National Library of Energy BETA

Sample records for multiple scales fred

  1. FRED | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Visualization and Manipulation of Energy Data at Multiple Scales FRED Overview Slides Hi FRED Team Welcome to our community area Group members (13) Managers: Dbrodt Recent...

  2. FRED | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Enabling Unique Visualization and Manipulation of Energy Data at Multiple Scales FRED Free Energy Data Map OpenEI Tool Visualization The U.S. Department of Energy, the Pacific...

  3. Fred Loebl

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fred Loebl Fred Loebl Fred-web-pic.jpg Fred Loebl Storage Systems Group National Energy Research Scientific Computing Center FLoebl@lbl.gov Phone: (925) 296-5858 Lawrence Berkeley ...

  4. FRED | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Home > FRED > Posts by term > FRED Content Group Activity By term Q & A Feeds Term: FRED Type Term Title Author Replies Last Post sort icon Blog entry FRED Introducing FRED,...

  5. FRED | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    FRED Home > FRED > Posts by term > FRED Content Group Activity By term Q & A Feeds Term: Tool Type Term Title Author Replies Last Post sort icon Blog entry Tool Introducing FRED,...

  6. FRED | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    > FRED > Posts by term > FRED Content Group Activity By term Q & A Feeds Term: FRED+free energy database Type Term Title Author Replies Last Post sort icon Discussion FRED+free...

  7. FRED | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    FRED Home > FRED > Posts by term > FRED Content Group Activity By term Q & A Feeds Term: OpenEI Type Term Title Author Replies Last Post sort icon Blog entry OpenEI Introducing...

  8. FRED | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    FRED > Posts by term Content Group Activity By term Q & A Feeds FRED (1) FRED+free energy database (1) Free Energy Data (1) Map (1) OpenEI (1) Tool (1) Visualization (1) Groups...

  9. FRED | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Dbrodt FRED Overview Slides Posted by: Dbrodt 2 Jul 2012 - 10:43 2 comment(s) Dbrodt Hi FRED Team Welcome to our community area Posted by: Dbrodt 22 Jun 2012 - 08:35 I created...

  10. FRED | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    FRED Home > Groups > Groups > FRED Content Group Activity By term Q & A Feeds There are no feeds from external sites for this group. Groups Menu You must login in order to post...

  11. FRED | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Home > FRED > Posts by term > FRED Content Group Activity By term Q & A Feeds Term: Free Energy Data Type Term Title Author Replies Last Post sort icon Blog entry Free Energy...

  12. FRee Energy Data (FRED) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    FRee Energy Data (FRED) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Free Energy Data (FRED) AgencyCompany Organization: Pacific Northwest National Laboratory,...

  13. Fred Lipschultz | Department of Energy

    Energy.gov [DOE] (indexed site)

    faculty member since 1989. At NASA, Fred worked as a Program Scientist for the Ocean Biology and Biogeochemistry Program in the Earth Sciences Division and then was assigned to ...

  14. Fred Olsen Renewables Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fred Olsen Renewables Ltd Jump to: navigation, search Name: Fred. Olsen Renewables Ltd Place: London, Greater London, United Kingdom Zip: SW1V 1AU Sector: Renewable Energy Product:...

  15. FRED - Q & A | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    FRED - Q & A Home > FRED Content Group Activity By term Q & A Feeds No questions have been added to this group yet. Groups Menu You must login in order to post into this group....

  16. fred andreas | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer...

  17. OpenEI Community - FRED+free energy database

    OpenEI (Open Energy Information) [EERE & EIA]

    p> http:en.openei.orgcommunitydiscussionhi-fred-team-welcome-our-community-areacomments FRED+free energy database FRED Fri, 22 Jun 2012 15:35:00 +0000 Dbrodt 35 at http...

  18. FRED+free energy database | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    FRED+free energy database Home Dbrodt's picture Submitted by Dbrodt(77) Contributor 22 June, 2012 - 08:35 Hi FRED Team Welcome to our community area FRED+free energy database I...

  19. A video interview with Fred Dylla, AIP CEO (SPIE Newsroom) |...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    https:www.jlab.orgnewsarticlesvideo-interview-fred-dylla-aip-ceo-spie-newsroom A video interview with Fred Dylla, AIP CEO Dylla was interviewed at Photonics West 2008 by Rich...

  20. Hi FRED Team! Welcome to our community area | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    > FRED Dbrodt's picture Submitted by Dbrodt(77) Contributor 22 June, 2012 - 08:35 FRED+free energy database I created this group so our FRED team can collaborate. I would also...

  1. TBU-0078- In the Matter of Fred Hua

    Energy.gov [DOE]

    Fred Hua (the complainant), appeals the dismissal of his complaint of retaliation filed under 10 C.F.R. Part 708, the Department of Energy (DOE) Contractor Employee Protection Program. The...

  2. Mr. Fred Steinkuehler Granite City Steel Division National Steel Corporation

    Office of Legacy Management (LM)

    45 Mr. Fred Steinkuehler Granite City Steel Division National Steel Corporation 20th and State Streets Granite City, Illinois 62040 Dear Mr. Steinkuehler: Enclosed please find your copy of the signed consent forms for the radiological survey of the South Plant Betatron Building. In your letter to me of July 21, 1988, you identified several issues regarding the survey and the consent. I would like to address these concerns below. As noted in the consent form, the purpose of our surveys are only

  3. Structuring Materials on Multiple Length Scales for Energy Applications |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MIT-Harvard Center for Excitonics Structuring Materials on Multiple Length Scales for Energy Applications October 25, 2012 at 3pm/36-428 Adreas Stein Department of Chemistry, University of Minnesota astein Abstract: Nanoporous and nanostructured materials are becoming increasingly important for advanced applications, including energy storage and conversion materials. Templating methods based on hard templates (colloidal crystal templating, nanocasting) and soft templates (surfactant systems)

  4. Design and modeling of small scale multiple fracturing experiments

    SciTech Connect

    Cuderman, J F

    1981-12-01

    Recent experiments at the Nevada Test Site (NTS) have demonstrated the existence of three distinct fracture regimes. Depending on the pressure rise time in a borehole, one can obtain hydraulic, multiple, or explosive fracturing behavior. The use of propellants rather than explosives in tamped boreholes permits tailoring of the pressure risetime over a wide range since propellants having a wide range of burn rates are available. This technique of using the combustion gases from a full bore propellant charge to produce controlled borehole pressurization is termed High Energy Gas Fracturing (HEGF). Several series of HEGF, in 0.15 m and 0.2 m diameter boreholes at 12 m depths, have been completed in a tunnel complex at NTS where mineback permitted direct observation of fracturing obtained. Because such large experiments are costly and time consuming, smaller scale experiments are desirable, provided results from small experiments can be used to predict fracture behavior in larger boreholes. In order to design small scale gas fracture experiments, the available data from previous HEGF experiments were carefully reviewed, analytical elastic wave modeling was initiated, and semi-empirical modeling was conducted which combined predictions for statically pressurized boreholes with experimental data. The results of these efforts include (1) the definition of what constitutes small scale experiments for emplacement in a tunnel complex at the Nevada Test Site, (2) prediction of average crack radius, in ash fall tuff, as a function of borehole size and energy input per unit length, (3) definition of multiple-hydraulic and multiple-explosive fracture boundaries as a function of boreholes size and surface wave velocity, (4) semi-empirical criteria for estimating stress and acceleration, and (5) a proposal that multiple fracture orientations may be governed by in situ stresses.

  5. ARPA-E Announces 2012 Energy Innovation Summit Featuring Bill Gates, Fred

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Smith and Lee Scott | Department of Energy 2012 Energy Innovation Summit Featuring Bill Gates, Fred Smith and Lee Scott ARPA-E Announces 2012 Energy Innovation Summit Featuring Bill Gates, Fred Smith and Lee Scott September 9, 2011 - 9:25am Addthis New York, NY - The U.S. Department of Energy's Advanced Research Projects Agency - Energy (ARPA-E) Director, Arun Majumdar, announced yesterday that the Agency will hold its third annual ARPA-E Energy Innovation Summit from February 27 - 29, 2012

  6. Intrinsic fluctuations of the proton saturation momentum scale in high multiplicity p+p collisions

    DOE PAGES [OSTI]

    McLerran, Larry; Tribedy, Prithwish

    2015-11-02

    High multiplicity events in p+p collisions are studied using the theory of the Color Glass Condensate. Here, we show that intrinsic fluctuations of the proton saturation momentum scale are needed in addition to the sub-nucleonic color charge fluctuations to explain the very high multiplicity tail of distributions in p+p collisions. It is presumed that the origin of such intrinsic fluctuations is non-perturbative in nature. Classical Yang Mills simulations using the IP-Glasma model are performed to make quantitative estimations. Furthermore, we find that fluctuations as large as O(1) of the average values of the saturation momentum scale can lead to raremore » high multiplicity events seen in p+p data at RHIC and LHC energies. Using the available data on multiplicity distributions we try to constrain the distribution of the proton saturation momentum scale and make predictions for the multiplicity distribution in 13 TeV p+p collisions.« less

  7. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China

    SciTech Connect

    Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun

    2013-06-15

    Highlights: ► We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ► The model is robust at multiple time scales with the anticipated accuracy. ► At month-scale, the SARIMA model shows good representation for monthly MSW generation. ► At medium-term time scale, grey relational analysis could yield the MSW generation. ► At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 – 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 – 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to

  8. Multiple pollutant removal using the condensing heat exchanger. Task 2, Pilot scale IFGT testing

    SciTech Connect

    Jankura, B.J.

    1996-01-01

    The purpose of Task 2 (IFGT Pilot-Scale Tests at the B&W Alliance Research Center) is to evaluate the emission reduction performance of the Integrated flue Gas Treatment (IFGT) process for coal-fired applications. The IFGT system is a two-stage condensing heat exchanger that captures multiple pollutants - while recovering waste heat. The IFGT technology offers the potential of a addressing the emission of SO{sub 2} and particulate from electric utilities currently regulated under the Phase I and Phase II requirements defined in Title IV, and many of the air pollutants that will soon be regulated under Title III of the Clean Air Act. The performance data will be obtained at pilot-scale conditions similar to full-scale operating systems. The task 2 IFGT tests have been designed to investigate several aspects of IFGT process conditions at a broader range of variable than would be feasible at a larger scale facility. The performance parameters that will be investigated are as follows: SO{sub 2} removal; particulate removal; removal of mercury and other heavy metals; NO{sub x} removal; HF and HCl removal; NH{sub 3} removal; ammonia-sulfur compounds generation; and steam injection for particle removal. For all of the pollutant removal tests, removal efficiency will be based on measurements at the inlet and outlet of the IFGT facility. Heat recovery measurements will also be made during these tests to demonstrate the heat recovery provided by the IFGT technology. This report provides the Final Test Plan for the first coal tested in the Task 2 pilot-scale IFGT tests.

  9. On simulating flow with multiple time scales using a method of averages

    SciTech Connect

    Margolin, L.G.

    1997-12-31

    The author presents a new computational method based on averaging to efficiently simulate certain systems with multiple time scales. He first develops the method in a simple one-dimensional setting and employs linear stability analysis to demonstrate numerical stability. He then extends the method to multidimensional fluid flow. His method of averages does not depend on explicit splitting of the equations nor on modal decomposition. Rather he combines low order and high order algorithms in a generalized predictor-corrector framework. He illustrates the methodology in the context of a shallow fluid approximation to an ocean basin circulation. He finds that his new method reproduces the accuracy of a fully explicit second-order accurate scheme, while costing less than a first-order accurate scheme.

  10. Mapping compound cosmic telescopes containing multiple projected cluster-scale halos

    SciTech Connect

    Ammons, S. Mark; Wong, Kenneth C.; Zabludoff, Ann I.; Keeton, Charles R. E-mail: kwong@as.arizona.edu E-mail: keeton@physics.rutgers.edu

    2014-01-20

    Lines of sight with multiple projected cluster-scale gravitational lenses have high total masses and complex lens plane interactions that can boost the area of magnification, or tendue, making detection of faint background sources more likely than elsewhere. To identify these new 'compound' cosmic telescopes, we have found directions in the sky with the highest integrated mass densities, as traced by the projected concentrations of luminous red galaxies (LRGs). We use new galaxy spectroscopy to derive preliminary magnification maps for two such lines of sight with total mass exceeding ?3 10{sup 15} M {sub ?}. From 1151 MMT Hectospec spectra of galaxies down to i {sub AB} = 21.2, we identify two to three group- and cluster-scale halos in each beam. These are well traced by LRGs. The majority of the mass in beam J085007.6+360428 (0850) is contributed by Zwicky 1953, a massive cluster at z = 0.3774, whereas beam J130657.5+463219 (1306) is composed of three halos with virial masses of 6 10{sup 14}-2 10{sup 15} M {sub ?}, one of which is A1682. The magnification maps derived from our mass models based on spectroscopy and Sloan Digital Sky Survey photometry alone display substantial tendue: the 68% confidence bands on the lens plane area with magnification exceeding 10 for a source plane of z{sub s} = 10 are [1.2, 3.8] arcmin{sup 2} for 0850 and [2.3, 6.7] arcmin{sup 2} for 1306. In deep Subaru Suprime-Cam imaging of beam 0850, we serendipitously discover a candidate multiply imaged V-dropout source at z {sub phot} = 5.03. The location of the candidate multiply imaged arcs is consistent with the critical curves for a source plane of z = 5.03 predicted by our mass model. Incorporating the position of the candidate multiply imaged galaxy as a constraint on the critical curve location in 0850 narrows the 68% confidence band on the lens plane area with ? > 10 and z{sub s} = 10 to [1.8, 4.2] arcmin{sup 2}, an tendue range comparable to that of MACS 0717+3745 and El

  11. Mastering Uncertainty and Risk at Multiple Time Scales in the Future Electrical Grid

    SciTech Connect

    Chertkov, Michael; Bent, Russell W.; Backhaus, Scott N.

    2012-07-10

    Today's electrical grids enjoy a relatively clean separation of spatio-temporal scales yielding a compartmentalization of grid design, optimization, control and risk assessment allowing for the use of conventional mathematical tools within each area. In contrast, the future grid will incorporate time-intermittent renewable generation, operate via faster electrical markets, and tap the latent control capability at finer grid modeling scales; creating a fundamentally new set of couplings across spatiotemporal scales and requiring revolutionary advances in mathematics techniques to bridge these scales. One example is found in decade-scale grid expansion planning in which today's algorithms assume accurate load forecasts and well-controlled generation. Incorporating intermittent renewable generation creates fluctuating network flows at the hourly time scale, inherently linking the ability of a transmission line to deliver electrical power to hourly operational decisions. New operations-based planning algorithms are required, creating new mathematical challenges. Spatio-temporal scales are also crossed when the future grid's minute-scale fluctuations in network flows (due to intermittent generation) create a disordered state upon which second-scale transient grid dynamics propagate effectively invalidating today's on-line dynamic stability analyses. Addressing this challenge requires new on-line algorithms that use large data streams from new grid sensing technologies to physically aggregate across many spatial scales to create responsive, data-driven dynamic models. Here, we sketch the mathematical foundations of these problems and potential solutions.

  12. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    SciTech Connect

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh; Barth, Holly D.; Tang, Simon Y.; Reichert, Peter; Busse, Bjoern; Alliston, Tamara; Ager III, Joel W.; Ritchie, Robert O.

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking.

  13. Assessment of CFD Modeling for PTS Thermal-Hydraulics Using Multiple Scale Experimental Facilities

    SciTech Connect

    Willemsen, Sander M.; Lycklama, Jan-Aiso

    2006-07-01

    A serious threat to the life span of a Reactor Pressure Vessel (RPV) is the occurrence of Pressurized Thermal Shock during an Emergency Core Coolant injection in a loss-of-coolant accident (LOCA). Traditional thermal-hydraulic system codes fail to predict the complex three-dimensional thermal mixing and flow phenomena that occur during the injection. Since Computational Fluid Dynamics (CFD) is able to predict these phenomena, the present paper presents an assessment of Reynolds Averaged Navier Stokes CFD approaches. This assessment has been performed by comparing the numerical results obtained using advanced turbulence models available in the CFX 5.6 CFD code with experimental results of the full-scale Upper Plenum Test Facility (UPTF) and the 1:5 linear scale Rossendorf Coolant Mixing Model (ROCOM). The assessment shows that the observed flow behavior is quite similar for these facilities of different scale. The CFD code is very well capable of capturing the stratification and mixing phenomena occurring in the cold leg, while it has been shown that current RANS approaches are less capable of grasping the complex oscillating flow in the downcomer. (authors)

  14. Multiple pollutant removal using the condensing heat exchanger: Preliminary test plan for Task 2, Pilot scale IFGT testing

    SciTech Connect

    Jankura, B.J.

    1995-11-01

    The purpose of Task 2 (IFGT Pilot-Scale Tests at the B&W Alliance Research Center) is to evaluate the emission reduction performance of the Integrated Flue Gas Treatment (IFGT) process for coal-fired applications. The IFGT system is a two-stage condensing heat exchanger that captures multiple pollutants -- while recovering waste heat. The IFGT technology offers the potential of addressing the emission of S0{sub 2} and particulate from electric utilities currently regulated under the Phase 1 and Phase 2 requirements defined in Title IV, and many of the air pollutants that will soon be regulated under Title III of the Clean Air Act. The performance data will be obtained at pilot-scale conditions similar to full-scale operating systems. The Task 2 IFGT tests have been designed to investigate several aspects of IFGT process conditions at a broader range of variables than would be feasible at a larger scale facility. The data from these tests greatly expands the IFGT performance database for coals and is needed for the technology to progress from the component engineering phase to system integration and commercialization. The performance parameters that will be investigated are as follows: SO{sub 2} removal; particulate removal; removal of mercury and other heavy metals; NO{sub x} removal; HF and HCl removal; NH{sub 3} removal; ammonia-sulfur compounds generation; and steam injection for particle removal. For all of the pollutant removal tests, removal efficiency will be based on measurements at the inlet and outlet of the IFGT facility. Heat recovery measurements will also be made during these tests to demonstrate the heat recovery provided by the IFGT technology. This report provides a preliminary test plan for all of the Task 2 pilot-scale IFGT tests.

  15. Experimental and Measurement Uncertainty Associated with Characterizing Slurry Mixing Performance of Pulsating Jets at Multiple Scales

    SciTech Connect

    Bamberger, Judith A.; Piepel, Gregory F.; Enderlin, Carl W.; Amidan, Brett G.; Heredia-Langner, Alejandro

    2015-09-10

    Understanding how uncertainty manifests itself in complex experiments is important for developing the testing protocol and interpreting the experimental results. This paper describes experimental and measurement uncertainties, and how they can depend on the order of performing experimental tests. Experiments with pulse-jet mixers in tanks at three scales were conducted to characterize the performance of transient-developing periodic flows in Newtonian slurries. Other test parameters included the simulant, solids concentration, and nozzle exit velocity. Critical suspension velocity and cloud height were the metrics used to characterize Newtonian slurry flow associated with mobilization and mixing. During testing, near-replicate and near-repeat tests were conducted. The experimental results were used to quantify the combined experimental and measurement uncertainties using standard deviations and percent relative standard deviations (%RSD) The uncertainties in critical suspension velocity and cloud height tend to increase with the values of these responses. Hence, the %RSD values are the more appropriate summary measure of near-replicate testing and measurement uncertainty.

  16. A multiple length scale description of the mechanism of elastomer stretching

    DOE PAGES [OSTI]

    Neuefeind, Joerg C.; Skov, Anne L.; Daniels, John E.; Honkimaeki, Veijo; Jakobsen, Bo; Oddershede, Jette; Poulsen, Henning F.

    2016-10-03

    Conventionally, the stretching of rubber is modeled exclusively by rotations of segments of the embedded polymer chains; i.e. changes in entropy. However models have not been tested on all relevant length scales due to a lack of appropriate probes. Here we present a universal X-ray based method for providing data on the structure of rubbers in the 2–50 Å range. First results relate to the elongation of a silicone rubber. We identify several non-entropic contributions to the free energy and describe the associated structural changes. By far the largest contribution comes from structural changes within the individual monomers, but amongmore » the contributions is also an elastic strain, acting between chains, which is 3–4 orders of magnitude smaller than the macroscopic strain, and of the opposite sign, i.e. extension of polymer chains in the direction perpendicular to the stretch. We find this may be due to trapped entanglements relaxing to positions close to the covalent crosslinks.« less

  17. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales

    DOE PAGES [OSTI]

    Binley, Andrew; Hubbard, Susan S.; Huisman, Johan A.; Revil, André; Robinson, David A.; Singha, Kamini; Slater, Lee D.

    2015-06-15

    Geophysics provides a multidimensional suite of investigative methods that are transforming our ability to see into the very fabric of the subsurface environment, and monitor the dynamics of its fluids and the biogeochemical reactions that occur within it. Here we document how geophysical methods have emerged as valuable tools for investigating shallow subsurface processes over the past two decades and offer a vision for future developments relevant to hydrology and also ecosystem science. The field of “hydrogeophysics” arose in the late 1990s, prompted, in part, by the wealth of studies on stochastic subsurface hydrology that argued for better field-based investigativemore » techniques. These new hydrogeophysical approaches benefited from the emergence of practical and robust data inversion techniques, in many cases with a view to quantify shallow subsurface heterogeneity and the associated dynamics of subsurface fluids. Furthermore, the need for quantitative characterization stimulated a wealth of new investigations into petrophysical relationships that link hydrologically relevant properties to measurable geophysical parameters. Development of time-lapse approaches provided a new suite of tools for hydrological investigation, enhanced further with the realization that some geophysical properties may be sensitive to biogeochemical transformations in the subsurface environment, thus opening up the new field of “biogeophysics.” Early hydrogeophysical studies often concentrated on relatively small “plot-scale” experiments. More recently, however, the translation to larger-scale characterization has been the focus of a number of studies. In conclusion, geophysical technologies continue to develop, driven, in part, by the increasing need to understand and quantify key processes controlling sustainable water resources and ecosystem services.« less

  18. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales

    SciTech Connect

    Binley, Andrew; Hubbard, Susan S.; Huisman, Johan A.; Revil, André; Robinson, David A.; Singha, Kamini; Slater, Lee D.

