National Library of Energy BETA

Sample records for mwh megawatt hours

  1. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh...

    Energy Information Administration (EIA) (indexed site)

    Technologies" ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"En...

  2. Property:Ind sales (mwh) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    property "Ind sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 18,637 +...

  3. Property:Res sales (mwh) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    property "Res sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 35,568 +...

  4. Property:Tot sales (mwh) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    property "Tot sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 69,154 +...

  5. Property:Com sales (mwh) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    property "Com sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 14,949 +...

  6. Property:Building/SPPurchasedEngyNrmlYrMwhYrNaturalGas | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    dEngyNrmlYrMwhYrNaturalGas Jump to: navigation, search This is a property of type String. Natural gas Pages using the property "BuildingSPPurchasedEngyNrmlYrMwhYrNaturalGas"...

  7. Property:Building/SPPurchasedEngyForPeriodMwhYrNaturalGas | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    gyForPeriodMwhYrNaturalGas Jump to: navigation, search This is a property of type String. Natural gas Pages using the property "BuildingSPPurchasedEngyForPeriodMwhYrNaturalGas"...

  8. Property:Building/SPPurchasedEngyForPeriodMwhYrOil-FiredBoiler...

    OpenEI (Open Energy Information) [EERE & EIA]

    eriodMwhYrOil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "BuildingSPPurchasedEngyForPeriodMwhYrOil-FiredB...

  9. Property:Building/SPPurchasedEngyNrmlYrMwhYrOil-FiredBoiler ...

    OpenEI (Open Energy Information) [EERE & EIA]

    rmlYrMwhYrOil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "BuildingSPPurchasedEngyNrmlYrMwhYrOil-FiredBoil...

  10. Funding Opportunity: Next Generation Electric Machines: Megawatt...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    speed, direct drive, megawatt (MW) class electric motors for efficiency and power density improvements in three primary areas: (1) chemical and petroleum refining industries; (2) ...

  11. FULLY INTEGRATED HIGH SPEED MEGAWATT CLASS MOTOR AND HIGH FREQUENCY...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FULLY INTEGRATED HIGH SPEED MEGAWATT CLASS MOTOR AND HIGH FREQUENCY VARIABLE SPEED DRIVE SYSTEM FULLY INTEGRATED HIGH SPEED MEGAWATT CLASS MOTOR AND HIGH FREQUENCY VARIABLE SPEED ...

  12. Mass Megawatts Wind Power Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Megawatts Wind Power Inc Jump to: navigation, search Name: Mass Megawatts Wind Power Inc Address: 95 Prescott Street Place: Worcester, Massachusetts Zip: 01605 Region: Greater...

  13. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine NREL logo -- This project is inactive -- The ...

  14. MegaWatt Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    energy company that delivers scalable solar power generation systems to the utility market. References: MegaWatt Solar1 This article is a stub. You can help OpenEI by...

  15. Property:Building/SPPurchasedEngyNrmlYrMwhYrLogs | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Datasets Community Login | Sign Up Search Property Edit with form History Property:BuildingSPPurchasedEngyNrmlYrMwhYrLogs Jump to: navigation, search This is a property of type...

  16. Property:Building/SPPurchasedEngyNrmlYrMwhYrTotal | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    dEngyNrmlYrMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4355.0 + Sweden Building 05K0002 + 1530.1 + Sweden Building 05K0003...

  17. Property:Building/SPPurchasedEngyForPeriodMwhYrDstrtHeating ...

    OpenEI (Open Energy Information) [EERE & EIA]

    riodMwhYrDstrtHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2067.0 + Sweden Building 05K0002 + 492.2 + Sweden Building 05K0003...

  18. Property:Building/SPPurchasedEngyForPeriodMwhYrDstrtColg | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    rPeriodMwhYrDstrtColg" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 762.0 + Sweden Building 05K0002 + 322.0 + Sweden Building 05K0003 +...

  19. Property:Building/SPPurchasedEngyForPeriodMwhYrElctrtyTotal ...

    OpenEI (Open Energy Information) [EERE & EIA]

    riodMwhYrElctrtyTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1399.0 + Sweden Building 05K0002 + 686.9 + Sweden Building 05K0003...

  20. Property:Building/SPPurchasedEngyForPeriodMwhYrTotal | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    gyForPeriodMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4228.0 + Sweden Building 05K0002 + 1501.1 + Sweden Building 05K0003...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Energy.gov [DOE] (indexed site)

    of solar generation, bundled in minimum denominations of one megawatt-hour (MWh) of production. The legislation... Eligibility: Commercial, Industrial, Local Government,...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    per megawatt-hour (MWh) of electric generation. Electric suppliers must provide this information to customers twice annually in a standardized, uniform format. The Michigan Public...

  3. Solar Renewable Energy Certificates Program (SRECs)

    Energy.gov [DOE]

    Solar Renewable Energy Certificates (SRECs) represent the renewable attributes of solar generation, bundled in minimum denominations of one megawatt-hour (MWh) of production. The legislation...

  4. Property:Building/SPPurchasedEngyForPeriodMwhYrPellets | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    ForPeriodMwhYrPellets" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  5. Property:Building/SPPurchasedEngyNrmlYrMwhYrWoodChips | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    yNrmlYrMwhYrWoodChips" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  6. Property:Building/SPPurchasedEngyForPeriodMwhYrOther | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    gyForPeriodMwhYrOther" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  7. Property:Building/SPPurchasedEngyForPeriodMwhYrWoodChips | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    rPeriodMwhYrWoodChips" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  8. Property:Building/SPPurchasedEngyNrmlYrMwhYrTownGas | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    ngyNrmlYrMwhYrTownGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  9. Spallation Neutron Source reaches megawatt power

    SciTech Connect

    Dr. William F. Brinkman

    2009-09-30

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  10. Spallation Neutron Source reaches megawatt power

    ScienceCinema

    Dr. William F. Brinkman

    2010-01-08

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  11. Funding Opportunity: Next Generation Electric Machines: Megawatt Class

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Motors | Department of Energy Opportunity: Next Generation Electric Machines: Megawatt Class Motors Funding Opportunity: Next Generation Electric Machines: Megawatt Class Motors March 19, 2015 - 4:45pm Addthis This Funding Opportunity Announcement (FOA) is focused on developing MV integrated drive systems that leverage the benefits of state of the art power electronics (i.e., wide band gap devices) with energy efficient, high speed, direct drive, megawatt (MW) class electric motors for

  12. Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar

    Energy.gov [DOE]

    The Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar will discuss standard procedures regarding the EERE Office and FOA process.

  13. Final Environmental Impact Report: North Brawley Ten Megawatt...

    OpenEI (Open Energy Information) [EERE & EIA]

    Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility Abstract NA Author County of Imperial Planning Department Published WESTEC SERVICES, INC., 1979...

  14. From medium-sized to megawatt turbines...

    SciTech Connect

    Dongen, W. van

    1996-12-31

    One of the world`s first 500 kW turbines was installed in 1989 in the Netherlands. This forerunner of the current NedWind 500 kW range also represents the earliest predesign of the NedWind megawatt turbine. After the first 500 kW turbines with steel rotor blades and rotor diameter of 34 m, several design modifications followed, e.g. the rotor diameter was increased to 35 m and a tip brake was added. Later polyester blades were introduced and the rotor diameter was increased with 5 in. The drive train was also redesigned. Improvements on the 500 kW turbine concept has resulted in decreased cost, whereas annual energy output has increased to approx. 1.3 million kWh. Wind energy can substantially contribute to electricity supply. Maximum output in kiloWatthours is the target. Further improvement of the existing technology and implementation of flexible components may well prove to be a way to increase energy output, not only in medium or large sized wind turbines. 7 figs.

  15. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    aim to demonstrate a multi-megawatt power cycle using supercritical carbon dioxide (s-CO2) as the working fluid. The use of carbon dioxide instead of steam allows higher...

  16. Multi Megawatt Power System Analysis Report

    SciTech Connect

    Longhurst, Glen Reed; Harvego, Edwin Allan; Schnitzler, Bruce Gordon; Seifert, Gary Dean; Sharpe, John Phillip; Verrill, Donald Alan; Watts, Kenneth Donald; Parks, Benjamin Travis

    2001-11-01

    Missions to the outer planets or to near-by planets requiring short times and/or increased payload carrying capability will benefit from nuclear power. A concept study was undertaken to evaluate options for a multi-megawatt power source for nuclear electric propulsion. The nominal electric power requirement was set at 15 MWe with an assumed mission profile of 120 days at full power, 60 days in hot standby, and another 120 days of full power, repeated several times for 7 years of service. Of the numerous options considered, two that appeared to have the greatest promise were a gas-cooled reactor based on the NERVA Derivative design, operating a closed cycle Brayton power conversion system; and a molten lithium-cooled reactor based on SP-100 technology, driving a boiling potassium Rankine power conversion system. This study examined the relative merits of these two systems, seeking to optimize the specific mass. Conclusions were that either concept appeared capable of approaching the specific mass goal of 3-5 kg/kWe estimated to be needed for this class of mission, though neither could be realized without substantial development in reactor fuels technology, thermal radiator mass efficiency, and power conversion and distribution electronics and systems capable of operating at high temperatures. Though the gas-Brayton systems showed an apparent advantage in specific mass, differences in the degree of conservatism inherent in the models used suggests expectations for the two approaches may be similar. Brayton systems eliminate the need to deal with two-phase flows in the microgravity environment of space.

  17. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine

    Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL) and its partners, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), aim to demonstrate a multi-megawatt power cycle using supercritical carbon dioxide (s-CO2) as the working fluid. The use of carbon dioxide instead of steam allows higher power-cycle efficiency and cycle components that are more compact.

  18. DOE to Debut a Dynamic 5-Megawatt Dynamometer

    Energy.gov [DOE]

    Boulder, Colorado -- As wind turbine capacity continues to grow, so does the need to test the electrical and mechanical power-producing components of those turbines. Currently, only a few test facilities worldwide have the capability to test wind turbine drivetrains with capacity ratings up to 5 megawatts--and DOE's National Wind Technology Center at the National Renewable Energy Laboratory is now one of them.

  19. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    SciTech Connect

    Felker, Fort

    2013-11-13

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  20. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    ScienceCinema

    Felker, Fort

    2016-07-12

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  1. Airborne megawatt class free-electron laser for defense and security

    SciTech Connect

    Roy Whitney; David Douglas; George Neil

    2005-03-01

    An airborne megawatt (MW) average power Free-Electron Laser (FEL) is now a possibility. In the process of shrinking the FEL parameters to fit on ship, a surprisingly lightweight and compact design has been achieved. There are multiple motivations for using a FEL for a high-power airborne system for Defense and Security: Diverse mission requirements can be met by a single system. The MW of light can be made available with any time structure for time periods from microseconds to hours, i.e. there is a nearly unlimited magazine. The wavelength of the light can be chosen to be from the far infrared (IR) to the near ultraviolet (UV) thereby best meeting mission requirements. The FEL light can be modulated for detecting the same pattern in the small fraction of light reflected from the target resulting in greatly enhanced targeting control. The entire MW class FEL including all of its subsystems can be carried by large commercial size airplanes or on an airship. Adequate electrical power can be generated on the plane or airship to run the FEL as long as the plane or airship has fuel to fly. The light from the FEL will work well with relay mirror systems. The required R&D to achieve the MW level is well understood. The coupling of the capabilities of an airborne FEL to diverse mission requirements provides unique opportunities.

  2. Hopper Hours Used

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hours Used Hopper Hours Used 2015 Hopper Usage Chart Hopper Usage Chart 2014 Hopper Usage ... Hopper Usage Chart 2011 Hopper Usage Chart Hopper Usage Chart 2015 Date Hours Used (in ...

  3. Design of megawatt power level heat pipe reactors

    SciTech Connect

    Mcclure, Patrick Ray; Poston, David Irvin; Dasari, Venkateswara Rao; Reid, Robert Stowers

    2015-11-12

    An important niche for nuclear energy is the need for power at remote locations removed from a reliable electrical grid. Nuclear energy has potential applications at strategic defense locations, theaters of battle, remote communities, and emergency locations. With proper safeguards, a 1 to 10-MWe (megawatt electric) mobile reactor system could provide robust, self-contained, and long-term power in any environment. Heat pipe-cooled fast-spectrum nuclear reactors have been identified as a candidate for these applications. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than “traditional” reactors. The goal of this project was to develop a scalable conceptual design for a compact reactor and to identify scaling issues for compact heat pipe cooled reactors in general. Toward this goal two detailed concepts were developed, the first concept with more conventional materials and a power of about 2 MWe and a the second concept with less conventional materials and a power level of about 5 MWe. A series of more qualitative advanced designs were developed (with less detail) that show power levels can be pushed to approximately 30 MWe.

  4. GSA Awards Contract to Bring 3 Megawatts of Solar to Federal Buildings in

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Washington, D.C. | Department of Energy Awards Contract to Bring 3 Megawatts of Solar to Federal Buildings in Washington, D.C. GSA Awards Contract to Bring 3 Megawatts of Solar to Federal Buildings in Washington, D.C. December 17, 2015 - 10:26am Addthis The U.S. General Services Administration (GSA) awarded a contract to WGL for the construction of rooftop photovoltaic arrays that will bring approximately 3 megawatts of solar energy across 18 federal buildings in Washington, D.C. The

  5. Ombuds Office Location & Hours

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ombuds Office Location & Hours Ombuds Office Location & Hours Committed to the fair and equitable treatment of all employees, contractors, and persons doing business with the...

  6. Franklin Hours Used

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Franklin Hours Used Franklin Hours Used 2011 Franklin Usage in Hours 2011 Franklin Usage in Hours 2010 2010 Franklin Usage in Hours 2009 2009 Franklin Usage in Hours 2007-2008 2008 Franklin Usage in Hours 2008 Franklin Usage in Hours Date Hours Used (in thousands) Percentage of Maximum Possible (24 hours/day) 04/28/2012 0.00 0.00 04/27/2012 272.62 29.40 04/26/2012 692.81 74.71 04/25/2012 841.60 90.75 04/24/2012 53.86 5.81 04/23/2012 432.01 46.59 04/22/2012 823.23 88.77 04/21/2012 473.95 51.11

  7. DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy to Develop Multi-Megawatt Offshore Wind Turbine with General Electric DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric March 9, 2006 - 11:44am Addthis Contract Valued at $27 million, supports President Bush's Advanced Energy Initiative WASHINGTON, D.C. - The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) in Golden, Colorado, has signed a $27 million, multi-year contract with the General Electric Company (GE) to

  8. Edison Hours Used

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Edison Hours Used 2015 Edison Usage Chart Edison Usage Chart 2014 Edison Usage Chart Edison Usage Chart 2013 Edison Usage Chart Edison Usage Chart 2015 Date Hours Used (in ...

  9. Contacts / Hours - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contacts / Hours Hanford Meteorological Station Real Time Met Data from Around the Site Current and Past 48 Hours HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Contacts / Hours Current NWS Forecast for the Tri-Cities NWS Windchill Chart Contacts / Hours Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Note: Using the telephone is the ONLY way to get up to the minute information. On duty Forecaster (509) 373-2716 Current

  10. Development of a Multi Megawatt Circulator for X Band

    SciTech Connect

    Neilson, J.; Ives, L.; Tantawi, S.G.; /Calabazas Creek Res., Saratoga /SLAC

    2008-03-24

    Research is in progress on a TeV-scale linear collider that will operate at 5-10 times the energy of present-generation accelerators. This will require development of high power RF sources generating of 50-100 MW per source. Transmission of power at this level requires overmoded waveguide to avoid breakdown. In particular, the TE{sub 01} circular waveguide mode is currently the mode of choice for waveguide transmission at Stanford Linear Accelerator Center (SLAC) in the Multimode Delay Line Distribution System (MDLDS). A common device for protecting an RF source from reflected power is the waveguide circulator. A circulator is typically a three-port device that allows low loss power transmission from the source to the load, but diverts power coming from the load (reflected power) to a third terminated port. To achieve a low loss, matched, three port junction requires nonreciprocal behavior. This is achieved using ferrites in a static magnetic field which introduces a propagation constant dependent on RF field direction relative to the static magnetic field. Circulators are currently available at X-Band for power levels up to 1 MW in fundamental rectangular waveguide; however, the next generation of RF sources for TeV-level accelerators will require circulators in the 50-100 MW range. Clearly, conventional technology is not capable of reaching the power level required. In this paper, we discuss the development of an X-Band circulator operating at multi-megawatt power levels in overmoded waveguide. The circulator will employ an innovative coaxial geometry using the TE{sub 01} mode. Difficulties in maintaining mode purity in oversized rectangular guide preclude increasing guide area to allow increasing the power level to the desired 50-100 MW range. The TE{sub 01} mode in circular waveguide is very robust mode for transmission of high power in overmoded waveguide. The mode is ideal for transmission of high power microwaves because of its low-losses, zero tangential

  11. GSA Issues New Request for Proposals to Bring 3 Megawatts of Solar to

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Federal Buildings in Washington, D.C. | Department of Energy Issues New Request for Proposals to Bring 3 Megawatts of Solar to Federal Buildings in Washington, D.C. GSA Issues New Request for Proposals to Bring 3 Megawatts of Solar to Federal Buildings in Washington, D.C. June 15, 2015 - 12:41pm Addthis On June 9, 2015, the U.S. General Services Administration (GSA) issued a request for proposal (RFP) for the procurement of electricity produced by solar photovoltaic arrays to be constructed

  12. Hopper Hours Used

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hours Used Hopper Hours Used 2015 Hopper Usage Chart Hopper Usage Chart 2014 Hopper Usage Chart Hopper Usage Chart 2013 Hopper Usage Chart Hopper Usage Chart 2012 Hopper Usage Chart Hopper Usage Chart 2011 Hopper Usage Chart Hopper Usage Chart 2015 Date Hours Used (in millions) Percent of Maximum Possible (24 hours/day) 09/20/2015 3.247 88.2 09/19/2015 3.401 92.4 09/18/2015 3.425 93.0 09/17/2015 3.450 93.7 09/16/2015 3.413 92.7 09/15/2015 3.466 94.1 09/14/2015 3.299 89.6 09/13/2015 3.436 93.3

  13. FULLY INTEGRATED HIGH SPEED MEGAWATT CLASS MOTOR AND HIGH FREQUENCY VARIABLE SPEED DRIVE SYSTEM

    Energy.gov [DOE]

    Clemson University – North Charleston, SC New motor power converter technologies will be used to develop a pre-commercial megawatt class variable speed drive. The fully integrated prototype system will be made by TECO Westinghouse Motor Company in its Round Rock, TX facility and be demonstrated at Clemson’s eGRID Center. Fact sheet coming soon.

  14. Carver Hours Used

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Carver Hours Used Carver Hours Used Hopper Usage Chart Hopper Usage Chart Date Hours Used (in millions) Percent of Maximum Possible (24 hours/day) 12/15/2014 161.25 84.75 12/14/2014 162.32 85.31 12/13/2014 165.95 87.22 12/12/2014 172.69 90.76 12/11/2014 174.45 91.69 12/10/2014 170.09 89.39 12/09/2014 166.50 87.50 12/08/2014 169.20 88.92 12/07/2014 167.44 88.00 12/06/2014 172.83 90.83 12/05/2014 176.73 92.89 12/04/2014 174.69 91.81 12/03/2014 178.77 93.96 12/02/2014 172.30 90.55 12/01/2014 176.12

  15. PV Hourly Simulation Tool

    Energy Science and Technology Software Center

    2010-12-31

    This software requires inputs of simple general building characteristics and usage information to calculate the energy and cost benefits of solar PV. This tool conducts and complex hourly simulation of solar PV based primarily on the area available on the rooftop. It uses a simplified efficiency calculation method and real panel characteristics. It includes a detailed rate structure to account for time-of-use rates, on-peak and off-peak pricing, and multiple rate seasons. This tool includes themore » option for advanced system design inputs if they are known. This tool calculates energy savings, demand reduction, cost savings, incentives and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  16. QER- Comment of MWH Global

    Energy.gov [DOE]

    Hello, Was looking at the calendar and curious when the “Final Meeting” is in DC for the QER? http://energy.gov/epsa/initiatives/quadrennial-energy-review-qer Thanks,

  17. High-temperature, radiation-tolerant electronics for the MMW (Multi-megawatt) Space Reactor Program

    SciTech Connect

    Yee, J.H.; Orvis, W.J.; McConaghy, C.; Ciarlo, D.R.

    1986-10-17

    One of the objectives of the Multi-Megawatt (MMW) space reactor program is to determine, within the next five years, what types of power electronic devices would be suitable for MMW space power applications. Suitable devices must be able to withstand high temperatures and high radiation fields. After investigating the literature on solid state device and miniature vacuum tube technologies, we have concluded that the miniature vacuum tube technology is, currently, the most promising. The main reason for choosing this technology, is because miniature vacuum tubes can operate at very high temperatures (775 K or potentially higher) and are tolerant to very high neutron fluence and gamma dose. Although there are still problems to be solved before miniature vacuum tubes can be used, the time required for their development will be much shorter than the five year period required by the MMW space reactor program. 13 refs., 3 figs., 3 tabs.

  18. The design and analysis of multi-megawatt distributed single pole double throw (SPDT) microwave switches

    SciTech Connect

    Tantawi, S.G. [Stanford Linear Accelerator Center, SLAC, 2575 Sand Hill Rd. Menlo Park, California 94025 (United States)

    1999-05-01

    We present design methodology and analysis for an SPDT switch that is capable of handling hundreds of megawatts of power at X-band. The switch is designed for application in high power rf systems in particular future Linear Colliders (1). In these systems switching need to be fast in one direction only. We use this to our advantage to reach a design for a super high power switch. In our analysis we treat the problem from an abstract point of view. We introduce a unified analysis for the microwave circuits irrespective of the switching elements. The analysis is, then, suitable for different kinds of switching elements such as photoconductrs. PIN diodes, and plasma discharge in low-pressure gases. {copyright} {ital 1999 American Institute of Physics.}

  19. ,"Table 3A.1. January Monthly Peak Hour Demand, by North American Electric Reliability Corporation Assesment Area,"

    Energy Information Administration (EIA) (indexed site)

    A.1. January Monthly Peak Hour Demand, by North American Electric Reliability Corporation Assesment Area," ,"1996-2010 Actual, 2011-2012 Projected" ,"(Megawatts)" ,"January","NERC Regional Assesment Area" ,,,"Actual",,,,,,,,,,,,,,,"Projected" ,,,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"2011E","2012E" ,"Eastern

  20. ,"Table 3B.1. FRCC Monthly Peak Hour Demand, by North American Electric Reliability Corporation Assesment Area,"

    Energy Information Administration (EIA) (indexed site)

    B.1. FRCC Monthly Peak Hour Demand, by North American Electric Reliability Corporation Assesment Area," ,"1996-2010 Actual, 2011-2012 Projected" ,"(Megawatts)" ,"FRCC","Year","January","February","March","April","May","June","July","August","September","October","November","December"

  1. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    Energy Information Administration (EIA) (indexed site)

    January 2010" ,"Next Update: October 2010" ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2008 and Projected 2009 through 2010 " ,"(Megawatts and 2008 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  2. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, "

    Energy Information Administration (EIA) (indexed site)

    ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, " ,"1996 through 2003 and Projected 2004 through 2005 " ,"(Megawatts and 2003 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

  3. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, "

    Energy Information Administration (EIA) (indexed site)

    3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, " ,"2005 and Projected 2006 through 2010 " ,"(Megawatts and 2005 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  4. A Conceptual Multi-Megawatt System Based on a Tungsten CERMET Reactor

    SciTech Connect

    Jonathan A. Webb; Brian Gross

    2011-02-01

    Abstract. A conceptual reactor system to support Multi-Megawatt Nuclear Electric Propulsion is investigated within this paper. The reactor system consists of a helium cooled Tungsten-UN fission core, surrounded by a beryllium neutron reflector and 13 B4C control drums coupled to a high temperature Brayton power conversion system. Excess heat is rejected via carbon reinforced heat pipe radiators and the gamma and neutron flux is attenuated via segmented shielding consisting of lithium hydride and tungsten layers. Turbine inlet temperatures ranging from 1300 K to 1500 K are investigated for their effects on specific powers and net electrical outputs ranging from 1 MW to 100 MW. The reactor system is estimated to have a mass, which ranges from 15 Mt at 1 MWe and a turbine inlet temperature of 1500 K to 1200 Mt at 100 MWe and a turbine temperature of 1300 K. The reactor systems specific mass ranges from 32 kg/kWe at a turbine inlet temperature of 1300 K and a power of 1 MWe to 9.5 kg/kW at a turbine temperature of 1500 K and a power of 100 MWe.

  5. Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines

    SciTech Connect

    Maples, B.; Hand, M.; Musial, W.

    2010-10-01

    This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes. Based on the cost and performance data supplied by AMSC, HTSDD technology has good potential to compete successfully as an alternative technology to PMDD and geared technology turbines in the multi megawatt classes. In addition, data suggests the economics of HTSDD turbines improve with increasing size, although several uncertainties remain for all machines in the 6 to 10 MW class.

  6. A Megawatt-level 28z GHz Heating System For The National Spherical Torus Experiment Upgrade

    SciTech Connect

    Taylor, Gary

    2014-04-01

    The National Spherical Torus Experiment Upgrade (NSTX-U) will operate at axial toroidal fields of < 1 T and plasma currents, Ip < 2 MA. The development of non-inductive (NI) plasmas is a major long-term research goal for NSTX-U. Time dependent numerical simulations of 28 GHz electron cyclotron (EC) heating of low density NI start-up plasmas generated by Coaxial Helicity Injection (CHI) in NSTX-U predict a significant and rapid increase of the central electron temperature (Te(0)) before the plasma becomes overdense. The increased Te(0) will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. A megawatt-level, 28 GHz electron heating system is planned for heating NI start-up plasmas in NSTX-U. In addition to EC heating of CHI start-up discharges, this system will be used for electron Bernstein wave (EBW) plasma start-up, and eventually for EBW heating and current drive during the Ip flattop.

  7. Solar Hot Water Hourly Simulation

    Energy Science and Technology Software Center

    2009-12-31

    The Software consists of a spreadsheet written in Microsoft Excel which provides an hourly simulation of a solar hot water heating system (including solar geometry, solar collector efficiency as a function of temperature, energy balance on storage tank and lifecycle cost analysis).

  8. Edison Phase I Hours Used

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Edison Phase I Hours Used Edison Phase I Hours Used Edison Usage Chart Edison Usage Chart Date Hours Used (in millions) Percent of Maximum Possible (24 hours/day) 06/23/2013 0.226 88.6 06/22/2013 0.239 93.9 06/21/2013 0.248 97.1 06/20/2013 0.240 94.0 06/19/2013 0.233 91.3 06/18/2013 0.245 96.0 06/17/2013 0.251 98.4 06/16/2013 0.243 95.3 06/15/2013 0.245 95.9 06/14/2013 0.246 96.5 06/13/2013 0.240 94.1 06/12/2013 0.128 50.4 06/11/2013 0.215 84.5 06/10/2013 0.225 88.4 06/09/2013 0.228 89.6

  9. Arc discharge regulation of a megawatt hot cathode bucket ion source for the experimental advanced superconducting tokamak neutral beam injector

    SciTech Connect

    Xie Yahong; Hu Chundong; Liu Sheng; Jiang Caichao; Li Jun; Liang Lizhen; Collaboration: NBI Team

    2012-01-15

    Arc discharge of a hot cathode bucket ion source tends to be unstable what attributes to the filament self-heating and energetic electrons backstreaming from the accelerator. A regulation method, which based on the ion density measurement by a Langmuir probe, is employed for stable arc discharge operation and long pulse ion beam generation. Long pulse arc discharge of 100 s is obtained based on this regulation method of arc power. It establishes a foundation for the long pulse arc discharge of a megawatt ion source, which will be utilized a high power neutral beam injection device.

