balance file generated by the companion utility nem_slice.

  4. Reducing GHG emissions in the United States' transportation sector

    SciTech Connect

    Das, Sujit; Andress, David A; Nguyen, Tien

    2011-01-01

    Reducing GHG emissions in the U.S. transportation sector requires both the use of highly efficient propulsion systems and low carbon fuels. This study compares reduction potentials that might be achieved in 2060 for several advanced options including biofuels, hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), assuming that technical and cost reduction targets are met and necessary fueling infrastructures are built. The study quantifies the extent of the reductions that can be achieved through increasing engine efficiency and transitioning to low-carbon fuels separately. Decarbonizing the fuels is essential for achieving large reductions in GHG emissions, and the study quantifies the reductions that can be achieved over a range of fuel carbon intensities. Although renewables will play a vital role, some combination of coal gasification with carbon capture and sequestration, and/or nuclear energy will likely be needed to enable very large reductions in carbon intensities for hydrogen and electricity. Biomass supply constraints do not allow major carbon emission reductions from biofuels alone; the value of biomass is that it can be combined with other solutions to help achieve significant results. Compared with gasoline, natural gas provides 20% reduction in GHG emissions in internal combustion engines and up to 50% reduction when used as a feedstock for producing hydrogen or electricity, making it a good transition fuel for electric propulsion drive trains. The material in this paper can be useful information to many other countries, including developing countries because of a common factor: the difficulty of finding sustainable, low-carbon, cost-competitive substitutes for petroleum fuels.

  5. NEMS Modeling of Coal Plants

    Energy Information Administration (EIA) (indexed site)

    NEMS Modeling of Coal Plants Office of Electricity, Coal, Nuclear, and Renewable Analysis Laura Martin June 14, 2016 Washington, DC 2 EMM Structure EFD ECP EFP ELD Laura Martin Washington, DC, June 14, 2016 Electricity Load and Demand Submodule Liquid Fuels Market Module Model inputs for coal plants 3 * Existing coal plants - plant specific inputs - Fixed and variable operating and maintenance costs, annual capital additions - Retrofit costs (capital and O&M) - FGD, DSI, SCR, SNCR, CCS, FF -

  6. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    SciTech Connect

    1998-01-01

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  7. Policies to Reduce Emissions from the Transportation Sector ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Highlights This guide provides information on policy choices that can drive sustainability. Notes References "Policies To Reduce Emissions From The Transportation...

  8. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect

    Not Available

    1994-03-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  9. U.S. Regional Demand Forecasts Using NEMS and GIS

    SciTech Connect

    Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

    2005-07-01

    The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

  10. The Practice of Cost Benefit Analysis in the Transport Sector...

    OpenEI (Open Energy Information) [EERE & EIA]

    the use of CBA for the social and economic evaluation of transport infrastructure in Mexico and is made from the point of view of the role of the Ministry of Finance's...

  11. Global Climate Change and the Transportation Sector: An Update on Issues and Mitigation Options

    SciTech Connect

    Geffen, CA; Dooley, JJ; Kim, SH

    2003-08-24

    It is clear from numerous energy/economic modeling exercises that addressing the challenges posed by global climate change will eventually require the active participation of all industrial sectors and all consumers on the planet. Yet, these and similar modeling exercises indicate that large stationary CO2 point sources (e.g., refineries and fossil-fired electric power plants) are often the first targets considered for serious CO2 emissions mitigation. Without participation of all sectors of the global economy, however, the challenges of climate change mitigation will not be met. Because of its operating characteristics, price structure, dependence on virtually one energy source (oil), enormous installed infrastructure, and limited technology alternatives, at least in the near-term, the transportation sector will likely represent a particularly difficult challenge for CO2 emissions mitigation. Our research shows that climate change induced price signals (i.e., putting a price on carbon that is emitted to the atmosphere) are in the near term insufficient to drive fundamental shifts in demand for energy services or to transform the way these services are provided in the transportation sector. We believe that a technological revolution will be necessary to accomplish the significant reduction of greenhouse gas emissions from the transportation sector. This paper presents an update of ongoing research into a variety of technological options that exist for decarbonizing the transportation sector and the various tradeoffs among them.

  12. NEMS Freight Transportation Module Improvement Study - Energy...

    Gasoline and Diesel Fuel Update

    EIA is now using the Freight Analysis Framework in place of the Commodity Flow Survey in the determination of historical census division and commodity ton-mile data, including the ...

  13. High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint

    SciTech Connect

    Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

    2012-06-01

    Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

  14. Coal Transportation Rate Sensitivity Analysis

    Reports and Publications

    2005-01-01

    On December 21, 2004, the Surface Transportation Board (STB) requested that the Energy Information Administration (EIA) analyze the impact of changes in coal transportation rates on projected levels of electric power sector energy use and emissions. Specifically, the STB requested an analysis of changes in national and regional coal consumption and emissions resulting from adjustments in railroad transportation rates for Wyoming's Powder River Basin (PRB) coal using the National Energy Modeling System (NEMS). However, because NEMS operates at a relatively aggregate regional level and does not represent the costs of transporting coal over specific rail lines, this analysis reports on the impacts of interregional changes in transportation rates from those used in the Annual Energy Outlook 2005 (AEO2005) reference case.

  15. Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors

    SciTech Connect

    Lee, A.; Zinaman, O.; Logan, J.

    2012-12-01

    Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

  16. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect

    1997-02-01

    Over the past year, several modifications have been made to the NEMS Transportation Model, incorporating greater levels of detail and analysis in modules previously represented in the aggregate or under a profusion of simplifying assumptions. This document is intended to amend those sections of the Model Documentation Report (MDR) which describe these superseded modules. Significant changes have been implemented in the LDV Fuel Economy Model, the Alternative Fuel Vehicle Model, the LDV Fleet Module, and the Highway Freight Model. The relevant sections of the MDR have been extracted from the original document, amended, and are presented in the following pages. A brief summary of the modifications follows: In the Fuel Economy Model, modifications have been made which permit the user to employ more optimistic assumptions about the commercial viability and impact of selected technological improvements. This model also explicitly calculates the fuel economy of an array of alternative fuel vehicles (AFV`s) which are subsequently used in the estimation of vehicle sales. In the Alternative Fuel Vehicle Model, the results of the Fuel Economy Model have been incorporated, and the program flows have been modified to reflect that fact. In the Light Duty Vehicle Fleet Module, the sales of vehicles to fleets of various size are endogenously calculated in order to provide a more detailed estimate of the impacts of EPACT legislation on the sales of AFV`s to fleets. In the Highway Freight Model, the previous aggregate estimation has been replaced by a detailed Freight Truck Stock Model, where travel patterns, efficiencies, and energy intensities are estimated by industrial grouping. Several appendices are provided at the end of this document, containing data tables and supplementary descriptions of the model development process which are not integral to an understanding of the overall model structure.

  17. nem_slice ver. 3.34

    Energy Science and Technology Software Center

    2009-06-08

    Nem_slice reads in a finite element model description of the geometry of a problem from an ExodusII file and generates either a nodal or elemental graph of the problem. It then calls Chaco to load balance the graph and then outputs a NemesisI load-balance file.

  18. Reduction in tribological energy losses in the transportation and electric utilities sectors

    SciTech Connect

    Pinkus, O.; Wilcock, D.F.; Levinson, T.M.

    1985-09-01

    This report is part of a study of ways and means of advancing the national energy conservation effort, particularly with regard to oil, via progress in the technology of tribology. The report is confined to two economic sectors: transportation, where the scope embraces primarily the highway fleets, and electric utilities. Together these two sectors account for half of the US energy consumption. Goal of the study is to ascertain the energy sinks attributable to tribological components and processes and to recommend long-range research and development (R and D) programs aimed at reducing these losses. In addition to the obvious tribological machine components such as bearings, piston rings, transmissions and so on, the study also extends to processes which are linked to tribology indirectly such as wear of machine parts, coatings of blades, high temperature materials leading to higher cycle efficiencies, attenuation of vibration, and other cycle improvements.

  19. Biofuels in the U.S. Transportation Sector (released in AEO2007)

    Reports and Publications

    2007-01-01

    Sustained high world oil prices and the passage of the Energy Policy Act 2005 (EPACT) have encouraged the use of agriculture-based ethanol and biodiesel in the transportation sector; however, both the continued growth of the biofuels industry and the long-term market potential for biofuels depend on the resolution of critical issues that influence the supply of and demand for biofuels. For each of the major biofuelscorn-based ethanol, cellulosic ethanol, and biodieselresolution of technical, economic, and regulatory issues remains critical to further development of biofuels in the United States.

  20. Integrated NEMS and optoelectronics for sensor applications.

    SciTech Connect

    Czaplewski, David A.; Serkland, Darwin Keith; Olsson, Roy H., III; Bogart, Gregory R. (Symphony Acoustics, Rio Rancho, NM); Krishnamoorthy, Uma; Warren, Mial E.; Carr, Dustin Wade (Symphony Acoustics, Rio Rancho, NM); Okandan, Murat; Peterson, Kenneth Allen

    2008-01-01

    This work utilized advanced engineering in several fields to find solutions to the challenges presented by the integration of MEMS/NEMS with optoelectronics to realize a compact sensor system, comprised of a microfabricated sensor, VCSEL, and photodiode. By utilizing microfabrication techniques in the realization of the MEMS/NEMS component, the VCSEL and the photodiode, the system would be small in size and require less power than a macro-sized component. The work focused on two technologies, accelerometers and microphones, leveraged from other LDRD programs. The first technology was the nano-g accelerometer using a nanophotonic motion detection system (67023). This accelerometer had measured sensitivity of approximately 10 nano-g. The Integrated NEMS and optoelectronics LDRD supported the nano-g accelerometer LDRD by providing advanced designs for the accelerometers, packaging, and a detection scheme to encapsulate the accelerometer, furthering the testing capabilities beyond bench-top tests. A fully packaged and tested die was never realized, but significant packaging issues were addressed and many resolved. The second technology supported by this work was the ultrasensitive directional microphone arrays for military operations in urban terrain and future combat systems (93518). This application utilized a diffraction-based sensing technique with different optical component placement and a different detection scheme from the nano-g accelerometer. The Integrated NEMS LDRD supported the microphone array LDRD by providing custom designs, VCSELs, and measurement techniques to accelerometers that were fabricated from the same operational principles as the microphones, but contain proof masses for acceleration transduction. These devices were packaged at the end of the work.

  1. Corn Ethanol: The Surprisingly Effective Route for Natural Gas Consumption in the Transportation Sector

    SciTech Connect

    Szybist, James P.; Curran, Scott

    2015-05-01

    Proven reserves and production of natural gas (NG) in the United States have increased dramatically in the last decade, due largely to the commercialization of hydraulic fracturing. This has led to a plentiful supply of NG, resulting in a significantly lower cost on a gallon of gasoline-equivalent (GGE) basis. Additionally, NG is a domestic, non-petroleum source of energy that is less carbon-intensive than coal or petroleum products, and thus can lead to lower greenhouse gas emissions. Because of these factors, there is a desire to increase the use of NG in the transportation sector in the United States (U.S.). However, using NG directly in the transportation sector requires that several non-trivial challenges be overcome. One of these issues is the fueling infrastructure. There are currently only 1,375 NG fueling stations in the U.S. compared to 152,995 fueling stations for gasoline in 2014. Additionally, there are very few light-duty vehicles that can consume this fuel directly as dedicated or bi-fuel options. For example, in model year 2013Honda was the only OEM to offer a dedicated CNG sedan while a number of others offered CNG options as a preparation package for LD trucks and vans. In total, there were a total of 11 vehicle models in 2013 that could be purchased that could use natural gas directly. There are additional potential issues associated with NG vehicles as well. Compared to commercial refueling stations, the at-home refueling time for NG vehicles is substantial – a result of the small compressors used for home refilling. Additionally, the methane emissions from both refueling (leakage) and from tailpipe emissions (slip) from these vehicles can add to their GHG footprint, and while these emissions are not currently regulated it could be a barrier in the future, especially in scenarios with broad scale adoption of CNG vehicles. However, NG consumption already plays a large role in other sectors of the economy, including some that are important to

  2. How to obtain the National Energy Modeling System (NEMS)

    Reports and Publications

    2013-01-01

    The National Energy Modeling System (NEMS) NEMS is used by the modelers at the U. S. Energy Information Administration (EIA) who understand its structure and programming. NEMS has only been used by a few organizations outside of the EIA, because most people that requested NEMS found out that it was too difficult or rigid to use. NEMS is not typically used for state-level analysis and is poorly suited for application to other countries. However, many do obtain the model simply to use the data in its input files or to examine the source code.

  3. Availability of the National Energy Modeling System (NEMS) Archive

    Gasoline and Diesel Fuel Update

    Availability of the National Energy Modeling System (NEMS) Archive 1 May 2016 Availability of the National Energy Modeling System (NEMS) Archive NEMS has been developed primarily for use by the modelers at the Energy Information Administration (EIA) who understand its structure and programming. As a result, NEMS is only used by a few organizations outside of the EIA. Most people who have requested NEMS in the past have found out that it was too difficult or rigid to use. For example, it is not

  4. Vehicle Technologies Office: Transitioning the Transportation Sector- Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    The "Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles" workshop report by Sandia National Laboratory summarizes a workshop that discussed common opportunities and challenges in expanding the use of hydrogen (H2) and natural gas (CNG or LNG) as transportation fuels.

  5. External cost in the road transport sector: A lack of consensus in monetary evaluation making internalization difficult

    SciTech Connect

    Babusiaux, D.; Chollet, P.; Furlan, S.

    1995-12-31

    In the debate on transport and environment it is often claimed that the transport sector does not pay its full social costs and that actions should be taken to insure that these full costs are paid. The suggested mean for achieving such a {open_quotes}balance{close_quotes} is an increase in the relevant transport prices through increased taxes. Furthermore, it is sometimes implicitly believed that estimation of external costs will show that the transport prices should be raised significantly. If taxation of the transport sector should be changed in direction of including all external costs, it is necessary that these external costs can be estimated. The difficulties of external cost estimation consist of two major elements. Firstly, the estimation of the damage costs itself is extremely difficult. Secondly, both damage and avoidance costs have to be estimated to determine the correct level of external costs. So far, these issues appear not to have been sufficiently appraised in literature on internalization.

  6. Investigation of the effects of soluble boron tracking on coupled CTF / NEM, LWR simulations

    SciTech Connect

    Biery, M.; Avramova, M.; Ivanov, K.

    2013-07-01

    The primary objective of this study is to evaluate the effects of introducing a boron tracking capability to the COBRA-TF / NEM code coupling. The Pennsylvania State University (PSU) versions of COBRA-TF - CTF, and Nodal Expansion Method (NEM) codes are utilized. Previous implementations of the CTF / NEM coupled code had no capability to model soluble boron feedback effects due to boron transport. This study builds upon the validation and qualification efforts of the boron tracking model implementation in CTF by modeling the boron feedback calculated by the CTF boron tracking model in NEM. The core model chosen for this study is the Purdue MOX/UO{sub 2} core model used in the 2007 OECD/NRC code benchmark study. Following the implementation of an explicit online coupling scheme and accompanying k-search routine, the newly coupled CTF / NEM code version with boron tracking is compared to prior results of the non-boron tracking CTF / NEM code version at steady-state hot full power and hot zero power conditions. It was found that the boron tracking model exhibited little influence on the hot zero power result as expected due to a smaller heat flux, which does not significantly change the moderator density and boron concentration as the moderator travels up the axial core length. Meanwhile the boron tracking model had a much greater impact on the hot full power results, predicting the critical inlet boron concentration to be 9.9 ppm below the non-boron tracking result due to greater and more rapid changes in boron concentration corresponding to the reduction in moderator density from being more rapidly heated. (authors)

  7. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect

    Not Available

    1991-10-01

    The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

  8. Frequency Stabilization in Nonlinear MEMS and NEMS Oscillators...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Frequency Stabilization in Nonlinear MEMS and NEMS Oscillators Technology available for licensing: a method to create micro- and nanoscale mechanical oscillators with excellent...

  9. Appendix C: Map of NEMS Electricity Market Module Regions

    Gasoline and Diesel Fuel Update

    U.S. Energy Information Administration | Analysis of Impacts of a Clean Energy Standard as requested by Chairman Bingaman Appendix C: Map of NEMS Electricity Market Module Regions

  10. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 2: Part 4, Transportation sector; Part 5, Forestry sector; Part 6, Agricultural sector

    SciTech Connect

    Not Available

    1994-10-01

    This volume, the second of two such volumes, contains sector-specific guidance in support of the General Guidelines for the voluntary reporting of greenhouse gas emissions and carbon sequestration. This voluntary reporting program was authorized by Congress in Section 1605(b) of the Energy Policy Act of 1992. The General Guidelines, bound separately from this volume, provide the overall rationale for the program, discuss in general how to analyze emissions and emission reduction/carbon sequestration projects, and address programmatic issues such as minimum reporting requirements, time parameters, international projects, confidentiality, and certification. Together, the General Guidelines and the guidance in these supporting documents will provide concepts and approaches needed to prepare the reporting forms. This second volume of sector-specific guidance covers the transportation sector, the forestry sector, and the agricultural sector.

  11. EIA Buildings Analysis of Consumer Behavior in NEMS

    Energy Information Administration (EIA) (indexed site)

    Buildings Analysis of Consumer Behavior in NEMS Behavioral Economics Experts Meeting July 17, 2013 | Washington, DC David Peterson Buildings Energy Consumption and Efficiency Analysis Overview Behavioral Economics Experts Meeting, Washington DC, July 17, 2013 2 * NEMS Structure * Housing/floorspace and service demand in Residential Demand Module (RDM) and Commercial Demand Module (CDM) * Market share calculation for equipment in RDM and CDM * Price responses / elasticities * Distributed

  12. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    SciTech Connect

    David Petti; J. Stephen Herring

    2010-03-01

    As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy

  13. GIZ Sourcebook Module 5d: The CDM in the Transport Sector | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    on CDM and the GHG market; CDM transport projects; core elements of a transport methodology; and case studies in CDM. LEDSGP green logo.png This tool is included in the...

  14. The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector

    SciTech Connect

    Greene, D.L.

    1997-07-01

    The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

  15. The U. S. transportation sector in the year 2030: results of a two-part Delphi survey.

    SciTech Connect

    Morrison, G.; Stephens, T.S.

    2011-10-11

    A two-part Delphi Survey was given to transportation experts attending the Asilomar Conference on Transportation and Energy in August, 2011. The survey asked respondents about trends in the US transportation sector in 2030. Topics included: alternative vehicles, high speed rail construction, rail freight transportation, average vehicle miles traveled, truck versus passenger car shares, vehicle fuel economy, and biofuels in different modes. The survey consisted of two rounds -- both asked the same set of seven questions. In the first round, respondents were given a short introductory paragraph about the topic and asked to use their own judgment in their responses. In the second round, the respondents were asked the same questions, but were also given results from the first round as guidance. The survey was sponsored by Argonne National Lab (ANL), the National Renewable Energy Lab (NREL), and implemented by University of California at Davis, Institute of Transportation Studies. The survey was part of the larger Transportation Energy Futures (TEF) project run by the Department of Energy, Office of Energy Efficiency and Renewable Energy. Of the 206 invitation letters sent, 94 answered all questions in the first round (105 answered at least one question), and 23 of those answered all questions in the second round. 10 of the 23 second round responses were at a discussion section at Asilomar, while the remaining were online. Means and standard deviations of responses from Round One and Two are given in Table 1 below. One main purpose of Delphi surveys is to reduce the variance in opinions through successive rounds of questioning. As shown in Table 1, the standard deviations of 25 of the 30 individual sub-questions decreased between Round One and Round Two, but the decrease was slight in most cases.

  16. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  17. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  18. Appendix E: Other NEMS-MP results for the base case and scenarios.

    SciTech Connect

    Plotkin, S. E.; Singh, M. K.; Energy Systems

    2009-12-03

    The NEMS-MP model generates numerous results for each run of a scenario. (This model is the integrated National Energy Modeling System [NEMS] version used for the Multi-Path Transportation Futures Study [MP].) This appendix examines additional findings beyond the primary results reported in the Multi-Path Transportation Futures Study: Vehicle Characterization and Scenario Analyses (Reference 1). These additional results are provided in order to help further illuminate some of the primary results. Specifically discussed in this appendix are: (1) Energy use results for light vehicles (LVs), including details about the underlying total vehicle miles traveled (VMT), the average vehicle fuel economy, and the volumes of the different fuels used; (2) Resource fuels and their use in the production of ethanol, hydrogen (H{sub 2}), and electricity; (3) Ethanol use in the scenarios (i.e., the ethanol consumption in E85 vs. other blends, the percent of travel by flex fuel vehicles on E85, etc.); (4) Relative availability of E85 and H2 stations; (5) Fuel prices; (6) Vehicle prices; and (7) Consumer savings. These results are discussed as follows: (1) The three scenarios (Mixed, (P)HEV & Ethanol, and H2 Success) when assuming vehicle prices developed through literature review; (2) The three scenarios with vehicle prices that incorporate the achievement of the U.S. Department of Energy (DOE) program vehicle cost goals; (3) The three scenarios with 'literature review' vehicle prices, plus vehicle subsidies; and (4) The three scenarios with 'program goals' vehicle prices, plus vehicle subsidies. The four versions or cases of each scenario are referred to as: Literature Review No Subsidies, Program Goals No Subsidies, Literature Review with Subsidies, and Program Goals with Subsidies. Two additional points must be made here. First, none of the results presented for LVs in this section include Class 2B trucks. Results for this class are included occasionally in Reference 1. They

  19. Manufacturing Energy and Carbon Footprint - Sector: Transportation Equipment (NAICS 336), October 2012 (MECS 2006)

    Energy.gov [DOE] (indexed site)

    Transportation Equipment (NAICS 336) Process Energy Electricity and Steam Generation Losses Process Losses 14 Nonprocess Losses 904 106 Steam Distribution Losses 11 82 Nonprocess Energy 278 Electricity Generation Steam Generation 904 7 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 196 258 195 Generation and Transmission Losses Generation and Transmission Losses 3 422 Onsite Generation 455 415 65 480 617 9 51 0.6 37.2 37.8 4.2 3.8 6.4 29.4 19.6 53 15.3 53.2 5.2

  20. Manufacturing Energy and Carbon Footprint - Sector: Transportation Equipment (NAICS 336), January 2014 (MECS 2010)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transportation Equipment (NAICS 336) Process Energy Electricity and Steam Generation Losses Process Losses 10 Nonprocess Losses 541 68 Steam Distribution Losses 6 48 Nonprocess Energy 143 Electricity Generation Steam Generation 541 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 115 145 132 Generation and Transmission Losses Generation and Transmission Losses 0 266 259 234 41 275 398 0 32 0.0 23.1 23.1 3.0 16.6 11.9 31 7.9 31.0 2.6 Fuel

  1. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect

    1993-01-01

    The primary objective of this report is to provide estimates of volumes and development costs of known nonassociated gas reserves in selected, potentially important supplier nations, using a standard set of costing algorithms and conventions. Estimates of undeveloped nonassociated gas reserves and the cost of drilling development wells, production equipment, gas processing facilities, and pipeline construction are made at the individual field level. A discounted cash-flow model of production, investment, and expenses is used to estimate the present value cost of developing each field on a per-thousand-cubic-foot (Mcf) basis. These gas resource cost estimates for individual accumulations (that is, fields or groups of fields) then were aggregated into country-specific price-quantity curves. These curves represent the cost of developing and transporting natural gas to an export point suitable for tanker shipments or to a junction with a transmission line. The additional costs of LNG or methanol conversion are not included. A brief summary of the cost of conversion to methanol and transportation to the United States is contained in Appendix D: Implications of Gas Development Costs for Methanol Conversion.