    2015-06-15

    Geophysics provides a multidimensional suite of investigative methods that are transforming our ability to see into the very fabric of the subsurface environment, and monitor the dynamics of its fluids and the biogeochemical reactions that occur within it. Here we document how geophysical methods have emerged as valuable tools for investigating shallow subsurface processes over the past two decades and offer a vision for future developments relevant to hydrology and also ecosystem science. The field of “hydrogeophysics” arose in the late 1990s, prompted, in part, by the wealth of studies on stochastic subsurface hydrology that argued for better field-based investigative techniques. These new hydrogeophysical approaches benefited from the emergence of practical and robust data inversion techniques, in many cases with a view to quantify shallow subsurface heterogeneity and the associated dynamics of subsurface fluids. Furthermore, the need for quantitative characterization stimulated a wealth of new investigations into petrophysical relationships that link hydrologically relevant properties to measurable geophysical parameters. Development of time-lapse approaches provided a new suite of tools for hydrological investigation, enhanced further with the realization that some geophysical properties may be sensitive to biogeochemical transformations in the subsurface environment, thus opening up the new field of “biogeophysics.” Early hydrogeophysical studies often concentrated on relatively small “plot-scale” experiments. More recently, however, the translation to larger-scale characterization has been the focus of a number of studies. In conclusion, geophysical technologies continue to develop, driven, in part, by the increasing need to understand and quantify key processes controlling sustainable water resources and ecosystem services.

  19. Evaluating atmospheric CO2 inversions at multiple scales over a highly-inventoried agricultural landscape.

    SciTech Connect

    Schuh, Andrew E.; Lauvaux, Thomas; West, Tristram O.; Denning, A.; Davis, Kenneth J.; Miles, Natasha; Richardson, S. J.; Uliasz, Marek; Lokupitiya, Erandathie; Cooley, Dan; Andrews, Arlyn; Ogle, Stephen

    2013-05-01

    An intensive regional research campaign was conducted by the North American Carbon Program (NACP) in 2005 to study the carbon cycle of the highly productive agricultural regions of the Midwestern United States. Forty-_ve di_erent associated projects were spawned across _ve U.S. agencies over the course of nearly a decade involving hundreds of researchers. The primary objective of the project was to investigate the ability of atmospheric inversion techniques to use highly calibrated CO2 mixing ratio data to estimate CO2 exchange over the major croplands of the U.S. Statistics from densely monitored crop production, consisting primarily corn and soybeans, provided the backbone of a well-studied\\bottom up"flux estimate that was used to evaluate the atmospheric inversion results. Three different inversion systems, representing spatial scales varying from high resolution mesoscale, to continental, to global, coupled to different transport models and optimization techniques were compared to the bottom up" inventory estimates. The mean annual CO2-C sink for 2007 from the inversion systems ranged from 120 TgC to 170 TgC, when viewed across a wide variety of inversion setups, with the best" point estimates ranging from 145 TgC to 155 TgC. Inversion-based mean C sink estimates were generally slightly stronger, but statistically indistinguishable,from the inventory estimate whose mean C sink was 135 TgC. The inversion results showed temporal correlations at seasonal lengths while week to week correlations remained low. Comparisons were made between atmospheric transport yields of the two regional inversion systems, which despite having different influence footprints in space and time due to differences in underlying transport models and external forcings, showed similarity when aggregated in space and time.

  20. Development of Modeling Methods and Tools for Predicting Coupled Reactive Transport Processes in Porous Media at Multiple Scales

    SciTech Connect

    Clement, T Prabhakar; Barnett, Mark O; Zheng, Chunmiao; Jones, Norman L

    2010-05-05

    DE-FG02-06ER64213: Development of Modeling Methods and Tools for Predicting Coupled Reactive Transport Processes in Porous Media at Multiple Scales Investigators: T. Prabhakar Clement (PD/PI) and Mark O. Barnett (Auburn), Chunmiao Zheng (Univ. of Alabama), and Norman L. Jones (BYU). The objective of this project was to develop scalable modeling approaches for predicting the reactive transport of metal contaminants. We studied two contaminants, a radioactive cation [U(VI)] and a metal(loid) oxyanion system [As(III/V)], and investigated their interactions with two types of subsurface materials, iron and manganese oxyhydroxides. We also developed modeling methods for describing the experimental results. Overall, the project supported 25 researchers at three universities. Produced 15 journal articles, 3 book chapters, 6 PhD dissertations and 6 MS theses. Three key journal articles are: 1) Jeppu et al., A scalable surface complexation modeling framework for predicting arsenate adsorption on goethite-coated sands, Environ. Eng. Sci., 27(2): 147-158, 2010. 2) Loganathan et al., Scaling of adsorption reactions: U(VI) experiments and modeling, Applied Geochemistry, 24 (11), 2051-2060, 2009. 3) Phillippi, et al., Theoretical solid/solution ratio effects on adsorption and transport: uranium (VI) and carbonate, Soil Sci. Soci. of America, 71:329-335, 2007

  1. FRED User Group

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fuel Reliability: U.S. Leaker Status Courtesy: Mike Reitmeyer (Exelon) ... NextEra Energy 6. Security-Bryan Hanson, Exelon 7. Training-Randy Edington, APS 8. Work ...

  2. Scales

    ScienceCinema

    Murray Gibson

    2010-01-08

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain ? a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  3. Quantification of Hydrological, Geochemical, and Mineralogical Processes Governing the Fate and Transport of Uranium over Multiple Scales in Hanford Sediments

    SciTech Connect

    Mayes, Melanie A.; Perfect, Edmund; van den Berg, Elmer; Parker, Jack C.; Jardine, Philip M.; Tang, Guoping; Fendorf, Scott

    2006-11-15

    A long-term measure of the DOE Environmental Remediation Sciences Division is to provide sufficient scientific understanding to allow a significant fraction of DOE sites to incorporate coupled biological, chemical, and physical processes into decision making for environmental remediation and long-term stewardship by 2015. Our research targets two related, major obstacles to understanding and predicting contaminant transport at DOE sites: the heterogeneity of subsurface geologic media, and the scale dependence of experimental and modeled results.

  4. Combined single crystal polarized XAFS and XRD at high pressure: probing the interplay between lattice distortions and electronic order at multiple length scales in high T c cuprates

    DOE PAGES [OSTI]

    Fabbris, G.; Hücker, M.; Gu, G. D.; Tranquada, J. M.; Haskel, D.

    2016-07-14

    Some of the most exotic material properties derive from electronic states with short correlation length (~10-500 Å), suggesting that the local structural symmetry may play a relevant role in their behavior. In this study, we discuss the combined use of polarized x-ray absorption fine structure and x-ray diffraction at high pressure as a powerful method to tune and probe structural and electronic orders at multiple length scales. Besides addressing some of the technical challenges associated with such experiments, we illustrate this approach with results obtained in the cuprate La1.875Ba0.125CuO4, in which the response of electronic order to pressure can onlymore » be understood by probing the structure at the relevant length scales.« less

  5. Investigating the reversibility of structural modifications of LixNiyMnzCo1-y-zO₂ cathode materials during initial charge/discharge, at multiple length scales

    DOE PAGES [OSTI]

    Hwang, Sooyeon; Bak, Seong -Min; Kim, Seung Min; Chung, Kyung Yoon; Chang, Wonyoung

    2015-08-11

    In this work, we investigate the structural modifications occurring at the bulk, subsurface, and surface scales of LixNiyMnzCo1-y-zO₂ (NMC; y, z = 0.8, 0.1 and 0.4, 0.3, respectively) cathode materials during the initial charge/discharge. Various analytical tools, such as X-ray diffraction, selected-area electron diffraction, electron energy-loss spectroscopy, and high-resolution electron microscopy, are used to examine the structural properties of the NMC cathode materials at the three different scales. Cut-off voltages of 4.3 and 4.8 V are applied during the electrochemical tests as the normal and extreme conditions, respectively. The high-Ni-content NMC cathode materials exhibit unusual behaviors, which is deviate frommore » the general redox reactions during the charge or discharge. The transition metal (TM) ions in the high-Ni-content NMC cathode materials, which are mostly Ni ions, are reduced at 4.8 V, even though TMs are usually oxidized to maintain charge neutrality upon the removal of Li. It was found that any changes in the crystallographic and electronic structures are mostly reversible down to the sub-surface scale, despite the unexpected reduction of Ni ions. However, after the discharge, traces of the phase transitions remain at the edges of the NMC cathode materials at the scale of a few nanometers (i.e., surface scale). This study demonstrates that the structural modifications in NMC cathode materials are induced by charge as well as discharge at multiple length scales. These changes are nearly reversible after the first cycle, except at the edges of the samples, which should be avoided because these highly localized changes can initiate battery degradation.« less

  6. Load partitioning between the bcc-iron matrix and NiAl-type precipitates in a ferritic alloy on multiple length scales

    DOE PAGES [OSTI]

    Sun, Zhiqian; Song, Gian; Sisneros, Thomas A.; Clausen, Bjorn; Pu, Chao; Li, Lin; Gao, Yanfei; Liaw, Peter K.

    2016-03-16

    An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix andmore » elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. Furthermore, the study contributes to further understanding of load-partitioning characteristics in multiphase materials.« less

  7. Mechanical characterization of Ti-6Al-4V titanium alloy at multiple length scales using spherical indentation stress-strain measurements

    DOE PAGES [OSTI]

    Weaver, Jordan S.; Kalidindi, Surya R.

    2016-09-05

    Recent advances in spherical indentation stress-strain protocols and analyses have demonstrated the capability for measuring reliably the local mechanical responses in polycrystalline metal samples at different length scales, ranging from sub-micron (regions within individual grains) to several hundreds of microns (regions covering several grains). These recent advances have now made it possible to study systematically the mechanical behavior of a single material system at different length scales, with tremendous potential to obtain new insights into the role of individual phases, interfaces, and other microscale constituents on the macroscale mechanical response of the material. In this paper, we report spherical indentationmore » stress-strain measurements with different indenter sizes (microns to millimeters) on Ti-6Al-4V (Ti-64) which capture the mechanical response of single phase alpha-Ti-64, single colony (alpha-beta), few colonies, and many colonies of Ti-64. The results show that the average mechanical response (indentation modulus and yield strength) from multiple indentations remains relatively unchanged from single phase alpha to many colonies of Ti-64, while the variance in the response decreases with indenter size. In conclusion, the work-hardening response in indentation tests follows a similar behavior up to indentation zones of many colonies, which shows significantly higher work hardening rates.« less

  8. Sfederspiel's blog | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Enabling Unique Visualization and Manipulation of Energy Data at Multiple Scales FRED Free Energy Data Map OpenEI Tool Visualization The U.S. Department of Energy, the Pacific...

  9. Map | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Enabling Unique Visualization and Manipulation of Energy Data at Multiple Scales FRED Free Energy Data Map OpenEI Tool Visualization The U.S. Department of Energy, the Pacific...

  10. Visualization | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Enabling Unique Visualization and Manipulation of Energy Data at Multiple Scales FRED Free Energy Data Map OpenEI Tool Visualization The U.S. Department of Energy, the Pacific...

  11. Investigating the reversibility of structural modifications of LixNiyMnzCo1-y-zO₂ cathode materials during initial charge/discharge, at multiple length scales

    SciTech Connect

    Hwang, Sooyeon; Bak, Seong -Min; Kim, Seung Min; Chung, Kyung Yoon; Chang, Wonyoung

    2015-08-11

    In this work, we investigate the structural modifications occurring at the bulk, subsurface, and surface scales of LixNiyMnzCo1-y-zO₂ (NMC; y, z = 0.8, 0.1 and 0.4, 0.3, respectively) cathode materials during the initial charge/discharge. Various analytical tools, such as X-ray diffraction, selected-area electron diffraction, electron energy-loss spectroscopy, and high-resolution electron microscopy, are used to examine the structural properties of the NMC cathode materials at the three different scales. Cut-off voltages of 4.3 and 4.8 V are applied during the electrochemical tests as the normal and extreme conditions, respectively. The high-Ni-content NMC cathode materials exhibit unusual behaviors, which is deviate from the general redox reactions during the charge or discharge. The transition metal (TM) ions in the high-Ni-content NMC cathode materials, which are mostly Ni ions, are reduced at 4.8 V, even though TMs are usually oxidized to maintain charge neutrality upon the removal of Li. It was found that any changes in the crystallographic and electronic structures are mostly reversible down to the sub-surface scale, despite the unexpected reduction of Ni ions. However, after the discharge, traces of the phase transitions remain at the edges of the NMC cathode materials at the scale of a few nanometers (i.e., surface scale). This study demonstrates that the structural modifications in NMC cathode materials are induced by charge as well as discharge at multiple length scales. These changes are nearly reversible after the first cycle, except at the edges of the samples, which should be avoided because these highly localized changes can initiate battery degradation.

  12. Investigating the reversibility of structural modifications of LixNiyMnzCo1-y-zO? cathode materials during initial charge/discharge, at multiple length scales

    SciTech Connect

    Hwang, Sooyeon; Bak, Seong -Min; Kim, Seung Min; Chung, Kyung Yoon; Chang, Wonyoung

    2015-08-11

    In this work, we investigate the structural modifications occurring at the bulk, subsurface, and surface scales of LixNiyMnzCo1-y-zO? (NMC; y, z = 0.8, 0.1 and 0.4, 0.3, respectively) cathode materials during the initial charge/discharge. Various analytical tools, such as X-ray diffraction, selected-area electron diffraction, electron energy-loss spectroscopy, and high-resolution electron microscopy, are used to examine the structural properties of the NMC cathode materials at the three different scales. Cut-off voltages of 4.3 and 4.8 V are applied during the electrochemical tests as the normal and extreme conditions, respectively. The high-Ni-content NMC cathode materials exhibit unusual behaviors, which is deviate from the general redox reactions during the charge or discharge. The transition metal (TM) ions in the high-Ni-content NMC cathode materials, which are mostly Ni ions, are reduced at 4.8 V, even though TMs are usually oxidized to maintain charge neutrality upon the removal of Li. It was found that any changes in the crystallographic and electronic structures are mostly reversible down to the sub-surface scale, despite the unexpected reduction of Ni ions. However, after the discharge, traces of the phase transitions remain at the edges of the NMC cathode materials at the scale of a few nanometers (i.e., surface scale). This study demonstrates that the structural modifications in NMC cathode materials are induced by charge as well as discharge at multiple length scales. These changes are nearly reversible after the first cycle, except at the edges of the samples, which should be avoided because these highly localized changes can initiate battery degradation.

  13. Multiplicity Counting

    SciTech Connect

    Geist, William H.

    2015-12-01

    This set of slides begins by giving background and a review of neutron counting; three attributes of a verification item are discussed: 240Pueff mass; α, the ratio of (α,n) neutrons to spontaneous fission neutrons; and leakage multiplication. It then takes up neutron detector systems – theory & concepts (coincidence counting, moderation, die-away time); detector systems – some important details (deadtime, corrections); introduction to multiplicity counting; multiplicity electronics and example distributions; singles, doubles, and triples from measured multiplicity distributions; and the point model: multiplicity mathematics.

  14. Staged inoculation of multiple cyanobacterial photobioreactors

    DOEpatents

    Scott, Brendan; Meichel, George; Phillips-Kress, Jesse; Blanks, Jessica

    2015-09-01

    A method of rapid simultaneous inoculation of cyanobacteria to multiple commercial-scale closed photobioreactors for the production of a target molecule such as ethanol.

  15. Introducing FRED, Enabling Unique Visualization and Manipulation...

    OpenEI (Open Energy Information) [EERE & EIA]

    data more transparent and adaptable for implementing clean energy technologies. Energy big data and analytics play a pivotal role in effectively planning for long-term energy...

  16. Fred L. Brown | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    hearings and issuing Departmental decisions regarding personnel security clearance eligibility; conducting contractor employee "whistleblower" hearings and ...

  17. FRED Overview Slides | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    hybrid power plants? Login to post comments NickL NickL2 years 39 weeks ago Wind Data Hello- There are various types of wind data available. These can be searched for on OpenEI...

  18. Solazyme Pilot-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    11 Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste Solazyme Integrated Biorefinery: Diesel Fuels from Heterotrophic Algae Solazyme, Inc. will build, operate and optimize a pilot-scale "Solazyme Integrated Biorefinery" (SzIBR). SzIBR will demonstrate integrated scale-up of Solazyme's novel heterotrophic algal oil biomanufacturing process, validate the projected commercial-scale economics of producing multiple advanced

  19. Scaling Up

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scaling Up Scaling Up Many scientists appreciate Python's power for prototyping and developing scientific computing and data-intensive applications. However, creating parallel Python applications that scale well in modern high-performance computing environments can be challenging for a variety of reasons. Approaches to parallel processing in Python at NERSC are described on this page. Here we outline various approaches to scaling parallel Python applications at NERSC so that users may select the

  20. SMART Scale

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SMART Scale Small Market Advanced Retrofit Transformation Program 2014 Building Technologies Office Peer Review Colin Clark, CClark@ecoact.org ECOLOGY ACTION Project Summary Timeline:  Start date: October 1, 2013  Planned end date: September 30, 2016 Key Milestones :  June 2014: Research and develop list of measures needed to enhance Ecology !ction's DI 2.0 model to achieve an average of at least 20% energy savings  October 2014: Identification and Selection of Demonstration

  1. Structuring Materials on Multiple Length Scales for Energy Application...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... He is the recipient of several awards, including a Merck Professorship in Chemistry, a 3M Faculty Grant, a Dupont Young Professor Grant, an NSF CAREER Award, a McKnight Land-Grant ...

  2. Multiple density layered insulator

    DOEpatents

    Alger, Terry W.

    1994-01-01

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  3. Multiple density layered insulator

    DOEpatents

    Alger, T.W.

    1994-09-06

    A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

  4. Mr. Fred Cartwright Executive Director, Clemson University Internation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Automotive Research Mr. Bryan Dods Executive & Chief Engineer GE Power & Water Mr. Tom Elswick Director of Business Development - Products & Systems Siemens Industry USA Mr. ...

  5. Drive Electric Vermont Case Study Fred Wagner Energetics Incorporated

    Energy.gov [DOE] (indexed site)

    January 20, 2016 Dr. Peter B. Littlewood, President UChicago Argonne, LLC Argonne National Laboratory 9700 S. Cass Avenue Lemont, Illinois 60439 Dear Dr. Littlewood: This letter serves as notification of the Office of Enterprise Assessments' Office of Enforcement decision to conduct an investigation into the facts and circumstances associated with potential deficiencies in UChicago Argonne, LLC's implementation of the Department of Energy's (DOE) 10 C.F.R. Part 851 machine guarding program

  6. Photovoltaics: Separating Multiple Excitons

    SciTech Connect

    Nozik, A. J.

    2012-05-01

    Scientists have demonstrated an efficient process for generating multiple excitons in adjacent silicon nanocrystals from a single high-energy photon. Their findings could prove useful for a wide range of photovoltaic applications.

  7. Multiple shell fusion targets

    DOEpatents

    Lindl, J.D.; Bangerter, R.O.

    1975-10-31

    Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.

  8. Multiple stage multiple filter hydrate store

    DOEpatents

    Bjorkman, H.K. Jr.

    1983-05-31

    An improved hydrate store for a metal halogen battery system is disclosed which employs a multiple stage, multiple filter means for separating the halogen hydrate from the liquid used in forming the hydrate. The filter means is constructed in the form of three separate sections which combine to substantially cover the interior surface of the store container. Exit conduit means is provided in association with the filter means for transmitting liquid passing through the filter means to a hydrate former subsystem. The hydrate former subsystem combines the halogen gas generated during the charging of the battery system with the liquid to form the hydrate in association with the store. Relief valve means is interposed in the exit conduit means for controlling the operation of the separate sections of the filter means, such that the liquid flow through the exit conduit means from each of the separate sections is controlled in a predetermined sequence. The three separate sections of the filter means operate in three discrete stages to provide a substantially uniform liquid flow to the hydrate former subsystem during the charging of the battery system. The separation of the liquid from the hydrate causes an increase in the density of the hydrate by concentrating the hydrate along the filter means. 7 figs.

  9. Multiple stage multiple filter hydrate store

    DOEpatents

    Bjorkman, Jr., Harry K.

    1983-05-31

    An improved hydrate store for a metal halogen battery system is disclosed which employs a multiple stage, multiple filter means or separating the halogen hydrate from the liquid used in forming the hydrate. The filter means is constructed in the form of three separate sections which combine to substantially cover the interior surface of the store container. Exit conduit means is provided in association with the filter means for transmitting liquid passing through the filter means to a hydrate former subsystem. The hydrate former subsystem combines the halogen gas generated during the charging of the battery system with the liquid to form the hydrate in association with the store. Relief valve means is interposed in the exit conduit means for controlling the operation of the separate sections of the filter means, such that the liquid flow through the exit conduit means from each of the separate sections is controlled in a predetermined sequence. The three separate sections of the filter means operate in three discrete stages to provide a substantially uniform liquid flow to the hydrate former subsystem during the charging of the battery system. The separation of the liquid from the hydrate causes an increase in the density of the hydrate by concentrating the hydrate along the filter means.