  10. Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production ...

  11. First plasma of megawatt high current ion source for neutral beam injector of the experimental advanced superconducting tokamak on the test bed

    SciTech Connect

    Hu Chundong; Xie Yahong; Liu Sheng; Xie Yuanlai; Jiang Caichao; Song Shihua; Li Jun; Liu Zhimin

    2011-02-15

    High current ion source is the key part of the neutral beam injector. In order to develop the project of 4 MW neutral beam injection for the experimental advanced superconducting tokamak (EAST) on schedule, the megawatt high current ion source is prestudied in the Institute of Plasma Physics in China. In this paper, the megawatt high current ion source test bed and the first plasma are presented. The high current discharge of 900 A at 2 s and long pulse discharge of 5 s at 680 A are achieved. The arc discharge characteristic of high current ion source is analyzed primarily.

  12. Gate Hours & Services | Stanford Synchrotron Radiation Lightsource

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Gate Hours & Services Sand Hill Road Main Gate Open 24 hours a day, 7 days a week ... SLAC has proximity card readers at the entrances from Sand Hill Road and Alpine Road as ...

  13. Labor Standards/Wage and Hour Laws

    Office of Energy Efficiency and Renewable Energy (EERE)

    Labor Standards and Wage/Hour laws establish minimum wage, overtime pay, recordkeeping, and minimum leave requirements:

  14. Acoustic Noise Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    SciTech Connect

    Roadman, Jason; Huskey, Arlinda

    2015-07-01

    A series of tests were conducted to characterize the baseline properties and performance of the U.S. Department of Energy (DOE) 1.5-megawatt wind turbine (DOE 1.5) to enable research model development and quantify the effects of future turbine research modifications. The DOE 1.5 is built on the platform of GE's 1.5-MW SLE commercial wind turbine model. It was installed in a nonstandard configuration at the NWTC with the objective of supporting DOE Wind Program research initiatives such as A2e. Therefore, the test results may not represent the performance capabilities of other GE 1.5-MW SLE turbines. The acoustic noise test documented in this report is one of a series of tests carried out to establish a performance baseline for the DOE 1.5 in the NWTC inflow environment.

  15. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    Energy Information Administration (EIA) (indexed site)

    6" ,"Released: February 7, 2008" ,"Next Update: October 2008" ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Megawatts and 2006 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  16. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    Energy Information Administration (EIA) (indexed site)

    7" ,"Released: February 2009" ,"Next Update: October 2009" ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2007 and Projected 2008 through 2009 " ,"(Megawatts and 2007 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  17. Hour of Code | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Home Learning Center Undergraduates Graduates Faculty Partners News & Events Learning Center Community Outreach Hour of Code Introduce a Girl to Engineering Science Careers in ...

  18. EIA-930 Hourly and Daily Balancing ...

    Energy Information Administration (EIA) (indexed site)

    ... file retrieval using business-to-business data transfer or web services technology. ... but are to be included in the posted hourly value for balancing authority net generation. ...

  19. Happy Birthday Unmet Hours! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Happy Birthday Unmet Hours! Happy Birthday Unmet Hours! September 3, 2015 - 1:43pm Addthis Unmet Hours is a question-and-answer resource for the building energy modeling community. Unmet Hours is a question-and-answer resource for the building energy modeling community. Amir Roth, Ph.D. Amir Roth, Ph.D. Building Energy Modeling Technology Manager A year ago this week, a star was born. Working with IBPSA-USA, the US chapter of the International Building Performance Simulation Association, and Big

  20. Power Performance Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    SciTech Connect

    Mendoza, Ismael; Hur, Jerry; Thao, Syhoune; Curtis, Amy

    2015-08-11

    The U.S. Department of Energy (DOE) acquired and installed a 1.5-megawatt (MW) wind turbine at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL). This turbine (hereafter referred to as the DOE 1.5) is envisioned to become an integral part of the research initiatives for the DOE Wind Program, such as Atmosphere to Electrons (A2e). A2e is a multiyear DOE research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing wind flow into and through wind farms. For more information, visit http://energy.gov/eere/wind/atmosphere-electrons. To validate new and existing high-fidelity simulations, A2e must deploy several experimental measurement campaigns across different scales. Proposed experiments include wind tunnel tests, scaled field tests, and large field measurement campaigns at operating wind plants. Data of interest includes long-term atmospheric data sets, wind plant inflow, intra-wind plant flows (e.g., wakes), and rotor loads measurements. It is expected that new, high-fidelity instrumentation will be required to successfully collect data at the resolutions required to validate the high-fidelity simulations.

  1. Power Quality Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    SciTech Connect

    Mendoza, Ismael; Hur, Jerry; Thao, Syhoune

    2015-08-20

    The U.S. Department of Energy (DOE) acquired and installed a 1.5-megawatt (MW) wind turbine at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory. This turbine (hereafter referred to as the DOE 1.5) is envisioned to become an integral part of the research initiatives for the DOE Wind Program, such as Atmosphere to Electrons (A2e). A2e is a multiyear DOE research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing wind flow into and through wind farms. For more information, visit http://energy.gov/eere/wind/atmosphere-electrons. To validate new and existing high-fidelity simulations, A2e must deploy several experimental measurement campaigns across different scales. Proposed experiments include wind tunnel tests, scaled field tests, and large field measurement campaigns at operating wind plants. Data of interest includes long-term atmospheric data sets, wind plant inflow, intra-wind plant flows (e.g., wakes), and rotor loads measurements. It is expected that new, high-fidelity instrumentation will be required to successfully collect data at the resolutions required to validate the high-fidelity simulations.

  2. Hour of Code | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1 in 3 students in US schools have tried an Hour of Code activity Over 100M students have participated at 77,000 Hour of Code events worldwide More girls have tried computer science than in the last 70 years Featured Videos Hour of Code Video Argonne's Super Computer Mira Contact education@anl.gov Explore Computer Science! Let your creativity guide your imagination with the tools of computer science, the tools of the future! Argonne National Laboratory researchers will open students' minds and

  3. Bradbury Science Museum announces winter opening hours

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bradbury Science Museum winter hours Bradbury Science Museum announces winter opening hours Museum will be closed on Christmas Day (December 25) and New Year's Day (January 1, 2011). December 21, 2010 Bradbury Science Museum Bradbury Science Museum Contact Communications Office (505) 667-7000 Often called "a window to the Laboratory," the museum annually attracts thousands of visitors from all over the world. LOS ALAMOS, New Mexico, December 21, 2010-Los Alamos National Laboratory's

  4. Megawatt Electrolysis Scale Up

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    MW Electrolysis Scale Up E Anderson DOE Electrolytic Hydrogen Production Workshop 27-28 February 2014 27 28 February 2014 National Renewable Energy Laboratory Golden, CO (tm) ® Proton, Proton OnSite, Proton Energy Systems, the Proton design, StableFlow, StableFlow Hydrogen Control System and design, HOGEN, and FuelGen are trademarks or registered trademarks of Proton Energy Systems, Inc. Any other brands and/or names used herein are the property of their respective owners. Motivation - MW

  5. Fermilab | Visit Fermilab | Hours, Maps and Directions

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hours and site access Check the Fermilab home page for our latest news and a calendar of events, which also includes days that our main building and exhibits are closed. Hours Fermilab's site is open to the public every day of the week from 8 a.m. to 6 p.m. from November to March and from 8 a.m. to 8 p.m. the rest of the year. A map of Fermilab's public areas is available online. Fermilab visitors are allowed to visit two buildings on their own: Wilson Hall and the Leon Lederman Science

  6. Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electrolysis Production | Department of Energy Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Download the presentation slides from the U.S. Department of Energy Fuel Cell Technologies Office webinar, "Wind-to-Hydrogen Cost Modeling and Project Findings," held on January 17, 2013. Wind-to-Hydrogen Cost Modeling and Project Findings Webinar Slides (2.09

  7. Team Surpasses 1 Million Hours Safety Milestone

    Energy.gov [DOE]

    NISKAYUNA, N.Y. – Vigilance and dedication to safety led the EM program’s disposition project team at the Separations Process Research Unit (SPRU) to achieve a milestone of one million hours — over two-and-a-half-years — without injury or illness resulting in time away from work.

  8. Table 8.12b Electric Noncoincident Peak Load and Capacity Margin: Winter Peak Period, 1986-2011 (Megawatts, Except as Noted)

    Energy Information Administration (EIA) (indexed site)

    b Electric Noncoincident Peak Load and Capacity Margin: Winter Peak Period, 1986-2011 (Megawatts, Except as Noted) Year Noncoincident Peak Load 1 by North American Electric Reliability Corporation (NERC) 2 Regional Assessment Area Capacity Margin 21 (percent) Eastern Interconnection ERCOT 4 Western Inter- connection All Inter- connections FRCC 5 NPCC 6 Balance of Eastern Region 3 ECAR 7,8 MAAC 8,9 MAIN 8,10 MAPP 11 MISO 12 MRO 13 PJM 14 RFC 8,15 SERC 16 SPP 17 Subtotal TRE 18 WECC 19 Total 20

  9. Electric System Intra-hour Operation Simulator

    Energy Science and Technology Software Center

    2014-03-07

    ESIOS is a software program developed at Pacific Northwest National Laboratory (PNNL) that performs intra-hour dispatch and automatic generation control (AGC) simulations for electric power system frequency regulation and load/variable generation following. The program dispatches generation resources at minute interval to meet control performance requirements, while incorporating stochastic models of forecast errors and variability with generation, load, interchange and market behaviors. The simulator also contains an operator model that mimics manual actions to adjust resourcemore » dispatch and maintain system reserves. Besides simulating generation fleet intra-hour dispatch, ESIOS can also be used as a test platform for the design and verification of energy storage, demand response, and other technologies helping to accommodate variable generation.« less

  10. Household Energy Consumption Segmentation Using Hourly Data

    SciTech Connect

    Kwac, J; Flora, J; Rajagopal, R

    2014-01-01

    The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.

  11. 20140430_Green Machine Florida Canyon Hourly Data

    SciTech Connect

    Thibedeau, Joe

    2014-05-05

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

  12. Green Machine Florida Canyon Hourly Data 20130731

    SciTech Connect

    Vanderhoff, Alex

    2013-08-30

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

  13. Green Machine Florida Canyon Hourly Data

    SciTech Connect

    Vanderhoff, Alex

    2013-07-15

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

  14. 20130416_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    2013-04-24

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

  15. Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

  16. Green Machine Florida Canyon Hourly Data 20130731

    DOE Data Explorer

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

  17. 20130416_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

  18. 20140430_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

  19. Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Genevieve Saur (PI), Chris Ainscough (Presenter), Kevin Harrison, Todd Ramsden National Renewable Energy Laboratory January 17 th , 2013 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Acknowledgements * This work was made possible by support from the U.S. Department of Energy's Fuel Cell Technologies Office within the Office of Energy Efficiency and

  20. Making Wind Energy Predictable: New Profilers Provide Hourly...

    Energy Saver

    Making Wind Energy Predictable: New Profilers Provide Hourly Forecasts Making Wind Energy Predictable: New Profilers Provide Hourly Forecasts May 11, 2016 - 6:48pm Addthis ...

  1. Webinar: BioenergizeME Office Hours Webinar: Biomass Basics ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass Basics Webinar: BioenergizeME Office Hours Webinar: Biomass Basics Webinar: BioenergizeME Office Hours Webinar: Biomass Basics biomasbasicswebinar20150827.pdf (3.05 MB) ...

  2. NREL: Education Center - Hours, Directions, and Contact Information

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hours, Directions, and Contact Information An aerial photo of a tan Education Center. NREL's Education Center Credit: NREL 18591 Hours The Education Center is open Monday through...

  3. Energy Savings Performance Contracting 14-hour Agency Onsite...

    Energy Saver

    Energy Savings Performance Contracting 14-hour Agency Onsite Workshop Energy Savings Performance Contracting 14-hour Agency Onsite Workshop January 20, 2016 8:30AM PST to January...

  4. Exhibit Hall Floor Plan & Hours | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Exhibit Hall Floor Plan & Hours Exhibit Hall Floor Plan & Hours Exhibit Hall Floor Plan & Hours Exhibitor Move-in Hours Tuesday, May 16 9:00 am - 5:00 pm Wednesday, May 17 7:00 am - Noon Exhibit Hall Hours Wednesday, May 17 Opens: Noon - 3:45 pm (Lunch will be served) Closes: 3:45 pm - 5:00 pm) Reopens: 5:00 pm - 7:00 pm (Welcome Reception) Thursday, May 18 Opens: 7:00 am - Noon (Breakfast will be served) Closes: Noon (Lunch will be served) Exhibitor Move-out Hours Thursday, May 18

  5. DOE's Office of Science Awards 18 Million Hours of Supercomputing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE's Office of Science Awards 18 Million Hours of Supercomputing Time to 15 Teams for Large-Scale Scientific Computing DOE's Office of Science Awards 18 Million Hours of...

  6. After-hours, weekend changes through East Jemez road vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    After-hours, weekend changes through East Jemez Road Vehicle Access Portal After-hours, weekend changes through East Jemez road vehicle access portal begin June 18 All vehicles ...

  7. Oak Ridge: Approaching 4 Million Safe Work Hours | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Oak Ridge: Approaching 4 Million Safe Work Hours Oak Ridge: Approaching 4 Million Safe Work Hours February 27, 2013 - 12:00pm Addthis Mike Tidwell performs a leak check and ...

  8. DOE's Office of Science Awards 18 Million Hours of Supercomputing...

    Energy Saver

    DOE's Office of Science Awards 18 Million Hours of Supercomputing Time to 15 Teams for ... announced today that DOE's Office of Science has awarded a total of 18.2 million hours ...

  9. 1999 Commercial Buildings Characteristics--Off-Hour Equipment...

    Energy Information Administration (EIA) (indexed site)

    such programs (Figure 1). About the same amount of floorspace had either heating system or cooling system off-hour reduction. Off-hour reduction was least for office...

  10. BioenergizeME Office Hours Webinar: Integrating Bioenergy into...

    Energy Saver

    Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom ...

  11. Design of polarizers for a mega-watt long-pulse millimeter-wave transmission line on the large helical device

    SciTech Connect

    Ii, T. Kubo, S.; Shimozuma, T.; Kobayashi, S.; Okada, K.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Ito, S.; Mizuno, Y.; Okada, K.; Mutoh, T.; Makino, R.; Kobayashi, K.; Goto, Y.

    2015-02-15

    The polarizer is one of the critical components in a high-power millimeter-wave transmission line. It requires full and highly efficient coverage of any polarization states, high-power tolerance, and low-loss feature. Polarizers with rounded shape at the edge of the periodic groove surface are designed and fabricated by the machining process for a mega-watt long-pulse millimeter-wave transmission line of the electron cyclotron resonance heating system in the large helical device. The groove shape of λ/8- and λ/4-type polarizers for an 82.7 GHz transmission line is optimally designed in an integral method developed in the vector theories of diffraction gratings so that the efficiency to realize any polarization state can be maximized. The dependence of the polarization states on the combination of the two polarizer rotation angles (Φ{sub λ/8}, Φ{sub λ/4}) is examined experimentally in a low-power test with the newly developed polarization monitor. The results show that the measured polarization characteristics are in good agreement with the calculated ones.

  12. Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Holst, Kent; Huff, Georgianne; Schulte, Robert H.; Critelli, Nicholas

    2012-01-01

    The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

  13. DOE Awards Over a Billion Supercomputing Hours to Address Scientific

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Challenges | Department of Energy Over a Billion Supercomputing Hours to Address Scientific Challenges DOE Awards Over a Billion Supercomputing Hours to Address Scientific Challenges January 26, 2010 - 12:00am Addthis Washington, DC. - The U.S. Department of Energy announced today that approximately 1.6 billion supercomputing processor hours have been awarded to 69 cutting-edge research projects through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program.

  14. Hour of Code sparks interest in computer science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    STEM skills Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:November 2, 2016 all issues All Issues » submit Hour of Code sparks interest in computer science Taking the mystery out of programming February 1, 2016 Hour of Code participants work their way through fun computer programming tutorials. Hour of Code participants work their way through fun computer programming tutorials. Contacts Community Programs Director Kathy Keith Email

  15. BioenergizeME Office Hours Webinar: Integrating Bioenergy into the

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9th-12th Grade Classroom | Department of Energy BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom bioenergize_me_ngss_20151210.pdf (5.35 MB) More Documents & Publications Webinar: BioenergizeME Office Hours Webinar: Biomass Basics Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge BioenergizeME Infographic

  16. Pay and Leave Administration and Hours of Duty

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1996-09-30

    The order establishes policy, requirements and responsibilities for the management of pay, including overtime and compensatory time, leave administration, and hours of duty.

  17. Department of Energy's Paducah Site Reaches Million-Hour Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    environmental risk. The LATA Environmental Services of Kentucky Team, the Department's prime cleanup contractor, in October reached a milestone of 1 million hours without a lost...

  18. Hospital Triage in First Hours After Nuclear or Radiological...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hospital Triage in the First 24 Hours after a Nuclear or Radiological Disaster Medical professionals with the Radiation Emergency Assistance CenterTraining Site (REACTS) at the...

  19. Reformulated Gasoline Use Under the 8-Hour Ozone Rule

    Reports and Publications

    2002-01-01

    This paper focuses on the impact on gasoline price and supply when additional ozone non-attainment areas come under the new 8-hour ozone standard.

  20. Oak Ridge: Approaching 4 Million Safe Work Hours

    Energy.gov [DOE]

    Workers at URS | CH2M Oak Ridge (UCOR), the prime contractor for EM’s Oak Ridge cleanup, are approaching a milestone of 4 million safe work hours without a lost time away incident.

  1. Delayed Start or Cancellation of Business Hours | Argonne National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the hours of 6:30 a.m. to 6:30 p.m. should report to work as usual. Depending on their job duties and directives from their line management, some employees may be required to...

  2. Pay and Leave Administration and Hours of Duty

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2011-01-19

    The order establishes requirements and responsibilities for the management of pay, including overtime pay and compensatory time, leave administration, time and attendance reporting, and hours of duty. Cancels DOE O 322.1B and DOE O 535.1

  3. Pay and Leave Administration and Hours of Duty

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2005-01-14

    This Order establishes requirements and responsibilities for the management of pay, including overtime and compensatory time, leave administration, and hours of duty. Cancels DOE O 322.1A. Canceled by DOE O 322.1C.

  4. Balancing Authority Cooperation Concepts - Intra-Hour Scheduling

    SciTech Connect

    Hunsaker, Matthew; Samaan, Nader; Milligan, Michael; Guo, Tao; Liu, Guangjuan; Toolson, Jacob

    2013-03-29

    The overall objective of this study was to understand, on an Interconnection-wide basis, the effects intra-hour scheduling compared to hourly scheduling. Moreover, the study sought to understand how the benefits of intra-hour scheduling would change by altering the input assumptions in different scenarios. This report describes results of three separate scenarios with differing key assumptions and comparing the production costs between hourly scheduling and 10-minute scheduling performance. The different scenarios were chosen to provide insight into how the estimated benefits might change by altering input assumptions. Several key assumptions were different in the three scenarios, however most assumptions were similar and/or unchanged among the scenarios.

  5. Commercial and Residential Hourly Load Data Question | OpenEI...

    OpenEI (Open Energy Information) [EERE & EIA]

    Commercial and Residential Hourly Load Data Question Home Hi, I saw that you were actively replying to the questions on that page, so thought I'd contact you to ask about the data...

  6. EM River Corridor Cleanup Contractor Surpasses 7 Million Safe Hours

    Energy.gov [DOE]

    RICHLAND, Wash. – EM’s Richland Operations Office contractor Washington Closure Hanford (WCH) and its subcontractor employees achieved a significant safety milestone by working 7 million hours without a lost workday injury.

  7. DOE ZERH Virtual Office Hours (4 of 4)

    Energy.gov [DOE]

    TitleZERH Virtual Office Hours: Get the Answers You Need Quickly & EfficientlyDescriptionWhether you’re new to DOE Zero Energy Ready Home or have been involved for a few years, our partners...

  8. DOE ZERH Virtual Office Hours (2 of 4)

    Energy.gov [DOE]

    TitleZERH Virtual Office Hours: Get the Answers You Need Quickly & EfficientlyDescriptionWhether you’re new to DOE Zero Energy Ready Home or have been involved for a few years, our partners...

  9. DOE ZERH Virtual Office Hours (3 of 4)

    Energy.gov [DOE]

    TitleZERH Virtual Office Hours: Get the Answers You Need Quickly & EfficientlyDescriptionWhether you’re new to DOE Zero Energy Ready Home or have been involved for a few years, our partners...

  10. DOE ZERH Virtual Office Hours (1 of 4)

    Energy.gov [DOE]

    TitleZERH Virtual Office Hours: Get the Answers You Need Quickly & EfficientlyDescriptionWhether you’re new to DOE Zero Energy Ready Home or have been involved for a few years, our partners...

  11. Jefferson Lab Groups Encourage Digital Literacy Through Worldwide 'Hour

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Code' Campaign | Jefferson Lab Groups Encourage Digital Literacy Through Worldwide 'Hour of Code' Campaign Dana Cochran, Jefferson Lab staff member, helps students as they participate in a coding activity. Dana Cochran, Jefferson Lab staff member, helps students as they participate in a coding activity. Jefferson Lab Groups Encourage Digital Literacy Through Worldwide 'Hour of Code' Campaign To raise awareness of the need for digital literacy and a basic understanding of computer science,

  12. Ames Laboratory Scientists Receive Hours through DOE's INCITE Program | The

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ames Laboratory Ames Laboratory Scientists Receive Hours through DOE's INCITE Program Scientist Mark Gordon was awarded 200 million processor hours through the INCITE program to work on a research project utilizing Argonne National Laboratory's supercomputer. Gordon and his co-investigators will study the behaviors of liquids and their solutes specifically water and ionic liquids. For more information about the team's work with INCITE visit Argonne Leadership Computing Facility. January 12,

  13. Intra-Hour Dispatch and Automatic Generator Control Demonstration with

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar Forecasting | Department of Energy Intra-Hour Dispatch and Automatic Generator Control Demonstration with Solar Forecasting Intra-Hour Dispatch and Automatic Generator Control Demonstration with Solar Forecasting UCSD logo2.png The University of California at San Diego (UCSD) is leading a project that will reduce power system operation cost by providing a prediction of the generation fleet's behavior in real time for realistic photovoltaic penetration scenarios. APPROACH The primary

  14. Property:Oth sales (mwh) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2008 + 713 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - September 2008 + 886 + City of Detroit (Michigan) EIA Revenue and Sales - April 2008 + 400 + City of...

  15. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh...

    Energy Information Administration (EIA) (indexed site)

    ... 2016,1,"CO",27058,"High West Energy, Inc","Preliminary",".",".",".",".",0,"."... 2016,1,"FL",6455,"Duke Energy Florida, Inc","Preliminary",14.747,10.098...

  16. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh...

    Energy Information Administration (EIA) (indexed site)

    ... 2014,1,"CO",27058,"High West Energy, Inc","Final",".",".",".",".",0,".",".","... 2014,1,"FL",6455,"Duke Energy Florida, Inc","Final",6.619,6.641,0.284,0...

  17. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh...

    Energy Information Administration (EIA) (indexed site)

    ... 2015,1,"CO",27058,"High West Energy, Inc","Final",".",".",".",".",0,".",".","... 2015,1,"FL",6455,"Duke Energy Florida, Inc","Final",9.593,7.869,1.151,0...

  18. 100,000 hour design life of turbo compressor packages

    SciTech Connect

    1998-05-20

    Many turbomachinery manufacturers and operators typically quote 100,000 hours as a design limit for service life of turbo compressor components. The Pipeline Research Committee initiated this study to review the life limiting criteria for certain critical components and determine if the design target of 100,000 hours can be safely and reliably met or extended with special component management practices. The first phase of the project was to select the turbomachinery components that would be included in the review. Committee members were surveyed with a detailed questionnaire designed to identify critical components based on: high hours (e.g. at or approaching 100,000 hours) the most common engine types operated by the member organizations, and the components of greatest concern from a risk and expense point of view. The selection made covers a wide range of engine types that are of interest to most of the committee companies. This selection represents some 78% of the high hour units operated by the committee and includes components from GE Frame 3 and Frame 5, Solar Saturn, Rolls Royce Avon, and Cooper RT56 engines. The report goes into detail regarding the various damage mechanism which can be the main life limiting factor of the component; creep, fatigue, environmental attack, wear and microstructure instability. For each of the component types selected, the study identifies the life limiting criteria and outlines how the components may be managed for extended life. Many of the selected components can be reliably operated beyond 100,000 hours by following the management practices set out in the report.

  19. Making Wind Energy Predictable: New Profilers Provide Hourly Forecasts |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Wind Energy Predictable: New Profilers Provide Hourly Forecasts Making Wind Energy Predictable: New Profilers Provide Hourly Forecasts May 11, 2016 - 6:48pm Addthis Balancing the power grid is an art-or at least a scientific study in chaos-and the Energy Department is hoping wind energy can take a greater role in the act. Yet, the intermittency of wind-sometimes it's blowing, sometimes it's not-makes adding it smoothly to the nation's electrical grid a challenge. If wind

  20. Differential Angstrom model for predicting insolation from hours of sunshine

    SciTech Connect

    Yeboah-Amankwah, D.; Agyeman, K.

    1990-01-01

    The Angstrom model for predicting insolation is limited in scope because it gives equal weighting to sunshine hours recorded at any time of the day. The differential Angstrom model presented in this paper removes this limitation and relates insolation, q{sub j}, in the j{sup th} hour to the sunshine duration, n{sub j}, of the same period by the equation: q{sub j} = a{sub j} + b{sub j}. By regression analysis of monthly data, the set of constants a{sub j} and b{sub j} for each hour of each month of the year can be determined. Thus, using the appropriate set of a and b regression coefficients, any sunshine data can be transformed to insolation. The sum of the equation over a day gives the daily insolation from which monthly means can be calculated. The method has been applied to the 1986 and 1988 sunshine data recorded at the University of Papua New Guinea to predict the observed insolation to within 3.5%. The differential Angstrom method has applications in places which have much recorded data on hours of sunshine but have limited observed insolation data.

  1. Pay and Leave Administration and Hours of Duty

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2011-01-19

    The order establishes requirements and responsibilities for the management of pay, including overtime pay and compensatory time, leave administration, time and attendance reporting, and hours of duty. Admin Chg 1, dated 5-10-12, supersedes DOE O 322.1C.

  2. 20131201-1231_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2014-01-08

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Dec to 31 Dec 2013.

  3. 20140701-0731_Green Machine Florida Canyon Hourly Data

    SciTech Connect

    Thibedeau, Joe

    2014-07-31

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 July to 31 July 2014.

  4. 20140101-0131_Green Machine Florida Canyon Hourly Data

    SciTech Connect

    Thibedeau, Joe

    2014-02-03

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Jan to 31 Jan 2014.

  5. 20130501-20130531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    2013-06-18

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from May 2013

  6. 20140201-0228_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2014-03-03

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Feb to 28 Feb 2014.

  7. 20140601-0630_Green Machine Florida Canyon Hourly Data

    SciTech Connect

    Thibedeau, Joe

    2014-06-30

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 June to 30 June 2014.

  8. 20140501-0531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2014-06-02

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 May to 31 May 2014.

