National Library of Energy BETA

Sample records for nameplate capacity area

  1. Property:Technology Nameplate Capacity (MW) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Modular Installation in a Grid Form Dozens of MW + MHK TechnologiesFloating anchored OTEC plant + The first technology demonstration ocean model is expected to be able to...

  2. Property:Device Nameplate Capacity (MW) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects40MW Lewis project + 0 8MW 1MW Farms of multiple machines will be deployed with installed...

  3. Property:PotentialOffshoreWindCapacity | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric...

  4. Property:PotentialEGSGeothermalCapacity | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Type Quantity Description The nameplate capacity technical potential from EGS Geothermal for a particular place. Use this property to express potential electric...

  5. ,"Geographic Area",,,"Voltage",,,"Capacity Rating (MVa)","In...

    Energy Information Administration (EIA) (indexed site)

    " ,"Geographic Area",,,"Voltage",,,"Capacity Rating (MVa)","In-Service Date","Electrical Connection Locations",,"Line Information",,,,"Conductor Characteristics",,,"Circuits...

  6. ,"Geographic Area",,,"Voltage",,,"Capacity Rating (MVa)","In...

    Energy Information Administration (EIA) (indexed site)

    ,"Geographic Area",,,"Voltage",,,"Capacity Rating (MVa)","In-Service Date","Electrical Connection Locations",,"Line Information",,,,"Conductor Characteristics",,,"Circuits...

  7. ,"Geographic Area",,,"Voltage",,,"Capacity Rating (MVa)","In...

    Energy Information Administration (EIA) (indexed site)

    ,"(Various)" ,"Geographic Area",,,"Voltage",,,"Capacity Rating (MVa)","In-Service",,"Electrical Connection Locations",,"Line Information",,,,"Conductor Characteristics",,,"Circuits...

  8. Next Update: November 2016 Geographic Area Capacity In-Service

    Energy Information Administration (EIA) (indexed site)

    Geographic Area Capacity In-Service Data Year NERC Region Type Operating (kV) Design (kV) Rating (MVa) Month/Year From Terminal To Terminal Length (Miles) Type Company Code Company Name Organizational Type Ownership (Percent) Project Name Level of Certainty Primary Driver 1 Primary Driver 2 2014 FRCC AC 200-299 115 460 1/2016 SUB 4 230.00 SUB 7 230.00 3.8 OH 18445 of Tallahassee M 100% 0.00 - SUB 7 230.00 Under Constructio Reliability 2014 FRCC AC 100-120 115 232 12/2016 Sub 14 115 Sub 7 115 6.0

  9. ,"Geographic Area",,,"Voltage",,,"Capacity ","In-Service",,"Electrical...

    Energy Information Administration (EIA) (indexed site)

    ...,"Voltage",,,"Capacity ","In-Service",,"Electrical Connection Locations",,"Line ...,"Voltage",,,"Capacity ","In-Service",,"Electrical Connection Locations",,"Line ...

  10. Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam...

    Energy Information Administration (EIA) (indexed site)

    ... Beginning in 2001, data are for electric utility and unregulated generating plants",,,,,,"Plant Operation and Design Report."" * 1997-2005-EIA, Electric Power Annual 2008 (January ...

  11. Capacity Requirements to Support Inter-Balancing Area Wind Delivery

    SciTech Connect

    Kirby, B.; Milligan, M.

    2009-07-01

    Paper examines the capacity requirements that arise as wind generation is integrated into the power system and how those requirements change depending on where the wind energy is delivered.

  12. The effect of media area on the dust holding capacity of deep pleat HEPA filters

    SciTech Connect

    Dyment, J.; Loughborough, D.

    1997-08-01

    The high potential cost of storage, treatment and disposal of radioactive wastes places a premium on the longevity of installed HEPA filters in situations in radioactive processing facilities where dust capacity is a life determining factor. Previous work investigated the dust holding capacity v pressure drop characteristics of different designs of HEPA filter and also the effect of using graded density papers. This paper records an investigation of the effect of media area variation on the dust holding capacity of the {open_quotes}deep-pleat{close_quotes} design of HEPA filter. As in the previously reported work two test dusts (carbon black and sub micron sodium chloride) in the range (0.15 - 0.4{mu}m) were used. Media area adjustment was effected by varying the number of separators within the range 60 - 90. Results with the coarser dust allowed an optimum media area to be identified. Media areas greater or smaller than this optimum retained less dust than the optimum for the same terminal pressure drop. Conversely with the finer sodium chloride aerosol the dust holding capacity continued to increase up to the maximum area investigated. 7 refs., 4 figs.

  13. Rocky Mountain area petroleum product availability with reduced PADD IV refining capacity

    SciTech Connect

    Hadder, G.R.; Chin, S.M.

    1994-02-01

    Studies of Rocky Mountain area petroleum product availability with reduced refining capacity in Petroleum Administration for Defense IV (PADD IV, part of the Rocky Mountain area) have been performed with the Oak Ridge National Laboratory Refinery Yield Model, a linear program which has been updated to blend gasolines to satisfy constraints on emissions of nitrogen oxides and winter toxic air pollutants. The studies do not predict refinery closures in PADD IV. Rather, the reduced refining capacities provide an analytical framework for probing the flexibility of petroleum refining and distribution for winter demand conditions in the year 2000. Industry analysts have estimated that, for worst case scenarios, 20 to 35 percent of PADD IV refining capacity could be shut-down as a result of clean air and energy tax legislation. Given these industry projections, the study scenarios provide the following conclusions: The Rocky Mountain area petroleum system would have the capability to satisfy winter product demand with PADD IV refinery capacity shut-downs in the middle of the range of industry projections, but not in the high end of the range of projections. PADD IV crude oil production can be maintained by re-routing crude released from PADD IV refinery demands to satisfy increased crude oil demands in PADDs II (Midwest), III (Gulf Coast), and Washington. Clean Air Act product quality regulations generally do not increase the difficulty of satisfying emissions reduction constraints in the scenarios.

  14. Property:PotentialUrbanUtilityScalePVCapacity | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Description The nameplate capacity technical potential from utility-scale PV in urban areas of a particular place. Use this property to express potential electric energy...

  15. Debt extension on small project yields real savings

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    70 MW Idaho Falls Bulb Turbine Project, nameplate capacity 27 MW DworshakClearwater Small Hydro Power, nameplate capacity 5.4 MW Rocky Brook of Mason PUD No. 1, nameplate...

  16. Water-Stable Zirconium-Based Metal-Organic Framework Material with High-Surface Area and Gas-Storage Capacities

    SciTech Connect

    Gutov, OV; Bury, W; Gomez-Gualdron, DA; Krungleviciute, V; Fairen-Jimenez, D; Mondloch, JE; Sarjeant, AA; Al-Juaid, SS; Snurr, RQ; Hupp, JT; Yildirim, T; Farha, OK

    2014-08-14

    We designed, synthesized, and characterized a new Zr-based metal-organic framework material, NU-1100, with a pore volume of 1.53 ccg(-1) and Brunauer-Emmett-Teller (BET) surface area of 4020 m(2)g(-1); to our knowledge, currently the highest published for Zr-based MOFs. CH4/CO2/H-2 adsorption isotherms were obtained over a broad range of pressures and temperatures and are in excellent agreement with the computational predictions. The total hydrogen adsorption at 65 bar and 77 K is 0.092 gg(-1), which corresponds to 43 gL(-1). The volumetric and gravimetric methane-storage capacities at 65 bar and 298 K are approximately 180 v(STP)/v and 0.27 gg(-1), respectively.

  17. CSTI high capacity power

    SciTech Connect

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY88, the Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  18. Excess Capacity from LADWP Control Area

    Energy Saver

    ... share of (27m HH) Mar 01 water, cooking) Mar'01 Winter ... shifted bid strategies back to incremental cost-based bids. ... offline, abnormally hot weather, the default of ...

  19. FAQs about Storage Capacity

    Annual Energy Outlook

    about Storage Capacity How do I determine if my tanks are in operation or idle or ... Do I have to report storage capacity every month? No, only report storage capacity with ...

  20. MHK Projects/Wave Energy AS Project 1 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Project Installed Capacity (MW) 0 Device Nameplate Capacity (MW) Concept implemented in breakwater structures capacity will depend on local wave energy and length of breakwater...

  1. Refinery Capacity Report

    Annual Energy Outlook

    Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 9 Shell Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 10...

  2. Refinery Capacity Report

    Energy Information Administration (EIA) (indexed site)

    Vacuum State/Refiner/Location Barrels per Atmospheric Crude Oil Distillation Capacity Barrels per Operating Idle Operating Idle Downstream Charge Capacity Thermal Cracking Delayed Fluid Coking Visbreaking Other/Gas Calendar Day Stream Day Distillation Coking Oil Table 3. Capacity of Operable Petroleum Refineries by State as of January 1, 2016 (Barrels per Stream Day, Except Where Noted) ......................................................... Alabama 131,675 0 140,500 0 47,000 32,000 0 0 0

  3. WINDExchange: Potential Wind Capacity

    WindExchange

    Potential Wind Capacity Potential wind capacity maps are provided for a 2014 industry standard wind turbine installed on a 110-m tower, which represents plausible current technology options, and a wind turbine on a 140-m tower, which represents near-future technology options. For more detailed information regarding the assumptions and calculations behind the wind potential capacity maps, see the Energy Department's Enabling Wind Power Nationwide report. Enlarge image This map shows the wind

  4. Refinery Capacity Report

    Energy Information Administration (EIA) (indexed site)

    6 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels ... Catalytic Cracking Downstream Charge Capacity (Barrels per Stream Day) Cracking Thermal ...

  5. Refinery Capacity Report

    Energy Information Administration (EIA) (indexed site)

    1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels ... Catalytic Cracking Downstream Charge Capacity (Barrels per Stream Day) Cracking Thermal ...

  6. Total Natural Gas Underground Storage Capacity

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Storage Capacity Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working...

  7. Natural Gas Underground Storage Capacity (Summary)

    Energy Information Administration (EIA) (indexed site)

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of ...

  8. Property:PotentialRuralUtilityScalePVCapacity | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and...

  9. SAS Output

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Producer Type Number of Generators Generator Nameplate Capacity Net Summer Capacity Net ... generators is reported in a single generator record and is presented as a single ...

  10. Variable capacity gasification burner

    SciTech Connect

    Saxon, D.I.

    1985-03-05

    A variable capacity burner that may be used in gasification processes, the burner being adjustable when operating in its intended operating environment to operate at two different flow capacities, with the adjustable parts being dynamically sealed within a statically sealed structural arrangement to prevent dangerous blow-outs of the reactants to the atmosphere.

  11. Liquid heat capacity lasers

    DOEpatents

    Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  12. Knudsen heat capacity

    SciTech Connect

    Babac, Gulru; Reese, Jason M.

    2014-05-15

    We present a Knudsen heat capacity as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  13. High capacity carbon dioxide sorbent

    DOEpatents

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  14. winter_capacity_2010.xls

    Energy Information Administration (EIA) (indexed site)

    Table 4.B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2001-2010 Actual, 2011-2015 Projected (Megawatts and Percent) Interconnection NERC Regional Assesment Area 2001/2002 2002/2003 2003/2004 2004/2005 2005/2006 2006/2007 2007/2008 2008/2009 2009/2010 2010/ 2011 2011/2012E 2012/2013E 2013/2014E 2014/2015E 2015/2016E FRCC 39,699 42,001 36,229 41,449 42,493 45,993 46,093 45,042 51,703 45,954 44,196 44,750 45,350

  15. Refinery Capacity Report

    Energy Information Administration (EIA) (indexed site)

    Table 6. Operable Crude Oil and Downstream Charge Capacity of Petroleum Refineries, January 1, 1987 to (Thousand Barrels per Stream Day, Except Where Noted) January 1, 2016 JAN 1, ...

  16. Refinery Capacity Report

    Reports and Publications

    2016-01-01

    Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 states, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions. The Refinery Capacity Report does not contain working and shell storage capacity data. This data is now being collected twice a year as of March 31 and September 30 on the Form EIA-810, "Monthly Refinery Report", and is now released as a separate report Working and Net Available Shell Storage Capacity.

  17. ,"Geographic Area",,,"Voltage",,,"Capacity Rating (MVa)","In-Service Date","Electrical Connection Locations",,"Line Information",,,,"Conductor Characteristics",,,"Circuits",,"Company Information"

    Energy Information Administration (EIA) (indexed site)

    " ","Next Update: October 2008" ,"Table 6. Existing and Proposed High-voltage Transmission Line Additions Filed in Calendar Year 2001, by North American Electric Reliability Council, 2002 Through 2011" ,"(Various)" ,"Geographic Area",,,"Voltage",,,"Capacity Rating (MVa)","In-Service Date","Electrical Connection Locations",,"Line Information",,,,"Conductor

  18. ,"Geographic Area",,,"Voltage",,,"Capacity Rating (MVa)","In-Service Date","Electrical Connection Locations",,"Line Information",,,,"Conductor Characteristics",,,"Circuits",,"Company Information"

    Energy Information Administration (EIA) (indexed site)

    ,,,,,,,,,,,,,,,,,," " ,"Table 6. Existing and Proposed High-voltage Transmission Line Additions Filed in Calendar Year 2002, by North American Electric Reliability Council, 2003 Through 20012" ,"(Various)" ,"Geographic Area",,,"Voltage",,,"Capacity Rating (MVa)","In-Service Date","Electrical Connection Locations",,"Line Information",,,,"Conductor

  19. Forward capacity market CONEfusion

    SciTech Connect

    Wilson, James F.

    2010-11-15

    In ISO New England and PJM it was assumed that sponsors of new capacity projects would offer them into the newly established forward centralized capacity markets at prices based on their levelized net cost of new entry, or ''Net CONE.'' But the FCCMs have not operated in the way their proponents had expected. To clear up the CONEfusion, FCCM designs should be reconsidered to adapt them to the changing circumstances and to be grounded in realistic expectations of market conduct. (author)

  20. High current capacity electrical connector

    DOEpatents

    Bettis, Edward S.; Watts, Harry L.

    1976-01-13

    An electrical connector is provided for coupling high current capacity electrical conductors such as copper busses or the like. The connector is arranged in a "sandwiched" configuration in which a conductor plate contacts the busses along major surfaces thereof clamped between two stainless steel backing plates. The conductor plate is provided with a plurality of contact buttons affixed therein in a spaced array such that the caps of the buttons extend above the conductor plate surface to contact the busses. When clamping bolts provided through openings in the sandwiched arrangement are tightened, Belleville springs provided under the rim of each button cap are compressed and resiliently force the caps into contact with the busses' contacting surfaces to maintain a predetermined electrical contact area provided by the button cap tops. The contact area does not change with changing thermal or mechanical stresses applied to the coupled conductors.

  1. Dual capacity reciprocating compressor

    DOEpatents

    Wolfe, Robert W.

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  2. Dual capacity reciprocating compressor

    DOEpatents

    Wolfe, R.W.

    1984-10-30

    A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

  3. Geothermal Plant Capacity Factors

    SciTech Connect

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  4. Refinery Capacity Report

    Energy Information Administration (EIA) (indexed site)

    District and State Production Capacity Alkylates Aromatics Asphalt and Road Oil Isomers Lubricants Marketable Petroleum Coke Sulfur (short tons/day) Hydrogen (MMcfd) Table 2. Production Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2016 (Barrels per Stream Day, Except Where Noted) a 83,429 10,111 26,500 92,765 21,045 21,120 69 1,159 PAD District I Delaware 11,729 5,191 0 6,000 0 13,620 40 596 New Jersey 29,200 0 70,000 4,000 12,000 7,500 26 280 Pennsylvania

  5. Refinery Capacity Report

    Energy Information Administration (EIA) (indexed site)

    Alkylates Aromatics Road Oil and Lubricants Petroleum Coke (MMcfd) Hydrogen Sulfur (short tons/day) Production Capacity Asphalt Isomers Marketable Table 7. Operable Production Capacity of Petroleum Refineries, January 1, 1987 to January 1, 2016 (Thousand Barrels per Stream Day, Except Where Noted) a JAN 1, 1987 974 287 788 326 250 364 2,569 23,806 JAN 1, 1988 993 289 788 465 232 368 2,418 27,639 JAN 1, 1989 1,015 290 823 469 230 333 2,501 28,369 JAN 1, 1990 1,030 290 844 456 232 341 2,607 24,202

  6. EIA - Electricity Generating Capacity

    Energy Information Administration (EIA) (indexed site)

    Electricity Glossary › FAQS › Overview Data Electricity Data Browser (interactive query tool with charting & mapping) Summary Sales (consumption), revenue, prices & customers Generation and thermal output Capacity of electric power plants Consumption of fuels used to generate electricity Receipts of fossil-fuels for electricity generation Average cost of fossil-fuels for electricity generation Fossil-fuel stocks for electricity generation Cost, revenue and expense statistics for...

  7. Working Gas Capacity

    Energy Information Administration (EIA) (indexed site)

    5 2015 Working Gas Capacity (billion cubic feet) ≥ 100 75 to 99 U.S. Energy Information Administration | Natural Gas Annual Figure 15. Locations of existing natural gas underground storage fields in the United States, 2015 50 to 74 Source: Energy Information Administration (EIA), Form EIA-191, "Monthly Underground Gas Storage Report." Reservoir Type Sites = Depleted Field 329 = Salt Cav

  8. Generating Unit Retirements in the United States by State, 2005

    Energy Information Administration (EIA) (indexed site)

    EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity ...

  9. Generating Unit Retirements in the United States by State, 2010

    Energy Information Administration (EIA) (indexed site)

    EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity ...

  10. SAS Output

    Energy Information Administration (EIA) (indexed site)

    Pumped Storage Other Energy Storage Nuclear All Other Sources All Sources Year 2014 ... Values are final. NOTES: Capacity from facilities with a total generator nameplate ...

  11. MHK Technologies/Yongsoo Wave Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    here Axial Flow Turbine Technology Description Oscillating water column type with turbines and generators Technology Dimensions Technology Nameplate Capacity (MW) 5 Device...

  12. Electricity Monthly Update - Energy Information Administration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    photovoltaic installations throughout 2014. The performance of utility-scale solar installations, those with a nameplate capacity of one megawatt (MW) or greater, is a...

  13. Gaviota Energy Group | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind energy Product: US wind project developer that hopes to build wind farms in Santa Barbara County, California and Cook County, Oregon with nameplate capacities of up to...

  14. SANDIA REPORT

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... data was incorporated into SNL's Photovoltaic Reliability Performance Model, ... "nameplate" capacity in dc kW or MW. Array Size Both dc and ac power and energy ratings ...

  15. MHK Technologies/The B1 buoy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Dimensions Technology Nameplate Capacity (MW) Proprietary Device Testing Scale Test *Currently undergoing open sea testing scaled device Previous tests carried out in the...

  16. Refinery Capacity Report

    Energy Information Administration (EIA) (indexed site)

    Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2015 CHS Inc./CHS McPherson Refinery Inc. CHS Inc./NCRA 9/15 McPherson, KS 86,000 PBF Energy Co LLC/Chalmette Refining LLC Chalmette Refining LLC 11/15 Chalmette, LA 192,500 bbl/cd= Barrels per calendar day Sources: Energy Information Administration (EIA) Form EIA-810, "Monthly Refinery Report" and Form EIA-820, "Annual Refinery

  17. Refinery Capacity Report

    Energy Information Administration (EIA) (indexed site)

    State/Refiner/Location Alkylates Aromatics Isobutane Lubricants Isomers Isopentane and Isohexane Asphalt and Road Oil Marketable Petroleum Coke Hydrogen (MMcfd) Sulfur (short tons per day) Table 4. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2016 (Barrels per Stream Day, Except Where Noted) Isooctane a ..................................................................... Alabama 0 0 15,000 1,150 4,200 0 7,120 40 228 0 Hunt Refining Co 0 0 15,000 0 4,200 0 7,120

  18. High capacity oil burner

    SciTech Connect

    Pedrosa, O.A. Jr.; Couto, N.C.; Fanqueiro, R.C.C.

    1983-11-01

    The present invention relates to a high capacity oil burner comprising a cylindrical atomizer completely surrounded by a protective cylindrical housing having a diameter from 2 to 3 times greater than the diameter of said atomizer; liquid fuels being injected under pressure into said atomizer and accumulating within said atomizer in a chamber for the accumulation of liquid fuels, and compressed air being injected into a chamber for the accumulation of air; cylindrical holes communicating said chamber for the accumulation of liquid fuels with the outside and cylindrical holes communicating said chamber for the accumulation of air with said cylindrical holes communicating the chamber for the accumulation of liquids with the outside so that the injection of compressed air into said liquid fuel discharge holes atomizes said fuel which is expelled to the outside through the end portions of said discharge holes which are circumferentially positioned to be burnt by a pilot flame; said protecting cylindrical housing having at its ends perforated circular rings into which water is injected under pressure to form a protecting fan-like water curtain at the rear end of the housing and a fan-like water curtain at the flame to reduce the formation of soot; the burning efficiency of said burner being superior to 30 barrels of liquid fuel per day/kg of the apparatus.

  19. Alaska Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2013 2014 2015 View History Total Storage Capacity 83,592

  20. North Dakota Refining Capacity Study

    SciTech Connect

    Dennis Hill; Kurt Swenson; Carl Tuura; Jim Simon; Robert Vermette; Gilberto Marcha; Steve Kelly; David Wells; Ed Palmer; Kuo Yu; Tram Nguyen; Juliam Migliavacca

    2011-01-05

    According to a 2008 report issued by the United States Geological Survey, North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. With the size and remoteness of the discovery, the question became 'can a business case be made for increasing refining capacity in North Dakota?' And, if so what is the impact to existing players in the region. To answer the question, a study committee comprised of leaders in the region's petroleum industry were brought together to define the scope of the study, hire a consulting firm and oversee the study. The study committee met frequently to provide input on the findings and modify the course of the study, as needed. The study concluded that the Petroleum Area Defense District II (PADD II) has an oversupply of gasoline. With that in mind, a niche market, naphtha, was identified. Naphtha is used as a diluent used for pipelining the bitumen (heavy crude) from Canada to crude markets. The study predicted there will continue to be an increase in the demand for naphtha through 2030. The study estimated the optimal configuration for the refinery at 34,000 barrels per day (BPD) producing 15,000 BPD of naphtha and a 52 percent refinery charge for jet and diesel yield. The financial modeling assumed the sponsor of a refinery would invest its own capital to pay for construction costs. With this assumption, the internal rate of return is 9.2 percent which is not sufficient to attract traditional investment given the risk factor of the project. With that in mind, those interested in pursuing this niche market will need to identify incentives to improve the rate of return.