  2. The coprocessing of fossil fuels and biomass for CO{sub 2} emission reduction in the transportation sector

    SciTech Connect

    Steinberg, M.; Dong, Yuanji; Borgwardt, R.H.

    1993-10-01

    Research is underway to evaluate the Hydrocarb process for conversion of carbonaceous raw material to clean carbon and methanol products. These products are valuable in the market either as fuel or as chemical commodities. As fuel, methanol and carbon can be used economically, either independently or in slurry form, in efficient heat energies (turbines and internal combustion engines) for both mobile and stationary single and combined cycle power plants. When considering CO{sub 2} emission control in the utilization of fossil fuels, the copressing of those fossil fuels with biomass (which may include, wood, municipal solid waste and sewage sludge) is a viable mitigation approach. By coprocessing both types of feedstock to produce methanol and carbon while sequestering all or part of the carbon, a significant net CO{sub 2} reduction is achieved if the methanol is substituted for petroleum fuels in the transportation sector. The Hydrocarb process has the potential, if the R&D objectives are achieved, to produce alternative transportation fuel from indigenous resources at lower cost than any other biomass conversion process. These comparisons suggest the resulting fuel can significantly displace gasoline at a competitive price while mitigating CO{sub 2} emissions and reducing ozone and other toxics in urban atmospheres.

  3. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 2

    SciTech Connect

    1998-01-01

    The attachments contained within this appendix provide additional details about the model development and estimation process which do not easily lend themselves to incorporation in the main body of the model documentation report. The information provided in these attachments is not integral to the understanding of the model`s operation, but provides the reader with opportunity to gain a deeper understanding of some of the model`s underlying assumptions. There will be a slight degree of replication of materials found elsewhere in the documentation, made unavoidable by the dictates of internal consistency. Each attachment is associated with a specific component of the transportation model; the presentation follows the same sequence of modules employed in Volume 1. The following attachments are contained in Appendix F: Fuel Economy Model (FEM)--provides a discussion of the FEM vehicle demand and performance by size class models; Alternative Fuel Vehicle (AFV) Model--describes data input sources and extrapolation methodologies; Light-Duty Vehicle (LDV) Stock Model--discusses the fuel economy gap estimation methodology; Light Duty Vehicle Fleet Model--presents the data development for business, utility, and government fleet vehicles; Light Commercial Truck Model--describes the stratification methodology and data sources employed in estimating the stock and performance of LCT`s; Air Travel Demand Model--presents the derivation of the demographic index, used to modify estimates of personal travel demand; and Airborne Emissions Model--describes the derivation of emissions factors used to associate transportation measures to levels of airborne emissions of several pollutants.

  4. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect

    Not Available

    1991-07-01

    The Alternative Motor Fuels Act of 1988 (Public Law 100-494), Section 400EE, states that the Secretary of Energy ...shall study methanol plants, including the costs and practicability of such plants that are (A) capable of utilizing current domestic supplies of unutilized natural gas; (B) relocatable; or (C) suitable for natural gas to methanol conversion by natural gas distribution companies...'' The purpose of this report is to characterize unutilized gas within the lower 48 states and to perform an economic analysis of methanol plants required by the act. The approach with regard to unutilized lower 48 gas is to (1) compare the costs of converting such gas to methanol against the expected price of gasoline over the next 20 years, and (2) compare the economics of converting such gas to methanol against the economics of using the gas as a pipeline-transported fuel. This study concludes that remote gas and low-Btu gas generally cannot be converted to methanol at costs near the expected competitive value of gasoline because of the poor economies of scale of small methanol plants.

  5. Transportation Sector Module

    Gasoline and Diesel Fuel Update

    cost changes due to production volume economies of scale and potential scientific, manufacturing, and design advances. Manufacturing advances can generally be thought of as...

  6. Restructuring our Transportation Sector

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  7. National Energy Modeling System with Hydrogen Model (NEMS-H2...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Modeling System with Hydrogen Model (NEMS-H2) (OnLocation, Inc. 1 ) Objectives Estimate the energy, economic, and environmental impacts of alternative energy policies and different ...

  8. Appendix A - GPRA06 benefits estimates: MARKAL and NEMS model baseline cases

    SciTech Connect

    None, None

    2009-01-18

    NEMS is an integrated energy model of the U.S. energy system developed by the Energy Information Administration (EIA) for forecasting and policy analysis purposes.

  9. Transportation Sector Market Transition: Using History and Geography to Envision Possible Hydrogen Infrastructure Development and Inform Public Policy

    SciTech Connect

    Brown, E.

    2008-08-01

    This report covers the challenges to building an infrastructure for hydrogen, for use as transportation fuel. Deployment technologies and policies that could quicken deployment are addressed.

  10. LOCA analysis evaluation model with TRAC-PF1/NEM

    SciTech Connect

    Orive Moreno, Raul; Gallego Cabezon, Ines; Garcia Sedano, Pablo

    2004-07-01

    Nowadays regulatory rules and code models development are progressing on the goal of using best-estimate approximations in applications of license. Inside this framework, IBERDROLA is developing a PWR LOCA Analysis Methodology with one double slope, by a side the development of an Evaluation Model (upper-bounding model) that covers with conservative form the different aspects from the PWR LOCA phenomenology and on the other hand, a proposal of CSAU (Code Scaling Applicability and Uncertainty) type evaluation, methodology that strictly covers the 95/95 criterion in the Peak Cladding Temperature. A structured method is established, that basically involves the following steps: 1. Selection of the Large Break LOCA like accident to analyze and of TRAC-PF1/MOD2 V99.1 NEM (PSU version) computer code like analysis tool. 2. Code Assessment, identifying the most remarkable phenomena (PIRT, Phenomena Identification and Ranking Tabulation) and estimation of a possible code deviation (bias) and uncertainties associated to the specific models that control these phenomena (critical flow mass, heat transfer, countercurrent flow, etc...). 3. Evaluation of an overall PCT uncertainty, taking into account code uncertainty, reactor initial conditions, and accident boundary conditions. Uncertainties quantification requires an excellent experiments selection that allows to define a complete evaluation matrix, and the comparison of the simulations results with the experiments measured data, as well as in the relative to the scaling of these phenomena. To simulate these experiments it was necessary to modify the original code, because it was not able to reproduce, in a qualitative way, the expected phenomenology. It can be concluded that there is a good agreement between the TRAC-PF1/NEM results and the experimental data. Once average error ({epsilon}) and standard deviation ({sigma}) for those correlations under study are obtained, these factors could be used to correct in a conservative

  11. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    SciTech Connect

    Zhou, Nan; McNeil, Michael A.

    2009-05-01

    Transportation mobility in India has increased significantly in the past decades. From 1970 to 2000, motorized mobility (passenger-km) has risen by 888%, compared with an 88% population growth (Singh,2006). This contributed to many energy and environmental issues, and an energy strategy incorporates efficiency improvement and other measures needs to be designed. Unfortunately, existing energy data do not provide information on driving forces behind energy use and sometime show large inconsistencies. Many previous studies address only a single transportation mode such as passenger road travel; did not include comprehensive data collection or analysis has yet been done, or lack detail on energy demand by each mode and fuel mix. The current study will fill a considerable gap in current efforts, develop a data base on all transport modes including passenger air and water, and freight in order to facilitate the development of energy scenarios and assess significance of technology potential in a global climate change model. An extensive literature review and data collection has been done to establish the database with breakdown of mobility, intensity, distance, and fuel mix of all transportation modes. Energy consumption was estimated and compared with aggregated transport consumption reported in IEA India transportation energy data. Different scenarios were estimated based on different assumptions on freight road mobility. Based on the bottom-up analysis, we estimated that the energy consumption from 1990 to 2000 increased at an annual growth rate of 7% for the mid-range road freight growth case and 12% for the high road freight growth case corresponding to the scenarios in mobility, while the IEA data only shows a 1.7% growth rate in those years.

  12. Modeling Distributed Electricity Generation in the NEMS Buildings Models

    Reports and Publications

    2011-01-01

    This paper presents the modeling methodology, projected market penetration, and impact of distributed generation with respect to offsetting future electricity needs and carbon dioxide emissions in the residential and commercial buildings sector in the Annual Energy Outlook 2000 (AEO2000) reference case.

  13. Model developer`s appendix to the model documentation report: NEMS macroeconomic activity module

    SciTech Connect

    1994-07-15

    The NEMS Macroeconomic Activity Module (MAM) tested here was used to generate the Annual Energy Outlook 1994 (AEO94). MAM is a response surface model, not a structural model, composed of three submodules: the National Submodule, the Interindustry Submodule, and the Regional Submodule. Contents of this report are as follows: properties of the mathematical solution; NEMS MAM empirical basis; and scenario analysis. Scenario analysis covers: expectations for scenario analysis; historical world oil price scenario; AEO94 high world oil price scenario; AEO94 low world oil price scenario; and immediate increase world oil price scenario.

  14. Sector 9

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sector 9 About Science and Research Beamlines Operations and Schedule Safety Search APS ... Search Argonne Home > Advanced Photon Source > Contacts Advisory Committee Beamlines...

  15. The Italian energy sector

    SciTech Connect

    1997-01-01

    The energy sector in Italy, as in Europe and in many other areas of the world, is undergoing rapid and profound changes. The 1986 ratification of the European Single Act was intended to create a European internal market, where circulation of people, capital, goods, and services would reach the highest possible liberalization. In 1988, in the document The Energy Internal Market, the European Union (EU) commission stressed the need for creation of an internal energy market--free of obstacles--to increase security of supply, to reduce costs, and to strengthen the competitiveness of the European economic system. In 1990, the Community Council adopted directives to implement the EU energy sector. This article describes Italy`s role as part of the EU energy sector. It covers the following topics: the Italian energy sector; electricity vs gas transportation; project finance; recent developments advance Italian power industry; specifying powerplant components -- Italian stype; buyers` guide to Italian equipment, services.

  16. Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios

    SciTech Connect

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-08-05

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent

  17. U.S. Energy Information Administration (EIA) - Sector

    Annual Energy Outlook

    RenewableAlternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication...

  18. Model documentation report: Residential sector demand module of the national energy modeling system

    SciTech Connect

    1998-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This reference document provides a detailed description for energy analysts, other users, and the public. The NEMS Residential Sector Demand Module is currently used for mid-term forecasting purposes and energy policy analysis over the forecast horizon of 1993 through 2020. The model generates forecasts of energy demand for the residential sector by service, fuel, and Census Division. Policy impacts resulting from new technologies, market incentives, and regulatory changes can be estimated using the module. 26 refs., 6 figs., 5 tabs.

  19. Transportation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transportation Resources Policies, Manuals & References Map Transportation Publications ⇒ Navigate Section Resources Policies, Manuals & References Map Transportation Publications View Larger Map Main Address 1 Cyclotron Rd‎ University of California Berkeley Berkeley, CA 94720 The Laboratory is in Berkeley on the hillside directly above the campus of the University of California at Berkeley. Our address is 1 Cyclotron Road, Berkeley CA 94720. To make the Lab easily accessible, the

  20. Intelligent Transportation Systems Deployment Analysis System...

    OpenEI (Open Energy Information) [EERE & EIA]

    Transportation Systems Deployment Analysis System AgencyCompany Organization: Cambridge Systematics Sector: Energy Focus Area: Transportation Resource Type: Software...

  1. transportation

    National Nuclear Security Administration (NNSA)

    security missions undertaken by the U.S. government.

    Pantex Plant's Calvin Nelson honored as Analyst of the Year for Transportation Security http:nnsa.energy.gov...

  2. Energy Intensity Indicators: Indicators for Major Sectors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy for Major Sectors Energy Intensity Indicators: Indicators for Major Sectors This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors - transportation, industry, commercial, and residential, as well as the electric power sector. These sectors are shown in Figure 1. Please go to the menu below the figure to see a more detailed discussion of historical trends in the energy intensity indicator for a particular sector.

  3. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  4. A sensitivity analysis of the treatment of wind energy in the AEO99 version of NEMS

    SciTech Connect

    Osborn, Julie G; Wood, Frances; Richey, Cooper; Sanders, Sandy; Short, Walter; Koomey, Jonathan

    2001-01-01

    Each year, the U.S. Department of Energy's Energy Information Administration (EIA) publishes a forecast of the domestic energy economy in the Annual Energy Outlook (AEO). During the forecast period of the AEO (currently through 2020), renewable energy technologies have typically not achieved significant growth. The contribution of renewable technologies as electric generators becomes more important, however, in scenarios analyzing greenhouse gas emissions reductions or significant technological advancements. We examined the economic assumptions about wind power used for producing forecasts with the National Energy Modeling System (NEMS) to determine their influence on the projected capacity expansion of this technology. This analysis should help illustrate to policymakers what types of issues may affect wind development, and improve the general understanding of the NEMS model itself. Figure 1 illustrates the model structure and factors relevant to wind deployment. We found that NEMS uses various cost multipliers and constraints to represent potential physical and economic limitations to growth in wind capacity, such as resource depletion, costs associated with rapid manufacturing expansion, and grid stability with high levels of capacity from intermittent resources. The model's flexibility allows the user to make alternative assumptions about the magnitude of these factors. While these assumptions have little effect on the Reference Case forecast for the 1999 edition of the AEO, they can make a dramatic difference when wind is more attractive, such as under a carbon permit trading system. With $100/ton carbon permits, the wind capacity projection for 2020 ranges from 15 GW in the unaltered model (AEO99 Reference Case) to 168 GW in the extreme case when all the multipliers and constraints examined in this study are removed. Furthermore, if modifications are made to the model allowing inter-regional transmission of electricity, wind capacity is forecast to reach 214

  5. Energy Intensity Indicators: Transportation Energy Consumption

    Energy.gov [DOE]

    This section contains an overview of the aggregate transportation sector, combining both passenger and freight segments of this sector. The specific energy intensity indicators for passenger and freight can be obtained from the links, passenger transportation, or freight transportation. For further detail within the transportation sector, download the appropriate Trend Data worksheet containing detailed data and graphics for specific transportation modes.

  6. Fact #610: February 15, 2010 All Sectors' Petroleum Gap

    Energy.gov [DOE]

    Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial,...

  7. WIPP Documents - Transportation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transportation

  8. Science and technology of piezoelectric/diamond heterostructures for monolithically integrated high performance MEMS/NEMS/CMOS devices.

    SciTech Connect

    Auciello, O.; Sumant, A. V.; Hiller, J.; Kabius, B.; Ma, Z.; Srinivasan, S.

    2008-12-01

    This paper describes the fundamental and applied science performed to integrate piezoelectric PbZr{sub x}Ti{sub 1-x}O{sub 3} and AlN films with a novel mechanically robust ultrananocrystalline diamond layer to enable a new generation of low voltage/high-performance piezoactuated hybrid piezoelectric/diamond MEMS/NEMS devices.

  9. Industrial sector energy consumption

    Annual Energy Outlook

    Chapter 7 Industrial sector energy consumption Overview The industrial sector uses more delivered energy 294 than any other end-use sector, consuming about 54% of the world's total ...

  10. Chapter 2 - Energy Sectors and Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 - Energy Sectors and Systems Chapter 2 - Energy Sectors and Systems Chapter 2 - Energy Sectors and Systems Within and between the electricity, fuels, transportation, buildings, and manufacturing sectors, increasing interconnectedness and complexity are creating opportunities and challenges that can be approached from a systems perspective. Some of the most transformational opportunities exist at the systems level. They are enabled by the ability to understand, predict, and control very large

  11. EC-LEDS Transport | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Company Organization United States Department of State Partner National Renewable Energy Laboratory Sector Climate Focus Area Transportation Topics Background analysis,...

  12. Heilongjiang Province Water Transportation Construction | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Construction Jump to: navigation, search Name: Heilongjiang Province Water Transportation Construction Place: Harbin, Heilongjiang Province, China Sector: Hydro Product: China...

  13. Transportation Energy Futures Study Reveals Potential for Deep...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of the Transportation Energy Futures (TEF) study, ... gas (GHG) emissions in the transportation sector. "Transportation is ... related to energy efficiency and renewable ...

  14. 2014 Energy Sector Specific Plan

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sector-Specific Plan Energy Sector-Specific Plan 2015 ii Page intentionally left blank Energy Sector-Specific Plan 2015 iii TABLE OF CONTENTS PREFACE ......

  15. Manufacturing Energy and Carbon Footprint - Sector: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Steam Distribution Losses 1 3 23 1 3 7 6 23 16 0 3 0 275 44 132 0 1 2 Conventional Boilers 10 CHP Cogeneration Nonprocess Energy Process Cooling and Refrigeration Electro-Chemical ...

  16. Advanced Vehicle Electrification and Transportation Sector Electrification

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  17. Advanced Vehicle Electrification & Transportation Sector Electrification

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  18. Advanced Vehicle Electrification and Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Advanced Vehicle Electrification and Transportation Sector Electrification

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Power Sector Modeling 101

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Erin Boyd Department of Energy - Office of Energy Policy and Systems Analysis erin.boyd@hq.doe.gov DOE's Technical Assistance Website www.energy.gov/ta Power Sector Modeling 101 2 Presentation Description - DOE Power Sector Modeling 101 With increased energy planning needs and new regulations, environmental agencies, state energy offices and others have expressed more of an interest in electric power sector models, both for (a) interpreting the results and potential applications of modeling from

  1. Commercial Sector Demand Module

    Gasoline and Diesel Fuel Update

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  2. Chemical Sector Analysis | NISAC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NISACChemical Sector Analysis content top Chemical Supply Chain Analysis Posted by Admin on Mar 1, 2012 in | Comments 0 comments Chemical Supply Chain Analysis NISAC has developed ...

  3. Fact #689: August 22, 2011 Energy Use by Sector and Source | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 9: August 22, 2011 Energy Use by Sector and Source Fact #689: August 22, 2011 Energy Use by Sector and Source The transportation sector consumed 28% of U.S. energy in 2010, nearly all of it (93.5%) in petroleum use. The industrial sector used about 40% petroleum and 40% natural gas. The electric utility sector used little petroleum, but was dependent on coal for nearly half of the energy it consumed. Renewables, such as biofuels for transportation, were being used in every sector in

  4. Transportation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Data From AEO2011 report . Market Trends From 2009 to 2035, transportation sector energy consumption grows at an average annual rate of 0.6 percent (from 27.2 quadrillion Btu...

  5. Buildings Sector Analysis

    SciTech Connect

    Hostick, Donna J.; Nicholls, Andrew K.; McDonald, Sean C.; Hollomon, Jonathan B.

    2005-08-01

    A joint NREL, ORNL, and PNNL team conducted market analysis to help inform DOE/EERE's Weatherization and Intergovernmental Program planning and management decisions. This chapter presents the results of the market analysis for the Buildings sector.

  6. Transport Policy Note-Bangladesh | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    of Bangladesh Sector Energy Focus Area Transportation Topics Implementation, GHG inventory, Policiesdeployment programs, Background analysis Website http:...

  7. Table 3.4 Consumer Price Estimates for Energy by End-Use Sector...

    Energy Information Administration (EIA) (indexed site)

    Price Estimates for Energy by End-Use Sector, 1970-2010 (Dollars 1 per Million Btu) Year Residential Commercial Industrial Transportation Natural Gas 2 Petroleum Retail Electricity ...

  8. Table 3. Top five retailers of electricity, with end use sectors...

    Energy Information Administration (EIA) (indexed site)

    Florida" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Florida Power & Light Co","Investor-owned",104431096...

  9. Table 3. Top five retailers of electricity, with end use sectors...

    Energy Information Administration (EIA) (indexed site)

    Washington" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Puget Sound Energy Inc","Investor-owned",20568948...

  10. Table 3. Top five retailers of electricity, with end use sectors...

    Energy Information Administration (EIA) (indexed site)

    Iowa" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"MidAmerican Energy Co","Investor-owned",20585461,570529...

  11. Table 3. Top five retailers of electricity, with end use sectors...

    Energy Information Administration (EIA) (indexed site)

    Montana" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"NorthWestern Energy LLC - (MT)","Investor-owned",597...

  12. Table 3. Top five retailers of electricity, with end use sectors...

    Energy Information Administration (EIA) (indexed site)

    Kansas" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Westar Energy Inc","Investor-owned",9973395,3434301,4...

  13. Table 3. Top five retailers of electricity, with end use sectors...

    Energy Information Administration (EIA) (indexed site)

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Carolinas, LLC","Investor-owned",567506...

  14. Table 3. Top five retailers of electricity, with end use sectors...

    Energy Information Administration (EIA) (indexed site)

    Ohio" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"First Energy Solutions Corp.","Investor-owned",41994756...

  15. Table 3. Top five retailers of electricity, with end use sectors...

    Energy Information Administration (EIA) (indexed site)

    Pennsylvania" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"First Energy Solutions Corp.","Investor-owned",...

  16. Table 3. Top five retailers of electricity, with end use sectors...

    Energy Information Administration (EIA) (indexed site)

    Indiana" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Indiana Inc","Investor-owned",28224148,9...

  17. Table 3. Top five retailers of electricity, with end use sectors...

    Energy Information Administration (EIA) (indexed site)

    Texas" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Reliant Energy Retail Services","Investor-owned",38670...

  18. Table 3. Top five retailers of electricity, with end use sectors...

    Energy Information Administration (EIA) (indexed site)

    Minnesota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-ow...