  9. 20131101-1130_Green Machine Florida Canyon Hourly Data

    SciTech Connect

    Thibedeau, Joe

    2013-12-02

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Nov to 30 Nov 2013.

  10. 20140301-0331_Green Machine Florida Canyon Hourly Data

    SciTech Connect

    Thibedeau, Joe

    2014-04-07

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Mar to 31 Mar 2014.

  11. 20131001-1031_Green Machine Florida Canyon Hourly Data

    SciTech Connect

    Thibedeau, Joe

    2013-11-05

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 Oct 2013 to 31 Oct 2013.

  12. 20130901-0930_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2013-10-25

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 September 2013 to 30 September 2013.

  13. 20130801-0831_Green Machine Florida Canyon Hourly Data

    SciTech Connect

    Vanderhoff, Alex

    2013-09-10

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 8/1/13 to 8/31/13.

  14. 20140501-0531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 May to 31 May 2014.

  15. 20140101-0131_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Jan to 31 Jan 2014.

  16. 20130501-20130531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from May 2013

  17. 20130901-0930_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 September 2013 to 30 September 2013.

  18. 20131001-1031_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 Oct 2013 to 31 Oct 2013.

  19. 20140301-0331_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Mar to 31 Mar 2014.

  20. 20131201-1231_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Dec to 31 Dec 2013.

  1. 20140701-0731_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 July to 31 July 2014.

  2. 20130801-0831_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 8/1/13 to 8/31/13.

  3. 20140201-0228_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Feb to 28 Feb 2014.

  4. 20140601-0630_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 June to 30 June 2014.

  5. 20131101-1130_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Nov to 30 Nov 2013.

  6. Mirant: Ambient 24 Hour SO2 Values: Model vs Monitor | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ambient 24 Hour SO2 Values: Model vs Monitor Mirant: Ambient 24 Hour SO2 Values: Model vs Monitor Docket No. EO-05-01: Mirant: Ambient 24 Hour SO2 Values: Model vs Monitor, March ...

  7. Analysis of clear hour solar irradiation for seven Canadian stations

    SciTech Connect

    Garrison, J.; Sahami, K.

    1995-12-31

    Hourly global and diffuse irradiation and corresponding surface meteorological data have been analyzed for the seven Canadian stations at Edmonton, Goose Bay, Montreal, Port Hardy, Resolute, Toronto, and Winnipeg. The variation of the most probable clear hour values of clearness index k{sub t}, diffuse index k{sub d}, direct beam index k{sub b}, and Angstrom turbidity coefficient {beta} with solar elevation, atmospheric precipitable water, and snow depth are obtained. Values of these quantities are presented which are consistent with the attenuation and scattering of solar radiation by the atmosphere which is expected. The most probable values of {beta} tend to be lower than the average values of {beta} recently reported by Gueymard. The data indicate a drift in the calibration of the instruments used for measurements of the irradiation data for the stations at Goose Bay and Resolute. The data for the other five stations indicate that the instrument calibration is maintained over the years of the data. 4 refs., 8 figs., 5 tabs.

  8. BioenergizeME Office Hours Webinar: Biomass Basics

    Energy.gov [DOE]

    Many students haven’t thought much about biomass as an option for generating electricity, transportation fuels, and other products. The Biomass Basics Webinar provides general information about bioenergy, its creation, and its potential uses, and is designed to assist teams competing in the 2016 BioenergizeME Infographic Challenge. This challenge, hosted by the U.S. Department of Energy’s Bioenergy Technologies Office (BETO), is a competition for high school students to learn about bioenergy, create infographics to present what they have learned, and share their infographics on social media. This webinar is part of the BioenergizeME Office Hours webinar series developed by BETO in conjunction with the 2016 BioenergizeME Infographic Challenge.

  9. Mirant: Case 67a: Units 3 & 4 & 5 at Max Load for 12 hours and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Case 67a: Units 3 & 4 & 5 at Max Load for 12 hours and at Min Load for 12 hours Mirant: Case 67a: Units 3 & 4 & 5 at Max Load for 12 hours and at Min Load for 12 hours Docket No. ...

  10. Scalable tuning of building models to hourly data

    SciTech Connect

    Garrett, Aaron; New, Joshua Ryan

    2015-03-31

    Energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Manual tuning requires a skilled professional, is prohibitively expensive for small projects, imperfect, non-repeatable, non-transferable, and not scalable to the dozens of sensor channels that smart meters, smart appliances, and cheap/ubiquitous sensors are beginning to make available today. A scalable, automated methodology is needed to quickly and intelligently calibrate building energy models to all available data, increase the usefulness of those models, and facilitate speed-and-scale penetration of simulation-based capabilities into the marketplace for actualized energy savings. The "Autotune'' project is a novel, model-agnostic methodology which leverages supercomputing, large simulation ensembles, and big data mining with multiple machine learning algorithms to allow automatic calibration of simulations that match measured experimental data in a way that is deployable on commodity hardware. This paper shares several methodologies employed to reduce the combinatorial complexity to a computationally tractable search problem for hundreds of input parameters. Furthermore, accuracy metrics are provided which quantify model error to measured data for either monthly or hourly electrical usage from a highly-instrumented, emulated-occupancy research home.

  11. Scalable tuning of building models to hourly data

    DOE PAGES [OSTI]

    Garrett, Aaron; New, Joshua Ryan

    2015-03-31

    Energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Manual tuning requires a skilled professional, is prohibitively expensive for small projects, imperfect, non-repeatable, non-transferable, and not scalable to the dozens of sensor channels that smart meters, smart appliances, and cheap/ubiquitous sensors are beginning to make available today. A scalable, automated methodology is needed to quickly and intelligently calibrate building energy models to all available data, increase the usefulness of those models, and facilitate speed-and-scale penetration of simulation-based capabilities into the marketplace for actualized energy savings. The "Autotune'' project is a novel, model-agnosticmore » methodology which leverages supercomputing, large simulation ensembles, and big data mining with multiple machine learning algorithms to allow automatic calibration of simulations that match measured experimental data in a way that is deployable on commodity hardware. This paper shares several methodologies employed to reduce the combinatorial complexity to a computationally tractable search problem for hundreds of input parameters. Furthermore, accuracy metrics are provided which quantify model error to measured data for either monthly or hourly electrical usage from a highly-instrumented, emulated-occupancy research home.« less

  12. Scalable Tuning of Building Models to Hourly Data

    SciTech Connect

    Garrett, Aaron; New, Joshua Ryan

    2015-01-01

    Energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Manual tuning requires a skilled professional, is prohibitively expensive for small projects, imperfect, non-repeatable, non-transferable, and not scalable to the dozens of sensor channels that smart meters, smart appliances, and cheap/ubiquitous sensors are beginning to make available today. A scalable, automated methodology is needed to quickly and intelligently calibrate building energy models to all available data, increase the usefulness of those models, and facilitate speed-and-scale penetration of simulation-based capabilities into the marketplace for actualized energy savings. The ``Autotune'' project is a novel, model-agnostic methodology which leverages supercomputing, large simulation ensembles, and big data mining with multiple machine learning algorithms to allow automatic calibration of simulations that match measured experimental data in a way that is deployable on commodity hardware. This paper shares several methodologies employed to reduce the combinatorial complexity to a computationally tractable search problem for hundreds of input parameters. Accuracy metrics are provided which quantify model error to measured data for either monthly or hourly electrical usage from a highly-instrumented, emulated-occupancy research home.

  13. Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005

    SciTech Connect

    Erdman, W.; Behnke, M.

    2005-11-01

    Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

  14. WIPP Workers Reach Two Million Man-Hours Without a Lost-Time...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Workers Reach Two Million Man-Hours Without a Lost-Time Accident CARLSBAD, N.M., February ... a safety milestone Feb. 19 by working two million man-hours without a lost-time accident. ...

  15. Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs October 19, 2015 - 12:38pm Addthis ICM Inc. announced ...

  16. BioenergizeME Office Hours Webinar: Must-Know Tips for the 2016...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BioenergizeME Office Hours Webinar: Must-Know Tips for the 2016 BioenergizeME Infographic Challenge BioenergizeME Office Hours Webinar: Must-Know Tips for the 2016 BioenergizeME ...

  17. EPA ENERGY STAR Webcast: Portfolio Manager Office Hours, Focus Topic: Sharing Forward and Transfer Ownership

    Energy.gov [DOE]

    Portfolio Manager "Office Hours" is a live webinar that gives all users an opportunity to ask their questions directly to EPA in an open forum. In 2014, Office Hours will be held once a month. We...

  18. Is the hourly data I get from NREL's PV Watts program adjusted...

    OpenEI (Open Energy Information) [EERE & EIA]

    Is the hourly data I get from NREL's PV Watts program adjusted for daylight savings time. Home I take the hourly AC output numbers and apply them to a program I built that assigns...

  19. Hacking Away at Soft Costs: 24-Hour Coding Event Focuses on Expanding...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hacking Away at Soft Costs: 24-Hour Coding Event Focuses on Expanding Solar Market Hacking Away at Soft Costs: 24-Hour Coding Event Focuses on Expanding Solar Market May 7, 2014 - ...

  20. Kenya Hourly DNI, GHI and Diffuse Solar Data - Datasets - OpenEI...

    OpenEI (Open Energy Information) [EERE & EIA]

    Kenya Hourly DNI, GHI and Diffuse Solar Data Abstract Each data file is a set of hourly values of solar radiation (DNI, GHI and diffuse) and meteorological elements for a 1-year...

  1. EPA ENERGY STAR Webcast- Portfolio Manager Office Hours, Focus Topic: Weather Data and Metrics

    Energy.gov [DOE]

    Portfolio Manager "Office Hours" is a live webinar that gives all users an opportunity to ask their questions directly to EPA in an open forum. In 2014, Office Hours will be held once a month. We...

  2. Energy Production Demonstrator for Megawatt Proton Beams

    SciTech Connect

    Pronskikh, Vitaly S.; Mokhov, Nikolai V.; Novitski, Igor; Tyutyunnikov, Sergey I.

    2014-07-16

    A preliminary study of the Energy Production Demonstrator (EPD) concept - a solid heavy metal target irradiated by GeV-range intense proton beams and producing more energy than consuming - is carried out. Neutron production, fission, energy deposition, energy gain, testing volume and helium production are simulated with the MARS15 code for tungsten, thorium, and natural uranium targets in the proton energy range 0.5 to 120 GeV. This study shows that the proton energy range of 2 to 4 GeV is optimal for both a natU EPD and the tungsten-based testing station that would be the most suitable for proton accelerator facilities. Conservative estimates, not including breeding and fission of plutonium, based on the simulations suggest that the proton beam current of 1 mA will be sufficient to produce 1 GW of thermal output power with the natU EPD while supplying < 8% of that power to operate the accelerator. The thermal analysis shows that the concept considered has a problem due to a possible core meltdown; however, a number of approaches (a beam rastering, in first place) are suggested to mitigate the issue. The efficiency of the considered EPD as a Materials Test Station (MTS) is also evaluated in this study.

  3. megatons to megawatts | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Under U.S.-Russia Partnership, Final Shipment of Fuel Converted From 20,000 Russian Nuclear Warheads Arrives in United States and Will Be Used for U.S. Electricity WASHINGTON, D.C. ...

  4. Megawatt Energy Systems | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Systems Place: Zionsville, Indiana Sector: Renewable Energy, Services, Solar, Wind energy Phone Number: 317.797.3381 Website: www.mwenergysystems.com Coordinates:...

  5. Multi-Megawatt Power System Trade Study

    SciTech Connect

    Longhurst, Glen Reed; Schnitzler, Bruce Gordon; Parks, Benjamin Travis

    2001-11-01

    As part of a larger task, the Idaho National Engineering and Environmental Laboratory (INEEL) was tasked to perform a trade study comparing liquid-metal cooled reactors having Rankine power conversion systems with gas-cooled reactors having Brayton power conversion systems. This report summarizes the approach, the methodology, and the results of that trade study. Findings suggest that either approach has the possibility to approach the target specific mass of 3-5 kg/kWe for the power system, though it appears either will require improvements to achieve that. Higher reactor temperatures have the most potential for reducing the specific mass of gas-cooled reactors but do not necessarily have a similar effect for liquid-cooled Rankine systems. Fuels development will be the key to higher reactor operating temperatures. Higher temperature turbines will be important for Brayton systems. Both replacing lithium coolant in the primary circuit with gallium and replacing potassium with sodium in the power loop for liquid systems increase system specific mass. Changing the feed pump turbine to an electric motor in Rankine systems has little effect. Key technologies in reducing specific mass are high reactor and radiator operating temperatures, low radiator areal density, and low turbine/generator system masses. Turbine/generator mass tends to dominate overall power system mass for Rankine systems. Radiator mass was dominant for Brayton systems.

  6. Adaptive control system for pulsed megawatt klystrons

    DOEpatents

    Bolie, Victor W.

    1992-01-01

    The invention provides an arrangement for reducing waveform errors such as errors in phase or amplitude in output pulses produced by pulsed power output devices such as klystrons by generating an error voltage representing the extent of error still present in the trailing edge of the previous output pulse, using the error voltage to provide a stored control voltage, and applying the stored control voltage to the pulsed power output device to limit the extent of error in the leading edge of the next output pulse.

  7. Nonprofit Organizations: Have Your Los Alamos Employees/Retirees Log Hours

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    in VolunteerMatch Nonprofit Organizations: Have Your Los Alamos Employees/Retirees Log Hours in VolunteerMatch Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:November 2, 2016 all issues All Issues » submit Nonprofit Organizations: Have Your Los Alamos Employees/Retirees Log Hours in VolunteerMatch Lab employees and retirees should log their VolunteerMatch hours to benefit local nonprofits. March 1, 2013 Volunteers help fill

  8. DOE Awards 265 Million Hours of Supercomputing Time to Advance Leading

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Scientific Research Projects | Department of Energy 265 Million Hours of Supercomputing Time to Advance Leading Scientific Research Projects DOE Awards 265 Million Hours of Supercomputing Time to Advance Leading Scientific Research Projects January 17, 2008 - 10:38am Addthis WASHINGTON, DC -The U.S. Department of Energy's (DOE) Office of Science today announced that 265 million processor-hours were awarded to 55 scientific projects, the largest amount of supercomputing resource awards

  9. BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    researching their selected topics, developing their infographics, and designing effective social media campaigns. This webinar is part of the BioenergizeME Office Hours webinar...

  10. Museum Hours

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    provide a listening-assistance system and translations of the script in French and Spanish. Sorry, a local shop has closed The Otowi Bookstore and Museum Shop, which had been...

  11. Saran-Chloropel plastic suit worker dose rates from airborne tritium exposure - first exposure hour

    SciTech Connect

    Edwards, T.

    1993-04-20

    Radiological Engineering was requested to develop Tritium Stay Time Chart dose rates for the 9 mil Saran-Chloropel (CPE) plastic suit for a period of one hour or less. Assumptions utilized in previous calculations were revised to better address the first hour of exposure in the suit for emergency situations.

  12. BPA-2011-00834-FOIA Correspondence

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    following: 1. Data associated with hourly load, thermal generation, wind generation and hydro generation in the BPA region in MWh. 2. Data to span between 112007 and 12312010...

  13. Hydropower Generators Will Deliver New Energy from an Old Dam

    Energy.gov [DOE]

    City of Tacoma expands hydroelectric dam to produce more than 23,000 megawatt hours of electricity annually.

  14. EERE Success Story—Hydropower Generators Will Deliver New Energy from an Old Dam

    Office of Energy Efficiency and Renewable Energy (EERE)

    City of Tacoma expands hydroelectric dam to produce more than 23,000 megawatt hours of electricity annually.

  15. DOE's Office of Science Awards 95 Million Hours of Supercomputing Time to

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advance Research in Science, Academia and Industry | Department of Energy 95 Million Hours of Supercomputing Time to Advance Research in Science, Academia and Industry DOE's Office of Science Awards 95 Million Hours of Supercomputing Time to Advance Research in Science, Academia and Industry January 8, 2007 - 9:59am Addthis WASHINGTON, D.C. - The U.S. Department of Energy's (DOE) Office of Science announced today that 45 projects were awarded a total of 95 million hours of computing time on

  16. EERE Success Story-Pilot Plant Completes Two 1,000-Hour Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Performance Runs | Department of Energy Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs EERE Success Story-Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs January 22, 2016 - 11:01am Addthis ICM Inc. announced successful completion of two 1,000-hour performance runs of its patent-pending Generation 2.0 Co-Located Cellulosic Ethanol process at its cellulosic ethanol pilot plant in St. Joseph, Missouri. This is an important step toward the commercialization of

  17. SunShot Announces 24-Hour Solar Data Hackathon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Announces 24-Hour Solar Data Hackathon SunShot Announces 24-Hour Solar Data Hackathon May 8, 2014 - 11:45am Addthis SunShot will host a 24-hour solar data hackathon at the 2014 SunShot Grand Challenge Summit. Learn more over at the EERE blog and register here. Addthis Related Articles Douglas Hitching (left), CEO of Silicon Solar Solutions and Henry Chung, LG, talk during a one-on-one networking session at the National Renewable Energy Laboratory's Industry Growth Forum in 2012. The SunShot

  18. Jefferson Lab Group Gets 10 Million Hours of Supercomputer Time | Jefferson

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lab Group Gets 10 Million Hours of Supercomputer Time Jefferson Lab Group Gets 10 Million Hours of Supercomputer Time January 25, 2007 XT3 The Cray XT3 at DOE's Oak Ridge National Laboratory. Newport News, Va. - A project led by the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility's Theory Center has been allotted 10 million hours of processing time by DOE's 2007 INCITE program on the Cray XT3 located at Oak Ridge National Laboratory. According to Jefferson Lab

  19. Hourly Wage and Fringe Benefit Rates FY16 WAGE SUPPLEMENT Issued 10-01-15

    National Nuclear Security Administration (NNSA)

    Supplement to PLAs Hourly Wage and Fringe Benefit Rates FY16 WAGE SUPPLEMENT Issued 10-01-15 Craft Agmt. Type Classification (Alphabetical) BN Job Code Current Hourly Wage Rates (Use most recent 04/01/15 Re- Allocation (increase HW emploee portion) (letter dated 5/1/15 states for April hours) 10/01/15 (Allocation $1.00 wages) $0.00 $1.00 MEE Maintenance Engineer I (ME-I) 037502 28.26 29.26 MEE Maintenance Engineer II (ME-II) 037503 32.40 33.40 MEE Lead Maintenance Engineer (LME) $1.50 over ME-II

  20. EPA ENERGY STAR Webinar: Portfolio Manager Office Hours, Focus Topic: Understanding Energy Metrics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Portfolio Manager "Office Hours" is a live webinar that gives all users an opportunity to ask their questions directly to EPA in an open forum. We will plan to spend the first 20-30 minutes of each...

  1. EPA ENERGY STAR Webcast: Portfolio Manager Office Hours, Focus Topic: Responding to a Data Request

    Office of Energy Efficiency and Renewable Energy (EERE)

    Portfolio Manager "Office Hours" is a live webinar that gives all users an opportunity to ask their questions directly to EPA in an open forum. We will plan to spend the first 20-30 minutes of each...

  2. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.34

    Energy.gov [DOE]

    Provides required documentation that Hourly Analysis Program (HAP) version 4.34 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  3. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.31

    Energy.gov [DOE]

    Provides required documentation that Hourly Analysis Program (HAP) version 4.31 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  4. Wind Power Plants and System Operation in the Hourly Time Domain...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    * NRELCP-500-33955 Wind Power Plants and System Operation in the Hourly Time Domain Preprint M. Milligan To be presented at WINDPOWER 2003 Austin, Texas May 18-21, 2003 National ...

  5. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.41

    Office of Energy Efficiency and Renewable Energy (EERE)

    Provides required documentation that Hourly Analysis Program (HAP) version 4.41 meets Internal Revenue Code §179D, Notice 2006-52, dated April 10, 2009, for calculating commercial building energy and power cost savings.

  6. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.40

    Office of Energy Efficiency and Renewable Energy (EERE)

    Provides required documentation that Hourly Analysis Program (HAP) version 4.40 meets Internal Revenue Code §179D, Notice 2006-52, dated April 10, 2009, for calculating commercial building energy and power cost savings.

  7. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.50

    Office of Energy Efficiency and Renewable Energy (EERE)

    Provides required documentation that Hourly Analysis Program (HAP) version 4.50 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  8. Department of Energy’s Paducah Site Reaches Million-Hour Safety Milestone

    Energy.gov [DOE]

    PADUCAH, KY – The U.S. Department of Energy’s Paducah Site has reached a million hours of safe work toward completing cleanup objectives to reduce environmental risk.

  9. Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Guide to the 2016 BioenergizeME Infographic Challenge Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge Webinar: BioenergizeME ...

  10. Y-12 Construction hits one million-hour mark without a lost-time...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Construction hits one ... Y-12 Construction hits one million-hour mark without a lost-time accident Posted: August 30, 2012 - 5:30pm The B&W Y-12 Direct-Hire Construction team has ...

  11. Paducah Site Exceeds 2.5 Million Hours Without Lost Workdays

    Energy.gov [DOE]

    This month, EM’s cleanup contractor at the Paducah site celebrated surpassing 2.5 million work hours without lost workdays resulting from job-related injury or illness.

  12. Earth Hour 2009: March 28, 8:30-9:30 PM Local Time | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This global event asks everyone to "go dark" for an hour to make a powerful statement of ... Residents are requested to turn off their lights (and other energy-consuming appliances). ...

  13. Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs

    Energy.gov [DOE]

    ICM Inc. announced successful completion of two 1,000-hour performance runs of its patent-pending Generation 2.0 Co-Located Cellulosic Ethanol process at its cellulosic ethanol pilot plant in St....

  14. Workers at Paducah Site Exceed 1.5 Million Hours Without Lost-Time Injury, Illness

    Energy.gov [DOE]

    PADUCAH, Ky. – Workers with Paducah site infrastructure contractor Swift & Staley, Inc. recently exceeded 1.5 million hours without lost time away from work due to injury or illness, representing nine years of safe performance.

  15. EPA ENERGY STAR Webcast- Portfolio Manager® Office Hours, Focus Topic: Portfolio Manager 2015 Priorities

    Energy.gov [DOE]

    Portfolio Manager "Office Hours" is a live webinar that gives all users an opportunity to ask their questions directly to EPA in an open forum. We will plan to spend the first 20-30 minutes of each...

  16. Insights from Smart Meters: The Potential for Peak Hour Savings from Behavior-Based Programs

    Energy.gov [DOE]

    This report focuses on one example of the value that analysis of this data can provide: insights into whether BB efficiency programs have the potential to provide peak-hour energy savings. This is important because there is increasing interest in using BB programs as a stand-alone peak reduction program, as well as integrating behavior-based strategies into residential incentive-based DR programs and time-based retail rates as a way to augment peak-hour energy savings.

  17. Computer Code Gives Astrophysicists First Full Simulation of Star's Final Hours

    ScienceCinema

    Andy Nonaka

    2010-01-08

    The precise conditions inside a white dwarf star in the hours leading up to its explosive end as a Type Ia supernova are one of the mysteries confronting astrophysicists studying these massive stellar explosions. But now, a team of researchers, composed of three applied mathematicians at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory and two astrophysicists, has created the first full-star simulation of the hours preceding the largest thermonuclear explosions in the universe.

  18. Use of annual profiles of hourly data for analyzing DOE-2 building simulation program results

    SciTech Connect

    Haberl, J.; MacDonald, M.; Eden, A.

    1987-06-01

    This paper presents an approach for improving potential building energy analyses using the DOE-2 computer program. The approach makes use of the ability to generate hour-by-hour data results from DOE-2 simulations, and uses a plotting package to generate 3-dimensional annual profiles of the hour-by-hour data for specific quantities of interest. The annual profiles of hourly data provide a graphical check of voluminous data in a condensed form allowing several different types of data to be plotted over a year. These profiles provide the user the opportunity to: check simulation results, check potential problems with simulations, provide graphs to customers who may want a simpler presentation, visualize interactions in simulations, and understand where weak areas may exist in simulations. Future analysis, using such profiles, may allow methods to be developed to check consistency between simulations, check for potential errors in modeling buildings, and better understand how simulations compared with data from real buildings. 14 refs., 24 figs.

  19. Sub-Hour Solar Data for Power System Modeling From Static Spatial Variability Analysis: Preprint

    SciTech Connect

    Hummon, M.; Ibanez, E.; Brinkman, G.; Lew, D.

    2012-12-01

    High penetration renewable integration studies need high quality solar power data with spatial-temporal correlations that are representative of a real system. This paper will summarize the research relating sequential point-source sub-hour global horizontal irradiance (GHI) values to static, spatially distributed GHI values. This research led to the development of an algorithm for generating coherent sub-hour datasets that span distances ranging from 10 km to 4,000 km. The algorithm, in brief, generates synthetic GHI values at an interval of one-minute, for a specific location, using SUNY/Clean Power Research, satellite-derived, hourly irradiance values for the nearest grid cell to that location and grid cells within 40 km.

  20. DOE Publishes 20K Hour Testing Results for 2008 GATEWAY Bridge Installation

    Energy Saver

    | Department of Energy K Hour Testing Results for 2008 GATEWAY Bridge Installation DOE Publishes 20K Hour Testing Results for 2008 GATEWAY Bridge Installation October 9, 2014 - 12:00pm Addthis The U.S. Department of Energy has released a report on the longer-term performance of an LED lighting system that was installed on the I-35W Bridge in Minneapolis in September 2008 and represents one of the country's oldest continuously operated exterior LED lighting installations. The report is a

  1. Hacking Away at Soft Costs: 24-Hour Coding Event Focuses on Expanding Solar

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Market | Department of Energy Hacking Away at Soft Costs: 24-Hour Coding Event Focuses on Expanding Solar Market Hacking Away at Soft Costs: 24-Hour Coding Event Focuses on Expanding Solar Market May 7, 2014 - 2:45pm Addthis Douglas Hitching (left), CEO of Silicon Solar Solutions and Henry Chung, LG, talk during a one-on-one networking session at the National Renewable Energy Laboratory's Industry Growth Forum in 2012. The SunShot Initiative and the National Renewable Energy Laboratory are

  2. Computer Code Gives Astrophysicists First Full Simulation of Star's Final Hours

    ScienceCinema

    Applin, Bradford

    2013-05-29

    The precise conditions inside a white dwarf star in the hours leading up to its explosive end as a Type Ia supernova are one of the mysteries confronting astrophysicists studying these massive stellar explosions. But now, a team of researchers, composed of three applied mathematicians at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory and two astrophysicists, has created the first full-star simulation of the hours preceding the largest thermonuclear explosions in the universe. http://www.lbl.gov/cs/Archive/news091509.html

  3. Y-12 Construction hits one million-hour mark without a lost-time accident |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Y-12 National Security Complex Construction hits one ... Y-12 Construction hits one million-hour mark without a lost-time accident Posted: August 30, 2012 - 5:30pm The B&W Y-12 Direct-Hire Construction team has worked one million hours, covering a 633-day period, without a lost-time injury. Some 285 people including building trade crafts, non-manual staff and escorts worked without a lost-time accident during this period. The Construction team's last lost workday was in September 2010. A

  4. SHINES - the Answer to 24-Hour Solar Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SHINES - the Answer to 24-Hour Solar Energy SHINES - the Answer to 24-Hour Solar Energy May 6, 2016 - 4:27pm Addthis Austin Energy – Mueller development<br /> SHINES is a funding program from the Department of Energy’s SunShot Initiative Austin Energy - Mueller development SHINES is a funding program from the Department of Energy's SunShot Initiative As part of the Grid Modernization Initiative, EERE recently announced $18 million in funding for six new projects that could make

  5. BioenergizeME Office Hours Webinar: An Overview of Bioenergy and the 2017

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BioenergizeME Infographic Challenge | Department of Energy BioenergizeME Office Hours Webinar: An Overview of Bioenergy and the 2017 BioenergizeME Infographic Challenge BioenergizeME Office Hours Webinar: An Overview of Bioenergy and the 2017 BioenergizeME Infographic Challenge November 17, 2016 4:00PM to 5:00PM EST Bring renewable energy science into the classroom and ENERGIZE your curriculum with the U.S. Department of Energy Bioenergy Technologies Office's (BETO's) 2017 BioenergizeME

  6. Webinar: 20K Hour GATEWAY Testing Results for I-35W Bridge | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 20K Hour GATEWAY Testing Results for I-35W Bridge Webinar: 20K Hour GATEWAY Testing Results for I-35W Bridge The U.S. Department of Energy has released a GATEWAY Demonstration report on the longer-term performance of an LED lighting system that was installed on the I-35W Bridge in Minneapolis in September 2008 and represents one of the country's oldest continuously operated exterior LED lighting installations. Prior to installation, two of the LED luminaires were tested, along with a

  7. Tax Deduction Qualified Software: Hourly Analysis Program Version 4.91

    Office of Energy Efficiency and Renewable Energy (EERE)

    Provides required documentation that the Hourly Analysis Program (HAP) version 4.91 meets Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements.