  1. ,"Geographic Area",,,"Voltage",,,"Capacity Rating (MVa)","In...

    Energy Information Administration (EIA) (indexed site)

    ...C",230,230,602,"applicationvnd.ms-excel","Big Shanty","McConnell Road",9,"OH","P","S",135... NV",61,"OH",,,0,,,0,0,13407,1,0 ,"Notes: * Data are received as final. * Projected data ...

  2. ,"Geographic Area",,,"Voltage",,,"Capacity Rating (MVa)","In...

    Energy Information Administration (EIA) (indexed site)

    ...ECC","RMPA","AC",230,230,"TBD ","12 2012","Big Sandy CO","Elbert CO",26,,,..."TSGT","I... AB",206,,,..."AESO " ,"Notes: * Data are received as final. * Projected data ...

  3. ,"Geographic Area",,,"Voltage",,,"Capacity Rating (MVa)","In...

    Energy Information Administration (EIA) (indexed site)

    ...,"WECC","CNV","AC",230,230,1240,"12 2008","Big Creek CA","Springville CA",-77,"OH",0,0," ... ",0,0,0,0,0,"PSC",0," " ,"Notes: * Data are received as final. * Projected data ...

  4. Adaptive capacity and its assessment

    SciTech Connect

    Engle, Nathan L.

    2011-04-20

    This paper reviews the concept of adaptive capacity and various approaches to assessing it, particularly with respect to climate variability and change. I find that adaptive capacity is a relatively under-researched topic within the sustainability science and global change communities, particularly since it is uniquely positioned to improve linkages between vulnerability and resilience research. I identify opportunities for advancing the measurement and characterization of adaptive capacity by combining insights from both vulnerability and resilience frameworks, and I suggest several assessment approaches for possible future development that draw from both frameworks and focus on analyzing the governance, institutions, and management that have helped foster adaptive capacity in light of recent climatic events.

  5. CHP Installed Capacity Optimizer Software

    Energy Science and Technology Software Center

    2004-11-30

    The CHP Installed Capacity Optimizer is a Microsoft Excel spreadsheet application that determines the most economic amount of capacity of distributed generation and thermal utilization equipment (e.g., absorption chillers) to install for any user-defined set of load and cost data. Installing the optimum amount of capacity is critical to the life-cycle economic viability of a distributed generation/cooling heat and power (CHP) application. Using advanced optimization algorithms, the software accesses the loads, utility tariffs, equipment costs,more » etc., and provides to the user the most economic amount of system capacity to install.« less

  6. CHP Installed Capacity Optimizer Software

    SciTech Connect

    2004-11-30

    The CHP Installed Capacity Optimizer is a Microsoft Excel spreadsheet application that determines the most economic amount of capacity of distributed generation and thermal utilization equipment (e.g., absorption chillers) to install for any user-defined set of load and cost data. Installing the optimum amount of capacity is critical to the life-cycle economic viability of a distributed generation/cooling heat and power (CHP) application. Using advanced optimization algorithms, the software accesses the loads, utility tariffs, equipment costs, etc., and provides to the user the most economic amount of system capacity to install.

  7. Property:USGSMeanCapacity | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    USGSMeanCapacity Jump to: navigation, search Property Name USGSMeanCapacity Property Type String Description Mean capacity potential at location based on the USGS 2008 Geothermal...

  8. Total Working Gas Capacity

    Energy Information Administration (EIA) (indexed site)

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 4,410,224 4,483,650 4,576,356 4,748,636 4,785,669 4,800,671 2008-2015 Alaska 67,915 67,915 67,915 2013-2015 Alabama 25,150 27,350 27,350 27,350 33,150 33,150 2008-2015 Arkansas 13,898 12,036 12,178 12,178 12,178 12,178 2008-2015 California 311,096 335,396 349,296 374,296 374,296 375,496

  9. Wind Powering America Webinar: Wind Power Economics: Past, Present, and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Future Trends | Department of Energy Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November 23, 2011 - 1:43pm Addthis Wind turbine prices in the United States have declined, on average, by nearly one-third since 2008, after doubling from 2002 through 2008. Over this entire period, the average nameplate capacity rating, hub height, and rotor swept area of turbines

  10. EA-2016: Draft Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6: Draft Environmental Assessment EA-2016: Draft Environmental Assessment Willow Creek Wind Farm; Butte County, South Dakota DOE's Western Area Power Administration issued a draft EA that analyzes the potential environmental impacts of the proposed Willow Creek Wind Energy Facility in Butte County, South Dakota. The EA reviews the potential environmental impacts of constructing, operating, and maintaining a 103-megawatt (MW) nameplate capacity wind power generating facility consisting of

  11. EIS-0171: Pacificorp Capacity Sale

    Energy.gov [DOE]

    The Bonneville Power Administration (BPA) EIS assesses the proposed action of providing surplus power from its facilites to PacifiCorp in response to its request for a continued supply of firm capacity. BPA has surplus electrical capacity (peakload energy) that BPA projects will not be required to meet its existing obligations.

  12. Atmospheric Crude Oil Distillation Operable Capacity

    Annual Energy Outlook

    Charge Capacity (BSD) Catalytic Hydrotreating NaphthaReformer Feed Charge Cap (BSD) Catalytic Hydrotreating Gasoline Charge Capacity (BSD) Catalytic Hydrotreating...

  13. Imperial Valley Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resource Area in Southern California's Imperial Valley. The combined capacity at Imperial Valley is approximately 327 net megawatts. Photo of the Leathers geothermal power plant

  14. COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY Empowering Communities in the Age of E-Government Prepared by Melinda Downing, Environmental Justice Program Manager, U.S. Department of Energy MAR 06 MARCH 2006 Since 1999, the Department of Energy has worked with the National Urban Internet and others to create community capacity through technology.  Empowering Communities in the Age of E-Government Table of Contents Message from the Environmental Justice Program Manager . . . . . . . . 3

  15. Recommendation 223: Recommendations on Additional Waste Disposal Capacity |

    Office of Environmental Management (EM)

    Department of Energy 3: Recommendations on Additional Waste Disposal Capacity Recommendation 223: Recommendations on Additional Waste Disposal Capacity ORSSAB's recommendations encourage DOE to continue planning for an additional on-site disposal facility for low-level waste and that a second facility be placed in an area already used for similar waste disposal. Recommendation 223 (51.59 KB) Response to Recommendation 223 (779.96 KB) More Documents & Publications Recommendation 233:

  16. Spray dryer capacity stretched 50%

    SciTech Connect

    Paraskevas, J.

    1983-01-01

    This article describes plant equipment modifications which has resulted in a 50% increase in spray drying capacity. The installation of a new atomizer and screening system in NL Chemicals' Newberry Springs plant which produces natural clays for use as rheological additives in industrial coatings, cosmetics and other products, resulted in a 50% increase in spray drying capacity. Energy consumption per pound of product was reduced by 7%, and product quality improved. This was achieved in less than three months at an investment of less than 10% of what an additional spray dryer would have cost.

  17. ,"Virginia Natural Gas Underground Storage Capacity (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Virginia Natural Gas Underground Storage Capacity ... 11:44:46 AM" "Back to Contents","Data 1: Virginia Natural Gas Underground Storage Capacity ...

  18. Optimizing areal capacities through understanding the limitations...

    Office of Scientific and Technical Information (OSTI)

    Title: Optimizing areal capacities through understanding the limitations of lithium-ion electrodes Increasing the areal capacity or electrode thickness in lithium ion batteries is ...

  19. Worldwide Energy Efficiency Action through Capacity Building...

    OpenEI (Open Energy Information) [EERE & EIA]

    Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Name Worldwide...

  20. Property:Capacity | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property...

  1. Investigation of Morphology and Hydrogen Adsorption Capacity...

    Office of Scientific and Technical Information (OSTI)

    of Morphology and Hydrogen Adsorption Capacity of Disordered Carbons Citation Details In-Document Search Title: Investigation of Morphology and Hydrogen Adsorption Capacity of ...

  2. ,"Minnesota Natural Gas Underground Storage Capacity (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Minnesota Natural Gas Underground Storage Capacity ... 7:00:58 AM" "Back to Contents","Data 1: Minnesota Natural Gas Underground Storage Capacity ...

  3. Geothermal Project Database Supporting Barriers and Viability Analysis for Development by 2020 Timeline

    DOE Data Explorer

    Anna Wall

    2014-10-21

    This data provides the underlying project-level analysis and data sources complied in response to the DOE request to determine the amount of geothermal capacity that could be available to meet the President's request to double renewable energy capacity by 2020. The enclosed data contains compiled data on individual project names and locations (by geothermal area and region), ownership, estimated nameplate capacity, and project status, and also contains inferred data on the barriers and viability of the project to meet a 2020 development timeline. The analysis of this data is discussed in the attached NREL report.

  4. High capacity immobilized amine sorbents

    DOEpatents

    Gray, McMahan L.; Champagne, Kenneth J.; Soong, Yee; Filburn, Thomas

    2007-10-30

    A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

  5. ,"Table 4.B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region,"

    Energy Information Administration (EIA) (indexed site)

    B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region," ,"2001-2010 Actual, 2011-2015 Projected" ,"(Megawatts and Percent)" ,"Interconnection","NERC Regional Assesment Area","Net Internal Demand[1] -- Winter" ,,,"Actual",,,,,,,,,,"Projected"

  6. MHK Projects/Georgetown Bend | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    33.5735, -91.1986 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 117 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  7. MHK Projects/Duncan Point Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    30.3743, -91.2403 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 45 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  8. MHK Projects/Cow Island Bend | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    35.0269, -90.2792 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 152 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  9. MHK Projects/Wickliffe Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    36.9756, -89.1193 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 29 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  10. MHK Projects/Turnbull Island | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    31.0652, -91.711 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 26 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  11. MHK Projects/Point Menoir Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    30.6436, -91.3029 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 66 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  12. MHK Projects/Fitler Bend | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    32.8007, -91.1586 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 152 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  13. MHK Projects/Kempe Bend Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    31.8622, -91.3073 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 54 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  14. MHK Projects/Live Oak Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    29.7638, -90.0278 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 18 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  15. MHK Projects/Saint Catherine Bend | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    31.4111, -91.4953 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 190 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  16. MHK Projects/Burke Landing | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    34.2776, -90.7836 Project Phase Phase ? Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 81 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  17. MHK Projects/South Myette Point | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    29.8902, -91.4391 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 27 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  18. MHK Projects/Little Cypress Bend | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    36.3482, -89.5892 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 127 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  19. MHK Projects/Krotz Springs | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    30.5459, -91.7518 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 44 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  20. MHK Projects/Davis Island Bend | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    32.1299, -91.0636 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 147 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  1. MHK Projects/Helena Reach Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    34.5795, -90.5722 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 152 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  2. MHK Projects/Lake Chicot | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    30.0767, -91.4738 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 18 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  3. MHK Projects/Avondale Bend Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    29.9301, -90.2215 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 18 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  4. MHK Projects/Kenner Bend Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    29.9596, -90.2868 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 45 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  5. MHK Projects/Morgan Bend Crossing Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    30.7879, -91.5469 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 94 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  6. MHK Projects/Brilliant Point Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    30.0835, -90.912 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 56 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  7. MHK Projects/Remy Bend Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    30.0121, -90.754 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 28 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  8. MHK Projects/Anconia Point Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    33.2952, -91.168 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 15 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  9. MHK Projects/General Hampton Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    30.1019, -90.9562 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 46 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  10. MHK Projects/Gouldsboro Bend Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    29.9177, -90.0673 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 20 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  11. MHK Projects/Island 14 Bend | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 132 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0 Number of Build Out...

  12. Economic growth, carrying capacity, and the environment

    SciTech Connect

    Arrow, K.; Bolin, B.; Costanza, R.; Dasgupta, P.; Folke, C.; Maeler, K.G.; Holling, C.S.; Jansson, B.O.; Levin, S.; Perrings, C.

    1995-04-28

    National and international economic policy has usually ignored the environment. In areas where the environment is beginning to impinge on policy, as in the General Agreement on Tariffs and Trade (GATT) and the North American Free Trade Agreement (NAFTA), it remains a tangential concern, and the presumption is often made that economic growth and economic liberalization (including the liberalization of international trade) are, in some sense, good for the environment. This notion has meant that economy-wide policy reforms designed to promote growth and liberalization have been encouraged with little regard to their environmental consequences, presumably on the assumption that these consequences would either take care of themselves or could be dealt with separately. In this article, we discuss the relation between economic growth and environmental quality, and the link between economic activity and the carrying capacity and resilience of the environment.

  13. Analysis of Plug Load Capacities and Power Requirements in Commercial Buildings: Preprint

    SciTech Connect

    Sheppy, M.; Torcellini, P.; Gentile-Polese, L.

    2014-08-01

    Plug and process load power requirements are frequently overestimated because designers often use estimates based on 'nameplate' data, or design assumptions are high because information is not available. This generally results in oversized heating, ventilation, and air-conditioning systems; increased initial construction costs; and increased energy use caused by inefficiencies at low, part-load operation. Rightsizing of chillers in two buildings reduced whole-building energy use by 3%-4%. If an integrated design approach could enable 3% whole-building energy savings in all U.S. office buildings stock, it could save 34 TBtu of site energy per year.

  14. Research Areas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Areas Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Biosciences The Biosciences Area forges multidisciplinary teams to solve national challenges in energy, environment and health issues; and to advance the engineering of biological systems for sustainable manufacturing. Biosciences Area research is coordinated through three divisions and is enabled by Berkeley

  15. Iran outlines oil productive capacity

    SciTech Connect

    Not Available

    1992-11-09

    National Iranian Oil Co. (NIOC) tested production limits last month to prove a claim of 4 million bd capacity made at September's meeting of the organization of Petroleum Exporting Countries. Onshore fields account for 3.6 million bd of the total, with offshore fields providing the rest. NIOC plans to expand total capacity to 4.5 million bd by April 1993, consisting of 4 million b/d onshore and 500,000 b/d offshore. Middle East Economic Survey says questions remain about completion dates for gas injection, drilling, and offshore projects, but expansion targets are attainable within the scheduled time. NIOC said some slippage may be unavoidable, but it is confident the objective will be reached by third quarter 1993 at the latest. More than 60 rigs are working or about to be taken under contract to boost development drilling in onshore fields and provide gas injection in some. NIOC has spent $3.2 billion in foreign exchange on the drilling program in the last 2 1/2 years.

  16. U.S. Refining Capacity Utilization

    Reports and Publications

    1995-01-01

    This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in reported crude oil distillation capacities and utilization rates among different classes of refineries.

  17. California: Conducting Polymer Binder Boosts Storage Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award California: Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award August 19, 2013 - 10:17am ...

  18. T10K Change Max Capacity

    Energy Science and Technology Software Center

    2013-08-16

    This command line utility will enable/disable the Oracle StorageTek T10000 tape drive's maximum capacity feature.

  19. Capacity Value of Concentrating Solar Power Plants

    SciTech Connect

    Madaeni, S. H.; Sioshansi, R.; Denholm, P.

    2011-06-01

    This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

  20. Table 8.12a Electric Noncoincident Peak Load and Capacity Margin...

    Energy Information Administration (EIA) (indexed site)

    Corporation (NERC) 2 Regional Assessment Area Capacity Margin 21 (percent) Eastern ... 39,335 81,787 476,983 NA 1987 42,651 72,561 40,526 37,446 23,162 ...

  1. Examination of Capacity and Ramping Impacts of Wind Energy on Power Systems

    SciTech Connect

    Kirby, B.; Milligan, M.

    2008-07-01

    When wind plants serve load within the balancing area, no additional capacity required to integrate wind power into the system. We present some thought experiments to illustrate some implications for wind integration studies.

  2. br Owner br Facility br Type br Capacity br MW br Commercial...

    OpenEI (Open Energy Information) [EERE & EIA]

    Owner br Facility br Type br Capacity br MW br Commercial br Online br Date br Geothermal br Area br Geothermal br Region Coordinates Ahuachapan Geothermal Power Plant LaGeo SA de...

  3. Bay Area

    National Nuclear Security Administration (NNSA)

    8%2A en NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas http:nnsa.energy.govmediaroompressreleasesamsca

  4. Research Areas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    in diverse research areas such as cell biology, lithography, infrared microscopy, radiology, and x-ray tomography. Time-Resolved These techniques exploit the pulsed nature of...

  5. Minnesota Tribal Coalition Tribal Utility Capacity Building Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Grand Portage, Leech Lake and White Earth reservations seek to build a common foundation for strategic energy resource and utility planning capacity by banding together. The effort will focus primarily on the following four inter-related areas: *EDUCATION: Raising community awareness about energy issues through the distribution of basic educational materials and focused outreach activities aimed at facility managers. *ASSESSMENT: The identification and assessment of the basic on-reservation

  6. The NASA CSTI High Capacity Power Project

    SciTech Connect

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1994-09-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase I of SP-100 and to strengthen, in key areas, the changes for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the CSTI High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project with develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  7. Vertical barriers with increased sorption capacities

    SciTech Connect

    Bradl, H.B.

    1997-12-31

    Vertical barriers are commonly used for the containment of contaminated areas. Due to the very small permeability of the barrier material which is usually in the order of magnitude of 10-10 m/s or less the advective contaminant transport can be more or less neglected. Nevertheless, there will always be a diffusive contaminant transport through the barrier which is caused by the concentration gradient. Investigations have been made to increase the sorption capacity of the barrier material by adding substances such as organoclays, zeolites, inorganic oxides and fly ashes. The contaminants taken into account where heavy metals (Pb) and for organic contaminants Toluole and Phenantrene. The paper presents results of model calculations and experiments. As a result, barrier materials can be designed {open_quotes}tailor-made{close_quotes} depending on the individual contaminant range of each site (e.g. landfills, gasworks etc.). The parameters relevant for construction such as rheological properties, compressive strength and permeability are not affected by the addition of the sorbents.

  8. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update

    Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate

  9. Working and Net Available Shell Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    Working and Net Available Shell Storage Capacity With Data for March 2016 | Release Date: May 31, 2016 | Next Release Date: November 30, 2016 Previous Issues Year: March 2016 September 2015 March 2015 September 2014 March 2014 September 2013 March 2013 September 2012 March 2012 September 2011 March 2011 September 2010 Go Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity

  10. Economic Dispatch of Electric Generation Capacity | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dispatch of Electric Generation Capacity More Documents & Publications THE VALUE OF ECONOMIC DISPATCH A REPORT TO CONGRESS PURSUANT TO SECTION 1234 OF THE ENERGY POLICY ACT OF 2005 ...

  11. Solar Energy and Capacity Value (Fact Sheet)

    SciTech Connect

    Not Available

    2013-09-01

    This is a one-page, two-sided fact sheet on the capacity of solar power to provide value to utilities and power system operators.

  12. Total Natural Gas Underground Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources ...

  13. Increasing the Capacity of Existing Power Lines

    SciTech Connect

    2013-04-01

    The capacity of the grid has been largely unchanged for decades and needs to expand to accommodate new power plants and renewable energy projects.

  14. Property:Cooling Capacity | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Pages using the property "Cooling Capacity" Showing 2 pages using this property. D Distributed Generation Study615 kW Waukesha Packaged System + 90 + Distributed Generation...

  15. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh...

    Energy Information Administration (EIA) (indexed site)

    Technologies" ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"En...

  16. Trinidad and Tobago-Building Capacity for Innovative Policy NAMAs...

    OpenEI (Open Energy Information) [EERE & EIA]

    Trinidad and Tobago-Building Capacity for Innovative Policy NAMAs (Redirected from Building Capacity for Innovative Policy NAMAs) Jump to: navigation, search Name Building Capacity...

  17. Climate Change Capacity Development (C3D+) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Capacity Development (C3D+) Jump to: navigation, search Logo: Climate Change Capacity Development (C3D+) Name Climate Change Capacity Development (C3D+) AgencyCompany...

  18. UNDP-Low Emission Capacity Building Programme | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Capacity Building Programme Jump to: navigation, search Logo: UNDP-Low Emission Capacity Building Programme Name UNDP-Low Emission Capacity Building Programme AgencyCompany...

  19. EA-1611: Colorado Highlands Wind Project, Logan County, Colorado

    Energy.gov [DOE]

    DOE’s Western Area Power Administration prepared an EA in 2009 to assess the potential environmental impacts of interconnecting the proposed Colorado Highlands Wind Project to Western’s transmission system. The EA analyzed a proposal for 60 wind turbine generators with a total output nameplate capacity of 90 megawatts (MW). Western prepared a supplemental EA to assess the potential environmental impacts of the proposed expansion of the project by 11 wind turbine generators that would add approximately 20 MW. Additional information is available on the Western Area Power Administration webpage for this project.

  20. summer_capacity_2010.xls

    Energy Information Administration (EIA) (indexed site)

    Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 FRCC 27,162 27,773 28,898 29,435 30,537 31,649 31,868 32,874 34,562 34,832 35,666 38,932 37,951 40,387 42,243 45,950 45,345 46,434 44,660 46,263 NPCC 46,016 45,952 46,007 46,380 47,465 48,290 48,950 50,240 51,760 53,450 54,270 55,888 55,164 53,936 51,580 57,402 60,879 58,221 59,896 55,730 Balance of Eastern Region 332,679 337,297 341,869 349,984

  1. MHK Projects/Tidal Energy Device Evaluation Center TIDEC | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    StateProvince Maine Project Country United States Project Resource Click here Current Tidal Coordinates 44.3879, -68.7998 Project Phase Phase 1 Device Nameplate Capacity (MW)...