  19. Table 3. Top five retailers of electricity, with end use sectors...

    Energy Information Administration (EIA) (indexed site)

    Dakota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-owned...

  20. Private Sector Outreach and Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE)

    ISER’s partnerships with the private sector are a strength which has enabled the division to respond to the needs of the sector and the nation.

  1. Chapter 8 - Advancing Clean Transportation and Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chapter 8 - Advancing Clean Transportation and Vehicle Systems and Technologies Transportation is a complex sector composed of light duty, medium duty, heavy duty, and non-highway ...

  2. Fact #560: March 2, 2009 The Transportation Petroleum Gap | Department...

    Energy.gov [DOE] (indexed site)

    In 1989 the transportation sector petroleum consumption surpassed U.S. petroleum ... By the year 2030, transportation petroleum consumption is expected to grow to nearly 17 ...

  3. EPA State and Local Transportation Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EPA State and Local Transportation Resources AgencyCompany Organization: United States Environmental Protection Agency Sector: Climate, Energy Focus Area: Transportation Phase:...

  4. Transportation Equipment (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transportation Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Transportation Equipment (125.57 KB) More Documents & Publications MECS 2006 - Transportation Equipment Cement (2010 MECS) Glass and Glass Products (2010

  5. Fact #582: August 3, 2009 Energy Shares by Sector and Source | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 2: August 3, 2009 Energy Shares by Sector and Source Fact #582: August 3, 2009 Energy Shares by Sector and Source The transportation sector consumed about 28% of U.S. energy in 2008, nearly all of it (95%) in petroleum use. The industrial sector used about 40% petroleum and 40% natural gas. The electric utility sector used little petroleum, but was dependent on coal for more than half of the energy it consumed. Renewables, such as biofuels for transportation, were being used in

  6. Vehicle Technologies Office: Transitioning the Transportation...

    Energy.gov [DOE] (indexed site)

    This report, titled "Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles" is based on a workshop that was held on ...

  7. LEDSGP/Transportation Toolkit | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    the six key actions necessary to successfully implement a low emission development strategy for the transportation sector. Icon evaluate system.png Evaluate System LEDS icon...

  8. Sustainable Transport Systems STS | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    STS Jump to: navigation, search Name: Sustainable Transport Systems (STS) Place: Santa Cruz, California Zip: 95062 Sector: Carbon, Efficiency Product: California-based...

  9. MECS 2006 - Transportation Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transportation Equipment MECS 2006 - Transportation Equipment Manufacturing Energy and Carbon Footprint for Transportation Equipment (NAICS 336) Sector with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint Transportation Equipment (121.43 KB) More Documents & Publications Transportation Equipment

  10. Buildings Sector Working Group

    Energy Information Administration (EIA) (indexed site)

    July 22, 2013 AEO2014 Model Development For discussion purposes only Not for citation Overview Builldings Working Group Forrestal 2E-069 / July 22, 2013 2 * Residential projects - RECS update - Lighting model - Equipment, shell subsidies - ENERGY STAR benchmarking - Housing stock formation and decay * Commercial projects - Major end-use capacity factors - Hurdle rates - ENERGY STAR buildings * Both sectors - Consumer behavior workshop - Comparisons to STEO - AER  MER - Usual annual updates -

  11. Large-area low-temperature ultrananocrystaline diamond (UNCD) films and integration with CMOS devices for monolithically integrated diamond MEMD/NEMS-CMOS systems.

    SciTech Connect

    Sumant, A.V.; Auciello, O.; Yuan, H.-C; Ma, Z.; Carpick, R. W.; Mancini, D. C.; Univ. of Wisconsin; Univ. of Pennsylvania

    2009-05-01

    Because of exceptional mechanical, chemical, and tribological properties, diamond has a great potential to be used as a material for the development of high-performance MEMS and NEMS such as resonators and switches compatible with harsh environments, which involve mechanical motion and intermittent contact. Integration of such MEMS/NEMS devices with complementary metal oxide semiconductor (CMOS) microelectronics will provide a unique platform for CMOS-driven commercial MEMS/NEMS. The main hurdle to achieve diamond-CMOS integration is the relatively high substrate temperatures (600-800 C) required for depositing conventional diamond thin films, which are well above the CMOS operating thermal budget (400 C). Additionally, a materials integration strategy has to be developed to enable diamond-CMOS integration. Ultrananocrystalline diamond (UNCD), a novel material developed in thin film form at Argonne, is currently the only microwave plasma chemical vapor deposition (MPCVD) grown diamond film that can be grown at 400 C, and still retain exceptional mechanical, chemical, and tribological properties comparable to that of single crystal diamond. We have developed a process based on MPCVD to synthesize UNCD films on up to 200 mm in diameter CMOS wafers, which will open new avenues for the fabrication of monolithically integrated CMOS-driven MEMS/NEMS based on UNCD. UNCD films were grown successfully on individual Si-based CMOS chips and on 200 mm CMOS wafers at 400 C in a MPCVD system, using Ar-rich/CH4 gas mixture. The CMOS devices on the wafers were characterized before and after UNCD deposition. All devices were performing to specifications with very small degradation after UNCD deposition and processing. A threshold voltage degradation in the range of 0.08-0.44V and transconductance degradation in the range of 1.5-9% were observed.

  12. Novolyte Charging Up Electric Vehicle Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Novolyte Charging Up Electric Vehicle Sector Novolyte Charging Up Electric Vehicle Sector August 11, 2010 - 10:15am Addthis Electric vehicles are powered by electricity that comes in the form of electrically charged molecules known as ions. Those ions need a substance to transport them throughout the system as they travel from the anode to the cathode and back again. That substance is an electrolyte. | Staff Photo Illustration Electric vehicles are powered by electricity that comes in the form

  13. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  14. Transportation Research and Analysis Computing Center Fact Sheet | Argonne

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transportation Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Transportation Equipment (125.57 KB) More Documents & Publications MECS 2006 - Transportation Equipment National Laboratory

    Transportation Research

  15. Model documentation report: Residential sector demand module of the National Energy Modeling System

    SciTech Connect

    1997-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document that provides a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  16. Energy Sector Cybersecurity Framework Implementation Guidance

    Energy.gov [DOE] (indexed site)

    FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of Contents...

  17. Energy Sector Market Analysis

    SciTech Connect

    Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

    2006-10-01

    This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

  18. Iron and Steel Sector (NAICS 3311 and 3312) Energy and GHG Combustion Emissions Profile, November 2012

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    99 2.6 IRON AND STEEL SECTOR (NAICS 3311, 3312) 2.6.1. Overview of the Iron and Steel Manufacturing Sector The iron and steel sector is an essential part of the U.S. manufacturing sector, providing the necessary raw material for the extensive industrial supply chain. U.S. infrastructure is heavily reliant on the U.S. iron and steel sector, as it provides the foundation for construction (bridges, buildings), transportation systems (railroads, cars, trucks), utility systems (municipal water

  19. Study of Long-Term Transport Action Plan for ASEAN | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Partner Nippon Foundation, Ministry of Planning, Ministry of Transport Sector Climate, Land Focus Area Greenhouse Gas, People and Policy, Transportation Topics Background...

  20. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas

    SciTech Connect

    Not Available

    1993-12-01

    As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

  1. Estimated United States Transportation Energy Use 2005

    SciTech Connect

    Smith, C A; Simon, A J; Belles, R D

    2011-11-09

    A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

  2. Process Intensification - Chemical Sector Focus

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Process Intensification - Chemical Sector Focus 1 Technology Assessment 2 Contents 3 1. Introduction ..................................................................................................................................................................... 1 4 2. Technology Assessment and Potential ................................................................................................................. 5 5 2.1 Chemical Industry Focus

  3. Cross-sector Demand Response

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  4. Sector Collaborative on Energy Efficiency

    SciTech Connect

    none,

    2008-06-01

    Helps stakeholders identify and act on cost-effective opportunities for expanding energy efficiency resources in the hospitality, retail, commercial real estate, grocery, and municipal sectors.

  5. Taiwan: An energy sector study

    SciTech Connect

    Johnson, T.; Fridley, D.; Kang, Wu

    1988-03-01

    A study on the economy of Taiwan, with special reference to the energy sector, revealed the following: Taiwan's rapid export-driven economic growth in the 1970s and 1980s has earned them the rank of ''Newly Industrialized Countries.'' Coal reserves measure less than 1 billion tons, and annual output has declined to below 2 million tons per year. Marginal amounts of crude are produced. Natural gas resources have been exploited both on- and offshore, through production amounts to little more than 1 billion cubic meters per year. Domestic hydrocarbon production is forecast to decline. Taiwan prssesses an estimated 5300 mW of exploitable hydropower capacity, of which 2564 mW had been installed by 1986. Taiwan has undertaken a massive program of nuclear power construction in response to the rapid rise in oil prices during the 1970s. Energy demand has risen an average of 9.0 percent per year since 1954, while real GNP has grown 8.6 percent per year. Sine 1980, oil has provided a lower share of total energy demand. Oil demand for transport has continued to grow rapidly. Declining production of domestic natural gas has led Taiwan to initiate LNG imports from Indonesia beginning in 1990. Coal has regained some of its earlier importance in Taiwan's energy structure. With declining domestic production, imports now provide nearly 90 percent of total coal demand. Taiwan is basically self-sufficient in refining capacity. Energy demand is expected to grow 5.4 percent per year through the yeat 2000. With declining output of domestic resources, energy dependency on imports will rise from its current 90 percent level. Government policy recognizes this external dependency and has directed it efforts at diversification of suppliers. 18 refs., 11 figs., 40 tabs.

  6. Fact #948: October 24, 2016 Carbon Dioxide Emissions from Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Exceeded those from the Electric Power Sector for the First Time in 38 Years - Dataset | Department of Energy 8: October 24, 2016 Carbon Dioxide Emissions from Transportation Exceeded those from the Electric Power Sector for the First Time in 38 Years - Dataset Fact #948: October 24, 2016 Carbon Dioxide Emissions from Transportation Exceeded those from the Electric Power Sector for the First Time in 38 Years - Dataset Excel file and dataset for Carbon Dioxide Emissions from Transportation

  7. Transportation Fact of the Week | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Week Transportation Fact of the Week This Week's Fact #951: November 14, Medium and Heavy Trucks Are Responsible for a Disproportionate Amount of Fuel Use and Carbon Dioxide Emissions #950 Well-to-Wheel Emissions from a Typical EV by State, 2015 November 7, 2016 #949 Reduced CO2 Emissions in the Electric Power Sector Will Benefit the Transportation Sector as Electrification Grows October 31, 2016 #948 Carbon Dioxide Emissions from Transportation Exceeded those from the Electric Power Sector for

  8. International Association of Public Transport | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: International Association of Public Transport Address: Rue Sainte-Marie 6 (Quai des Charbonnages) Place: Brussels, Belgium Zip: B-1080 Sector: Vehicles Year...

  9. Technology Mapping of the Renewable Energy, Buildings and Transport...

    OpenEI (Open Energy Information) [EERE & EIA]

    Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  10. India-Low Carbon Transport | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name UNEP-Low Carbon Transport in India AgencyCompany Organization United Nations Environment Programme (UNEP) Sector Climate, Energy Focus Area...

  11. Energy Department Awards $45 Million to Deploy Advanced Transportation...

    Energy.gov [DOE] (indexed site)

    transportation sector that cuts harmful pollution, creates jobs and leads to a more ... the lifetime of each vehicle - and eliminate six billion metric tons of carbon pollution. ...

  12. Introduction to the Buildings Sector Module of SEDS

    SciTech Connect

    DeForest, Nicholas; Bonnet, Florence; Stadler, Michael; Marnay, Chris

    2010-12-31

    SEDS is a stochastic engineering-economics model that forecasts economy-wide energy consumption in the U.S. to 2050. It is the product of multi-laboratory collaboration among the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL), Lawrence Berkeley National Laboratory (LBNL), and Lumina Decision Systems. Among national energy models, SEDS is unique, as it is the only model written to explicitly incorporate uncertainty in its inputs and outputs. The primary purpose of SEDS is to estimate the impact of various US Department of Energy (DOE)R&D and policy programs on the performance and subsequent adoption rates of technologies relating to every energy consuming sector of the economy (shown below). It has previously been used to assist DOE in complying with the Government Performance and Results Act of 1993 (GPRA). The focus of LBNL research has been exclusively on develop the buildings model (SBEAM), which is capable of running as a stand-alone forecasting model, or as a part of SEDS as a whole. The full version of SEDS, containing all sectors and interaction is also called the 'integrated' version and is managed by NREL. Forecasts from SEDS are often compared to those coming from National Energy Modeling System (NEMS). The intention of this document is to present new users and developers with a general description of the purpose, functionality and structure of the buildings module within the Stochastic Energy Deployment System (SEDS). The Buildings module, which is capable of running as a standalone model, is also called the Stochastic Buildings Energy and Adoption Model (SBEAM). This document will focus exclusively on SBEAM and its interaction with other major sector modules present within SEDS. The methodologies and major assumptions employed in SBEAM will also be discussed. The organization of this report will parallel the organization of the model itself, being divided into major submodules

  13. Fact #792: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    In the last 30 years, overall energy consumption has grown by about 22 quadrillion Btu. The share of energy consumption by the transportation sector has seen modest growth in that time – from about...

  14. Fact #792: August 12, 2013 Energy Consumption by Sector and Energy...

    Energy.gov [DOE] (indexed site)

    In the last 30 years, overall energy consumption has grown by about 22 quadrillion Btu. The share of energy consumption by the transportation sector has seen modest growth in that ...

  15. NREL: Transportation Research - NPR Features Transportation and Hydrogen

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Systems Center Director Chris Gearhart NPR Features Transportation and Hydrogen Systems Center Director Chris Gearhart September 30, 2016 National Public Radio (NPR) recently featured the National Renewable Energy Laboratory's (NREL's) Chris Gearhart, director of NREL's Transportation and Hydrogen Systems Center, in an interview on the affordability of low-emission vehicles. "I come to work every day because I think that getting greenhouse gas emissions out of the transportation sector

  16. WINDExchange: Wind Energy Market Sectors

    WindExchange

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind Energy Market Sectors U.S. power plants generate electricity for homes, factories, and businesses from a variety of resources, including coal, hydro, natural gas, nuclear, petroleum, and (non-hydro) renewable resources such as wind and solar energy. This power generation mix varies significantly across the country depending on

  17. Infrastructure opportunities in South America: Energy sector. Export trade information

    SciTech Connect

    1995-06-01

    The report, conducted by CG/LA, Inc., was funded by the U.S. Trade and Development Agency. The report was assembled for the South American Infrastructure Conference held in New Orleans. It contains a regional overview of infrastructure activities in ten countries represented at the conference. Also covered are project listings in five sectors, including Energy, Transportation, Environment, Telecommunications, and Industry. The study covers TDA case studies as well as project financeability. The ten countries covered in the report include the following: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Paraguay, Peru, Uruguay, and Venezuela. This volume focuses on the Energy Sector in South America.

  18. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by Robert ...

  19. Property:DeploymentSector | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Property Name DeploymentSector Property Type String Description Depolyment Sector as used in cleanenergysolutions.org Allows the following values: Commercial...

  20. Energy Sector Cybersecurity Framework Implementation Guidance

    Energy.gov [DOE] (indexed site)

    JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector ...

  1. Coal sector profile

    SciTech Connect

    Not Available

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  2. Fact #561: March 9, 2009 All Sectors' Petroleum Gap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1: March 9, 2009 All Sectors' Petroleum Gap Fact #561: March 9, 2009 All Sectors' Petroleum Gap Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial, residential and commercial, and electric utilities. In 1973 the gap between what the U.S. produced and what was consumed was 5.6 million barrels per day. By 2030, the gap is expected to be at least 9.2 million

  3. Fact #688: August 15, 2011 All Sectors' Petroleum Gap | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 8: August 15, 2011 All Sectors' Petroleum Gap Fact #688: August 15, 2011 All Sectors' Petroleum Gap Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial, residential and commercial, and electric utilities. In 1973 the gap between what the U.S. produced and what was consumed was 5.6 million barrels per day. By 2035, the gap is expected to be at least 9.6

  4. The Transportation Sector Model of the National Energy Modeling...

    Gasoline and Diesel Fuel Update

    adjustment due to scientific advances. LEARNCOSTMULTIPLIER 2 Cost adjustment due to manufacturing advances. LEARNCOSTMULTIPLIER 3 Cost adjustment due to design advances....

  5. Transportation Sector Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update

    steps have been taken for all vehicle classes, CAFE is calculated for each of the nine manufacturing groups. Each group is classified as either passing or failing the CAFE...

  6. Transportation Sector Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update

    adjustment due to scientific advances. LEARNCOSTMULTIPLIER 2 Cost adjustment due to manufacturing advances. LEARNCOSTMULTIPLIER 3 Cost adjustment due to design advances....

  7. Transportation Sector Demand Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update

    and historic yearly values for car prices at different production levels by applying an additive adjustment to the price of a gasoline-fueled vehicle. a) Car and Light Truck at...

  8. DOE/EIA-M070(2010) Transportation Sector

    Gasoline and Diesel Fuel Update

    adjustment due to scientific advances. LEARNCOSTMULTIPLIER 2 Cost adjustment due to manufacturing advances. LEARNCOSTMULTIPLIER 3 Cost adjustment due to design advances....

  9. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt043tierickson2012o

  10. Rail Coal Transportation Rates to the Electric Power Sector

    Gasoline and Diesel Fuel Update

    modes, the Coal Waybill Data is based only on rail shipments. Due to the different nature of the data sources, users should exercise caution when attempting to combine the two...

  11. Coal Transportation Rates to the Electric Power Sector

    Gasoline and Diesel Fuel Update

    their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data, much of the information had to be withheld for confidentiality...

  12. AEO2017 Modeling updates in the transportation sector

    Gasoline and Diesel Fuel Update

    Massachusetts, Rhode Island, Vermont * CD2: New ... * Update total freight ton-mile and vehicle miles traveled ... - Stock is made up of three types of aircraft: ...

  13. FY 2016 EERE Budget Webinar—Sustainable Transportation Sector

    Energy.gov [DOE]

    The Energy Department’s Office of Energy Efficiency and Renewable Energy (EERE) hosted a webinar series featuring our deputy assistant secretaries and the technology office directors as they dove deep into EERE’s fiscal year (FY) 2016 budget request

  14. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt043tierickson2011p

  15. Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  16. Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  17. Post-2012 Climate Instruments in the transport sector | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    mitigation instruments under a post-2012 Climate Change Agreement. It analysis of how international funding mechanisms, particularly NAMAs, under the post-2012 climate...

  18. Utah Clean Cities Transportation Sector Petroleum Reduction Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt043_ti_erickson_2012_o.pdf (1.03 MB

  19. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  2. Sector Profiles of Significant Large CHP Markets, March 2004

    Energy.gov [DOE]

    Overview of market assessments of large CHP sector profiles of the chemicals, food, and pharmaceuticals sectors

  3. Biomass Resources for the Federal Sector

    SciTech Connect

    Not Available

    2005-08-01

    Biomass Resources for the Federal Sector is a fact sheet that explains how biomass resources can be incorporated into the federal sector, and also how they can provide opportunities to meet federal renewable energy goals.

  4. Water Impacts of the Electricity Sector (Presentation)

    SciTech Connect

    Macknick, J.

    2012-06-01

    This presentation discusses the water impacts of the electricity sector. Nationally, the electricity sector is a major end-user of water. Water issues affect power plants throughout the nation.

  5. Working with the Real Estate Sector

    Energy.gov [DOE]

    Better Buildings Neighborhood Program Workforce Peer Exchange Call: Working with the Real Estate Sector, Call Slides and Discussion Summary, March 1, 2012. This call discussed effective strategies for working with the real estate sector.

  6. Modeling distributed generation in the buildings sectors

    Annual Energy Outlook

    by sector Residential Commercial Renewable * Solar photovoltaic * Wind * Solar photovoltaic * Wind * Hydroelectric* * Wood* * Municipal solid waste* Non-renewable * Natural ...

  7. SEP Special Projects Report: Buildings Sector

    SciTech Connect

    2009-01-18

    The buildings section of this Sharing Success document describes SEP special projects in the buildings sector including funding.

  8. Multi-Sector General Permit (MSGP)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MSGP Multi-Sector General Permit (MSGP) The Multi-Sector General Permit authorizes the discharge of stormwater associated with industrial activity. What's New Documents submitted to EPRR in last 30 Days TBD What is the Multi-Sector General Permit? Storm water discharges from EPA specified industrial activities are regulated under the National Pollutant Discharge Elimination System (NPDES) Multi-Sector General Permit (MSGP). LANL regulated industrial activities include: Metal fabrication Power

  9. Accelerating Investments in the Geothermal Sector, Indonesia...

    OpenEI (Open Energy Information) [EERE & EIA]

    Accelerating Investments in the Geothermal Sector, Indonesia (Presentation) Author Paul Brophy Conference World Geothermal Energy Summit; Jakarta, Indonesia; 20120706...

  10. Behavioral Assumptions Underlying California Residential Sector Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency Programs (2009 CIEE Report) | Department of Energy Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report) Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report) This paper examines the behavioral assumptions that underlie California's residential sector energy efficiency programs and recommends improvements that will help to advance the state's ambitious greenhouse gas

  11. Private Sector Outreach and Partnerships | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Private Sector Outreach and Partnerships Private Sector Outreach and Partnerships ISER's partnerships with the private sector are a strength which has enabled the division to ...

  12. Energy Efficiency and the Finance Sector | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    and the Finance Sector Jump to: navigation, search Name Energy Efficiency and the Finance Sector AgencyCompany Organization United Nations Environment Programme Sector Energy...

  13. Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Nepal-Sectoral Climate Impacts Economic Assessment (Redirected from Nepal Sectoral Climate impacts Economic Assessment) Jump to: navigation, search Name Nepal Sectoral Climate...

  14. China's transportation energy consumption and CO2 emissions from a global perspective

    SciTech Connect

    Yin, Xiang; Chen, Wenying; Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Patel, Pralit L.; Yu, Sha; Kyle, G. Page

    2015-07-01

    ABSTRACT Rapidly growing energy demand from China's transportation sector in the last two decades have raised concerns over national energy security, local air pollution, and carbon dioxide (CO2) emissions, and there is broad consensus that China's transportation sector will continue to grow in the coming decades. This paper explores the future development of China's transportation sector in terms of service demands, final energy consumption, and CO2 emissions, and their interactions with global climate policy. This study develops a detailed China transportation energy model that is nested in an integrated assessment model—Global Change Assessment Model (GCAM)—to evaluate the long-term energy consumption and CO2 emissions of China's transportation sector from a global perspective. The analysis suggests that, without major policy intervention, future transportation energy consumption and CO2 emissions will continue to rapidly increase and the transportation sector will remain heavily reliant on fossil fuels. Although carbon price policies may significantly reduce the sector's energy consumption and CO2 emissions, the associated changes in service demands and modal split will be modest, particularly in the passenger transport sector. The analysis also suggests that it is more difficult to decarbonize the transportation sector than other sectors of the economy, primarily owing to its heavy reliance on petroleum products.