  8. Tax Deduction Qualified Software: Hourly Analysis Program Version 4.90

    Office of Energy Efficiency and Renewable Energy (EERE)

    Provides required documentation that the Hourly Analysis Program (HAP) version 4.90 meets Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements.

  9. Six- and three-hourly meteorological observations from 223 USSR stations

    SciTech Connect

    Razuvaev, V.N.; Apasova, E.B.; Martuganov, R.A.; Kaiser, D.P.

    1995-04-01

    This document describes a database containing 6- and 3-hourly meteorological observations from a 223-station network of the former Soviet Union. These data have been made available through cooperation between the two principal climate data centers of the United States and Russia: the National Climatic Data Center (NCDC), in Asheville, North Carolina, and the All-Russian Research Institute of Hydrometeorological Information -- World Data Centre (RIHMI-WDC) in Obninsk. Station records consist of 6- and 3-hourly observations of some 24 meteorological variables including temperature, weather type, precipitation amount, cloud amount and type, sea level pressure, relative humidity, and wind direction and speed. The 6-hourly observations extend from 1936 to 1965; the 3-hourly observations extend from 1966 through the mid-1980s (1983, 1984, 1985, or 1986; depending on the station). These data have undergone extensive quality assurance checks by RIHMI-WDC, NCDC, and the Carbon Dioxide Information Analysis Center (CDIAC). The database represents a wealth of meteorological information for a large and climatologically important portion of the earth`s land area, and should prove extremely useful for a wide variety of regional climate change studies. These data are available free of charge as a numeric data package (NDP) from CDIAC. The NDP consists of this document and 40 data files that are available via the Internet or on 8mm tape. The total size of the database is {approximately}2.6 gigabytes.

  10. Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs

    Energy.gov [DOE]

    ICM Inc. announced successful completion of two 1,000-hour performance runs of its patent-pending Generation 2.0 Co-Located Cellulosic Ethanol process at its cellulosic ethanol pilot plant in St. Joseph, Missouri. This is an important step toward the commercialization of cellulosic ethanol from switchgrass and energy sorghum.

  11. West Valley Demonstration Project Contractor Reaches 2 Million Safe Work Hours

    Office of Energy Efficiency and Renewable Energy (EERE)

    WEST VALLEY, N.Y. – EM’s West Valley Demonstration Project (WVDP) contractor CH2M HILL BWXT West Valley (CHBWV) and its subcontractors achieved this month 2 million safe work hours without a lost-time accident over the past 30 months

  12. Brighter Future: A Study on Solar in U.S. Schools

    Energy.gov [DOE]

    In a first-of-its-kind report tracking the use of solar energy at K-12 schools in the United States, The Solar Foundation has developed the most comprehensive understanding to date of how schools are using and financing solar energy and the potential for still more schools to benefit from the technology. According to the report, there are currently 3,752 K-12 schools with solar installations, meaning nearly 2.7 million students attend schools with solar energy systems. These PV systems have a combined capacity of 490 megawatts (MW), and generate roughly 642,000 megawatt-hours (MWh) of electricity each year, equivalent to $77.8 million worth of utility bills and enough clean, renewable energy to offset 50 million gallons of gasoline. Solar potential on schools remains largely untapped. Of the 125,000 K-12 schools in the country, up to 72,000 schools (60%) can "go solar" cost-effectively. Approximately 450 individual schools districts have the potential to save more than $1 million over 30 years by installing a solar PV system.

  13. Property:Building/SPPurchasedEngyNrmlYrMwhYrPellets | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden...

  14. Property:Building/SPPurchasedEngyForPeriodMwhYrTownGas | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden...

  15. Property:Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas...

    OpenEI (Open Energy Information) [EERE & EIA]

    YrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  16. Property:Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas...

    OpenEI (Open Energy Information) [EERE & EIA]

    YrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  17. Total Cost Per MwH for all common large scale power generation...

    OpenEI (Open Energy Information) [EERE & EIA]

    out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs...

  18. Electric rate that shifts hourly may foretell spot-market kWh

    SciTech Connect

    Springer, N.

    1985-11-25

    Four California industrial plants have cut their electricity bills up to 16% by shifting from the traditional time-of-use rates to an experimental real-time program (RTP) that varies prices hourly. The users receive a price schedule reflecting changing generating costs one day in advance to encourage them to increase power consumption during the cheapest time periods. Savings during the pilot program range between $11,000 and $32,000 per customer. The hourly cost breakdown encourages consumption during the night and early morning. The signalling system could be expanded to cogenerators and independent small power producers. If an electricity spot market develops, forecasters think a place on the stock exchanges for future-delivery contracts could develop in the future.

  19. Free-Piston Stirling Engine/linear alternator 1000-hour endurance test

    SciTech Connect

    Rauch, J.; Dochat, G.

    1985-03-01

    The Free-Piston Stirling Engine (FPSE) has the potential to be a long-lived, highly reliable, power conversion device attractive for many product applications such as space, residential or remote-site power. The purpose of endurance testing the FPSE was to demonstrate its potential for long life. The endurance program was directed at obtaining 1000 operational hours under various test conditions: low power, full stroke, duty cycle and stop/start. Critical performance parameters were measured to note any change and/or trend. Inspections were conducted to measure and compare critical seal/bearing clearances. The engine performed well throughout the program, completing more than 1100 hours. Hardware inspection, including the critical clearances, showed no significant change in hardware or clearance dimensions. The performance parameters did not exhibit any increasing or decreasing trends. The test program confirms the potential for long-life FPSE applications.

  20. Job Code Description Hourly Wage TR-I Job Code TR I Wage TR-II

    National Nuclear Security Administration (NNSA)

    17 031007 Firefighter/CIC/EMT $33.13 Engineer/CIC/EMT $19.76 Engineer/CIC/EMT $35.99 Chiefs Aide/CIC/EMT $19.76 Chiefs Aide/CIC/EMT $35.99 Lieutenant/CIC/EMT $20.99 Lieutenant/CIC/EMT $38.21 Captain/CIC/EMT $22.23 Captain/CIC/EMT $40.44 Assistant Chief/CIC/EMT $25.42 Assistant Chief/CIC/EMT $46.18 FP Tech/CIC/EMT $21.13 031019 FP Tech/CIC/EMT $38.47 031049 FP Captain/CIC/EMT $23.60 FP Captain/CIC/EMT $42.91 56-HOUR EMT & HAZ $1.11 10-HOUR EMT & HAZ $2.00 031047 Firefighter/CIC/EMT/HAZ

  1. Job Code Description Hourly Wage TR-I Job Code TR I Wage TR-II

    National Nuclear Security Administration (NNSA)

    71 031007 Firefighter/CIC/EMT $33.67 Engineer/CIC/EMT $20.30 Engineer/CIC/EMT $36.53 Chiefs Aide/CIC/EMT $20.30 Chiefs Aide/CIC/EMT $36.53 Lieutenant/CIC/EMT $21.53 Lieutenant/CIC/EMT $38.75 Captain/CIC/EMT $22.77 Captain/CIC/EMT $40.98 Assistant Chief/CIC/EMT $25.96 Assistant Chief/CIC/EMT $46.72 FP Tech/CIC/EMT $21.67 031019 FP Tech/CIC/EMT $39.01 031049 FP Captain/CIC/EMT $24.14 FP Captain/CIC/EMT $43.45 56-HOUR EMT & HAZ $1.11 10-HOUR EMT & HAZ $2.00 031047 Firefighter/CIC/EMT/HAZ

  2. SolOPT: PV and Solar Hot Water Hourly Simulation Software Tool - Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Innovation Portal Solar Photovoltaic Solar Photovoltaic Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search SolOPT: PV and Solar Hot Water Hourly Simulation Software Tool National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication Using SolOPT (835 KB) Technology Marketing Summary In order to increase the speed and scale of Renewable Energy (RE) solar project deployment on buildings, energy savings

  3. Solar Reserve Methodology for Renewable Energy Integration Studies Based on Sub-Hourly Variability Analysis: Preprint

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Reserve Methodology for Renewable Energy Integration Studies Based on Sub-Hourly Variability Analysis Preprint E. Ibanez, G. Brinkman, M. Hummon, and D. Lew To be presented at the 2nd Annual International Workshop on Integration of Solar Power into Power Systems Conference Lisbon, Portugal November 12-13, 2012 Conference Paper NREL/CP-5500-56169 August 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor

  4. BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    December 10, 2015 BioenergizeME Office Hours Integrating Bioenergy into the 9 th__ 12 th Grade Classroom Alexis Martin Knauss Fellow Bioenergy Technologies Office U.S. Department of Energy Shannon Zaret Contractor, The Hannon Group Bioenergy Technologies Office U.S. Department of Energy 2 | Bioenergy Technologies Office Agenda 1. Overview Of Energy Literacy 2. Overview of Next Generation Science Standards 3. Bioenergy Basics 5. Incorporation of Bioenergy into the Classroom 4. 2016 BioenergizeME

  5. BioenergizeME Office Hours: Guide to the 2016 BioenergizeME Infographic Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    October 15, 2015 BioenergizeME Office Hours Guide to the 2016 BioenergizeME Infographic Challenge Shannon Zaret Communications Specialist, The Hannon Group Contractor to the U.S. Department of Energy's Bioenergy Technologies Office 2 | Bioenergy Technologies Office | Bioenergy Technologies Office Agenda * Overview * Research Topic Areas And Prompts * Research Resources * Infographic Resources * Rubric * Social Media Campaign * Awards * Registration * Resources for Educators * Questions 3 |

  6. Supercomputing Award of 5.78 Billion Hours to 55 Computational Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Projects | Argonne Leadership Computing Facility Supercomputing Award of 5.78 Billion Hours to 55 Computational Research Projects Author: ALCF Staff November 14, 2016 Facebook Twitter LinkedIn Google E-mail Printer-friendly version LEMONT, Ill., Nov. 14, 2016-The U.S. Department of Energy's Office of Science announced 55 projects with high potential for accelerating discovery through its Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. These awards

  7. Question/comment: An estimate of the direct productive labor hours (DPLH) per l

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Question/comment: An estimate of the direct productive labor hours (DPLH) per labor category is not provided in the Request for Proposal for DE-SOL-0005388. Will the Government provide such information so that Offerors may develop a responsive proposal? Response: Historical data reflecting full time equivalent (FTE) support personnel by labor category is provided in Section J.9, Attachment D of the RFP in the table titled Position Qualifications. Each Offeror is expected to propose the labor

  8. PPPL team wins 80 million processor hours on nation's fastest supercomputer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    | Princeton Plasma Physics Lab team wins 80 million processor hours on nation's fastest supercomputer By John Greenwald January 26, 2016 Tweet Widget Google Plus One Share on Facebook Model of colliding magnetic fields before magnetic reconnection. (Model by Will Fox courtesy of Physical Review Letters 113, 105003 2014) Model of colliding magnetic fields before magnetic reconnection. (Model by Will Fox courtesy of Physical Review Letters 113, 105003 2014) The U.S Department of Energy (DOE)

  9. PPPL team wins 80 million processor hours on nation's fastest supercomputer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    | Princeton Plasma Physics Lab team wins 80 million processor hours on nation's fastest supercomputer By John Greenwald January 26, 2016 Tweet Widget Google Plus One Share on Facebook Model of colliding magnetic fields before magnetic reconnection. (Model by Will Fox courtesy of Physical Review Letters 113, 105003 2014) Model of colliding magnetic fields before magnetic reconnection. (Model by Will Fox courtesy of Physical Review Letters 113, 105003 2014) The U.S Department of Energy (DOE)

  10. Optimizing hourly hydro operations at the Salt Lake City Area integrated projects

    SciTech Connect

    Veselka, T.D.; Hamilton, S.; McCoy, J.

    1995-06-01

    The Salt Lake City Area (SLCA) office of the Western Area Power Administration (Western) is responsible for marketing the capacity and energy generated by the Colorado Storage, Collbran, and Rio Grande hydropower projects. These federal resources are collectively called the Salt Lake City Area Integrated Projects (SLCA/IP). In recent years, stringent operational limitations have been placed on several of these hydropower plants including the Glen Canyon Dam, which accounts for approximately 80% of the SLCA/IP resources. Operational limitations on SLCA/IP hydropower plants continue to evolve as a result of decisions currently being made in the Glen Canyon Dam Environmental Impact Statement (EIS) and the Power Marketing EIS. To analyze a broad range of issues associated with many possible future operational restrictions, Argonne National Laboratory (ANL), with technical assistance from Western has developed the Hydro LP (Linear Program) Model. This model simulates hourly operations at SLCA/IP hydropower plants for weekly periods with the objective of maximizing Western`s net revenues. The model considers hydropower operations for the purpose of serving SLCA firm loads, loads for special projects, Inland Power Pool (IPP) spinning reserve requirements, and Western`s purchasing programs. The model estimates hourly SLCA/IP generation and spot market activities. For this paper, hourly SLCA/IP hydropower plant generation is simulated under three operational scenarios and three hydropower conditions. For each scenario an estimate of Western`s net revenue is computed.

  11. Optimizing hourly hydro operations at the Salt Lake City Area Integrated Projects

    SciTech Connect

    Veselka, T.D.; Hamilton, S.; McCoy, J.

    1995-10-01

    The Salt Lake City Area (SLCA) office of the Western Area Power Administration (Western) is responsible for marketing the capacity and energy generated by the Colorado River Storage, Collbran, and Rio Grande hydropower projects. These federal resources are collectively called the Salt Lake City Area Integrated Projects (SLCA/IP). In recent years, stringent operational limitations have been placed on several of these hydropower plants including the Glen Canyon Dam, which accounts for approximately 80% of the SLCA/IP resources. Operational limitations on SLCA/IP hydropower plants continue to evolve as a result of decisions currently being made in the Glen Canyon Dam Environmental Impact Statement (EIS) and the Power Marketing EIS. The Hydro LP (Linear Program) model, which was developed by Argonne National Laboratory (ANL), was used to analyze a broad range of issues associated with many possible future operational restrictions at SLCA/IP power plants. With technical assistance from Western, the Hydro LP model was configured to simulate hourly power plant operations for weekly periods with the objective of maximizing Western`s net revenues. The model considers hydropower operations for the purpose of serving SLCA firm loads, loads for special projects, Inland Power Pool (IPP) operating reserve requirements, and Western`s purchasing programs. The model estimates hourly SLCA/IP generation and spot market activities. For this paper, hourly SLCA/IP hydropower plant generation was simulated under three operational scenarios and three hydropower conditions. For each scenario an estimate of Western`s net revenue was computed.

  12. Identifying Challenging Operating Hours for Solar Intergration in the NV Energy System

    SciTech Connect

    Etingov, Pavel V.; Lu, Shuai; Guo, Xinxin; Ma, Jian; Makarov, Yuri V.; Chadliev, Vladimir; Salgo, Richard

    2012-05-09

    Abstract-- In this paper, the ability of the Nevada (NV) Energy generation fleet to meet its system balancing requirements under different solar energy penetration scenarios is studied. System balancing requirements include capacity, ramp rate, and ramp duration requirements for load following and regulation. If, during some operating hours, system capability is insufficient to meet these requirements, there is certain probability that the balancing authoritys control and reliability performance can be compromised. These operating hours are considered as challenging hours. Five different solar energy integration scenarios have been studied. Simulations have shown that the NV Energy system will be potentially able to accommodate up to 942 MW of solar photovoltaic (PV) generation. However, the existing generation scheduling procedure should be adjusted to make it happen. Fast-responsive peaker units need to be used more frequently to meet the increasing ramping requirements. Thus, the NV Energy system operational cost can increase. Index TermsSolar Generation, Renewables Integration, Balancing Process, Load Following, Regulation.

  13. Customer Strategies for Responding to Day-Ahead Market HourlyElectricity Pricing

    SciTech Connect

    Goldman, Chuck; Hopper, Nicole; Bharvirkar, Ranjit; Neenan,Bernie; Boisvert, Dick; Cappers, Peter; Pratt, Donna; Butkins, Kim

    2005-08-25

    Real-time pricing (RTP) has been advocated as an economically efficient means to send price signals to customers to promote demand response (DR) (Borenstein 2002, Borenstein 2005, Ruff 2002). However, limited information exists that can be used to judge how effectively RTP actually induces DR, particularly in the context of restructured electricity markets. This report describes the second phase of a study of how large, non-residential customers' adapted to default-service day-ahead hourly pricing. The customers are located in upstate New York and served under Niagara Mohawk, A National Grid Company (NMPC)'s SC-3A rate class. The SC-3A tariff is a type of RTP that provides firm, day-ahead notice of hourly varying prices indexed to New York Independent System Operator (NYISO) day-ahead market prices. The study was funded by the California Energy Commission (CEC)'s PIER program through the Demand Response Research Center (DRRC). NMPC's is the first and longest-running default-service RTP tariff implemented in the context of retail competition. The mix of NMPC's large customers exposed to day-ahead hourly prices is roughly 30% industrial, 25% commercial and 45% institutional. They have faced periods of high prices during the study period (2000-2004), thereby providing an opportunity to assess their response to volatile hourly prices. The nature of the SC-3A default service attracted competitive retailers offering a wide array of pricing and hedging options, and customers could also participate in demand response programs implemented by NYISO. The first phase of this study examined SC-3A customers' satisfaction, hedging choices and price response through in-depth customer market research and a Constant Elasticity of Substitution (CES) demand model (Goldman et al. 2004). This second phase was undertaken to answer questions that remained unresolved and to quantify price response to a higher level of granularity. We accomplished these objectives with a second customer

  14. 20K Hour GATEWAY Testing Results for I-35W Bridge Webinar

    Energy.gov [DOE]

    The U.S. Department of Energy released a GATEWAY Demonstration report on the longer-term performance of an LED lighting system that was installed on the I-35W Bridge in Minneapolis in September 2008 and represents one of the country’s oldest continuously operated exterior LED lighting installations. Prior to installation, two of the LED luminaires were tested, along with a third luminaire that was not installed on the bridge but was tested for 6,000 hours in a laboratory for comparison purposes.

  15. Sub-Hourly Impacts of High Solar Penetrations in the Western United States: Preprint

    SciTech Connect

    Lew, D.; Brinkman, G.; Ibanez, E.; Hummon, M.; Hodge, B. M.; Heaney, M.; King, J.

    2012-09-01

    This paper presents results of analysis on the sub-hourly impacts of high solar penetrations from the Western Wind and Solar Integration Study Phase 2. Extreme event analysis showed that most large ramps were due to sunrise and sunset events, which have a significant predictability component. Variability in general was much higher in the high-solar versus high-wind scenario. Reserve methodologies that had already been developed for wind were therefore modified to take into account the predictability component of solar variability.

  16. SeizAlert could give patients 4.5 hour warning of seizure

    ScienceCinema

    Dr. Lee Hively and Kara Kruse

    2010-01-08

    One percent of Americans, 3 million people, suffer from epilepsy. And their lives are about to be dramatically changed by scientists at Oak Ridge National Laboratory. For 15 years, Dr. Lee Hively has been working on "SeizAlert", a seizure-detecting device that resembles a common PDA. "It allows us to analyze scalp brain waves and give us up to 4.5 hours' forewarning of that event," he said. With the help of partner Kara Kruse, he's now able to help patients predict the previously unpredictable.

  17. Analysis of Sub-Hourly Ramping Impacts of Wind Energy and Balancing Area Size: Preprint

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sub-Hourly Ramping Impacts of Wind Energy and Balancing Area Size Preprint M. Milligan National Renewable Energy Laboratory B. Kirby Oak Ridge National Laboratory To be presented at WindPower 2008 Houston, Texas June 1-4, 2008 Conference Paper NREL/CP-500-43434 June 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US

  18. An overview of 3-D graphical analysis using DOE-2 hourly simulation data

    SciTech Connect

    Haberl, J.S.; MacDonald, M.; Eden, A.

    1988-01-01

    This paper presents an overview of a 3-D graphical approach for improving the potential of building energy analyses using the DOE-2 computer program. The approach produces 3-D annual profiles from hourly data generated by DOE-2 simulations using a statistical plotting package for specific quantities of interest. The annual profiles of hourly data provide a useful graphical check of voluminous data in a condensed form, allowing several different types of data to be plotted over a year. These profiles provide the user with the opportunity to check simulation results, check for potential problems with user input, provide graphs to customers who may want a simpler presentation, visualize interactions in simulations, and understand where inappropriate modeling conditions may exist in simulations. Future analysis, using such profiles, may allow methods to be developed to check consistency between simulations, check for potential hidden errors in modeling buildings, and better understand how simulations compare with data from real buildings. 22 refs., 23 figs., 1 tab.

  19. NV Energy Large-Scale Photovoltaic Integration Study: Intra-Hour Dispatch and AGC Simulation

    SciTech Connect

    Lu, Shuai; Etingov, Pavel V.; Meng, Da; Guo, Xinxin; Jin, Chunlian; Samaan, Nader A.

    2013-01-02

    The uncertainty and variability with photovoltaic (PV) generation make it very challenging to balance power system generation and load, especially under high penetration cases. Higher reserve requirements and more cycling of conventional generators are generally anticipated for large-scale PV integration. However, whether the existing generation fleet is flexible enough to handle the variations and how well the system can maintain its control performance are difficult to predict. The goal of this project is to develop a software program that can perform intra-hour dispatch and automatic generation control (AGC) simulation, by which the balancing operations of a system can be simulated to answer the questions posed above. The simulator, named Electric System Intra-Hour Operation Simulator (ESIOS), uses the NV Energy southern system as a study case, and models the system’s generator configurations, AGC functions, and operator actions to balance system generation and load. Actual dispatch of AGC generators and control performance under various PV penetration levels can be predicted by running ESIOS. With data about the load, generation, and generator characteristics, ESIOS can perform similar simulations and assess variable generation integration impacts for other systems as well. This report describes the design of the simulator and presents the study results showing the PV impacts on NV Energy real-time operations.

  20. Daily/Hourly Hydrosystem Operation : How the Columbia River System Responds to Short-Term Needs.

    SciTech Connect

    Columbia River System Operation Review

    1994-02-01

    The System Operation Review, being conducted by the Bonneville Power Administration, the US Army Corps of Engineers, and the US Bureau of Reclamation, is analyzing current and potential future operations of the Columbia River System. One goal of the System Operations Review is to develop a new System Operation Strategy. The strategy will be designed to balance the many regionally and nationally important uses of the Columbia River system. Short-term operations address the dynamics that affect the Northwest hydro system and its multiple uses. Demands for electrical power and natural streamflows change constantly and thus are not precisely predictable. Other uses of the hydro system have constantly changing needs, too, many of which can interfere with other uses. Project operators must address various river needs, physical limitations, weather, and streamflow conditions while maintaining the stability of the electric system and keeping your lights on. It takes staffing around the clock to manage the hour-to-hour changes that occur and the challenges that face project operators all the time.

  1. BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) BioenergizeME Infographic Challenge is an engaging way for students to explore topics in bioenergy and share what they have learned with others across the nation. In this challenge, high school-aged teams (grades 9–12) will use technology to research, interpret, apply, and then design an infographic that responds to one of four cross-curricular bioenergy topics. To make the challenge easier and more effective, this webinar is designed to guide interested students, teachers, and other educators through the submission process and highlight the resources that are available on the BioenergizeME Infographic Challenge website. These resources will assist students with researching their selected topics, developing their infographics, and designing effective social media campaigns. This webinar is part of the BioenergizeME Office Hours webinar series developed by the DOE Bioenergy Technologies Office.

  2. Performance of Blackglas{trademark} composites in 4000-hour oxidation study

    SciTech Connect

    Campbell, S.; Gonczy, S.; McNallan, M.; Cox, A.

    1996-12-31

    The effect of long term (4000 hour) oxidation on the mechanical properties of Blackglas{trademark}-Nitrided Nextel{trademark}312 Ceramic Matrix Composites in the temperature range of 500{degrees} - 700{degrees}C was investigated. Flexure specimens of the title composites prepared using three different pyrolysis processes were subjected to oxidation in flowing dry air at 500{degrees}, 600{degrees}C, and 700{degrees}C. Samples were removed at several different time intervals for 3-point flexure analysis. Results indicate that processing conditions had very little effect on the oxidation resistance of this system. At 600{degrees} and 700{degrees}C the mechanical properties degrade continuously to a steady value about half the original flexure strength. At 500{degrees}C, material properties initially improve then begin to slowly degrade. Optical microscopy indicates that oxidation of the matrix begins at the matrix/fiber interface and microcracks and proceeds into the bulk of the matrix.

  3. Table 7.7 Coal Mining Productivity, 1949-2011 (Short Tons per Employee Hour )

    Energy Information Administration (EIA) (indexed site)

    Coal Mining Productivity, 1949-2011 (Short Tons per Employee Hour 1) Year Mining Method Location Total 2 Underground Surface 2 East of the Mississippi West of the Mississippi Underground Surface 2 Total 2 Underground Surface 2 Total 2 1949 0.68 [3] 1.92 [3] NA NA NA NA NA NA 0.72 1950 .72 [3] 1.96 [3] NA NA NA NA NA NA .76 1951 .76 [3] 2.00 [3] NA NA NA NA NA NA .80 1952 .80 [3] 2.10 [3] NA NA NA NA NA NA .84 1953 .88 [3] 2.22 [3] NA NA NA NA NA NA .93 1954 1.00 [3] 2.48 [3] NA NA NA NA NA NA

  4. BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th–12th Grade Classroom

    Energy.gov [DOE]

    Biofuel is the only viable substitute for petroleum-based liquid transportation fuel in the near term. It is, therefore, increasingly relevant to enhance conceptual knowledge of biofuels and other types of bioenergy in today’s classroom environment. Bioenergy has applications across multiple science and engineering disciplines and also provides opportunities for real-world learning. This webinar is designed to support high school educators in planning activities for their classrooms that integrate bioenergy topics with the life sciences, physical sciences, earth and space sciences, and engineering and technology. This information can also help support advisors who are interested in participating in the 2016 BioenergizeME Infographic Challenge. This webinar is part of the BioenergizeME Office Hours webinar series developed by the U.S. Department of Energy’s Bioenergy Technologies Office.