  2. DWEA Webinar: IRS Guidance for Small Wind Turbines

    Energy.gov [DOE]

    The U.S. Internal Revenue Service (IRS) has issued Notice 2015-4 providing new performance and quality standards of small wind turbines – defined as having a nameplate capacity of up to 100 kW – in...

  3. Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    existing plant's nameplate capacity of approximately 17.7 megawatts Developed by Terra-Gen Power and TAS Energy, the project was funded in part by a 2 million Recovery Act grant...

  4. MHK Projects/Fortyeight Mile Point Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Mississippi River Coordinates 30.0447, -90.6659 Project Phase Phase ? PermitLicense Buildout (MW) 59 Device Nameplate Capacity (MW) 40 kW Number of Build Out Units...

  5. EA-1611: Final Environmental Assessment | Department of Energy

    Office of Environmental Management (EM)

    The proposed Project would include sixty (60) General Electric (GE) 1.5 megawatt (MW) SLE wind turbines with a total Project output nameplate capacity of ninety (90) MW of...

  6. MHK Technologies/Electric Generating Wave Pipe | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Dimensions Technology Nameplate Capacity (MW) Potential 40 500KW 5MW per unit within cluster Cluster quantity unlimited Device Testing Date Submitted 56:42.6 << Return to the MHK...

  7. REDUCTION CAPACITY OF SALTSTONE AND SALTSTONE COMPONENTS

    SciTech Connect

    Roberts, K.; Kaplan, D.

    2009-11-30

    The duration that saltstone retains its ability to immobilize some key radionuclides, such as technetium (Tc), plutonium (Pu), and neptunium (Np), depends on its capacity to maintain a low redox status (or low oxidation state). The reduction capacity is a measure of the mass of reductants present in the saltstone; the reductants are the active ingredients that immobilize Tc, Pu, and Np. Once reductants are exhausted, the saltstone loses its ability to immobilize these radionuclides. The reduction capacity values reported here are based on the Ce(IV)/Fe(II) system. The Portland cement (198 {micro}eq/g) and especially the fly ash (299 {micro}eq/g) had a measurable amount of reduction capacity, but the blast furnace slag (820 {micro}eq/g) not surprisingly accounted for most of the reduction capacity. The blast furnace slag contains ferrous iron and sulfides which are strong reducing and precipitating species for a large number of solids. Three saltstone samples containing 45% slag or one sample containing 90% slag had essentially the same reduction capacity as pure slag. There appears to be some critical concentration between 10% and 45% slag in the Saltstone formulation that is needed to create the maximum reduction capacity. Values from this work supported those previously reported, namely that the reduction capacity of SRS saltstone is about 820 {micro}eq/g; this value is recommended for estimating the longevity that the Saltstone Disposal Facility will retain its ability to immobilize radionuclides.

  8. Working and Net Available Shell Storage Capacity

    Reports and Publications

    2016-01-01

    Working and Net Available Shell Storage Capacity is the U.S. Energy Information Administration’s (EIA) report containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an important crude oil market center. Data are released twice each year near the end of May (data for March 31) and near the end of November (data for September 30).

  9. Global scale environmental control of plant photosynthetic capacity

    SciTech Connect

    Ali, Ashehad; Xu, Chonggang; Rogers, Alistair; McDowell, Nathan G.; Medlyn, Belinda E.; Fisher, Rosie A.; Wullschleger, Stan D.; Reich, Peter B.; Bauerle, William L.; Wilson, Cathy J.; Vrugt, Jasper A.; Santiago, Louis S.

    2015-12-01

    Photosynthetic capacity, determined by light harvesting and carboxylation reactions, is a key plant trait that determines the rate of photosynthesis; however, in Earth System Models (ESMs) at a reference temperature, it is either a fixed value for a given plant functional type or derived from a linear function of leaf nitrogen content. In this study, we conducted a comprehensive analysis that considered correlations of environmental factors with photosynthetic capacity as determined by maximum carboxylation (Vc,m) rate scaled to 25°C (i.e., Vc,25; μmol CO2·m–2·s–1) and maximum electron transport rate (Jmax) scaled to 25°C (i.e., J25; μmol electron·m–2·s–1) at the global scale. Our results showed that the percentage of variation in observed Vc,25 and J25 explained jointly by the environmental factors (i.e., day length, radiation, temperature, and humidity) were 2–2.5 times and 6–9 times of that explained by area-based leaf nitrogen content, respectively. Environmental factors influenced photosynthetic capacity mainly through photosynthetic nitrogen use efficiency, rather than through leaf nitrogen content. The combination of leaf nitrogen content and environmental factors was able to explain ~56% and ~66% of the variation in Vc,25 and J25 at the global scale, respectively. As a result, our analyses suggest that model projections of plant photosynthetic capacity and hence land–atmosphere exchange under changing climatic conditions could be substantially improved if environmental factors are incorporated into algorithms used to parameterize photosynthetic capacity in ESMs.

  10. Global scale environmental control of plant photosynthetic capacity

    DOE PAGES [OSTI]

    Ali, Ashehad; Xu, Chonggang; Rogers, Alistair; McDowell, Nathan G.; Medlyn, Belinda E.; Fisher, Rosie A.; Wullschleger, Stan D.; Reich, Peter B.; Bauerle, William L.; Wilson, Cathy J.; et al

    2015-12-01

    Photosynthetic capacity, determined by light harvesting and carboxylation reactions, is a key plant trait that determines the rate of photosynthesis; however, in Earth System Models (ESMs) at a reference temperature, it is either a fixed value for a given plant functional type or derived from a linear function of leaf nitrogen content. In this study, we conducted a comprehensive analysis that considered correlations of environmental factors with photosynthetic capacity as determined by maximum carboxylation (Vc,m) rate scaled to 25°C (i.e., Vc,25; μmol CO2·m–2·s–1) and maximum electron transport rate (Jmax) scaled to 25°C (i.e., J25; μmol electron·m–2·s–1) at the global scale.more » Our results showed that the percentage of variation in observed Vc,25 and J25 explained jointly by the environmental factors (i.e., day length, radiation, temperature, and humidity) were 2–2.5 times and 6–9 times of that explained by area-based leaf nitrogen content, respectively. Environmental factors influenced photosynthetic capacity mainly through photosynthetic nitrogen use efficiency, rather than through leaf nitrogen content. The combination of leaf nitrogen content and environmental factors was able to explain ~56% and ~66% of the variation in Vc,25 and J25 at the global scale, respectively. As a result, our analyses suggest that model projections of plant photosynthetic capacity and hence land–atmosphere exchange under changing climatic conditions could be substantially improved if environmental factors are incorporated into algorithms used to parameterize photosynthetic capacity in ESMs.« less

  11. WINDExchange: U.S. Installed Wind Capacity

    WindExchange

    Installed Wind Capacity The amount of wind energy available in the United States is continuously growing bringing the nation closer, bit by bit, to the wind energy goals set out in the Wind Vision Report-35% of the nation's end-use electricity demands coming from wind energy by 2050. Use this page to track the United States' installed wind capacity by state and its progression. On the installed capacity map, move the slider below to see the changes in wind energy availability in the states over

  12. Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model: Preprint

    SciTech Connect

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-08-01

    An important emerging issue is the estimation of renewables' contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to resource variability. Reliability-based methods, particularly, effective load-carrying capacity (ELCC), are considered to be the most robust techniques for addressing this resource variability. The Regional Energy Deployment System (ReEDS) capacity expansion model and other long-term electricity capacity planning models require an approach to estimating CV for generalized PV and system configurations with low computational and data requirements. In this paper we validate treatment of solar photovoltaic (PV) capacity value by ReEDS capacity expansion model by comparing model results to literature for a range of energy penetration levels. Results from the ReEDS model are found to compare well with both comparisons--despite not being resolved at an hourly scale.

  13. HPSS Disk Cache Upgrade Caters to Capacity

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    HPSS Disk Cache Upgrade Caters to Capacity Analysis of NERSC Users' Data-Access Habits Reveals Sweet Spot for Short-term Storage October 16, 2015 Contact: Kathy Kincade, +1 510 495 ...

  14. Planned Geothermal Capacity | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Map of Development Projects Planned Geothermal Capacity in the U.S. is reported by the Geothermal Energy Association via their Annual U.S. Geothermal Power Production and...

  15. Working and Net Available Shell Storage Capacity

    Gasoline and Diesel Fuel Update

    Utilization rates for crude tank farms equals stocks divided by storage capacity of tanks and underground caverns. It does not include pipeline fill. 2 See http:www.eia.gov...

  16. Capacity Building Project with Howard University

    Energy.gov [DOE]

    The purpose of this initiative is to build community capacity for public participation in environmental and energy decision making. The target communities are those impacted by U.S. Department of...

  17. Texas Number and Capacity of Petroleum Refineries

    Energy Information Administration (EIA) (indexed site)

    Idle 58,500 105,089 373,750 0 42,000 0 1982-2016 Operable (Barrels per Stream Day) ... Downstream Charge Capacity (Barrels per Stream Day) Vacuum Distillation 2,384,900 ...

  18. Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements

    SciTech Connect

    Bommier, C; Luo, W; Gao, WY; Greaney, A; Ma, SQ; Ji, X

    2014-09-01

    We report an inverse relationship between measurable porosity values and reversible capacity from sucrose-derived hard carbon as an anode for sodium-ion batteries (SIBs). Materials with low measureable pore volumes and surface areas obtained through N-2 sorption yield higher reversible capacities. Conversely, increasing measurable porosity and specific surface area leads to sharp decreases in reversible capacity. Utilizing a low porosity material, we thus are able to obtain a reversible capacity of 335 mAh g(-1). These findings suggest that sodium-ion storage is highly dependent on the absence of pores detectable through N-2 sorption in sucrose-derived carbon. (C) 2014 Elsevier Ltd. All rights reserved.

  19. Measuring the capacity impacts of demand response

    SciTech Connect

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  20. Refrigerator with variable capacity compressor and cycle priming action through capacity control and associated methods

    DOEpatents

    Gomes, Alberto Regio; Litch, Andrew D.; Wu, Guolian

    2016-03-15

    A refrigerator appliance (and associated method) that includes a condenser, evaporator and a multi-capacity compressor. The appliance also includes a pressure reducing device arranged within an evaporator-condenser refrigerant circuit, and a valve system for directing or restricting refrigerant flow through the device. The appliance further includes a controller for operating the compressor upon the initiation of a compressor ON-cycle at a priming capacity above a nominal capacity for a predetermined or calculated duration.

  1. Carbon Dioxide Sealing Capacity: Textural or Compositional Controls?

    SciTech Connect

    Cranganu, Constantin; Soleymani, Hamidreza; Sadiqua, Soleymani; Watson, Kieva

    2013-11-30

    . Mercury Injection Porosimetry (MIP), Scanning Electron Microsco-py SEM, and Sedigraph measurements are used to assess the pore-throat-size distribu-tion, sorting, texture, and grain size of the samples. Also, displacement pressure at 10% mercury saturation (Pd) and graphically derived threshold pressure (Pc) were deter-mined by MIP technique. SEM images were used for qualitative study of the minerals and pores texture of the core samples. Moreover, EDS (Energy Dispersive X-Ray Spec-trometer), BET specific surface area, and Total Organic Carbon (TOC) measurements were performed to study various parameters and their possible effects on sealing capaci-ty of the samples. We found that shales have the relatively higher average sealing threshold pressure (Pc) than carbonate and sandstone samples. Based on these observations, shale formations could be considered as a promising caprock in terms of retarding scCO{sub 2} flow and leak-age into above formations. We hypothesized that certain characteristics of shales (e.g., 3 fine pore size, pore size distribution, high specific surface area, and strong physical chemical interaction between wetting phase and mineral surface) make them an effi-cient caprock for sealing super critical CO{sub 2}. We found that the displacement pressure at 10% mercury saturation could not be the ultimate representative of the sealing capacity of the rock sample. On the other hand, we believe that graphical method, introduced by Cranganu (2004) is a better indicator of the true sealing capacity. Based on statistical analysis of our samples from Oklahoma Panhandle we assessed the effects of each group of properties (textural and compositional) on maximum supercriti-cal CO{sub 2} height that can be hold by the caprock. We conclude that there is a relatively strong positive relationship (+.40 to +.69) between supercritical CO{sub 2} column height based on Pc and hard/ soft mineral content index (ratio of minerals with Mohs hardness more than 5 over minerals

  2. Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model

    SciTech Connect

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-03-01

    An important issue for electricity system operators is the estimation of renewables' capacity contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to the resource variability. Reliability-based methods, particularly assessment of the Effective Load-Carrying Capacity, are considered to be the most robust and widely-accepted techniques for addressing this resource variability. This report compares estimates of solar PV capacity value by the Regional Energy Deployment System (ReEDS) capacity expansion model against two sources. The first comparison is against values published by utilities or other entities for known electrical systems at existing solar penetration levels. The second comparison is against a time-series ELCC simulation tool for high renewable penetration scenarios in the Western Interconnection. Results from the ReEDS model are found to compare well with both comparisons, despite being resolved at a super-hourly temporal resolution. Two results are relevant for other capacity-based models that use a super-hourly resolution to model solar capacity value. First, solar capacity value should not be parameterized as a static value, but must decay with increasing penetration. This is because -- for an afternoon-peaking system -- as solar penetration increases, the system's peak net load shifts to later in the day -- when solar output is lower. Second, long-term planning models should determine system adequacy requirements in each time period in order to approximate LOLP calculations. Within the ReEDS model we resolve these issues by using a capacity value estimate that varies by time-slice. Within each time period the net load and shadow price on ReEDS's planning reserve constraint signals the relative importance of additional firm capacity.

  3. HPSS Disk Cache Upgrade Caters to Capacity

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    HPSS Disk Cache Upgrade Caters to Capacity HPSS Disk Cache Upgrade Caters to Capacity Analysis of NERSC Users' Data-Access Habits Reveals Sweet Spot for Short-term Storage October 16, 2015 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov HPSS 09 vert NERSC users today are benefiting from a business decision made three years ago by the center's Storage Systems Group (SSG) as they were looking to upgrade the High-Performance Storage System (HPSS) disk cache: rather than focus primarily on

  4. Ukraine-Capacity Building for Low Carbon Growth | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ukraine-Capacity Building for Low Carbon Growth (Redirected from UNDP-Capacity Building for Low Carbon Growth in Ukraine) Jump to: navigation, search Name UNDP-Capacity Building...

  5. HT Combinatorial Screening of Novel Materials for High Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage Presentation for ...

  6. Property:Installed Capacity (MW) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Installed Capacity (MW) Jump to: navigation, search Property Name Installed Capacity (MW) Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:Insta...

  7. Tunisia-Capacity Development for GHG inventories and MRV | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Tunisia-Capacity Development for GHG inventories and MRV Jump to: navigation, search Name Capacity Development for GHG inventories and MRV in Tunisia AgencyCompany Organization...

  8. EPA-GHG Inventory Capacity Building | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EPA-GHG Inventory Capacity Building Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building AgencyCompany Organization: United States Environmental...

  9. EPA-GHG Inventory Capacity Building | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Capacity Building) Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building AgencyCompany Organization: United States Environmental Protection...

  10. Design and Evaluation of Novel High Capacity Cathode Materials...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Design and Evaluation of High Capacity Cathodes Vehicle Technologies Office Merit Review 2014: Design and Evaluation of High Capacity Cathodes Design and ...

  11. Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

    Energy Saver

    Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the ...

  12. Natural Gas Productive Capacity for the Lower-48 States 1985...

    Gasoline and Diesel Fuel Update

    Productive Capacity for the Lower-48 States 1985 - 2003 EIA Home > Natural Gas > Natural Gas Analysis Publications Natural Gas Productive Capacity for the Lower-48 States 1985 - ...

  13. EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization

    Annual Energy Outlook

    Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Pipeline Capacity & ...

  14. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production FY 2011

  15. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production FY 2012

  16. ,"West Virginia Natural Gas Underground Storage Capacity (MMcf...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","West Virginia Natural Gas Underground Storage Capacity ... AM" "Back to Contents","Data 1: West Virginia Natural Gas Underground Storage Capacity ...

  17. Trinidad and Tobago-Building Capacity for Innovative Policy NAMAs...

    OpenEI (Open Energy Information) [EERE & EIA]

    Trinidad and Tobago-Building Capacity for Innovative Policy NAMAs Jump to: navigation, search Name Building Capacity for Innovative Policy NAMAs AgencyCompany Organization...

  18. Doubling Geothermal Generation Capacity by 2020: A Strategic...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis PDF icon NREL Doubling Geothermal ...

  19. UNDP/EC-China-Climate Change Capacity Building Program | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    UNDPEC-China-Climate Change Capacity Building Program Redirect page Jump to: navigation, search REDIRECT EU-UNDP Low Emission Capacity Building Programme (LECBP) Retrieved from...

  20. EC/UNDP Climate Change Capacity Building Program | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    ECUNDP Climate Change Capacity Building Program Jump to: navigation, search Name UNDPEC Climate Change Capacity Building Program AgencyCompany Organization The European Union...

  1. Costa Rica-EU-UNDP Climate Change Capacity Building Program ...

    OpenEI (Open Energy Information) [EERE & EIA]

    EU-UNDP Climate Change Capacity Building Program Jump to: navigation, search Name Costa Rica-EU-UNDP Climate Change Capacity Building Program AgencyCompany Organization The...

  2. FAO-Capacity Development on Climate Change | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Capacity Development on Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: FAO-Capacity Development on Climate Change AgencyCompany Organization: Food and...

  3. India-Vulnerability Assessment and Enhancing Adaptive Capacities...

    OpenEI (Open Energy Information) [EERE & EIA]

    Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change Jump to: navigation, search Name India-Vulnerability Assessment and Enhancing Adaptive Capacities to...

  4. Property:Number of Plants included in Capacity Estimate | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Plants included in Capacity Estimate Jump to: navigation, search Property Name Number of Plants included in Capacity Estimate Property Type Number Retrieved from "http:...

  5. Capacity Adequacy and Revenue Sufficiency in Electricity Markets...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Capacity Adequacy and Revenue Sufficiency in Electricity Markets with Wind Power Title Capacity Adequacy and Revenue Sufficiency in Electricity Markets with Wind Power Publication...

  6. DOE Issues Enforcement Guidance on Large-Capacity Clothes Washer...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enforcement Guidance on Large-Capacity Clothes Washer Waivers and the Waiver Process DOE Issues Enforcement Guidance on Large-Capacity Clothes Washer Waivers and the Waiver Process...

  7. Employee-Driven Initiative Increases Treatment Capacity, Reduces...

    Office of Environmental Management (EM)

    Employee-Driven Initiative Increases Treatment Capacity, Reduces Clean Water Demands Employee-Driven Initiative Increases Treatment Capacity, Reduces Clean Water Demands June 30, ...

  8. First Steps Toward Tribal Weatherization - Human Capacity Development...

    Energy.gov [DOE] (indexed site)

    Toward Tribal Weatherization - Human Capacity Development (DE-PA36-09GO99022) 2006 All ... Weatherization Training Program Phase 1: Development of human capacity to deliver ...

  9. Washington Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update

    39,210 41,309 43,673 46,900 46,900 46,900 1988-2014 Aquifers 39,210 41,309 43,673 46,900 46,900 46,900 1999-2014 Depleted Fields 0 0 1999-2014 Total Working Gas Capacity 23,514...

  10. Tennessee Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update

    1,200 0 NA NA 1998-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 1,200 0 0 1999-2014 Total Working Gas Capacity 860 0 0 2008-2014 Salt Caverns 0 0...

  11. Nebraska Underground Natural Gas Storage Capacity

    Annual Energy Outlook

    4,850 34,850 34,850 34,850 34,850 34,850 1988-2013 Salt Caverns 0 1999-2012 Depleted Fields 34,850 34,850 34,850 34,850 34,850 34,850 1999-2013 Total Working Gas Capacity 13,619...

  12. Maryland Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update

    4,000 64,000 64,000 64,000 64,000 64,000 1988-2014 Salt Caverns 0 0 1999-2014 Depleted Fields 64,000 64,000 64,000 64,000 64,000 64,000 1999-2014 Total Working Gas Capacity 18,300...

  13. Michigan Underground Natural Gas Storage Capacity

    Annual Energy Outlook

    1,066,064 1,071,638 1,075,145 1,075,590 1,075,629 1999-2014 Total Working Gas Capacity 666,636 667,065 672,632 673,200 674,967 675,003 2008-2014 Salt Caverns 2,150 2,159 2,159...

  14. Oklahoma Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    376,435 374,735 375,135 375,135 375,143 375,143 2002-2016 Total Working Gas Capacity 190,955 189,255 189,455 189,455 191,455 191,455 2012-2016 Total Number of Existing Fields 13 13 ...

  15. U.S. Refinery Utilization and Capacity

    Energy Information Administration (EIA) (indexed site)

    15,177 15,289 15,373 15,724 16,156 16,433 1985-2015 Operable Capacity (Calendar Day) 17,575 17,736 17,328 17,818 17,873 18,026 1985-2015 Operating 16,911 16,991 16,656 17,282 ...

  16. Colorado Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    130,186 130,186 130,186 130,186 130,186 130,186 2002-2016 Total Working Gas Capacity 63,774 63,774 63,774 63,774 63,774 63,774 2012-2016 Total Number of Existing Fields 10 10 10 10 10 10

  17. Illinois Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    1,004,100 1,004,100 1,004,100 1,004,130 1,004,130 1,004,130 2002-2016 Total Working Gas Capacity 303,613 303,613 303,613 303,613 303,613 303,613 2012-2016 Total Number of Existing Fields 28 28 28 28 28 28

  18. Iowa Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    288,210 288,210 288,210 288,210 288,210 288,210 2002-2016 Total Working Gas Capacity 90,313 90,313 90,313 90,313 90,313 90,313 2012-2016 Total Number of Existing Fields 4 4 4 4 4 4

  19. Minnesota Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    7,000 7,000 7,000 7,000 7,000 7,000 2002-2016 Total Working Gas Capacity 2,000 2,000 2,000 2,000 2,000 2

  20. Yerington Paiute Tribe: Building Organizational Capacity for...

    Energy Saver

    Geothermal Geo-exchange Biodiesel Potential Issues Feasibility ... the immediate area of the Reservation Biodiesel Small potential Cheap systems, ...