  10. Charged-particle multiplicity at LHC energies

    ScienceCinema

    None

    2011-10-06

    The talk presents the measurement of the pseudorapidity density and the multiplicity distribution with ALICE at the achieved LHC energies of 0.9 and 2.36 TeV.An overview about multiplicity measurements prior to LHC is given and the related theoretical concepts are briefly discussed.The analysis procedure is presented and the systematic uncertainties are detailed. The applied acceptance corrections and the treatment of diffraction are discussed.The results are compared with model predictions. The validity of KNO scaling in restricted phase space regions is revisited. 

  11. Comparison with Carrier Multiplication

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Complete Theory of Down-Conversion, and a Comparison with Carrier Multiplication 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 22 24 26 28 30 32 34 Measured Quantum Efficiency (QE) Efficiency [%] with Down-Conversion Single- Junction Threshold Solar Cell 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 Peak Efficiency [%] Splitting Multiplicity (M) C=max C=1000 C=100 C=1 C=10 Down Conversion Carrier Multiplication Ze'ev R. Abrams, Avi Niv, Majid Gharghi, Chris Gladden & Xiang Zhang Materials Science

  12. Multiple sort flow cytometer

    DOEpatents

    Van den Engh, Ger (Seattle, WA); Esposito, Richard J. (Seattle, WA)

    1996-01-01

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane.

  13. Multiple sort flow cytometer

    DOEpatents

    Engh, G. van den; Esposito, R.J.

    1996-01-09

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane. 8 figs.

  14. Multiple gap photovoltaic device

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  15. Portable multiplicity counter

    DOEpatents

    Newell, Matthew R.; Jones, David Carl

    2009-09-01

    A portable multiplicity counter has signal input circuitry, processing circuitry and a user/computer interface disposed in a housing. The processing circuitry, which can comprise a microcontroller integrated circuit operably coupled to shift register circuitry implemented in a field programmable gate array, is configured to be operable via the user/computer interface to count input signal pluses receivable at said signal input circuitry and record time correlations thereof in a total counting mode, coincidence counting mode and/or a multiplicity counting mode. The user/computer interface can be for example an LCD display/keypad and/or a USB interface. The counter can include a battery pack for powering the counter and low/high voltage power supplies for biasing external detectors so that the counter can be configured as a hand-held device for counting neutron events.

  16. V-094: IBM Multiple Products Multiple Vulnerabilities | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 94: IBM Multiple Products Multiple Vulnerabilities V-094: IBM Multiple Products Multiple Vulnerabilities February 19, 2013 - 1:41am Addthis PROBLEM: IBM Multiple Products Multiple Vulnerabilities PLATFORM: IBM Maximo Asset Management versions 7.5, 7.1, and 6.2 IBM Maximo Asset Management Essentials versions 7.5, 7.1, and 6.2 IBM SmartCloud Control Desk version 7.5 IBM Tivoli Asset Management for IT versions 7.2, 7.1, and 6.2 IBM Tivoli Change and Configuration Management Database

  17. Multiple capillary biochemical analyzer

    DOEpatents

    Dovichi, Norman J.; Zhang, Jian Z.

    1995-01-01

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibres to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands.

  18. Multiple capillary biochemical analyzer

    DOEpatents

    Dovichi, N.J.; Zhang, J.Z.

    1995-08-08

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibers to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands. 21 figs.

  19. SPACE BASED INTERCEPTOR SCALING

    SciTech Connect

    G. CANAVAN

    2001-02-01

    Space Based Interceptor (SBI) have ranges that are adequate to address rogue ICBMs. They are not overly sensitive to 30-60 s delay times. Current technologies would support boost phase intercept with about 150 interceptors. Higher acceleration and velocity could reduce than number by about a factor of 3 at the cost of heavier and more expensive Kinetic Kill Vehicles (KKVs). 6g SBI would reduce optimal constellation costs by about 35%; 8g SBI would reduce them another 20%. Interceptor ranges fall rapidly with theater missile range. Constellations increase significantly for ranges under 3,000 km, even with advanced interceptor technology. For distributed launches, these estimates recover earlier strategic scalings, which demonstrate the improved absentee ratio for larger or multiple launch areas. Constellations increase with the number of missiles and the number of interceptors launched at each. The economic estimates above suggest that two SBI per missile with a modest midcourse underlay is appropriate. The SBI KKV technology would appear to be common for space- and surface-based boost phase systems, and could have synergisms with improved midcourse intercept and discrimination systems. While advanced technology could be helpful in reducing costs, particularly for short range theater missiles, current technology appears adequate for pressing rogue ICBM, accidental, and unauthorized launches.

  20. Running Large Scale Jobs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Running Large Scale Jobs Running Large Scale Jobs Users face various challenges with running and scaling large scale jobs on peta-scale production systems. For example, certain applications may not have enough memory per core, the default environment variables may need to be adjusted, or I/O dominates run time. This page lists some available programming and run time tuning options and tips users can try on their large scale applications on Hopper for better performance. Try different compilers

  1. MULTIPLE SPARK GAP SWITCH

    DOEpatents

    Schofield, A.E.

    1958-07-22

    A multiple spark gap switch of unique construction is described which will permit controlled, simultaneous discharge of several capacitors into a load. The switch construction includes a disc electrode with a plurality of protuberances of generally convex shape on one surface. A firing electrode is insulatingly supponted In each of the electrode protuberances and extends substantially to the apex thereof. Individual electrodes are disposed on an insulating plate parallel with the disc electrode to form a number of spark gaps with the protuberances. These electrodes are each connected to a separate charged capacitor and when a voltage ls applied simultaneously between the trigger electrodes and the dlsc electrode, each spark gap fires to connect its capacitor to the disc electrode and a subsequent load.

  2. Multiple layer insulation cover

    DOEpatents

    Farrell, James J.; Donohoe, Anthony J.

    1981-11-03

    A multiple layer insulation cover for preventing heat loss in, for example, a greenhouse, is disclosed. The cover is comprised of spaced layers of thin foil covered fabric separated from each other by air spaces. The spacing is accomplished by the inflation of spaced air bladders which are integrally formed in the cover and to which the layers of the cover are secured. The bladders are inflated after the cover has been deployed in its intended use to separate the layers of the foil material. The sizes of the material layers are selected to compensate for sagging across the width of the cover so that the desired spacing is uniformly maintained when the cover has been deployed. The bladders are deflated as the cover is stored thereby expediting the storage process and reducing the amount of storage space required.

  3. Multiple-port valve

    DOEpatents

    Doody, Thomas J.

    1978-08-22

    A multiple-port valve assembly is designed to direct flow from a primary conduit into any one of a plurality of secondary conduits as well as to direct a reverse flow. The valve includes two mating hemispherical sockets that rotatably receive a spherical valve plug. The valve plug is attached to the primary conduit and includes diverging passageways from that conduit to a plurality of ports. Each of the ports is alignable wih one or more of a plurality of secondary conduits fitted into one of the hemispherical sockets. The other hemispherical socket includes a slot for the primary conduit such that the conduit's motion along that slot with rotation of the spherical plug about various axes will position the valve-plug ports in respect to the secondary conduits.

  4. ARM - Publications: Science Team Meeting Documents: Single and Multiple

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    scattering in optically thick multifractal clouds Single and Multiple scattering in optically thick multifractal clouds Grosdidier, Yves McGill University Lovejoy, Shaun McGill University Watson, Brian St. Lawrence University, Physics Department Schertzer, Daniel Ecole Nationale des Ponts et Chauss'es Satellite studies have shown that cloud radiances (at both visible and infra red wavelengths) are scale invariant over scales spanning much of the meteorologically significant range, and

  5. MULTIPLE SHAFT TOOL HEAD

    DOEpatents

    Colbert, H.P.

    1962-10-23

    An improved tool head arrangement is designed for the automatic expanding of a plurality of ferruled tubes simultaneously. A plurality of output shafts of a multiple spindle drill head are driven in unison by a hydraulic motor. A plurality of tube expanders are respectively coupled to the shafts through individual power train arrangements. The axial or thrust force required for the rolling operation is provided by a double acting hydraulic cylinder having a hollow through shaft with the shaft cooperating with an internally rotatable splined shaft slidably coupled to a coupling rigidly attached to the respectlve output shaft of the drill head, thereby transmitting rotary motion and axial thrust simultaneously to the tube expander. A hydraulic power unit supplies power to each of the double acting cylinders through respective two-position, four-way valves, under control of respective solenoids for each of the cylinders. The solenoids are in turn selectively controlled by a tool selection control unit which in turn is controlled by signals received from a programmed, coded tape from a tape reader. The number of expanders that are extended in a rolling operation, which may be up to 42 expanders, is determined by a predetermined program of operations depending upon the arrangement of the ferruled tubes to be expanded in the tube bundle. The tape reader also supplies dimensional information to a machine tool servo control unit for imparting selected, horizontal and/or vertical movement to the tool head assembly. (AEC)

  6. Multiple stage railgun

    DOEpatents

    Hawke, Ronald S.; Scudder, Jonathan K.; Aaland, Kristian

    1982-01-01

    A multiple stage magnetic railgun accelerator (10) for accelerating a projectile (15) by movement of a plasma arc (13) along the rails (11,12). The railgun (10) is divided into a plurality of successive rail stages (10a-n) which are sequentially energized by separate energy sources (14a-n) as the projectile (15) moves through the bore (17) of the railgun (10). Propagation of energy from an energized rail stage back towards the breech end (29) of the railgun (10) can be prevented by connection of the energy sources (14a-n) to the rails (11,12) through isolation diodes (34a-n). Propagation of energy from an energized rail stage back towards the breech end of the railgun can also be prevented by dividing the rails (11,12) into electrically isolated rail sections (11a-n, 12a-n). In such case means (55a-n) are used to extinguish the arc at the end of each energized stage and a fuse (31) or laser device (61) is used to initiate a new plasma arc in the next energized rail stage.

  7. Remote multiple string well completion

    SciTech Connect

    Kirkland, K.G.

    1981-04-21

    Method and apparatus for multiple string well completions by remote operations in underwater installations, by which the tubing strings are installed independently rather than simultaneously.

  8. Sigmund and WInterbon Multiple Scattering

    Energy Science and Technology Software Center

    1985-03-01

    SWIMS calculates the angular dispersion of ion beams that undergo small-angle, incoherent multiple scattering by gaseous or solid media.

  9. Hopper Scaling Incentive Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scaling Incentive Program Hopper Scaling Incentive Program August 30, 2011 by Francesca Verdier For projects that haven't yet scaled their codes to 683 or more nodes (which is the level at which a job is considered "big" on hopper) NERSC is offering scaling incentives, mostly focused on the use of OpenMP. For some codes, adding OpenMP directives will allow you to scale up and run bigger science problems. For users accepted in the Scaling Incentive Program: First, you'll need to

  10. Scale control in thermal desalination processes

    SciTech Connect

    Perez, L.A.; Polizzotti, D.M.

    1999-11-01

    Thermal desalination processes involve the heating of seawater to form water vapor which is then condensed to produce salt free water. Multiple Effect Evaporation (ME) and Multiple-Stage Flash distillation (MSF) are the two main processes used for thermal distillation. MSF distillation, currently is the dominant process. MSF distillation is run under pressure at relatively high temperatures (90--125 C). Scale formation is one of the most critical problems affecting both processes. In the case of MSF, calcium carbonate, magnesium hydroxide and calcium sulfate are the main scale forming salts. The first two scale forming salts are usually controlled by keeping neutral the pH of the system by the addition of acid. Scale inhibitors are used to prevent calcium sulfate scale. Because of economical reasons, the trend in the industry is to operate systems at as high a temperature and concentration factor as possible in order to increase purified water production at a lower cost. Safety concerns have also increased the need for acid feed elimination as a mean of controlling pH. These practices increased the scaling tendencies in MSF processes and created the need for more effective treatment programs to control scale formation on heat exchangers. A new multi-component inhibitor program that enable operation of MSF systems without the need of acid feed for pH control has been developed. The program prevent scale formation and allows to operate the system under typical or higher concentration factors and temperatures than normally found in MSF evaporators operating with acid feed.

  11. Laser propagation in underdense plasmas: Scaling arguments

    SciTech Connect

    Garrison, J.C.

    1993-05-01

    The propagation of an intense laser beam in the underdense plasma is modelled by treating the plasma as a relativistic, zero temperature, charged fluid. For paraxial propagation and a sufficiently underdense plasma ({omega}p/{omega} {much_lt} 1), a multiple-scales technique is used to expand the exact equations in powers of the small parameter {theta} {equivalent_to} {omega}p/{omega}. The zeroth order equations are used in a critical examination of previous work on this problem, and to derive a scaling law for the threshold power required for cavitation.

  12. Multiple Motivations Institutional Change Principle

    Energy.gov [DOE]

    The multiple motivations principle suggests that a portfolio approach—rather than a single strategy—may be required to achieve change. Research demonstrates that people and institutions adopt new...

  13. V-092: Pidgin Multiple Vulnerabilities

    Energy.gov [DOE]

    Multiple vulnerabilities have been reported in Pidgin, which can be exploited by malicious people to manipulate certain data, cause a DoS (Denial of Service), and compromise a user's system.

  14. Scaled Wind Farm Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scaled Wind Farm Technology - Sandia Energy Energy Search Icon Sandia Home Locations ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  15. Running Large Scale Jobs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    try on their large scale applications on Hopper for better performance. Try different compilers and compiler options The available compilers on Hopper are PGI, Cray, Intel, GNU,...

  16. PULSE SCALING SYSTEM

    DOEpatents

    Kandiah, K.

    1954-06-01

    Pulse scaling systems embodying multi-electrode gaseous-discharge tubes of the type having a plurality of stable discharge paths are described. The novelty of this particular system lies in the simplification of the stepping arrangement between successive tubes. In one form the invention provides a multistage scaler comprising a pulse generator, a first multi-electrode scaling tube of the type set forth coupled to said generator to receive transfer pulses therefrom and one or more succeeding multi-electrode scaling tubes each deriving its transfer pulses from preceding scaling tubes.

  17. Scale Models & Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Turbines * Readings about Cape Wind and other offshore and onshore siting debates for wind farms * Student Worksheet * A number of scale model items: Ken, Barbie or other dolls...

  18. Running Large Scale Jobs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    peta-scale production systems. For example, certain applications may not have enough memory per core, the default environment variables may need to be adjusted, or IO dominates...

  19. Silica Scaling Removal Process

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scaling Removal Process Scientists at Los Alamos National Laboratory have developed a novel technology to remove both dissolved and colloidal silica using small gel particles....

  20. INL Laboratory Scale Atomizer

    SciTech Connect

    C.R. Clark; G.C. Knighton; R.S. Fielding; N.P. Hallinan

    2010-01-01

    A laboratory scale atomizer has been built at the Idaho National Laboratory. This has proven useful for laboratory scale tests and has been used to fabricate fuel used in the RERTR miniplate experiments. This instrument evolved over time with various improvements being made ‘on the fly’ in a trial and error process.

  1. Properties of the extra stage cube under multiple faults

    SciTech Connect

    Adams, G.B., III; Siegel, H.J.

    1982-01-01

    The extra stage cube (ESC) interconnection network, a fault tolerant structure, has been proposed for use in large-scale parallel and distributed systems. It has all of the interconnecting capabilities of the multistage cube-type networks that have been proposed for many systems, and the ESC provides fault tolerance for any single failure. The paper examines the ability of the ESC to operate with multiple faults. 9 references.

  2. Multiple resonant railgun power supply

    DOEpatents

    Honig, E.M.; Nunnally, W.C.

    1985-06-19

    A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.

  3. Multiple resonant railgun power supply

    DOEpatents

    Honig, Emanuel M. (Los Alamos, NM); Nunnally, William C. (Los Alamos, NM)

    1988-01-01

    A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.

  4. H2@Scale Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    October 5, 2016 1 Why hydrogen? Not 1920's London or Pittsburgh, Outer Beijing 2016 Our energy system needs deep decarbonization H2 at Scale October 5, 2016 2 H 2 @Scale enables green processes and increased renewable penetration Decreasing all U.S. carbon emissions by about half (2050) H2 at Scale October 5, 2016 3 Energy System Challenge - Sustainability * Multi-sector requirements o Transportation o Industrial o Grid * Decarbonizing our energy sector is hard Over half of U.S. CO 2 emissions

  5. CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Multiple Efforts to Secure Control Systems Are Under Way, but Challenges Remain CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure Control Systems Are Under Way, but ...

  6. Multiple Reference Fourier Transform Holography: Five Images...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Multiple Reference Fourier Transform Holography: Five Images for the Price of One ... Our technique uses coherent x-ray scattering to simultaneously acquire multiple images of ...

  7. Multiple-beam laserplasma interactions in inertial confinement fusion

    SciTech Connect

    Myatt, J. F. Zhang, J.; Maximov, A. V.; Short, R. W.; Seka, W.; Edgell, D. H.; Michel, D. T.; Igumenshchev, I. V.; Froula, D. H.; Hinkel, D. E.; Michel, P.; Moody, J. D.

    2014-05-15

    The experimental evidence for multiple-beam laser-plasma instabilities of relevance to laser driven inertial confinement fusion at the ignition scale is reviewed, in both the indirect and direct-drive approaches. The instabilities described are cross-beam energy transfer (in both indirectly driven targets on the NIF and in direct-drive targets), multiple-beam stimulated Raman scattering (for indirect-drive), and multiple-beam two-plasmon decay instability (in direct drive). Advances in theoretical understanding and in the numerical modeling of these multiple beam instabilities are presented.

  8. Remote multiple string well completion

    SciTech Connect

    Kirkland, K.G.

    1981-09-15

    In a remotely installed underwater well apparatus, a tubular body, typically a multiple string tubing hanger, is landed in a position oriented rotationally with respect to a reference point on the apparatus and a seal device is then energized by the same tool employed to land and orient the tubular body.

  9. Multiple pass laser amplifier system

    DOEpatents

    Brueckner, Keith A.; Jorna, Siebe; Moncur, N. Kent

    1977-01-01

    A laser amplification method for increasing the energy extraction efficiency from laser amplifiers while reducing the energy flux that passes through a flux limited system which includes apparatus for decomposing a linearly polarized light beam into multiple components, passing the components through an amplifier in delayed time sequence and recombining the amplified components into an in phase linearly polarized beam.

  10. Digital scale converter

    DOEpatents

    Upton, Richard G.

    1978-01-01

    A digital scale converter is provided for binary coded decimal (BCD) conversion. The converter may be programmed to convert a BCD value of a first scale to the equivalent value of a second scale according to a known ratio. The value to be converted is loaded into a first BCD counter and counted down to zero while a second BCD counter registers counts from zero or an offset value depending upon the conversion. Programmable rate multipliers are used to generate pulses at selected rates to the counters for the proper conversion ratio. The value present in the second counter at the time the first counter is counted to the zero count is the equivalent value of the second scale. This value may be read out and displayed on a conventional seven-segment digital display.

  11. Multiple time step integrators in ab initio molecular dynamics

    SciTech Connect

    Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.

    2014-02-28

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.

  12. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-compound DNAPLs with surfactant solutions: Phase 1 -- Laboratory and pilot field-scale testing and Phase 2 -- Solubilization test and partitioning and interwell tracer tests. Final report

    SciTech Connect

    1997-10-24

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). The field test was conducted in the alluvial aquifer which is located 20 to 30 meters beneath a vapor degreasing operation at Paducah Gaseous Diffusion Plant. This aquifer has become contaminated with TCE due to leakage of perhaps 40,000 liters of TCE, which has generated a plume of dissolved TCE extending throughout an area of approximately 3 km{sup 2} in the aquifer. Most of the TCE is believed to be present in the overlying lacustrine deposits and in the aquifer itself as a dense, non-aqueous phase liquid, or DNAPL. The objective of the field test was to assess the efficacy of the surfactant for in situ TCE solubilization. Although the test demonstrated that sorbitan monooleate was unsuitable as a solubilizer in this aquifer, the single-well test was demonstrated to be a viable method for the in situ testing of surfactants or cosolvents prior to proceeding to full-scale remediation.

  13. Total lymphoid irradiation for multiple sclerosis

    SciTech Connect

    Devereux, C.K.; Vidaver, R.; Hafstein, M.P.; Zito, G.; Troiano, R.; Dowling, P.C.; Cook, S.D.

    1988-01-01

    Although chemical immunosuppression has been shown to benefit patients with chronic progressive multiple sclerosis (MS), it appears that chemotherapy has an appreciable oncogenic potential in patients with multiple sclerosis. Accordingly, we developed a modified total lymphoid irradiation (TLI) regimen designed to reduce toxicity and applied it to a randomized double blind trial of TLI or sham irradiation in MS. Standard TLI regimens were modified to reduce dose to 1,980 rad, lowering the superior mantle margin to midway between the thyroid cartilage and angle of the mandible (to avert xerostomia) and the lower margin of the mantle field to the inferior margin of L1 (to reduce gastrointestinal toxicity by dividing abdominal radiation between mantle and inverted Y), limiting spinal cord dose to 1,000 rad by custom-made spine blocks in the mantle and upper 2 cm of inverted Y fields, and also protecting the left kidney even if part of the spleen were shielded. Clinical efficacy was documented by the less frequent functional scale deterioration of 20 TLI treated patients with chronic progressive MS compared to to 20 sham-irradiated progressive MS patients after 12 months (16% versus 55%, p less than 0.03), 18 months (28% versus 63%, p less than 0.03), and 24 months (44% versus 74%, N.S.). Therapeutic benefit during 3 years follow-up was related to the reduction in lymphocyte count 3 months post-irradiation (p less than 0.02). Toxicity was generally mild and transient, with no instance of xerostomia, pericarditis, herpes zoster, or need to terminate treatment in TLI patients. However, menopause was induced in 2 patients and staphylococcal pneumonia in one.

  14. Multiple Exciton Generation Solar Cells

    SciTech Connect

    Luther, J. M.; Semonin, O. E.; Beard, M. C.; Gao, J.; Nozik, A. J.