  15. Transportation Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    transportation-research TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Transportation Research Current Research Overview The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and

  16. Electric energy sector in Argentina

    SciTech Connect

    Bastos, C.M.

    1994-06-01

    This article describes how the organization of the electric energy sector in Argentina has changed dramatically from a sector in which state-owned companies worked under a central planning to one in which private companies make their own decisions. The way that the electrical system used to work can be shown by these statements: demand growth estimated by central planning team; projects to be developed and the timetable determined by the same team; unit operations ruled by central dispatch, and under state-owned companies responsibility; integration with neighbor countries focused on physical projects, such as Salto Grande with Uruguay and Yacyreta with Paraguay. Today the electrical system works under these rules: the system has been vertically separated and the companies cannot be integrated; electric energy is considered as an ordinary wealth and the value that consumers give it is taken into account, (the distribution companies pay consumers a penalty for the energy that they cannot supply, the penalty is worth the economic damage consumers suffer due to its lack); producers have to compete for demand. They can sell in two ways: sell under private agreements or sell to the system. Both ways of selling compete with each other because the system buys giving priority to lower costs and, as a consequence, some of the producers do not sell at all.

  17. Transportation and Parking

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transportation and Parking

  18. Radiation Transport

    SciTech Connect

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  19. Chapter 8 - Advancing Clean Transportation and Vehicle Systems and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies | Department of Energy 8 - Advancing Clean Transportation and Vehicle Systems and Technologies Chapter 8 - Advancing Clean Transportation and Vehicle Systems and Technologies Chapter 8 - Advancing Clean Transportation and Vehicle Systems and Technologies Transportation is a complex sector composed of light duty, medium duty, heavy duty, and non-highway vehicles; rail; aircraft; and ships used for personal transport, movement of goods, construction, agriculture, and mining as

  20. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-09-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

  1. Chamber transport

    SciTech Connect

    OLSON,CRAIG L.

    2000-05-17

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

  2. Energy Sector Cybersecurity Framework Implementation Guidance | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Sector Cybersecurity Framework Implementation Guidance Energy Sector Cybersecurity Framework Implementation Guidance On January 8, 2015, the Energy Department released guidance to help the energy sector establish or align existing cybersecurity risk management programs to meet the objectives of the Cybersecurity Framework released by the National Institutes of Standards and Technology (NIST) in February 2014. The voluntary Cybersecurity Framework consists of standards, guidelines,

  3. Energy Analysis by Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information Resources » Energy Analysis by Sector Energy Analysis by Sector Manufacturers often rely on energy-intensive technologies and processes. AMO conducts a range of analyses to explore energy use and trends by sector. Manufacturing Energy and Carbon Footprints Static Manufacturing Energy Sankey Diagrams Dynamic Manufacturing Energy Sankey Tool Energy & Environmental Profiles Bandwidth Studies Large Energy User Manufacturing Facilities by State MANUFACTURING ENERGY and carbon

  4. Chapter 2: Energy Sectors and Systems

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2: Energy Sectors and Systems September 2015 Quadrennial Technology Review 2 Energy Sectors and Systems Issues and RDD&D Opportunities Energy systems are becoming increasingly interconnected and complex. Integrated energy systems present both opportunities for performance improvement as well as risks to operability and security. The size and scope of these opportunities and risks are just beginning to be understood. This chapter addresses both the key issues of energy sectors and their

  5. Energy Sector Cybersecurity Framework Implementation Guidance...

    Energy.gov [DOE] (indexed site)

    Department released guidance to help the energy sector establish or align existing cybersecurity risk management programs to meet the objectives of the Cybersecurity Framework...

  6. Draft Energy Sector Cybersecurity Framework Implementation Guidance...

    Energy.gov [DOE] (indexed site)

    in the Federal Register, inviting the public to comment on DOE's Energy Sector Cybersecurity Framework Implementation Guidance. Comments must be received on or before October...

  7. Energy Sector Cybersecurity Framework Implementation Guidance...

    Energy.gov [DOE] (indexed site)

    invites public comment on a draft of the Energy Sector Cybersecurity Framework Implementation Guidance. Comments must be received on or before October 14, 2014. The draft document...

  8. Model Documentation Report: Commercial Sector Demand Module...

    Gasoline and Diesel Fuel Update

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  9. EPA Power Sector Regulations | Department of Energy

    Energy.gov [DOE] (indexed site)

    OE offers technical assistance on implementing the new and pending EPA air rules affecting ... in the Electric Power Sector page for information specific to these EPA regulations.

  10. Energy Sector Cybersecurity Framework Implementation Guidance...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    In February 2014, the National Institute of Standards and Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the ...

  11. Behavioral Assumptions Underlying California Residential Sector...

    Energy.gov [DOE] (indexed site)

    paper examines the behavioral assumptions that underlie California's residential sector energy efficiency programs and recommends improvements that will help to advance the state's ...

  12. US Energy Sector Vulnerabilities to Climate Change

    Energy.gov [DOE] (indexed site)

    Photo credits: iStockphoto U.S. ENERGY SECTOR VULNERABILITIES TO CLIMATE CHANGE AND ... and International Affairs (DOE-PI) and the National Renewable Energy Laboratory (NREL). ...

  13. Property:Sector | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    is a property of type Page. Subproperties This property has the following 1 subproperty: G Green Economy Toolbox Pages using the property "Sector" Showing 25 pages using this...

  14. Behavioral Assumptions Underlying California Residential Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs ... of Oslo Prepared for: CIEE Behavior and Energy Program Edward Vine, Program Manager ...

  15. Category:Public Sectors | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:PublicSectors&oldid272249" Feedback Contact needs updating Image needs updating...

  16. National Electric Sector Cybersecurity Organization Resource (NESCOR)

    SciTech Connect

    None, None

    2014-06-30

    The goal of the National Electric Sector Cybersecurity Organization Resource (NESCOR) project was to address cyber security issues for the electric sector, particularly in the near and mid-term. The following table identifies the strategies from the DOE Roadmap to Achieve Energy Delivery Systems Cybersecurity published in September 2011 that are applicable to the NESCOR project.

  17. Energy Sector Cybersecurity Framework Implementation Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector Cybersecurity Framework Implementation Guidance │ Table of Contents TABLE OF CONTENTS 1. Introduction .............................................................................................................................................. 1 2. Preparing for Framework Implementation

  18. Why is energy use rising in the freight sector?

    SciTech Connect

    Mintz, M.; Vyas, A.D.

    1991-12-31

    Trends in transportation sector energy use and carbon dioxide emissions are analyzed with an emphasis on three freight modes -- rail, truck, and marine. A recent set of energy use projections is presented and freight mode energy characteristics are discussed. Transportation sector energy use, which nearly doubled between 1960 and 1985, is projected to grow more slowly during the period 1985{endash}2010. Most of the growth is projected to come from non-personal modes (freight and commercial air). Trends in freight mode energy intensities are discussed and a variety of factors behind these trends are analyzed. Rail and marine modes improved their energy intensities during sudden fuel price rises of the 1970s. Though there is room for further technological improvement, long power plant life cycles preclude rapid penetration of new technologies. Thus, energy intensities in these modes are more likely to improve through operational changes. Because of relatively stable fuel prices, the energy share of truck operating expenses is likely to remain low. Coupled with increasing labor costs, this portends only modest improvements in truck energy efficiency over the next two decades.

  19. Why is energy use rising in the freight sector

    SciTech Connect

    Mintz, M.; Vyas, A.D.

    1991-01-01

    Trends in transportation sector energy use and carbon dioxide emissions are analyzed with an emphasis on three freight modes -- rail, truck, and marine. A recent set of energy use projections is presented and freight mode energy characteristics are discussed. Transportation sector energy use, which nearly doubled between 1960 and 1985, is projected to grow more slowly during the period 1985{endash}2010. Most of the growth is projected to come from non-personal modes (freight and commercial air). Trends in freight mode energy intensities are discussed and a variety of factors behind these trends are analyzed. Rail and marine modes improved their energy intensities during sudden fuel price rises of the 1970s. Though there is room for further technological improvement, long power plant life cycles preclude rapid penetration of new technologies. Thus, energy intensities in these modes are more likely to improve through operational changes. Because of relatively stable fuel prices, the energy share of truck operating expenses is likely to remain low. Coupled with increasing labor costs, this portends only modest improvements in truck energy efficiency over the next two decades.

  20. Beam Transport

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Beam Transport A simplified drawing of the beam transport system from the linac to Target-1 (Lujan Center), Target-2 (Blue Room) and Target-4 is shown below. In usual operation ...

  1. WIPP Transportation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transuranic Waste Transportation Container Documents Documents related to transuranic waste containers and packages. CBFO Tribal Program Information about WIPP shipments across tribal lands. Transportation Centralized Procurement Program - The Centralized Procurement Program provides a common method to procure standard items used in the packaging and handling of transuranic wasted destined for WIPP. Transuranic Waste Transportation Routes - A map showing transuranic waste generator sites and

  2. Power sector liberalization in developing countries

    SciTech Connect

    Seabright, J.

    1998-07-01

    Based on extensive experience of the US Agency for International Development (USAID) with power sector liberalization in developing countries over the past decade, it has become clear that liberalization is a powerful tool for helping achieve sustainable and environmentally sound social and economic development. The basic driving forces for liberalization are: The need for additional energy to support sustainable economic and social development; the lack of public sector financial resources for system improvement; the inefficiency of existing power generation, transmission, distribution and end use; and the poor environmental performance of public sector power utilities. Power sector liberalization has brought the benefits of greater efficiency in the power sector, increased investment, more economic pricing, greater independence from political interference, increased competition and dampening of tariff increase, and better environmental protection. Care needs to be taken, however, to insure that progress in the areas of energy efficiency, renewable energy, and rural electrification are not compromised in the drive to liberalize. USAID firmly believes that power sector liberalization offers a fundamental opportunity to all countries to improve the sustainable supply and use of energy for productive purposes for this and future generations. All nations should seriously consider energy sector liberalization and one or more of the various approaches.

  3. Fact #948: October 24, 2016 Carbon Dioxide Emissions from Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Exceeded those from the Electric Power Sector for the First Time in 38 Years | Department of Energy 8: October 24, 2016 Carbon Dioxide Emissions from Transportation Exceeded those from the Electric Power Sector for the First Time in 38 Years Fact #948: October 24, 2016 Carbon Dioxide Emissions from Transportation Exceeded those from the Electric Power Sector for the First Time in 38 Years SUBSCRIBE to the Fact of the Week Beginning in 1978, carbon dioxide (CO2) emissions from the electric

  4. DOE Issues Energy Sector Cyber Organization NOI

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security of the grid. ...

  5. Market Report for the Industrial Sector, 2009

    SciTech Connect

    Sastri, Bhima; Brueske, Sabine; de los Reyes, Pamela; Jamison, Keith; Justiniano, Mauricio; Margolis, Nancy; Monfort, Joe; Raghunathan, Anand; Sabouni, Ridah

    2009-07-01

    This report provides an overview of trends in industrial-sector energy use. It focuses on some of the largest and most energy-intensive industrial subsectors and several emerging technologies that could transform key segments of industry.

  6. Guam Transportation Petroleum-Use Reduction Plan

    SciTech Connect

    Johnson, C.

    2013-04-01

    The island of Guam has set a goal to reduce petroleum use 20% by 2020. Because transportation is responsible for one-third of on-island petroleum use, the Guam Energy Task Force (GETF), a collaboration between the U.S. Department of Energy and numerous Guam-based agencies and organizations, devised a specific plan by which to meet the 20% goal within the transportation sector. This report lays out GETF's plan.

  7. NREL: Energy Analysis: Electric Sector Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electric Sector Integration Integrating higher levels of renewable resources into the U.S. electricity system could pose challenges to the operability of the nation's grid. NREL's electric sector integration analysis work investigates the potential impacts of expanding renewable technology deployment on grid operations and infrastructure expansion including: Feasibility of higher levels of renewable electricity generation. Options for increasing electric system flexibility to accommodate higher

  8. EPA Power Sector Regulations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EPA Power Sector Regulations EPA Power Sector Regulations OE offers technical assistance on implementing the new and pending EPA air rules affecting the electric utility industry. Examples of typical assistance include technical information on cost and performance of the various power plant pollution retrofit control technologies; technical information on generation, demand-side or transmission alternatives for any replacement power needed for retiring generating units; and assistance to

  9. Assumptions to Annual Energy Outlook - Energy Information Administrati...

    Gasoline and Diesel Fuel Update

    also are evaluated for convergence. Each NEMS component represents the effects and costs of legislation and environmental regulations that affect that sector. NEMS accounts...

  10. Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Five Retailers of Electricity, with End Use Sectors, 2014" "Alaska" "megawatthours" ,"Entity","Type of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Golden Valley Elec Assn Inc","Cooperative",1219363,276627,129773,812963,0 2,"Chugach Electric Assn Inc","Cooperative",1134527,513748,563581,57198,0 3,"Anchorage Municipal

  11. 2015 Energy Sector-Specific Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Sector-Specific Plan 2015 Energy Sector-Specific Plan The U.S. Department of Energy (DOE), as the Sector-Specific Agency for the Energy Sector, has worked closely with government and industry partners to develop the 2015 Energy Sector-Specific Plan (SSP). DOE conducted much of this work in collaboration with the Energy Sector Coordinating Councils (SCCs) and the Energy Government Coordinating Council (GCC). The Energy SCCs represent the interests of the Electricity and Oil and Natural Gas

  12. Energy Department Announces New Private Sector Partnership to...

    Energy.gov [DOE] (indexed site)

    projects, and the Department will invite private sector participation to accelerate the ... underwriting process and leverage private sector expertise and capital for the ...

  13. Energy Department Announces New Private Sector Partnership to...

    Energy Saver

    Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects October 7, ...

  14. DOE Technology Commercialization Fund Kicks Off New Private Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Technology Commercialization Fund Kicks Off New Private Sector Outreach DOE Technology Commercialization Fund Kicks Off New Private Sector Outreach May 24, 2016 - 4:08pm ...

  15. LED Site Lighting in the Commercial Building Sector: Opportunities...

    Energy Saver

    Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification LED Site Lighting in the Commercial Building Sector: ...

  16. Template:Energy Generation Facilities by Sector | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Generation Facilities by Sector Jump to: navigation, search This is the Energy Generation Facilities by Sector template. It will display energy generation facilities for the...

  17. Climate Change and the Electricity Sector: Guide for Assessing...

    Office of Environmental Management (EM)

    Electricity Sector: Guide for Assessing Vulnerabilities and Developing Resilience Solutions to Sea Level Rise. July 2016 Climate Change and the Electricity Sector: Guide for ...

  18. Climate Change and the Transporation Sector - Challenges and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Climate Change and the Transporation Sector - Challenges and Mitigation Options Climate Change and the Transporation Sector - Challenges and Mitigation Options 2003 DEER Conference ...

  19. Energy-Sector Stakeholders Attend the Department of Energy's...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's 2010 ...

  20. Roadmap to Secure Control Systems in the Energy Sector - January...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roadmap to Secure Control Systems in the Energy Sector - January 2006 Roadmap to Secure Control Systems in the Energy Sector - January 2006 This document, the Roadmap to Secure...

  1. List of Companies in Geothermal Sector | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Sector Jump to: navigation, search Companies in the Geothermal energy sector: Add a Company Download CSV (rows 1-212) Map of Geothermal energy companies Loading map......

  2. National and Sectoral GHG Mitigation Potential: A Comparison...

    OpenEI (Open Energy Information) [EERE & EIA]

    and Sectoral GHG Mitigation Potential: A Comparison Across Models Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National and Sectoral GHG Mitigation Potential: A...

  3. Climate Change: Risks and Opportunities for the Finance Sector...

    OpenEI (Open Energy Information) [EERE & EIA]

    Finance Sector Online Course Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change: Risks and Opportunities for the Finance Sector Online Course Agency...

  4. OECD-Private Sector Engagement in Adaptation to Climate Change...

    OpenEI (Open Energy Information) [EERE & EIA]

    Private Sector Engagement in Adaptation to Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: OECD-Private Sector Engagement in Adaptation to Climate Change...

  5. Renewable Energy Cross Sectoral Assessments Terms of Reference...

    OpenEI (Open Energy Information) [EERE & EIA]

    Renewable Energy Cross Sectoral Assessments Terms of Reference Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Cross Sectoral Assessments Terms of...

  6. Number of Large Energy User Manufacturing Facilities by Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector) State...

  7. Morocco-Low Carbon Development Planning in the Power Sector ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Low Carbon Development Planning in the Power Sector Jump to: navigation, search Logo: Morocco-Low Carbon Development Planning in the Power Sector Name Morocco-Low Carbon...

  8. Nigeria-Low Carbon Development Planning in the Power Sector ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Low Carbon Development Planning in the Power Sector Jump to: navigation, search Logo: Nigeria-Low Carbon Development Planning in the Power Sector Name Nigeria-Low Carbon...

  9. Overcoming Multifamily Sector Barriers in Austin, Texas | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Overcoming Multifamily Sector Barriers in Austin, Texas Overcoming Multifamily Sector Barriers in Austin, Texas Presents techniques on overcoming the barriers of multifamily energy...

  10. South Africa-Danish Government Sector Programmes | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector Programmes Jump to: navigation, search Name South Africa-Danish Government Sector Programmes AgencyCompany Organization Danish Government Partner Danish Ministry for...

  11. Workforce Training for the Electric Power Sector: Awards | Department...

    Energy.gov [DOE] (indexed site)

    List of Workforce Training Awards for the Electric Power Sector under the American ... More Documents & Publications Workforce Training for the Electric Power Sector Microsoft ...

  12. EIA Energy Efficiency-Residential Sector Energy Intensities,...

    Energy Information Administration (EIA) (indexed site)

    Residential Sector Energy Intensities RESIDENTIAL SECTOR ENERGY INTENSITIES: 1978-2005 Released Date: August 2004 Page Last Modified:June 2009 These tables provide estimates of...

  13. Roadmap to Secure Control Systems in the Energy Sector - January...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - January 2006 Roadmap to Secure Control Systems in the Energy Sector - January 2006 This document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent ...

  14. Workforce Training for the Electric Power Sector | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Workforce Training for the Electric Power Sector Workforce Training for the Electric Power Sector PDF icon 04-08-2010SGWorkforceSelections.pdf More Documents & Publications ...

  15. List of Companies in Hydrogen Sector | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Companies in Hydrogen Sector Jump to: navigation, search Companies in the Hydrogen sector: Add a Company Download CSV (rows 1-196) Map of Hydrogen companies Loading map......

  16. Manufacturing Energy and Carbon Footprint - Sector: Iron and...

    Office of Environmental Management (EM)

    - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS ...

  17. Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Nepal-Sectoral Climate Impacts Economic Assessment Jump to: navigation, search Name Nepal Sectoral Climate impacts Economic Assessment AgencyCompany Organization Climate and...

  18. Energy Critical Infrastructure and Key Resources Sector-Specific

    Energy.gov [DOE] (indexed site)

    Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) May 2007 Department of Energy Energy Sector ...

  19. Greening Transportation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transportation Goal 2: Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by offering various commuting and work schedule options. Our goal is to reduce emissions related to employee travel and commuting to and from work by 13 percent. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science

  20. Sustainable Transportation

    SciTech Connect

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  1. Research in transportation: the shape of the future

    SciTech Connect

    Chenea, P.F.

    1981-01-01

    The individual mobility now enjoyed due to advancements in the transportation sector is being threatened by higher fuel costs and declining petroleum resources. Transportation research approaches must address these problems. Automotive engineers must redesign existing vehicles to make them smaller, lighter, and so more fuel efficient. Alternatives to the gasoline engine, such as gas turbine and stratified charge engines, must be commercialized.

  2. ImSET: Impact of Sector Energy Technologies

    SciTech Connect

    Roop, Joseph M.; Scott, Michael J.; Schultz, Robert W.

    2005-07-19

    This version of the Impact of Sector Energy Technologies (ImSET) model represents the ''next generation'' of the previously developed Visual Basic model (ImBUILD 2.0) that was developed in 2003 to estimate the macroeconomic impacts of energy-efficient technology in buildings. More specifically, a special-purpose version of the 1997 benchmark national Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE) -developed energy-saving technologies. In comparison with the previous versions of the model, this version allows for more complete and automated analysis of the essential features of energy efficiency investments in buildings, industry, transportation, and the electric power sectors. This version also incorporates improvements in the treatment of operations and maintenance costs, and improves the treatment of financing of investment options. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act.

  3. Sectoral trends in global energy use and greenhouse gasemissions

    SciTech Connect

    Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

    2006-07-24

    In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a new set of baseline greenhouse gas (GHG) emissions scenarios in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES team defined four narrative storylines (A1, A2, B1 and B2) describing the relationships between the forces driving GHG and aerosol emissions and their evolution during the 21st century. The SRES reports emissions for each of these storylines by type of GHG and by fuel type to 2100 globally and for four world regions (OECD countries as of 1990, countries undergoing economic reform, developing countries in Asia, rest of world). Specific assumptions about the quantification of scenario drivers, such as population and economic growth, technological change, resource availability, land-use changes, and local and regional environmental policies, are also provided. End-use sector-level results for buildings, industry, or transportation or information regarding adoption of particular technologies and policies are not provided in the SRES. The goal of this report is to provide more detailed information on the SRES scenarios at the end use level including historical time series data and a decomposition of energy consumption to understand the forecast implications in terms of end use efficiency to 2030. This report focuses on the A1 (A1B) and B2 marker scenarios since they represent distinctly contrasting futures. The A1 storyline describes a future of very rapid economic growth, low population growth, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The B2 storyline describes a world with an emphasis on economic, social, and environmental sustainability, especially at the local and regional levels. It is a world with moderate population growth

  4. U.S. primary energy consumption by source and sector, 2015

    Energy Information Administration (EIA) (indexed site)

    33 35 24 9 53 100 14 9 <1 91 28 72 23 4 1 92 3 5 44 39 7 11 76 1 9 1 26 37 13 22 petroleum 1 35.4 (36%) sector natural gas 2 28.3 (29%) coal 3 15.7 (16%) renewable energy 4 9.7 (10%) nuclear electric power 8.3 (9%) source percent of sources percent of sectors industrial 5 21.2 (22%) residential and commercial 6 10.6 (11%) electric power 7 38.2 (39%) 15 transportation 27.6 (28%) U.S. primary energy consumption by source and sector, 2015 Total = 97.7 quadrillion British thermal units (Btu) 1

  5. Live Webinar on Better Buildings Challenge: Public-Sector Update

    Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Better Buildings Challenge: Public-Sector Update."