  1. Abraham Hot Springs Geothermal Area Northern Basin and Range...

    OpenEI (Open Energy Information) [EERE & EIA]

    br Brophy br Model br Moeck br Beardsmore br Type br Volume br Geothermal br Region Mean br Reservoir br Temp br Mean br Capacity Abraham Hot Springs Geothermal Area Northern Basin...

  2. Florida products pipeline set to double capacity

    SciTech Connect

    True, W.R.

    1995-11-13

    Directional drilling has begun this fall for a $68.5 million, approximately 110,000 b/d expansion of Central Florida Pipeline Co.`s refined products line from Tampa to Orlando. The drilling started in August and is scheduled to conclude this month, crossing under seven water bodies in Hillsborough, Polk, and Osceola counties. The current 6 and 10-in. system provides more than 90% of the petroleum products used in Central Florida, according to Central Florida Pipeline. Its additional capacity will meet the growing region`s demand for gasoline, diesel, and jet fuel. The new pipeline, along with the existing 10-in. system, will increase total annual capacity from 30 million bbl (82,192 b/d) to approximately 70 million bbl (191,781 b/d). The older 6-in. line will be shutdown when the new line is operating fully. The steps of pipeline installation are described.

  3. Missouri Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update

    10,889 11,502 13,845 13,845 13,845 13,845 1988-2014 Aquifers 10,889 11,502 13,845 13,845 13,845 13,845 1999-2014 Total Working Gas Capacity 3,040 3,656 6,000 6,000 6,000 6,000...

  4. Chaninik Wind Group: Harnessing Wind, Building Capacity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chaninik Wind Group: Harnessing Wind, Building Capacity Installation of Village Energy Information System Smart Grid Controller, Thermal Stoves and Meters to Enhance the Efficiency of Wind- Diesel Hybrid Power Generation in Tribal Regions of Alaska Department of Energy Tribal Energy Program Review November 16-20, 2009 The Chananik Wind Group Our goal is to become the "heartbeat of our region." Department of Energy Tribal Energy Program Review November 16-20, 2009 Department of Energy

  5. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update

    Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak

  6. Pdvsa plans to hike productive capacity

    SciTech Connect

    Not Available

    1992-01-13

    This paper reports that Venezuela's state oil company plans to jump its productive capacity by 117,000 b/d to 2.92 million b/d this year. Petroleos de Venezuela also projects sizable increases for oil and gas reserves and plans record spending in 1992. Meantime, Pdvsa is sounding a warning again about the Venezuelan government's excessive tax take amid debate within the company about spending priorities.

  7. Minnesota Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update

    7,000 7,000 7,000 7,000 7,000 7,000 1988-2014 Aquifers 7,000 7,000 7,000 7,000 7,000 7,000 1999-2014 Total Working Gas Capacity 2,000 2,000 2,000 2,000 2,000 2,000 2008-2014 ...

  8. Capacity Value of Concentrating Solar Power Plants

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Capacity Value of Concentrating Solar Power Plants Seyed Hossein Madaeni and Ramteen Sioshansi Ohio State University Paul Denholm National Renewable Energy Laboratory Technical Report NREL/TP-6A20-51253 June 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract

  9. An examination of capacity and ramping impacts of wind energy on power systems

    SciTech Connect

    Kirby, Brendan; Milligan, Michael

    2008-08-15

    When wind serves load outside of the host balancing area, there can be additional capacity requirements - mitigated by faster markets and exacerbated by slower markets. A series of simple thought experiments is useful in illustrating the implications for wind integration studies. (author)

  10. Status of Natural Gas Pipeline System Capacity Entering the 2000-2001 Heating Season

    Reports and Publications

    2000-01-01

    This special report looks at the capabilities of the national natural gas pipeline network in 2000 and provides an assessment of the current levels of available capacity to transport supplies from production areas to markets throughout the United States during the upcoming heating season. It also examines how completion of currently planned expansion projects and proposed new pipelines would affect the network.

  11. Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model: Preprint

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model Preprint Ben Sigrin, Patrick Sullivan, Eduardo Ibanez, and Robert Margolis Presented at the 40th IEEE Photovoltaic Specialists Conference (PVSC-40) Denver, Colorado June 8-13, 2014 Conference Paper NREL/CP-6A20-62015 August 2014 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No.

  12. Property:MeanCapacity | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Area + 132 MW132,000 kW 132,000,000 W 132,000,000,000 mW 0.132 GW 1.32e-4 TW + B Bac-Man Laguna Geothermal Area + 150 MW150,000 kW 150,000,000 W 150,000,000,000 mW 0.15 GW...

  13. Optimization of Storage vs. Compression Capacity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Storage Volume vs. Compression Capacity Amgad Elgowainy Argonne National Laboratory Presentation at CSD Workshop Argonne National Laboratory March 21, 2013 0 5 10 15 20 25 0 100 200 300 400 500 600 700 800 900 0 15 30 45 60 75 90 105 120 135 150 Mass (Kg) Pressure (bar) and Temperature (K) Time (Sec) Low Pressure Cascade Mid Pressure Cascade High Pressure Pressure Mass Temperature Temperature Temperature 2 0 1 2 3 4 5 6 0 10 20 30 40 50 60 70 80 90 0 15 30 45 60 75 90 105 120 135 150 Mass (Kg)

  14. Total Reducing Capacity in Aquifer Minerals and Sediments: Quantifying the Potential to Attenuate Cr(VI) in Groundwater

    SciTech Connect

    Sisman, S. Lara

    2015-07-20

    Hexavalent chromium, Cr(VI), is present in the environment as a byproduct of industrial processes. Due to its mobility and toxicity, it is crucial to attenuate or remove Cr(VI) from the environment. The objective of this investigation was to quantify potential natural attenuation, or reduction capacity, of reactive minerals and aquifer sediments. Samples of reduced-iron containing minerals such as ilmenite, as well as Puye Formation sediments representing a contaminated aquifer in New Mexico, were reacted with chromate. The change in Cr(VI) during the reaction was used to calculate reduction capacity. This study found that minerals that contain reduced iron, such as ilmenite, have high reducing capacities. The data indicated that sample history may impact reduction capacity tests due to surface passivation. Further, this investigation identified areas for future research including: a) refining the relationships between iron content, magnetic susceptibility and reduction capacity, and b) long term kinetic testing using fresh aquifer sediments.

  15. Utah Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Total Storage ... Aquifers 939 939 948 948 948 992 2008-2015 Depleted Fields 51,250 53,950 53,950 53,950 ...

  16. Pennsylvania Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Total Storage ... Total Number of Existing Fields 51 51 51 51 51 49 1989-2015 Aquifers 1 1 1 1 2012-2015 ...

  17. Fail-Safe Designs for Large Capacity Battery Systems - Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Return to Search Fail-Safe Designs for Large Capacity Battery Systems United States Patent ... Design for Large Capacity Li-Ion Battery Systems Abstract: Fail-safe systems and ...

  18. Iowa Natural Gas Underground Storage Capacity (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Capacity (Million Cubic Feet) Iowa Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 273,200 273,200 273,200...

  19. Is there life in other markets? BPA explores preschedule capacity

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    capacity 7152014 12:00 AM Tweet Page Content BPA launched a new process this spring to acquire preschedule (day-ahead) capacity from third-party suppliers. The goal was...

  20. AGA Producing Region Natural Gas Total Underground Storage Capacity...

    Energy Information Administration (EIA) (indexed site)

    Storage Capacity (Million Cubic Feet) AGA Producing Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec...

  1. Ukraine-Capacity Building for Low Carbon Growth | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ukraine-Capacity Building for Low Carbon Growth Jump to: navigation, search Name UNDP-Capacity Building for Low Carbon Growth in Ukraine AgencyCompany Organization United Nations...

  2. Wind Gains ground, hitting 33 GW of installed capacity

    SciTech Connect

    2010-06-15

    The U.S. currently has 33 GW of installed wind capacity. Wind continues to gain ground, accounting for 42 percent of new capacity additions in the US in 2008.Globally, there are now 146 GW of wind capacity with an impressive and sustained growth trajectory that promises to dominate new generation capacities in many developing countries. The U.S., however, lags many European countries, with wind providing roughly 2 percent of electricity generation.

  3. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt015_es_wise_2012_p.pdf (321.02 KB) More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production FY 2011

  4. Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis NREL Doubling Geothermal Capacity.pdf (890.69 KB) More Documents & Publications Geothermal Exploration Policy Mechanisms track 1: systems analysis | geothermal 2015 peer review Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios

  5. Quasi-superactivation for the classical capacity of quantum channels

    SciTech Connect

    Gyongyosi, Laszlo; Imre, Sandor

    2014-12-04

    The superactivation effect has its roots in the extreme violation of additivity of the channel capacity and enables to reliably transmit quantum information over zero-capacity quantum channels. In this work we demonstrate a similar effect for the classical capacity of a quantum channel which previously was thought to be impossible.

  6. Arkansas Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    21,760 21,359 21,853 21,853 21,853 21,853 1988-2015 Salt Caverns 0 0 0 1999-2015 Aquifers 0 0 0 1999-2015 Depleted Fields 21,760 21,359 21,853 21,853 21,853 21,853 1999-2015 Total Working Gas Capacity 13,898 12,036 12,178 12,178 12,178 12,178 2008-2015 Salt Caverns 0 0 0 2012-2015 Aquifers 0 0 0 2012-2015 Depleted Fields 13,898 12,036 12,178 12,178 12,178 12,178 2008-2015 Total Number of Existing Fields 2 2 2 2 2 2 1989-2015 Depleted Fields 2 2 2 2 2 2

  7. California Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    542,511 570,511 592,411 599,711 599,711 601,808 1988-2015 Salt Caverns 0 0 0 1999-2015 Aquifers 0 12,000 12,000 12,000 1999-2015 Depleted Fields 542,511 570,511 592,411 587,711 587,711 589,808 1999-2015 Total Working Gas Capacity 311,096 335,396 349,296 374,296 374,296 375,496 2008-2015 Salt Caverns 0 0 0 2012-2015 Aquifers 0 10,000 10,000 10,000 2009-2015 Depleted Fields 311,096 335,396 349,296 364,296 364,296 365,496 2008-2015 Total Number of Existing Fields 13 13 14 14 14 14 1989-2015 Salt

  8. West Virginia Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    531,480 524,324 524,324 524,337 528,637 528,837 1988-2015 Salt Caverns 0 0 0 1999-2015 Aquifers 200 2015-2015 Depleted Fields 531,480 524,324 524,324 524,337 528,637 528,637 1999-2015 Total Working Gas Capacity 260,744 256,692 256,643 258,056 262,305 259,381 2008-2015 Salt Caverns 0 0 0 2012-2015 Aquifers 66 2015-2015 Depleted Fields 260,744 256,692 256,643 258,056 262,305 259,315 2008-2015 Total Number of Existing Fields 32 30 30 30 30 31 1989-2015 Aquifers 1 2015-2015 Depleted Fields 32 30 30

  9. U.S. Refinery Utilization and Capacity

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Gross Input to Atmospheric Crude Oil Distillation Units 16,261 16,222 16,477 16,803 16,994 16,975 1985-2016 Operable Capacity (Calendar Day) 18,307 18,320 18,320 18,436 18,436 18,436 1985-2016 Operating 18,072 17,607 18,086 18,194 18,284 18,316 1985-2016 Idle 236 713 234 242 152 120 1985-2016 Operable Utilization Rate (%) 88.8 88.6 89.9 91.1 92.2 92.1 1985-2016 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  10. Dual capacity compressor with reversible motor and controls arrangement therefor

    DOEpatents

    Sisk, Francis J.

    1980-12-02

    A hermetic reciprocating compressor such as may be used in heat pump applications is provided for dual capacity operation by providing the crankpin of the crankshaft with an eccentric ring rotatably mounted thereon, and with the end of the connecting rod opposite the piston encompassing the outer circumference of the eccentric ring, with means limiting the rotation of the eccentric ring upon the crankpin between one end point and an opposite angularly displaced end point to provide different values of eccentricity depending upon which end point the eccentric ring is rotated to upon the crankpin, and a reversible motor in the hermetic shell of the compressor for rotating the crankshaft, the motor operating in one direction effecting the angular displacement of the eccentric ring relative to the crankpin to the one end point, and in the opposite direction effecting the angular displacement of the eccentric ring relative to the crankpin to the opposite end point, this arrangement automatically giving different stroke lengths depending upon the direction of motor rotation. The mechanical structure of the arrangement may take various forms including at least one in which any impact of reversal is reduced by utilizing lubricant passages and chambers at the interface area of the crankpin and eccentric ring to provide a dashpot effect. In the main intended application of the arrangement according to the invention, that is, in a refrigerating or air conditioning system, it is desirable to insure a delay during reversal of the direction of compressor operation. A control arrangement is provided in which the control system controls the direction of motor operation in accordance with temperature conditions, the system including control means for effecting operation in a low capacity direction or alternatively in a high capacity direction in response to one set, and another set, respectively, of temperature conditions and with timer means delaying a restart of the compressor

  11. Carborane-Based Metal-Organic Framework with High Methane and Hydrogen Storage Capacities

    SciTech Connect

    Kennedy, RD; Krungleviciute, V; Clingerman, DJ; Mondloch, JE; Peng, Y; Wilmer, CE; Sarjeant, AA; Snurr, RQ; Hupp, JT; Yildirim, T; Farha, OK; Mirkin, CA

    2013-09-10

    A Cu-carborane-based metal organic framework (MOF), NU-135, which contains a quasi-spherical para-carborane moiety, has been synthesized and characterized. NU-135 exhibits a pore volume of 1.02 cm(3)/g and a gravimetric BET surface area of ca. 2600 m(2)/g, and thus represents the first highly porous carborane-based MOF. As a consequence of the, unique geometry of the carborane unit, NU-135 has a very high volumetric BET surface area of ca. 1900 m(2)/cm(3). CH4, CO2, and H-2 adsorption isotherms were measured over a broad range of pressures and temperatures and are in good agreement with computational predictions. The methane storage capacity of NU-135 at 35 bar and 298 K is ca. 187 v(STP)/v. At 298 K, the pressure required to achieve a methane storage density comparable to that of a compressed natural gas (CNG) tank pressurized to 212 bar, which is a typical storage pressure, is only 65 bar. The methane working capacity (5-65 bar) is 170 v(STP)/v. The volumetric hydrogen storage capacity at 55 bar and 77 K is 49 g/L. These properties are comparable to those of current record holders in the area of methane and hydrogen storage. This initial example lays the groundwork for carborane-based materials with high surface areas.

  12. Surface and bulk modified high capacity layered oxide cathodes with low irreversible capacity loss

    DOEpatents

    Manthiram, Arumugam; Wu, Yan

    2010-03-16

    The present invention includes compositions, surface and bulk modifications, and methods of making of (1-x)Li[Li.sub.1/3Mn.sub.2/3]O.sub.2.xLi[Mn.sub.0.5-yNi.sub.0.5-yCo.sub.2- y]O.sub.2 cathode materials having an O3 crystal structure with a x value between 0 and 1 and y value between 0 and 0.5, reducing the irreversible capacity loss in the first cycle by surface modification with oxides and bulk modification with cationic and anionic substitutions, and increasing the reversible capacity to close to the theoretical value of insertion/extraction of one lithium per transition metal ion (250-300 mAh/g).

  13. Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Department of Energy Representation of Limited Rights Data and Restricted Computer Software Representation of Limited Rights Data and Restricted Computer Software Representation of Limited Rights Data and Restricted Computer Software (44.02 KB) More Documents & Publications CLB-1003.PDF&#0; Intellectual Property Provisions (CSB-1003) Cooperative Agreement Research, Development, or Demonstration Domestic Small Businesses CDLB-1003.PDF&#0;

    Representation of Solar Capacity Value

  14. Fossil Energy Technical Assistance Topic Areas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fossil Energy Technical Assistance Topic Areas Fossil Energy Technical Assistance Topic Areas Potential Technical Assistance Topic Areas in the Office of Fossil Energy EPA Regulations - Analysis to Support Planning Contact: Jordan Kislear Storage Infrastructure Contact: Mark Ackiewicz Major Demonstrations Contact: Joe Giove Department of Energy and National Association of Regulatory Utility Commissioners (NARUC) Contact: Doug Middleton Fossil Capacity and Resources in Your State or Region

  15. Montana Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Total Storage

  16. Alabama Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Total Storage

  17. Colorado Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Total Storage

  18. Indiana Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Total Storage

  19. Kentucky Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Total Storage

  20. Wyoming Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Total Storage

  1. AREA 5 RWMS CLOSURE

    National Nuclear Security Administration (NNSA)

    153 CLOSURE STRATEGY NEVADA TEST SITE AREA 5 RADIOACTIVE WASTE MANAGEMENT SITE Revision 0 ... Closure Strategy Nevada Test Site Area 5 Radioactive Waste Management ...

  2. Development of a high capacity longwall conveyor. Final technical report

    SciTech Connect

    Sparks, C

    1982-05-01

    The objectives of this program were to develop, fabricate, and demonstrate a longwall conveying system capable of transporting coal at a rate of 9000 tons/day (1000 tons/hr) and capable of accommodating a surge rate of 20 tons/min. The equipment was required to have the structural durability to perform with an operating availability of 90%. A review of available literature and discussions with longwall operators identified the problem areas of conveyor design that required attention. The conveyor under this contract was designed and fabricated with special attention given to these areas, and also to be easily maintainable. The design utilized twin 300 hp drives and twin inboard 26-mm chain at 270 ft/min; predictions of capacity and reliability based on the design indicating that it would satisfy the program requirements. Conveyor components were critically tested and the complete conveyor was surface-tested, the results verifying the design specifications. In addition, an instrumentation system was developed with analysis by computer techniques to monitor the performance of the conveyor. The conveyor was installed at a selected mine site, and it was the intention to monitor its performance over the entire longwall panel. Monitoring of the conveyor performance was conducted over approximately one-third of the longwall panel, at which point further effort was suspended. However, during the monitored period, data collected from various sources showed the conveyor to have exhibited its capability of transporting coal at the desired rate, and also to have conformed to the program requirements of reliability and availability.

  3. Water Constraints in an Electric Sector Capacity Expansion Model

    SciTech Connect

    Macknick, Jordan; Cohen, Stuart; Newmark, Robin; Martinez, Andrew; Sullivan, Patrick; Tidwell, Vince

    2015-07-17

    This analysis provides a description of the first U.S. national electricity capacity expansion model to incorporate water resource availability and costs as a constraint for the future development of the electricity sector. The Regional Energy Deployment System (ReEDS) model was modified to incorporate water resource availability constraints and costs in each of its 134 Balancing Area (BA) regions along with differences in costs and efficiencies of cooling systems. Water resource availability and cost data are from recently completed research at Sandia National Laboratories (Tidwell et al. 2013b). Scenarios analyzed include a business-as-usual 3 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. scenario without water constraints as well as four scenarios that include water constraints and allow for different cooling systems and types of water resources to be utilized. This analysis provides insight into where water resource constraints could affect the choice, configuration, or location of new electricity technologies.

  4. Central Facilities Area Sewage Lagoon Evaluation

    SciTech Connect

    Giesbrecht, Alan

    2015-03-01

    The Central Facilities Area (CFA) located in Butte County, Idaho at Idaho National Laboratory (INL) has an existing wastewater system to collect and treat sanitary wastewater and non contact cooling water from the facility. The existing treatment facility consists of three cells: Cell 1 has a surface area of 1.7 acres, Cell 2 has a surface area of 10.3 acres, and Cell 3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5 acre land application site that utilizes a center pivot irrigation sprinkler system. The purpose of this current study is to update the analysis and conclusions of the December 2013 study. In this current study, the new seepage rate and influent flow rate data have been used to update the calculations, model, and analysis.

  5. Development of design basis capacity for SNF project systems

    SciTech Connect

    Pajunen, A.L.

    1996-02-27

    An estimate of the design capacity for Spent Nuclear Fuel Project systems producing Multi-Canister Overpacks is developed based on completing fuel processing in a two year period. The design basis capacity for systems relates the desired annual processing rate to potential operating inefficiencies which may be actually experienced to project a design capacity for systems. The basis for estimating operating efficiency factors is described. Estimates of the design basis capacity were limited to systems actually producing the Multi-Canister Overpack. These systems include Fuel Retrieval, K Basin SNF Vacuum Drying, Canister Storage Building support for Staging and Storage, and Hot Vacuum conditioning. The capacity of other systems are assumed to be derived from these system capacities such that systems producing a Multi-Canister Overpack are not constrained.

  6. Locational electricity capacity markets: Alternatives to restore the missing signals

    SciTech Connect

    Nieto, Amparo D.; Fraser, Hamish

    2007-03-15

    In the absence of a properly functioning electricity demand side, well-designed capacity payment mechanisms hold more promise for signaling the value of capacity than non-CPM alternatives. Locational CPMs that rely on market-based principles, such as forward capacity auctions, are superior to cost-based payments directed to specific must-run generators, as CPMs at least provide a meaningful price signal about the economic value of resources to potential investors. (author)

  7. HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Storage | Department of Energy HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage Presentation for the high temperature combinatorial screening for high capacity hydrogen storage meeting ht_ucf_raissi.pdf (999.19 KB) More Documents & Publications DetecTape - A Localized Visual Detector for Hydrogen Leaks DetecTape - A Localized Visual Detector for Hydrogen Leaks Webinar

  8. High Capacity Composite Carbon Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Capacity Composite Carbon Anodes High Capacity Composite Carbon Anodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es114_pol_2012_o.pdf (2.79 MB) More Documents & Publications High Capacity Composite Carbon Anodes Fabricated by Autogenic Reactions Spherical Carbon Anodes Fabricated by Autogenic Reactions FY 2011 Annual Progress Report for Energy Storage R&D

  9. Voluntary Initiative: Partnering to Enhance Program Capacity | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Voluntary Initiative: Partnering to Enhance Program Capacity Voluntary Initiative: Partnering to Enhance Program Capacity Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Voluntary Initiative: Partnering to Enhance Program Capacity, Call Slides and Summary, May 8, 2014. Call Slides and Summary (551.65 KB) More Documents & Publications Better Buildings Residential Network Orientation Working with Schools Rainbows and Leprechauns: Finding

  10. Spain Installed Wind Capacity Website | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    URI: cleanenergysolutions.orgcontentspain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an...