    2012-01-01

    Heat loss is the major factor limiting traditional single junction solar cells to a theoretical efficiency of 32%. Multiple Exciton Generation (MEG) enables efficient use of the solar spectrum yielding a theoretical power conversion efficiency of 44% in solar cells under 1-sun conditions. Quantum-confined semiconductors have demonstrated the ability to generate multiple carriers but present-day materials deliver efficiencies far below the SQ limit of 32%. Semiconductor quantum dots of PbSe and PbS provide an active testbed for developing high-efficiency, inexpensive solar cells benefitting from quantum confinement effects. Here, we will present recent work of solar cells employing MEG to yield external quantum efficiencies exceeding 100%.

  15. CHARGED PARTICLE MULTIPLICITIES AT BRAHMS.

    SciTech Connect

    DEBBE, R., FOR THE BRAHMS COLLABORATION

    2001-07-30

    This report presents the measurement of charged particle multiplicity densities dN/d{eta} in ultrarelativistic heavy ion collisions as function of {eta} and the centrality of the collisions. This distributions were extracted from data collected by the BRAHMS collaboration during the first RHK run with gold ions at {radical}s{sub NN} = 130A {center_dot} GeV. The analysis method is described and, results are compared to some model predictions.

  16. Supporting Multiple Workloads, Batch Systems,

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Supporting Multiple Workloads, Batch Systems, and Computing Environments on a Single Linux Cluster Larry Pezzaglia National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory Berkeley, CA USA lmpezzaglia@lbl.gov Abstract-A new Intel-based, InfiniBand attached computing system from Cray Cluster Solutions (formerly Appro), at NERSC, provides computational resources to transparently expand several existing NERSC production systems serving three different

  17. Posters Radiation Singularities, Multiple Scattering

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3 Posters Radiation Singularities, Multiple Scattering and Diffusion in Multifractal Clouds P. Silas, G. Brösamlen, and S. Lovejoy Department of Physics McGill University Montreal, Quebec, Canada C. Naud and D. Schertzer Université Pierre and Marie Curie Paris, France B. Watson Department of Physics St. Lawrence University Canton, New York Diffusion on One-Dimensional Multifractals (P. Silas, S. Lovejoy, D. Schertzer) Many geophysical and atmospheric fields exhibit multifractal characteristics

  18. Multiple target laser ablation system

    DOEpatents

    Mashburn, D.N.

    1996-01-09

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film. 3 figs.

  19. Multiple target laser ablation system

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film.

  20. Angular Scaling In Jets

    SciTech Connect

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

    2012-02-17

    We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

  1. V-161: IBM Maximo Asset Management Products Java Multiple Vulnerabilit...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Articles U-179: IBM Java 7 Multiple Vulnerabilities V-145: IBM Tivoli Federated Identity Manager Products Java Multiple Vulnerabilities V-094: IBM Multiple Products Multiple...

  2. Scaled Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Product: Scaled Solar manufacturers and markets utility-grade, concentrated photovoltaic solar energy systems to commercial customers References: Scaled Solar1 This...

  3. Sensor system scaling issues

    SciTech Connect

    Canavan, G.H.

    1996-07-01

    A model for IR sensor performance is used to compare estimates of sensor cost effectiveness. Although data from aircraft sensors indicate a weaker scaling, their agreement is adequate to support the assessment of the benefits of operating up to the maximum altitude of most current UAVs.

  4. Universality of Charged Multiplicity Distributions

    SciTech Connect

    Goulianos, K.; /Rockefeller U.

    1981-12-01

    The charged multiplicity distributions of the diffractive and non-diffractive components of hadronic interactions, as well as those of hadronic states produced in other reactions, are described well by a universal Gaussian function that depends only on the available mass for pionization, has a maximum at n{sub o} {approx_equal} 2M{sup 1/2}, where M is the available mass in GeV, and a peak to width ratio n{sub o}/D {approx_equal} 2.

  5. Multiple station thermal diffusivity instrument

    SciTech Connect

    Wang, H.; Dinwiddie, R.B.; Gaal, P.S.

    1995-12-31

    A multiple furnace laser flash thermal diffusivity system has been developed. The system is equipped with a movable Nd:Glass laser unit, two IR detectors and furnaces for precise measurements of thermal diffusivity over the temperature range from {minus}150{degree}C to 2500{degree}C. All furnaces can operate in vacuum and inert gas; the environmental effects furnace also supports oxidizing and reducing environments. To increase testing speed the graphite and aluminum furnaces are both equipped with six-sample carousels. Thermal diffusivity measurements of three standard reference materials show excellent results over the entire temperature range.

  6. Multiple piece turbine rotor blade

    DOEpatents

    Jones, Russell B; Fedock, John A

    2013-05-21

    A multiple piece turbine rotor blade with a shell having an airfoil shape and secured between a spar and a platform with the spar including a tip end piece. a snap ring fits around the spar and abuts against the spar tip end piece on a top side and abuts against a shell on the bottom side so that the centrifugal loads from the shell is passed through the snap ring and into the spar and not through a tip cap dovetail slot and projection structure.

  7. Recirculation in multiple wave conversions

    SciTech Connect

    Kaufman, A. N.; Brizard, A.J.; Kaufman, A.N.; Tracy, E.R.

    2008-07-30

    A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.

  8. Multiple channel programmable coincidence counter

    DOEpatents

    Arnone, Gaetano J.

    1990-01-01

    A programmable digital coincidence counter having multiple channels and featuring minimal dead time. Neutron detectors supply electrical pulses to a synchronizing circuit which in turn inputs derandomized pulses to an adding circuit. A random access memory circuit connected as a programmable length shift register receives and shifts the sum of the pulses, and outputs to a serializer. A counter is input by the adding circuit and downcounted by the seralizer, one pulse at a time. The decoded contents of the counter after each decrement is output to scalers.

  9. Multiple channel data acquisition system

    DOEpatents

    Crawley, H. Bert; Rosenberg, Eli I.; Meyer, W. Thomas; Gorbics, Mark S.; Thomas, William D.; McKay, Roy L.; Homer, Jr., John F.

    1990-05-22

    A multiple channel data acquisition system for the transfer of large amounts of data from a multiplicity of data channels has a plurality of modules which operate in parallel to convert analog signals to digital data and transfer that data to a communications host via a FASTBUS. Each module has a plurality of submodules which include a front end buffer (FEB) connected to input circuitry having an analog to digital converter with cache memory for each of a plurality of channels. The submodules are interfaced with the FASTBUS via a FASTBUS coupler which controls a module bus and a module memory. The system is triggered to effect rapid parallel data samplings which are stored to the cache memories. The cache memories are uploaded to the FEBs during which zero suppression occurs. The data in the FEBs is reformatted and compressed by a local processor during transfer to the module memory. The FASTBUS coupler is used by the communications host to upload the compressed and formatted data from the module memory. The local processor executes programs which are downloaded to the module memory through the FASTBUS coupler.

  10. Multiple channel data acquisition system

    DOEpatents

    Crawley, H.B.; Rosenberg, E.I.; Meyer, W.T.; Gorbics, M.S.; Thomas, W.D.; McKay, R.L.; Homer, J.F. Jr.

    1990-05-22

    A multiple channel data acquisition system for the transfer of large amounts of data from a multiplicity of data channels has a plurality of modules which operate in parallel to convert analog signals to digital data and transfer that data to a communications host via a FASTBUS. Each module has a plurality of submodules which include a front end buffer (FEB) connected to input circuitry having an analog to digital converter with cache memory for each of a plurality of channels. The submodules are interfaced with the FASTBUS via a FASTBUS coupler which controls a module bus and a module memory. The system is triggered to effect rapid parallel data samplings which are stored to the cache memories. The cache memories are uploaded to the FEBs during which zero suppression occurs. The data in the FEBs is reformatted and compressed by a local processor during transfer to the module memory. The FASTBUS coupler is used by the communications host to upload the compressed and formatted data from the module memory. The local processor executes programs which are downloaded to the module memory through the FASTBUS coupler. 25 figs.

  11. Multiple protocol fluorometer and method

    DOEpatents

    Kolber, Zbigniew S.; Falkowski, Paul G.

    2000-09-19

    A multiple protocol fluorometer measures photosynthetic parameters of phytoplankton and higher plants using actively stimulated fluorescence protocols. The measured parameters include spectrally-resolved functional and optical absorption cross sections of PSII, extent of energy transfer between reaction centers of PSII, F.sub.0 (minimal), F.sub.m (maximal) and F.sub.v (variable) components of PSII fluorescence, photochemical and non-photochemical quenching, size of the plastoquinone (PQ) pool, and the kinetics of electron transport between Q.sub.a and PQ pool and between PQ pool and PSI. The multiple protocol fluorometer, in one embodiment, is equipped with an excitation source having a controlled spectral output range between 420 nm and 555 nm and capable of generating flashlets having a duration of 0.125-32 .mu.s, an interval between 0.5 .mu.s and 2 seconds, and peak optical power of up to 2 W/cm.sup.2. The excitation source is also capable of generating, simultaneous with the flashlets, a controlled continuous, background illumination.

  12. ELECTRONIC PULSE SCALING CIRCUITS

    DOEpatents

    Cooke-Yarborough, E.H.

    1958-11-18

    Electronic pulse scaling circults of the klnd comprlsing a serles of bi- stable elements connected ln sequence, usually in the form of a rlng so as to be cycllcally repetitive at the highest scallng factor, are described. The scaling circuit comprises a ring system of bi-stable elements each arranged on turn-off to cause, a succeeding element of the ring to be turned-on, and one being arranged on turn-off to cause a further element of the ring to be turned-on. In addition, separate means are provided for applying a turn-off pulse to all the elements simultaneously, and for resetting the elements to a starting condition at the end of each cycle.

  13. Megawatt Electrolysis Scale Up

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    MW Electrolysis Scale Up E Anderson DOE Electrolytic Hydrogen Production Workshop 27-28 February 2014 27 28 February 2014 National Renewable Energy Laboratory Golden, CO (tm) ® Proton, Proton OnSite, Proton Energy Systems, the Proton design, StableFlow, StableFlow Hydrogen Control System and design, HOGEN, and FuelGen are trademarks or registered trademarks of Proton Energy Systems, Inc. Any other brands and/or names used herein are the property of their respective owners. Motivation - MW

  14. Extreme Scale Visual Analytics

    SciTech Connect

    Steed, Chad A; Potok, Thomas E; Pullum, Laura L; Ramanathan, Arvind; Shipman, Galen M; Thornton, Peter E; Potok, Thomas E

    2013-01-01

    Given the scale and complexity of today s data, visual analytics is rapidly becoming a necessity rather than an option for comprehensive exploratory analysis. In this paper, we provide an overview of three applications of visual analytics for addressing the challenges of analyzing climate, text streams, and biosurveilance data. These systems feature varying levels of interaction and high performance computing technology integration to permit exploratory analysis of large and complex data of global significance.

  15. Mira_Scaling_0516

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    John C. Linford, Sameer S hende, e t al. {jlinford,sameer}@paratools.com Scaling Y our Science on M ira 24 May 2 016, A LCF * Integrated toolkit for performance problem s olving - Instrumentation, measurement, analysis, visualization - Portable profiling and tracing - Performance data management and data mining * Direct and indirect measurement * Free, open source, BSD license * Available on a ll HPC p latforms (and some non---HPC) * http://tau.uoregon.edu/ Copyright © ParaTools, Inc. 2 TAU

  16. U-169: Sympa Multiple Security Bypass Vulnerabilities

    Energy.gov [DOE]

    Multiple vulnerabilities have been reported in Sympa, which can be exploited by malicious people to bypass certain security restrictions.

  17. Multiple soil nutrient competition between plants, microbes,...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several...

  18. Multiple-stage integrating accelerometer

    DOEpatents

    Devaney, Howard F.

    1986-01-01

    An accelerometer assembly is provided for use in activating a switch in response to multiple acceleration pulses in series. The accelerometer includes a housing forming a chamber. An inertial mass or piston is slidably disposed in the chamber and spring biased toward a first or reset position. A damping system is also provided to damp piston movement in response to first and subsequent acceleration pulses. Additionally, a cam, including a Z-shaped slot, and cooperating follower pin slidably received therein are mounted to the piston and the housing. The middle or cross-over leg of the Z-shaped slot cooperates with the follower pin to block or limit piston movement and prevent switch activation in response to a lone acceleration pulse. The switch of the assembly is only activated after two or more separate acceleration pulses are sensed and the piston reaches the end of the chamber opposite the reset position.

  19. Multiple-stage integrating accelerometer

    DOEpatents

    Devaney, H.F.

    1984-06-27

    An accelerometer assembly is provided for use in activating a switch in response to multiple acceleration pulses in series. The accelerometer includes a housing forming a chamber. An inertial mass or piston is slidably disposed in the chamber and spring biased toward a first or reset position. A damping system is also provided to damp piston movement in response to first and subsequent acceleration pulses. Additionally, a cam, including a Z-shaped slot, and cooperating follower pin slidably received therein are mounted to the piston and the housing. The middle or cross-over leg of the Z-shaped slot cooperates with the follower pin to block or limit piston movement and prevent switch activation in response to a lone acceleration pulse. The switch of the assembly is only activated after two or more separate acceleration pulses are sensed and the piston reaches the end of the chamber opposite the reset position.

  20. Hereditary Multiple Exostoses with Pseudoaneurysm

    SciTech Connect

    Al-Hadidy, Azmy M. Al-Smady, Moa'ath M.; Haroun, Azmi A.; Hamamy, Hanan A.; Ghoul, Suha M.; Shennak, Akram O.

    2007-06-15

    A 16-year-old male patient with hereditary multiple exostoses (HME) was found to have a pseudoaneurysm of the left popliteal artery caused by osteochondroma in the lower femur. The diagnosis was confirmed by ultrasound, magnetic resonance imaging and magnetic resonance angiography without the need to perform an angiogram. The osteochondroma was excised and the popliteal artery was repaired with a saphenous graft. Vascular complications are extremely rare in HME, pseudoaneurysm being the most common and mostly located in the popliteal artery. This complication should be considered in young HME patients with a mass at the knee region. The radiological spectrum of investigations allows the diagnosis of this complication with proper and less invasive management procedures for the patient.

  1. Communication: Separable potential energy surfaces from multiplicative artificial neural networks

    SciTech Connect

    Koch, Werner, E-mail: wkoch@thethirdrock.net; Zhang, Dong H. [State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian (China)

    2014-07-14

    We present a potential energy surface fitting scheme based on multiplicative artificial neural networks. It has the sum of products form required for efficient computation of the dynamics of multidimensional quantum systems with the multi configuration time dependent Hartree method. Moreover, it results in analytic potential energy matrix elements when combined with quantum dynamics methods using Gaussian basis functions, eliminating the need for a local harmonic approximation. Scaling behavior with respect to the complexity of the potential as well as the requested accuracy is discussed.

  2. Small-scale strength

    SciTech Connect

    Anderson, J.L.

    1995-11-01

    In the world of power project development there is a market for smaller scale cogeneration projects in the range of 1MW to 10MW. In the European Union alone, this range will account for about $25 Billion in value over the next 10 years. By adding the potential that exists in Eastern Europe, the numbers are even more impressive. In Europe, only about 7 percent of needed electrical power is currently produced through cogeneration installations; this is expected to change to around 15 percent by the year 2000. Less than one year ago, two equipment manufacturers formed Dutch Power Partners (DPP) to focus on the market for industrial cogeneration throughout Europe.

  3. Geospatial Optimization of Siting Large-Scale Solar Projects

    SciTech Connect

    Macknick, J.; Quinby, T.; Caulfield, E.; Gerritsen, M.; Diffendorfer, J.; Haines, S.

    2014-03-01

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  4. Static Scale Conversion (SSC)

    Energy Science and Technology Software Center

    2007-01-19

    The Static Scale Conversion (SSC) software is a unique enhancement to the AIMVEE system. It enables a SSC to weigh and measure vehicles and cargo dynamically (i.e., as they pass over the large scale. Included in the software is the AIMVEE computer code base. The SSC and AIMVEE computer system electronically continue to retrieve deployment information, identify vehicle automatically and determine total weight, individual axle weights, axle spacing and center-of-balance for any wheeled vehicle inmore » motion. The AIMVEE computer code system can also perform these functions statically for both wheel vehicles and cargo with information. The AIMVEE computer code system incorporates digital images and applies cubing algorithms to determine length, width, height for cubic dimensions of both vehicle and cargo. Once all this information is stored, it electronically links to data collection and dissemination systems to provide “actual” weight and measurement information for planning, deployment, and in-transit visibility.« less

  5. STOMP Subsurface Transport Over Multiple Phases: User`s guide

    SciTech Connect

    White, M.D.; Oostrom, M.

    1997-10-01

    The U.S. Department of Energy, through the Office of Technology Development, has requested the demonstration of remediation technologies for the cleanup of volatile organic compounds and associated radionuclides within the soil and groundwater at arid sites. This demonstration program, called the VOC-Arid Soils Integrated Demonstration Program (Arid-ID), has been initially directed at a volume of unsaturated and saturated soil contaminated with carbon tetrachloride, on the Hanford Site near Richland, Washington. A principal subtask of the Arid-ID program involves the development of an integrated engineering simulator for evaluating the effectiveness and efficiency of various remediation technologies. The engineering simulator`s intended users include scientists and engineers who are investigating soil physics phenomena associated with remediation technologies. Principal design goals for the engineer simulator include broad applicability, verified algorithms, quality assurance controls, and validated simulations against laboratory and field-scale experiments. An important goal for the simulator development subtask involves the ability to scale laboratory and field-scale experiments to full-scale remediation technologies, and to transfer acquired technology to other arid sites. The STOMP (Subsurface Transport Over Multiple Phases) simulator has been developed by the Pacific Northwest National Laboratory for modeling remediation technologies. Information on the use, application, and theoretical basis of the STOMP simulator theory and discussions on the governing equations, constitutive relations, and numerical solution algorithms for the STOMP simulator.

  6. High Temperature Thermoelectric Oxides Engineered At Multiple Length Scales For Energy Harvesting

    SciTech Connect

    Ohuchi, Fumio; Bordia, Rajendra

    2014-12-20

    Thermoelectric aspects of the processing parameters the n-type relaxors, including SrxBa1-xNb2O6 (SBN100x), Sr2Nb2O7 (SN) and SrBi2Nb2O9 (SBiN), were investigated. A solution combustion synthesis (SCS) route was devised to fabricate SBN, SN and SBiN nanoparticles with excellent phase purity. X-ray photoelectron spectroscopy (XPS) was used to deduce the local cation site occupancy, and detailed thermoelectric transport processes were investigated. Based on the identified behavior, effectiveness of pore formers on the thermoelectric performance was investigated with the goal of decreasing κ through enhanced phonon scattering while preserving the electron transport characteristics.

  7. Nanoporous silica-based protocells at multiple scales for designs of life and nanomedicine

    SciTech Connect

    Sun, Jie; Jakobsson, Eric; Wang, Yingxiao; Brinker, C. Jeffrey

    2015-01-19

    In this study, various protocell models have been constructed de novo with the bottom-up approach. Here we describe a silica-based protocell composed of a nanoporous amorphous silica core encapsulated within a lipid bilayer built by self-assembly that provides for independent definition of cell interior and the surface membrane. In this review, we will first describe the essential features of this architecture and then summarize the current development of silica-based protocells at both micro- and nanoscale with diverse functionalities. As the structure of the silica is relatively static, silica-core protocells do not have the ability to change shape, but their interior structure provides a highly crowded and, in some cases, authentic scaffold upon which biomolecular components and systems could be reconstituted. In basic research, the larger protocells based on precise silica replicas of cells could be developed into geometrically realistic bioreactor platforms to enable cellular functions like coupled biochemical reactions, while in translational research smaller protocells based on mesoporous silica nanoparticles are being developed for targeted nanomedicine. Ultimately we see two different motivations for protocell research and development: (1) to emulate life in order to understand it; and (2) to use biomimicry to engineer desired cellular interactions.

  8. Nanoporous silica-based protocells at multiple scales for designs of life and nanomedicine

    DOE PAGES [OSTI]

    Sun, Jie; Jakobsson, Eric; Wang, Yingxiao; Brinker, C. Jeffrey

    2015-01-19

    In this study, various protocell models have been constructed de novo with the bottom-up approach. Here we describe a silica-based protocell composed of a nanoporous amorphous silica core encapsulated within a lipid bilayer built by self-assembly that provides for independent definition of cell interior and the surface membrane. In this review, we will first describe the essential features of this architecture and then summarize the current development of silica-based protocells at both micro- and nanoscale with diverse functionalities. As the structure of the silica is relatively static, silica-core protocells do not have the ability to change shape, but their interiormore » structure provides a highly crowded and, in some cases, authentic scaffold upon which biomolecular components and systems could be reconstituted. In basic research, the larger protocells based on precise silica replicas of cells could be developed into geometrically realistic bioreactor platforms to enable cellular functions like coupled biochemical reactions, while in translational research smaller protocells based on mesoporous silica nanoparticles are being developed for targeted nanomedicine. Ultimately we see two different motivations for protocell research and development: (1) to emulate life in order to understand it; and (2) to use biomimicry to engineer desired cellular interactions.« less

  9. V-224: Google Chrome Multiple Vulnerabilities | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4: Google Chrome Multiple Vulnerabilities V-224: Google Chrome Multiple Vulnerabilities August 22, 2013 - 1:05am Addthis PROBLEM: Multiple vulnerabilities have been reported in...

  10. V-121: Google Chrome Multiple Vulnerabilities | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1: Google Chrome Multiple Vulnerabilities V-121: Google Chrome Multiple Vulnerabilities March 28, 2013 - 12:29am Addthis PROBLEM: Google Chrome Multiple Vulnerabilities PLATFORM:...