  6. On the Road to Transportation Efficiency (Video)

    SciTech Connect

    Not Available

    2014-03-01

    Reducing emissions and oil consumption are crucial worldwide goals. Reducing transportation emissions, in particular, is key to reducing overall emissions. Electric vehicles driving on electrified roadways could be a significant part of the solution. E-roadways offer a variety of benefits: reduce petroleum consumption (electricity is used instead of gasoline), decrease vehicular operating costs (from about 12 cents per mile to 4 cents per mile), and extend the operational range of electric vehicles. Plus, e-roadway power can come from renewable sources. This animation was sponsored by the Clean Transportation Sector Initiative, and interagency effort between the U.S. Department of Transportation and the U.S. Department of Energy.

  7. Philippines' downstream sector poised for growth

    SciTech Connect

    Not Available

    1992-05-11

    This paper reports that the Philippines' downstream sector is poised for sharp growth. Despite a slip in refined products demand in recent years, Philippines products demand will rebound sharply by 2000, East-West Center (EWC), Honolulu, predicts. Philippines planned refinery expansions are expected to meet that added demand, EWC Director Fereidun Fesharaki says. Like the rest of the Asia-Pacific region, product specifications are changing, but major refiners in the area expect to meet the changes without major case outlays. At the same time, Fesharaki says, push toward deregulation will further bolster the outlook for the Philippines downstream sector.

  8. Life Cycle Assessment Comparing the Use of Jatropha Biodiesel in the Indian Road and Rail Sectors

    SciTech Connect

    Whitaker, M.; Heath, G.

    2010-05-01

    This life cycle assessment of Jatropha biodiesel production and use evaluates the net greenhouse gas (GHG) emission (not considering land-use change), net energy value (NEV), and net petroleum consumption impacts of substituting Jatropha biodiesel for conventional petroleum diesel in India. Several blends of biodiesel with petroleum diesel are evaluated for the rail freight, rail passenger, road freight, and road-passenger transport sectors that currently rely heavily on petroleum diesel. For the base case, Jatropha cultivation, processing, and use conditions that were analyzed, the use of B20 results in a net reduction in GHG emissions and petroleum consumption of 14% and 17%, respectively, and a NEV increase of 58% compared with the use of 100% petroleum diesel. While the road-passenger transport sector provides the greatest sustainability benefits per 1000 gross tonne kilometers, the road freight sector eventually provides the greatest absolute benefits owing to substantially higher projected utilization by year 2020. Nevertheless, introduction of biodiesel to the rail sector might present the fewest logistic and capital expenditure challenges in the near term. Sensitivity analyses confirmed that the sustainability benefits are maintained under multiple plausible cultivation, processing, and distribution scenarios. However, the sustainability of any individual Jatropha plantation will depend on site-specific conditions.

  9. International Energy Outlook 2016-Industrial sector energy consumption -

    Gasoline and Diesel Fuel Update

    Energy Information Administration 7. Industrial sector energy consumption print version Overview The industrial sector uses more delivered energy [294] than any other end-use sector, consuming about 54% of the world's total delivered energy. The industrial sector can be categorized by three distinct industry types: energy-intensive manufacturing, nonenergy-intensive manufacturing, and nonmanufacturing (Table 7-1). The mix and intensity of fuels consumed in the industrial sector vary across

  10. Transportation Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Algae Raceway to speed path to biofuels News, Transportation Energy Algae Raceway to speed path to biofuels With the aim of transforming algae into a cost-competitive biofuel, ...

  11. Energy Department Awards $45 Million to Deploy Advanced Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies | Department of Energy $45 Million to Deploy Advanced Transportation Technologies Energy Department Awards $45 Million to Deploy Advanced Transportation Technologies September 4, 2013 - 10:06am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Building on President Obama's Climate Action Plan to build a 21st century transportation sector and reduce greenhouse gas emissions, the Energy Department announced today more than $45 million for thirty-eight new projects that

  12. Transportation Fuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transportation Fuels DOE would invest $52 million to fund a major fleet transformation at Idaho National Laboratory, along with the installation of nine fuel management systems, purchase of additional flex fuel cars and one E85 ethanol fueling station. Transportation projects, such as the acquisition of highly efficient and alternative-fuel vehicles, are not authorized by ESPC legislation. DOE has twice proportion of medium vehicles and three times as many heavy vehicles as compared to the

  13. Transportation | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transportation NREL's transportation infrastructure and programs are designed to significantly reduce petroleum use campus-wide. This infographic shows NREL's FY2015 fleet performance and fleet vehicle history compared to baseline FY 2005 and FY 2014. Petroleum fuel use decreased 28% from 2014 and increased 17% from baseline 2005. Alternative fuel use increased 53% from 2014 and increased 127% from baseline 2005. In baseline 2005, the fleet used 6,521 gasoline gallon equivalent (GGE) of E-85, in

  14. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Arizona" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Arizona Public Service Co","Investor-owned",27584533,12837752,12477518,2269263,0 2,"Salt River Project","Public",27548529,12293633,11099759,4155137,0 3,"Tucson Electric Power

  15. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    California" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Southern California Edison Co","Investor-owned",75828585,29972416,37903351,7874457,78361 2,"Pacific Gas & Electric Co","Investor-owned",75114523,29289082,28107971,17717470,0 3,"Los Angeles Department of Water &

  16. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Colorado" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Co of Colorado","Investor-owned",28671219,9008526,12886370,6712282,64041 2,"City of Colorado Springs - (CO)","Public",4477715,1425423,1097160,1955132,0 3,"Intermountain Rural Elec

  17. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Connecticut" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Connecticut Light & Power Co","Investor-owned",8945482,6146224,2365991,367962,65305 2,"Constellation NewEnergy, Inc","Investor-owned",2018823,0,1320397,692814,5612 3,"United Illuminating

  18. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    District of Columbia" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Constellation NewEnergy, Inc","Investor-owned",3556542,40286,3515507,749,0 2,"Potomac Electric Power Co","Investor-owned",3015764,1733437,1282327,0,0 3,"WGL Energy Services,

  19. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Georgia" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Georgia Power Co","Investor-Owned",83740365,27132065,32894391,23548775,165134 2,"Jackson Electric Member Corp - (GA)","Cooperative",5201199,3003210,1476773,721216,0 3,"Cobb Electric Membership

  20. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Hawaii" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Hawaiian Electric Co Inc","Investor-owned",6781665,1611149,2270495,2900021,0 2,"Maui Electric Co Ltd","Investor-owned",1132056,381979,373947,376130,0 3,"Hawaii Electric Light Co

  1. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Illinois" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Commonwealth Edison Co","Investor-owned",18061768,9114941,7890441,1056386,0 2,"Constellation Energy Services, Inc.","Investor-owned",10686139,5208659,5477480,0,0 3,"Homefield

  2. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Louisiana" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Entergy Louisiana LLC","Investor-owned",32904509,9047299,6757407,17099803,0 2,"Entergy Gulf States - LA LLC","Investor-owned",20822523,5368421,5529206,9924896,0 3,"Cleco Power

  3. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Maine" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"NextEra Energy Power Marketing","Investor-owned",1984446,859679,1082377,42390,0 2,"New Brunswick Power Generation Corp.","Investor-owned",2101006,1963787,58020,79199,0 3,"Electricity Maine,

  4. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Maryland" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Baltimore Gas & Electric Co","Investor-owned",12270475,8927905,3147168,195402,0 2,"WGL Energy Services, Inc.","Investor-owned",7202209,1077458,6124751,0,0 3,"Potomac Electric Power

  5. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Massachusetts" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Massachusetts Electric Co","Investor-owned",10602381,7180002,3013034,409068,277 2,"NSTAR Electric Company","Investor-owned",8805023,5064032,3531796,209195,0 3,"Direct Energy

  6. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Michigan" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"DTE Electric Company","Investor-owned",41923906,14932840,16790364,10199382,1320 2,"Consumers Energy Co","Investor-owned",33253922,12593983,11045552,9614387,0 3,"Constellation Energy Services,

  7. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Missouri" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Union Electric Co - (MO)","Investor-owned",37022540,13649267,14751404,8600114,21755 2,"Kansas City Power & Light Co","Investor-owned",8554331,2571510,4454312,1528509,0 3,"KCP&L Greater Missouri Operations

  8. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Nevada" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Nevada Power Co","Investor-owned",21109027,8922759,4638229,7539740,8299 2,"Sierra Pacific Power Co","Investor-owned",8097075,2268295,2959866,2868914,0 3,"Shell Energy North America (US),

  9. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Hampshire" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Co of NH","Investor-owned",3799020,2390026,1240068,168926,0 2,"Constellation Energy Services, Inc.","Investor-owned",1008956,3870,1005086,0,0 3,"Constellation NewEnergy,

  10. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Jersey" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Elec & Gas Co","Investor-owned",19571938,11374261,7430854,766823,0 2,"Jersey Central Power & Lt Co","Investor-owned",9957517,7264641,2445207,247669,0 3,"Direct Energy

  11. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    York" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Consolidated Edison Co-NY Inc","Investor-owned",19756921,9869409,9783465,102499,1548 2,"New York Power Authority","Public",18956177,0,8062381,8156837,2736959 3,"Long Island Power

  12. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Oklahoma" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Oklahoma Gas & Electric Co","Investor-owned",24307160,8652606,9472917,6181637,0 2,"Public Service Co of Oklahoma","Investor-owned",17947669,6320906,6389387,5237376,0 3,"Grand River Dam

  13. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Vermont" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Green Mountain Power Corp","Investor-Owned",4281682,1551471,1572378,1157833,0 2,"Vermont Electric Cooperative, Inc","Cooperative",446870,222366,122807,101697,0 3,"City of Burlington Electric -

  14. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Virginia" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Virginia Electric & Power Co","Investor-owned",75562974,29406355,39038242,6916360,202017 2,"Appalachian Power Co","Investor-owned",15954286,6461192,4013267,5479827,0 3,"Rappahannock Electric

  15. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Wisconsin" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Wisconsin Electric Power Co","Investor-owned",23909329,7778541,8832104,7298684,0 2,"Wisconsin Power & Light Co","Investor-owned",10646058,3533105,2424249,4688704,0 3,"Wisconsin Public Service

  16. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    United States" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Florida Power & Light Co","Investor-owned",104431096,55224658,46172611,2942385,91442 2,"Georgia Power Co","Investor-owned",83740365,27132065,32894391,23548775,165134 3,"Southern California Edison

  17. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Arkansas" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Entergy Arkansas Inc","Investor-owned",21049257,8069917,6170936,6808318,86 2,"Southwestern Electric Power Co","Investor-owned",4018839,1121436,1354356,1543047,0 3,"Mississippi County Electric

  18. NREL: Transportation Research - Transportation News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transportation News The following news stories highlight transportation research at NREL. November 4, 2016 NREL Technologies Honored at R&D 100 Awards Ceremony Research teams honored for advances in residential buildings, energy storage testing and power inverters November 1, 2016 NREL Issued Patent for Award-Winning Isothermal Battery Calorimeters The National Renewable Energy Laboratory (NREL) was recently issued a patent for its R&D 100 Award-winning Isothermal Battery Calorimeters

  19. Property:ProgramSector | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    + AGI-32 + Energy + ANL Wind Power Forecasting and Electricity Markets + Energy + APEC-Alternative Transport Fuels: Implementation Guidelines + Energy + APFED-Good Practice...

  20. Let the private sector handle energy conservation

    SciTech Connect

    Bajer, E.R.

    1982-08-23

    Mr. Bajer feels that elimination of many federal conservation programs will have no effect on the US goal of reducing oil imports because the private sector can do a better job of providing these efforts. He notes that many government programs were the result of overreaction to the 1973 oil embargo, when Congress misread the public's willingness to respond. The American people have taken the initiative, however, and have reduced their energy consumption and import rates. Mr. Bajer further notes that, according to the DOE Office of Policy, Planning and Analysis, DOE's conservation programs accounted for less than 5% of reduction of energy use per unit of GNP. He thinks that new policies will allow market forces to continue providing conservation incentives and will remove government intervention and competition with the private sector. (DCK)

  1. Private sector initiatives in energy conservation

    SciTech Connect

    Rebholz, A.F.

    1983-06-01

    As an example of private sector initiatives in energy conservation, Prudential's energy management program is highlighted. In Phase I specific hours of operation were permitted, temperatures were maintained at a prescribed level, and lighting standards were reduced. In Phase II, inefficient HVAC systems were upgraded, timing switches and energy management computers were installed, solar film was applied to windows, and metering utilities were separated. An energy consumption tracking system called PACE was also instrumented to maintain the achieved objectives by monthly measuring.

  2. US Energy Sector Vulnerabilities to Climate Change

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    On the cover: Trans-Alaska oil pipeline; aerial view of New Jersey refinery; coal barges on Mississippi River in St. Paul, Minnesota; power plant in Prince George's County, Maryland; Grand Coulee Dam in Washington State; corn field near Somers, Iowa; wind turbines in Texas. Photo credits: iStockphoto U.S. ENERGY SECTOR VULNERABILITIES TO CLIMATE CHANGE AND EXTREME WEATHER Acknowledgements This report was drafted by the U.S. Department of Energy's Office of Policy and International Affairs

  3. Fact #749: October 15, 2012 Petroleum and Natural Gas Consumption for Transportation by State, 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    The map below shows the amount of petroleum and natural gas consumed in the transportation sector by state for 2010. The pie charts for each state are scaled based on total consumption of petroleum...

  4. List of Companies in Wind Sector | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Sector Jump to: navigation, search WindTurbine-icon.png Companies in the Wind energy sector: Add a Company Download CSV (rows 1-1693) Map of Wind energy companies Loading...

  5. List of Companies in Biofuels Sector | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    List of Companies in Biofuels Sector Jump to: navigation, search BiomassImage.JPG Companies in the Biofuels sector: Add a Company Download CSV (rows 1-256) Map of Biofuels...

  6. Roadmap to Secure Control Systems in the Energy Sector 2006 ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roadmap to Secure Control Systems in the Energy Sector 2006 - Presentation to the 2008 ieRoadmap Workshop Roadmap to Secure Control Systems in the Energy Sector 2006 - Presentation ...

  7. Sector 3 : High Resolution X-ray Scattering | Advanced Photon...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & workshops IXN Group Useful Links Current APS status ESAF System GUP System X-Ray Science Division My APS Portal Sector 3 : High Resolution X-ray Scattering Sector 3 is...

  8. Working to Achieve Cybersecurity in the Energy Sector | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Working to Achieve Cybersecurity in the Energy Sector Working to Achieve Cybersecurity in the Energy Sector Presentation covers cybersecurity in the energy sector and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting. Download the Working to Achieve Cybersecurity in the Energy Sector presentation. (2.71 MB) More Documents & Publications DOE/OE National SCADA Test Bed Fiscal Year 2009 Work Plan Cybersecurity for Energy Delivery Systems 2010 Peer

  9. Carbon Market Opportunities for the Forestry Sector of Africa...

    OpenEI (Open Energy Information) [EERE & EIA]

    of the United Nations, Winrock International Sector: Land Focus Area: Renewable Energy, Forestry Topics: Implementation, Policiesdeployment programs Resource Type:...

  10. Low Carbon Society Toward 2050: Indonesia Energy Sector | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    for Global Environmental Strategies, Mizuho Information & Research Institute - Japan, Kyoto University, Institut Teknologi Bandung (ITB) - Indonesia Sector: Energy Focus...

  11. Energy Impact Illinois: Overcoming Barriers in the Multifamily Sector

    Energy.gov [DOE]

    Presents how Energy Impact Illinois overcame barriers in the multifamily sector through financing partnerships and expert advice.

  12. DOE Encourages Utility Sector Nominations to the Federal Communication...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Commission's Communications, Security, Reliability, and Interoperability Council DOE Encourages Utility Sector Nominations to the Federal Communications Commission's...

  13. Oak Ridge Reservation’s emergency sectors change

    Energy.gov [DOE]

    TEMA has issued revised emergency sectors for the DOE Oak Ridge Reservation. These sectors, labeled A-Y, determine which areas should take action if an event occurs at one of DOE’s sites locally. The new sector boundaries have improved correlation with roads, waterways, and recognizable landmarks.

  14. Energy Sector Cybersecurity Framework Implementation Guidance - Draft for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Public Comment & Comment Submission Form (September 2014) | Department of Energy Sector Cybersecurity Framework Implementation Guidance - Draft for Public Comment & Comment Submission Form (September 2014) Energy Sector Cybersecurity Framework Implementation Guidance - Draft for Public Comment & Comment Submission Form (September 2014) On September 12, 2014, the Department issued a Federal Register Notice announcing the availability of the Energy Sector Cybersecurity Framework

  15. Model documentation report: Industrial sector demand module of the national energy modeling system

    SciTech Connect

    1998-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  16. Update on EM Transportation Program Activities

    Office of Environmental Management (EM)

    to: 2012 National Transportation Stakeholders Forum Knoxville, TN May 16, 2012 1  Continue to manage waste inventories in a safe and compliant manner.  Address high risk waste in a cost- effective manner.  Maintain and optimize current disposal capability for future generations.  Develop future disposal capacity in a complex environment.  Promote the development of treatment and disposal alternatives in the commercial sector.  Review current policies and directives and provide

  17. Desulfurization Sorbents for Transport-Bed Applications

    SciTech Connect

    Gupta, Raghubir P.; Turk, Brian S.; Vierheilig, Albert A.

    1997-07-01

    This project extends the prior work on the development of fluidizable zinc titanate particles using a spray-drying technique to impart high reactivity and attrition resistance. The specific objectives are: (1) To develop highly reactive and attrition-resistant zinc titanate sorbents in 40- to 150-{micro}m particle size range for transport reactor applications; (2) To transfer sorbent production technology to private sector; and (3) To provide technical support to Sierra Pacific Clean Coal Technology Demonstration plant and FETC's Hot-Gas Desulfurization Process Development Unit (PDU), both employing a transport reactor system.

  18. DOE Issues Request for Information on H2@Scale—A Concept Using Hydrogen to Enable Deep Decarbonization Across Sectors

    Energy.gov [DOE]

    The U.S. Department of Energy has issued a request for information to gather feedback on H2 @ Scale, which is a concept to enable wide-scale deployment of hydrogen to deeply decarbonize the U.S. electricity generation, transportation, and industrial sectors. Examples of areas where feedback is needed include hydrogen production with renewables and process heat (e.g., from nuclear generation), materials development for high-temperature operation, analyses to project necessary energy storage and distribution infrastructure, and development of value-added applications for hydrogen in the industrial sector.

  19. Roadmap to Secure Control Systems in the Energy Sector

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roadmap to Secure Control Systems in the Energy Sector -  - Foreword T his document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent plan for improing cyber security in the energy sector. It is the result of an unprecedented collaboration between the energy sector and goernment to identify concrete steps to secure control systems used in the electricity, oil, and natural gas sectors oer the next ten years. The Roadmap proides a strategic

  20. Interacting dark sector with transversal interaction

    SciTech Connect

    Chimento, Luis P.; Richarte, Martín G.

    2015-03-26

    We investigate the interacting dark sector composed of dark matter, dark energy, and dark radiation for a spatially flat Friedmann-Robertson-Walker (FRW) background by introducing a three-dimensional internal space spanned by the interaction vector Q and solve the source equation for a linear transversal interaction. Then, we explore a realistic model with dark matter coupled to a scalar field plus a decoupled radiation term, analyze the amount of dark energy in the radiation era and find that our model is consistent with the recent measurements of cosmic microwave background anisotropy coming from Planck along with the future constraints achievable by CMBPol experiment.

  1. Fact #829: July 14, 2014 The Transportation Petroleum Gap | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 829: July 14, 2014 The Transportation Petroleum Gap Fact #829: July 14, 2014 The Transportation Petroleum Gap In 1989 petroleum consumption in the transportation sector surpassed U.S. petroleum production for the first time, creating a gap that must be met with imports of petroleum. In 2009, however, the U.S. production of petroleum began to increase. The Energy Information Administration expects petroleum production to be nearly equal to transportation consumption by about 2020. When

  2. Transportation energy trends and issues through 2030

    SciTech Connect

    DeCicco, J.M.

    1996-12-31

    Controlling transportation energy use looms as a serious challenge for the United States in the 21st century. Demand for transportation services is steadily growing, driven by increasing population, economic activity, and incomes. Few forces presently constrain growth in travel by the energy-intensive modes of automobile, truck, and air transportation. In contrast to other sectors of the economy, transportation energy efficiency improvements are nearly stagnant. Efficiency increases are now absent in highway modes; aircraft efficiency is improving, but not enough to offset rising air travel. Transportation is also the most oil-dependent sector of the economy as well as the country`s most rapidly growing source of greenhouse gas emissions. A conservative forecast indicates US transportation energy consumption rising from 23 Quads in 1990 to roughly 36 Quads by 2030; less conservative assumptions push the total to 43 Quads by 2030. Yet opportunities exist for efficiency improvements to counter a substantial portion of this growth. The most promising options are technological, with potential long-term efficiency improvements of threefold for light vehicles, twofold for aircraft, and 65 percent for heavy trucks. Combined with system efficiency changes to help limit growth of the energy-intensive modes, transportation energy use might be cut to 19 Quads by 2030. Pursuing cost-effective strategies to move the system toward such reduced energy intensiveness would be clearly valuable for the economy and environment. This paper examines these trends and options, and offers suggestions for policies that could lead to reductions in transportation energy use and its associated problems such as greenhouse gas emissions and oil dependence risks. 24 refs., 6 figs., 3 tabs.

  3. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector

    SciTech Connect

    Not Available

    1994-10-01

    DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

  4. Transportation Infrastructure

    Office of Environmental Management (EM)

    09 Archive Transportation Fact of the Week - 2009 Archive #603 Where Does Lithium Come From? December 28, 2009 #602 Freight Statistics by Mode, 2007 Commodity Flow Survey December 21, 2009 #601 World Motor Vehicle Production December 14, 2009 #600 China Produced More Vehicles than the U.S. in 2008 December 7, 2009 #599 Historical Trend for Light Vehicle Sales November 30, 2009 #598 Hybrid Vehicle Sales by Model November 23, 2009 #597 Median Age of Cars and Trucks Rising in 2008 November 16, 2009

  5. Hidden sector DM models and Higgs physics

    SciTech Connect

    Ko, P.