  11. Tunisia-Capacity Development for GHG inventories and MRV | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Development for GHG inventories and MRV in Tunisia) Jump to: navigation, search Name Capacity Development for GHG inventories and MRV in Tunisia AgencyCompany Organization...

  12. Indonesia-ECN Capacity building for energy policy formulation...

    OpenEI (Open Energy Information) [EERE & EIA]

    strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and...

  13. High Methane Storage Capacity in Aluminum Metal-Organic Frameworks...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    High Methane Storage Capacity in Aluminum Metal-Organic Frameworks Previous Next List Felipe Gndara, Hiroyasu Furukawa, Seungkyu Lee, and Omar M. Yaghi, J. Am. Chem. Soc., 136,...

  14. Design and Evaluation of Novel High Capacity Cathode Materials...

    Energy.gov [DOE] (indexed site)

    49thackeray2011o.pdf (1.66 MB) More Documents & Publications Cathodes Design and Evaluation of Novel High Capacity Cathode Materials Layered Cathode Materials

  15. "Period","Annual Production Capacity",,"Monthly B100 Production...

    Energy Information Administration (EIA) (indexed site)

    Biodiesel production capacity and production" "million gallons" "Period","Annual ... is the industry designation for pure biodiesel; a biodiesel blend contains both pure ...

  16. Table 4. Biodiesel producers and production capacity by state...

    Energy Information Administration (EIA) (indexed site)

    Biodiesel producers and production capacity by state, July 2016" "State","Number of ... Administration, Form EIA-22M ""Monthly Biodiesel Production Survey""" "U.S. Energy ...

  17. United States Total Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Total Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United ... Gases",2256,2313,1995,1932,2700 "Nuclear",100334,100266,100755,101004,10116...

  18. GIZ-Best Practices in Capacity Building Approaches | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Building Approaches: Recommendations for the Design of a Long -Term Capacity Building Strategy for the Wind and Solar Sectors by the MEF Working Group AgencyCompany Organization:...

  19. Reductive Capacity Measurement of Waste Forms for Secondary Radioactive Wastes

    SciTech Connect

    Um, Wooyong; Yang, Jungseok; Serne, R. Jeffrey; Westsik, Joseph H.

    2015-09-28

    The reductive capacities of dry ingredients and final solid waste forms were measured using both the Cr(VI) and Ce(IV) methods and the results were compared. Blast furnace slag (BFS), sodium sulfide, SnF2, and SnCl2 used as dry ingredients to make various waste forms showed significantly higher reductive capacities compared to other ingredients regardless of which method was used. Although the BFS exhibits appreciable reductive capacity, it requires greater amounts of time to fully react. In almost all cases, the Ce(IV) method yielded larger reductive capacity values than those from the Cr(VI) method and can be used as an upper bound for the reductive capacity of the dry ingredients and waste forms, because the Ce(IV) method subjects the solids to a strong acid (low pH) condition that dissolves much more of the solids. Because the Cr(VI) method relies on a neutral pH condition, the Cr(VI) method can be used to estimate primarily the waste form surface-related and readily dissolvable reductive capacity. However, the Cr(VI) method does not measure the total reductive capacity of the waste form, the long-term reductive capacity afforded by very slowly dissolving solids, or the reductive capacity present in the interior pores and internal locations of the solids.

  20. Development of High-Capacity Cathode Materials with Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    & Publications Development of High-Capacity Cathode Materials with Integrated Structures Vehicle Technologies Office Merit Review 2015: Design and Evaluation of High...

  1. Design and Evaluation of Novel High Capacity Cathode Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Lithium Source For High Performance Li-ion Cells Design and Evaluation of Novel High Capacity Cathode Materials Lithium Source For High...

  2. Additional capacities seen in metal oxide lithium-ion battery...

    Office of Scientific and Technical Information (OSTI)

    Additional capacities seen in metal oxide lithium-ion battery electrodes Citation Details ... Language: English Subject: energy storage (including batteries and capacitors), defects, ...

  3. "US Commercial Crude Oil Stocks and Storage Capacity"

    Energy Information Administration (EIA) (indexed site)

    Oil Stocks and Storage Capacity" "(thousand barrels except where noted)" ,40633,40816,40999,41182,41364,41547,41729,41912,42094,42248,42431 "Commercial Crude Oil ...

  4. Degradation and (de)lithiation processes in the high capacity...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Degradation and (de)lithiation processes in the high capacity battery material LiFeBOsubscript 3 Citation Details In-Document Search Title: Degradation and ...

  5. Wireless Battery Management System for Safe High-Capacity Energy...

    Office of Scientific and Technical Information (OSTI)

    Wireless Battery Management System for Safe High-Capacity Energy Storage Citation Details ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 25 ...

  6. Africa Adaptation Programme: Capacity Building Experiences-Improving...

    OpenEI (Open Energy Information) [EERE & EIA]

    Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa Language: English Africa Adaptation Programme: Capacity Building Experiences-Improving Access,...

  7. Renewable Motor Fuel Production Capacity Under H.R.4

    Reports and Publications

    2002-01-01

    This paper analyzes renewable motor fuel production capacity with the assumption that ethanol will be used to meet the renewable fuels standard.

  8. CCAP-Data and Capacity Needs for Transportation NAMAs | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    docsresources973TransportNAMACapacity-Building.pdf Cost: Free Language: English CCAP-Data and Capacity Needs for Transportation NAMAs Screenshot References:...

  9. DOE Receives Responses on the Implementation of Large-Capacity...

    Energy.gov [DOE] (indexed site)

    establishing alternative test procedures for existing large-capacity residential clothes washer models and units. We received responses from several parties, which can be...

  10. Working and Net Available Shell Storage Capacity as of September...

    Gasoline and Diesel Fuel Update

    and also allows for tracking seasonal shifts in petroleum product usage of tanks and underground storage. Using the new storage capacity data, it will be possible to calculate...

  11. U.S. Geothermal Energy Capacity Grew 6% in 2009

    Energy.gov [DOE]

    Geothermal energy capacity expanded 6% in the United States in 2009, due to six new geothermal plants which came online, adding 176.68 megawatts (MW).

  12. Development of High-Capacity Cathode Materials with Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Peer Evaluation PDF icon es019kang2011p.pdf More Documents & Publications Development of High-Capacity Cathode Materials with Integrated Structures Development of...

  13. First Steps Towards Tribal Weatherization: Human Capacity Development

    Energy.gov [DOE] (indexed site)

    Towards Tribal Weatherization: Human Capacity Development October 2011 October 2011 Cook Inlet Tribal Council's Weatherization Apprenticeship October 2011 March 2010 - March 2012 ...

  14. First Steps Towards Tribal Weatherization: Human Capacity Development

    Energy.gov [DOE] (indexed site)

    Steps Towards tribal weatherization: human capacity development October 2010 - Cook Inlet Tribal Council Weatherization Apprenticeship March 2010 February 2012 Cook Inlet Tribal ...

  15. Using SiO Anodes for High Capacity, High Rate Electrodes for...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Using SiO Anodes for High Capacity, High Rate Electrodes for Lithium Ion Batteries ... areal capacities and good capacity retention for application in lithium ion batteries. ...

  16. EVALUATION OF REQUIREMENTS FOR THE DWPF HIGHER CAPACITY CANISTER

    SciTech Connect

    Miller, D.; Estochen, E.; Jordan, J.; Kesterson, M.; Mckeel, C.

    2014-08-05

    The Defense Waste Processing Facility (DWPF) is considering the option to increase canister glass capacity by reducing the wall thickness of the current production canister. This design has been designated as the DWPF Higher Capacity Canister (HCC). A significant decrease in the number of canisters processed during the life of the facility would be achieved if the HCC were implemented leading to a reduced overall reduction in life cycle costs. Prior to implementation of the change, Savannah River National Laboratory (SRNL) was requested to conduct an evaluation of the potential impacts. The specific areas of interest included loading and deformation of the canister during the filling process. Additionally, the effect of the reduced wall thickness on corrosion and material compatibility needed to be addressed. Finally the integrity of the canister during decontamination and other handling steps needed to be determined. The initial request regarding canister fabrication was later addressed in an alternate study. A preliminary review of canister requirements and previous testing was conducted prior to determining the testing approach. Thermal and stress models were developed to predict the forces on the canister during the pouring and cooling process. The thermal model shows the HCC increasing and decreasing in temperature at a slightly faster rate than the original. The HCC is shown to have a 3°F ΔT between the internal and outer surfaces versus a 5°F ΔT for the original design. The stress model indicates strain values ranging from 1.9% to 2.9% for the standard canister and 2.5% to 3.1% for the HCC. These values are dependent on the glass level relative to the thickness transition between the top head and the canister wall. This information, along with field readings, was used to set up environmental test conditions for corrosion studies. Small 304-L canisters were filled with glass and subjected to accelerated environmental testing for 3 months. No evidence of

  17. Acceptance Priority Ranking & Annual Capacity Report

    SciTech Connect

    2004-07-31

    The Nuclear Waste Policy Act of 1982, as amended (the Act), assigns the Federal Government the responsibility for the disposal of spent nuclear fuel and high-level waste. Section 302(a) of the Act authorizes the Secretary to enter into contracts with the owners and generators of commercial spent nuclear fuel and/or high-level waste. The Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (Standard Contract) established the contractual mechanism for the Department's acceptance and disposal of spent nuclear fuel and high-level waste. It includes the requirements and operational responsibilities of the parties to the Standard Contract in the areas of administrative matters, fees, terms of payment, waste acceptance criteria, and waste acceptance procedures. The Standard Contract provides for the acquisition of title to the spent nuclear fuel and/or high-level waste by the Department, its transportation to Federal facilities, and its subsequent disposal.

  18. Central Facilities Area Sewage Lagoon Evaluation

    SciTech Connect

    Mark R. Cole

    2013-12-01

    The Central Facilities Area (CFA), located in Butte County, Idaho, at the Idaho National Laboratory has an existing wastewater system to collect and treat sanitary wastewater and non-contact cooling water from the facility. The existing treatment facility consists of three cells: Cell #1 has a surface area of 1.7 acres, Cell #2 has a surface area of 10.3 acres, and Cell #3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5-acre land application site that uses a center-pivot irrigation sprinkler system. As flows at CFA have decreased in recent years, the amount of wastewater discharged to the land application site has decreased from 13.64 million gallons in 2004 to no discharge in 2012 and 2013. In addition to the decreasing need for land application, approximately 7.7 MG of supplemental water was added to the system in 2013 to maintain a water level and prevent the clay soil liners in the cells from drying out and “cracking.” The Idaho National Laboratory is concerned that the sewage lagoons and land application site may be oversized for current and future flows. A further concern is the sustainability of the large volumes of supplemental water that are added to the system according to current operational practices. Therefore, this study was initiated to evaluate the system capacity, operational practices, and potential improvement alternatives, as warranted.

  19. Technical Area 21

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technical Area 21 Technical Area 21 Technical Area 21 was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. August 1, 2013 Technical Area 21 in 2011 Technical Area 21 in 2011 Technical Area 21 (TA-21), also known as DP Site was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. Between 2008 and 2011, MDAs B, U, and V were excavated and removed. 24 buildings were demolished in 2010 and 2011

  20. IEED Tribal Energy Development to Build Tribal Energy Development Capacity

    Energy.gov [DOE]

    The Assistant Secretary - Indian Affairs for the U.S. Department of the Interior, through the Office of Indian Energy and Economic Development, is soliciting grant proposals from Indian tribes to build tribal capacity for energy resource development or management under the Department of the Interior's (DOl's) Tribal Energy Development Capacity (TEDC) grant program.

  1. 100 Area - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 ... Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility ...

  2. 700 Area - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 ... Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility ...

  3. 200 Area - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 ... Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility ...

  4. 300 Area - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 ... Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility ...

  5. Site Monitoring Area Maps

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Maps Individual Permit: Site Monitoring Area Maps Each Site Monitoring Area Map is updated whenever the map information is updated. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email What do these maps show? The Individual Permit for Storm Water site monitoring area maps display the following information: Surface hydrological features Locations of the Site(s) assigned to the Site Monitoring Area (SMA) The Site Monitoring

  6. Sweet Surface Area

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sweet Surface Area Sweet Surface Area Create a delicious root beer float and learn sophisticated science concepts at the same time. Sweet Surface Area Science is all around us, so why not have some delicious fun while we do it? The process of making a root beer float (PDF) is simple but it involves some pretty sophisticated scientific concepts. Carbonation, surface area, viscosity, and temperature all play a roll in creating a treat that is up to your personal highest standards

  7. Pulp fiction - The volunteer concept (or how not to site additional LLRW disposal capacity)

    SciTech Connect

    Burton, D.A.

    1995-12-31

    Experiences of compacts and of individual states throughout the nation indicate that low-level radioactive waste disposal siting processes, based from the beginning upon the volunteer concept are fraught with problems. Most apparent among these problems is that the volunteer concept does not lead to scientifically and technically based siting endeavors. Ten years have passed since the Amendments Act of 1985, and no compact or state has been - successful in providing for new LLRW disposal capacity. That failure can be traced in part to the reliance upon the volunteer concept in siting attempts. If success is to be achieved, the future direction for LLRW management must focus on three areas: first, a comprehensive evaluation of all LLRW management options, including reduction of waste generated and on-site storage; secondly, a comprehensive evaluation of the current as well as projected waste stream, to determine the amount of disposal capacity actually needed; and, finally, sound scientifically and technically based siting processes.

  8. TSD capacity model interface with waste reduction planning in the Environmental Restoration Program

    SciTech Connect

    Phifer, B.E. Jr.; Grumski, J.T.

    1991-01-01

    This report provides a picture of how the integration of waste generation forecasting with treatment, storage, and disposal (TSD) capacity modeling interfaces with waste reduction planning in the Environmental Restoration Program. Background information is given for the major activities at the seven Martin Marietta Energy Systems, Inc., sites: (1) Oak Ridge National Laboratory; (2) Oak Ridge Y-12 Plant; (3) Oak Ridge K-25 Site; (4) Paducah Gaseous Diffusion Plant; (5) Portsmouth Gaseous Diffusion Plant; (6) Oak Ridge Associated Universities; and (7) the off-site contaminated areas near DOE facilities. A perspective is provided for strategies to achieve waste reduction, how waste generation forecasts rates were developed, and how those forecasted waste generation rates will be used in TSD capacity modeling. The generation forecasting in combination with TSD modeling allows development of quantifiable goals and subsequent waste reduction. 2 figs.

  9. Capacity Utilization Study for Aviation Security Cargo Inspection Queuing System

    SciTech Connect

    Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E; Brumback, Daryl L

    2010-01-01

    In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number of cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system s ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.

  10. Natural gas productive capacity for the lower 48 states 1984 through 1996, February 1996

    SciTech Connect

    1996-02-09

    This is the fourth wellhead productive capacity report. The three previous ones were published in 1991, 1993, and 1994. This report should be of particular interest to those in Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas. The EIA Dallas Field Office has prepared five earlier reports regarding natural gas productive capacity. These reports, Gas Deliverability and Flow Capacity of Surveillance Fields, reported deliverability and capacity data for selected gas fields in major gas producing areas. The data in the reports were based on gas-well back-pressure tests and estimates of gas-in-place for each field or reservoir. These reports use proven well testing theory, most of which has been employed by industry since 1936 when the Bureau of Mines first published Monograph 7. Demand for natural gas in the United States is met by a combination of natural gas production, underground gas storage, imported gas, and supplemental gaseous fuels. Natural gas production requirements in the lower 48 States have been increasing during the last few years while drilling has remained at low levels. This has raised some concern about the adequacy of future gas supplies, especially in periods of peak heating or cooling demand. The purpose of this report is to address these concerns by presenting a 3-year projection of the total productive capacity of natural gas at the wellhead for the lower 48 States. Alaska is excluded because Alaskan gas does not enter the lower-48 States pipeline system. The Energy Information Administration (EIA) generates this 3-year projection based on historical gas-well drilling and production data from State, Federal, and private sources. In addition to conventional gas-well gas, coalbed gas and oil-well gas are also included.

  11. High capacity anode materials for lithium ion batteries

    DOEpatents

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  12. Why Are We Talking About Capacity Markets? (Presentation)

    SciTech Connect

    Milligan, M.

    2011-06-01

    Capacity markets represent a new and novel way to achieve greater economic use of variable generation assets such as wind and solar, and this concept is discussed in this presentation.

  13. PUCT Substantive Rule 25.91 Generating Capacity Reports | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    PUCT Substantive Rule 25.91 Generating Capacity Reports Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: PUCT Substantive...

  14. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Delaware" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Hay Road","Natural gas","Calpine Mid-Atlantic Generation LLC",1136 2,"Edge ...

  15. ,"U.S. Total Natural Gas Underground Storage Capacity (MMcf)...

    Energy Information Administration (EIA) (indexed site)

    ...dnavnghistn5290us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Total Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290US2" ...

  16. Design and Evaluation of Novel High Capacity Cathode Materials...

    Energy.gov [DOE] (indexed site)

    17johnson2011p.pdf (651.34 KB) More Documents & Publications Design and Evaluation of Novel High Capacity Cathode Materials Lithium Source For High Performance Li-ion Cells ...

  17. ,"U.S. Underground Natural Gas Storage Capacity"

    Energy Information Administration (EIA) (indexed site)

    012015 7:00:34 AM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage Capacity" "Sourcekey","N5290US2","NA1393NUS2","NA1392NUS2","NA1391NUS2","NGAEP...

  18. Nitrogen expander cycles for large capacity liquefaction of natural gas

    SciTech Connect

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung

    2014-01-29

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

  19. Offshore Wind Energy Market Installed Capacity is Anticipated...

    OpenEI (Open Energy Information) [EERE & EIA]

    Offshore Wind Energy Market Installed Capacity is Anticipated to Reach 52,120.9 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...

  20. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Florida" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Martin","Natural gas","Florida Power & Light Co",3695 2,"West County Energy ...

  1. Assess public and private sector capacity to support initiatives...

    OpenEI (Open Energy Information) [EERE & EIA]

    public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development...

  2. ,"U.S. Underground Natural Gas Storage Capacity"

    Energy Information Administration (EIA) (indexed site)

    012015 7:00:34 AM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage Capacity" "Sourcekey","N5290US2","NGAEPG0SACW0NUSMMCF","NA1394NUS8"...

  3. Biomass Power Generation Market Capacity is Estimated to Reach...

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass Power Generation Market Capacity is Estimated to Reach 122,331.6 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...

  4. Lower 48 States Total Natural Gas Underground Storage Capacity...

    Energy Information Administration (EIA) (indexed site)

    Lower 48 States Total Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 8,842,950 8,854,720 8,854,720 ...

  5. Working and Net Available Shell Storage Capacity as of September...

    Annual Energy Outlook

    for PAD District 2 and the U.S. total have been revised to correct a processing error that caused some capacity data to be double counted in the original release of this...

  6. Property:Geothermal/CapacityMwt | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalCapacityMwt" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  7. Property:Geothermal/CapacityBtuHr | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalCapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  8. Development of high-capacity cathode materials with integrated...

    Energy.gov [DOE] (indexed site)

    Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. esp14kang.pdf (1.21 MB) More Documents & Publications Development of High-Capacity Cathode ...

  9. Degradation and (de)lithiation processes in the high capacity...

    Office of Scientific and Technical Information (OSTI)

    Degradation and (de)lithiation processes in the high capacity battery material LiFeBO3 Citation Details In-Document Search Title: Degradation and (de)lithiation processes in the ...

  10. High-Rate, High-Capacity Binder-Free Electrode

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC High-Rate, High-Capacity Binder-Free Electrode Patent: PCT-09-41 Chunmei Ban ...

  11. Field Evaluation of the Restorative Capacity of the Aquifer Downgradie...

    Office of Scientific and Technical Information (OSTI)

    Mining Site Citation Details In-Document Search Title: Field Evaluation of the Restorative Capacity of the Aquifer Downgradient of a Uranium In-Situ Recovery Mining Site A ...

  12. SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS

    Energy.gov [DOE]

    Seismic Capacity of Threaded, Brazed and Grooved Pipe Joints Brent Gutierrez, PhD, PE George Antaki, PE, F.ASME DOE NPH Conference October 25-26, 2011

  13. High capacity stabilized complex hydrides for hydrogen storage

    DOEpatents

    Zidan, Ragaiy; Mohtadi, Rana F; Fewox, Christopher; Sivasubramanian, Premkumar

    2014-11-11

    Complex hydrides based on Al(BH.sub.4).sub.3 are stabilized by the presence of one or more additional metal elements or organic adducts to provide high capacity hydrogen storage material.

  14. Geothermal Capacity Could More than Double by 2020: Pike Research

    Energy.gov [DOE]

    Increasing global investment in geothermal power could result in a 134% increase in total geothermal capacity between 2010 and 2020, according to a report released on March 7 by Pike Research.

  15. ,"U.S. Downstream Charge Capacity of Operable Petroleum Refineries...

    Energy Information Administration (EIA) (indexed site)

    as of January 1 (Barrels per Stream Day)","U.S. Refinery Thermal Cracking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)","U.S. Refinery Thermal ...

  16. Development of High-Capacity Cathode Materials with Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2010 -- Washington D.C. PDF icon es019kang2010o.pdf More Documents & Publications Development of high-capacity cathode materials with integrated structures Development of...