  11. V-207: Wireshark Multiple Denial of Service Vulnerabilities ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7: Wireshark Multiple Denial of Service Vulnerabilities V-207: Wireshark Multiple Denial of Service Vulnerabilities July 31, 2013 - 1:59am Addthis PROBLEM: Multiple vulnerabilities...

  12. Multiple sort flow cytometer (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Multiple sort flow cytometer Citation Details In-Document Search Title: Multiple sort flow cytometer A flow cytometer utilizes multiple lasers for excitation and respective ...

  13. Multiple acousto-optic q-switch

    DOEpatents

    Deason, Vance A.

    1993-01-01

    An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.

  14. Multiple acousto-optic q-switch

    DOEpatents

    Deason, Vance A.

    1993-12-07

    An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.

  15. Carrier multiplication detected through transient photocurrent in

    Office of Scientific and Technical Information (OSTI)

    device-grade films of lead selenide quantum dots (Journal Article) | SciTech Connect Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots Citation Details In-Document Search Title: Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots In carrier multiplication, the absorption of a single photon results in two or more electron-hole pairs. Quantum dots are promising

  16. Mode selectivity in multiple-beam klystrons

    SciTech Connect

    Nusinovich, Gregory S.; Abe, David K.

    2006-09-15

    A general method is developed for calculating the coupling coefficients of multiple beamlets of an arbitrary geometry to resonator fields having an arbitrary transverse distribution. A number of examples illustrate the effectiveness of this method for calculating coupling coefficients and show the effect of device parameters on the coupling of a given multiple electron beam to competing modes of multiple-beam klystrons (MBKs) operating in high-order modes. The method can be used for evaluating the mode selectivity and the 'monotron instability' in MBKs. It can also be used for determining the Pierce gain parameter in multiple-beam traveling-wave tubes.

  17. Multiple response optimization for higher dimensions in factors and responses

    DOE PAGES [OSTI]

    Lu, Lu; Chapman, Jessica L.; Anderson-Cook, Christine M.

    2016-07-19

    When optimizing a product or process with multiple responses, a two-stage Pareto front approach is a useful strategy to evaluate and balance trade-offs between different estimated responses to seek optimum input locations for achieving the best outcomes. After objectively eliminating non-contenders in the first stage by looking for a Pareto front of superior solutions, graphical tools can be used to identify a final solution in the second subjective stage to compare options and match with user priorities. Until now, there have been limitations on the number of response variables and input factors that could effectively be visualized with existing graphicalmore » summaries. We present novel graphical tools that can be more easily scaled to higher dimensions, in both the input and response spaces, to facilitate informed decision making when simultaneously optimizing multiple responses. A key aspect of these graphics is that the potential solutions can be flexibly sorted to investigate specific queries, and that multiple aspects of the solutions can be simultaneously considered. As a result, recommendations are made about how to evaluate the impact of the uncertainty associated with the estimated response surfaces on decision making with higher dimensions.« less

  18. LiF/ZnS Neutron Multiplicity Counter

    SciTech Connect

    Stave, Sean C.; Bliss, Mary; Kouzes, Richard T.; Lintereur, Azaree T.; Robinson, Sean M.; Siciliano, Edward R.; Wood, Lynn S.

    2015-06-01

    Abstract: Alternatives to the use of 3He for the detection of thermal neutrons are being investigated. One of the most challenging applications for 3He alternatives is in neutron multiplicity counters. Neutron multiplicity counters are used to provide rapid assay of samples which contain an unknown amount of plutonium in a potentially unknown configuration. With appropriate detector design, the neutron single, double, and triple coincidence events can be used to extract information of three unknown parameters such as the 240Pu-effective mass, the sample self-multiplication, and the (α,n) rate. A project at PNNL has investigated replacing 3He-based tubes with LiF/ZnS neutron-scintillator sheets and wavelength shifting plastic for light pipes. A four-panel demonstrator module has been constructed, tested, and compared with detailed modeling results. The findings indicate that a full-scale system can be constructed with the same overall size as the most efficient 3He-based system and with improved performance. Remaining design challenges include electronics and robust neutron/gamma-ray discrimination based on pulse shape analysis at high rates. A review of the current effort and the most recent findings will be presented.

  19. Large scale tracking algorithms.

    SciTech Connect

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  20. Application for Presidential Permit OE Docket No. PP-371 Northern Pass Transmission: Comments from Fred Brownson

    Energy.gov [DOE]

    Application from Northern Pass Transmission to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

  1. Fred N. Mortensen, 2004 | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    Print Text Size: A A A FeedbackShare Page National Security: For his contributions to nuclear weapons design and his expertise that has helped certify the safety and reliability of ...

  2. Fred Richard Mynatt, 1981 | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    perturbation theory for radiation-shielding analysis and for leadership in the broad application of these methods to create safe and efficient shield design for reactor plants

  3. Project Implementation and Replication, November 22, 2013: Fred Schoeneborn (FCS Consulting)

    Energy.gov [DOE]

    This pre-In-Plant Training webinar for the Better Plants Program provides guidance on implementing and replicating energy efficiency opportunities identified by energy assessments. Download the...

  4. Frontal Eddy Dynamics (FRED) experiment off North Carolina: Volume 1. Executive summary

    SciTech Connect

    Ebbesmeyer, C.C.

    1989-03-01

    In preparation for oil and gas lease sales on the outer continental shelf offshore of North Carolina, the Minerals Management Service was requested to investigate the potential transport and impacts of oil spilled offshore. The Gulf Stream and associated eddies are an important aspect of the transport. Although the speed and location of the Gulf Stream are reasonably well known, knowledge of the meanders of the Gulf Stream is limited. How the circulatory structure and movement of associated frontal eddies and filaments affect the North Carolina coastal waters is not clear. This study investigates the interactions of these circulatory elements and follows the evolution of frontal eddies as they migrate along the North Carolina coast.

  5. Frontal Eddy Dynamics (FRED) experiment off North Carolina: Volume 2. Technical report

    SciTech Connect

    Ebbesmeyer, C.C.

    1988-03-01

    In preparation for oil and gas lease sales on the outer continental shelf offshore of North Carolina, the Minerals Management Service was requested to investigate the potential transport and impacts of oil spilled offshore. Of particular concern is estimating the movement of spilled oil, especially the probability of shoreward transport and/or beaching of the floatable fraction. Although the speed and location of the Gulf Stream are well known, knowledge of the meanders of the Gulf Stream is limited. How the circulatory structure and movement of associated frontal eddies and filaments affect the North Carolina coastal waters is not clear. This present study investigates the interactions of these circulatory elements and follows the evolution of frontal eddies as they migrate along the North Carolina coast.

  6. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demands

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demands March 23, 2015 Analysis and Sustainability Peer Review Drs. Indrajeet Chaubey and Ben Gramig Purdue University This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement 2 * Overall goal is to conduct a watershed-scale sustainability assessment of multiple energy crops and removal of crop residues * Assessment conducted in two watersheds representative of Upper Midwest - Wildcat Creek watershed - St. Joseph River watershed 3 Quad

  7. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demands

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demands May 22, 2013 Analysis and Sustainability Peer Review Dr. Indrajeet Chaubey Purdue University This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement 2 * Overall goal is to conduct a watershed-scale sustainability assessment of multiple energy crops and removal of crop residues * Assessment conducted in two watersheds representative of Upper Midwest - Wildcat Creek watershed - St. Joseph River watershed 3 Quad Chart Overview *

  8. Method and apparatus for multiple well completion

    SciTech Connect

    Lawson, J.E.

    1982-06-08

    Method and apparatus for multiple well completion, in which a multiple string tubing hanger or like component is equipped with a gapped flange to accept dependent splines on the handling tool and on the production upper body to establish precise orientation of the production upper body.

  9. PrimerDesign-M: A multiple-alignment based multiple-primer design...

    Office of Scientific and Technical Information (OSTI)

    for walking across variable genomes Prev Next Title: PrimerDesign-M: A multiple-alignment based multiple-primer design tool for walking across variable genomes You are ...

  10. PrimerDesign-M: A multiple-alignment based multiple-primer design...

    Office of Scientific and Technical Information (OSTI)

    for walking across variable genomes Prev Next Title: PrimerDesign-M: A multiple-alignment based multiple-primer design tool for walking across variable genomes Analyses of ...

  11. Project Profile: CSP Energy Storage Solutions - Multiple Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Concentrating Solar Power Project Profile: CSP Energy Storage Solutions - Multiple Technologies Compared Project Profile: CSP Energy Storage Solutions - Multiple Technologies ...

  12. H2@Scale Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    @Scale Workshop November 16-17 2016, National Renewable Energy Lab - Golden, CO Background H2@Scale is a concept that describes the potential of wide-scale renewable hydrogen production to dramatically reduce U.S. greenhouse gas emissions. Hydrogen is currently a feedstock for numerous industrial applications: petroleum refining, fertilizer production, biofuels production, and others (e.g. plastics, cosmetics, and food industries). Ten million metric tons of hydrogen are currently produced in

  13. Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment

    SciTech Connect

    Zhou, Q.; Birkholzer, J.T.; Mehnert, E.; Lin, Y.-F.; Zhang, K.

    2009-08-15

    Integrated modeling of basin- and plume-scale processes induced by full-scale deployment of CO{sub 2} storage was applied to the Mt. Simon Aquifer in the Illinois Basin. A three-dimensional mesh was generated with local refinement around 20 injection sites, with approximately 30 km spacing. A total annual injection rate of 100 Mt CO{sub 2} over 50 years was used. The CO{sub 2}-brine flow at the plume scale and the single-phase flow at the basin scale were simulated. Simulation results show the overall shape of a CO{sub 2} plume consisting of a typical gravity-override subplume in the bottom injection zone of high injectivity and a pyramid-shaped subplume in the overlying multilayered Mt. Simon, indicating the important role of a secondary seal with relatively low-permeability and high-entry capillary pressure. The secondary-seal effect is manifested by retarded upward CO{sub 2} migration as a result of multiple secondary seals, coupled with lateral preferential CO{sub 2} viscous fingering through high-permeability layers. The plume width varies from 9.0 to 13.5 km at 200 years, indicating the slow CO{sub 2} migration and no plume interference between storage sites. On the basin scale, pressure perturbations propagate quickly away from injection centers, interfere after less than 1 year, and eventually reach basin margins. The simulated pressure buildup of 35 bar in the injection area is not expected to affect caprock geomechanical integrity. Moderate pressure buildup is observed in Mt. Simon in northern Illinois. However, its impact on groundwater resources is less than the hydraulic drawdown induced by long-term extensive pumping from overlying freshwater aquifers.

  14. Drift Scale THM Model

    SciTech Connect

    J. Rutqvist

    2004-10-07

    This model report documents the drift scale coupled thermal-hydrological-mechanical (THM) processes model development and presents simulations of the THM behavior in fractured rock close to emplacement drifts. The modeling and analyses are used to evaluate the impact of THM processes on permeability and flow in the near-field of the emplacement drifts. The results from this report are used to assess the importance of THM processes on seepage and support in the model reports ''Seepage Model for PA Including Drift Collapse'' and ''Abstraction of Drift Seepage'', and to support arguments for exclusion of features, events, and processes (FEPs) in the analysis reports ''Features, Events, and Processes in Unsaturated Zone Flow and Transport and Features, Events, and Processes: Disruptive Events''. The total system performance assessment (TSPA) calculations do not use any output from this report. Specifically, the coupled THM process model is applied to simulate the impact of THM processes on hydrologic properties (permeability and capillary strength) and flow in the near-field rock around a heat-releasing emplacement drift. The heat generated by the decay of radioactive waste results in elevated rock temperatures for thousands of years after waste emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, resulting in water redistribution and altered flow paths. These temperatures will also cause thermal expansion of the rock, with the potential of opening or closing fractures and thus changing fracture permeability in the near-field. Understanding the THM coupled processes is important for the performance of the repository because the thermally induced permeability changes potentially effect the magnitude and spatial distribution of percolation flux in the vicinity of the drift, and hence the seepage of water into the drift. This is important because a sufficient amount of water must be available within a

  15. Site-Scale Saturated Zone Flow Model

    SciTech Connect

    G. Zyvoloski

    2003-12-17

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being

  16. Neutron multiplication error in TRU waste measurements

    SciTech Connect

    Veilleux, John [Los Alamos National Laboratory; Stanfield, Sean B [CCP; Wachter, Joe [CCP; Ceo, Bob [CCP

    2009-01-01

    Total Measurement Uncertainty (TMU) in neutron assays of transuranic waste (TRU) are comprised of several components including counting statistics, matrix and source distribution, calibration inaccuracy, background effects, and neutron multiplication error. While a minor component for low plutonium masses, neutron multiplication error is often the major contributor to the TMU for items containing more than 140 g of weapons grade plutonium. Neutron multiplication arises when neutrons from spontaneous fission and other nuclear events induce fissions in other fissile isotopes in the waste, thereby multiplying the overall coincidence neutron response in passive neutron measurements. Since passive neutron counters cannot differentiate between spontaneous and induced fission neutrons, multiplication can lead to positive bias in the measurements. Although neutron multiplication can only result in a positive bias, it has, for the purpose of mathematical simplicity, generally been treated as an error that can lead to either a positive or negative result in the TMU. While the factors that contribute to neutron multiplication include the total mass of fissile nuclides, the presence of moderating material in the matrix, the concentration and geometry of the fissile sources, and other factors; measurement uncertainty is generally determined as a function of the fissile mass in most TMU software calculations because this is the only quantity determined by the passive neutron measurement. Neutron multiplication error has a particularly pernicious consequence for TRU waste analysis because the measured Fissile Gram Equivalent (FGE) plus twice the TMU error must be less than 200 for TRU waste packaged in 55-gal drums and less than 325 for boxed waste. For this reason, large errors due to neutron multiplication can lead to increased rejections of TRU waste containers. This report will attempt to better define the error term due to neutron multiplication and arrive at values that are

  17. Dislocation dynamics simulations of plasticity at small scales

    SciTech Connect

    Zhou, Caizhi

    2010-12-15

    As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this research is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.

  18. V-126: Mozilla Firefox Multiple Vulnerabilities

    Energy.gov [DOE]

    Multiple vulnerabilities have been reported in Mozilla Firefox, which can be exploited by malicious, local users to gain escalated privileges and by malicious people to conduct spoofing and cross-site scripting attacks and compromise a user's system

  19. U-104: Adobe Flash Player Multiple Vulnerabilities

    Energy.gov [DOE]

    Multiple vulnerabilities have been reported in Adobe Flash Player, which can be exploited by malicious people to conduct cross-site scripting attacks, bypass certain security restrictions, and compromise a user's system.

  20. V-059: MoinMoin Multiple Vulnerabilities

    Energy.gov [DOE]

    Multiple vulnerabilities have been reported in MoinMoin, which can be exploited by malicious users to conduct script insertion attacks and compromise a vulnerable system and by malicious people to manipulate certain data.

  1. Modular multiplication operator and quantized baker's maps

    SciTech Connect

    Lakshminarayan, Arul [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Strasse 38, D-01187 Dresden (Germany)

    2007-10-15

    The modular multiplication operator, a central subroutine in Shor's factoring algorithm, is shown to be a coherent superposition of two quantum baker's maps when the multiplier is 2. The classical limit of the maps being completely chaotic, it is shown that there exist perturbations that push the modular multiplication operator into regimes of generic quantum chaos with spectral fluctuations that are those of random matrices. For the initial state of relevance to Shor's algorithm we study fidelity decay due to phase and bit-flip errors in a single qubit and show exponential decay with shoulders at multiples or half-multiples of the order. A simple model is used to gain some understanding of this behavior.

  2. V-097: Google Chrome Multiple Vulnerabilities

    Energy.gov [DOE]

    Multiple vulnerabilities have been reported in Google Chrome, where some have an unknown impact and others can be exploited by malicious people to bypass certain security restrictions and compromise a user's system.

  3. Sequential Infiltration Synthesis for Enhancing Multiple Patterning

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lithography | Argonne National Laboratory Multiple Patterning Lithography Technology available for licensing: The invention is simplified methods of multiple-patterning photolithography using sequential infiltration synthesis (SIS) to modify the photoresist such that it withstands plasma etching better than unmodified resist and replaces one or more hard masks and/or a freezing step in MPL processes including litho-etch-litho-etch photolithography or litho-freeze-litho-etch photolithography.

  4. SCALING PROPERTIES OF SMALL-SCALE FLUCTUATIONS IN MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect

    Perez, Jean Carlos; Mason, Joanne; Boldyrev, Stanislav; Cattaneo, Fausto E-mail: j.mason@exeter.ac.uk E-mail: cattaneo@flash.uchicago.edu

    2014-09-20

    Magnetohydrodynamic (MHD) turbulence in the majority of natural systems, including the interstellar medium, the solar corona, and the solar wind, has Reynolds numbers far exceeding the Reynolds numbers achievable in numerical experiments. Much attention is therefore drawn to the universal scaling properties of small-scale fluctuations, which can be reliably measured in the simulations and then extrapolated to astrophysical scales. However, in contrast with hydrodynamic turbulence, where the universal structure of the inertial and dissipation intervals is described by the Kolmogorov self-similarity, the scaling for MHD turbulence cannot be established based solely on dimensional arguments due to the presence of an intrinsic velocity scale—the Alfvén velocity. In this Letter, we demonstrate that the Kolmogorov first self-similarity hypothesis cannot be formulated for MHD turbulence in the same way it is formulated for the hydrodynamic case. Besides profound consequences for the analytical consideration, this also imposes stringent conditions on numerical studies of MHD turbulence. In contrast with the hydrodynamic case, the discretization scale in numerical simulations of MHD turbulence should decrease faster than the dissipation scale, in order for the simulations to remain resolved as the Reynolds number increases.

  5. Energetics of Multiple-Ion Species Hohlraum Plasmas

    SciTech Connect

    Neumayer, P; Berger, R; Callahan, D; Divol, L; Froula, D; London, R; MacGowan, B J; Meezan, N; Michel, P; Ross, J S; Sorce, C; Widmann, K; Suter, L; Glenzer, S H

    2007-11-05

    A study of the laser-plasma interaction processes in multiple-ion species plasmas has been performed in plasmas that are created to emulate the plasma conditions in indirect drive inertial confinement fusion targets. Gas-filled hohlraums with densities of xe22/cc are heated to Te=3keV and backscattered laser light is measured by a suite of absolutely calibrated backscatter diagnostics. Ion Landau damping is increased by adding hydrogen to the CO2/CF4 gas fill. We find that the backscatter from stimulated Brillouin scattering is reduced is monotonically reduced with increasing damping, demonstrating that Landau damping is the controlling damping mechanism in ICF relevant high-electron temperature plasmas. The reduction in backscatter is accompanied by a comparable increase in both transmission of a probe beam and an increased hohlraum radiation temperature, showing that multiple-ion species plasmas improve the overall hohlraum energetics/performance. Comparison of the experimental data to linear gain calculations as well as detailed full-scale 3D laser-plasma interaction simulations show quantitative agreement. Our findings confirm the importance of Landau damping in controlling backscatter from high-electron temperature hohlraum plasmas and have lead to the inclusion of multi-ion species plasmas in the hohlraum point design for upcoming ignition campaigns at the National Ignition Facility.

  6. Utility Scale Solar Incentive Program

    Energy.gov [DOE]

    HB 4037 of 2016 created the Solar Incentive Program for utility-scale solar development. The bill directs Oregon's Business Development Department (the Department) to establish and administer a...

  7. Pilot Scale Advanced Fogging Demonstration

    SciTech Connect

    Demmer, Rick L.; Fox, Don T.; Archiblad, Kip E.

    2015-01-01

    Experiments in 2006 developed a useful fog solution using three different chemical constituents. Optimization of the fog recipe and use of commercially available equipment were identified as needs that had not been addressed. During 2012 development work it was noted that low concentrations of the components hampered coverage and drying in the United Kingdom’s National Nuclear Laboratory’s testing much more so than was evident in the 2006 tests. In fiscal year 2014 the Idaho National Laboratory undertook a systematic optimization of the fogging formulation and conducted a non-radioactive, pilot scale demonstration using commercially available fogging equipment. While not as sophisticated as the equipment used in earlier testing, the new approach is much less expensive and readily available for smaller scale operations. Pilot scale testing was important to validate new equipment of an appropriate scale, optimize the chemistry of the fogging solution, and to realize the conceptual approach.

  8. Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports

    SciTech Connect

    Zhang, Weiqing; Yang, Jiong; Yang, Jihui; Wang, Hsin; Salvador, James R.; Shi, Xun; Chi, Miaofang; Cho, Jung Y; Bai, Shengqiang; Chen, Lidong

    2011-01-01

    Skutterudites CoSb{sub 3} with multiple cofillers Ba, La, and Yb were synthesized and very high thermoelectric figure of merit ZT = 1.7 at 850 K was realized. X-ray diffraction of the densified multiple-filled bulk samples reveals all samples are phase pure. High-resolution scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS) analysis confirm that multiple guest fillers occupy the nanoscale-cages in the skutterudites. The fillers are further shown to be uniformly distributed and the Co-Sb skutterudite framework is virtually unperturbed from atomic scale to a few micrometers. Our results firmly show that high power factors can be realized by adjusting the total filling fraction of fillers with different charge states to reach the optimum carrier density, at the same time, lattice thermal conductivity can also be significantly reduced, to values near the glass limit of these materials, through combining filler species of different rattling frequencies to achieve broad-frequency phonon scattering. Therefore, partially filled skutterudites with multiple fillers of different chemical nature render unique structural characteristics for optimizing electrical and thermal transports in a relatively independent way, leading to continually enhanced ZT values from single- to double-, and finally to multiple-filled skutterudites. The idea of combining multiple fillers with different charge states and rattling frequencies for performance optimization is also expected to be valid for other caged TE compounds.