  5. Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) BioenergizeME Infographic Challenge is an engaging way for students to explore topics in bioenergy and share what they have learned with others across the nation. In this challenge, high school-aged teams (grades 9–12) will use technology to research, interpret, apply, and then design an infographic that responds to one of four cross-curricular bioenergy topics. To make the challenge easier and more effective, this webinar is designed to guide interested students, teachers, and other educators through the submission process and highlight the resources that are available on the BioenergizeME Infographic Challenge website. These resources will assist students with researching their selected topics, developing their infographics, and designing effective social media campaigns. This webinar is part of the BioenergizeME Office Hours webinar series developed by the DOE Bioenergy Technologies Office.

  6. DOE's Office of Science Awards 18 Million Hours of Supercomputing Time to 15 Teams for Large-Scale Scientific Computing

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON, D.C. - Secretary of Energy Samuel W. Bodman announced today that DOE's Office of Science has awarded a total of 18.2 million hours of computing time on some of the world's most powerful...

  7. Three-Stage Production Cost Modeling Approach for Evaluating the Benefits of Intra-Hour Scheduling between Balancing Authorities

    SciTech Connect

    Samaan, Nader A.; Milligan, Michael; Hunsaker, Matthew; Guo, Tao

    2015-07-30

    This paper introduces a Production Cost Modeling (PCM) approach to evaluate the benefits of intra-hour scheduling between Balancing Authorities (BAs). The system operation is modeled in a three-stage sequential manner: day ahead (DA)-hour ahead (HA)-real time (RT). In addition to contingency reserve, each BA will need to carry out “up” and “down” load following and regulation reserve capacity requirements in the DA and HA time frames. In the real-time simulation, only contingency and regulation reserves are carried out as load following is deployed. To model current real-time operation with hourly schedules, a new constraint was introduced to force each BA net exchange schedule deviation from HA schedules to be within NERC ACE limits. Case studies that investigate the benefits of moving from hourly exchange schedules between WECC BAs into 10-min exchange schedules under two different levels of wind and solar penetration (11% and 33%) are presented.

  8. Insights from Smart Meters: The Potential for Peak-Hour Savings from Behavior-Based Programs

    SciTech Connect

    Todd, Annika; Perry, Michael; Smith, Brian; Sullivan, Michael; Cappers, Peter; Goldman, Charles

    2014-03-25

    The rollout of smart meters in the last several years has opened up new forms of previously unavailable energy data. Many utilities are now able in real-time to capture granular, household level interval usage data at very high-frequency levels for a large proportion of their residential and small commercial customer population. This can be linked to other time and locationspecific information, providing vast, constantly growing streams of rich data (sometimes referred to by the recently popular buzz word, “big data”). Within the energy industry there is increasing interest in tapping into the opportunities that these data can provide. What can we do with all of these data? The richness and granularity of these data enable many types of creative and cutting-edge analytics. Technically sophisticated and rigorous statistical techniques can be used to pull interesting insights out of this highfrequency, human-focused data. We at LBNL are calling this “behavior analytics”. This kind of analytics has the potential to provide tremendous value to a wide range of energy programs. For example, highly disaggregated and heterogeneous information about actual energy use would allow energy efficiency (EE) and/or demand response (DR) program implementers to target specific programs to specific households; would enable evaluation, measurement and verification (EM&V) of energy efficiency programs to be performed on a much shorter time horizon than was previously possible; and would provide better insights in to the energy and peak hour savings associated with specifics types of EE and DR programs (e.g., behavior-based (BB) programs). In this series, “Insights from Smart Meters”, we will present concrete, illustrative examples of the type of value that insights from behavior analytics of these data can provide (as well as pointing out its limitations). We will supply several types of key findings, including: • Novel results, which answer questions the industry

  9. ISDAC - NRC Convair-580 Flight Hours Date Flight From To Start

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    - NRC Convair-580 Flight Hours Date Flight From To Start End hrs 03/21/08 F01-Test-01 Ottawa Ottawa 16:15Z 18:15Z 2.2 03/22/08 F02-Test-02 Ottawa Ottawa 12:45Z 15:50Z 3.3 03/28/08 F03-Transit-01 Ottawa, ON Kenora, ON 12:23Z 15:44Z 3.6 03/28/08 F04-Transit-02 Kenora, ON Calgary, AB 16:30Z 19:36Z 3.3 03/28/08 F05-Transit-03 Calgary, AB Comox, BC 20:24Z 22:17Z 2.1 03/29/08 F06-Transit-04 Comox, BC Whitehorse, YK 17:43Z 20:50Z 3.3 03/29/08 F07-Transit-05 Whitehorse, YK Fairbanks 21:51Z 23:42Z 2.1

  10. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Alabama Table 1. 2014 Summary statistics (Alabama) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 31,953 8 Electric utilities 23,050 8 IPP & CHP 8,903 11 Net generation (megawatthours) 149,340,447 6 Electric utilities 112,340,555 3 IPP & CHP 36,999,892 10 Emissions Sulfur dioxide (short tons) 152,225 8 Nitrogen oxide (short tons) 61,909 13 Carbon dioxide (thousand metric tons) 67,635 10 Sulfur dioxide (lbs/MWh) 2.0 19 Nitrogen oxide (lbs/MWh) 0.8 38

  11. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    District of Columbia Electricity Profile 2014 Table 1. 2014 Summary statistics (District of Columbia) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 9 51 Electric utilities IPP & CHP 9 51 Net generation (megawatthours) 67,612 51 Electric utilities IPP & CHP 67,612 51 Emissions Sulfur dioxide (short tons) 0 51 Nitrogen oxide (short tons) 147 51 Carbon dioxide (thousand metric tons) 48 50 Sulfur dioxide (lbs/MWh) 0.0 51 Nitrogen oxide (lbs/MWh) 4.3 3

  12. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Oklahoma Electricity Profile 2014 Table 1. 2014 Summary statistics (Oklahoma) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 24,048 17 Electric utilities 17,045 17 IPP & CHP 7,003 16 Net generation (megawatthours) 70,155,504 22 Electric utilities 48,096,026 19 IPP & CHP 22,059,478 14 Emissions Sulfur dioxide 78,556 18 Nitrogen oxide 44,874 23 Carbon dioxide (thousand metric tons) 43,994 18 Sulfur dioxide (lbs/MWh) 2.2 17 Nitrogen oxide (lbs/MWh) 1.3 26

  13. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Vermont Electricity Profile 2014 Table 1. 2014 Summary statistics (Vermont) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 650 50 Electric utilities 337 44 IPP & CHP 313 49 Net generation (megawatthours) 7,031,394 48 Electric utilities 868,079 42 IPP & CHP 6,163,315 37 Emissions Sulfur Dioxide (short tons) 71 50 Nitrogen Oxide (short tons) 737 50 Carbon Dioxide (thousand metric tons) 14 51 Sulfur Dioxide (lbs/MWh) 0.0 50 Nitrogen Oxide (lbs/MWh) 0.2 51

  14. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    District of Columbia Electricity Profile 2014 Table 1. 2014 Summary statistics (District of Columbia) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 9 51 Electric utilities IPP & CHP 9 51 Net generation (megawatthours) 67,612 51 Electric utilities IPP & CHP 67,612 51 Emissions Sulfur dioxide (short tons) 0 51 Nitrogen oxide (short tons) 147 51 Carbon dioxide (thousand metric tons) 48 50 Sulfur dioxide (lbs/MWh) 0.0 51 Nitrogen oxide (lbs/MWh) 4.3 3

  15. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Maine Electricity Profile 2014 Table 1. 2014 Summary statistics (Maine) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 4,470 43 Electric utilities 10 49 IPP & CHP 4,460 20 Net generation (megawatthours) 13,248,710 44 Electric utilities 523 49 IPP & CHP 13,248,187 27 Emissions Sulfur dioxide (short tons) 10,990 38 Nitrogen oxide (short tons) 8,622 46 Carbon dioxide (thousand metric tons) 3,298 46 Sulfur dioxide (lbs/MWh) 1.7 25 Nitrogen oxide (lbs/MWh)

  16. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Ohio Electricity Profile 2014 Table 1. 2014 Summary statistics (Ohio) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 31,507 9 Electric utilities 11,134 26 IPP & CHP 20,372 6 Net generation (megawatthours) 134,476,405 8 Electric utilities 43,290,512 25 IPP & CHP 91,185,893 7 Emissions Sulfur dioxide (short tons) 355,108 1 Nitrogen oxide (short tons) 105,688 4 Carbon dioxide (thousand metrictons) 98,650 5 Sulfur dioxide (lbs/MWh) 5.3 2 Nitrogen oxide (lbs/MWh)

  17. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Oklahoma Electricity Profile 2014 Table 1. 2014 Summary statistics (Oklahoma) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 24,048 17 Electric utilities 17,045 17 IPP & CHP 7,003 16 Net generation (megawatthours) 70,155,504 22 Electric utilities 48,096,026 19 IPP & CHP 22,059,478 14 Emissions Sulfur dioxide 78,556 18 Nitrogen oxide 44,874 23 Carbon dioxide (thousand metric tons) 43,994 18 Sulfur dioxide (lbs/MWh) 2.2 17 Nitrogen oxide (lbs/MWh) 1.3 26

  18. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Vermont Electricity Profile 2014 Table 1. 2014 Summary statistics (Vermont) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 650 50 Electric utilities 337 44 IPP & CHP 313 49 Net generation (megawatthours) 7,031,394 48 Electric utilities 868,079 42 IPP & CHP 6,163,315 37 Emissions Sulfur Dioxide (short tons) 71 50 Nitrogen Oxide (short tons) 737 50 Carbon Dioxide (thousand metric tons) 14 51 Sulfur Dioxide (lbs/MWh) 0.0 50 Nitrogen Oxide (lbs/MWh) 0.2 51

  19. After-hours Power Status of Office Equipment and Inventory of Miscellaneous Plug-load Equipment

    SciTech Connect

    Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Margaret J.; Busch, John F.

    2004-01-22

    This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of ''miscellaneous'' plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from twelve commercial buildings in California, Georgia, and Pennsylvania: two health care buildings, two large offices (> 500 employees each), three medium offices (50-500 employees), four education buildings, and one ''small office'' that is actually an aggregate of five small businesses. Two buildings are in the San Francisco Bay area of California, five are in Pittsburgh, Pennsylvania, and five are in Atlanta

  20. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE

  1. Job Code Description Hourly Wage TR-I Job Code TR I Wage TR-II Job

    National Nuclear Security Administration (NNSA)

    Wage TR-I Job Code TR I Wage TR-II Job Code TR II Wage TR-III Job Code TR III Wage Job Code Description Hourly Wage TR-I Job Code TR I Wage TR-II Job Code TR II Wage TR-III Job Code TR III Wage 56-HOUR TOUR Hourly Premiums TR-I 0.25 TR-II $0.50 TR-III $0.75 10-HOUR SHIFT Hourly Premiums TR-I $0.45 TR-II $0.90 TR-III $1.35 CIC $0.60 CIC $1.08 HAZ $0.81 HAZ $1.46 UD/BA $0.25 UD/BA $0.45 ELF $0.30 ELF $0.54 TR-I $0.25 TR-I $0.45 TR-II $0.50 TR-II $0.90 TR-III $0.75 TR-III $1.35 021450 Entry-Level

  2. Alaska: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 566,822 MWh Gas Power 3,571,101 MWh Petroleum Power 1,191,884 MWh Nuclear Power 0 MWh Other 0 MWh Total Energy Production 6,541,675 MWh Percent of Total...

  3. Oklahoma: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 34,200,892 MWh Gas Power 34,915,888 MWh Petroleum Power 19,609 MWh Nuclear Power 0 MWh Other 0 MWh Total Energy Production 75,245,559 MWh Percent of Total...

  4. Rhode Island: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    158,911 MWh Coal Power 0 MWh Gas Power 7,553,278 MWh Petroleum Power 16,262 MWh Nuclear Power 0 MWh Other 0 MWh Total Energy Production 7,728,451 MWh Percent of Total...

  5. North Dakota: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    4,239,993 MWh Coal Power 29,812,959 MWh Gas Power 757 MWh Petroleum Power 48,076 MWh Nuclear Power 0 MWh Other 838 MWh Total Energy Production 34,102,623 MWh Percent of Total...

  6. Nevada: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 7,507,244 MWh Gas Power 26,080,001 MWh Petroleum Power 17,727 MWh Nuclear Power 0 MWh Other 0 MWh Total Energy Production 37,819,763 MWh Percent of Total...

  7. Idaho: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    10,318,565 MWh Coal Power 72,994 MWh Gas Power 1,549,875 MWh Petroleum Power 124 MWh Nuclear Power 0 MWh Other 0 MWh Total Energy Production 11,941,557 MWh Percent of Total...

  8. Kentucky: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 84,379,768 MWh Gas Power 843,725 MWh Petroleum Power 2,028,175 MWh Nuclear Power 0 MWh Other 12,629 MWh Total Energy Production 90,997,966 MWh Percent of...

  9. Oregon: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 3,196,902 MWh Gas Power 15,776,934 MWh Petroleum Power 5,657 MWh Nuclear Power 0 MWh Other 41,248 MWh Total Energy Production 55,861,820 MWh Percent of...

  10. Arizona: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 39,783,826 MWh Gas Power 34,852,150 MWh Petroleum Power 67,337 MWh Nuclear Power 30,661,851 MWh Other 534 MWh Total Energy Production 112,066,601 MWh Percent...

  11. Tennessee: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 41,634,519 MWh Gas Power 410,411 MWh Petroleum Power 178,151 MWh Nuclear Power 26,962,001 MWh Other 788 MWh Total Energy Production 78,966,504 MWh Percent...

  12. Indiana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 108,590,677 MWh Gas Power 5,390,611 MWh Petroleum Power 154,666 MWh Nuclear Power 0 MWh Other 344,927 MWh Total Energy Production 116,667,762 MWh Percent of...

  13. New Mexico: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 29,084,699 MWh Gas Power 8,759,510 MWh Petroleum Power 43,480 MWh Nuclear Power 0 MWh Other 4,371 MWh Total Energy Production 39,754,081 MWh Percent of...

  14. Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 35,715,484 MWh Gas Power 6,424,511 MWh Petroleum Power 50,180 MWh Nuclear Power 0 MWh Other 186,748 MWh Total Energy Production 43,446,797 MWh Percent of...

  15. PDSF Office Hours 1/23/14 from 2:30 to 4:00 pm at LBNL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    /23/14 from 2:30 to 4:00 pm at LBNL PDSF Office Hours 1/23/14 from 2:30 to 4:00 pm at LBNL January 22, 2014 PDSF office hours will be from 2:30 to 4:00 pm in 50B-2222 tomorrow. Subscribe via RSS Subscribe Browse by Date February 2014 January 2014 November 2013 October 2013 September 2013 August 2013 March 2012 February 2012 January 2012 October 2011 July 2011 May 2011 April 2011 March 2011 February 2011 January 2011 December 2010 Last edited: 2014-01-22 16:33:02

  16. Sensitivity Analysis of Offshore Wind Cost of Energy (Poster)

    SciTech Connect

    Dykes, K.; Ning, A.; Graf, P.; Scott, G.; Damiami, R.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Veers, P.

    2012-10-01

    No matter the source, offshore wind energy plant cost estimates are significantly higher than for land-based projects. For instance, a National Renewable Energy Laboratory (NREL) review on the 2010 cost of wind energy found baseline cost estimates for onshore wind energy systems to be 71 dollars per megawatt-hour ($/MWh), versus 225 $/MWh for offshore systems. There are many ways that innovation can be used to reduce the high costs of offshore wind energy. However, the use of such innovation impacts the cost of energy because of the highly coupled nature of the system. For example, the deployment of multimegawatt turbines can reduce the number of turbines, thereby reducing the operation and maintenance (O&M) costs associated with vessel acquisition and use. On the other hand, larger turbines may require more specialized vessels and infrastructure to perform the same operations, which could result in higher costs. To better understand the full impact of a design decision on offshore wind energy system performance and cost, a system analysis approach is needed. In 2011-2012, NREL began development of a wind energy systems engineering software tool to support offshore wind energy system analysis. The tool combines engineering and cost models to represent an entire offshore wind energy plant and to perform system cost sensitivity analysis and optimization. Initial results were collected by applying the tool to conduct a sensitivity analysis on a baseline offshore wind energy system using 5-MW and 6-MW NREL reference turbines. Results included information on rotor diameter, hub height, power rating, and maximum allowable tip speeds.

  17. 10-Megawatt Supercritical Carbon Dioxide Turbine- FY13 Q2

    Energy.gov [DOE]

    This document summarizes the progress of this National Renewable Energy Laboratory project, funded by SunShot, for the second quarter of fiscal year 2013.

  18. Coming: 12,600 megawatts at Itaipu Island

    SciTech Connect

    de Moraes, J.

    1983-08-01

    This paper describes the hydroelectric plant being constructed jointly by Brazil and Paraguay on Itaipu Island in the Parana River. The planned generating capacity of 12,600 MW will make the Itaipu plant the world's largest. It will employ the most powerful hydrogenerators and turbines yet built, the world's largest concentration of 500-kilovolt gas-insulated switchgear, the highest dc transmission voltages and power--600 kV and 6300 MW--ever used, about 1000 kilometers of 765-kV ac transmission, and an extensive computer-based digital supervisory system in which continuous diagnostic evaluation of equipment is emphasized. To maintain national standards, nine generators will operate at 60 hertz for Brazil and nine at 50 hertz for Paraguay. Initially, any excess electricity available from the Paraguay generators will be routed to Brazil, but Paraguay is ultimately expected to share in half the Itaipu generation. The paper discusses the plant from its original feasibility studies to the newly created technologies which its size necessitated. The environmental impact on forests, farmlands and wildlife resulting from the construction of the Itaipu dam and the loss of the 1400 square kilometers which it flooded--including the popular Seven Waterfalls--is addressed. References to other papers as well as a symposium on the Itaipu project are cited.

  19. Five-megawatt geothermal-power pilot-plant project

    SciTech Connect

    Not Available

    1980-08-29

    This is a report on the Raft River Geothermal-Power Pilot-Plant Project (Geothermal Plant), located near Malta, Idaho; the review took place between July 20 and July 27, 1979. The Geothermal Plant is part of the Department of Energy's (DOE) overall effort to help commercialize the operation of electric power plants using geothermal energy sources. Numerous reasons were found to commend management for its achievements on the project. Some of these are highlighted, including: (a) a well-qualified and professional management team; (b) effective cost control, performance, and project scheduling; and (c) an effective and efficient quality-assurance program. Problem areas delineated, along with recommendations for solution, include: (1) project planning; (2) facility design; (3) facility construction costs; (4) geothermal resource; (5) drilling program; (6) two facility construction safety hazards; and (7) health and safety program. Appendices include comments from the Assistant Secretary for Resource Applications, the Controller, and the Acting Deputy Director, Procurement and Contracts Management.

  20. Cost Reductions with Multi-Megawatt Centralized Inverter Systems

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in the USA" * Up to 25kW * String-wise MPPT * 300 to 1,000V DC Input Voltage * 2,500V DC Bi-polar Output Voltage * "Plug and Play" Topology * Wireless Communication and Data ...

  1. NREL: Concentrating Solar Power Research - 10-Megawatt Supercritical...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Advancing concentrating solar power (CSP) systems ... CSP plants are typically located in hot, dry climates where water is scarce. ... CSP goal of 50% net thermal-to-electric ...

  2. Extreme Cost Reductions with Multi-Megawatt Centralized Inverter Systems

    SciTech Connect

    Schwabe, Ulrich; Fishman, Oleg

    2015-03-20

    The objective of this project was to fully develop, demonstrate, and commercialize a new type of utility scale PV system. Based on patented technology, this includes the development of a truly centralized inverter system with capacities up to 100MW, and a high voltage, distributed harvesting approach. This system promises to greatly impact both the energy yield from large scale PV systems by reducing losses and increasing yield from mismatched arrays, as well as reduce overall system costs through very cost effective conversion and BOS cost reductions enabled by higher voltage operation.

  3. Plans for Future Megawatt Facilities (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 2005-06-08 OSTI Identifier: 20722740 Resource Type: Journal Article Resource Relation: Journal Name: AIP Conference Proceedings; Journal Volume: 773; Journal ...

  4. Modal Dynamics and Stability of Large Multi-megawatt Deepwater...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... modal response of a rotating land-based Darrieus-type VAWT. 8 Herein, the OWENS toolkit ... The blades may be affixed to the tower at their ends as in the Darrieus and V-VAWT ...

  5. Extreme Cost Reductions with Multi-Megawatt Centralized Inverter...

    Energy Saver

    Alencon Test Lab in Use.jpg Alencon has filed for various patents for technology developed ... Systems Integration Competitive Awards The DOE SunShot Initiative is a national ...

  6. Design of megawatt power level heat pipe reactors (Technical...

    Office of Scientific and Technical Information (OSTI)

    pipe reactors An important niche for nuclear energy is the need for power at remote locations removed from a reliable electrical grid. Nuclear energy has potential applications at ...

  7. LINE","COMPNAME","COMPID","YEAR","PURCNAME","SALETYPE","MEGAWATT...

    Energy Information Administration (EIA) (indexed site)

    ... Power Admin",1738,1999,"Coos-Curry Electric ... Power Admin",1738,1999,"Oregon Trail Electric ... 1,"East Bay Municipal Util ...

  8. Saft America Advanced Batteries Plant Celebrates Grand Opening...

    Office of Environmental Management (EM)

    They will also be used to power military hybrid vehicles and for other industrial, agricultural, and military applications. Saft expects to produce 370 megawatt hours of battery ...

  9. Fluidized-bed combustion 1000-hour test program. Volume IV. Engineering details and post-test inspections

    SciTech Connect

    Roberts, A. G.; Barker, S. N.; Phillips, R. N.; Pillai, K. K.; Raven, P.; Wood, P.

    1981-09-01

    Volume IV of the report on the 1000 hour programme consists of three appendices giving details of the enginmering/construction aspects of the plant and reports from Stal-Laval Turbin A.B. Appendix N has been entered individually. (LTN)

  10. PDSF Office Hours 10/17/13 from 2:00 to 4:00 pm at LBNL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    0/17/13 from 2:00 to 4:00 pm at LBNL PDSF Office Hours 10/17/13 from 2:00 to 4:00 pm at LBNL October 7, 2013 I have biweekly office hours on Thursdays at LBNL. The next one is Thursday 10/17/13 from 2:00 - 4:00 pm in the NERSC drop in office at 050A-0143A (in the basement by the bus offices). Please feel free to stop by if you have any questions or want some hands on help with PDSF issues. Subscribe via RSS Subscribe Browse by Date February 2014 January 2014 November 2013 October 2013 September

  11. Electricity Monthly Update - Energy Information Administration

    Gasoline and Diesel Fuel Update

    Coal Stocks (Thousand Tons) 171,686 8.3% Nuclear Generation (Thousand MWh) 70,349 -1.5% ... has risen every year since 2001. Wind facilities produced 190,927 gigawatt hours (GWh) ...

  12. Carver Hours Used

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2014 174.69 91.81 12032014 178.77 93.96 12022014 172.30 90.55 12012014 176.12 92.56 11302014 170.11 89.40 11292014 162.74 85.53 11282014 168.71 88.67 11272014...

  13. Allocation of Flight Hours

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Pattern 1 (Instrument testing) 3.5 1 3.5 6% 10:00-12:00 Shallow clouds, Cu Hu- Cu Me, Ci are okay 2 Stack Pattern 2 Basic OKC Cloudy Air Flight Plan (some in coordination with...

  14. Hours of Duty

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Finance & Rates Involvement & Outreach Expand Involvement & Outreach Doing Business Expand Doing Business Skip navigation links Careers Find & Apply Benefits & New...

  15. Intra-Hour Scheduling

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Expand Finance & Rates Involvement & Outreach Expand Involvement & Outreach Doing Business Expand Doing Business Skip navigation links Initiatives Columbia River Treaty Non...

  16. Hours Available FY

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    LANSCE-RM 201 RF Replacement Module 2 Sectors AJ HVAC LANSCE-RM 201 RF Replacement Module 3 LANSCE-RM 201 RF Replacement Module 4 Routine Maintenance BGS 12232015 LA-UR-15-29688...

  17. Hours Available FY

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    LANSCE-RM 201 RF Replacement Module 2 Sectors AJ HVAC LANSCE-RM 201 RF Replacement Module 3 LANSCE-RM 201 RF Replacement Module 4 Routine Maintenance BGS 782015 LA-UR-15-25395...

  18. Observed Temperature Effects on Hourly Residential Electric LoadReduction in Response to an Experimental Critical Peak PricingTariff

    SciTech Connect

    Herter, Karen B.; McAuliffe, Patrick K.; Rosenfeld, Arthur H.

    2005-11-14

    The goal of this investigation was to characterize themanual and automated response of residential customers to high-price"critical" events dispatched under critical peak pricing tariffs testedin the 2003-2004 California Statewide Pricing Pilot. The 15-monthexperimental tariff gave customers a discounted two-price time-of-userate on 430 days in exchange for 27 critical days, during which the peakperiod price (2 p.m. to 7 p.m.) was increased to about three times thenormal time-of-use peak price. We calculated response by five-degreetemperature bins as the difference between peak usage on normal andcritical weekdays. Results indicatedthat manual response to criticalperiods reached -0.23 kW per home (-13 percent) in hot weather(95-104.9oF), -0.03 kW per home (-4 percent) in mild weather (60-94.9oF),and -0.07 kW per home (-9 percent) during cold weather (50-59.9oF).Separately, we analyzed response enhanced by programmable communicatingthermostats in high-use homes with air-conditioning. Between 90oF and94.9oF, the response of this group reached -0.56 kW per home (-25percent) for five-hour critical periods and -0.89 kW/home (-41 percent)for two-hour critical periods.

  19. BioenergizeME Office Hours Webinar: Must-Know Tips for the 2016 BioenergizeME Infographic Challenge

    Energy.gov [DOE]

    Infographics are a useful visual tool for explaining complex information, numbers, or data quickly and effectively. However, you do not need to be an experienced graphic designer to make an eye-catching infographic. To assist student teams with the 2016 BioenergizeME Infographic Challenge, this webinar will highlight strategies for designing engaging infographics and will provide creative approaches that can bring attention to your infographic and motivate others to share it across their social media networks. The webinar will also include lessons learned from previous challenges and tips from last year’s winning team. The U.S. Department of Energy (DOE) BioenergizeME Infographic Challenge engages 9th–12th-grade high school teams to research one of four cross-curricular bioenergy topics and design an infographic to share what they have learned. This webinar is part of the BioenergizeME Office Hours webinar series developed by the DOE Bioenergy Technologies Office.

  20. After-hours power status of office equipment and energy use of miscellaneous plug-load equipment

    SciTech Connect

    Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Marageret J.; Busch, John F.