  17. Confederated Tribes of Warm Springs - Human Capacity Building

    Energy.gov [DOE] (indexed site)

    Grant DE-PS36-06G096038 Human Capacity Building for Renewable Energy Development. Warm Spring Power and Water Enterprise Mark K. Johnson Jr. Prepared by: Warm Springs Power & Water ...

  18. Inner Area Principles

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Inner Area Principles The Inner Area principles proposed by the Tri-Parties are a good beginning toward consideration of what kind of approach will be needed to remedy the problems of the Central Plateau. However, the Board feels that some principles have been overlooked in the preparation of these. [1] While it has been generally agreed that designated waste disposal facilities of the Inner Area (like ERDF and IDF) would not be candidates for remediation. What happened to the remedial approach

  19. Tri-Laboratory Linux Capacity Cluster 2007 SOW

    SciTech Connect

    Seager, M

    2007-03-22

    The Advanced Simulation and Computing (ASC) Program (formerly know as Accelerated Strategic Computing Initiative, ASCI) has led the world in capability computing for the last ten years. Capability computing is defined as a world-class platform (in the Top10 of the Top500.org list) with scientific simulations running at scale on the platform. Example systems are ASCI Red, Blue-Pacific, Blue-Mountain, White, Q, RedStorm, and Purple. ASC applications have scaled to multiple thousands of CPUs and accomplished a long list of mission milestones on these ASC capability platforms. However, the computing demands of the ASC and Stockpile Stewardship programs also include a vast number of smaller scale runs for day-to-day simulations. Indeed, every 'hero' capability run requires many hundreds to thousands of much smaller runs in preparation and post processing activities. In addition, there are many aspects of the Stockpile Stewardship Program (SSP) that can be directly accomplished with these so-called 'capacity' calculations. The need for capacity is now so great within the program that it is increasingly difficult to allocate the computer resources required by the larger capability runs. To rectify the current 'capacity' computing resource shortfall, the ASC program has allocated a large portion of the overall ASC platforms budget to 'capacity' systems. In addition, within the next five to ten years the Life Extension Programs (LEPs) for major nuclear weapons systems must be accomplished. These LEPs and other SSP programmatic elements will further drive the need for capacity calculations and hence 'capacity' systems as well as future ASC capability calculations on 'capability' systems. To respond to this new workload analysis, the ASC program will be making a large sustained strategic investment in these capacity systems over the next ten years, starting with the United States Government Fiscal Year 2007 (GFY07). However, given the growing need for 'capability' systems as

  20. Western Area Power Administration

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Area Power Administration Follow-up to Nov. 25, 2008 Transition ... Southwestern Power Administration CONSTRUCTION BUDGET ITEM DESCRIPTION FY 2009* MICROWAVE ...

  1. Fail-safe designs for large capacity battery systems

    DOEpatents

    Kim, Gi-Heon; Smith, Kandler; Ireland, John; Pesaran, Ahmad A.; Neubauer, Jeremy

    2016-05-17

    Fail-safe systems and design methodologies for large capacity battery systems are disclosed. The disclosed systems and methodologies serve to locate a faulty cell in a large capacity battery, such as a cell having an internal short circuit, determine whether the fault is evolving, and electrically isolate the faulty cell from the rest of the battery, preventing further electrical energy from feeding into the fault.

  2. Relating quantum discord with the quantum dense coding capacity

    SciTech Connect

    Wang, Xin; Qiu, Liang Li, Song; Zhang, Chi; Ye, Bin

    2015-01-15

    We establish the relations between quantum discord and the quantum dense coding capacity in (n + 1)-particle quantum states. A necessary condition for the vanishing discord monogamy score is given. We also find that the loss of quantum dense coding capacity due to decoherence is bounded below by the sum of quantum discord. When these results are restricted to three-particle quantum states, some complementarity relations are obtained.

  3. Los Alamos Neutron Science Center gets capacity boost

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Neutron Science Center capacity boost Los Alamos Neutron Science Center gets capacity boost The facility can simulate the effects of hundreds or thousands of years of cosmic-ray-induced neutrons in a single hour. December 2, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los

  4. State of Alaska Hydropower Capacity Potential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    State of Alaska Hydropower Capacity Potential State of Alaska Hydropower Capacity Potential This presentation, given by Dr. Boualem Hadjerioua at the U.S. Department of Energy Alaska Hydropower Forum in Anchorage in September 2016 explores what the New Stream-reach Development study conducted by Oak Ridge National Laboratory from 2011 through 2013 revealed about hydropower potential in Alaska, including the number of sites identified as technically feasible for development, the installed

  5. Water holding capacities of fly ashes: Effect of size fractionation

    SciTech Connect

    Sarkar, A.; Rano, R.

    2007-07-01

    Water holding capacities of fly ashes from different thermal power plants in Eastern India have been compared. Moreover, the effect of size fractionation (sieving) on the water holding capacities has also been determined. The desorption rate of water held by the fly ash fractions at ambient temperature (25-30{sup o}C) has been investigated. The effect of mixing various size fractions of fly ash in increasing the water holding capacities of fly ash has been studied. It is observed that the fly ash obtained from a thermal power plant working on stoker-fired combustor has the highest water holding capacity, followed by the one that works on pulverized fuel combustor. Fly ash collected from super thermal power plant has the least water holding capacity (40.7%). The coarser size fractions of fly ashes in general have higher water holding capacities than the finer ones. An attempt has been made to correlate the results obtained, with the potential use in agriculture.

  6. GASCAP: Wellhead Gas Productive Capacity Model documentation, June 1993

    SciTech Connect

    Not Available

    1993-07-01

    The Wellhead Gas Productive Capacity Model (GASCAP) has been developed by EIA to provide a historical analysis of the monthly productive capacity of natural gas at the wellhead and a projection of monthly capacity for 2 years into the future. The impact of drilling, oil and gas price assumptions, and demand on gas productive capacity are examined. Both gas-well gas and oil-well gas are included. Oil-well gas productive capacity is estimated separately and then combined with the gas-well gas productive capacity. This documentation report provides a general overview of the GASCAP Model, describes the underlying data base, provides technical descriptions of the component models, diagrams the system and subsystem flow, describes the equations, and provides definitions and sources of all variables used in the system. This documentation report is provided to enable users of EIA projections generated by GASCAP to understand the underlying procedures used and to replicate the models and solutions. This report should be of particular interest to those in the Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas.

  7. Powder-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-05-03

    A powder-based adsorbent and a related method of manufacture are provided. The powder-based adsorbent includes polymer powder with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the powder-based adsorbent includes irradiating polymer powder, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Powder-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  8. Foam-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    SciTech Connect

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2015-06-02

    Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  9. Geothermal br Resource br Area Geothermal br Resource br Area...

    OpenEI (Open Energy Information) [EERE & EIA]

    Aluto Langano Geothermal Area Aluto Langano Geothermal Area East African Rift System Ethiopian Rift Valley Major Normal Fault Basalt MW K Amatitlan Geothermal Area Amatitlan...

  10. An examination of the costs and critical characteristics of electric utility distribution system capacity enhancement projects

    SciTech Connect

    Balducci, Patrick J.; Schienbein, Lawrence A.; Nguyen, Tony B.; Brown, Daryl R.; Fathelrahman, Eihab M.

    2004-06-01

    This report classifies and analyzes the capital and total costs (e.g., income tax, property tax, depreciation, centralized power generation, insurance premiums, and capital financing) associated with 130 electricity distribution system capacity enhancement projects undertaken during 1995-2002 or planned in the 2003-2011 time period by three electric power utilities operating in the Pacific Northwest. The Pacific Northwest National Laboratory (PNNL), in cooperation with participating utilities, has developed a large database of over 3,000 distribution system projects. The database includes brief project descriptions, capital cost estimates, the stated need for each project, and engineering data. The database was augmented by additional technical (e.g., line loss, existing substation capacities, and forecast peak demand for power in the area served by each project), cost (e.g., operations, maintenance, and centralized power generation costs), and financial (e.g., cost of capital, insurance premiums, depreciations, and tax rates) data. Though there are roughly 3,000 projects in the database, the vast majority were not included in this analysis because they either did not clearly enhance capacity or more information was needed, and not available, to adequately conduct the cost analyses. For the 130 projects identified for this analysis, capital cost frequency distributions were constructed, and expressed in terms of dollars per kVA of additional capacity. The capital cost frequency distributions identify how the projects contained within the database are distributed across a broad cost spectrum. Furthermore, the PNNL Energy Cost Analysis Model (ECAM) was used to determine the full costs (e.g., capital, operations and maintenance, property tax, income tax, depreciation, centralized power generation costs, insurance premiums and capital financing) associated with delivering electricity to customers, once again expressed in terms of costs per kVA of additional capacity

  11. Decontamination & decommissioning focus area

    SciTech Connect

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  12. Physics Thrust Areas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ADEPS » Physics » Thrust Areas Physics Thrust Areas Physics Division serves the nation through its broad portfolio of fundamental and applied research. Quality basic science research: critical component of maintaining our capabilities in national security research To further understand the physical world, generate new or improved technology in experimental physics, and establish a physics foundation for current and future Los Alamos programs, Physics Division leverages its expertise and

  13. Strategic Focus Areas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Strategic Focus Areas Lockheed Martin on behalf of Sandia National Laboratories will consider grant requests that best support the Corporation's strategic focus areas and reflect effective leadership, fiscal responsibility and program success. Education: K-16 Science, Technology, Engineering and Math (STEM) programs that are focused on reducing the achievement gap. Lockheed Martin dedicates 50% of its support to STEM education programs & activities. Customer & Constituent Relations:

  14. Hanford 300 Area ROD

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    300 Area ROD Briefing to the Hanford Advisory Board March 6, 2014 Larry Gadbois -- EPA Recap of the 300 Area ROD Primary new concept -- Uranium Sequestration: * Purpose: Accelerate restoration of groundwater uranium contamination. * Protect groundwater from downward leaching from the vadose zone (overlying soil). * Add phosphate to chemically bond with uranium into geologically stable autunite. Does not dissolve. * Dissolve phosphate in water, apply at ground surface, inject into the ground,

  15. An Isoreticular Series of Metal-Organic Frameworks with Dendritic Hexacarboxylate Ligands and Exceptionally High Gas-Uptake Capacity

    SciTech Connect

    Yuan, Daqiang; Zhao, Dan; Sun, Daofeng; Zhou, Hong-Cai

    2010-10-01

    Metal-organic frameworks (MOFs) are newly emerging porous materials. Owing to their large surface area and tunable pore size and geometry, they have been studied for applications in gas storage and separation, especially in hydrogen and methane storage and carbon dioxide capture. It has been well established that the high-pressure gravimetric hydrogen-adsorption capacity of an MOF is directly proportional to its surface area. However, MOFs of high surface areas tend to decompose upon activation. In our previous work, we described an approach toward stable MOFs with high surface areas by incorporating mesocavities with microwindows. To extend this work, we now present an isoreticular series of (3,24)-connected MOFs made from dendritic hexacarboxylate ligands, one of which has a Langmuir surface area as high as 6033 m2 g-1. In addition, the gas-adsorption properties of this new isoreticular MOF series have been studied.

  16. Plug and Process Loads Capacity and Power Requirements Analysis

    SciTech Connect

    Sheppy, M.; Gentile-Polese, L.

    2014-09-01

    This report addresses gaps in actionable knowledge that would help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. Limited initial data, however, suggest that actual PPL densities in leased buildings are substantially lower. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems. Better guidance will enable improved sizing and design of these systems, decrease upfront capital costs, and allow systems to operate more energy efficiently. The main focus of this report is to provide industry with reliable, objective third-party guidance to address the information gap in typical PPL densities for commercial building tenants. This could drive changes in negotiations about PPL energy demands.

  17. SRP engineering and design history, Vol III, 200 F and H Areas

    SciTech Connect

    Banick, C.J.

    2000-04-17

    This volume combines the record of events relating to the development of design for both the 200-F and H Areas. Chronologically, the definition of plant facilities was first established for the 200-F Area. The second area, 200-H, was projected initially to be a supplementary plutonium separations facility. This history explains the differences in character and capacity of the manufacturing facilities in both areas as production requirements and experience with separations processes advanced.

  18. Iwate Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Profile Gross Production Capacity: Net Production Capacity: Owners : Tohoku Hydropower Geothermal Energy.CoTohoku Electric Power Tohoku HydropowerGeothermal Energy Co Power...

  19. Haleakala Volcano Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure...

  20. Rangely Oilfield Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure...

  1. Truckhaven Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With...

  2. Marysville Mt Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure...

  3. Wister Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure...

  4. Blackfoot Reservoir Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With...

  5. Lualualei Valley Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure...

  6. Separation Creek Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure...

  7. Fort Bliss Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With...

  8. Unterhaching Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure...

  9. Kawaihae Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure...

  10. Haleakala Volcano Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With...

  11. Kilauea Summit Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With...

  12. Balcova Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure...

  13. Mokapu Penninsula Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With...

  14. Flint Geothermal Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With...

  15. Twilight Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With...

  16. Lester Meadow Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure...

  17. Seferihisar Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure...

  18. On the heat capacity of Ce{sub 3}Al

    SciTech Connect

    Singh, Durgesh Samatham, S. Shanmukharao Venkateshwarlu, D. Gangrade, Mohan Ganesan, V.

    2014-04-24

    Electrical resistivity and heat capacity measurements on Cerium based dense Kondo compound Ce{sub 3}Al have been reported. Clear signatures of first order structural transition at 108K, followed by a Kondo minimum and coherence are clearly seen in resistivity. The structural transition is robust and is not affected by magnetic fields. Heat capacity measurements reveal an anomalous enhancement in the heavy fermion character upon magnetic fields. Vollhardt invariance in specific heat C(T.H) curves have been observed at T=3.7K and at H ≈ 6T.

  19. World nuclear capacity and fuel cycle requirements, November 1993

    SciTech Connect

    Not Available

    1993-11-30

    This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy`s activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration`s annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment.

  20. Modular Process Equipment for Low Cost Manufacturing of High Capacity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Prismatic Li-Ion Cell Alloy Anodes | Department of Energy Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es128_lopatin_2012_p.pdf (2.42 MB) More Documents & Publications Modular Process Equipment for Low

  1. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, John A.; Turner, Clarence B.; Johnson, Irving

    1982-01-01

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  2. Unbundling the electric capacity price in a deregulated commodity market

    SciTech Connect

    Rose, J.; Mann, C.

    1995-12-01

    In a deregulated, unbundled market, capacity has value separate from energy. The exact price will reflect the cost of a gas-fired combustion turbine. Energy values alone will not suffice to estimate the firm price for electric power. The lack of quotable, unbundled capacity prices creates uncertainty, especially given the direction taken by the Federal Energy Regulatory Commission in its March 1995 Notice of Proposed Rulemaking on stranded investment and open-access electric transmission. What conclusions can be drawn from the current regime that might paint a picture of tomorrow`s market?

  3. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, J.A.; Turner, C.B.; Johnson, I.

    1980-03-13

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  4. High Capacity Hydrogen Storage Nanocomposite - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search High Capacity Hydrogen Storage Nanocomposite Processes to add metal hydrideds to nanocarbon structures to yield high capacity hydrogen storage materials Savannah River National Laboratory Contact SRNL About This Technology Plot of Number of hydrogen atoms per lithium atom vs the Mol ratio of C<sub>60</sub>:Li.&nbsp; An ratio of 1:6

  5. The Capacity Value of Wind in the United States: Methods and Implementation

    SciTech Connect

    Milligan, Michael; Porter, Kevin

    2006-03-01

    As more wind energy capacity is added in the nation, the question of wind's capacity value is raised. This article shows how the capacity value of wind is determined, both in theory and in practice. (author)

  6. Determining the Capacity Value of Wind: An Updated Survey of Methods and Implementation; Preprint

    SciTech Connect

    Milligan, M.; Porter, K.

    2008-06-01

    This paper summarizes state and regional studies examining the capacity value of wind energy, how different regions define and implement capacity reserve requirements, and how wind energy is defined as a capacity resource in those regions.

  7. 12/2000 Low-Level Waste Disposal Capacity Report Version 2 |...

    Office of Environmental Management (EM)

    Waste Management Waste Disposition 122000 Low-Level Waste Disposal Capacity Report Version 2 122000 Low-Level Waste Disposal Capacity Report Version 2 The purpose of this ...

  8. Operational Area Monitoring Plan

    Office of Legacy Management (LM)

    ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan

  9. OLED area illumination source

    DOEpatents

    Foust, Donald Franklin; Duggal, Anil Raj; Shiang, Joseph John; Nealon, William Francis; Bortscheller, Jacob Charles

    2008-03-25

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  10. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    District of Columbia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"US GSA Heating and Transmission","Natural gas","US GSA Heating and Transmission",9

  11. Capacity planning in a transitional economy: What issues? Which models?

    SciTech Connect

    Mubayi, V.; Leigh, R.W.; Bright, R.N.

    1996-03-01

    This paper is devoted to an exploration of the important issues facing the Russian power generation system and its evolution in the foreseeable future and the kinds of modeling approaches that capture those issues. These issues include, for example, (1) trade-offs between investments in upgrading and refurbishment of existing thermal (fossil-fired) capacity and safety enhancements in existing nuclear capacity versus investment in new capacity, (2) trade-offs between investment in completing unfinished (under construction) projects based on their original design versus investment in new capacity with improved design, (3) incorporation of demand-side management options (investments in enhancing end-use efficiency, for example) within the planning framework, (4) consideration of the spatial dimensions of system planning including investments in upgrading electric transmission networks or fuel shipment networks and incorporating hydroelectric generation, (5) incorporation of environmental constraints and (6) assessment of uncertainty and evaluation of downside risk. Models for exploring these issues include low power shutdown (LPS) which are computationally very efficient, though approximate, and can be used to perform extensive sensitivity analyses to more complex models which can provide more detailed answers but are computationally cumbersome and can only deal with limited issues. The paper discusses which models can usefully treat a wide range of issues within the priorities facing decision makers in the Russian power sector and integrate the results with investment decisions in the wider economy.

  12. HUD Community Compass Technical Assistance and Capacity Building Program

    Energy.gov [DOE]

    The U.S. Department of Housing and Urban Development (HUD) is accepting applications for approximately $44.9 million for Community Compass, HUD's integrated technical assistance and capacity building initiative. The goal of the initiative is to equip HUD's customers with tools, skills, and knowledge to ensure effective program delivery and efficient stewardship of federal funds.

  13. COMMUNITY CAPACITY BUILDING FOR REVITALIZATION AND SUSTAINABLE REDEVELOPMENT

    SciTech Connect

    Downing, Melinda; Rosenthall, John; Hudson, Michelle

    2003-02-27

    Capacity building programs help poor and disadvantaged communities to improve their ability to participate in the environmental decision-making processes. They encourage citizen involvement, and provide the tools that enable them to do so. Capacity building enables communities that would otherwise be excluded to participate in the process, leading to better, and more just decisions. The Department of Energy (DOE) continues to be committed to promoting environmental justice and involving its stakeholders more directly in the planning and decision-making process for environmental cleanup. DOE's Environmental Management Program (EM) is in full support of this commitment. Through its environmental justice project, EM provides communities with the capacity to effectively contribute to a complex technical decision-making process by furnishing access to computers, the Internet, training and technical assistance. DOE's Dr. Samuel P. Massie Chairs of Excellence Program (Massie Chairs) function as technical advisors to many of these community projects. The Massie Chairs consist of nationally and internationally recognized engineers and scientists from nine Historically Black Colleges and Universities (HBCUs) and one Hispanic Serving Institution (HIS). This paper will discuss capacity building initiatives in various jurisdictions.

  14. DHC: a diurnal heat capacity program for microcomputers

    SciTech Connect

    Balcomb, J.D.

    1985-01-01

    A computer program has been developed that can predict the temperature swing in direct gain passive solar buildings. The diurnal heat capacity (DHC) program calculates the DHC for any combination of homogeneous or layered surfaces using closed-form harmonic solutions to the heat diffusion equation. The theory is described, a Basic program listing is provided, and an example solution printout is given.

  15. Mountain Region Natural Gas Total Underground Storage Capacity...

    Gasoline and Diesel Fuel Update

    Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 904,787 904,787 904,787 904,787 904,787 904,787 909,887 912,887 912,887...

  16. Pacific Region Natural Gas Total Underground Storage Capacity...

    Gasoline and Diesel Fuel Update

    Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 676,176 676,176 676,176 676,176 676,176 676,176 676,176 676,176 676,176...

  17. High capacity nickel battery material doped with alkali metal cations

    DOEpatents

    Jackovitz, John F.; Pantier, Earl A.

    1982-05-18

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  18. East Coast (PADD 1) Number and Capacity of Petroleum Refineries

    Energy Information Administration (EIA) (indexed site)

    Idle 412,500 178,000 28,000 28,000 32,000 32,000 1982-2016 Operable (Barrels per Stream ... Downstream Charge Capacity (Barrels per Stream Day) Vacuum Distillation 677,900 560,400 ...

  19. Preliminary characterization of the 100 area at Argonne National Laboratory

    SciTech Connect

    Biang, C.; Biang, R.; Patel, P.

    1994-06-01

    This characterization report is based on the results of sampling and an initial environmental assessment of the 100 Area of Argonne National Laboratory. It addresses the current status, projected data requirements, and recommended actions for five study areas within the 100 Area: the Lime Sludge Pond, the Building 108 Liquid Retention Pond, the Coal Yard, the East Area Burn Pit, and the Eastern Perimeter Area. Two of these areas are solid waste management units under the Resource Conservation and Recovery Act (the Lime Sludge Pond and the Building 108 Liquid Retention Pond); however, the Illinois Environmental Protection Agency has determined that no further action is necessary for the Lime Sludge Pond. Operational records for some of the activities were not available, and one study area (the East Area Burn Pit) could not be precisely located. Recommendations for further investigation include sample collection to obtain the following information: (1) mineralogy of major minerals and clays within the soils and underlying aquifer, (2) pH of the soils, (3) total clay fraction of the soils, (4) cation exchange capacity of the soils and aquifer materials, and (5) exchangeable cations of the soils and aquifer material. Various other actions are recommended for the 100 Area, including an electromagnetic survey, sampling of several study areas to determine the extent of contamination and potential migration pathways, and sampling to determine the presence of any radionuclides. For some of the study areas, additional actions are contingent on the results of the initial recommendations.