  9. Scale Models and Wind Turbines

    Education - Teach & Learn

    As wind turbines and wind farms become larger to take advantage of the economies of scale and increased wind speeds at higher altitudes, their impact in the locales where they are sited becomes more dramatic. One place this is especially contentious is in the offshore environment of the Northeast. This lesson explores scale models and the issues surrounding models and their accuracy when developing a large wind farm. Worksheets are included.

  10. WINDExchange: Utility-Scale Wind

    WindExchange

    Utility-Scale Wind Photo of two people standing on top of the nacelle of a utility-scale wind turbine. Wind is an important source of affordable, renewable energy, currently supplying nearly 5% of our nation's electricity demand. By generating electricity from wind turbines, the United States can reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and help revitalize key sectors of its economy, including manufacturing.

  11. Estimating Field-Scale Hydraulic Parameters of Heterogeneous Soils Using A Combination of Parameter Scaling and Inverse Methods

    SciTech Connect

    Zhang, Z. F.; Ward, Andy L.; Gee, Glendon W.

    2002-12-10

    calibration and data shortcomings and needs, and 4) not restricting the initial and boundary-flow conditions, the constitutive relationships, or the treatment of heterogeneity. On this project, inverse modeling was performed using the combination of two computer models, one for forward flow modeling and the other for nonlinear regression. The forward model used to simulate water flow was the Subsurface Transport Over Multiple Phases (STOMP) numerical simulator (White and Oostrom 2000). STOMP was designed to solve a variety of nonlinear, multiple-phase, flow and transport problems for unsaturated porous media. The Universal CODE (UCODE) model (Poeter and Hill 1998) was used to perform inverse modeling posed as a parameter-estimation problem using nonlinear regression. Inverse techniques were applied to two cases of one-dimensional flow in layered soils and one case of three-dimensional flow in a heterogeneous soil. The results show that the simulation errors were significantly reduced after applying parameter scaling and inverse modeling. When compared to the use of local-scale parameters, parameter scaling reduced the sum of squared weighted residue by 93 to 96% for the relatively smaller scale (~2 m [~6.6 ft]) one-dimensional flow and 59% for the more complex Sisson and Lu site, which has the spatial scale of about 18 m (60 ft). This parameter estimation method will be applied to analyze the first two years of field experiments completed at the Sisson and Lu site.

  12. Active neutron multiplicity counting of bulk uranium

    SciTech Connect

    Ensslin, N.; Krick, M.S.; Langner, D.G.; Miller, M.C. )

    1991-01-01

    This paper describes a new nondestructive assay technique being developed to assay bulk uranium containing kilogram quantities of {sup 235}U. The new technique uses neutron multiplicity analysis of data collected with a coincidence counter outfitted with AmLi neutron sources. The authors have calculated the expected neutron multiplicity count rate and assay precision for this technique and will report on its expected performance as a function of detector design characteristics, {sup 235}U sample mass, AmLi source strength, and source-to-sample coupling.

  13. Hand-held multiple system gas chromatograph

    DOEpatents

    Yu, Conrad M.

    2001-01-01

    A multiple parallel hand-held gas chromatograph (GC) system which includes several independent GCs. Each independent GC has its own injector, separation column, detector and oven and the GCs are mounted in a light weight hand-held assembly. Each GC operates independently and simultaneously. Because of different coatings in different separation columns, different retention times for the same gas will be measured. Thus, for a GC system with multiple parallel GCs, the system can measure, in a short period, different retention times and provide a cross-reference in the determination of the measured gas and to become a two-dimensional system for direct field use.

  14. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1987-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  15. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1977-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, in the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  16. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.

    1987-04-07

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.

  17. Upscaling of U(VI) Desorption and Transport from Decimeter-Scale Heterogeneity to Plume-Scale Modeling

    SciTech Connect

    Curtis, Gary P; Kohler, Matthias; Kannappan, Ramakrishnan; Briggs, Martin; Day-Lewis, Fred

    2015-02-24

    Reactive solute transport in aquifers is commonly affected by rate limited mass transfer. This slow mass transfer can exhibit significant control on the times required to restore contaminated aquifers to near-pristine conditions under both ambient and forced-gradient flow systems and is therefore important to understand. Both nonreactive and reactive tracer experiments provide valuable insight into the exchange of solute between mobile and immobile porosity. At the grain scale and column scale, mass transfer limitations were manifested as a concentration rebound when contaminated sediments were contacted with pristine groundwater. This behavior was successfully modeled using the multirate mass transfer model. Mass transfer observed in a 2 m long intermediate laboratory scale experiment showed significant concentration rebound in the first half meter along a flowpath through the tank and negligible rebound near the exit of the tank. Experimental observations and model simulations show that although concentration rebound was small at the end of the tank, the overall elution of uranium from of the tank was still controlled by mass transfer which was manifested by a long tail. At the field scale, mass transfer parameters inferred from geo-electrical measurements of bulk conductivity and traditional conductivity measurements of fluid samples showed significant spatial variability. Overall the improved understanding of mass transfer across multiple scales should lead to more robust reactive transport simulations and site management.

  18. V-125: Cisco Connected Grid Network Management System Multiple...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5: Cisco Connected Grid Network Management System Multiple Vulnerabilities V-125: Cisco Connected Grid Network Management System Multiple Vulnerabilities April 3, 2013 - 1:44am...

  19. V-152: Cisco Unified Customer Voice Portal (CVP) Multiple Vulnerabilit...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2: Cisco Unified Customer Voice Portal (CVP) Multiple Vulnerabilities V-152: Cisco Unified Customer Voice Portal (CVP) Multiple Vulnerabilities May 9, 2013 - 6:00am Addthis...

  20. V-132: IBM Tivoli System Automation Application Manager Multiple...

    Office of Environmental Management (EM)

    V-145: IBM Tivoli Federated Identity Manager Products Java Multiple Vulnerabilities V-122: IBM Tivoli Application Dependency Discovery Manager Java Multiple Vulnerabilities

  1. V-205: IBM Tivoli System Automation for Multiplatforms Java Multiple...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Automation Application Manager Multiple Vulnerabilities V-145: IBM Tivoli Federated Identity Manager Products Java Multiple Vulnerabilities V-122: IBM Tivoli Application...

  2. PSTD Simulations of Multiple Light Scattering in 3-D Macrocsopic...

    Office of Scientific and Technical Information (OSTI)

    PSTD Simulations of Multiple Light Scattering in 3-D Macrocsopic Random Media Citation Details In-Document Search Title: PSTD Simulations of Multiple Light Scattering in 3-D ...

  3. The differential algebra based multiple level fast multipole...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The differential algebra based multiple level fast multipole algorithm ... Title: The differential algebra based multiple level fast multipole algorithm for 3D space ...

  4. V-111: Multiple vulnerabilities have been reported in Puppet...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    vulnerable system. SOLUTION: Update to a fixed version. Addthis Related Articles V-090: Adobe Flash Player AIR Multiple Vulnerabilities V-083: Oracle Java Multiple...

  5. V-051: Oracle Solaris Java Multiple Vulnerabilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Related Articles U-191: Oracle Java Multiple Vulnerabilities U-105:Oracle Java SE Critical Patch Update Advisory T-576: Oracle Solaris Adobe Flash Player Multiple Vulnerabilities...

  6. Green's function multiple-scattering theory with a truncated...

    Office of Scientific and Technical Information (OSTI)

    Green's function multiple-scattering theory with a truncated basis set: An augmented-KKR formalism Prev Next Title: Green's function multiple-scattering theory with a ...

  7. An environmentally friendly scale inhibitor

    SciTech Connect

    Dobbs, J.B.; Brown, J.M.

    1999-11-01

    This paper describes a method of inhibiting the formation of scales such as barium and strontium sulfate in low pH aqueous systems, and calcium carbonate in systems containing high concentrations of dissolved iron. The solution, chemically, involves treating the aqueous system with an inhibitor designed to replace organic-phosphonates. Typical low pH aqueous systems where the inhibitor is particularly useful are oilfield produced-water, resin bed water softeners that form scale during low pH, acid regeneration operations. Downhole applications are recommended where high concentrations of dissolved iron are present in the produced water. This new approach to inhibition replaces typical organic phosphonates and polymers with a non-toxic, biodegradable scale inhibitor that performs in harsh environments.

  8. Semiconductor laser with multiple lasing wavelengths

    DOEpatents

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-07-29

    A new class of multi-terminal vertical-cavity semiconductor laser components has been developed. These multi-terminal laser components can be switched, either electrically or optically, between distinct lasing wavelengths, or can be made to lase simultaneously at multiple wavelengths.

  9. Offshore multiple well drilling and production apparatus

    SciTech Connect

    Kirkland, K.G.; Masciopinto, A.J.

    1980-03-11

    A modular multiple well drilling and production template structure is combined with a production riser base module to provide an underwater apparatus which allows a plurality of wells to be drilled, completed and produced by operations carried out from a single vessel or platform without remote installation of flowlines.

  10. V-083: Oracle Java Multiple Vulnerabilities

    Energy.gov [DOE]

    A Critical Patch Update is a collection of patches for multiple security vulnerabilities. The Critical Patch Update for Java SE also includes non-security fixes. Critical Patch Updates are cumulative and each advisory describes only the security fixes added since the previous Critical Patch Update and Security Alert.

  11. Harmonic generation with multiple wiggler schemes

    SciTech Connect

    Bonifacio, R.; De Salvo, L.; Pierini, P.

    1995-02-01

    In this paper the authors give a simple theoretical description of the basic physics of the single pass high gain free electron laser (FEL), describing in some detail the FEL bunching properties and the harmonic generation technique with a multiple-wiggler scheme or a high gain optical klystron configuration.

  12. Electron circuits: semiconductor laser multiple use installation

    SciTech Connect

    Zhou, F.; Fan, J.; Weng, D.

    1983-04-01

    A light source for a multiple use installation using a same matter junction or different matter junction GaAlAs/GaAs semiconductor laser, which has the advantages of high interference resistance, long transmission distance (tens to hundreds of meters), good security, and low power consumption in addition, the controller of the light source has multiple usages of alarming, switching and counting is presented. The multiple use installation can be used in control of breaking warps and counting on roving waste machines, warping machines and silk weaving machines in the textile industry long distance speed measurement, alarming and counting in machinery, electricity and chemical industries and alarming and control of water levels in reservoirs, rivers and water towers, as well as blockade alarming and control of important divisions. This multiple use installation is composed of two parts a laser emitter and a receiving device. The former component is used to produce the laser after the receiver receives the laser, the installation completes operations of alarming, switching and counting.

  13. Selectivity in multiple quantum nuclear magnetic resonance

    SciTech Connect

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  14. Small-scale irradiated fuel electrorefining

    SciTech Connect

    Benedict, R.W.; Krsul, J.R.; Mariani, R.D.; Park, K.; Teske, G.M.

    1993-09-01

    In support of the metallic fuel cycle development for the Integral Fast Reactor (IFR), a small scale electrorefiner was built and operated in the Hot Fuel Examination Facility (HFEF) at Argonne National Laboratory-West. The initial purpose of this apparatus was to test the single segment dissolution of irradiated metallic fuel via either direct dissolution in cadmium or anodic dissolution. These tests showed that 99.95% of the uranium and 99.99% of the plutonium was dissolved and separated from the fuel cladding material. The fate of various fission products was also measured. After the dissolution experiments, the apparatus was upgraded to stady fission product behavior during uranium electrotransport. Preliminary decontamination factors were estimated for different fission products under different processing conditions. Later modifications have added the following capabilities: Dissolution of multiple fuel segments simultaneously, electrotransport to a solid cathode or liquid cathode and actinide recovery with a chemical reduction crucible. These capabilities have been tested with unirradiated uranium-zirconium fuel and will support the Fuel Cycle Demonstration program.

  15. THE Arp 220 MERGER ON kpc SCALES

    SciTech Connect

    Koenig, S.; Garcia-Marin, M.; Eckart, A.; Downes, D.; Scharwaechter, J.

    2012-07-20

    For the first time, we study the eastern nucleus in greater detail and search for the more extended emission in the molecular gas in different CO line transitions of the famous ultraluminous infrared galaxy (ULIRG) Arp 220. Furthermore, we present a model of the merger in Arp 220 on large scales with the help of the CO data and an optical and near-infrared composite Hubble Space Telescope image of the prototypical ULIRG. Using the Plateau de Bure interferometer (PdBI), we obtained CO (2-1) and (1-0) data at wavelengths of 1 and 3 mm in 1994, 1996, 1997, and 2006 at different beam sizes and spatial resolutions. The simulations of the merger in Arp 220 were performed with the Identikit modeling tool. The model parameters that describe the galaxy merger best give a mass ratio of 1:2 and result in a merger of {approx}6 Multiplication-Sign 10{sup 8} yr. The low-resolution CO (1-0) PdBI observations suggest that there are indications for emission {approx}10'' toward the south, as well as to the north and to the west of the two nuclei.

  16. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    SciTech Connect

    Curtis Miller

    2009-03-22

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  17. Energy dependence of multiplicity fluctuations in heavy ion collisions at 20A to 158A GeV

    SciTech Connect

    Alt, C.; Blume, C.; Bramm, R.; Dinkelaker, P.; Flierl, D.; Kliemant, M.; Kniege, S.; Lungwitz, B.; Mitrovski, M.; Renfordt, R.; Schuster, T.; Stock, R.; Strabel, C.; Stroebele, H.; Utvic, M.; Wetzler, A.; Anticic, T.; Kadija, K.; Nicolic, V.; Susa, T.

    2008-09-15

    Multiplicity fluctuations of positively, negatively, and all charged hadrons in the forward hemisphere were studied in central Pb+Pb collisions at 20A,30A,40A,80A, and 158A GeV. The multiplicity distributions and their scaled variances {omega} are presented as functions of their dependence on collision energy as well as on rapidity and transverse momentum. The distributions have bell-like shapes and their scaled variances are in the range from 0.8 to 1.2 without any significant structure in their energy dependence. No indication of the critical point in fluctuations are observed. The string-hadronic ultrarelativistic quantum molecular dynamics (UrQMD) model significantly overpredicts the mean, but it approximately reproduces the scaled variance of the multiplicity distributions. The predictions of the statistical hadron-resonance gas model obtained within the grand-canonical and canonical ensembles disagree with the measured scaled variances. The narrower than Poissonian multiplicity fluctuations measured in numerous cases may be explained by the impact of conservation laws on fluctuations in relativistic systems.

  18. H2 @ Scale: Utility Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Summit H2 @ Scale: Utility Perspective July 12, 2016 1 H2@Scale and Decarbonizing the Electric Grid 7 of 10 largest solar plants in US 58% GHG-free wholesale electric power 25% of all rooftop solar in the United States 200,000 rooftop systems connected * 1 every 11 minutes 2 Hydrogen storage to address overgeneration (P2G) Capacity (MW) Hour of the day Generation mix calculated for April Day in 2030 with 50% RPS Supply > Load = Over- generation Load Overgeneration signifies that more energy

  19. FINE-SCALE STRUCTURES OF FLUX ROPES TRACKED BY ERUPTING MATERIAL

    SciTech Connect

    Li Ting; Zhang Jun E-mail: zjun@nao.cas.cn

    2013-06-20

    We present Solar Dynamics Observatory observations of two flux ropes tracked out by material from a surge and a failed filament eruption on 2012 July 29 and August 4, respectively. For the first event, the interaction between the erupting surge and a loop-shaped filament in the east seems to 'peel off' the filament and add bright mass into the flux rope body. The second event is associated with a C-class flare that occurs several minutes before the filament activation. The two flux ropes are, respectively, composed of 85 {+-} 12 and 102 {+-} 15 fine-scale structures, with an average width of about 1.''6. Our observations show that two extreme ends of the flux rope are rooted in opposite polarity fields and each end is composed of multiple footpoints (FPs) of fine-scale structures. The FPs of the fine-scale structures are located at network magnetic fields, with magnetic fluxes from 5.6 Multiplication-Sign 10{sup 18} Mx to 8.6 Multiplication-Sign 10{sup 19} Mx. Moreover, almost half of the FPs show converging motion of smaller magnetic structures over 10 hr before the appearance of the flux rope. By calculating the magnetic fields of the FPs, we deduce that the two flux ropes occupy at least 4.3 Multiplication-Sign 10{sup 20} Mx and 7.6 Multiplication-Sign 10{sup 20} Mx magnetic fluxes, respectively.

  20. A Pore Scale Evaluation of the Kinetics of Mineral Dissolution and Precipitation Reactions (EMSI)

    SciTech Connect

    Steefel, Carl I.

    2006-06-01

    The chief goals for CEKA are to (1) collect and synthesize molecular-level kinetic data into a coherent framework that can be used to predict time evolution of environmental processes over a range of temporal and spatial scales; (2) train a cohort of talented and diverse students to work on kinetic problems at multiple scales; (3) develop and promote the use of new experimental techniques in environmental kinetics; (4) develop and promote the use of new modeling tools to conceptualize reaction kinetics in environmental systems; and (5) communicate our understanding of issues related to environmental kinetics and issues of scale to the broader scientific community and to the public.

  1. A Multiple Objective Decision Support Tool (MODS)

    Energy Science and Technology Software Center

    2003-12-14

    The Multiple Objective Decision Support (MODS) tool is an automated tool used to assist decision makers and policy analysts with multiple-objective decision problems. The classes of problems that this decision support tool addresses have both multiple objectives and multiple stakeholders. Decision problems, which have multiple objectives that in general cannot be maximized simultaneously, and multiple stakeholders, who have different perspectives about the relative importance of the objectives, require analytic approaches and tools that can providemore » flexible support to decision makers. This tool provides capabilities for the management, analysis, and graphical display for these types of decision problems drawn from diverse problem domains. The MODS tool is a unique integration of analysis algorithms, an information database, and a graphical user interface. This collection of algorithms, the combination of an information database with the analysis into a single tool, and the graphical user interface provides a technically advanced tool to decision makers and policy analysts. There are two main issues when addressing problems of this type: what set of attributes should be used to characterize the tokens in the domain of interest, and how should the values of these attributes and their weights be determined and combined to provide a relative ordering to the tokens. This tool addresses both of these issues. This decision support tool provides a flexible way to derive and use a chosen set of attributes. For example, the tool could be used to first perform a paired comparison of a large set of attributes and from this evaluation select those attributes that have the highest weights. The flexibility of the tool allows experimentation with various attribute sets and this capability, along with domain expertise, addresses the first issue. To address the second issue, several algorithms have been implemented. For example, two algorithms that have been implemented are

  2. T-636: Wireshark Multiple Flaws Let Remote Users Deny Service

    Energy.gov [DOE]

    Multiple vulnerabilities were reported in Wireshark. A remote user can cause denial of service conditions.

  3. Validation Results for Core-Scale Oil Shale Pyrolysis

    SciTech Connect

    Staten, Josh; Tiwari, Pankaj

    2015-03-01

    This report summarizes a study of oil shale pyrolysis at various scales and the subsequent development a model for in situ production of oil from oil shale. Oil shale from the Mahogany zone of the Green River formation was used in all experiments. Pyrolysis experiments were conducted at four scales, powdered samples (100 mesh) and core samples of 0.75”, 1” and 2.5” diameters. The batch, semibatch and continuous flow pyrolysis experiments were designed to study the effect of temperature (300°C to 500°C), heating rate (1°C/min to 10°C/min), pressure (ambient and 500 psig) and size of the sample on product formation. Comprehensive analyses were performed on reactants and products - liquid, gas and spent shale. These experimental studies were designed to understand the relevant coupled phenomena (reaction kinetics, heat transfer, mass transfer, thermodynamics) at multiple scales. A model for oil shale pyrolysis was developed in the COMSOL multiphysics platform. A general kinetic model was integrated with important physical and chemical phenomena that occur during pyrolysis. The secondary reactions of coking and cracking in the product phase were addressed. The multiscale experimental data generated and the models developed provide an understanding of the simultaneous effects of chemical kinetics, and heat and mass transfer on oil quality and yield. The comprehensive data collected in this study will help advance the move to large-scale in situ oil production from the pyrolysis of oil shale.

  4. Multiple Scattering Measurements in the MICE Experiment

    SciTech Connect

    Carlisle, T.; Cobb, J.; Neuffer, D.; /Fermilab

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), under construction at RAL, will test a prototype cooling channel for a future Neutrino Factory or Muon Collider. The cooling channel aims to achieve, using liquid hydrogen absorbers, a 10% reduction in transverse emittance. The change in 4D emittance will be determined with an accuracy of 1% by measuring muons individually. Step IV of MICE will make the first precise emittance-reduction measurements of the experiment. Simulation studies using G4MICE, based on GEANT4, find a significant difference in multiple scattering in low Z materials, compared with the standard expression quoted by the Particle Data Group. Direct measurement of multiple scattering using the scintillating-fibre trackers is found to be possible, but requires the measurement resolution to be unfolded from the data.

  5. Combining Multiple Pairwise Structure-based Alignments

    Energy Science and Technology Software Center

    2014-11-12

    CombAlign is a new Python code that generates a gapped, one-to-many, multiple structure-based sequence alignment(MSSA) given a set of pairwise structure-based alignments. In order to better define regions of similarity among related protein structures, it is useful to detect the residue-residue correspondences among a set of pairwise structure alignments. Few codes exist for constructing a one-to-many, multiple sequence alignment derived from a set of structure alignments, and we perceived a need for creating a newmore » tool for combing pairwise structure alignments that would allow for insertion of gaps in the reference structure.« less

  6. Lamp method and apparatus using multiple reflections

    DOEpatents

    MacLennan, Donald A.; Turner, Brian; Kipling, Kent

    1999-01-01

    A method wherein the light in a sulfur or selenium lamp is reflected through the fill a multiplicity of times to convert ultraviolet radiation to visible. A light emitting device comprised of an electrodeless envelope which bears a light reflecting covering around a first portion which does not crack due to differential thermal expansion and which has a second portion which comprises a light transmissive aperture.