    2004-05-27

    This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of miscellaneous plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. For most types of miscellaneous equipment, we also estimated typical unit energy consumption in order to estimate total energy consumption of the miscellaneous devices within our sample. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from sixteen commercial buildings in California, Georgia, and Pennsylvania: four education buildings, two medical buildings, two large offices (> 500 employees each), three medium offices (50-500 employees each), and five small

  1. RECOVERY AND UTILIZATION OF COALMINE METHANE: PILOT-SCALE DEMONSTRATION PHASE

    SciTech Connect

    George Steinfeld; Jennifer Hunt

    2004-09-28

    A fuel cell demonstration was conducted on coalmine methane to demonstrate the utilization of methane emissions associated with underground coal mining operations in a carbonate Direct FuelCell{reg_sign} (DFC{reg_sign}) power plant. FuelCell Energy (FCE) conducted the demonstration with support from the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) and in cooperation with Northwest Fuel Development, the operator of the Rose Valley test site in Hopedale, Ohio. The fuel cell power plant, a first generation sub megawatt power plant, was operated on CMM between August 1, 2003 and December 13, 2003. The direct fuel cell operated on low-Btu CMM with 42% methane content and achieved performance levels comparable to natural gas on a Btu feed basis. During this period 1456 hours on-load operation was achieved. The total power generated using CMM was 134 megawatt-hours (MWh) of electricity. The power generated was connected to the American Electric Power grid by a 69-kilovolt (kV) transformer. The maximum power level achieved was 140 kW. Efficiency of power generation was 40% based on the lower heating value (LHV) of the CMM. Compression and drying of the CMM resulted in additional parasitic load, which reduced the overall efficiency to 36 % LHV. In future applications, on-board compression and utilization of the saturated CMM without drying will be investigated in order to reduce the auxiliary power requirements. By comparison, the internal combustion engines operating on CMM at the Hopedale site operate at an over efficiency of 20%. The over-all efficiency for the fuel cell is therefore 80% higher than the internal combustion engine (36% vs. 20%). Future operation of a 250 kW Fuel Cell Power Plant on CMM will utilize 18,400,000 cubic feet of methane per year. This will be equivalent to: (a) avoiding 7428 metric tons of CO{sub 2} emissions, (b) avoiding 16.4 million pounds of CO{sub 2} emissions, (c) removing 1640 cars off the road for one

  2. TMCC WIND RESOURCE ASSESSMENT

    SciTech Connect

    Turtle Mountain Community College

    2003-12-30

    North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate

  3. Economic evaluation of losses to electric power utilities caused by ash fouling. Final technical report, November 1, 1979-April 30, 1980

    SciTech Connect

    Burkhardt, F.R.; Persnger, M.M.

    1980-01-01

    Problems with convection ash fouling and wall slagging were considerable during our study. The Dakota lignites posed the greatest problems, particularly with fouling. The subbituminous coals had considerable problems, related mostly with wall slagging. The Texas lignites had few problems, and those were only associated with wall slagging. The generation losses were as follows: The Dakota lignite burning stations averaged an overall availability of 87.13%. Convection fouling outages were responsible for 57.75% of this outage time for a decrease in availability of 7.43%. Fouling was responsible for curtailment losses of 317,649 Mwh or 8.25% of the remaining available generation. Slagging was responsible for losses of 2732 megawatt hours or .07% of the remaining available generation. Total ash related losses amounted to 16.08% of the total available generation. The subbituminous burning stations averaged an overall availability of 78.36%. Total ash related losses amounted to 1.54% of the total available generation. The Texas lignite burning stations averaged an overall availability of 80.63%. No ash related outage losses occurred. Slagging curtailments accounted 0.08% of the total available generation. Costs due to ash fouling and slagging related curtailments are a tremendous sum. Seven power stations were studied for a six month period to assess costs. The total cost directly attributable to ash slagging and fouling condition was $20,638,113. Recommendations for reducing the problems involve soot blowers, control of furnace gas exit temperature, water blowers and more conservative boiler design.

  4. State and Local Government Partnership

    SciTech Connect

    Barton, Alexander; Rinebold, Joel; Aresta, Paul

    2012-03-30

    The State and Local Government Partnership project has built relationships between the Department of Energy (DOE), regional states, and municipalities. CCAT implemented this project using a structure that included leadership by the DOE. Outreach was undertaken through collaborative meetings, workshops, and briefings; the development of technical models and local energy plans; support for state stakeholder groups; and implementation of strategies to facilitate the deployment of hydrogen and fuel cell technologies. The final guidance documents provided to stakeholders consisted of individual strategic state “Roadmaps” to serve as development plans. These “Roadmaps” confirm economic impacts, identify deployment targets, and compare policies and incentives for facility development in each of the regional states. The partnerships developed through this project have improved the exchange of knowledge between state and local government stakeholders and is expected to increase the deployment of hydrogen and fuel cell technologies in early market applications, consistent with the DOE’s market transformation efforts. Technically accurate and objective information was, and continues to be, provided to improve public and stakeholder perceptions regarding the use of hydrogen and fuel cell technologies. Based on the “Roadmaps” and studies conducted for this project, there is the potential to generate approximately 10.75 million megawatt hours (MWh) of electricity annually from hydrogen and fuel cell technologies at potential host sites in the Northeast regional states, through the development of 1,364 to 1,818 megawatts (MW) of fuel cell electric generation capacity. Currently, the region has approximately 1,180 companies that are part of the growing hydrogen and fuel cell industry supply chain in the region. These companies are estimated to have over $1 billion in annual revenue and investment, contribute more than $51 million in annual state and local tax revenue

  5. SAS Output

    Energy Information Administration (EIA) (indexed site)

    5. Unit of Measure Equivalents Unit Equivalent Kilowatt (kW) 1,000 (One Thousand) Watts Megawatt (MW) 1,000,000 (One Million) Watts Gigawatt (GW) 1,000,000,000 (One Billion) Watts Terawatt (TW) 1,000,000,000,000 (One Trillion) Watts Gigawatt 1,000,000 (One Million) Kilowatts Thousand Gigawatts 1,000,000,000 (One Billion) Kilowatts Kilowatthours (kWh) 1,000 (One Thousand) Watthours Megawatthours (MWh) 1,000,000 (One Million) Watthours Gigawatthours (GWh) 1,000,000,000 (One Billion) Watthours

  6. GSA Wind Supply Opportunity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Supply Opportunity 1 2 3 Proposed Location * Size: 100-210 MegaWatts *Location: Bureau County, IL *Planned COD: December 2014 or 2015 *Site Control: 17,000 acres *Wind Resource Assessment: 7.4 m/s *Annual Production Estimate: 350,000 - 725,000 MWh * Interim 2013 renewable energy goal of 15% met and exceeded * Still short of 2020 goal to be 30% renewable * Renewable Power supply is an excellent method of meeting these goals 4 GSA's Renewable Mandate 5 Mechanics of Supply *MG2 would deliver

  7. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Connecticut Electricity Profile 2014 Table 1. 2014 Summary statistics (Connecticut) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 8,832 35 Electric utilities 161 45 IPP & CHP 8,671 12 Net generation (megawatthours) 33,676,980 38 Electric utilities 54,693 45 IPP & CHP 33,622,288 11 Emissions Sulfur dioxide (short tons) 1,897 47 Nitrogen oxide (short tons) 8,910 45 Carbon dioxide (thousand metric tons) 7,959 41 Sulfur dioxide (lbs/MWh) 0.1 46 Nitrogen oxide

  8. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Georgia Electricity Profile 2014 Table 1. 2014 Summary statistics (Georgia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 38,250 7 Electric utilities 28,873 3 IPP & CHP 9,377 10 Net generation (megawatthours) 125,837,224 10 Electric utilities 109,523,336 4 IPP & CHP 16,313,888 20 Emissions Sulfur dioxide (short tons) 105,998 11 Nitrogen oxide (short tons) 58,144 14 Carbon dioxide (thousand metric tons) 62,516 12 Sulfur dioxide (lbs/MWh) 1.7 24 Nitrogen oxide

  9. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Idaho Electricity Profile 2014 Table 1. 2014 Summary statistics (Idaho) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,944 42 Electric utilities 3,413 37 IPP & CHP 1,531 39 Net generation (megawatthours) 15,184,417 43 Electric utilities 9,628,016 37 IPP & CHP 5,556,400 39 Emissions Sulfur dioxide (short tons) 5,777 42 Nitrogen oxide (short tons) 20,301 37 Carbon dioxide (thousand metric tons) 1,492 49 Sulfur dioxide (lbs/MWh) 0.8 36 Nitrogen oxide

  10. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Illinois Electricity Profile 2014 Table 1. 2014 Summary statistics (Illinois) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 44,727 4 Electric utilities 5,263 35 IPP & CHP 39,464 4 Net generation (megawatthours) 202,143,878 4 Electric utilities 10,457,398 36 IPP & CHP 191,686,480 3 Emissions Sulfur dioxide (short tons) 187,536 6 Nitrogen oxide (short tons) 58,076 15 Carbon dioxide (thousand metric tons) 96,624 6 Sulfur dioxide (lbs/MWh) 1.9 20 Nitrogen

  11. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Indiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Indiana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 27,499 14 Electric utilities 23,319 7 IPP & CHP 4,180 23 Net generation (megawatthours) 115,395,392 12 Electric utilities 100,983,285 6 IPP & CHP 14,412,107 22 Emissions Sulfur dioxide (short tons) 332,396 3 Nitrogen oxide (short tons) 133,412 3 Carbon dioxide (thousand metric tons) 103,391 3 Sulfur dioxide (lbs/MWh) 5.8 1 Nitrogen oxide

  12. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Kansas Electricity Profile 2014 Table 1. 2014 Summary statistics (Kansas) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,227 31 Electric utilities 11,468 24 IPP & CHP 2,759 33 Net generation (megawatthours) 49,728,363 31 Electric utilities 39,669,629 29 IPP & CHP 10,058,734 31 Emissions Sulfur dioxide (short tons) 31,550 29 Nitrogen oxide (short tons) 29,014 29 Carbon dioxide (thousand metric tons) 31,794 29 Sulfur dioxide (lbs/MWh) 1.3 29 Nitrogen oxide

  13. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Louisiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Louisiana) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 26,657 15 Electric utilities 18,120 16 IPP & CHP 8,537 13 Net generation (megawatthours) 104,229,402 15 Electric utilities 58,518,271 17 IPP & CHP 45,711,131 8 Emissions Sulfur dioxide (short tons) 96,240 14 Nitrogen oxide (short tons) 83,112 8 Carbon dioxide (thousand metric tons) 57,137 15 Sulfur dioxide (lbs/MWh) 1.8 21

  14. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Michigan Electricity Profile 2014 Table 1. 2014 Summary statistics (Michigan) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,435 12 Electric utilities 22,260 9 IPP & CHP 8,175 14 Net generation (megawatthours) 106,816,991 14 Electric utilities 84,075,322 12 IPP & CHP 22,741,669 13 Emissions Sulfur dioxide (short tons) 173,521 7 Nitrogen oxide (short tons) 77,950 9 Carbon dioxide (thousand metric tons) 64,062 11 Sulfur dioxide (lbs/MWh) 3.2 7 Nitrogen oxide

  15. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Minnesota Electricity Profile 2014 Table 1. 2014 Summary statistics (Minnesota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 15,621 28 Electric utilities 11,557 22 IPP & CHP 4,064 24 Net generation (megawatthours) 56,998,330 27 Electric utilities 45,963,271 22 IPP & CHP 11,035,059 29 Emissions Sulfur dioxide (short tons) 39,272 27 Nitrogen oxide (short tons) 38,373 28 Carbon dioxide (thousand metric tons) 32,399 28 Sulfur dioxide (lbs/MWh) 1.4 27 Nitrogen

  16. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Hampshire Electricity Profile 2013 Table 1. 2013 Summary statistics (New Hampshire) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 4,413 44 Electric utilities 1,121 41 IPP & CHP 3,292 30 Net generation (megawatthours) 19,778,520 42 Electric utilities 2,266,903 41 IPP & CHP 17,511,617 20 Emissions Sulfur dioxide (short tons) 3,733 44 Nitrogen oxide (short tons) 5,057 47 Carbon dioxide (thousand metric tons) 3,447 46 Sulfur dioxide (lbs/MWh) 0.4 45 Nitrogen

  17. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    South Dakota Electricity Profile 2014 Table 1. 2014 Summary statistics (South Dakota) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 3,948 45 Electric utilities 3,450 36 IPP & CHP 499 48 Net generation (megawatthours) 10,995,240 45 Electric utilities 9,344,872 38 IPP & CHP 1,650,368 48 Emissions Sulfur dioxide (short tons) 13,852 35 Nitrogen oxide (short tons) 10,638 44 Carbon dioxide (thousand metric tons) 3,093 47 Sulfur dioxide (lbs/MWh) 2.5 15

  18. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Virginia Electricity Profile 2014 Table 1. 2014 Summary statistics (Virginia) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 26,292 16 Electric utilities 22,062 10 IPP & CHP 4,231 22 Net generation (megawatthours) 77,137,438 21 Electric utilities 62,966,914 16 IPP & CHP 14,170,524 23 Emissions Sulfur Dioxide (short tons) 68,550 20 Nitrogen Oxide (short tons) 40,656 26 Carbon Dioxide (thousand metric tons) 33,295 25 Sulfur Dioxide (lbs/MWh) 1.8 23 Nitrogen

  19. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Wisconsin Electricity Profile 2014 Table 1. 2014 Summary statistics (Wisconsin) Item Value Rank Primary Energy Source Coal Net summer capacity (megawatts) 17,166 23 Electric utilities 14,377 18 IPP & CHP 2,788 32 Net generation (megawatthours) 61,064,796 25 Electric utilities 47,301,782 20 IPP & CHP 13,763,014 26 Emissions Sulfur Dioxide (short tons) 81,239 17 Nitrogen Oxide (short tons) 39,597 27 Carbon Dioxide (thousand metric tons) 43,750 19 Sulfur Dioxide (lbs/MWh) 2.7 12 Nitrogen

  20. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    United States Electricity Profile 2014 Table 1. 2014 Summary statistics (United States) Item Value Primary energy source Coal Net summer capacity (megawatts) 1,068,422 Electric utilities 616,632 IPP & CHP 451,791 Net generation (megawatthours) 4,093,606,005 Electric utilities 2,382,473,495 IPP & CHP 1,711,132,510 Emissions Sulfur Dioxide (short tons) 3,842,005 Nitrogen Oxide (short tons) 2,400,375 Carbon Dioxide (thousand metric tons) 2,160,342 Sulfur Dioxide (lbs/MWh) 1.9 Nitrogen Oxide

  1. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Arizona Electricity Profile 2014 Table 1. 2014 Summary statistics (Arizona) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 28,249 13 Electric utilities 21,311 11 IPP & CHP 6,938 17 Net generation (megawatthours) 112,257,187 13 Electric utilities 94,847,135 8 IPP & CHP 17,410,053 19 Emissions Sulfur dioxide (short tons) 22,597 32 Nitrogen oxide (short tons) 56,726 17 Carbon dioxide (thousand metric tons) 53,684 16 Sulfur dioxide (lbs/MWh) 0.4 41 Nitrogen oxide

  2. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    California Electricity Profile 2014 Table 1. 2014 Summary statistics (California) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 74,646 2 Electric utilities 28,201 4 IPP & CHP 46,446 2 Net generation (megawatthours) 198,807,622 5 Electric utilities 71,037,135 14 IPP & CHP 127,770,487 4 Emissions Sulfur dioxide (short tons) 3,102 46 Nitrogen oxide (short tons) 98,348 5 Carbon dioxide (thousand metric tons) 57,223 14 Sulfur dioxide (lbs/MWh) 0.0 49

  3. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Colorado Electricity Profile 2014 Table 1. 2014 Summary statistics (Colorado) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,933 29 Electric utilities 10,204 28 IPP & CHP 4,729 18 Net generation (megawatthours) 53,847,386 30 Electric utilities 43,239,615 26 IPP & CHP 10,607,771 30 Emissions Sulfur dioxide (short tons) 28,453 30 Nitrogen oxide (short tons) 44,349 24 Carbon dioxide (thousand metric tons) 38,474 22 Sulfur dioxide (lbs/MWh) 1.1 32 Nitrogen

  4. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Connecticut Electricity Profile 2014 Table 1. 2014 Summary statistics (Connecticut) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 8,832 35 Electric utilities 161 45 IPP & CHP 8,671 12 Net generation (megawatthours) 33,676,980 38 Electric utilities 54,693 45 IPP & CHP 33,622,288 11 Emissions Sulfur dioxide (short tons) 1,897 47 Nitrogen oxide (short tons) 8,910 45 Carbon dioxide (thousand metric tons) 7,959 41 Sulfur dioxide (lbs/MWh) 0.1 46 Nitrogen oxide

  5. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Delaware Electricity Profile 2014 Table 1. 2014 Summary statistics (Delaware) Item Value U.S. rank Primary energy source Natural gas Net summer capacity (megawatts) 3,086 46 Electric utilities 102 46 IPP & CHP 2,984 31 Net generation (megawatthours) 7,703,584 47 Electric utilities 49,050 46 IPP & CHP 7,654,534 35 Emissions Sulfur dioxide (short tons) 824 48 Nitrogen oxide (short tons) 2,836 48 Carbon dioxide (thousand metric tons) 4,276 43 Sulfur dioxide (lbs/MWh) 0.2 45 Nitrogen oxide

  6. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Florida Electricity Profile 2014 Table 1. 2014 Summary statistics (Florida) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 59,440 3 Electric utilities 51,775 1 IPP & CHP 7,665 15 Net generation (megawatthours) 230,015,937 2 Electric utilities 211,970,587 1 IPP & CHP 18,045,350 15 Emissions Sulfur dioxide (short tons) 126,600 10 Nitrogen oxide (short tons) 91,356 6 Carbon dioxide (thousand metric tons) 111,549 2 Sulfur dioxide (lbs/MWh) 1.1 30 Nitrogen

  7. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Georgia Electricity Profile 2014 Table 1. 2014 Summary statistics (Georgia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 38,250 7 Electric utilities 28,873 3 IPP & CHP 9,377 10 Net generation (megawatthours) 125,837,224 10 Electric utilities 109,523,336 4 IPP & CHP 16,313,888 20 Emissions Sulfur dioxide (short tons) 105,998 11 Nitrogen oxide (short tons) 58,144 14 Carbon dioxide (thousand metric tons) 62,516 12 Sulfur dioxide (lbs/MWh) 1.7 24 Nitrogen oxide

  8. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Hawaii Electricity Profile 2014 Table 1. 2014 Summary statistics (Hawaii) Item Value Rank Primary energy source Petroleum Net summer capacity (megawatts) 2,672 47 Electric utilities 1,732 40 IPP & CHP 939 45 Net generation (megawatthours) 10,204,158 46 Electric utilities 5,517,389 39 IPP & CHP 4,686,769 40 Emissions Sulfur dioxide (short tons) 21,670 33 Nitrogen oxide (short tons) 26,928 31 Carbon dioxide (thousand metric tons) 7,313 42 Sulfur dioxide (lbs/MWh) 4.2 4 Nitrogen oxide

  9. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Idaho Electricity Profile 2014 Table 1. 2014 Summary statistics (Idaho) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,944 42 Electric utilities 3,413 37 IPP & CHP 1,531 39 Net generation (megawatthours) 15,184,417 43 Electric utilities 9,628,016 37 IPP & CHP 5,556,400 39 Emissions Sulfur dioxide (short tons) 5,777 42 Nitrogen oxide (short tons) 20,301 37 Carbon dioxide (thousand metric tons) 1,492 49 Sulfur dioxide (lbs/MWh) 0.8 36 Nitrogen oxide

  10. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Illinois Electricity Profile 2014 Table 1. 2014 Summary statistics (Illinois) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 44,727 4 Electric utilities 5,263 35 IPP & CHP 39,464 4 Net generation (megawatthours) 202,143,878 4 Electric utilities 10,457,398 36 IPP & CHP 191,686,480 3 Emissions Sulfur dioxide (short tons) 187,536 6 Nitrogen oxide (short tons) 58,076 15 Carbon dioxide (thousand metric tons) 96,624 6 Sulfur dioxide (lbs/MWh) 1.9 20 Nitrogen

  11. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Indiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Indiana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 27,499 14 Electric utilities 23,319 7 IPP & CHP 4,180 23 Net generation (megawatthours) 115,395,392 12 Electric utilities 100,983,285 6 IPP & CHP 14,412,107 22 Emissions Sulfur dioxide (short tons) 332,396 3 Nitrogen oxide (short tons) 133,412 3 Carbon dioxide (thousand metric tons) 103,391 3 Sulfur dioxide (lbs/MWh) 5.8 1 Nitrogen oxide

  12. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Iowa Electricity Profile 2014 Table 1. 2014 Summary statistics (Iowa) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,507 24 Electric utilities 12,655 20 IPP & CHP 3,852 25 Net generation (megawatthours) 56,853,282 28 Electric utilities 43,021,954 27 IPP & CHP 13,831,328 25 Emissions Sulfur dioxide (short tons) 74,422 19 Nitrogen oxide (short tons) 41,793 25 Carbon dioxide (thousand metric tons) 39,312 21 Sulfur dioxide (lbs/MWh) 2.6 13 Nitrogen oxide

  13. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Kansas Electricity Profile 2014 Table 1. 2014 Summary statistics (Kansas) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,227 31 Electric utilities 11,468 24 IPP & CHP 2,759 33 Net generation (megawatthours) 49,728,363 31 Electric utilities 39,669,629 29 IPP & CHP 10,058,734 31 Emissions Sulfur dioxide (short tons) 31,550 29 Nitrogen oxide (short tons) 29,014 29 Carbon dioxide (thousand metric tons) 31,794 29 Sulfur dioxide (lbs/MWh) 1.3 29 Nitrogen oxide

  14. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Kentucky Electricity Profile 2014 Table 1. 2014 Summary statistics (Kentucky) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 20,878 21 Electric utilities 19,473 15 IPP & CHP 1,405 40 Net generation (megawatthours) 90,896,435 17 Electric utilities 90,133,403 10 IPP & CHP 763,032 49 Emissions Sulfur dioxide (short tons) 204,873 5 Nitrogen oxide (short tons) 89,253 7 Carbon dioxide (thousand metric tons) 85,795 7 Sulfur dioxide (lbs/MWh) 4.5 3 Nitrogen oxide

  15. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Louisiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Louisiana) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 26,657 15 Electric utilities 18,120 16 IPP & CHP 8,537 13 Net generation (megawatthours) 104,229,402 15 Electric utilities 58,518,271 17 IPP & CHP 45,711,131 8 Emissions Sulfur dioxide (short tons) 96,240 14 Nitrogen oxide (short tons) 83,112 8 Carbon dioxide (thousand metric tons) 57,137 15 Sulfur dioxide (lbs/MWh) 1.8 21

  16. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Maryland Electricity Profile 2014 Table 1. 2014 Summary statistics (Maryland) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 12,264 33 Electric utilities 85 47 IPP & CHP 12,179 8 Net generation (megawatthours) 37,833,652 35 Electric utilities 20,260 47 IPP & CHP 37,813,392 9 Emissions Sulfur dioxide (short tons) 41,370 26 Nitrogen oxide (short tons) 20,626 35 Carbon dioxide (thousand metric tons) 20,414 34 Sulfur dioxide (lbs/MWh) 2.2 18 Nitrogen oxide

  17. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Massachusetts Electricity Profile 2014 Table 1. 2014 Summary statistics (Massachusetts) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 13,128 32 Electric utilities 971 42 IPP & CHP 12,157 9 Net generation (megawatthours) 31,118,591 40 Electric utilities 679,986 43 IPP & CHP 30,438,606 12 Emissions Sulfur dioxide (short tons) 6,748 41 Nitrogen oxide (short tons) 13,831 43 Carbon dioxide (thousand metric tons) 12,231 39 Sulfur dioxide (lbs/MWh) 0.4 40

  18. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Michigan Electricity Profile 2014 Table 1. 2014 Summary statistics (Michigan) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,435 12 Electric utilities 22,260 9 IPP & CHP 8,175 14 Net generation (megawatthours) 106,816,991 14 Electric utilities 84,075,322 12 IPP & CHP 22,741,669 13 Emissions Sulfur dioxide (short tons) 173,521 7 Nitrogen oxide (short tons) 77,950 9 Carbon dioxide (thousand metric tons) 64,062 11 Sulfur dioxide (lbs/MWh) 3.2 7 Nitrogen oxide

  19. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Minnesota Electricity Profile 2014 Table 1. 2014 Summary statistics (Minnesota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 15,621 28 Electric utilities 11,557 22 IPP & CHP 4,064 24 Net generation (megawatthours) 56,998,330 27 Electric utilities 45,963,271 22 IPP & CHP 11,035,059 29 Emissions Sulfur dioxide (short tons) 39,272 27 Nitrogen oxide (short tons) 38,373 28 Carbon dioxide (thousand metric tons) 32,399 28 Sulfur dioxide (lbs/MWh) 1.4 27 Nitrogen

  20. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Mississippi Electricity Profile 2014 Table 1. 2014 Summary statistics (Mississippi) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 16,090 26 Electric utilities 13,494 19 IPP & CHP 2,597 34 Net generation (megawatthours) 55,127,092 29 Electric utilities 47,084,382 21 IPP & CHP 8,042,710 34 Emissions Sulfur dioxide (short tons) 101,093 13 Nitrogen oxide (short tons) 23,993 32 Carbon dioxide (thousand metric tons) 24,037 33 Sulfur dioxide (lbs/MWh) 3.7 5

  1. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Missouri Electricity Profile 2014 Table 1. 2014 Summary statistics (Missouri) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,790 19 Electric utilities 20,538 13 IPP & CHP 1,252 42 Net generation (megawatthours) 87,834,468 18 Electric utilities 85,271,253 11 IPP & CHP 2,563,215 46 Emissions Sulfur dioxide (short tons) 149,842 9 Nitrogen oxide (short tons) 77,749 10 Carbon dioxide (thousand metric tons) 75,735 8 Sulfur dioxide (lbs/MWh) 3.4 6 Nitrogen oxide

  2. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Montana Electricity Profile 2014 Table 1. 2014 Summary statistics (Montana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,330 41 Electric utilities 3,209 38 IPP & CHP 3,121 30 Net generation (megawatthours) 30,257,616 41 Electric utilities 12,329,411 35 IPP & CHP 17,928,205 16 Emissions Sulfur dioxide (short tons) 14,426 34 Nitrogen oxide (short tons) 20,538 36 Carbon dioxide (thousand metric tons) 17,678 36 Sulfur dioxide (lbs/MWh) 1.0 34 Nitrogen oxide

  3. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Nebraska Electricity Profile 2014 Table 1. 2014 Summary statistics (Nebraska) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,732 36 Electric utilities 7,913 30 IPP & CHP 819 46 Net generation (megawatthours) 39,431,291 34 Electric utilities 36,560,960 30 IPP & CHP 2,870,331 45 Emissions Sulfur dioxide (short tons) 63,994 22 Nitrogen oxide (short tons) 27,045 30 Carbon dioxide (thousand metric tons) 26,348 31 Sulfur dioxide (lbs/MWh) 3.2 8 Nitrogen oxide

  4. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Nevada Electricity Profile 2014 Table 1. 2014 Summary statistics (Nevada) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 10,485 34 Electric utilities 8,480 29 IPP & CHP 2,006 35 Net generation (megawatthours) 36,000,537 37 Electric utilities 27,758,728 33 IPP & CHP 8,241,809 33 Emissions Sulfur dioxide (short tons) 10,229 40 Nitrogen oxide (short tons) 18,606 39 Carbon dioxide (thousand metric tons) 16,222 37 Sulfur dioxide (lbs/MWh) 0.4 38 Nitrogen

  5. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Hampshire Electricity Profile 2013 Table 1. 2013 Summary statistics (New Hampshire) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 4,413 44 Electric utilities 1,121 41 IPP & CHP 3,292 30 Net generation (megawatthours) 19,778,520 42 Electric utilities 2,266,903 41 IPP & CHP 17,511,617 20 Emissions Sulfur dioxide (short tons) 3,733 44 Nitrogen oxide (short tons) 5,057 47 Carbon dioxide (thousand metric tons) 3,447 46 Sulfur dioxide (lbs/MWh) 0.4 45 Nitrogen