  20. EIS-0150: Salt Lake City Area Integrated Projects Electric Power Marketing

    Energy.gov [DOE]

    The Western Area Power Administration prepared this environmental impact statement to analyze the environmental impacts of its proposal to establish the level of its commitment (sales) of long- term firm electrical capacity and energy from the Salt Lake City Area Integrated Projects hydroelectric power plants.

  1. Site Monitoring Area Maps

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The spatial location and boundaries for each Site shown on the Site Monitoring Area maps ... P-SMA-2 DP-SMA-0.4 LA-SMA-2.3 LA-SMA-5.51 LA-SMA-6.38 P-SMA-2.15 DP-SMA-0.6 ...

  2. Plutonium focus area

    SciTech Connect

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  3. Subsurface contaminants focus area

    SciTech Connect

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  4. Property:NetProdCapacity | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric...

  5. Building REDD Capacity in Developing Countries | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Land Focus Area: Forestry Topics: Policiesdeployment programs Resource Type: Workshop, Lessons learnedbest practices Website: www.iisd.orgclimatelanduseredd Country:...

  6. Property:AreaGeology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Area B Beowawe Hot Springs Geothermal Area Blue Mountain Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area Coso Geothermal Area D Desert Peak...

  7. Midwest Region Natural Gas Total Underground Storage Capacity (Million

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Total Underground Storage Capacity (Million Cubic Feet) Midwest Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,720,465 2,720,436 2,720,436 2,720,436 2,720,881 2,720,881 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2014 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,723,336 2,725,497 2,725,535 2015 2,727,987 2,727,987 2,727,987

  8. AGA Eastern Consuming Region Natural Gas Total Underground Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Total Underground Storage Capacity (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 4,737,921 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,446 4,727,446 4,727,446 4,727,509 1995 4,730,109 4,647,791 4,647,791 4,647,791 4,647,791 4,647,791 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 1996 4,593,948

  9. AGA Western Consuming Region Natural Gas Underground Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Western Consuming Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,226,103 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1995 1,232,392 1,233,637 1,233,637 1,233,637 1,233,637 1,243,137 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1996 1,237,446 1,237,446 1,237,446 1,237,446

  10. South Central Region Natural Gas Total Underground Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Total Underground Storage Capacity (Million Cubic Feet) South Central Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,508,352 2,514,265 2,529,180 2,531,695 2,529,876 2,536,936 2,535,640 2,550,594 2,589,361 2,595,678 2,592,798 2,591,295 2014 2,578,946 2,577,866 2,578,498 2,578,547 2,590,575 2,599,184 2,611,335 2,616,178 2,612,570 2,613,746 2,635,148 2,634,993 2015 2,631,717 2,630,903

  11. Planning substation capacity under the single-contingency scenario

    SciTech Connect

    Leung, L.C.; Khator, S.K.; Schnepp, J.C.

    1995-08-01

    Florida Power and Light (FPL) adopts the single contingency emergency policy for its planning of substation capacity. This paper provides an approach to determine the maximum load which a substation can take on under such a policy. The approach consists of two LP models which determine: (1) the maximum substation load capacity, and (2) the reallocation of load when a substation`s demand cannot be met. Both models are formulated under the single-contingency scenario, an issue which had received little attention in the literature. Not only does the explicit treatment of the scenario provide an exact measure of a substation`s load limit, it also raises several important issues which previous works omit. These two models have been applied to the substation network of the Fort Myers District of the State of Florida.

  12. East Region Natural Gas Total Underground Storage Capacity (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Total Underground Storage Capacity (Million Cubic Feet) East Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,195,656 2,195,664 2,195,669 2,195,869 2,195,869 2,195,869 2,195,869 2,195,869 2,195,869 2,195,869 2,195,869 2,195,869 2014 2,200,169 2,200,169 2,200,169 2,200,169 2,200,169 2,200,169 2,200,169 2,200,169 2,200,169 2,200,169 2,200,169 2,200,169 2015 2,197,482 2,197,482 2,197,482 2,197,482

  13. Illinois Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    Feet) Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Illinois Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 299,439 299,439 299,439 300,439 299,439 299,439 302,439 302,439 302,439 302,439 302,439 302,962 2013 302,962 302,962 302,962 302,962 302,962 302,962 303,312 303,312 303,312 303,312 303,312 303,312 2014 303,312 303,312 303,312 303,312 303,312 303,312 303,312 303,312 303,312 304,312

  14. Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 91,114 91,113 91,113 90,846 90,580 90,313 90,313 90,313 90,313 90,313 90,313 90,313 2013 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 2014 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 2015 90,313 90,313 90,313 90,313

  15. Figure 1. Project Area, Focused Study Area, Potential Access...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Page 4 of 8 Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not Suitable for Conveyance...

  16. Hybrid heat capacity-moving slab solid-state laser

    SciTech Connect

    Stappaerts, Eddy A.

    2005-03-01

    Laser material is pumped and its stored energy is extracted in a heat capacity laser mode at a high duty factor. When the laser material reaches a maximum temperature, it is removed from the lasing region and a subsequent volume of laser material is positioned into the lasing region to repeat the lasing process. The heated laser material is cooled passively or actively outside the lasing region.

  17. KCNSC expands manufacturing capacity to support mission | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) KCNSC expands manufacturing capacity to support mission Tuesday, August 2, 2016 - 11:39am On hand to open the new manufacturing space were, from left, NNSA Associate Administrator for Safety, Infrastructure and Operations Jim McConnell; Mark Holecek, manager of NNSA's Kansas City Field Office; and NNSA Director of Infrastructure Operations & Modernization Robert Haldeman. The Kansas City National Security Campus celebrated another facility milestone on

  18. Seismic Capacity of Threaded, Brazed, and Grooved Pipe Joints

    Office of Environmental Management (EM)

    SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS Brent Gutierrez, PhD, PE George Antaki, PE, F.ASME DOE NPH Conference October 25-26, 2011 Motivation * Understand the behavior and failure mode of common joints under extreme lateral loads * Static and shake table tests conducted of pressurized - Threaded, - Brazed, - Mechanical joints Static Testing o Pressurized spool to 150 psi o Steady downward force applied while recording deflections o Grooved clamped mech. joints * 16 tests

  19. Residential Variable-Capacity Heat Pumps Sized to Heating Loads

    SciTech Connect

    Munk, Jeffrey D.; Jackson, Roderick K.; Odukomaiya, Adewale; Gehl, Anthony C.

    2014-01-01

    Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in the cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.

  20. Polaractivation for classical zero-error capacity of qudit channels

    SciTech Connect

    Gyongyosi, Laszlo; Imre, Sandor

    2014-12-04

    We introduce a new phenomenon for zero-error transmission of classical information over quantum channels that initially were not able for zero-error classical communication. The effect is called polaractivation, and the result is similar to the superactivation effect. We use the Choi-Jamiolkowski isomorphism and the Schmidt-theorem to prove the polaractivation of classical zero-error capacity and define the polaractivator channel coding scheme.

  1. Damping capacity measurements for characterization of degradation in advanced materials

    SciTech Connect

    Mantena, R.; Gibson, R.F.; Place, T.A.

    1986-01-01

    This paper describes the application of damping capacity measurements for characterization of degradation in advanced materials. A recently developed impulse-frequency response technique was used to obtain damping capacity measurements on crossplied E-glass/epoxy laminates which had been subjected to four-point bending and cantilever bending to produce matrix cracking in the transverse plies. The size and location of the damage zone were correlated with changes in damping. With the expected introduction of Rapidly Solidified Alloys (RSA) as effective alternatives to conventional materials, the applicability of damping capacity measurements as a nondestructive means of evaluating degradation in these materials was also studied. A conventional A710 structural steel having three different microstructures was used for developing the methodology to be used later on RSA specimens. It is shown that damping is more sensitive to matrix cracking than stiffness is in E-glass/epoxy composite specimens. In the case of A710 steel, the damping changes at low strain, though significant, do not correlate with the mechanical property data. Damping data at high strains does correlate with the mechanical property data, however.

  2. A global scale mechanistic model of the photosynthetic capacity

    DOE PAGES [OSTI]

    Ali, A. A.; Xu, C.; Rogers, A.; Fisher, R. A.; Wullschleger, S. D.; McDowell, N. G.; Massoud, E. C.; Vrugt, J. A.; Muss, J. D.; Fisher, J. B.; et al

    2015-08-10

    Although plant photosynthetic capacity as determined by the maximum carboxylation rate (i.e., Vc, max25) and the maximum electron transport rate (i.e., Jmax25) at a reference temperature (generally 25 C) is known to vary substantially in space and time in response to environmental conditions, it is typically parameterized in Earth system models (ESMs) with tabulated values associated to plant functional types. In this study, we developed a mechanistic model of leaf utilization of nitrogen for assimilation (LUNA V1.0) to predict the photosynthetic capacity at the global scale under different environmental conditions, based on the optimization of nitrogen allocated among light capture,moreelectron transport, carboxylation, and respiration. The LUNA model was able to reasonably well capture the observed patterns of photosynthetic capacity in view that it explained approximately 55 % of the variation in observed Vc, max25 and 65 % of the variation in observed Jmax25 across the globe. Our model simulations under current and future climate conditions indicated that Vc, max25 could be most affected in high-latitude regions under a warming climate and that ESMs using a fixed Vc, max25 or Jmax25 by plant functional types were likely to substantially overestimate future global photosynthesis.less

  3. Retraying and revamp double big LPG fractionators's capacity

    SciTech Connect

    Sasson, R. , Friendswood, TX ); Pate, R. )

    1993-08-02

    Enterprise operates two LPG fractionation units at Mont Belvieu: the Seminole unit and the West Texas unit. In 1985, Nye Engineering Inc., Friendswood, Texas, designed improvements to expand the Seminole plant from 60,000 b/d of C[sub 2] + feed to 90,000 b/d. The primary modifications made to increase the West Texas plant's capacity and reduce fuel consumption were the following: retraying the deethanizer and depropanizer columns with new High Capacity Nye Trays. Lowering the pressure in the de-ethanizer and depropanizer to improve the separating efficiency of the columns. Replacing the debutanizer with a high-pressure column that rejects its condensing heat as reboil for the de-ethanizer. Adjusting the feed temperature to balance the load in the top and bottom of the depropanizer column to prevent premature flooding in one section of the tower. Installing convection heaters to recover existing stack gas heat into the process. In conjunction with the capacity expansion, there was a strong incentive to improve the fuel efficiency of the unit. The modifications are described.

  4. DOE, City of Richland and Benton PUD Increase Fiber Optic Telecommunication Capacity in Benton County- Upgrade improves communications at Hanford Site, schools and libraries

    Energy.gov [DOE]

    RICHLAND, Wash. ― The Department of Energy (DOE), city of Richland, and Benton County’s Public Utility District (Benton PUD) jointly implemented a high-capacity fiber optic cable in Richland and at the Hanford Site. The project will improve communications throughout the area.

  5. Bay Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Page Edit History Bay Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Bay Area 1.1 Products and Services in the Bay Area 1.2 Research and Development...

  6. Rockies Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Rockies Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Rockies Area 1.1 Products and Services in the Rockies Area 1.2 Research and Development...

  7. Texas Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Texas Area 1.1 Products and Services in the Texas Area 1.2 Research and Development Institutions in the...

  8. Transfer Area Mechanical Handling Calculation

    SciTech Connect

    B. Dianda

    2004-06-23

    This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAX Company L.L. C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC28-01R W12101'' (Arthur, W.J., I11 2004). This correspondence was appended by further Correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC28-OIRW12101; TDL No. 04-024'' (BSC 2004a). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The purpose of this calculation is to establish preliminary bounding equipment envelopes and weights for the Fuel Handling Facility (FHF) transfer areas equipment. This calculation provides preliminary information only to support development of facility layouts and preliminary load calculations. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process. It is intended that this calculation is superseded as the design advances to reflect information necessary to support License Application. The design choices outlined within this calculation represent a demonstration of feasibility and may or may not be included in the completed design. This calculation provides preliminary weight, dimensional envelope, and equipment position in building for the purposes of defining interface variables. This calculation identifies and sizes major equipment and assemblies that dictate overall equipment dimensions and facility interfaces. Sizing of components is based on the selection of commercially available products, where applicable. This is not a specific recommendation for the future use of these components or their related

  9. Large area bulk superconductors

    DOEpatents

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  10. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J; Dai, Sheng; Oyola, Yatsandra

    2014-05-13

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  11. Strengthening Planning Capacity for Low Carbon Growth in Developing...

    OpenEI (Open Energy Information) [EERE & EIA]

    Growth in Developing Asia AgencyCompany Organization Asian Development Bank Partner Japan, United Kingdom Sector Climate, Energy Focus Area Non-renewable Energy, Buildings,...

  12. Philippines-Strengthening Planning Capacity for Low Carbon Growth...

    OpenEI (Open Energy Information) [EERE & EIA]

    Growth in Developing Asia AgencyCompany Organization Asian Development Bank Partner Japan, United Kingdom Sector Climate, Energy Focus Area Non-renewable Energy, Buildings,...

  13. Indonesia-Strengthening Planning Capacity for Low Carbon Growth...

    OpenEI (Open Energy Information) [EERE & EIA]

    Growth in Developing Asia AgencyCompany Organization Asian Development Bank Partner Japan, United Kingdom Sector Climate, Energy Focus Area Non-renewable Energy, Buildings,...

  14. Vietnam-Strengthening Planning Capacity for Low Carbon Growth...

    OpenEI (Open Energy Information) [EERE & EIA]

    Growth in Developing Asia AgencyCompany Organization Asian Development Bank Partner Japan, United Kingdom Sector Climate, Energy Focus Area Non-renewable Energy, Buildings,...

  15. Building MRV Standards and Capacity in Key Countries | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Organization World Resources Institute (WRI) Sector Climate Focus Area Renewable Energy Topics Implementation Website http:www.wri.orgtopicsmrv Program Start 2011 Program...

  16. U.S. Number and Capacity of Petroleum Refineries

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Area: U.S. PAD District 1 Delaware Florida Georgia Maryland New Jersey New York North Carolina Pennsylvania Virginia West Virginia PAD District 2 Illinois Indiana Kansas Kentucky ...

  17. South Africa-Developing Climate Policy Capacity within the South...

    OpenEI (Open Energy Information) [EERE & EIA]

    Affairs (DEA), Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) Sector Energy Focus Area Energy Efficiency Topics Background analysis,...

  18. Cambodia-Enhancing Capacity for Low Emission Development Strategies...

    OpenEI (Open Energy Information) [EERE & EIA]

    in areas such as health, education, economic growth, poverty alleviation, agriculture, natural resource management, democracy, governance, human rights, and anti-trafficking in...

  19. T-1 Training Area

    SciTech Connect

    2014-11-07

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  20. T-1 Training Area

    ScienceCinema

    None

    2015-01-09

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  1. Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications

    SciTech Connect

    Birkholzer, J.T.; Zhou, Q.

    2009-04-02

    Industrial-scale injection of CO{sub 2} into saline sedimentary basins will cause large-scale fluid pressurization and migration of native brines, which may affect valuable groundwater resources overlying the deep sequestration reservoirs. In this paper, we discuss how such basin-scale hydrologic impacts can (1) affect regulation of CO{sub 2} storage projects and (2) may reduce current storage capacity estimates. Our assessment arises from a hypothetical future carbon sequestration scenario in the Illinois Basin, which involves twenty individual CO{sub 2} storage projects in a core injection area suitable for long-term storage. Each project is assumed to inject five million tonnes of CO{sub 2} per year for 50 years. A regional-scale three-dimensional simulation model was developed for the Illinois Basin that captures both the local-scale CO{sub 2}-brine flow processes and the large-scale groundwater flow patterns in response to CO{sub 2} storage. The far-field pressure buildup predicted for this selected sequestration scenario suggests that (1) the area that needs to be characterized in a permitting process may comprise a very large region within the basin if reservoir pressurization is considered, and (2) permits cannot be granted on a single-site basis alone because the near- and far-field hydrologic response may be affected by interference between individual sites. Our results also support recent studies in that environmental concerns related to near-field and far-field pressure buildup may be a limiting factor on CO{sub 2} storage capacity. In other words, estimates of storage capacity, if solely based on the effective pore volume available for safe trapping of CO{sub 2}, may have to be revised based on assessments of pressure perturbations and their potential impact on caprock integrity and groundwater resources, respectively. We finally discuss some of the challenges in making reliable predictions of large-scale hydrologic impacts related to CO{sub 2

  2. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Alaska" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Beluga","Natural gas","Chugach Electric Assn Inc",344.4 2,"George M Sullivan Generation Plant 2","Natural gas","Anchorage Municipal Light and Power",248.1 3,"Southcentral Power Project","Natural gas","Chugach Electric Assn Inc",169.7 4,"North

  3. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    California" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Dynegy Moss Landing Power Plant","Natural gas","Dynegy -Moss Landing LLC",2529 2,"Diablo Canyon","Nuclear","Pacific Gas & Electric Co",2240 3,"AES Alamitos LLC","Natural gas","AES Alamitos LLC",1997 4,"Castaic","Pumped storage","Los Angeles

  4. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Colorado" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Comanche (CO)","Coal","Public Service Co of Colorado",1410 2,"Craig (CO)","Coal","Tri-State G & T Assn, Inc",1304 3,"Fort St Vrain","Natural gas","Public Service Co of Colorado",969 4,"Rawhide","Natural gas","Platte River Power

  5. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Idaho" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Brownlee","Hydroelectric","Idaho Power Co",744 2,"Dworshak","Hydroelectric","USACE Northwestern Division",400 3,"Langley Gulch Power Plant","Natural gas","Idaho Power Co",299.7 4,"Evander Andrews Power Complex","Natural gas","Idaho Power

  6. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Louisiana" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Nine Mile Point","Natural gas","Entergy Louisiana LLC",2083.3 2,"Willow Glen","Natural gas","Entergy Gulf States - LA LLC",1748.9 3,"Big Cajun 2","Coal","Louisiana Generating LLC",1743 4,"Brame Energy Center","Petroleum","Cleco Power

  7. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Montana" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Colstrip","Coal","Talen Montana LLC",2094 2,"Noxon Rapids","Hydroelectric","Avista Corp",580.5 3,"Libby","Hydroelectric","USACE Northwestern Division",525 4,"Hungry Horse","Hydroelectric","U S Bureau of Reclamation",428

  8. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Oklahoma" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Northeastern","Coal","Public Service Co of Oklahoma",1830 2,"Redbud Power Plant","Natural gas","Oklahoma Gas & Electric Co",1784.3 3,"Seminole (OK)","Natural gas","Oklahoma Gas & Electric Co",1506.5 4,"Muskogee","Coal","Oklahoma Gas &

  9. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Tennessee" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Cumberland (TN)","Coal","Tennessee Valley Authority",2470 2,"Sequoyah","Nuclear","Tennessee Valley Authority",2277.7 3,"Johnsonville","Coal","Tennessee Valley Authority",2250.8 4,"Raccoon Mountain","Pumped storage","Tennessee Valley

  10. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Utah" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Intermountain Power Project","Coal","Los Angeles Department of Water & Power",1800 2,"Hunter","Coal","PacifiCorp",1361 3,"Lake Side Power Plant","Natural gas","PacifiCorp",1176 4,"Huntington","Coal","PacifiCorp",909 5,"Currant

  11. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Virginia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Bath County","Pumped storage","Virginia Electric & Power Co",3003 2,"North Anna","Nuclear","Virginia Electric & Power Co",1893 3,"Possum Point","Natural gas","Virginia Electric & Power Co",1733 4,"Surry","Nuclear","Virginia Electric

  12. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Washington" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 2,"Chief Joseph","Hydroelectric","USACE Northwestern Division",2456.2 3,"Transalta Centralia Generation","Coal","TransAlta Centralia Gen LLC",1340 4,"Rocky

  13. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    United States" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 2,"Palo Verde","Nuclear","Arizona Public Service Co",3937 3,"Martin","Natural gas","Florida Power & Light Co",3695 4,"W A Parish","Coal","NRG Texas Power LLC",3675

  14. High-Rate, High-Capacity Binder-Free Electrode

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC High-Rate, High-Capacity Binder-Free Electrode Patent: PCT-09-41 Chunmei Ban Zhuangchun Wu Anne Dillon National Renewable Energy Laboratory PCT: 09-41 Binderfree electrode 2 Outline  What is the technology  Why it is better than other technologies  How far away from market  Technical details  Market analysis National Renewable Energy Laboratory PCT: 09-41 Binderfree electrode 3

  15. Fail Safe Design for Large Capacity Lithium-ion Batteries

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fail Safe Design for Large Capacity Lithium-ion Batteries NREL Commercialization & Tech Transfer Webinar March 27, 2011 Gi-Heon Kim gi-heon.kim@nrel.gov John Ireland, Kyu-Jin Lee, Ahmad Pesaran Kandler Smith kandler.smith@nrel.gov Source: A123 Source: GM NATIONAL RENEWABLE ENERGY LABORATORY Challenges for Large LIB Systems 2 * Li-ion batteries are flammable, require expensive manufacturing to reduce defects * Small-cell protection devices do not work for large systems * Difficult to detect

  16. Midwest Region Natural Gas Working Underground Storage Capacity (Million

    Gasoline and Diesel Fuel Update

    May 2003 1 Despite a national economic slowdown and a 4.9 percent drop in overall U.S. natural gas consumption in 2001, 1 more than 3,571 miles of pipeline and a record 12.8 billion cubic feet per day (Bcf/d) of natural gas pipeline capacity were added to the national pipeline network during 2002 (Table 1). The estimated cost was $4.4 billion. Overall, 54 natural gas pipeline projects were completed during 2002 (Figure 1, Table 2). 2 Of these, 34 were expansions of existing pipeline systems or

  17. Table 8.12b Electric Noncoincident Peak Load and Capacity Margin: Winter Peak Period, 1986-2011 (Megawatts, Except as Noted)

    Energy Information Administration (EIA) (indexed site)

    b Electric Noncoincident Peak Load and Capacity Margin: Winter Peak Period, 1986-2011 (Megawatts, Except as Noted) Year Noncoincident Peak Load 1 by North American Electric Reliability Corporation (NERC) 2 Regional Assessment Area Capacity Margin 21 (percent) Eastern Interconnection ERCOT 4 Western Inter- connection All Inter- connections FRCC 5 NPCC 6 Balance of Eastern Region 3 ECAR 7,8 MAAC 8,9 MAIN 8,10 MAPP 11 MISO 12 MRO 13 PJM 14 RFC 8,15 SERC 16 SPP 17 Subtotal TRE 18 WECC 19 Total 20

  18. Model-centric distribution automation: Capacity, reliability, and efficiency

    DOE PAGES [OSTI]

    Onen, Ahmet; Jung, Jaesung; Dilek, Murat; Cheng, Danling; Broadwater, Robert P.; Scirbona, Charlie; Cocks, George; Hamilton, Stephanie; Wang, Xiaoyu

    2016-02-26

    A series of analyses along with field validations that evaluate efficiency, reliability, and capacity improvements of model-centric distribution automation are presented. With model-centric distribution automation, the same model is used from design to real-time control calculations. A 14-feeder system with 7 substations is considered. The analyses involve hourly time-varying loads and annual load growth factors. Phase balancing and capacitor redesign modifications are used to better prepare the system for distribution automation, where the designs are performed considering time-varying loads. Coordinated control of load tap changing transformers, line regulators, and switched capacitor banks is considered. In evaluating distribution automation versus traditionalmore » system design and operation, quasi-steady-state power flow analysis is used. In evaluating distribution automation performance for substation transformer failures, reconfiguration for restoration analysis is performed. In evaluating distribution automation for storm conditions, Monte Carlo simulations coupled with reconfiguration for restoration calculations are used. As a result, the evaluations demonstrate that model-centric distribution automation has positive effects on system efficiency, capacity, and reliability.« less

  19. Air conditioning system with supplemental ice storing and cooling capacity

    DOEpatents

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  20. Expansion fractionation capacity of the LPG-ULE plant

    SciTech Connect

    Morin, L.M.C.