  7. Benchmarking of multiple preequilibrium routines in GNASH

    SciTech Connect

    Chadwick, M.B.; Young, P.G.

    1994-08-01

    The authors compare two different models for multiple preequilibrium emission (MPE) in GNASH: the older exciton MPE model; and a new generalized MPE model which is parameter-free. They analyze the proton-induced reactions on zirconium and lead, which were the focus of a recent NEA intermediate-energy code intercomparison, using both the MPE models. They find that the new generalized MPE model better describes the measurements.

  8. MCNP6 Fission Multiplicity with FMULT Card

    SciTech Connect

    Wilcox, Trevor; Fensin, Michael Lorne; Hendricks, John S.; James, Michael R.; McKinney, Gregg W.

    2012-06-18

    With the merger of MCNPX and MCNP5 into MCNP6, MCNP6 now provides all the capabilities of both codes allowing the user to access all the fission multiplicity data sets. Detailed in this paper is: (1) the new FMULT card capabilities for accessing these different data sets; (2) benchmark calculations, as compared to experiment, detailing the results of selecting these separate data sets for thermal neutron induced fission on U-235.

  9. Alternatives for Helium-3 in Multiplicity Counters

    SciTech Connect

    Ely, James H.; Siciliano, Edward R.; Lintereur, Azaree T.; Swinhoe, Martyn T.

    2013-04-01

    Alternatives to helium-3 are being actively pursued due to the shortage and rising costs of helium-3. For safeguards applications, there are a number of ongoing investigations to find alternatives that provide the same capability in a cost-effective manner. One of the greatest challenges is to find a comparable alternative for multiplicity counters, since they require high efficiency and short collection or die-away times. Work has been progressing on investigating three commercially available alternatives for high efficiency multiplicity counters: boron trifluoride (BF3) filled proportional tubes, boron-lined proportional tubes, and lithium fluoride with zinc sulfide coated light guides. The baseline multiplicity counter used for the investigation is the Epithermal Neutron Multiplicity Counter with 121 helium-3 filled tubes at 10 atmosphere pressure, which is a significant capability to match. The primary tool for the investigation has been modeling and simulation using the Monte Carlo N-Particle eXtended (MCNPX) radiation transport program, with experiments to validate the models. To directly calculate the coincidence rates in boron-lined (and possibly other) detectors, the MCNPX code has been enhanced to allow the existing coincidence tally to be used with energy deposition rather than neutron capture reactions. This allows boron-lined detectors to be modeled more accurately. Variations of tube number and diameter along with variations in the amount of inter-tube moderator have been conducted for the BF3 and boron-lined cases. Tube pressure was investigated for BF3, up to two atmospheres, as well as optimal boron thickness in the boron-lined tubes. The lithium fluoride was modeled as sheets of material with light guides in between, and the number and thickness of the sheets investigated. The amount of light guide, which in this case doubles as a moderator, was also optimized. The results of these modeling and simulation optimization investigations are described

  10. ORISE: Multiple research appointments available through Agricultural

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Service Postdoctoral Research Program Multiple research appointments available through Agricultural Research Service Postdoctoral Research Program Selected candidates participate in USDA research for one to four years FOR IMMEDIATE RELEASE March 26, 2014 FY14-23 OAK RIDGE, Tenn.-ORAU and the U.S. Department of Agriculture are currently seeking recent doctoral degree recipients for various appointments in the Agricultural Research Service Postdoctoral Research Program. The ARS is the

  11. Lamp method and apparatus using multiple reflections

    DOEpatents

    MacLennan, D.A.; Turner, B.; Kipling, K.

    1999-05-11

    A method wherein the light in a sulfur or selenium lamp is reflected through the fill a multiplicity of times to convert ultraviolet radiation to visible is disclosed. A light emitting device comprised of an electrodeless envelope which bears a light reflecting covering around a first portion which does not crack due to differential thermal expansion and which has a second portion which comprises a light transmissive aperture. 20 figs.

  12. Apparatus for manifolding multiple passage solar panel

    SciTech Connect

    Mcalister, R.E.

    1982-06-08

    A method of sealingly connecting a thermoplastic solar panel structure comprising a multiplicity of elongated thin wall sections defining a multiplicity of parallel passages extending longitudinally between the ends of said panel structure to a thermoplastic manifold tube comprising the steps of mounting an elongated mandrel having a multiplicity of transversely projecting elements corresponding in number and spacing to the panel passages to be communicated with the interior of the manifold tube, positioning a side wall portion of the manifold tube in predetermined spaced relation with the open end of the panel structure so that the projecting elements of the mandrel are generally longitudinally aligned with the open ends of a corresponding member of the passages in the panel structure, heating the spaced panel structure end and the manifold tube side wall portion to soften the thermoplastic material thereof, moving the mandrel within the manifold tube so as to position the projecting elements through the side wall portion thereof and into the open ends of said corresponding panel structure passages and the manifold tube toward the panel structure end so as to cause the manifold tube side wall portion to apply a pressure to the panel structure end sufficient to deform the thermoplastic material thereof and effect a fusing of the same into a unitary mass, and withdrawing the mandrel in the direction of extent of the projecting elements to a position within the interior of the manifold tube and then longitudinally out of the manifold tube and apparatus for carrying out the method.

  13. Radial velocities of southern visual multiple stars

    SciTech Connect

    Tokovinin, Andrei; Pribulla, Theodor; Fischer, Debra E-mail: pribulla@ta3.sk

    2015-01-01

    High-resolution spectra of visual multiple stars were taken in 20082009 to detect or confirm spectroscopic subsystems and to determine their orbits. Radial velocities of 93 late-type stars belonging to visual multiple systems were measured by numerical cross-correlation. We provide the individual velocities, the width, and the amplitude of the Gaussians that approximate the correlations. The new information on the multiple systems resulting from these data is discussed. We discovered double-lined binaries in HD 41742B, HD 56593C, and HD 122613AB, confirmed several other known subsystems, and constrained the existence of subsystems in some visual binaries where both components turned out to have similar velocities. The orbits of double-lined subsystems with periods of 148 and 13 days are computed for HD 104471 Aa,Ab and HD 210349 Aa,Ab, respectively. We estimate individual magnitudes and masses of the components in these triple systems and update the outer orbit of HD 104471 AB.

  14. MPACT Fast Neutron Multiplicity System Prototype Development

    SciTech Connect

    D.L. Chichester; S.A. Pozzi; J.L. Dolan; M.T. Kinlaw; S.J. Thompson; A.C. Kaplan; M. Flaska; A. Enqvist; J.T. Johnson; S.M. Watson

    2013-09-01

    This document serves as both an FY2103 End-of-Year and End-of-Project report on efforts that resulted in the design of a prototype fast neutron multiplicity counter leveraged upon the findings of previous project efforts. The prototype design includes 32 liquid scintillator detectors with cubic volumes 7.62 cm in dimension configured into 4 stacked rings of 8 detectors. Detector signal collection for the system is handled with a pair of Struck Innovative Systeme 16-channel digitizers controlled by in-house developed software with built-in multiplicity analysis algorithms. Initial testing and familiarization of the currently obtained prototype components is underway, however full prototype construction is required for further optimization. Monte Carlo models of the prototype system were performed to estimate die-away and efficiency values. Analysis of these models resulted in the development of a software package capable of determining the effects of nearest-neighbor rejection methods for elimination of detector cross talk. A parameter study was performed using previously developed analytical methods for the estimation of assay mass variance for use as a figure-of-merit for system performance. A software package was developed to automate these calculations and ensure accuracy. The results of the parameter study show that the prototype fast neutron multiplicity counter design is very nearly optimized under the restraints of the parameter space.

  15. Multiple-reflection optical gas cell

    DOEpatents

    Matthews, Thomas G.

    1983-01-01

    A multiple-reflection optical cell for Raman or fluorescence gas analysis consists of two spherical mirrors positioned transverse to a multiple-pass laser cell in a confronting plane-parallel alignment. The two mirrors are of equal diameter but possess different radii of curvature. The spacing between the mirrors is uniform and less than half of the radius of curvature of either mirror. The mirror of greater curvature possesses a small circular portal in its center which is the effective point source for conventional F1 double lens collection optics of a monochromator-detection system. Gas to be analyzed is flowed into the cell and irradiated by a multiply-reflected composite laser beam centered between the mirrors of the cell. Raman or fluorescence radiation originating from a large volume within the cell is (1) collected via multiple reflections with the cell mirrors, (2) partially collimated and (3) directed through the cell portal in a geometric array compatible with F1 collection optics.

  16. Initial Operation of the High Temperature Electrolysis Integrated Laboratory Scale Experiment at INL

    SciTech Connect

    C. M. Stoots; J. E. O'Brien; K. G. Condie; J. S. Herring; J. J. Hartvigsen

    2008-06-01

    An integrated laboratory scale, 15 kW high-temperature electrolysis facility has been developed at the Idaho National Laboratory under the U.S. Department of Energy Nuclear Hydrogen Initiative. Initial operation of this facility resulted in over 400 hours of operation with an average hydrogen production rate of approximately 0.9 Nm3/hr. The integrated laboratory scale facility is designed to address larger-scale issues such as thermal management (feed-stock heating, high-temperature gas handling), multiple-stack hot-zone design, multiple-stack electrical configurations, and other “integral” issues. This paper documents the initial operation of the ILS, with experimental details about heat-up, initial stack performance, as well as long-term operation and stack degradation.

  17. Flavor from the electroweak scale

    SciTech Connect

    Bauer, Martin; Carena, Marcela; Gemmler, Katrin

    2015-11-04

    We discuss the possibility that flavor hierarchies arise from the electroweak scale in a two Higgs doublet model, in which the two Higgs doublets jointly act as the flavon. Quark masses and mixing angles are explained by effective Yukawa couplings, generated by higher dimensional operators involving quarks and Higgs doublets. Modified Higgs couplings yield important effects on the production cross sections and decay rates of the light Standard Model like Higgs. In addition, flavor changing neutral currents arise at tree-level and lead to strong constraints from meson-antimeson mixing. Remarkably, flavor constraints turn out to prefer a region in parameter space that is in excellent agreement with the one preferred by recent Higgs precision measurements at the Large Hadron Collider (LHC). Direct searches for extra scalars at the LHC lead to further constraints. Precise predictions for the production and decay modes of the additional Higgs bosons are derived, and we present benchmark scenarios for searches at the LHC Run II. As a result, flavor breaking at the electroweak scale as well as strong coupling effects demand a UV completion at the scale of a few TeV, possibly within the reach of the LHC.

  18. Flavor from the electroweak scale

    DOE PAGES [OSTI]

    Bauer, Martin; Carena, Marcela; Gemmler, Katrin

    2015-11-04

    We discuss the possibility that flavor hierarchies arise from the electroweak scale in a two Higgs doublet model, in which the two Higgs doublets jointly act as the flavon. Quark masses and mixing angles are explained by effective Yukawa couplings, generated by higher dimensional operators involving quarks and Higgs doublets. Modified Higgs couplings yield important effects on the production cross sections and decay rates of the light Standard Model like Higgs. In addition, flavor changing neutral currents arise at tree-level and lead to strong constraints from meson-antimeson mixing. Remarkably, flavor constraints turn out to prefer a region in parameter spacemore » that is in excellent agreement with the one preferred by recent Higgs precision measurements at the Large Hadron Collider (LHC). Direct searches for extra scalars at the LHC lead to further constraints. Precise predictions for the production and decay modes of the additional Higgs bosons are derived, and we present benchmark scenarios for searches at the LHC Run II. As a result, flavor breaking at the electroweak scale as well as strong coupling effects demand a UV completion at the scale of a few TeV, possibly within the reach of the LHC.« less

  19. Large Scale Comparative Visualisation of Regulatory Networks with TRNDiff

    SciTech Connect

    Chua, Xin-Yi; Buckingham, Lawrence; Hogan, James M.; Novichkov, Pavel

    2015-06-01

    The advent of Next Generation Sequencing (NGS) technologies has seen explosive growth in genomic datasets, and dense coverage of related organisms, supporting study of subtle, strain-specific variations as a determinant of function. Such data collections present fresh and complex challenges for bioinformatics, those of comparing models of complex relationships across hundreds and even thousands of sequences. Transcriptional Regulatory Network (TRN) structures document the influence of regulatory proteins called Transcription Factors (TFs) on associated Target Genes (TGs). TRNs are routinely inferred from model systems or iterative search, and analysis at these scales requires simultaneous displays of multiple networks well beyond those of existing network visualisation tools [1]. In this paper we describe TRNDiff, an open source system supporting the comparative analysis and visualization of TRNs (and similarly structured data) from many genomes, allowing rapid identification of functional variations within species. The approach is demonstrated through a small scale multiple TRN analysis of the Fur iron-uptake system of Yersinia, suggesting a number of candidate virulence factors; and through a larger study exploiting integration with the RegPrecise database (http://regprecise.lbl.gov; [2]) - a collection of hundreds of manually curated and predicted transcription factor regulons drawn from across the entire spectrum of prokaryotic organisms.

  20. Large Scale Comparative Visualisation of Regulatory Networks with TRNDiff

    DOE PAGES [OSTI]

    Chua, Xin-Yi; Buckingham, Lawrence; Hogan, James M.; Novichkov, Pavel

    2015-06-01

    The advent of Next Generation Sequencing (NGS) technologies has seen explosive growth in genomic datasets, and dense coverage of related organisms, supporting study of subtle, strain-specific variations as a determinant of function. Such data collections present fresh and complex challenges for bioinformatics, those of comparing models of complex relationships across hundreds and even thousands of sequences. Transcriptional Regulatory Network (TRN) structures document the influence of regulatory proteins called Transcription Factors (TFs) on associated Target Genes (TGs). TRNs are routinely inferred from model systems or iterative search, and analysis at these scales requires simultaneous displays of multiple networks well beyond thosemore » of existing network visualisation tools [1]. In this paper we describe TRNDiff, an open source system supporting the comparative analysis and visualization of TRNs (and similarly structured data) from many genomes, allowing rapid identification of functional variations within species. The approach is demonstrated through a small scale multiple TRN analysis of the Fur iron-uptake system of Yersinia, suggesting a number of candidate virulence factors; and through a larger study exploiting integration with the RegPrecise database (http://regprecise.lbl.gov; [2]) - a collection of hundreds of manually curated and predicted transcription factor regulons drawn from across the entire spectrum of prokaryotic organisms.« less

  1. H2@ Scale | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    @ Scale H2@ Scale H2@ Scale is a concept that describes the potential of wide-scale renewable hydrogen production to dramatically reduce U.S. greenhouse gas emissions. Hydrogen is currently a feedstock for numerous industrial applications: petroleum refining, fertilizer production, biofuels production, and others (e.g., plastics, cosmetics, and food industries). Illustration of an H2 at Scale energy system Ten million metric tons of hydrogen are currently produced in the United States every year

  2. Method for manifolding multiple passage solar panel

    SciTech Connect

    Mcalister, R.E.

    1981-11-17

    A method of sealingly connecting a thermoplastic solar panel structure comprising a multiplicity of elongated thin wall sections defining a multiplicity of parallel passages extending longitudinally between the ends of said panel structure to a thermoplastic manifold tube is described. An elongated mandrel is mounted having a multiplicity of transversely projecting elements corresponding in number and spacing to the panel passages to be communicated with the interior of the manifold tube. A side wall portion of the manifold tube is positioned in predetermined spaced relation with the open end of the panel structure so that the projecting elements of the mandrel are generally longitudinally aligned with the open ends of a corresponding member of the passages in the panel structure. The spaced panel structure end and the manifold tube side wall portion are heated to soften the thermoplastic material thereof. The mandrel is moved within the manifold tube so as to position the projecting elements through the side wall portion thereof and into the open ends of said corresponding panel structure passages and the manifold tube toward the panel structure end so as to cause the manifold tube side wall portion to apply a pressure to the panel structure end sufficient to deform the thermoplastic material thereof and effect a fusing of the same into a unitary mass. The mandrel is then withdrawn in the direction of extent of the projecting elements to a position within the interior of the manifold tube and then longitudinally out of the manifold tube and apparatus for carrying out the method.

  3. Scaling laws of resistive magnetohydrodynamic reconnection in the high-Lundquist-number, plasmoid-unstable regime

    SciTech Connect

    Huang Yimin; Bhattacharjee, A.

    2010-06-15

    The Sweet-Parker layer in a system that exceeds a critical value of the Lundquist number (S) is unstable to the plasmoid instability. In this paper, a numerical scaling study has been done with an island coalescing system driven by a low level of random noise. In the early stage, a primary Sweet-Parker layer forms between the two coalescing islands. The primary Sweet-Parker layer breaks into multiple plasmoids and even thinner current sheets through multiple levels of cascading if the Lundquist number is greater than a critical value S{sub c}approx =4x10{sup 4}. As a result of the plasmoid instability, the system realizes a fast nonlinear reconnection rate that is nearly independent of S, and is only weakly dependent on the level of noise. The number of plasmoids in the linear regime is found to scales as S{sup 3/8}, as predicted by an earlier asymptotic analysis [N. F. Loureiro et al., Phys. Plasmas 14, 100703 (2007)]. In the nonlinear regime, the number of plasmoids follows a steeper scaling, and is proportional to S. The thickness and length of current sheets are found to scale as S{sup -1}, and the local current densities of current sheets scale as S{sup -1}. Heuristic arguments are given in support of theses scaling relations.

  4. Multiple volume compressor for hot gas engine

    DOEpatents

    Stotts, Robert E.

    1986-01-01

    A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.

  5. Generating multiple new designs from a sketch

    SciTech Connect

    Stahovich, T.F.; Davis, R.; Shrobe, H.

    1996-12-31

    We describe a program called SKETCHIT that transforms a single sketch of a mechanical device into multiple families of new designs. It represents each of these families with a {open_quotes}BEP-Model,{close_quotes} a parametric model augmented with constraints that ensure the device produces the desired behavior. The program is based on qualitative configuration space (qc-space), a novel representation that captures mechanical behavior while abstracting away its implementation. The program employs a paradigm of abstraction and resynthesis: it abstracts the initial sketch into qc-space then maps from qc-space to new implementations.

  6. Asymmetric acoustic transmission in multiple frequency bands

    SciTech Connect

    Sun, Hong-xiang; Yuan, Shou-qi; Zhang, Shu-yi

    2015-11-23

    We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices.

  7. Expression of multiple proteins in transgenic plants

    DOEpatents

    Vierstra, Richard D.; Walker, Joseph M.

    2002-01-01

    A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.

  8. Multiple frequency method for operating electrochemical sensors

    DOEpatents

    Martin, Louis P.

    2012-05-15

    A multiple frequency method for the operation of a sensor to measure a parameter of interest using calibration information including the steps of exciting the sensor at a first frequency providing a first sensor response, exciting the sensor at a second frequency providing a second sensor response, using the second sensor response at the second frequency and the calibration information to produce a calculated concentration of the interfering parameters, using the first sensor response at the first frequency, the calculated concentration of the interfering parameters, and the calibration information to measure the parameter of interest.

  9. Preliminary Scaling Estimate for Select Small Scale Mixing Demonstration Tests

    SciTech Connect

    Wells, Beric E.; Fort, James A.; Gauglitz, Phillip A.; Rector, David R.; Schonewill, Philip P.

    2013-09-12

    The Hanford Site double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions’ Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems.

  10. Mulan: Multiple-Sequence Local Alignment and Visualization for Studying Function and Evolution

    SciTech Connect

    Ovcharenko, I; Loots, G; Giardine, B; Hou, M; Ma, J; Hardison, R; Stubbs, L; Miller, W

    2004-07-14

    Multiple sequence alignment analysis is a powerful approach for understanding phylogenetic relationships, annotating genes and detecting functional regulatory elements. With a growing number of partly or fully sequenced vertebrate genomes, effective tools for performing multiple comparisons are required to accurately and efficiently assist biological discoveries. Here we introduce Mulan (http://mulan.dcode.org/), a novel method and a network server for comparing multiple draft and finished-quality sequences to identify functional elements conserved over evolutionary time. Mulan brings together several novel algorithms: the tba multi-aligner program for rapid identification of local sequence conservation and the multiTF program for detecting evolutionarily conserved transcription factor binding sites in multiple alignments. In addition, Mulan supports two-way communication with the GALA database; alignments of multiple species dynamically generated in GALA can be viewed in Mulan, and conserved transcription factor binding sites identified with Mulan/multiTF can be integrated and overlaid with extensive genome annotation data using GALA. Local multiple alignments computed by Mulan ensure reliable representation of short-and large-scale genomic rearrangements in distant organisms. Mulan allows for interactive modification of critical conservation parameters to differentially predict conserved regions in comparisons of both closely and distantly related species. We illustrate the uses and applications of the Mulan tool through multi-species comparisons of the GATA3 gene locus and the identification of elements that are conserved differently in avians than in other genomes allowing speculation on the evolution of birds. Source code for the aligners and the aligner-evaluation software can be freely downloaded from http://bio.cse.psu.edu/.