  6. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Jersey Electricity Profile 2014 Table 1. 2014 Summary statistics (New Jersey) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 19,399 22 Electric utilities 544 43 IPP & CHP 18,852 7 Net generation (megawatthours) 68,051,086 23 Electric utilities -117,003 50 IPP & CHP 68,168,089 7 Emissions Sulfur dioxide (short tons) 3,369 44 Nitrogen oxide (short tons) 15,615 41 Carbon dioxide (thousand metric tons) 17,905 35 Sulfur dioxide (lbs/MWh) 0.1 47 Nitrogen oxide

  7. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Mexico Electricity Profile 2014 Table 1. 2014 Summary statistics (New Mexico) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 8,072 39 Electric utilities 6,094 33 IPP & CHP 1,978 37 Net generation (megawatthours) 32,306,210 39 Electric utilities 26,422,867 34 IPP & CHP 5,883,343 38 Emissions Sulfur dioxide (short tons) 12,064 37 Nitrogen oxide (short tons) 46,192 22 Carbon dioxide (thousand metric tons) 24,712 32 Sulfur dioxide (lbs/MWh) 0.7 37 Nitrogen

  8. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    York Electricity Profile 2014 Table 1. 2014 Summary statistics (New York) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 40,404 6 Electric utilities 10,989 27 IPP & CHP 29,416 5 Net generation (megawatthours) 137,122,202 7 Electric utilities 34,082 31 IPP & CHP 103,039,347 5 Emissions Sulfur dioxide (short tons) 31,878 28 Nitrogen oxide (short tons) 46,971 21 Carbon dioxide (thousand metric tons) 33,240 26 Sulfur dioxide (lbs/MWh) 0.5 39 Nitrogen oxide

  9. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (North Carolina) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,048 12 Electric utilities 26,706 6 IPP & CHP 3,342 29 Net generation (megawatthours) 125,936,293 9 Electric utilities 116,317,050 2 IPP & CHP 9,619,243 31 Emissions Sulfur dioxide (short tons) 71,293 20 Nitrogen oxide (short tons) 62,397 12 Carbon dioxide (thousand metric tons) 56,940 14 Sulfur dioxide (lbs/MWh) 1.1 32 Nitrogen

  10. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (North Dakota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,566 40 Electric utilities 5,292 34 IPP & CHP 1,274 41 Net generation (megawatthours) 35,021,673 39 Electric utilities 31,044,374 32 IPP & CHP 3,977,299 42 Emissions Sulfur dioxide (short tons) 56,854 23 Nitrogen oxide (short tons) 48,454 22 Carbon dioxide (thousand metric tons) 30,274 28 Sulfur dioxide (lbs/MWh) 3.2 11 Nitrogen oxide

  11. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Oregon Electricity Profile 2014 Table 1. 2014 Summary statistics (Oregon) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 15,884 27 Electric utilities 11,175 25 IPP & CHP 4,709 19 Net generation (megawatthours) 60,119,907 26 Electric utilities 44,565,239 24 IPP & CHP 15,554,668 21 Emissions Sulfur dioxide (short tons) 10,595 39 Nitrogen oxide (short tons) 14,313 42 Carbon dioxide (thousand metric tons) 8,334 40 Sulfur dioxide (lbs/MWh) 0.4 42 Nitrogen

  12. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Pennsylvania Electricity Profile 2014 Table 1. 2014 Summary statistics (Pennsylvania) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 42,723 5 Electric utilities 39 48 IPP & CHP 42,685 3 Net generation (megawatthours) 221,058,365 3 Electric utilities 90,994 44 IPP & CHP 220,967,371 2 Emissions Sulfur dioxide (short tons) 297,598 4 Nitrogen oxide (short tons) 141,486 2 Carbon dioxide (thousand metric tons) 101,361 4 Sulfur dioxide (lbs/MWh) 2.7 11 Nitrogen oxide

  13. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Rhode Island Electricity Profile 2014 Table 1. 2014 Summary statistics (Rhode Island) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 1,810 49 Electric utilities 8 50 IPP & CHP 1,803 38 Net generation (megawatthours) 6,281,748 49 Electric utilities 10,670 48 IPP & CHP 6,271,078 36 Emissions Sulfur dioxide (short tons) 100 49 Nitrogen oxide (short tons) 1,224 49 Carbon dioxide (thousand metric tons) 2,566 48 Sulfur dioxide (lbs/MWh) 0.0 48 Nitrogen oxide

  14. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Carolina Electricity Profile 2014 Table 1. 2014 Summary statistics (South Carolina) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 22,824 18 Electric utilities 20,836 12 IPP & CHP 1,988 36 Net generation (megawatthours) 97,158,465 16 Electric utilities 93,547,004 9 IPP & CHP 3,611,461 43 Emissions Sulfur dioxide (short tons) 43,659 25 Nitrogen oxide (short tons) 21,592 34 Carbon dioxide (thousand metric tons) 33,083 27 Sulfur dioxide (lbs/MWh) 0.9 35

  15. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    South Dakota Electricity Profile 2014 Table 1. 2014 Summary statistics (South Dakota) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 3,948 45 Electric utilities 3,450 36 IPP & CHP 499 48 Net generation (megawatthours) 10,995,240 45 Electric utilities 9,344,872 38 IPP & CHP 1,650,368 48 Emissions Sulfur dioxide (short tons) 13,852 35 Nitrogen oxide (short tons) 10,638 44 Carbon dioxide (thousand metric tons) 3,093 47 Sulfur dioxide (lbs/MWh) 2.5 15

  16. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Tennessee Electricity Profile 2014 Table 1. 2014 Summary statistics (Tennessee) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 20,998 20 Electric utilities 20,490 14 IPP & CHP 508 47 Net generation (megawatthours) 79,506,886 20 Electric utilities 76,986,629 13 IPP & CHP 2,520,257 47 Emissions Sulfur dioxide (short tons) 89,357 16 Nitrogen oxide (short tons) 23,913 33 Carbon dioxide (thousand metric tons) 41,405 20 Sulfur dioxide (lbs/MWh) 2.2 16 Nitrogen oxide

  17. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Texas Electricity Profile 2014 Table 1. 2014 Summary statistics (Texas) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 112,914 1 Electric utilities 29,113 2 IPP & CHP 83,800 1 Net generation (megawatthours) 437,629,668 1 Electric utilities 94,974,953 7 IPP & CHP 342,654,715 1 Emissions Sulfur Dioxide (short tons) 349,245 2 Nitrogen Oxide short tons) 229,580 1 Carbon Dioxide (thousand metric tons) 254,488 1 Sulfur Dioxide (lbs/MWh) 1.6 26 Nitrogen Oxide

  18. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    United States Electricity Profile 2014 Table 1. 2014 Summary statistics (United States) Item Value Primary energy source Coal Net summer capacity (megawatts) 1,068,422 Electric utilities 616,632 IPP & CHP 451,791 Net generation (megawatthours) 4,093,606,005 Electric utilities 2,382,473,495 IPP & CHP 1,711,132,510 Emissions Sulfur Dioxide (short tons) 3,842,005 Nitrogen Oxide (short tons) 2,400,375 Carbon Dioxide (thousand metric tons) 2,160,342 Sulfur Dioxide (lbs/MWh) 1.9 Nitrogen Oxide

  19. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Virginia Electricity Profile 2014 Table 1. 2014 Summary statistics (Virginia) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 26,292 16 Electric utilities 22,062 10 IPP & CHP 4,231 22 Net generation (megawatthours) 77,137,438 21 Electric utilities 62,966,914 16 IPP & CHP 14,170,524 23 Emissions Sulfur Dioxide (short tons) 68,550 20 Nitrogen Oxide (short tons) 40,656 26 Carbon Dioxide (thousand metric tons) 33,295 25 Sulfur Dioxide (lbs/MWh) 1.8 23 Nitrogen

  20. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Washington Electricity Profile 2014 Table 1. 2014 Summary statistics (Washington) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 30,949 10 Electric utilities 27,376 5 IPP & CHP 3,573 26 Net generation (megawatthours) 116,334,363 11 Electric utilities 102,294,256 5 IPP & CHP 14,040,107 24 Emissions Sulfur Dioxide (short tons) 13,716 36 Nitrogen Oxide (short tons) 18,316 40 Carbon Dioxide (thousand metric tons) 12,427 398 Sulfur Dioxide (lbs/MWh) 0.2 44

  1. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    West Virginia Electricity Profile 2014 Table 1. 2014 Summary statistics (West Virginia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,276 25 Electric utilities 11,981 21 IPP & CHP 4,295 21 Net generation (megawatthours) 81,059,577 19 Electric utilities 63,331,833 15 IPP & CHP 17,727,743 17 Emissions Sulfur Dioxide (short tons) 102,406 12 Nitrogen Oxide (short tons) 72,995 11 Carbon Dioxide (thousand metric tons) 73,606 9 Sulfur Dioxide (lbs/MWh) 2.5 14

  2. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Wisconsin Electricity Profile 2014 Table 1. 2014 Summary statistics (Wisconsin) Item Value Rank Primary Energy Source Coal Net summer capacity (megawatts) 17,166 23 Electric utilities 14,377 18 IPP & CHP 2,788 32 Net generation (megawatthours) 61,064,796 25 Electric utilities 47,301,782 20 IPP & CHP 13,763,014 26 Emissions Sulfur Dioxide (short tons) 81,239 17 Nitrogen Oxide (short tons) 39,597 27 Carbon Dioxide (thousand metric tons) 43,750 19 Sulfur Dioxide (lbs/MWh) 2.7 12 Nitrogen

  3. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Wyoming Electricity Profile 2014 Table 1. 2014 Summary statistics (Wyoming) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,458 37 Electric utilities 7,233 32 IPP & CHP 1,225 43 Net generation (megawatthours) 49,696,183 32 Electric utilities 45,068,982 23 IPP & CHP 4,627,201 41 Emissions Sulfur Dioxide (short tons) 45,704 24 Nitrogen Oxide (short tons) 49,638 18 Carbon Dioxide (thousand metric tons) 47,337 17 Sulfur Dioxide (lbs/MWh) 1.8 22 Nitrogen Oxide

  4. renewable energy certificates | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    for Proposals rfp Deadline - July 31, 2014 The Defense Logistics Agency (DLA) RFP (Sol. SPE600-14-R-0415) seeking up to 830,843 megawatt-hours of renewable energy...

  5. REC | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    for Proposals rfp Deadline - July 31, 2014 The Defense Logistics Agency (DLA) RFP (Sol. SPE600-14-R-0415) seeking up to 830,843 megawatt-hours of renewable energy...

  6. The Defense Logistics Agency (DLA) RFP - Deadline - July 31,...

    OpenEI (Open Energy Information) [EERE & EIA]

    for Proposals rfp Deadline - July 31, 2014 The Defense Logistics Agency (DLA) RFP (Sol. SPE600-14-R-0415) seeking up to 830,843 megawatt-hours of renewable energy...

  7. rfp | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    for Proposals rfp Deadline - July 31, 2014 The Defense Logistics Agency (DLA) RFP (Sol. SPE600-14-R-0415) seeking up to 830,843 megawatt-hours of renewable energy...

  8. OpenEI Community - rfp

    OpenEI (Open Energy Information) [EERE & EIA]

    rel"nofollow">The Defense Logistics Agency (DLA) RFP (Sol. SPE600-14-R-0415) seeking up to 830,843 megawatt-hours of renewable energy...

  9. Jleyshon's blog | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    for Proposals rfp Deadline - July 31, 2014 The Defense Logistics Agency (DLA) RFP (Sol. SPE600-14-R-0415) seeking up to 830,843 megawatt-hours of renewable energy...

  10. Request for Proposals | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    for Proposals rfp Deadline - July 31, 2014 The Defense Logistics Agency (DLA) RFP (Sol. SPE600-14-R-0415) seeking up to 830,843 megawatt-hours of renewable energy...

  11. Solar Generation Has a Bright Future

    Office of Energy Efficiency and Renewable Energy (EERE)

    The amount of electricity the United States generates from solar power has started to grow rapidly and is projected to reach 18,000 megawatt hours per day in 2013.

  12. DOE Quadrennial Energy Review 1.2, Electricity: Generation to...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... The project uses Toshiba's lithium-ion battery, with 2-MW output and 0.8 megawatt-hour capacity. Duke Energy, LG Chem and Greensmith are teaming up for a 2-MW storage project will ...

  13. West Virginia: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2,318,714 MWh Coal Power 68,135,764 MWh Gas Power 149,347 MWh Petroleum Power 170,674 MWh Nuclear Power 0 MWh Other 422 MWh Total Energy Production 70,774,921 MWh Percent of Total...

  14. Delaware: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    138,302 MWh Coal Power 2,910,909 MWh Gas Power 1,686,773 MWh Petroleum Power 268,773 MWh Nuclear Power 0 MWh Other 5,877 MWh Total Energy Production 5,010,634 MWh Percent of Total...

  15. Missouri: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 71,848,215 MWh Gas Power 3,400,527 MWh Petroleum Power 86,777 MWh Nuclear Power 10,247,116 MWh Other 27,422 MWh Total Energy Production 88,646,870 MWh...

  16. New York: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 13,152,552 MWh Gas Power 42,954,141 MWh Petroleum Power 2,717,386 MWh Nuclear Power 43,484,614 MWh Other 989,616 MWh Total Energy Production 135,475,849 MWh...

  17. Wisconsin: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 38,330,917 MWh Gas Power 5,601,116 MWh Petroleum Power 730,117 MWh Nuclear Power 12,683,151 MWh Other 72,992 MWh Total Energy Production 61,334,663 MWh...

  18. South Carolina: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 35,157,227 MWh Gas Power 9,402,119 MWh Petroleum Power 523,380 MWh Nuclear Power 52,149,734 MWh Other 105,354 MWh Total Energy Production 100,197,178 MWh...

  19. Georgia: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 69,524,670 MWh Gas Power 20,301,025 MWh Petroleum Power 644,996 MWh Nuclear Power 31,682,579 MWh Other 26,648 MWh Total Energy Production 128,438,721 MWh...

  20. Kansas: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 32,242,988 MWh Gas Power 2,611,084 MWh Petroleum Power 124,354 MWh Nuclear Power 8,768,548 MWh Other 0 MWh Total Energy Production 46,144,448 MWh Percent of...

  1. Ohio: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 113,824,221 MWh Gas Power 4,747,936 MWh Petroleum Power 1,311,952 MWh Nuclear Power 14,937,336 MWh Other 14,388 MWh Total Energy Production 135,949,118 MWh...

  2. North Carolina: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 65,853,978 MWh Gas Power 4,926,167 MWh Petroleum Power 287,979 MWh Nuclear Power 40,847,711 MWh Other 90,997 MWh Total Energy Production 118,993,695 MWh...

  3. Arkansas: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 25,075,250 MWh Gas Power 11,368,417 MWh Petroleum Power 87,674 MWh Nuclear Power 15,169,966 MWh Other 24,019 MWh Total Energy Production 57,499,169 MWh...

  4. New Hampshire: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 2,885,668 MWh Gas Power 5,352,728 MWh Petroleum Power 171,818 MWh Nuclear Power 8,816,673 MWh Other 59,854 MWh Total Energy Production 19,985,757 MWh...

  5. Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    10,053,139 MWh Coal Power 15,164,571 MWh Gas Power 81,800 MWh Petroleum Power 489,689 MWh Nuclear Power 0 MWh Other 110,308 MWh Total Energy Production 25,899,507 MWh Percent of...

  6. Florida: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 54,052,312 MWh Gas Power 117,733,704 MWh Petroleum Power 8,962,843 MWh Nuclear Power 29,336,059 MWh Other 2,576,795 MWh Total Energy Production 217,154,227 MWh...

  7. Minnesota: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 30,091,455 MWh Gas Power 2,559,675 MWh Petroleum Power 60,295 MWh Nuclear Power 12,393,425 MWh Other 340,463 MWh Total Energy Production 52,641,549 MWh...

  8. Mississippi: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 12,970,797 MWh Gas Power 23,380,703 MWh Petroleum Power 17,028 MWh Nuclear Power 10,998,515 MWh Other 5,206 MWh Total Energy Production 48,769,367 MWh...

  9. Illinois: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 90,949,011 MWh Gas Power 4,364,445 MWh Petroleum Power 110,882 MWh Nuclear Power 94,050,482 MWh Other 64,293 MWh Total Energy Production 193,214,345 MWh...

  10. Michigan: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 67,822,266 MWh Gas Power 8,244,775 MWh Petroleum Power 379,469 MWh Nuclear Power 21,851,009 MWh Other 341,304 MWh Total Energy Production 101,641,950 MWh...

  11. Maine: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    8,486,637 MWh Coal Power 72,386 MWh Gas Power 7,481,945 MWh Petroleum Power 480,670 MWh Nuclear Power 0 MWh Other 352,154 MWh Total Energy Production 16,873,792 MWh Percent of...

  12. Pennsylvania: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 104,927,415 MWh Gas Power 29,623,748 MWh Petroleum Power 930,953 MWh Nuclear Power 76,727,686 MWh Other 842,542 MWh Total Energy Production 218,376,989 MWh...

  13. New Jersey: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    973,234 MWh Coal Power 5,345,449 MWh Gas Power 21,037,564 MWh Petroleum Power 304,336 MWh Nuclear Power 34,327,954 MWh Other 513,761 MWh Total Energy Production 62,502,299 MWh...

  14. Hawaii: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    768,368 MWh Coal Power 1,521,169 MWh Gas Power 40,378 MWh Petroleum Power 8,288,819 MWh Nuclear Power 0 MWh Other 166,284 MWh Total Energy Production 10,785,018 MWh Percent of...

  15. Nebraska: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    750,278 MWh Coal Power 23,427,525 MWh Gas Power 332,467 MWh Petroleum Power 24,899 MWh Nuclear Power 9,435,142 MWh Other 0 MWh Total Energy Production 33,970,311 MWh Percent of...

  16. California: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 1,948,279 MWh Gas Power 115,749,546 MWh Petroleum Power 1,638,019 MWh Nuclear Power 31,734,676 MWh Other 440,323 MWh Total Energy Production 204,824,249 MWh...

  17. Connecticut: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 2,453,497 MWh Gas Power 9,678,195 MWh Petroleum Power 288,349 MWh Nuclear Power 16,657,387 MWh Other 712,522 MWh Total Energy Production 31,172,260 MWh...

  18. Massachusetts: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 9,896,296 MWh Gas Power 21,242,542 MWh Petroleum Power 864,489 MWh Nuclear Power 5,396,021 MWh Other 770,712 MWh Total Energy Production 40,175,901 MWh...

  19. Louisiana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 23,075,071 MWh Gas Power 45,313,617 MWh Petroleum Power 1,815,819 MWh Nuclear Power 16,782,077 MWh Other 390,454 MWh Total Energy Production 91,106,779 MWh...

  20. Washington: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 7,477,773 MWh Gas Power 11,409,482 MWh Petroleum Power 47,275 MWh Nuclear Power 6,634,014 MWh Other 63,675 MWh Total Energy Production 104,593,404 MWh...

  1. Texas: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 139,106,597 MWh Gas Power 191,652,532 MWh Petroleum Power 1,347,315 MWh Nuclear Power 41,497,617 MWh Other 621,766 MWh Total Energy Production 396,477,155 MWh...

  2. South Dakota: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    4,717,288 MWh Coal Power 3,190,913 MWh Gas Power 122,133 MWh Petroleum Power 10,089 MWh Nuclear Power 0 MWh Other 31,318 MWh Total Energy Production 8,071,741 MWh Percent of...

  3. Vermont: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Renewables 2,048,325 MWh Coal Power 0 MWh Gas Power 4,431 MWh Petroleum Power 3,577 MWh Nuclear Power 5,360,608 MWh Other 0 MWh Total Energy Production 7,416,941 MWh Percent of...

  4. Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 55,659,872 MWh Gas Power 32,369,863 MWh Petroleum Power 163,054 MWh Nuclear Power 39,716,204 MWh Other 7,137 MWh Total Energy Production 142,960,819 MWh...

  5. Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 24,414,551 MWh Gas Power 2,070,846 MWh Petroleum Power 346,732 MWh Nuclear Power 14,550,119 MWh Other 255,891 MWh Total Energy Production 44,126,270 MWh...

  6. Virginia: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MWh Coal Power 26,539,392 MWh Gas Power 12,204,843 MWh Petroleum Power 1,110,821 MWh Nuclear Power 28,212,252 MWh Other 427,691 MWh Total Energy Production 71,159,684 MWh...

  7. Demonstration test of a reformer employing thermal radiation media for multi-megawatt fuel cell applications

    SciTech Connect

    Morita, Y.; Horie, T.; Ogawa, M.; Mizumoto, Y.

    1996-12-31

    The authors made presentation of functions and roles of the thermal radiation media, extensive test results on the thermal radiation media sample and characteristics of an atmospheric 500kw PAFC model facility together with perspective to a 5MW class dispersed-use plant. This paper outlines the specifications and features of a prototype reformer having a capacity of 650kw class PAFC and configuration of atmospheric 500kw PAFC demonstration plant.

  8. GSA Awards Contract to Bring 3 Megawatts of Solar to Federal...

    Energy Saver

    to WGL for the construction of rooftop photovoltaic arrays that will bring approximately 3 ... Aspinall Courthouse Case Study Photovoltaic panels were installed on the Harold ...

  9. The creation of high-temperature superconducting cables of megawatt range in Russia

    SciTech Connect

    Sytnikov, V. E. Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.

    2015-12-15

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  10. Economic Development Impacts of Colorado's First 1000 Megawatts of Wind Energy

    SciTech Connect

    Reategui, S.; Tegen, S.

    2008-08-01

    This report analyzes the economic impacts of the installation of 1000 MW of wind power in the state of Colorado.

  11. Scaling considerations for a multi-megawatt class supercritical CO2 brayton cycle and commercialization.

    SciTech Connect

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Conboy, Thomas M.; Pasch, James Jay; Wright, Steven A; Rochau, Gary E; Fuller, Robert Lynn

    2013-11-01

    Small-scale supercritical CO2 demonstration loops are successful at identifying the important technical issues that one must face in order to scale up to larger power levels. The Sandia National Laboratories supercritical CO2 Brayton cycle test loops are identifying technical needs to scale the technology to commercial power levels such as 10 MWe. The small size of the Sandia 1 MWth loop has demonstration of the split flow loop efficiency and effectiveness of the Printed Circuit Heat Exchangers (PCHXs) leading to the design of a fully recuperated, split flow, supercritical CO2 Brayton cycle demonstration system. However, there were many problems that were encountered, such as high rotational speeds in the units. Additionally, the turbomachinery in the test loops need to identify issues concerning the bearings, seals, thermal boundaries, and motor controller problems in order to be proved a reliable power source in the 300 kWe range. Although these issues were anticipated in smaller demonstration units, commercially scaled hardware would eliminate these problems caused by high rotational speeds at small scale. The economic viability and development of the future scalable 10 MWe solely depends on the interest of DOE and private industry. The Intellectual Property collected by Sandia proves that the ~10 MWe supercritical CO2 power conversion loop to be very beneficial when coupled to a 20 MWth heat source (either solar, geothermal, fossil, or nuclear). This paper will identify a commercialization plan, as well as, a roadmap from the simple 1 MWth supercritical CO2 development loop to a power producing 10 MWe supercritical CO2 Brayton loop.

  12. GSA Issues New Request for Proposals to Bring 3 Megawatts of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    On June 9, 2015, the U.S. General Services Administration (GSA) issued a request for proposal (RFP) for the procurement of electricity produced by solar photovoltaic arrays to be ...

  13. Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    SciTech Connect

    Alarcon, Ricardo [Arizona State University, Glendale, AZ (United States); Balascuta, S. [Arizona State University, Glendale, AZ (United States); Benson, Stephen V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Bertozzi, William [Massachusetts Institute of Technology, Cambridge, MA (United States); Boyce, James R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cowan, Ray [Massachusetts Institute of Technology, Cambridge, MA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Evtushenko, Pavel [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Fisher, P. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ihloff, Ernest E. [Hampton University, Hampton, VA (United States); Kalantarians, Narbe [Hampton University, Hampton, VA (United States); Kelleher, Aidan Michael [Massachusetts Institute of Technology, Cambridge, MA (United States); Krossler, W. J. [William and Mary College, Williamsburg, VA (United States); Legg, Robert A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Long, Elena [University of New Hampshire, Durham, NH (United States); Milner, Richard [Massachusetts Institute of Technology, Cambridge, MA (United States); Neil, George R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Ou, Longwu [Massachusetts Institute of Technology, Cambridge, MA (United States); Schmookler, Barack Abraham [Massachusetts Institute of Technology, Cambridge, MA (United States); Tennant, Christopher D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tschalar, C. [Massachusetts Institute of Technology, Cambridge, MA (United States); Williams, Gwyn P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, Shukui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2013-11-01

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation.

  14. Utility Test Results of a 2-Megawatt, 10-Second Reserve-Power System

    SciTech Connect

    BALL,GREG J.; NORRIS,BENJAMIN L.

    1999-10-01

    This report documents the 1996 evaluation by Pacific Gas and Electric Company of an advanced reserve-power system capable of supporting 2 MW of load for 10 seconds. The system, developed under a DOE Cooperative Agreement with AC Battery Corporation of East Troy, Wisconsin, contains battery storage that enables industrial facilities to ''ride through'' momentary outages. The evaluation consisted of tests of system performance using a wide variety of load types and operating conditions. The tests, which included simulated utility outages and voltage sags, demonstrated that the system could provide continuous power during utility outages and other disturbances and that it was compatible with a variety of load types found at industrial customer sites.

  15. A 1 MEGAWATT POLYPHASE BOOST CONVERTER-MODULATOR FOR KLYSTRON PULSE APPLICATION

    SciTech Connect

    W.A. REASS; J.D. DOSS; R.F. GRIBBLE

    2001-06-01

    This paper describes electrical design criteria and first operational results a 140 kV, 1 MW average, 11 MW peak, zero-voltage-switching 20 kHz polyphase bridge, boost converter/modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2300 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three ''H-Bridge'' Insulated Gate Bipolar Transistor (IGBT) switching networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. PWM (pulse width modulation) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt-peaking is used on the transformer secondary to boost output voltage and resonate transformer leakage inductance. With the appropriate transformer leakage inductance and peaking capacitance, zero-voltage-switching of the IGBT's is attained, minimizing switching losses. A review of these design parameters and the first results of the performance characteristics will be presented.

  16. Economic Impacts from Indiana's First 1,000 Megawatts of Wind Power

    SciTech Connect

    Tegen, S.; Keyser, D.; Flores-Espino, F.; Hauser, R.

    2014-08-01

    The magnitude of Indiana's available wind resource indicates that the development of wind power infrastructure has the potential to support millions of dollars of economic activity in the state. The Jobs and Economic Development Impact (JEDI) models, developed by the National Renewable Energy Laboratory, are tools used to estimate some of the economic impacts of energy projects at the state level. JEDI calculates results in the form of jobs, earnings, and economic output in three categories: project development and onsite labor, local revenue and supply chain, and induced impacts. According to this analysis, the first 1,000 MW of wind power development in Indiana (projects built between 2008 and 2011): supported employment totaling more than 4,400 full-time-equivalent jobs in Indiana during the construction periods; supports approximately 260 ongoing Indiana jobs; supported nearly $570 million in economic activity for Indiana during the construction periods; supported and continues to support nearly $40 million in annual Indiana economic activity during the operating periods; generates more than $8 million in annual property taxes; generates nearly $4 million annually in income for Indiana landowners who lease their land for wind energy projects.

  17. GSA Issues New Request for Proposals to Bring 3 Megawatts of...

    Energy Saver

    a request for proposal (RFP) for the procurement of electricity produced by solar photovoltaic arrays to be constructed by the selected bidder that will bring approximately 3...