    2014-06-24

    We present an extension of the standard model to dark sector with an unbroken local dark U(1){sub X} symmetry. Including various singlet portal interactions provided by the standard model Higgs, right-handed neutrinos and kinetic mixing, we show that the model can address most of phenomenological issues (inflation, neutrino mass and mixing, baryon number asymmetry, dark matter, direct/indirect dark matter searches, some scale scale puzzles of the standard collisionless cold dark matter, vacuum stability of the standard model Higgs potential, dark radiation) and be regarded as an alternative to the standard model. The Higgs signal strength is equal to one as in the standard model for unbroken U(1){sub X} case with a scalar dark matter, but it could be less than one independent of decay channels if the dark matter is a dark sector fermion or if U(1){sub X} is spontaneously broken, because of a mixing with a new neutral scalar boson in the models.

  6. Energy efficiency in passenger transportation: What the future may hold

    SciTech Connect

    Plotkin, S.

    1996-12-31

    This presentation very briefly projects future impacts of energy efficiency in passenger transportation. Continuing expansion of the U.S. transportation sector, with a corresponding increased dependency on imported oil, is noted. Freight trucks and air fleets are targeted as having the greatest potential for increased energy efficiency. The light duty vehicle is identified as the only technology option for major efficiency increases. 4 figs., 11 tabs.

  7. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  8. Gas conversion opportunities in LILCO's commercial sector

    SciTech Connect

    Pierce, B.

    1993-03-01

    This report presents the results of a preliminary investigation into opportunities for gas conservation in Long Island Lighting Company's commercial sector. It focusses on gas-fired heating equipment. Various sources of data are examined in order to characterize the commercial buildings and equipment in the service territory. Several key pieces of information necessary to predict savings potential are identified. These include the efficiencies and size distribution of existing equipment. Twenty-one specific conservation measures are identified and their applicability is discussed in terms of equipment size. Recommendations include improving the characterization of existing buildings and equipment, and developing a greater understanding of the savings and costs of conservation measures, and their interactions, especially in the middle size range of buildings and equipment.

  9. Supersymmetric leptogenesis with a light hidden sector

    SciTech Connect

    De Simone, Andrea; Garny, Mathias; Ibarra, Alejandro; Weniger, Christoph E-mail: mathias.garny@ph.tum.de E-mail: christoph.weniger@desy.de

    2010-07-01

    Supersymmetric scenarios incorporating thermal leptogenesis as the origin of the observed matter-antimatter asymmetry generically predict abundances of the primordial elements which are in conflict with observations. In this paper we propose a simple way to circumvent this tension and accommodate naturally thermal leptogenesis and primordial nucleosynthesis. We postulate the existence of a light hidden sector, coupled very weakly to the Minimal Supersymmetric Standard Model, which opens up new decay channels for the next-to-lightest supersymmetric particle, thus diluting its abundance during nucleosynthesis. We present a general model-independent analysis of this mechanism as well as two concrete realizations, and describe the relevant cosmological and astrophysical bounds and implications for this dark matter scenario. Possible experimental signatures at colliders and in cosmic-ray observations are also discussed.

  10. Interacting vacuum energy in the dark sector

    SciTech Connect

    Chimento, L. P.; Carneiro, S.

    2015-03-26

    We analyse three cosmological scenarios with interaction in the dark sector, which are particular cases of a general expression for the energy flux from vacuum to matter. In the first case the interaction leads to a transition from an unstable de Sitter phase to a radiation dominated universe, avoiding in this way the initial singularity. In the second case the interaction gives rise to a slow-roll power-law inflation. Finally, the third scenario is a concordance model for the late-time universe, with the vacuum term decaying into cold dark matter. We identify the physics behind these forms of interaction and show that they can be described as particular types of the modified Chaplygin gas.

  11. Solar Photovoltaic Financing: Residential Sector Deployment

    SciTech Connect

    Coughlin, J.; Cory, K.

    2009-03-01

    This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

  12. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Delaware" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Delmarva Power","Investor-owned",3604764,2673209,902845,28710,0 2,"Delaware Electric Cooperative","Cooperative",1301698,1060347,241351,0,0 3,"Direct Energy Business","Investor-owned",709072,0,709072,0,0 4,"City of Dover -

  13. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Idaho" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Idaho Power Co","Investor-owned",13462077,4784073,3792971,4885033,0 2,"PacifiCorp","Investor-owned",3495174,665344,457510,2372320,0 3,"Avista Corp","Investor-owned",3083614,1188464,1029305,865845,0 4,"City of Idaho Falls -

  14. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Kentucky" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Kentucky Utilities Co","Investor-owned",18888411,6334638,5483135,7070638,0 2,"Louisville Gas & Electric Co","Investor-owned",11817164,4157326,4885866,2773972,0 3,"Kenergy Corp","Cooperative",9670080,757715,325857,8586508,0

  15. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Mississippi" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Entergy Mississippi Inc","Investor-owned",13204945,5672166,5235681,2297098,0 2,"Mississippi Power Co","Investor-owned",9960184,2136509,2905744,4917931,0 3,"Tennessee Valley Authority","Federal",4527039,0,0,4527039,0

  16. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Nebraska" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Omaha Public Power District","Public",10659655,3561537,3640059,3458059,0 2,"Nebraska Public Power District","Public",3353118,895508,1211817,1245793,0 3,"Lincoln Electric System","Public",3219685,1193586,1526628,499471,0

  17. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Oregon" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Portland General Electric Co","Investor-owned",17603187,7461863,6849512,3283792,8020 2,"PacifiCorp","Investor-owned",12958735,5309295,5109334,2524679,15427 3,"City of Eugene - (OR)","Public",2336296,919175,872330,544791,0

  18. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Rhode Island" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"The Narragansett Electric Co","Investor-owned",5006934,2852069,1901360,253505,0 2,"Direct Energy Business","Investor-owned",589515,0,589515,0,0 3,"Constellation NewEnergy, Inc","Investor-owned",469721,0,296950,149198,23573

  19. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Utah" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"PacifiCorp","Investor-owned",24105301,6605139,8564346,8875134,60682 2,"Provo City Corp","Public",784886,236348,410174,138364,0 3,"City of St George","Public",616490,276947,68066,271477,0 4,"Moon Lake Electric Assn

  20. Table 3. Top five retailers of electricity, with end use sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Wyoming" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"PacifiCorp","Investor-owned",9568272,1041412,1503050,7023810,0 2,"Powder River Energy Corp","Cooperative",2640812,221881,891312,1527619,0 3,"Cheyenne Light Fuel & Power Co","Investor-owned",1175006,259090,533610,382306,0

  1. Potential for Energy Efficiency Improvement Beyond the Light-Duty Sector

    Energy.gov [DOE]

    While there has been considerable research focusing on energy efficiency and fuel substitution options for LDVs, much less attention has been given to non-LDV modes, even though they constitute close to half of the energy used in the transportation sector. We conducted an extensive literature review of the non-LDV modes, and in this report we bring together the salient findings concerning future energy efficiency options in the time period up to 2050. The studies reviewed provided potential energy savings for individual technologies within each mode, as well as an overall energy savings representing the case where all possible improvements are implemented.

  2. Dams and Energy Sectors Interdependency Study, September 2011 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Dams and Energy Sectors Interdependency Study, September 2011 Dams and Energy Sectors Interdependency Study, September 2011 The U.S. Department of Energy (DOE) and the U.S. Department of Homeland Security (DHS) collaborated to examine the interdependencies between two critical infrastructure sectors - Dams and Energy. The study highlights the importance of hydroelectric power generation, with a particular emphasis on the variability of weather patterns and competing demands for

  3. Designing Effective State Programs for the Industrial Sector - New SEE

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Action Publication | Department of Energy Designing Effective State Programs for the Industrial Sector - New SEE Action Publication Designing Effective State Programs for the Industrial Sector - New SEE Action Publication March 24, 2014 - 12:56pm Addthis Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs delivered by a

  4. Climate Change and the Electricity Sector: Guide for Climate Change

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resilience Planning: September 2016 | Department of Energy Climate Change Resilience Planning: September 2016 Climate Change and the Electricity Sector: Guide for Climate Change Resilience Planning: September 2016 Climate Change and the Energy Sector: Guide for Climate Change Resilience Planning, September 2016 (2.82 MB) More Documents & Publications Climate Change and the Electricity Sector: Guide for Assessing Vulnerabilities and Developing Resilience Solutions to Sea Level Rise. July

  5. Static Sankey Diagram Full Sector Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Full Sector Manufacturing Static Sankey Diagram Full Sector Manufacturing The U.S. Manufacturing Sector Static Sankey diagram shows how total primary energy is used by U.S. manufacturing plants. Click on the Onsite Generation, Process Energy or Nonprocess Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan, zoom, and customize the manufacturing Sankey data and compare energy consumption across

  6. Commercial Sector Demand Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  7. Energy Intensity Changes by Sector, 1985-2011 - Alternative Measures...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Source energy attributes all the energy used for electricity generation and transmission to the specific end-use sector, addition to the direct consumption of electricity and ...

  8. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Controlling Methane Emissions in the Natural Gas Sector: A Review of Federal & State Regulatory Frameworks Governing Production, Processing, Transmission, and Distribution ...

  9. Public Finance Mechanisms to Catalyze Sustainable Energy Sector...

    OpenEI (Open Energy Information) [EERE & EIA]

    all aspects of the sector including technology innovation, project development, (SME) business and industry support, consumer awareness and end-user finance. Regardless of...

  10. User:GregZiebold/Sector test | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Query all sector types for Companies: Bioenergy Biofuels Biomass Buildings Carbon Efficiency Geothermal energy Hydro Hydrogen Marine and Hydrokinetic Ocean Renewable Energy...

  11. DOE has published the revised 2010 Energy Sector Specific Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy announces the publication of the Energy Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan 2010.

  12. Energy: Critical Infrastructure and Key Resources Sector-Specific...

    Energy Saver

    Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) Energy: Critical Infrastructure and Key ...

  13. Oak Ridge Reservation Emergency Sectors Changing | Y-12 National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    pertaining to their safety will be issued by sector," said Jim Bassham, Director of TEMA. "Periodic updates to emergency plans, like these changes, are part of TEMA's normal...

  14. Climate Change and China's Agricultural Sector: An Overview of...

    OpenEI (Open Energy Information) [EERE & EIA]

    An Overview of Impacts, Adaptation and Mitigation Jump to: navigation, search Name Climate Change and China's Agricultural Sector: An Overview of Impacts, Adaptation and...

  15. Climate Change Mitigation in the Energy and Forestry Sectors...

    OpenEI (Open Energy Information) [EERE & EIA]

    of Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change Mitigation in the Energy and Forestry Sectors of Developing Countries...

  16. Assess institutional frameworks for LEDS for land-use sector...

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy in Low Income Countries (SREP) Nepal-Sectoral Climate Impacts Economic Assessment Nepal-UNEP Green Economy Advisory Services Nicaragua-Joint Programme on Resource...

  17. Changes in Energy Intensity in the Manufacturing Sector 1985...

    Energy Information Administration (EIA) (indexed site)

    (34) Machinery (35) El. Equip.(36) Instruments (38) Misc. (39) Appendices Survey Design Quality of Data Sector Description Nonobservation Errors Glossary Intensity Sites...

  18. The Greenhouse Gas Protocol Initiative: Sector Specific Tools...

    OpenEI (Open Energy Information) [EERE & EIA]

    World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Industry, Greenhouse Gas Phase: Determine Baseline, Evaluate...

  19. Energy Efficiency Financing for Public Sector Projects | Department...

    Energy.gov [DOE] (indexed site)

    Info Sector Name State Administrator California Energy Commission Website http:www.energy.ca.govefficiencyfinancingindex.html State California Program Type Loan Program...

  20. Indonesia-NAMA Programme for the Construction Sector in Asia...

    OpenEI (Open Energy Information) [EERE & EIA]

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  1. Thailand-NAMA Programme for the Construction Sector in Asia ...

    OpenEI (Open Energy Information) [EERE & EIA]

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  2. Philippines-NAMA Programme for the Construction Sector in Asia...

    OpenEI (Open Energy Information) [EERE & EIA]

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  3. Vietnam-NAMA Programme for the Construction Sector in Asia |...

    OpenEI (Open Energy Information) [EERE & EIA]

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  4. Malaysia-NAMA Programme for the Construction Sector in Asia ...

    OpenEI (Open Energy Information) [EERE & EIA]

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  5. Energy Critical Infrastructure and Key Resources Sector-Specific...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) Energy Critical Infrastructure and Key ...

  6. Low Carbon Growth Plans: A Sectoral Approach to Climate Protection...

    OpenEI (Open Energy Information) [EERE & EIA]

    to Climate Protection Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon Growth Plans: A Sectoral Approach to Climate Protection AgencyCompany Organization:...

  7. DOE Encourages Utility Sector Nominations to Commerce Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Commerce Department's Spectrum Advisory Committee DOE Encourages Utility Sector Nominations to Commerce Department's Spectrum Advisory Committee December 14, 2010 - 5:40pm Addthis...

  8. Cameroon-Forest Sector Development in a Difficult Political Economy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Bank Sector Land Focus Area Forestry Topics Implementation, Market analysis Resource Type Lessons learnedbest practices Website http:lnweb90.worldbank.orgo Country Cameroon UN...

  9. Manufacturing Energy and Carbon Footprint - Sector: Iron and...

    Energy.gov [DOE] (indexed site)

    Total Onsite Electricity Export 1 Manufacturing Energy and Carbon Footprint Sector: Iron and Steel (NAICS 3311,3312) Onsite Generation Process Energy Machine-Driven Systems Fans ...

  10. Energy Use in China: Sectoral Trends and Future Outlook

    SciTech Connect

    Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

    2007-10-04

    This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77

  11. Energy Information Administration NEMS Petroleum Market Model...

    Gasoline and Diesel Fuel Update

    lignite, and premium), sulfur content (compliancelow, medium, high), and mining type (deep, surface, above ground, underground). These curves are linked to 14 coal demand...

  12. Liquid Fuels Market Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Defines the objectives of the Liquid Fuels Market Model (LFMM), describes its basic approach, and provides detail on how it works. This report is intended as a reference document for model analysts, users, and the public.

  13. Energy Information Administration NEMS Macroeconomic Activity...

    Gasoline and Diesel Fuel Update

    of employment by industry is industrial output. Both current and lagged output values enter in the employment specification, reflecting the tendency of firms to hire employees in...

  14. Overview of mitigation policies and measures in transportation

    SciTech Connect

    Ernst, J.

    1996-12-31

    In this paper the author looks at the general question of what can be done in the transportation sector to address the problem of greenhouse gas emissions. Obviously, fewer vehicles is less emission. But on a global scale he reviews the population growth in major cities, the type of transport employed, the correlation of vehicle ownership and gross national product, as well as the costs, direct and indirect of letting more personal wealth drive one to personal vehicles as a way to transport oneself to work. The increased speed comes with many costs for the individual and for society. The development of mass transportation systems provides a number of benefits, in the form of urban development, less reliance on imported fuels, transport system health, general health and productivity of work force, and reduced costs to government to support transportation systems.

  15. Meson Spectroscopy in the Light Quark Sector

    SciTech Connect

    de Vita, Raffaella

    2014-04-01

    . This intense effort is leading to a very rich phenomenology in this sector and, together with recent theoretical progress achieved with lattice QCD calculations, is providing crucial information to reach a deeper understanding of strong interaction. In these proceedings I will review the present status of meson spectroscopy in the light quark sector and the plans and perspectives for future experiments.

  16. Transporting particulate material

    DOEpatents

    Aldred, Derek Leslie; Rader, Jeffrey A.; Saunders, Timothy W.

    2011-08-30

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  17. Antineutrino Oscillations in the Atmospheric Sector

    SciTech Connect

    Himmel, Alexander I.

    2011-05-01

    This thesis presents measurements of the oscillations of muon antineutrinos in the atmospheric sector, where world knowledge of antineutrino oscillations lags well behind the knowledge of neutrinos, as well as a search for vμ → $\\bar{v}$μ transitions. Differences between neutrino and antineutrino oscillations could be a sign of physics beyond the Standard Model, including non-standard matter interactions or the violation of CPT symmetry. These measurements leverage the sign-selecting capabilities of the magnetized steel-scintillator MINOS detectors to analyze antineutrinos from the NuMI beam, both when it is in neutrino-mode and when it is in antineutrino-mode. Antineutrino oscillations are observed at |Δ$\\bar{m}$atm 2| = (3.36-0.40+0.46(stat) ± 0.06(syst)) x 10-3 eV2 and sin2(2$\\bar{θ}$23) = 0.860-0.12+0.11(stat) ± 0.01(syst). The oscillation parameters measured for antineutrinos and those measured by MINOS for neutrinos differ by a large enough margin that the chance of obtaining two values as discrepant as those observed is only 2%, assuming the two measurements arise from the same underlying mechanism, with the same parameter values. No evidence is seen for neutrino-to-antineutrino transitions.

  18. Alignment limit of the NMSSM Higgs sector

    DOE PAGES [OSTI]

    Carena, Marcela; Haber, Howard E.; Low, Ian; Shah, Nausheen R.; Wagner, Carlos E. M.

    2016-02-17

    The Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM) with a Higgs boson of mass 125 GeV can be compatible with stop masses of order of the electroweak scale, thereby reducing the degree of fine-tuning necessary to achieve electroweak symmetry breaking. Moreover, in an attractive region of the NMSSM parameter space, corresponding to the \\alignment limit" in which one of the neutral Higgs fields lies approximately in the same direction in field space as the doublet Higgs vacuum expectation value, the observed Higgs boson is predicted to have Standard- Model-like properties. We derive analytical expressions for the alignment conditions andmore » show that they point toward a more natural region of parameter space for electroweak symmetry breaking, while allowing for perturbativity of the theory up to the Planck scale. Additionally, the alignment limit in the NMSSM leads to a well defined spectrum in the Higgs and Higgsino sectors, and yields a rich and interesting Higgs boson phenomenology that can be tested at the LHC. Here, we discuss the most promising channels for discovery and present several benchmark points for further study.« less

  19. Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3311, 3312), October 2012 (MECS 2006) | Department of Energy - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) steel_footprint_2012.pdf (121.99 KB) More Documents & Publications MECS 2006 - Iron and Steel Iron and Steel (2010 MECS) MECS 2006 - Cement

  20. Transportation Systems Modeling

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling TRANSPORTATION SYSTEMS MODELING Overview of TSM Transportation systems modeling research at TRACC uses the TRANSIMS (Transportation Analysis SIMulation System) traffic micro simulation code developed by the U.S. Department of Transportation (USDOT). The TRANSIMS code represents the latest generation of traffic simulation codes developed jointly under multiyear programs by USDOT, the

  1. The Mexican petrochemical sector in the NAFTA negotiations

    SciTech Connect

    Kessel, G.; Kim, C.S.

    1993-12-31

    Since 1985, there have been important changes in the Mexican petrochemical sector, including trade liberalization, deregulation and the elimination of subsidies. NAFTA represents another step towards liberalization of the sector. Given the low tariffs currently applied to international trade among the three nations, the authors do not anticipate major impacts of NAFTA on trade flows. Nevertheless, the elimination of restrictions to foreign investment is expected to increase capital flows into the sector and to promote productivity increases. On the other hand, the new barriers to trade in petrochemical feedstocks and the restrictions on private investment in infrastructure may negatively affect the sector`s growth, making it necessary to adjust domestic regulations to improve the performance of Pemex. 12 refs., 4 tabs.

  2. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 3

    SciTech Connect

    1998-01-01

    This Appendix consists of two unpublished reports produced by Energy and Environmental Analysis, Inc., under contract to Oak Ridge National Laboratory. These two reports formed the basis for the subsequent development of the Fuel Economy Model described in Volume 1. They are included in order to document more completely the efforts undertaken to construct a comprehensive model of automobile fuel economy. The supplemental reports are as follows: Supplement 1--Documentation Attributes of Technologies to Improve Automotive Fuel Economy; Supplement 2--Analysis of the Fuel Economy Boundary for 2010 and Comparison to Prototypes.

  3. Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Energy.gov [DOE]

    Presentation given by Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric...

  4. Session 5: Renewable Energy in the Transportation and Power SectorsŽ

    Gasoline and Diesel Fuel Update

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1994 1995 1996 View History Net Withdrawals 0 0 1973-1996 Injections 0 0 0 1973-1996 Withdrawals 0 0 0 1973-1996

    62,914 74,790 75,026 78,196 76,154 81,837 1999-2015 Pipeline Prices 4.42 4.14 2.94 3.88 4.47 2.71

    Thousand Cubic Feet)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's

  5. Transportation Data Programs:Transportation Energy Data Book...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transportation Data Programs:Transportation Energy Data Book,Vehicle Technologies Market Report, and VT Fact of the Week Transportation Data Programs:Transportation Energy Data ...

  6. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    National Transportation Stakeholders Forum OSRP * NNSA Contractors transporting in commerce, are required law to comply with applicable regulations required law to comply with ...

  7. Not planning a sustainable transport system

    SciTech Connect

    Finnveden, Göran Åkerman, Jonas

    2014-04-01

    The overall objective of the Swedish transport policy is to ensure the economically efficient and sustainable provision of transport services for people and business throughout the country. More specifically, the transport sector shall, among other things, contribute to the achievement of environmental quality objectives in which the development of the transport system plays an important role in the achievement of the objectives. The aim of this study is to analyse if current transport planning supports this policy. This is done by analysing two recent cases: the National Infrastructure Plan 2010–2021, and the planning of Bypass Stockholm, a major road investment. Our results show that the plans are in conflict with several of the environmental quality objectives. Another interesting aspect of the planning processes is that the long-term climate goals are not included in the planning processes, neither as a clear goal nor as factor that will influence future transport systems. In this way, the long-term sustainability aspects are not present in the planning. We conclude that the two cases do not contribute to a sustainable transport system. Thus, several changes must be made in the processes, including putting up clear targets for emissions. Also, the methodology for the environmental assessments needs to be further developed and discussed. - Highlights: • Two cases are studied to analyse if current planning supports a sustainable transport system. • Results show that the plans are in conflict with several of the environmental quality objectives. • Long-term climate goals are not included in the planning processes. • Current practices do not contribute to a sustainable planning processes. • Methodology and process for environmental assessments must be further developed and discussed.