    1999-07-01

    The Western Division of PDVSA has among other facilities a NGL Fractionation Complex located onshore in Ul'e. The complex consists of three plants, the first and second older plants, LPG-1 and LPG-2, which fractionate the NGL to produce propane, a butane mix and natural gasoline. The third plant, LPG-3, fractionates the butane mix from the LPG-1 and 2 plants to produce iso and normal butane. Several optimization projects already in progress will increase the NGL production to 12,200 b/d. For this reason it was decided to conduct a study of the existing fractionation facilities and utilities systems to determine their capacities. This evaluation revealed that some of the fractionation towers would have some limitations in the processing of the expected additional production. The study recommended an option to increase the capacity of the fractionation towers by lowering their operating pressure, in order to take advantage of relative volatility increase between the key components, which allows easier separation, as well as reducing the heat duty required. The completed study also determined that this option is more economically convenient than the replacement of the existing fractionation towers.

  1. AREA RADIATION MONITOR

    DOEpatents

    Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.

    1962-06-12

    S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)

  2. Hydraulic tests of emergency cooling system: L-Area

    SciTech Connect

    Hinton, J H

    1988-01-01

    The delay in L-Area startup provided an opportunity to obtain valuable data on the Emergency Cooling System (ECS) which will permit reactor operation at the highest safe power level. ECS flow is a major input to the FLOOD code which calculates reactor ECS power limits. The FLOOD code assesses the effectiveness of the ECS cooling capacity by modeling the core and plenum hydraulics under accident conditions. Presently, reactor power is not limited by the ECS cooling capacity (power limit). However, the manual calculations of ECS flows had been recently updated to include piping changes (debris strainer, valve changes, pressure release systems) and update fitting losses. Both updates resulted in reduced calculated ECS flows. Upon completion of the current program to update, validate, and document, reactor power may be limited under certain situations by ECS cooling capacity for some present reactor charge designs. A series of special hydraulic tests (Reference 1, 3) were conducted in L-Area using all sources of emergency coolant including the ECS pumps (Reference 2). The tests provided empirical hydraulic data on the ECS piping. These data will be used in computer models of the system as well as manual calculations of ECS flows. The improved modeling and accuracy of the flow calculations will permit reactor operation at the highest safe power level with respect to an ECS power limit.

  3. Rincon De La Vieja Geothermal Resource Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Production Capacity: Net Production Capacity: Owners : Instituto Costarricence de Electricidad Power Purchasers : Instituto Costarricence de Electricidad Other Uses: Click "Edit...

  4. U.S. Downstream Charge Capacity of Operable Petroleum Refineries

    Annual Energy Outlook

    Day, Except Where Noted) Area: U.S. PAD District 1 Delaware Florida Georgia Maryland New Jersey New York North Carolina Pennsylvania Virginia West Virginia PAD District 2 Illinois ...

  5. U.S. Production Capacity of Operable Petroleum Refineries

    Gasoline and Diesel Fuel Update

    Day, Except Where Noted) Area: U.S. PAD District 1 Delaware Florida Georgia Maryland New Jersey New York North Carolina Pennsylvania Virginia West Virginia PAD District 2 Illinois ...

  6. U.S. Total Shell Storage Capacity at Operable Refineries

    Energy Information Administration (EIA) (indexed site)

    Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Annual (as of January 1) Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2011 2012 2013 2014 2015 2016 View History Total -- -- -- -- -- -- 1982-2016 Crude Oil -- -- -- -- -- -- 1985-2016 Liquefied Petroleum Gases -- -- -- -- -- -- 1982-2016 Propane/Propylene -- -- -- -- -- -- 1982-2016

  7. U.S. Working Storage Capacity at Operable Refineries

    Energy Information Administration (EIA) (indexed site)

    Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Annual (as of January 1) Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2011 2012 2013 2014 2015 2016 View History Total -- -- -- -- -- -- 1982-2016 Crude Oil -- -- -- -- -- -- 1982-2016 Liquefied Petroleum Gases -- -- -- -- -- -- 1982-2016 Propane/Propylene -- -- -- -- -- -- 1982-2016

  8. Insights into capacity loss mechanisms in Li-ion all-solid-state...

    Office of Scientific and Technical Information (OSTI)

    Insights into capacity loss mechanisms in Li-ion all-solid-state batteries with Al anodes Citation Details In-Document Search Title: Insights into capacity loss mechanisms in...

  9. The State Energy Program: Building Energy Efficiency and Renewable Energy Capacity in the States

    Energy.gov [DOE]

    This study documents the capacity-building effects that the federal State Energy Program (SEP) has had on the states' capacity to design, manage and implement energy efficiency and renewable energy programs.

  10. GE to DOE General Counsel; Re:Request for Comment on Large Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes Washers GE to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes Washers GE urges the...

  11. Figure 1. Annual and Cumulative Growth in U.S. Wind Power Capacity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4. Approximate Wind Energy Penetration in the Countries with the Greatest Installed Wind Power Capacity" ,"Approximate","Approximate",,"Approximate" ,"Cumulative ...

  12. LG to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Washers | Department of Energy LG to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes Washers LG to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes Washers LG response to DOE's request for information regarding alternative test procedures for large-capacity clothes washer models, December 7, 2010. After DOE requested the views of interested parties concerning implementation of an alternative test procedure for large-capacity clothes washer models,

  13. Underground Natural Gas Working Storage Capacity - U.S. Energy Information

    Energy Information Administration (EIA) (indexed site)

    Administration Underground Natural Gas Working Storage Capacity With Data for November 2015 | Release Date: March 16, 2016 | Next Release Date: February 2017 Previous Issues Year: 2016 2015 2014 2013 2012 2011 prior issues Go Natural gas storage capacity nearly unchanged nationally, but regions vary U.S. natural gas working storage capacity (in terms of design capacity and demonstrated maximum working gas volumes) as of November 2015 was essentially flat compared to November 2014, with some

  14. F Reactor Area Cleanup Complete

    Energy.gov [DOE]

    RICHLAND, Wash. – U.S. Department of Energy (DOE) contractors have cleaned up the F Reactor Area, the first reactor area at the Hanford Site in southeastern Washington state to be fully remediated.

  15. Estimate of Maximum Underground Working Gas Storage Capacity in the United States

    Reports and Publications

    2006-01-01

    This report examines the aggregate maximum capacity for U.S. natural gas storage. Although the concept of maximum capacity seems quite straightforward, there are numerous issues that preclude the determination of a definitive maximum volume. The report presents three alternative estimates for maximum capacity, indicating appropriate caveats for each.

  16. Focus Areas | Critical Materials Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Focus Areas FA 1: Diversifying Supply FA 2: Developing Substitutes FA 3: Improving Reuse and Recycling FA 4: Crosscutting Research...

  17. High capacity adsorption media and method of producing

    DOEpatents

    Tranter, Troy J.; Mann, Nicholas R.; Todd, Terry A.; Herbst, Ronald S.

    2010-10-05

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving and/or suspending at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  18. High capacity adsorption media and method of producing

    DOEpatents

    Tranter, Troy J.; Herbst, R. Scott; Mann, Nicholas R.; Todd, Terry A.

    2008-05-06

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  19. Electrical utilities model for determining electrical distribution capacity

    SciTech Connect

    Fritz, R. L.

    1997-09-03

    In its simplest form, this model was to obtain meaningful data on the current state of the Site`s electrical transmission and distribution assets, and turn this vast collection of data into useful information. The resulting product is an Electrical Utilities Model for Determining Electrical Distribution Capacity which provides: current state of the electrical transmission and distribution systems; critical Hanford Site needs based on outyear planning documents; decision factor model. This model will enable Electrical Utilities management to improve forecasting requirements for service levels, budget, schedule, scope, and staffing, and recommend the best path forward to satisfy customer demands at the minimum risk and least cost to the government. A dynamic document, the model will be updated annually to reflect changes in Hanford Site activities.

  20. Study of the effect of humidity, particle hygroscopicity and size on the mass loading capacity of HEPA filters

    SciTech Connect

    Gupta, A.

    1992-01-01

    The effect of humidity, particle hygroscopicity and size on the mass loading capacity of glass fiber HEPA filters has been studied. At humidifies above the deliquescent point, the pressure drop across the HEPA filter increased non-linearly with the areal loading density (mass collected/filtration area) of NaCl aerosol, thus significantly reducing the mass loading capacity of the filter compared to dry hygroscopic or non-hygroscopic particle mass loadings. The specific cake resistance, K{sub 2}, has been computed for different test conditions and used as a measure of the mass loading capacity. K. was found to decrease with increasing humidity for the non-hygroscopic aluminum oxide particles and the hygroscopic NaCl particles (at humidities below the deliquescent point). It is postulated that an increase in humidity leads to the formation of a more open particulate cake which lowers the pressure drop for a given mass loading. A formula for predicting K{sub 2} for lognormally distributed aerosols (parameters obtained from impactor data) is derived. The resistance factor, R, calculated using this formula was compared to the theoretical R calculated using the Rudnick-Happel expression. For the non-hygroscopic aluminum oxide the agreement was good but for the hygroscopic sodium chloride, due to large variation in the cake porosity estimates, the agreement was poor.

  1. Study of the effect of humidity, particle hygroscopicity and size on the mass loading capacity of HEPA filters

    SciTech Connect

    Gupta, A.

    1992-09-01

    The effect of humidity, particle hygroscopicity and size on the mass loading capacity of glass fiber HEPA filters has been studied. At humidifies above the deliquescent point, the pressure drop across the HEPA filter increased non-linearly with the areal loading density (mass collected/filtration area) of NaCl aerosol, thus significantly reducing the mass loading capacity of the filter compared to dry hygroscopic or non-hygroscopic particle mass loadings. The specific cake resistance, K{sub 2}, has been computed for different test conditions and used as a measure of the mass loading capacity. K. was found to decrease with increasing humidity for the non-hygroscopic aluminum oxide particles and the hygroscopic NaCl particles (at humidities below the deliquescent point). It is postulated that an increase in humidity leads to the formation of a more open particulate cake which lowers the pressure drop for a given mass loading. A formula for predicting K{sub 2} for lognormally distributed aerosols (parameters obtained from impactor data) is derived. The resistance factor, R, calculated using this formula was compared to the theoretical R calculated using the Rudnick-Happel expression. For the non-hygroscopic aluminum oxide the agreement was good but for the hygroscopic sodium chloride, due to large variation in the cake porosity estimates, the agreement was poor.

  2. Relationships between Western Area Power Administration`s power marketing program and hydropower operations at Salt Lake City area integrated projects

    SciTech Connect

    Veselka, T.D.; Folga, S.; Poch, L.A.

    1995-03-01

    This technical memorandum provides background information on the Western Area Power Administration (Western) and the physical characteristics of the Salt Lake City Area Integrated Projects (SLCA/IP) hydropower plants, which include the Colorado River Storage Project, the Rio Grande Project, and the Collbran Project. In addition, the history, electrical capacity, storage capacity, and flow restrictions at each dam are presented. An overview of Western`s current programs and services, including a review of statutory authorities, agency discretion, and obligations, is also provided. The variability of SLCA/IP hourly generation under various alternative marketing strategies and purchasing programs is discussed. The effects of Western`s services, such as area load control, outage assistance, and transmission, on SLCA/IP power plant operations are analyzed.

  3. A Good Year for Solar in Phoenix Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A Good Year for Solar in Phoenix Area A Good Year for Solar in Phoenix Area October 8, 2010 - 3:33pm Addthis A Good Year for Solar in Phoenix Area Stephen Graff Former Writer & editor for Energy Empowers, EERE Suntech opens solar panel manufacturing plant in Goodyear, Arizona Will create up to 150 jobs by 2013; production capacity of 30 MW annually 7th solar plant this year in Phoenix area because of new state tax incentive A ribbon cutting Friday at a new solar plant in Goodyear, Ariz.,

  4. Geothermal resource area 9: Nye County. Area development plan

    SciTech Connect

    Pugsley, M.

    1981-01-01

    Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

  5. SSL Demonstration: Area Lighting, Yuma Sector Border Patrol Area, AZ

    SciTech Connect

    2015-05-28

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial demonstration in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations at the Yuma Sector Border Patrol Area in Yuma, Arizona. The retrofit was documented to better understand LED technology performance in high-temperature environments. This document is a summary brief of the Phase 1.0 and 1.1 reports previously published on this demonstration.

  6. Desert Peak Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Desert Peak Geothermal Area (Redirected from Desert Peak Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Desert Peak Geothermal Area Contents 1 Area Overview 2...

  7. Property:GeothermalArea | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Area + Babadere Geothermal Project + Tuzla Geothermal Area + Bacman 1 GEPP + Bac-Man Laguna Geothermal Area + Bacman 2 GEPP + Bac-Man Laguna Geothermal Area + Bacman...

  8. Cove Fort Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cove Fort Geothermal Area (Redirected from Cove Fort Geothermal Area - Vapor) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cove Fort Geothermal Area Contents 1 Area...

  9. Blue Mountain Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Blue Mountain Geothermal Area (Redirected from Blue Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Blue Mountain Geothermal Area Contents 1 Area...

  10. Stillwater Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Stillwater Geothermal Area (Redirected from Stillwater Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Stillwater Geothermal Area Contents 1 Area Overview 2...

  11. Chena Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Chena Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 Chena Area...

  12. Salton Sea Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Salton Sea Geothermal Area (Redirected from Salton Sea Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Salton Sea Geothermal Area Contents 1 Area Overview 2...

  13. Heber Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Heber Geothermal Area (Redirected from Heber Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Heber Geothermal Area Contents 1 Area Overview 2 History and...

  14. PPPL Area Map | Princeton Plasma Physics Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PPPL Area Map View Larger Map

  15. Design of Refractory Linings for Balanced Energy Efficiency, Uptime, and Capacity in Lime Kilns

    SciTech Connect

    Gorog, John Peter; Hemrick, James Gordon; Walker, Harold; Leary, William R; Ellis, Murray

    2014-01-01

    The rotary kilns used by the pulp and paper industry to regenerate lime in the Kraft process are very energy intensive. Throughout the 90 s, in response to increasing fuel prices, the industry used back up insulation in conjunction with the high alumina brick used to line the burning zones of their kilns. While this improved energy efficiency, the practice of installing insulating brick behind the working lining increased the inner wall temperatures. In the worst case, due to the increased temperatures, rapid brick failures occurred causing unscheduled outages and expensive repairs. Despite these issues, for the most part, the industry continued to use insulating refractory linings in that the energy savings were large enough to offset any increase in the cost of maintaining the refractory lining. Due to the dramatic decline in the price of natural gas in some areas combined with mounting pressures to increasing production of existing assets, over the last decade, many mills are focusing more on increasing the uptime of their kilns as opposed to energy savings. To this end, a growing number of mills are using basic (magnesia based) brick instead of high alumina brick to line the burning zone of the kiln since the lime mud does not react with these bricks at the operating temperatures of the burning zone of the kiln. In the extreme case, a few mills have chosen to install basic brick in the front end of the kiln running a length equivalent to 10 diameters. While the use of basic brick can increase the uptime of the kiln and reduce the cost to maintain the refractory lining, it does dramatically increase the heat losses resulting from the increased operating temperatures of the shell. Also, over long periods of time operating at these high temperatures, damage can occur in the shell. There are tradeoffs between energy efficiency, capacity and uptime. When fuel prices are very high, it makes sense to insulate the lining. When fuel prices are lower, trading some

  16. "Interconnection","NERC Regional Assesment Area","Net Internal Demand[1] -- Winter"

    Energy Information Administration (EIA) (indexed site)

    B Winter net internal demand, capacity resources, and capacity margins by North American Electric Reliability Corporation" "Region, 2001/2002-2014/2015 actual, 2015-2017 projected" "megawatts and percent" "Interconnection","NERC Regional Assesment Area","Net Internal Demand[1] -- Winter" ,,"Actual",,,,,,,,,,,,,,,"Projected" ,,"2001/ 2002","2002/ 2003","2003/ 2004","2004/

  17. Beryllium Facilities & Areas - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Controlled Facilities that have been Demolished Outdoor Areas where Beryllium Contamination has been Identified Hanford Projects and Facilities - Descriptions Former Hanford...

  18. NREL Releases Estimate of National Offshore Wind Energy Potential - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Releases | NREL Releases Estimate of National Offshore Wind Energy Potential September 10, 2010 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) announces the release of a new report that assesses the electricity generating potential of offshore wind resources in the United States. According to the Assessment of Offshore Wind Energy Resources for the United States, 4,150 gigawatts of potential wind turbine nameplate capacity (maximum turbine capacity) from offshore

  19. Tennessee Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    Synthetic 1980-2003 Propane-Air 1980-2004

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2015 View History Net Withdrawals -453 1968-2015 Injections 665 1968-2015 Withdrawals 212 1968-201

    Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island

  20. U.S. Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Total Storage

  1. Tech Area II: A history

    SciTech Connect

    Ullrich, R.

    1998-07-01

    This report documents the history of the major buildings in Sandia National Laboratories` Technical Area II. It was prepared in support of the Department of Energy`s compliance with Section 106 of the National Historic Preservation Act. Technical Area II was designed and constructed in 1948 specifically for the final assembly of the non-nuclear components of nuclear weapons, and was the primary site conducting such assembly until 1952. Both the architecture and location of the oldest buildings in the area reflect their original purpose. Assembly activities continued in Area II from 1952 to 1957, but the major responsibility for this work shifted to other sites in the Atomic Energy Commission`s integrated contractor complex. Gradually, additional buildings were constructed and the original buildings were modified. After 1960, the Area`s primary purpose was the research and testing of high-explosive components for nuclear weapons. In 1994, Sandia constructed new facilities for work on high-explosive components outside of the original Area II diamond-shaped parcel. Most of the buildings in the area are vacant and Sandia has no plans to use them. They are proposed for decontamination and demolition as funding becomes available.

  2. Why SRS Matters - F Area

    SciTech Connect

    Howell, Steve; Tadlock, Bill; Beeler, Dewitt; Gardner, Curt

    2015-02-17

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode features F Area's mission and operations.

  3. Why SRS Matters - E Area

    SciTech Connect

    Howell, Steve; Mooneyhan, Verne; Tempel, Kevin; Bullington, Michele

    2015-03-09

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode features E Area's mission and operations.

  4. Why SRS Matters - K Area

    SciTech Connect

    Hunt, Paul; Lawson, Janice

    2015-02-04

    A video series presenting an overview of the Savannah River Site (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode features K Area's mission and operations.

  5. Why SRS Matters - L Area

    SciTech Connect

    Hunt, Paul

    2015-01-28

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode features L Area's mission and operations.

  6. Glass Buttes Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Oregon Exploration Region: Cascades GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS...

  7. Hot Pot Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Region GEA Development Phase: Coordinates: 40.922, -117.108 Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp:...

  8. Aqua Quieta Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Identification Coordinates: 40.357346092631, -118.32314453125 Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS...

  9. Grass Valley Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GEA Development Phase: Coordinates: 40.60333333, -117.645 Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp:...

  10. Crane Creek Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GEA Development Phase: Coordinates: 44.3064, -116.7447 Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp:...

  11. Weiser Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GEA Development Phase: Coordinates: 44.29833333, -117.0483333 Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp:...

  12. Honokowai Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    -156.60912475586 Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  13. Teels Marsh Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  14. Molokai Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    -156.86867675781 Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  15. Flint Geothermal Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  16. Jemez Mountain Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  17. Rhodes Marsh Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  18. Glass Buttes Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  19. White Mountains Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    New Hampshire Exploration Region: Other GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp:...

  20. Kilauea Summit Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...