  18. Metabolic Engineering of Light and Dark Biochemical Pathways in Wild-Type and Mutant Strains of Synechocystis PCC 6803 for Maximal, 24-Hour Production of Hydrogen Gas

    SciTech Connect

    Ely, Roger L.; Chaplen, Frank W.R.

    2014-03-11

    This project used the cyanobacterial species Synechocystis PCC 6803 to pursue two lines of inquiry, with each line addressing one of the two main factors affecting hydrogen (H2) production in Synechocystis PCC 6803: NADPH availability and O2 sensitivity. H2 production in Synechocystis PCC 6803 requires a very high NADPH:NADP+ ratio, that is, the NADP pool must be highly reduced, which can be problematic because several metabolic pathways potentially can act to raise or lower NADPH levels. Also, though the [NiFe]-hydrogenase in PCC 6803 is constitutively expressed, it is reversibly inactivated at very low O2 concentrations. Largely because of this O2 sensitivity and the requirement for high NADPH levels, a major portion of overall H2 production occurs under anoxic conditions in the dark, supported by breakdown of glycogen or other organic substrates accumulated during photosynthesis. Also, other factors, such as N or S limitation, pH changes, presence of other substances, or deletion of particular respiratory components, can affect light or dark H2 production. Therefore, in the first line of inquiry, under a number of culture conditions with wild type (WT) Synechocystis PCC 6803 cells and a mutant with impaired type I NADPH-dehydrogenase (NDH-1) function, we used H2 production profiling and metabolic flux analysis, with and without specific inhibitors, to examine systematically the pathways involved in light and dark H2 production. Results from this work provided rational bases for metabolic engineering to maximize photobiological H2 production on a 24-hour basis. In the second line of inquiry, we used site-directed mutagenesis to create mutants with hydrogenase enzymes exhibiting greater O2 tolerance. The research addressed the following four tasks: 1. Evaluate the effects of various culture conditions (N, S, or P limitation; light/dark; pH; exogenous organic carbon) on H2 production profiles of WT cells and an NDH-1 mutant; 2. Conduct metabolic flux analyses for

  19. Use of DAC-Hours for Radiation Work Permit Suspension Guides and Validation of Respiratory Equipment Selection at the Savannah River Site

    SciTech Connect

    Hadlock, D.J.

    2003-10-30

    Historically, the Savannah River Site, like many Department of Energy sites, has used some multiple of the expected Derived Air Concentration (DAC) of a radionuclide as a suspension guide for Radiological Work Permits (RWP) or validation of selected respiratory protection equipment. The term DAC expresses the concentration of a radionuclide in air, typically in mCi/cc. Even though the term DAC is derived from an intake of radioactivity (Annual Limit on Intake) that would result in defined estimated dose to a worker, knowing only the DAC value does not allow a worker's potential dose to be determined. Recently, the Savannah Rive Site has converted to the use of DAC-hours for RWP suspension guides and respiratory equipment validation. The term DAC-hr takes into account not only the concentration of the radionuclide in air (DAC) but also the time the individual was exposed allowing an estimate of a worker's dose to be determined. The conversion to DAC-hrs resulted in four benefits to the radiation protection program without increasing the risk to workers; (1) consistency with the constant air monitor (CAM) alarm setpoint protocol; (2) consistency with Internal Dosimetry terminology; (3) an a priori determination of the potential risk to a worker; and (4) reduced complexity/error in field calculations. This paper outlines the justification for the conversion to DAC-hrs, the protocols used for field and count room calculations, and the implementation process utilized at the Savannah River Site

  20. Respiratory effects of two-hour exposure with intermittent exercise to ozone, sulfur dioxide and nitrogen dioxide alone and in combination in normal subjects

    SciTech Connect

    Kagawa, J.

    1983-01-01

    Seven adult male healthy volunteer subjects were exposed to 0.15 ppm each of O/sub 3/, SO/sub 2/ and NO/sub 2/ alone and in combination, with intermittent light exercise for two hours. Three of the 7 subjects developed cough during deep inspiration and one subject had chest pain during exposure to O/sub 3/ alone. Among the various indices of pulmonary function tests, specific airway conductane (G/sub aw//V/sub tg/) was the most sensitive index to examine the changes produced by the exposure to O/sub 3/ and other pollutants. Significant decrease of G/sub aw//V/sub tg/ in comparison with control measurements was observed in 6 of 7 subjects during exposure to O/sub 3/ alone, and in all subjects during exposures to the mixture of O/sub 3/ and other pollutants. However, no significant enhancement of effect was observed in the mixture of O/sub 3/ and other pollutants, although a slightly greater decrease of airway resistance/volume of thoracic gas (G/sub aw//V/sub tg/) was observed for the mixture of O/sub 3/ and other pollutants than for O/sub 3/ alone.

  1. Bellavista Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Generation Delivered to Grid (MWh) Plant Parasitic Consumption (MWh) Well-Field Parasitic Consumption (MWh) Well Field Number of Production Wells (total) Number of Injection Wells...

  2. "YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","NUMBER OF RESIDENTIAL AMR METERS","NUMBER OF COMMERCIAL AMR METERS","NUMBER OF INDUSTRIAL AMR METERS","NUMBER OF TRANSPORTATION AMR METERS","TOTAL NUMBER OF AMR METERS","NUMBER OF RESIDENTIAL AMI METERS","NUMBER OF COMMERCIAL AMI METERS","NUMBER OF INDUSTRIAL AMI METERS","NUMBER OF TRANSPORTATION AMI METERS","TOTAL NUMBER OF AMI METERS","RESIDENTIAL ENERGY SERVED THRU AMI METERS (MWh)","COMMERCIAL ENERGY SERVED THRU AMI METERS (MWh)","INDUSTRIAL ENERGY SERVED THRU AMI METERS (MWh)","TRANSPORTATION ENERGY SERVED THRU AMI METERS (MWh)","TOTAL ENERGY SERVED THRU AMI METERS (MWh)"

    Energy Information Administration (EIA) (indexed site)

    1,1,"AK",213,"Alaska Electric Light&Power Co",9111,782,58,0,9951,0,0,0,0,0,0,0,0,0,0 2011,1,"AK",1651,"Bethel Utilities Corp",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2011,1,"AK",10210,"Ketchikan Public Utilities",0,0,0,0,0,2974,264,2,0,3240,4461,786,114,0,5361 2011,1,"AK",10433,"Kodiak Electric Assn Inc",4574,976,101,0,5651,,,,,0,,,,,0 2011,1,"AK",11824,"Matanuska Electric Assn

  3. "YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","NUMBER OF RESIDENTIAL AMR METERS","NUMBER OF COMMERCIAL AMR METERS","NUMBER OF INDUSTRIAL AMR METERS","NUMBER OF TRANSPORTATION AMR METERS","TOTAL NUMBER OF AMR METERS","NUMBER OF RESIDENTIAL AMI METERS","NUMBER OF COMMERCIAL AMI METERS","NUMBER OF INDUSTRIAL AMI METERS","NUMBER OF TRANSPORTATION AMI METERS","TOTAL NUMBER OF AMI METERS","RESIDENTIAL ENERGY SERVED THRU AMI METERS (MWh)","COMMERCIAL ENERGY SERVED THRU AMI METERS (MWh)","INDUSTRIAL ENERGY SERVED THRU AMI METERS (MWh)","TRANSPORTATION ENERGY SERVED THRU AMI METERS (MWh)","TOTAL ENERGY SERVED THRU AMI METERS (MWh)"

    Energy Information Administration (EIA) (indexed site)

    2,1,"AK",213,"Alaska Electric Light&Power Co",10105,925,62,0,11092,0,0,0,0,0,0,0,0,0,0 2012,1,"AK",3522,"Chugach Electric Assn Inc",77639,,,,77639,,,,,0,,,,,0 2012,1,"AK",7353,"Golden Valley Elec Assn Inc",37816,6372,488,,44676,,,,,0,,,,,0 2012,1,"AK",10210,"Ketchikan Public Utilities",0,0,0,0,0,3262,312,0,0,3574,5074.17,742.17,0,0,5816.34 2012,1,"AK",10433,"Kodiak Electric Assn

  4. No Slide Title

    Gasoline and Diesel Fuel Update

    3a . January Monthly Peak Hour Demand, Actual by North American Electric Reliability Corporation Region, 2005 through 2009 (Megawatts) Texas Power Grid Western Power Grid Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) 2005 613,416 41,247 32,236 47,041 154,200 166,190 29,072 40,966 102,464 2006 563,711 34,464 37,056 43,661 149,252 134,239 26,864

  5. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    SciTech Connect

    Not Available

    2007-03-01

    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  6. monthly_peak_2005.xls

    Energy Information Administration (EIA) (indexed site)

    3a . January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, 2005 and Projected 2006 through 2010 (Megawatts and 2005 Base Year) Projected Monthly Base Year Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid FRCC MRO NPCC RFC SERC SPP ERCOT WECC Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak

  7. Class Deviation by General Services Administration (GSA) to Federal Acquisition Regulation (FAR) 51.1, Contractor Use of Government Supply Sources, for Time and Material or Labor Hour Procurements

    Energy.gov [DOE]

    The attached GSA class deviation to FAR Part 51, Contractor Use of Government Supply Sources, dated October 8,2009, permits contracting officers to authorize all GSA contractors, who are performing an order on a time and material (T&M) or labor-hour (LH) basis, to purchase supplies and service from other schedule contractors or process requisitions through the GSA Supply Program. This deviation is effective for five years to October 7,2014, unless otherwise revised or rescinded.

  8. monthly_peak_2004.xls

    Energy Information Administration (EIA) (indexed site)

    Table 3a . January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, 1996 through 2004 and Projected 2005 through 2006 (Megawatts and 2004 Base Year) Projected Monthly Base Year Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid ECAR FRCC MAAC MAIN MAPP/MRO NPCC SERC SPP ERCOT WECC Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour

  9. Fermilab | Visit Fermilab | Hours, Maps and Directions

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Map and directions Check the Fermilab home page for our latest news and a calendar of events, which also includes days that our main building and exhibits are closed. Map of Fermilab Fermilab site map (pdf) Directions to Fermilab Fermilab's main entrance is located at the intersection of Kirk Road and Pine Street in Batavia, Illinois, about 45 miles west of Chicago. Delivery trucks need to use the entrance at Kirk Road and Wilson Street. There is no street number assigned to this entrance

  10. LED Solutions for the Dark Hours

    Energy Saver

    technologies 5 LEDs for Street and Roadway Lighting Portland, OR Philadelphia, PA New York, NY Kansas City, MO 6 Boston Las Vegas Seattle Number of LED Replacements to Date (4...

  11. INCITE Program Doles Out Hours on Supercomputers

    Energy.gov [DOE]

    INCITE helps scientists make their case for getting precious computing time on the world's fastest supercomputers.

  12. Property:OperatingHours | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    B Blundell 1 Geothermal Facility + 8,587 + Blundell 2 Geothermal Facility + 7,883 + R Raft River Geothermal Facility + 8,338 + Retrieved from "http:en.openei.orgw...

  13. Mechanical Loads Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    SciTech Connect

    Santos, Rick; van Dam, Jeroen

    2015-07-16

    The objective of the test was to obtain a baseline characterization of the mechanical loads of the DOE 1.5 wind turbine located at NREL. The test was conducted in accordance with the International Electrotechnical Commission (IEC) Technical Specification, IEC 61400-13 Wind Turbine Generator Systems – Part 13: Measurement of mechanical loads; First Edition 2001-06 [1]. The National Wind Technology Center (NWTC) at NREL conducted this test in accordance with its quality system procedures so that the final test report meets the full requirements of its accreditation by the American Association for Laboratory Accreditation (A2LA). NREL’s quality system requires that all applicable requirements specified by A2LA and International Standards Organization/IEC 17025 be met or to note any exceptions in the test report.

  14. Deep-Discharge Zinc-Bromine Battery Module Offers Megawatts Capacity: Inventions and Innovation Project Fact Sheet

    SciTech Connect

    2001-01-25

    Project fact sheet written for the Inventions and Innovation Program about a new technology that increases load-leveling efficiency and offers longer cycle life than lead-acid batteries.

  15. Final Scientific/Technical Report to the U.S. Department of Energy on NOVA's Einstein's Big Idea (Project title: E-mc2, A Two-Hour Television Program on NOVA)

    SciTech Connect

    Susanne Simpson

    2007-05-07

    Executive Summary A woman in the early 1700s who became one of Europe’s leading interpreters of mathematics and a poor bookbinder who became one of the giants of nineteenth-century science are just two of the pioneers whose stories NOVA explored in Einstein’s Big Idea. This two-hour documentary premiered on PBS in October 2005 and is based on the best-selling book by David Bodanis, E=mc2: A Biography of the World’s Most Famous Equation. The film and book chronicle the scientific challenges and discoveries leading up to Einstein’s startling conclusion that mass and energy are one, related by the formula E = mc2.

  16. Fact Sheet: Tehachapi Wind Energy Storage Project (May 2014) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Tehachapi Wind Energy Storage Project (May 2014) Fact Sheet: Tehachapi Wind Energy Storage Project (May 2014) The Tehachapi Wind Energy Storage Project (TSP) Battery Energy Storage System (BESS) consists of an 8 MW-4 hour (32 MWh) lithium-ion battery and a smart inverter system that is cutting-edge in scale and application. Southern California Edison (SCE) will test the BESS for 24 months to determine its capability and effectiveness to support 13 operational users. For more

  17. monthly_peak_2006.xls

    Energy Information Administration (EIA) (indexed site)

    6 Released: February 7, 2008 Next Update: October 2008 Table 3a . January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region 2006 and Projected 2007 through 2011 (Megawatts and 2006 Base Year) Projected Monthly Base Year Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid FRCC MRO NPCC RFC SERC SPP ERCOT WECC Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak

  18. EA-1876: Pennsylvania State Energy Program’s Conergy Navy Yard Solar Project, Philadelphia, Pennsylvania

    Energy.gov [DOE]

    Conergy Projects, Inc. (Conergy) proposes to construct and operate a 1.251 megawatt (MW) solar photovoltaic (PV) facility at the former Navy Yard site in south Philadelphia in Pennsylvania’s Philadelphia County to provide up to 1,596 MW hours of electricity per year, feeding directly into the distribution grid.

  19. Smart Meter Company Boosting Production, Workforce

    Office of Energy Efficiency and Renewable Energy (EERE)

    A manufacturing facility in South Carolina is producing enough smart meters to reduce annual electricity use by approximately 1.7 million megawatt hours -- and through advanced manufacturing tax credits, just increased the facility's production capability by 20 percent and created 420 jobs.

  20. Project Reports for Soboba Band of Luiseño Indians – 2015 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Under this grant, the Soboba Band of Luiseño Indians plans to install the Soboba Community Solar Energy Project, a 1.0-megawatt (MW) AC ground-mounted photovoltaic (PV) system that, once installed, will generate approximately 1,884,686 kilowatt-hours (kWh)/year, meeting 80% of the annual energy needs of key community facilities.

  1. Soboba Band of Luiseño Indians – 2015 Project

    Energy.gov [DOE]

    The Soboba Community Solar Energy Project proposes installation of a 1.0-megawatt (MW) AC ground-mounted photovoltaic (PV) system that, once installed, will generate approximately 1,884,686 kilowatt-hours (kWh)/year, meeting 80% of the annual energy needs of key community facilities.

  2. OUT Success Stories: Battery Electricity Storage for Quality Power

    SciTech Connect

    Recca, L.

    2000-08-31

    A 3.5-megawatt valve-regulated lead-acid (VRLA) battery system installed at a lead recycling plant in California provides one hour of energy storage for both peak-shaving and uninterruptible power. It incorporates improvements in battery materials, manufacturing processes, and quality control.

  3. Table 1. 2014 Summary statistics

    Energy Information Administration (EIA) (indexed site)

    (short tons)",61909,13 " Carbon dioxide (thousand metric tons)",67635,10 " Sulfur dioxide (lbsMWh)",2,19 " Nitrogen oxide (lbsMWh)",0.8,38 " Carbon dioxide (lbsMWh)",996,34 ...

  4. Federal Energy and Water Management Awards 2014

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Air Weapons Station China Lake U.S. Navy China Lake, California In FY 2013, Naval Air Station Weapons Station China Lake completed construction of a 13.78 megawatt solar photovoltaic system-the largest solar plant in the Navy and the first installed on a Department of Defense installation-using a 20 year solar power purchase agreement. The new plant produces 30,000 megawatt-hours annually, providing 30% of Naval Air Weapons Station China Lake's annual energy consumption. Under the power purchase

  5. "YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL...

    Energy Information Administration (EIA) (indexed site)

    NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK ...

  6. Rocky Mountain Oilfield Testing Center | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Summer Peak Net Capacity (MW) Winter Peak Net Capacity (MW) Avg. Annual GenerationConsumption Gross Generation (MWh) Generation Delivered to Grid (MWh) Plant Parasitic...

  7. A & N Electric Coop (Virginia) EIA Revenue and Sales - August...

    OpenEI (Open Energy Information) [EERE & EIA]

    Sales (MWh) 31601.089 Residential Consumers 30021 Commercial Revenue(Thousand ) 2194.132 Commercial Sales (MWh) 18253.003 Commercial Consumers 4073 Industrial Revenue (Thousand...

  8. monthly_peak_2003.xls

    Energy Information Administration (EIA) (indexed site)

    O Form EIA-411 for 2005 Released: February 7, 2008 Next Update: October 2007 Table 3a . January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, 1996 through 2003 and Projected 2004 through 2005 (Megawatts and 2003 Base Year) Projected Monthly Base Year Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid ECAR FRCC MAAC MAIN MAPP/MR NPCC SERC SPP ERCOT WECC Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW)

  9. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Maine (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Maine. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Maine to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,387 million gallons.

  10. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maine

    SciTech Connect

    2008-10-01

    Analysis of the expected impacts of 1000 MW of wind power in Maine, including economic benefits, CO2 emissions reductions, and water conservation.

  11. Economic Benefits, Carbon Dioxide (CO2) Emissions Reduction, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Georgia (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Georgia. We forecast the cumulative economic benefits from 1000 MW of development in Georgia to be $2.1 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,628 million gallons.

  12. System using a megawatt class millimeter wave source and a high-power rectenna to beam power to a suspended platform

    DOEpatents

    Caplan, Malcolm; Friedman, Herbert W.

    2005-07-19

    A system for beaming power to a high altitude platform is based upon a high power millimeter gyrotron source, optical transmission components, and a high-power receiving antenna (i.e., a rectenna) capable of rectifying received millimeter energy and converting such energy into useable electrical power.

  13. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in North Carolina (Fact Sheet)

    SciTech Connect

    Not Available

    2009-03-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in North Carolina. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in North Carolina to be $1.1 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,558 million gallons.

  14. LINE","COMPNAME","COMPID","YEAR","PURCNAME","SALETYPE","MEGAWATT","ANNMXDEM","DE

    Energy Information Administration (EIA) (indexed site)

    ABERDEEN_C",55,1999,"TVA",,230854554,37045,0,0,8998127 2,"ABERDEEN_C",55,1999,0,,0,0,0,0,0 999999,"ABERDEEN_C",55,1999,,,0,0,0,0,0 1,"Alameda City of",207,1999,"Northern California Pow","FP",379087,70,18896200,3635238,22531438 2,"Alameda City of",207,1999,"Western Area Power Admi","FP",6300,1,58800,1381522,1440322 3,"Alameda City of",207,1999,"Balancing Accounts &

  15. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arizona (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arizona. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Arizona to be $1.15 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 818 million gallons.

  16. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Arizona

    SciTech Connect

    2008-10-01

    Analysis of the expected impacts of 1000 MW of wind power in Arizona, including economic benefits, CO2 emissions reductions, and water conservation.

  17. Insights from Smart Meters: The Potential for Peak Hour Savings...

    Energy Saver

    Technical Report Technical Report Appendix More Documents & Publications Insights from Smart Meters: Identifying Specific Actions, Behaviors, and Characteristics That Drive Savings ...

  18. Energy Savings Performance Contracting 14-hour Agency Onsite Workshop

    Energy.gov [DOE]

    Two-day workshop at General Services Administration Region 9 educates students about how to implement energy and water projects through an energy savings performance contract (ESPC).

  19. Intra-Hour Dispatch and Automatic Generator Control Demonstration...

    Energy.gov [DOE] (indexed site)

    generation fleet's behavior in real time for realistic photovoltaic penetration scenarios. ... behavior in real time for realistic photovoltaic (PV) penetration scenarios while ...

  20. Center for Nanophase Materials Sciences (CNMS) - Hours & Scheduling

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    made in advance. 2016 ORNL Holiday Schedule New Year's Day Friday, January 1 Martin Luther King Jr.'s Birthday Monday, January 18 Good Friday (Easter) Friday, March 25 Memorial...

  1. Join the Call: One Million Hours of STEM Volunteer Service

    Office of Energy Efficiency and Renewable Energy (EERE)

    America’s ability to meet the demands of its energy future depends on having a trained, dedicated science, technology, engineering, and mathematics (STEM) workforce.

  2. DOE Awards Over a Billion Supercomputing Hours to Address Scientific...

    Office of Environmental Management (EM)

    in oceans, and simulate clouds on a global scale Biology, including understanding protein membranes to improve drug discovery, diagnostics and better treatment of diseases. ...

  3. DOE's Office of Science Awards 95 Million Hours of Supercomputing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... and Atmospheric Administration and the Max-Planck Institute for Quantum Optics in Germany. ... to 15 Teams for Large-Scale Scientific Computing DOE Awards Supercomputer Access to ...

  4. DOE Awards 265 Million Hours of Supercomputing Time to Advance...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Technology; the Max-Planck Institute for Quantum Optics in Germany; CERFACS, the European ... systems, scientists can receive more computing time, which allows them to conduct more ...

  5. Calibrating hourly rainfall-runoff models with daily forcings...

    Office of Scientific and Technical Information (OSTI)

    Cite: Chicago Format Close Bibtex Cite: Bibtex Format Close Export Metadata EndNote Excel CSV XML Save Share this Record Send to Email Send to Email Email address:...

  6. SSLS Coffee/Dessert Hour Calendar of Topics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 ... Applications National Solar Thermal Test Facility Nuclear ... 10, 2009 Jeff Tsao What's Hot in SSL Research September ...

  7. Pay and Leave Administration and Hours of Duty

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2012-05-10

    Proposed revision to one paragraph of the Order to satisfy an action item in the Office of the Inspector General's FY 11 Audit Report of DOE's Consolidated Financial Statements.

  8. BioenergizeME Office Hours Webinar: Integrating Bioenergy into...

    Energy.gov [DOE] (indexed site)

    0, 2015 4:00PM to 4:45PM EST Online Biofuel is the only viable substitute for petroleum-based liquid transportation fuel in the near term. It is, therefore, increasingly relevant ...

  9. DOE Awards Over a Billion Supercomputing Hours to Address Scientific...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    devices Climate change, featuring projects to improve climate models, understand global warming, study the effects of turbulence in oceans, and simulate clouds on a global...

  10. Commercial and Residential Hourly Load Profiles for all TMY3...

    OpenEI (Open Energy Information) [EERE & EIA]

    Software Sectors Buildings washarvested true Package Relationships Relationship Dataset License CC0 1.0 Open Data Author Office of Energy Efficiency & Renewable Energy (EERE)...

  11. Commercial and Residential Hourly Load Data Now Available on...

    OpenEI (Open Energy Information) [EERE & EIA]

    Login to post comments Russmach32 Russmach321 year 8 weeks ago Validation of dataset Hello, in the description of this dataset it states that these load profiles are simulated....

  12. 2015 Hour of Code Video | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel ---Electric drive technology ---Hybrid & electric vehicles ...

  13. PPPL team wins 80 million processor hours on nation's fastest...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... For more information, please visit science.energy.gov. Contact Info PPPL Office of Communications Email: PPPLOOC@pppl.gov Phone: 609-243-2755 Download Select and View High ...

  14. Moab Project Safely Logs 2 Million Work Hours | Department of...

    Energy Saver

    Donald Metzler, Moab Federal Project Director, (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager, (970) 257-2145 (Grand Junction, CO) - The number 1,584 may not mean ...

  15. Saving Power at Peak Hours (LBNL Science at the Theater)

    ScienceCinema

    Piette, Mary Ann

    2016-07-12

    California needs new, responsive, demand-side energy technologies to ensure that periods of tight electricity supply on the grid don't turn into power outages. Led by Berkeley Lab's Mary Ann Piette, the California Energy Commission (through its Public Interest Energy Research Program) has established a Demand Response Research Center that addresses two motivations for adopting demand responsiveness: reducing average electricity prices and preventing future electricity crises. The research seeks to understand factors that influence "what works" in Demand Response. Piette's team is investigating the two types of demand response, load response and price response, that may influence and reduce the use of peak electric power through automated controls, peak pricing, advanced communications, and other strategies.

  16. Material characterization of the clay bonded silicon carbide candle filters and ash formations in the W-APF system after 500 hours of hot gas filtration at AEP. Appendix to Advanced Particle Filter: Technical progress report No. 11, January--March 1993

    SciTech Connect

    Alvin, M.A.

    1993-04-05

    (1) After 500 hours of operation in the pressurized fluidized-bed combustion gas environment, the fibrous outer membrane along the clay bonded silicon carbide Schumacher Dia Schumalith candles remained intact. The fibrous outer membrane did not permit penetration of fines through the filter wall. (2) An approximate 10-15% loss of material strength occurred within the intact candle clay bonded silicon carbide matrix after 500 hours of exposure to the PFBC gas environment. A relatively uniform strength change resulted within the intact candles throughout the vessel (i.e., top to bottom plenums), as well as within the various cluster ring positions (i.e., outer versus inner ring candle filters). A somewhat higher loss of material strength, i.e., 25% was detected in fractured candle segments removed from the W-APF ash hopper. (3) Sulfur which is present in the pressurized fluidized-bed combustion gas system induced phase changes along the surface of the binder which coats the silicon carbide grains in the Schumacher Dia Schumalith candle filter matrix.

  17. Thirteen Solar Energy Projects to Receive Up to $168 Million

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE announced on March 8th that it has selected 13 industry-led solar technology projects to negotiate for up to $168 million in funding starting in the current fiscal year (2007) through fiscal year 2009. The teams will share more than 50 percent of the project costs, for a total value of up to $357 million over three years. The projects will aim to increase the capacity of photovoltaic (PV) systems from the 2005 level of 240 megawatts to 2,850 megawatts by 2010. Such an increase could reduce the cost of electricity produced by PV systems from the current level of $0.18-$.023 per kilowatt-hour to a more competitive $0.05-$0.10 per kilowatt-hour.

  18. Lithium-Polysulfide Flow Battery Demonstration

    SciTech Connect

    Zheng, Wesley

    2014-06-30

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  19. Released: April 2016

    Energy Information Administration (EIA) (indexed site)

    B.1. FRCC monthly peak hour demand, by North American Electric Reliability Corporation Assesment Area," "1996-2014 actual, 2015-2016 projected" "megawatts" "FRCC","Year","January","February","March","April","May","June","July","August","September","October","November","December"

  20. Radiation Exposure Information Reporting System (REIRS) Update, 2012

    SciTech Connect

    2013-01-01

    A series of graphs gives data through the year 2012 for annual collective doses, collective dose per reactor, number of individuals with measurable doses both in total and per reactor, number of reactors, electricity generated, measurable doses per individual and per megawatt-year, and collective outage hours. Reactors considered include BWR, PWR, and LWR. Also, the total effective dose equivalent for the period 2010-2012 is tabulated for each nuclear power plant considered, and the change over 2009-2011.