  8. Transportation Organization and Functions

    Energy.gov [DOE]

    Office of Packaging and Transportation list of organizations and functions, with a list of acronyms.

  9. DOE Technology Commercialization Fund Kicks Off New Private Sector Outreach

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy’s (DOE’s) Technology Commercialization Fund (TCF) is underway in its inaugural year of operation.  This week, the DOE kicked off a new round of private sector outreach...

  10. Assess public and private sector capacity to support initiatives...

    OpenEI (Open Energy Information) [EERE & EIA]

    public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development...

  11. Combined Heat & Power Technology Overview and Federal Sector Deployment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation covers the Combined Heat & Power Technology Overview and Federal Sector Deployment from Oakridge National Laboratory. The presentation is from the FUPWG Spring Meeting, held on May 22, 2013 in San Francisco, California.

  12. Agricultural and Industrial Process-Heat-Market Sector workbook

    SciTech Connect

    Shulman, M. J.; Kannan, N. P.; deJong, D. L.

    1980-01-01

    This workbook summarizes the preliminary data and assumptions of the Agricultural and Industrial Process Heat Market Sector prepared in conjunction with the development of inputs for a National Plan for the Accelerated Commercialization of Solar Energy.

  13. Voluntary agreements in the industrial sector in China

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan

    2003-03-31

    China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. While tremendous energy conservation and environmental protection achievements were realized in the industrial sector in the past, there remains a great gulf between the China's level of energy efficiency and that of the advanced countries of the world. Internationally, significant energy efficiency improvement in the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. This paper describes international experience with Voluntary Agreements in the industrial sector as well as the development of a pilot program to test the use of such agreements with two steel mills in Shandong Province, China.

  14. City of San Jose- Private Sector Green Building Policy

    Energy.gov [DOE]

    In October 2008, the City of San Jose enacted the Private Sector Green Building Policy (Policy No. 6-32). The policy was adopted in Ordinance No. 28622 in June, 2009. All new buildings must meet...

  15. Commercial Buildings Sector Agent-Based Model | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    OpenEI Keyword(s): EERE tool, Commercial Buildings Sector Agent-Based Model Language: English References: Building Efficiency: Development of an Agent-based Model of the US...

  16. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Rather, methane emission reductions from this sector have typically occurred as a co-benefit of policies that target air pollution (such as smog) and improve safety. In general, ...

  17. Roadmap to Secure Control Systems in the Energy Sector 2006 ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roadmap to Secure Control Systems in the Energy Sector 2006 - Presentation to the 2008 ieRoadmap Workshop Presentation by Hank Kenchington on the 2006 roadmap to secure control ...

  18. "Table 7b. Natural Gas Price, Electric Power Sector, Actual...

    Energy Information Administration (EIA) (indexed site)

    b. Natural Gas Price, Electric Power Sector, Actual vs. Projected" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,200...

  19. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    SciTech Connect

    de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

    2009-03-31

    The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

  20. Slideshow: Innovation in the Manufacturing Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Innovation in the Manufacturing Sector Slideshow: Innovation in the Manufacturing Sector December 12, 2013 - 5:00pm Addthis AEMC Summit 1 of 12 AEMC Summit In partnership with the Council on Competitiveness, the Energy Department hosted the first American Energy and Manufacturing Competitiveness (AEMC) Summit in Washington, DC. A culmination of a series of dialogues held across the country over the past year, the summit focused on how we can increase U.S. competitiveness in clean energy

  1. Energy Department Announces New Private Sector Partnership to Accelerate

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Energy Projects | Department of Energy Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects October 7, 2009 - 12:00am Addthis Washington DC --- U.S. Energy Secretary Steven Chu today announced the Department of Energy (DOE) will provide up to $750 million in funding from the American Recovery and Reinvestment Act to help accelerate the development of conventional

  2. Advancing Private Sector Investment in Clean Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advancing Private Sector Investment in Clean Energy Advancing Private Sector Investment in Clean Energy April 14, 2016 - 3:36pm Addthis The past year has seen several major announcements in public and private clean energy investment, including the launch of Mission Innovation and the Breakthrough Energy Coalition at COP 21 in Paris. | Energy Department photo by Matt Dozier. The past year has seen several major announcements in public and private clean energy investment, including the launch of

  3. Solar Photovoltaic Financing: Residential Sector Deployment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Photovoltaic Financing: Residential Sector Deployment Solar Photovoltaic Financing: Residential Sector Deployment This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the

  4. SSL Demonstration: Area Lighting, Yuma Sector Border Patrol Area, AZ

    SciTech Connect

    2015-05-28

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial demonstration in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations at the Yuma Sector Border Patrol Area in Yuma, Arizona. The retrofit was documented to better understand LED technology performance in high-temperature environments. This document is a summary brief of the Phase 1.0 and 1.1 reports previously published on this demonstration.

  5. Department of Energy Releases New Report on Energy Sector Vulnerablities |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Energy Sector Vulnerablities Department of Energy Releases New Report on Energy Sector Vulnerablities July 11, 2013 - 7:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - The U.S. Department of Energy released a new report which assesses how America's critical energy and electricity infrastructure is vulnerable to the impacts of climate change. Historically high temperatures in recent years have been accompanied by droughts and extreme heat waves, more wildfires

  6. A Comparison of Cross-Sector Cyber Security Standards

    SciTech Connect

    Robert P. Evans

    2005-09-01

    This report presents a review and comparison (commonality and differences) of three cross-sector cyber security standards and an internationally recognized information technology standard. The comparison identifies the security areas covered by each standard and reveals where the standards differ in emphasis. By identifying differences in the standards, the user can evaluate which standard best meets their needs. For this report, only cross-sector standards were reviewed.

  7. U.S. Energy Sector Vulnerabilities and Resilience Solutions Reports |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy U.S. Energy Sector Vulnerabilities and Resilience Solutions Reports U.S. Energy Sector Vulnerabilities and Resilience Solutions Reports As part of the Administration's efforts to support climate change preparedness and resilience planning -- and to advance the Energy Department's goal of promoting energy security -- the Department is assessing the threats of climate change and extreme weather to the Nation's energy system, and developing methodologies, information, tools

  8. FACT SHEET: Obama Administration Announces Federal and Private Sector

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Actions to Accelerate Electric Vehicle Adoption in the United States | Department of Energy FACT SHEET: Obama Administration Announces Federal and Private Sector Actions to Accelerate Electric Vehicle Adoption in the United States FACT SHEET: Obama Administration Announces Federal and Private Sector Actions to Accelerate Electric Vehicle Adoption in the United States July 21, 2016 - 5:30pm Addthis Editor's note: This is a cross-post from WhiteHouse.gov. The Obama Administration is taking

  9. Vice President Biden Announces New Private Sector Backing for Five

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pioneering Energy Companies | Department of Energy New Private Sector Backing for Five Pioneering Energy Companies Vice President Biden Announces New Private Sector Backing for Five Pioneering Energy Companies August 30, 2011 - 6:12pm Addthis WASHINGTON, D.C. - Speaking at the National Clean Energy Summit 4.0 today in Las Vegas, Nevada, Vice President Joe Biden announced another promising milestone for the Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E): five

  10. Distributed Generation System Characteristics and Costs in the Buildings Sector

    Gasoline and Diesel Fuel Update

    Distributed Generation System Characteristics and Costs in the Buildings Sector August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Distributed Generation System Characteristics and Costs in the Buildings Sector i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and

  11. NREL: Transportation Research - Transportation and Hydrogen Newsletter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transportation and Hydrogen Newsletter The Transportation and Hydrogen Newsletter is a monthly electronic newsletter that provides information on NREL's research, development, and deployment of transportation and hydrogen technologies. Photo of a stack of newspapers September 2016 Issue Fuels Performance Read the latest issue of the newsletter. Subscribe: To receive new issues by email, subscribe to the newsletter. Archives: For past issues, read the newsletter archives. Printable Version

  12. NREL: Transportation Research - Sustainable Transportation Basics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transportation Basics Compare Vehicle Technologies 3-D illustration of electric car diagramming energy storage, power electronics, and climate control components. The following links to the U.S. Department of Energy's Alternative Fuels Data Center (AFDC) provide an introduction to sustainable transportation. NREL research supports development of electric, hybrid, hydrogen fuel cell, biofuel, natural gas, and propane vehicle technologies. Learn more about vehicles, fuels, and transportation

  13. NREL: Transportation Research - Transportation Deployment Support

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transportation Deployment Support Photo of a car parked in front of a monument. A plug-in electric vehicle charges near the Thomas Jefferson Memorial in Washington, D.C. Photo from Julie Sutor, NREL NREL's transportation deployment team works with vehicle fleets, fuel providers, and other transportation stakeholders to help deploy alternative and renewable fuels, advanced vehicles, fuel economy improvements, and fleet-level efficiencies that reduce emissions and petroleum dependence. In

  14. NREL: Transportation Research - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    News NREL provides a number of transportation and hydrogen news sources. Transportation News Find news stories that highlight NREL's transportation research, development, and deployment (RD&D) activities, including work on vehicles and fuels. Hydrogen and Fuel Cells News Find news stories that highlight NREL's hydrogen RD&D activities, including work on fuel cell electric vehicle technologies. Transportation and Hydrogen Newsletter Stay up to date on NREL's RD&D of transportation and

  15. Energy Sector-Specific Plan: An Annex to the National Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Protection Plan | Department of Energy Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan Energy Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan In its role as the lead Sector-Specific Agency for the Energy Sector, the Department of Energy has worked closely with dozens of government and industry partners to prepare this updated 2010 Energy Sector-Specific Plan (SSP). Much of that work was conducted through the two Energy Sector

  16. DOE Seeks Public-Private Sector Expressions of Interest for Global...

    Office of Environmental Management (EM)

    Public-Private Sector Expressions of Interest for Global Nuclear Energy Partnership Initiative DOE Seeks Public-Private Sector Expressions of Interest for Global Nuclear Energy ...

  17. Lab-Corps Pilot Accelerates Private-Sector Adoption of Game-Changing...

    Energy.gov [DOE] (indexed site)

    Teams were initially introduced to private sector and consumer interests - like ... Lab-Corps Pilot Accelerates Private-Sector Adoption of Game-Changing ...

  18. Climate Change and the U.S. Energy Sector: Regional Vulnerabilities...

    Office of Environmental Management (EM)

    U.S. Energy Sector: Regional Vulnerabilities and Resilience Solutions Climate Change and the U.S. Energy Sector: Regional Vulnerabilities and Resilience Solutions This interactive ...

  19. A Strategy to Engage the Private Sector in Climate Change Adaptation...

    OpenEI (Open Energy Information) [EERE & EIA]

    to Engage the Private Sector in Climate Change Adaptation in Bangladesh Jump to: navigation, search Name A Strategy to Engage the Private Sector in Climate Change Adaptation in...

  20. China-NAMA Programme for the Construction Sector in Asia | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    NAMA Programme for the Construction Sector in Asia Jump to: navigation, search Name China-NAMA Programme for the Construction Sector in Asia AgencyCompany Organization United...

  1. Secure Transportation Management

    SciTech Connect

    Gibbs, P. W.

    2014-10-15

    Secure Transport Management Course (STMC) course provides managers with information related to procedures and equipment used to successfully transport special nuclear material. This workshop outlines these procedures and reinforces the information presented with the aid of numerous practical examples. The course focuses on understanding the regulatory framework for secure transportation of special nuclear materials, identifying the insider and outsider threat(s) to secure transportation, organization of a secure transportation unit, management and supervision of secure transportation units, equipment and facilities required, training and qualification needed.

  2. Advanced Nodal P3/SP3 Axial Transport Solvers for the MPACT 2D/1D Scheme

    SciTech Connect

    Stimpson, Shane G; Collins, Benjamin S

    2015-01-01

    As part of its initiative to provide multiphysics simulations of nuclear reactor cores, the Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing the Virtual Environment for Reactor Applications Core Simulator (VERA-CS). The MPACT code, which is the primary neutron transport solver of VERA-CS, employs the two-dimensional/one-dimensional (2D/1D) method to solve 3-dimensional neutron transport problems and provide sub-pin-level resolution of the power distribution. While 2D method of characteristics is used to solve for the transport effects within each plane, 1D-nodal methods are used axially. There have been extensive studies of the 2D/1D method with a variety nodal methods, and the P3/SP3 solver has proved to be an effective method of providing higher-fidelity solutions while maintaining a low computational burden.The current implementation in MPACT wraps a one-node nodal expansion method (NEM) kernel for each moment, iterating between them and performing multiple sweeps to resolve flux distributions. However, it has been observed that this approach is more sensitive to convergence problems. This paper documents the theory and application two new nodal P3/SP3 approaches to be used within the 2D/1D method in MPACT. These two approaches aim to provide enhanced stability compared with the pre-existing one-node approach. Results from the HY-NEM-SP3 solver show that the accuracy is consistent with the one-node formulations and provides improved convergence for some problems; but the solver has issues with cases in thin planes. Although the 2N-SENM-SP3 solver is still under development, it is intended to resolve the issues with HY-NEM-SP3 but it will incur some additional computational burden by necessitating an additional 1D-CMFD-P3 solver to generate the second moment cell-averaged scalar flux.

  3. United States Industrial Sector Energy End Use Analysis

    SciTech Connect

    Shehabi, Arman; Morrow, William R.; Masanet, Eric

    2012-05-11

    The United States Department of Energy’s (DOE) Energy Information Administration (EIA) conducts the Manufacturing Energy Consumption Survey (MECS) to provide detailed data on energy consumption in the manufacturing sector. The survey is a sample of approximately 15,000 manufacturing establishments selected from the Economic Census - Manufacturing Sector. MECS provides statistics on the consumption of energy by end uses (e.g., boilers, process, electric drives, etc.) disaggregated by North American Industry Classification System (NAICS) categories. The manufacturing sector (NAICS Sector 31-33) consists of all manufacturing establishments in the 50 States and the District of Columbia. According to the NAICS, the manufacturing sector comprises establishments engaged in the mechanical, physical, or chemical transformation of materials, substances, or components into new products. The establishments are physical facilities such as plants, factories, or mills. For many of the sectors in the MECS datasets, information is missing because the reported energy use is less than 0.5 units or BTUs, or is withheld to avoid disclosing data for individual establishments, or is withheld because the standard error is greater than 50%. We infer what the missing information likely are using several approximations techniques. First, much of the missing data can be easily calculated by adding or subtracting other values reported by MECS. If this is not possible (e.g. two data are missing), we look at historic MECS reports to help identify the breakdown of energy use in the past and assume it remained the same for the current MECS. Lastly, if historic data is also missing, we assume that 3 digit NAICS classifications predict energy use in their 4, 5, or 6 digit NAICS sub-classifications, or vice versa. Along with addressing data gaps, end use energy is disaggregated beyond the specified MECS allocations using additional industry specific energy consumption data. The result is a

  4. Turkey energy and environmental review - Task 7 energy sector modeling : executive summary.

    SciTech Connect

    Conzelmann, G.; Koritarov, V.; Decision and Information Sciences

    2008-02-28

    Turkey's demand for energy and electricity is increasing rapidly. Since 1990, energy consumption has increased at an annual average rate of 4.3%. As would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. With respect to global environmental issues, Turkey's carbon dioxide (CO2) emissions have grown along with its energy consumption. Emissions in 2000 reached 211 million metric tons. With GDP projected to grow at over 6% per year over the next 25 years, both the energy sector and the pollution associated with it are expected to increase substantially. This is expected to occur even if assuming stricter controls on lignite and hard coal-fired power generation. All energy consuming sectors, that is, power, industrial, residential, and transportation, will contribute to this increased emissions burden. Turkish Government authorities charged with managing the fundamental problem of carrying on economic development while protecting the environment include the Ministry of Environment (MOE), the Ministry of Energy and Natural Resources (MENR), and the Ministry of Health, as well as the Turkish Electricity Generation & Transmission Company (TEAS). The World Bank, working with these agencies, is planning to assess the costs and benefits of various energy policy alternatives under an Energy and Environment Review (EER). Eight individual studies have been conducted under this activity to analyze certain key energy technology issues and use this analysis to fill in the gaps in data and technical information. This will allow the World Bank and Turkish authorities to better understand the trade-offs in costs and impacts associated with specific policy decisions. The purpose of Task 7-Energy Sector Modeling, is to integrate information obtained in other EER tasks and provide Turkey's policy makers with an integrated systems analysis of the various options for

  5. Risk analysis for truck transportation of high consequence cargo.

    SciTech Connect

    Waters, Robert David

    2010-09-01

    The fixed facilities control everything they can to drive down risk. They control the environment, work processes, work pace and workers. The transportation sector drive the State and US highways with high kinetic energy and less-controllable risks such as: (1) other drivers (beginners, impaired, distracted, etc.); (2) other vehicles (tankers, hazmat, super-heavies); (3) road environments (bridges/tunnels/abutments/construction); and (4) degraded weather.

  6. Mitigation technologies and measures in energy sector of Kazakstan

    SciTech Connect

    Pilifosova, O.; Danchuk, D.; Temertekov, T.

    1996-12-31

    An important commitment in the UN Framework Convention on Climate Change is to conduct mitigation analysis and to communicate climate change measures and policies. In major part reducing CO{sub 2} as well as the other greenhouse gas emissions in Kazakstan, can be a side-product of measures addressed to increasing energy efficiency. Since such measures are very important for the national economy, mitigation strategies in the energy sector of Kazakstan are directly connected with the general national strategy of the energy sector development. This paper outlines the main measures and technologies in energy sector of Kazakstan which can lead to GHG emissions reduction and presents the results of current mitigation assessment. The mitigation analysis is addressed to energy production sector. A baseline and six mitigation scenarios were developed to evaluate the most attractive mitigation options, focusing on specific technologies which have been already included in sustainable energy programs. According to the baseline projection, Kazakstan`s CO{sub 2} emissions will not exceed their 1990 level until 2005. The potential for CO{sub 2} emission reduction is estimated to be about 11 % of the base line emission level by the end of considered period (in 2020). The main mitigation options in the energy production sector in terms of mitigation potential and technical and economical feasibility include rehabilitation of thermal power plants aimed to increasing efficiency, use of nuclear energy and further expansion in the use of hydro energy based on small hydroelectric power plants.

  7. Transportation Management Workshop: Proceedings

    SciTech Connect

    Not Available

    1993-10-01

    This report is a compilation of discussions presented at the Transportation Management Workshop held in Gaithersburg, Maryland. Topics include waste packaging, personnel training, robotics, transportation routing, certification, containers, and waste classification.

  8. Transportation Energy Futures Study

    Energy.gov [DOE]

    Transportation accounts for 71% of total U.S. petroleum consumption and 33% of total greenhouse gas emissions. The Transportation Energy Futures (TEF) study examines underexplored oil-savings and...

  9. Packaging and Transportation Safety

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2010-05-14

    The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Supersedes DOE O 460.1B.

  10. Packaging and Transportation Safety

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

  11. Packaging and Transportation Safety

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

  12. Packaging and Transportation Safety

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1996-10-02

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

  13. Possible Pathways for Increasing Natural Gas Use for Transportation (Presentation)

    SciTech Connect

    Zigler, B.

    2014-10-01

    A collaborative partnership of DOE National Laboratories is working with DOE to identify critical RD&D needs to significantly increase the speed and breadth of NG uptake into the transportation sector. Drivers for increased utilization of natural gas for transportation are discussed. Key needs in research, development, and deployment are proposed, as well as possible pathways to address those needs. This presentation is intended to serve as a catalyst to solicit input from stakeholders regarding what technical areas they deem the most important.

  14. U.S. Virgin Islands Transportation Petroleum Reduction Plan

    SciTech Connect

    Johnson, C.

    2011-09-01

    This NREL technical report determines a way for USVI to meet its petroleum reduction goal in the transportation sector. It does so first by estimating current petroleum use and key statistics and characteristics of USVI transportation. It then breaks the goal down into subordinate goals and estimates the petroleum impacts of these goals with a wedge analysis. These goals focus on reducing vehicle miles, improving fuel economy, improving traffic flow, using electric vehicles, using biodiesel and renewable diesel, and using 10% ethanol in gasoline. The final section of the report suggests specific projects to achieve the goals, and ranks the projects according to cost, petroleum reduction, time frame, and popularity.

  15. NREL: Innovation Impact - Transportation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transportation Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Improved transportation technologies are essential for reducing U.S. petroleum dependence. Close The United States consumes roughly 19 million barrels of petroleum per day, but replacing petroleum-based liquid fuels is difficult because of their high energy density, which helps

  16. Water Transport Within the STack: Water Transport Exploratory...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Within the STack: Water Transport Exploratory Studies Water Transport Within the STack: Water Transport Exploratory Studies Part of a 100 million fuel cell award announced by DOE ...

  17. Macomb College Transportation and Energy Technology 126.09

    SciTech Connect

    2010-12-31

    The objectives for this project were to create the laboratory facilities to deliver recently created and amended curriculum in the areas of energy creation, storage, and delivery in the transportation and stationary power sectors. The project scope was to define the modules, courses and programs in the emerging energy sectors of the stationary power and transportation industries, and then to determine the best equipment to support instruction, and procure it and install it in the laboratories where courses will be taught. Macomb Community College had a curriculum development grant through the Department of Education that ran parallel to this one where the energy curriculum at the school was revised to better permit students to gain comprehensive education in a targeted area of the renewable energy realm, as well as enhance the breadth of jobs addressed by curriculum in the transportation sector. The curriculum development and experiment and equipment definition ran in parallel, and resulted in what we believe to be a cogent and comprehensive curriculum supported with great hands-on experiments in modern labs. The project has been completed, and this report will show how the equipment purchases under the Department of Energy Grant support the courses and programs developed and amended under the Department of Education Grant. Also completed is the tagging documentation and audit tracking process required by the DOE. All materials are tagged, and the documentation is complete as required.

  18. NREL: Transportation Research - Publications

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Publications NREL researchers document their findings in technical reports, conference papers, journal articles, and fact sheets. Visit the following online resources to find publications about sustainable transportation research, development, and deployment. Capabilities Overviews These recent publications highlight some of our capabilities, facilities, and projects: Image of fact sheet cover. Sustainable Transportation This overview fact sheet describes NREL's sustainable transportation

  19. Fact #699: October 31, 2011 Transportation Energy Use by Mode and Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Type, 2009 | Department of Energy 9: October 31, 2011 Transportation Energy Use by Mode and Fuel Type, 2009 Fact #699: October 31, 2011 Transportation Energy Use by Mode and Fuel Type, 2009 Highway vehicles are responsible for most of the energy consumed by the transportation sector. Most of the fuel used in light vehicles is gasoline, while most of the fuel used in med/heavy trucks and buses is diesel. Transportation Energy Use by Mode and Fuel Type, 2009 Graph showing transporation energy

  20. Natural gas to buoy Trinidad and Tobago petroleum sector

    SciTech Connect

    Not Available

    1993-03-01

    Trinidad and Tobago's petroleum sector remains at a crossroads. While heavily reliant on oil and gas for domestic energy consumption and hard currency export earnings, the small Caribbean island nation faces some tough choices in reviving its hydrocarbon sector in the 1990s. Exploration and production of crude oil have stagnated in recent years, and domestic refinery utilization remains low at 36%. However, substantial natural gas reserves in Trinidad and Tobago offer the promise of a burgeoning natural gas based economy with an eye to liquefied natural gas and gas based petrochemical exports. Any solutions will involve considerable outlays by the government as well as a sizable infusion of capital by foreign companies. Therein lie some of the hard choices. The article describes the roles of oil and gas, foreign investment prospects, refining status, refining problems, gas sector foreign investment, and outlook for the rest of the 1990's.

  1. Priority mitigation measures in non-energy sector in Kazakstan

    SciTech Connect

    Mizina, S.V.; Pilifosova, O.V.; Gossen, E.F.

    1996-12-31

    Fulfilling the Commitments on UN FCCC through the U.S. Country Studies Program, Kazakstan has developed the national GHG Inventory, vulnerability and adaptation assessment and estimated the possibility of mitigation measures in certain sectors. Next step is developing National Climate Change Action Plan. That process includes such major steps as setting priorities in mitigation measures and technologies, their comprehensive evaluation, preparation implementation strategies, developing the procedure of incorporation of the National Action Plan into other development plans and programs. This paper presents programs and measures that can reduce GHG emissions in non-energy sector. Measures in land-use change and forestry, agriculture and coal mining are considered. Current situation in non-energy sector of Kazakstan is discussed. The amount of GHG emissions reduction and cost analysis presented in this paper was developed with the use of IPCC recommendations.

  2. Detection and Analysis of Threatsto the Energy Sector (DATES) May 2008

    Energy.gov [DOE]

    A groundbreaking integrated capability in intrusion detection, security event management, and sector-wide threat analysis.

  3. Electricity savings potentials in the residential sector of Bahrain

    SciTech Connect

    Akbari, H.; Morsy, M.G.; Al-Baharna, N.S.

    1996-08-01

    Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

  4. NREL: Transportation Research - Transportation and Hydrogen Newsletter...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    This is the May 2015 issue of the Transportation and Hydrogen Newsletter. May 28, 2015 Photo of a car refueling at a hydrogen dispensing station. DOE's H2FIRST project focuses on ...

  5. Private Sector Initiative Between the U.S. and Japan

    SciTech Connect

    1998-09-30

    OAK-A258 Private Sector Initiative Between the U.S. and Japan. This report for calendar years 1993 through September 1998 describes efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract. The development of a pyrochemical process, called TRUMP-S, for partitioning actinides from PUREX waste, is described in this report. This effort is funded by the Central Research Institute of Electric Power Industry (CRIEPI), KHI, the United States Department of Energy, and Boeing.

  6. Methodology for Modeling Building Energy Performance across the Commercial Sector

    SciTech Connect

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  7. Prospects for improvement in Albania`s energy sector

    SciTech Connect

    1996-06-01

    The Chairman of the Senate Energy and Natural Resources Committee asked the authors to provide information on (1) the trends in and problems related to Albania`s energy production, imports, exports, and use; (2) the plans Albania has to address its energy problems; (3) the role of foreign trade and investment in Albania`s energy sector and the factors that discourage them; and (4) the efforts of the US government and international organizations to assist Albania`s energy sector and improve Albania`s business climate. This paper describes the methodology and summarizes the results of the study.

  8. Clean Energy Investment Center and Private Sector Talk Innovation and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Investment in Smart Grid and Energy Storage at the 3rd LINKS Event on Sand Hill Road - the Center of Investment in Silicon Valley | Department of Energy and Private Sector Talk Innovation and Investment in Smart Grid and Energy Storage at the 3rd LINKS Event on Sand Hill Road - the Center of Investment in Silicon Valley Clean Energy Investment Center and Private Sector Talk Innovation and Investment in Smart Grid and Energy Storage at the 3rd LINKS Event on Sand Hill Road - the Center of

  9. Issues in Energy Economics Led by Emerging Linkages between the Natural Gas and Power Sectors

    SciTech Connect

    Platt, Jeremy B.

    2007-09-15

    Fuel prices in 2006 continued at record levels, with uranium continuing upward unabated and coal, SO{sub 2} emission allowances, and natural gas all softening. This softening did not continue for natural gas, however, whose prices rose, fell and rose again, first following weather influences and, by the second quarter of 2007, continuing at high levels without any support from fundamentals. This article reviews these trends and describes the remarkable increases in fuel expenses for power generation. By the end of 2005, natural gas claimed 55% of annual power sector fuel expenses, even though it was used for only 19% of electric generation. Although natural gas is enormously important to the power sector, the sector also is an important driver of the natural gas market-growing to over 28% of the market even as total use has declined. The article proceeds to discuss globalization, natural gas price risk, and technology developments. Forces of globalization are poised to affect the energy markets in new ways-new in not being only about oil. Of particular interest in the growth of intermodal traffic and its a little-understood impacts on rail traffic patterns and transportation costs, and expected rapidly expanding LNG imports toward the end of the decade. Two aspects of natural gas price risk are discussed: how understanding the use of gas in the power sector helps define price ceilings and floors for natural gas, and how the recent increase in the natural gas production after years of record drilling could alter the supply-demand balance for the better. The article cautions, however, that escalation in natural gas finding and development costs is countering the more positive developments that emerged during 2006. Regarding technology, the exploitation of unconventional natural gas was one highlight. So too was the queuing up of coal-fired power plants for the post-2010 period, a phenomenon that has come under great pressure with many consequences including increased

  10. Transportation safety training

    SciTech Connect

    Jones, E.

    1990-01-01

    Over the past 25 years extensive federal legislation involving the handling and transport of hazardous materials/waste has been passed that has resulted in numerous overlapping regulations administered and enforced by different federal agencies. The handling and transport of hazardous materials/waste involves a significant number of workers who are subject to a varying degree of risk should an accident occur during handling or transport. Effective transportation training can help workers address these risks and mitigate them, and at the same time enable ORNL to comply with the federal regulations concerning the transport of hazardous materials/waste. This presentation will outline how the Environmental and Health Protection Division's Technical Resources and Training Section at the Oak Ridge National Laboratory, working with transportation and waste disposal personnel, have developed and implemented a comprehensive transportation safety training program to meet the needs of our workers while satisfying appropriate federal regulations. 8 refs., 3 tabs.

  11. Transportation Energy Survey Data Book 1.1

    SciTech Connect

    Gurikova, T

    2002-06-18

    The transportation sector is the major consumer of oil in the United States. In 2000, the transportation sector's share of U.S. oil consumption was 68 percent (U.S. DOE/EIA, 2001a, Table 2.5, p. 33, Table 1.4, p.7). As a result, the transportation sector is one of the major producers of greenhouse gases. In 2000, the transportation sector accounted for one-third (33 percent) of carbon emissions (U.S. DOE/EIA, 2000b, Table 5, p.28). In comparison, the industrial sector accounted for 32 percent and residential and commercial sector for 35 percent of carbon emissions in 2000. Carbon emissions, together with other gases, constitute greenhouse gases that are believed to cause global warming. Because that the transportation sector is a major oil consumer and producer of greenhouse gases, the work of the Analytic Team of the Office of Transportation Technologies (OTT) focuses on two main objectives: (1) reduction of U.S. oil dependence and (2) reduction of carbon emissions from vehicles. There are two major factors that contribute to the problem of U.S. oil dependence. First, compared to the rest of the world, the United States does not have a large oil reserve. The United States accounts for only 9 percent of oil production (U.S. DOE/EIA, 2001c, Table 4.1C). In comparison, the Organization for Petroleum Exporting Countries (OPEC) produces 42 percent of oil, and the Persian Gulf accounts for 28 percent. (U.S. DOE/EIA, 2001c, Table 1.1A). More than half (54 percent) of oil consumed in the United States is imported (U.S. DOE/EIA, 2001a, Table 1.8, p. 15). Second, it is estimated that the world is approaching the point at which half of the total resources of conventional oil believed to exist on earth will have been used up (Birky et. al., 2001, p. 2). Given that the United States is highly dependent on imported oil and that half of the world's conventional oil reserves will have been used up in the near future, the OTT's goal is to ensure an adequate supply of fuel for

  12. Towards the future: The promise of intermodal and multimodal transportation systems. Research report

    SciTech Connect

    Anderson, S.E.; Easley, R.B.; Fowler, T.M.; Gabler, W.L.; Govind, S.

    1995-02-01

    Issues relating to intermodal and multimodal transportation systems are introduced and defined. Intermodal and multimodal transportation solutions are assessed within the framework of legislative efforts such as Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA), Clean Air Act Amendments of 1990 (CAAA), and North American Free Trade Agreement (NAFTA). Federal involvement in state intermodal transportation systems, and state responses to the growing intermodal and multimodal trends are also reviewed. The roles and responsibilities of the Metropolitan Planning Organizations (MPO) in the post-ISTEA world is examined and the impacts of legislative mandates considered. As a case study, the workings of the Houston MPO are examined. Private sector intermodal and multimodal involvement is addressed, including issues in management, regulatory, financial, economical, environmental, and even physical constraints. Effects of regulation on private sector intermodalism are discussed, as are case studies in partnering and management.

  13. Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program

    SciTech Connect

    1995-08-01

    This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

  14. Source sector and region contributions to BC and PM2.5 in Central Asia

    DOE PAGES [OSTI]

    Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.; Shafer, M. M.; Schauer, J. J.; Solomon, P. A.; Saide, P. E.; Spak, S. N.; Cheng, Y. F.; Denier van der Gon, H. A. C.; et al

    2015-02-18

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008–July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM2.5 concentrations (annual mean value ~10 μg m-3) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the winter (hourly valuesmore » from 2 to 90 μg m-3). Surface concentrations of black carbon (BC) (mean value ~0.1 μg m-3) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM2.5, PM10, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM2.5. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located to characterize regional and intercontinental transport of

  15. A Reliable Muddle: Transportation Scenarios for the 80% Greenhouse Gas Reduction Goal for 2050 (Presentation)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reliable Muddle: Transportation Scenarios for the 80% Greenhouse Gas Reduction Goal for 2050 California Air Resource Board Scenario Meeting Marc Melaina Karen Webster October 28, 2009 Sacramento, California NREL/PR-560-47003 National Renewable Energy Laboratory Innovation for Our Energy Future Presentation Overview 2 Intro: Reducing LDV GHGs to 80% below 1990 levels * Transportation sector-specific emissions data and policy concerns. Part 1: Metrics for the 80% goal: A Pyramid Framework * Three

  16. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J. Prouty

    2006-07-14

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport

  17. Intelligent Transportation Systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Intelligent Transportation Systems This email address is being protected from spambots. You need JavaScript enabled to view it. - TRACC Director Background The development and deployment of Intelligent Transportation Systems (ITS) in the United States is an effort of national importance. Through the use of advanced computing, control, and communication technologies, ITS promises to greatly improve the efficiency and safety of the existing surface transportation system and reduce the

  18. Fermilab | Visit Fermilab | Transportation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transportation Transportation to and from Chicago O'Hare Airport or Midway Airport is available by limousine, taxi or car rental. Transportation to and from the Geneva local commuter Metra train station on the Union Pacific West line is available by taxi or Pace Call-n-Ride. Car rental All of the usual rental companies (such as Hertz, Avis, Budget and National) are located at the airports. Limousine service Reservations for limousine service should be made in advance when possible. West Suburban

  19. Transportation | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technologies Available for Licensing Energy Storage Industrial & Manufacturing Processes Instrumentation & Devices Licensable Software Life Sciences Materials Transportation Fact Sheets and Forms Transportation Influencing the future of vehicles, fuels Argonne's transportation research efforts bring together scientists and engineers from many disciplines to find cost-effective solutions to critical issues like foreign-oil dependency and greenhouse gas emissions. As one of the U.S.

  20. Distributed Generation Potential of the U.S. CommercialSector

    SciTech Connect

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman,Etan; Marnay, Chris

    2005-06-01

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems in developed countries over the next two decades. In the U.S., private and public expectations for this technology are heavily influenced by forecasts published by the Energy Information Administration (EIA), most notably the Annual Energy Outlook (AEO). EIA's forecasts are typically made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. Annual penetration is forecast by estimating the payback period for each technology, for each of a limited number of representative building types, for each of nine regions. This process results in an AEO2004 forecast deployment of about a total 3 GW of DG electrical generating capacity by 2025, which is only 0.25 percent of total forecast U.S. capacity. Analyses conducted using both the AEO2003 and AEO2004 versions of NEMS changes the baseline costs and performance characteristics of DG to reflect a world without U.S. Department of Energy (DOE) research into several thermal DG technologies, which is then compared to a case with enhanced technology representative of the successful achievement of DOE research goals. The net difference in 2025 DG penetration is dramatic using the AEO2003 version of NEMS, but much smaller in the AEO2004 version. The significance and validity of these contradictory results are discussed, and possibilities for improving estimates of commercial U.S. DG potential are explored.

  1. WASTE PACKAGE TRANSPORTER DESIGN

    SciTech Connect

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  2. Transportation Energy Consortiums

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Physics of hydrogen in materials - Our research develops an understanding of reactions on surfaces, hydrogen transport in materials, embrittlement mechanisms, deformation and ...

  3. Transportation Storage Interface

    Office of Environmental Management (EM)

    transportation * High priority technical information needs have * Overall low level of knowledge * Overall high regulatory impact 12 Extended Spent Fuel Storage and...

  4. Sustainable Transportation (Fact Sheet)

    SciTech Connect

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  5. UZ Colloid Transport Model

    SciTech Connect

    M. McGraw

    2000-04-13

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

  6. NREL: Transportation Research - Capabilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A Vision for Sustainable Transportation Line graph illustrating three pathways (biofuel, hydrogen, and electric vehicle) to reduce energy use and greenhouse gas emissions. Electric ...

  7. Transportation Energy Futures Snapshot

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    modes, manage the demand for transportation, and shift the fuel mix to more sustainable sources necessary to reach these significant outcomes. Coordinating a...

  8. integrated-transportation-models

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    support a wider application of integrated transportation models, especially focusing on travel demand and network ... irrevocable worldwide license in said article to ...

  9. Radioactive Material Transportation Practices

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2002-09-23

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  10. Transportation Energy Futures Snapshot

    Energy.gov [DOE]

    This snapshot is a summary of the EERE reports that provide a detailed analysis of opportunities and challenges along the path to a more sustainable transportation energy future.

  11. Transport Version 3

    Energy Science and Technology Software Center

    2008-05-16

    The Transport version 3 (T3) system uses the Network News Transfer Protocol (NNTP) to move data from sources to a Data Reporisoty (DR). Interested recipients subscribe to newsgroups to retrieve data. Data in transport is protected by AES-256 and RSA cryptographic services provided by the external OpenSSL cryptographic libraries.

  12. Packaging and Transportation Safety

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2003-04-04

    To establish safety requirements for the proper packaging and transportation of Department of Energy (DOE)/National Nuclear Security Administration (NNSA) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1A. Canceled by DOE O 460.1C.

  13. The Role of Cellulosic Ethanol in Transportation

    SciTech Connect

    Robert M. Neilson, Jr.

    2007-10-01

    Petroleum provides essentially all of the energy used today in the transportation sector. To reduce this dependence on fossil energy, other fuels are beginning to be used, notably ethanol and biodiesel. Almost all fuel ethanol is produced by the conversion of corn grain to starch with subsequent fermentation to ethanol. In 2006, almost 5 billion gallons of fuel ethanol were produced, which used 17% of domestic corn production. The DOE has a goal to displace 30% of motor gasoline demand or 60 billion gallons per year by 2030. To achieve this goal, production of ethanol from lignocellulosic sources (e.g., agricultural residues, forest residues, and dedicated energy crops) is needed. This paper will describe the production of cellulosic ethanol as well as the issues and benefits associated with its production.

  14. Ultra-weak sector, Higgs boson mass, and the dilaton

    DOE PAGES [OSTI]

    Allison, Kyle; Hill, Christopher T.; Ross, Graham G.

    2014-09-26

    The Higgs boson mass may arise from a portal coupling to a singlet fieldmore » $$\\sigma$$ which has a very large VEV $$f \\gg m_\\text{Higgs}$$. This requires a sector of "ultra-weak" couplings $$\\zeta_i$$, where $$\\zeta_i \\lesssim m_\\text{Higgs}^2 / f^2$$. Ultra-weak couplings are technically naturally small due to a custodial shift symmetry of $$\\sigma$$ in the $$\\zeta_i \\rightarrow 0$$ limit. The singlet field $$\\sigma$$ has properties similar to a pseudo-dilaton. We engineer explicit breaking of scale invariance in the ultra-weak sector via a Coleman-Weinberg potential, which requires hierarchies amongst the ultra-weak couplings.« less

  15. Ultra-weak sector, Higgs boson mass, and the dilaton

    SciTech Connect

    Allison, Kyle; Hill, Christopher T.; Ross, Graham G.

    2014-11-01

    The Higgs boson mass may arise from a portal coupling to a singlet field $\\sigma$ which has a very large VEV $f \\gg m_\\text{Higgs}$. This requires a sector of "ultra-weak" couplings $\\zeta_i$, where $\\zeta_i \\lesssim m_\\text{Higgs}^2 / f^2$. Ultra-weak couplings are technically naturally small due to a custodial shift symmetry of $\\sigma$ in the $\\zeta_i \\rightarrow 0$ limit. The singlet field $\\sigma$ has properties similar to a pseudo-dilaton. We engineer explicit breaking of scale invariance in the ultra-weak sector via a Coleman-Weinberg potential, which requires hierarchies amongst the ultra-weak couplings.

  16. Cosmic strings in hidden sectors: 2. Cosmological and astrophysical signatures

    SciTech Connect

    Long, Andrew J.; Vachaspati, Tanmay

    2014-12-18

    Cosmic strings can arise in hidden sector models with a spontaneously broken Abelian symmetry group. We have studied the couplings of the Standard Model fields to these so-called dark strings in the companion paper. Here we survey the cosmological and astrophysical observables that could be associated with the presence of dark strings in our universe with an emphasis on low-scale models, perhaps TeV. Specifically, we consider constraints from nucleosynthesis and CMB spectral distortions, and we calculate the predicted fluxes of diffuse gamma ray cascade photons and cosmic rays. For strings as light as TeV, we find that the predicted level of these signatures is well below the sensitivity of the current experiments, and therefore low scale cosmic strings in hidden sectors remain unconstrained. Heavier strings with a mass scale in the range 10{sup 13} GeV to 10{sup 15} GeV are at tension with nucleosynthesis constraints.

  17. Ultra-weak sector, Higgs boson mass, and the dilaton

    SciTech Connect

    Allison, Kyle; Hill, Christopher T.; Ross, Graham G.

    2014-09-26

    The Higgs boson mass may arise from a portal coupling to a singlet field $\\sigma$ which has a very large VEV $f \\gg m_\\text{Higgs}$. This requires a sector of "ultra-weak" couplings $\\zeta_i$, where $\\zeta_i \\lesssim m_\\text{Higgs}^2 / f^2$. Ultra-weak couplings are technically naturally small due to a custodial shift symmetry of $\\sigma$ in the $\\zeta_i \\rightarrow 0$ limit. The singlet field $\\sigma$ has properties similar to a pseudo-dilaton. We engineer explicit breaking of scale invariance in the ultra-weak sector via a Coleman-Weinberg potential, which requires hierarchies amongst the ultra-weak couplings.

  18. Policies to encourage private sector responses to potential climate change

    SciTech Connect

    Cantor, R.A.; Jones, D.W.; Leiby, P.N.; Rayner, S. )

    1989-01-01

    The Oak Ridge National Laboratory recently completed work on a report commissioned by the US Congress from the Department of Energy entitled A Compendium of Options for Government Policy to Encourage Private Sector Responses to Potential Climate Change'' (US DOE 1989). Four classes of incentives (regulatory, fiscal, informational, and RD D) were surveyed in the context of greenhouse-related activities in five economic sectors as depicted in Figure 1. As the example shows, for each activity general policies and specific options were considered. The paper presented here does not summarize the DOE study but identifies some of the lessons ORNL staff learned during the study about policies to deal with potential global warming. 21 refs., 1 fig.

  19. Cosmic strings in hidden sectors: 2. Cosmological and astrophysical signatures

    SciTech Connect

    Long, Andrew J.; Vachaspati, Tanmay E-mail: tvachasp@asu.edu

    2014-12-01

    Cosmic strings can arise in hidden sector models with a spontaneously broken Abelian symmetry group. We have studied the couplings of the Standard Model fields to these so-called dark strings in the companion paper. Here we survey the cosmological and astrophysical observables that could be associated with the presence of dark strings in our universe with an emphasis on low-scale models, perhaps TeV . Specifically, we consider constraints from nucleosynthesis and CMB spectral distortions, and we calculate the predicted fluxes of diffuse gamma ray cascade photons and cosmic rays. For strings as light as TeV, we find that the predicted level of these signatures is well below the sensitivity of the current experiments, and therefore low scale cosmic strings in hidden sectors remain unconstrained. Heavier strings with a mass scale in the range 10{sup 13} GeV to 10{sup 15} GeV are at tension with nucleosynthesis constraints.

  20. Single-Sector Supersymmetry Breaking, Chirality, and Unification

    SciTech Connect

    Behbahani, Siavosh R.; Craig, Nathaniel; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.

    2011-08-12

    Calculable single-sector models provide an elegant framework for generating the flavor textures via compositeness, breaking supersymmetry, and explaining the electroweak scale. Such models may be realized naturally in supersymmetric QCD with additional gauge singlets (SSQCD), though it remains challenging to construct models without a surfeit of light exotic states where the Standard Model index emerges naturally. We classify possible single-sector models based on Sp confining SSQCD according to their Standard Model index and number of composite messengers. This leads to simple, calculable models that spontaneously break supersymmetry, reproduce the fermion flavor hierarchy, and explain the Standard Model index dynamically with little or no additional matter. At low energies these theories realize a 'more minimal' soft spectrum with direct mediation and a gravitino LSP.