  11. Drift-Scale Radionuclide Transport

    SciTech Connect

    P.R. Dixon

    2004-02-17

    The purpose of this Model Report is to document two models for drift-scale radionuclide transport. This has been developed in accordance with ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]), which includes planning documents for the technical work scope, content, and management of this Model Report in Section 1.15, Work Package AUZM11, ''Drift-Scale Radionuclide Transport.'' The technical work scope for this Model Report calls for development of a process-level model and an abstraction model representing diffusive release from the invert to the rocks, partitioned between fracture and matrix, as compared to the fracture-release approach used in the Site Recommendation. The invert is the structure constructed in a drift to provide the floor of that drift. The plan for validation of the models documented in this Model Report is given in Section I-5 of Attachment I in BSC (2002 [160819]). Note that the model validation presented in Section 7 deviates from the technical work plan (BSC 2002 [160819], Section I-5) in that an independent technical review specifically for model validation has not been conducted, nor publication in a peer-reviewed journal. Model validation presented in Section 7 is based on corroboration with alternative mathematical models, which is also called out by the technical work plan (BSC 2002 [160819], Section I-5), and is sufficient based on the requirements of AP-SIII.10Q for model validation. See Section 7 for additional discussion. The phenomenon of flow and transport in the vicinity of the waste emplacement drift are evaluated in this model report under ambient thermal, chemical, and mechanical conditions. This includes the effects of water diversion around an emplacement drift and the flow and transport behavior expected in a fractured rock below the drift. The reason for a separate assessment of drift-scale transport is that the effects of waste emplacement drifts on flow

  12. Multi-scale Shock Technique

    Energy Science and Technology Software Center

    2009-08-01

    The code to be released is a new addition to the LAMMPS molecular dynamics code. LAMMPS is developed and maintained by Sandia, is publicly available, and is used widely by both natioanl laboratories and academics. The new addition to be released enables LAMMPS to perform molecular dynamics simulations of shock waves using the Multi-scale Shock Simulation Technique (MSST) which we have developed and has been previously published. This technique enables molecular dynamics simulations of shockmore » waves in materials for orders of magnitude longer timescales than the direct, commonly employed approach.« less

  13. Observation of laser multiple filamentation process and multiple electron beams acceleration in a laser wakefield accelerator

    SciTech Connect

    Li, Wentao; Liu, Jiansheng; Wang, Wentao; Chen, Qiang; Zhang, Hui; Tian, Ye; Zhang, Zhijun; Qi, Rong; Wang, Cheng; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2013-11-15

    The multiple filaments formation process in the laser wakefield accelerator (LWFA) was observed by imaging the transmitted laser beam after propagating in the plasma of different density. During propagation, the laser first self-focused into a single filament. After that, it began to defocus with energy spreading in the transverse direction. Two filaments then formed from it and began to propagate independently, moving away from each other. We have also demonstrated that the laser multiple filamentation would lead to the multiple electron beams acceleration in the LWFA via ionization-induced injection scheme. Besides, its influences on the accelerated electron beams were also analyzed both in the single-stage LWFA and cascaded LWFA.

  14. Multiple output timing and trigger generator

    SciTech Connect

    Wheat, Robert M.; Dale, Gregory E

    2009-01-01

    In support of the development of a multiple stage pulse modulator at the Los Alamos National Laboratory, we have developed a first generation, multiple output timing and trigger generator. Exploiting Commercial Off The Shelf (COTS) Micro Controller Units (MCU's), the timing and trigger generator provides 32 independent outputs with a timing resolution of about 500 ns. The timing and trigger generator system is comprised of two MCU boards and a single PC. One of the MCU boards performs the functions of the timing and signal generation (the timing controller) while the second MCU board accepts commands from the PC and provides the timing instructions to the timing controller. The PC provides the user interface for adjusting the on and off timing for each of the output signals. This system provides 32 output or timing signals which can be pre-programmed to be in an on or off state for each of 64 time steps. The width or duration of each of the 64 time steps is programmable from 2 {micro}s to 2.5 ms with a minimum time resolution of 500 ns. The repetition rate of the programmed pulse train is only limited by the time duration of the programmed event. This paper describes the design and function of the timing and trigger generator system and software including test results and measurements.

  15. Multiple-use marketing of lignite

    SciTech Connect

    Knudson, C.L.

    1993-09-01

    Marketing of lignite faces difficulties due to moisture and sulfur contents, as well as the sodium content, of the ash. The purpose of this study is to determine the economic viability of multiple-use marketing of lignite as a method to increase the use of North Dakota lignite by recapturing lost niche markets. Multiple-use marketing means using lignite and sulfur-capturing additives to clean agricultural wastewater followed by either direct steam and power generation or briquetting to produce a higher-Btu compliance fuel. Cooperative ownership of the resulting business by a coal company and an agriculture processing company helps ensure that lignite remains the coal of choice, especially when the ``good`` attributes of lignites are maximized, while the agricultural company obtains cleaner wastewater and a long-term supply of coal at a set price. The economic viabilities of the following scenarios were investigated: (1) Agriprocessing wastewater treatment using lignite and an additive followed by (2) the production of compliance fuel for resale or on-site cogeneration of steam and electricity. Laboratory tests were performed utilizing potato-processing plant wastewater with lignite and lime sludge.

  16. Mitigation of multiple fractures from deviated wellbores

    SciTech Connect

    Hainey, B.W.; Weng, X.; Stoisits, R.F.

    1995-12-31

    While over six hundred Kuparuk A Sand wells have been hydraulically fractured or re-fractured successfully from deviated wellbores, a number of wells in the field have not responded to the conventional fracture treatments. In these wells, the conventional design resulted in premature, near-wellbore screenouts, with low proppant placement, and consequently, poor productivity. A symptom common to each of the failed treatments was a near-wellbore friction pressure loss too high to be explained by perforation restriction or simple fracture twisting and turning. An extensive analytical study of hydraulic fracture initiation and propagation from deviated wellbores suggested multiple fractures as a mechanism to account for the abnormally high near-wellbore friction pressure loss and the reduction in fracture width. A model was developed (XFRAC) which correlates these responses to formation stress, wellbore parameters and treatment conditions. A counter-intuitive fracture treatment which employed lower pumping rates combined with higher viscosity fracturing fluids was designed to minimize the formation of multiple fractures and increase fracture width. This unconventional design has been successfully pumped in eleven wells which exhibited the premature screenout problem. Proppant placement was increased over ten fold with a tripling of post-frac production rates and a 35 percent increase in estimated recovery.

  17. Flaw Tolerance for Multiple Fatique Cracks

    SciTech Connect

    Gosselin, Stephen R.; Simonen, Fredric A.; Carter, R. G.

    2005-07-01

    This paper documents important details of the technical bases for changes to Appendix L. Calculations identified aspect ratios for equivalent single cracks (ESC) between the extremes of a 6:1 ratio and a full circumferential crack that can be used in Appendix L flaw tolerance assessments to account for the initiation, growth, and linking of multiple fatigue cracks. Probabilistic fracture mechanics (PFM) calculations determined ESC aspect ratios that result in the same through-wall crack probability as multiple small cracks (0.02 inch depth) that initiate and coalesce. The computations considered two materials (stainless and low alloy steels), three pipe diameters, five cyclic membrane-to-gradient stress ratios and a wide range of primary loads. Subsequent deterministic calculations identified the ESC aspect ratio for the hypothetical reference flaw depth assumptions in Appendix L. This paper also describes computations that compare the Appendix L flaw tolerance allowable operating period for the ESC models with results obtained when the a single default 6:1 aspect ratio reference flaw.

  18. 3-D simulations of multiple beam klystrons

    SciTech Connect

    Smithe, David N.; Bettenhausen, Mike; Ludeking, Larry; Caryotakis, G.; Sprehn, Daryl; Scheitrum, Glenn [Mission Research Corporation, 8560 Cinderbed Rd., Suite 700, Newington, Virginia 22122 (United States); Stanford Linear Accelerator Center, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States)

    1999-05-07

    The MAGIC3D simulation code is being used to assess the multi-dimensional physics issues relating to the design and operation of multiple beam klystrons. Investigations, to date, include a detailed study of the mode structure of the cavities in the 19-beam hexagonally packed geometry and a study of the velocity spread caused by the cavity mode's field profile. Some attempts to minimize this effect are investigated. Additional simulations have provided quantification of the beam loading Q in a dual input cavity, and optimization of a dual output cavity. An important goal of the simulations is an accurate picture of beam transport along the length of the MBK. We have quantified the magnitude and spatial variation of the beam-line space charge interactions within a cavity gap. Present simulations have demonstrated the transport of the beam through three cavities (the present limits of our simulation size) without difficulty; additional length simulations are expected. We have also examined unbalanced beam-line scenarios, e.g., one beam-line suppressed, and find little disturbance to the transport in individual cavity tests, with results for multiple cavity transport expected.

  19. V-119: IBM Security AppScan Enterprise Multiple Vulnerabilities...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9: IBM Security AppScan Enterprise Multiple Vulnerabilities V-119: IBM Security AppScan Enterprise Multiple Vulnerabilities March 26, 2013 - 12:56am Addthis PROBLEM: IBM Security...

  20. V-191: Apple Mac OS X Multiple Vulnerabilities | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1: Apple Mac OS X Multiple Vulnerabilities V-191: Apple Mac OS X Multiple Vulnerabilities July 3, 2013 - 6:00am Addthis PROBLEM: Apple has issued a security update for Mac OS X...

  1. DOE Selects Two Contractors for Multiple-Award Waste Disposal...

    Office of Environmental Management (EM)

    Selects Two Contractors for Multiple-Award Waste Disposal Contract DOE Selects Two Contractors for Multiple-Award Waste Disposal Contract April 12, 2013 - 12:00pm Addthis Media ...

  2. T-574: Google Chrome Multiple Flaws Let Remote Users Execute...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4: Google Chrome Multiple Flaws Let Remote Users Execute Arbitrary Code T-574: Google Chrome Multiple Flaws Let Remote Users Execute Arbitrary Code March 10, 2011 - 3:05pm Addthis...

  3. Goethite Bench-scale and Large-scale Preparation Tests

    SciTech Connect

    Josephson, Gary B.; Westsik, Joseph H.

    2011-10-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the ferrous

  4. Projections of transport scaling laws for small toroidal reactors

    SciTech Connect

    McNamara, B.

    1981-11-16

    Transport in present day Spheromaks is dominated by impurity radiation. Fortunately, this is largely from oxygen and carbon, not metal vapor from the walls of the vessel on plasma guns and it is expected this loss can be eliminated by improved technique. The formation and gross MHD stability properties of these plasmas are quite well understood and so the reactor predictions depend on estimates of the energy loss rates from the plasma. In the absence of significant experimental data one is driven to consider other related devices. Tokamaks show classical ion transport, scaling with 1/B/sup 2/, but anomalous electron transport which is very insensitive to magnetic field, the well known Alcator scaling. The scaling of the Spheromak to a reactor size still produces favorable Q values with these pessimistic results. The reactor is small, with power output in the 10 to 50 MW range, but this could be deployed as a multiple unit power station, with good reliability due to the duplication, or as a small power unit for a ship or remote site. It also makes an attractive test reactor for the near term.

  5. Just enough inflation: power spectrum modifications at large scales

    SciTech Connect

    Cicoli, Michele [Dipartimento di Fisica ed Astronomia, Universit di Bologna, via Irnerio 46, 40126 Bologna (Italy); Downes, Sean [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (China); Dutta, Bhaskar [Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843-4242 (United States); Pedro, Francisco G.; Westphal, Alexander, E-mail: mcicoli@ictp.it, E-mail: ssdownes@phys.ntu.edu.tw, E-mail: dutta@physics.tamu.edu, E-mail: francisco.pedro@desy.de, E-mail: alexander.westphal@desy.de [Deutsches Elektronen-Synchrotron DESY, Theory Group, D-22603 Hamburg (Germany)

    2014-12-01

    We show that models of 'just enough' inflation, where the slow-roll evolution lasted only 50- 60 e-foldings, feature modifications of the CMB power spectrum at large angular scales. We perform a systematic analytic analysis in the limit of a sudden transition between any possible non-slow-roll background evolution and the final stage of slow-roll inflation. We find a high degree of universality since most common backgrounds like fast-roll evolution, matter or radiation-dominance give rise to a power loss at large angular scales and a peak together with an oscillatory behaviour at scales around the value of the Hubble parameter at the beginning of slow-roll inflation. Depending on the value of the equation of state parameter, different pre-inflationary epochs lead instead to an enhancement of power at low ?, and so seem disfavoured by recent observational hints for a lack of CMB power at ??<40. We also comment on the importance of initial conditions and the possibility to have multiple pre-inflationary stages.

  6. U-013: HP Data Protector Multiple Unspecified Vulnerabilities

    Energy.gov [DOE]

    Multiple vulnerabilities were reported in HP Data Protector. A remote user can execute arbitrary code on the target system.

  7. V-132: IBM Tivoli System Automation Application Manager Multiple

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vulnerabilities | Department of Energy 2: IBM Tivoli System Automation Application Manager Multiple Vulnerabilities V-132: IBM Tivoli System Automation Application Manager Multiple Vulnerabilities April 12, 2013 - 6:00am Addthis PROBLEM: IBM has acknowledged multiple vulnerabilities in IBM Tivoli System Automation Application Manager PLATFORM: The vulnerabilities are reported in IBM Tivoli System Automation Application Manager versions 3.1, 3.2, 3.2.1, and 3.2.2 ABSTRACT: Multiple security

  8. V-180: IBM Application Manager For Smart Business Multiple Vulnerabilities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy 0: IBM Application Manager For Smart Business Multiple Vulnerabilities V-180: IBM Application Manager For Smart Business Multiple Vulnerabilities June 18, 2013 - 12:38am Addthis PROBLEM: IBM Application Manager For Smart Business Multiple Vulnerabilities PLATFORM: IBM Application Manager For Smart Business 1.x ABSTRACT: A security issue and multiple vulnerabilities have been reported in IBM Application Manager For Smart Business REFERENCE LINKS: Security Bulletin

  9. Energy dependence of the ridge in high multiplicity proton-proton collisions

    DOE PAGES [OSTI]

    Dusling, Kevin; Tribedy, Prithwish; Venugopalan, Raju

    2016-01-27

    In this study, we demonstrate that the recent measurement of azimuthally collimated, long-range rapidity (“ridge”) correlations in √s=13 TeV proton-proton (p+p) collisions by the ATLAS Collaboration at the LHC are in agreement with expectations from the color glass condensate effective theory of high-energy QCD. The observation that the integrated near-side yield as a function of multiplicity is independent of collision energy is a natural consequence of the fact that multiparticle production is driven by a single semihard saturation scale in the color glass condensate framework. We argue further that the azimuthal structure of these recent ATLAS ridge measurements strongly constrainsmore » hydrodynamic interpretations of such correlations in high-multiplicity p+p collisions.« less

  10. Utility Scale Solar Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Scale Solar Inc Place: Palo Alto, California Zip: 94301 Product: California-based PV tracker maker. References: Utility Scale Solar Inc1 This article is a stub. You can help...

  11. PathScale Compliers at NERSC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1-800-66-NERSC, option 3 or 510-486-8611 Home For Users Software Compilers PathScale PathScale Compilers (Fortran, C, C++) Availability The Pathscale...

  12. 50MW extreme-scale turbine

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MW extreme-scale turbine - Sandia Energy Energy Search Icon Sandia Home Locations Contact ... SunShot Grand Challenge: Regional Test Centers 50MW extreme-scale turbine HomeTag:50MW ...

  13. The Adaptive Multi-scale Simulation Infrastructure

    SciTech Connect

    Tobin, William R.

    2015-09-01

    The Adaptive Multi-scale Simulation Infrastructure (AMSI) is a set of libraries and tools developed to support the development, implementation, and execution of general multimodel simulations. Using a minimal set of simulation meta-data AMSI allows for minimally intrusive work to adapt existent single-scale simulations for use in multi-scale simulations. Support for dynamic runtime operations such as single- and multi-scale adaptive properties is a key focus of AMSI. Particular focus has been spent on the development on scale-sensitive load balancing operations to allow single-scale simulations incorporated into a multi-scale simulation using AMSI to use standard load-balancing operations without affecting the integrity of the overall multi-scale simulation.

  14. Development of a Scale Model for High Flux Isotope Reactor Cycle 400

    SciTech Connect

    Ilas, Dan

    2012-03-01

    The development of a comprehensive SCALE computational model for the High Flux Isotope Reactor (HFIR) is documented and discussed in this report. The SCALE model has equivalent features and functionality as the reference MCNP model for Cycle 400 that has been used extensively for HFIR safety analyses and for HFIR experiment design and analyses. Numerical comparisons of the SCALE and MCNP models for the multiplication constant, power density distribution in the fuel, and neutron fluxes at several locations in HFIR indicate excellent agreement between the results predicted with the two models. The SCALE HFIR model is presented in sufficient detail to provide the users of the model with a tool that can be easily customized for various safety analysis or experiment design requirements.

  15. H2@ Scale Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    @ Scale Workshop H2@ Scale Workshop On November 16 and 17, an H2@ Scale workshop will be hosted at the National Renewable Energy Laboratory in Golden, Colorado, to identify the current barriers and research needs related to the H2@ Scale concept. Along with a Request for Information that is currently open, the workshop will guide the development of an Energy Department roadmap to research, development, and demonstration activities that can enable hydrogen as an energy carrier at a national

  16. PV Controls Utility-Scale Demonstration Project

    SciTech Connect

    O'Neill, Barbara; Gevorgian, Vahan

    2015-10-14

    This presentation provides a high-level overview of the utility-scale PV controls demonstration project.

  17. Bench-Scale Fermentation Laboratory (Fact Sheet)

    SciTech Connect

    Not Available

    2011-07-01

    This fact sheet provides information about Bench-Scale Fermentation Laboratory capabilities and applications at NREL's National Bioenergy Center.

  18. Monetary Awards Scale | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Monetary Awards Scale Monetary Awards Scale Chart of the monetary awards scale allowed for intangible and tangible benefits from suggestions, inventions, special acts or services. Monetary Awards Scale (199.43 KB) Responsible Contacts Lorrenda Buckner HUMAN RESOURCES SPECIALIST (PERFORMANCE MANAGEMENT) E-mail lorrenda.buckner@hq.doe.gov Phone 202-586-8451 More Documents & Publications Manager's Desk Reference on Human Capital Management Flexibilities Supervisory - Non-Supervisory Employee

  19. Range Fuels Commercial-Scale Biorefinery

    Energy.gov [DOE]

    The Range Fuels commercial-scale biorefinery will use a variety of feedstocks to create cellulosic ethanol, methanol, and power.

  20. Data triage enables extreme-scale computing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    August » Data triage enables extreme-scale computing Data triage enables extreme-scale computing Data selection and triage are important techniques for large-scale data, which can drastically reduce the amount of data written to disk or transmitted over a network. August 1, 2014 Spatial partitioning for the ocean simulation data set. Spatial partitioning for the ocean simulation data set. The main focus for ADR is to prioritize data primarily generated by large-scale scientific simulations run

  1. Multiple predictor smoothing methods for sensitivity analysis.

    SciTech Connect

    Helton, Jon Craig; Storlie, Curtis B.

    2006-08-01

    The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described: (1) locally weighted regression (LOESS), (2) additive models, (3) projection pursuit regression, and (4) recursive partitioning regression. The indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present.

  2. Multiple hearth furnace for reducing iron oxide

    DOEpatents

    Brandon, Mark M. (Charlotte, NC); True, Bradford G. (Charlotte, NC)

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  3. MPACT Fast Neutron Multiplicity System Design Concepts

    SciTech Connect

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. T. Kinlaw; A. C. Kaplan; M. Flaska; A. Enqvist; J. T. Johnsom; S. M. Watson

    2012-10-01

    This report documents work performed by Idaho National Laboratory and the University of Michigan in fiscal year (FY) 2012 to examine design parameters related to the use of fast-neutron multiplicity counting for assaying plutonium for materials protection, accountancy, and control purposes. This project seeks to develop a new type of neutron-measurement-based plutonium assay instrument suited for assaying advanced fuel cycle materials. Some current-concept advanced fuels contain high concentrations of plutonium; some of these concept fuels also contain other fissionable actinides besides plutonium. Because of these attributes the neutron emission rates of these new fuels may be much higher, and more difficult to interpret, than measurements made of plutonium-only materials. Fast neutron multiplicity analysis is one approach for assaying these advanced nuclear fuels. Studies have been performed to assess the conceptual performance capabilities of a fast-neutron multiplicity counter for assaying plutonium. Comparisons have been made to evaluate the potential improvements and benefits of fast-neutron multiplicity analyses versus traditional thermal-neutron counting systems. Fast-neutron instrumentation, using for example an array of liquid scintillators such as EJ-309, have the potential to either a) significantly reduce assay measurement times versus traditional approaches, for comparable measurement precision values, b) significantly improve assay precision values, for measurement durations comparable to current-generation technology, or c) moderating improve both measurement precision and measurement durations versus current-generation technology. Using the MCNPX-PoliMi Monte Carlo simulation code, studies have been performed to assess the doubles-detection efficiency for a variety of counter layouts of cylindrical liquid scintillator detector cells over one, two, and three rows. Ignoring other considerations, the best detector design is the one with the most

  4. Double multiple streamtube model with recent improvements

    SciTech Connect

    Paraschivoiu, I.; Delclaux, F.

    1983-05-01

    The objective is to show the new capabilities of the double multiple streamtube (DMS) model for predicting the aerodynamic loads and performance of the Darrieus vertical-axis turbine. The original DMS model has been improved (DMSV model) by considering the variation in the upwind and downwind induced velocities as a function of the azimuthal angle for each streamtube. A comparison is made of the rotor performance for several blade geometries (parabola, catenary, troposkien, and Sandia shape). A new formulation is given for an approximate troposkien shape by considering the effect of the gravitational field. The effects of three NACA symmetrical profiles, 0012, 0015 and 0018, on the aerodynamic performance of the turbine are shown. Finally, a semiempirical dynamic-stall model has been incorporated and a better approximation obtained for modeling the local aerodynamic forces and performance for a Darrieus rotor.

  5. Double multiple streamtube model with recent improvements

    SciTech Connect

    Paraschivoiu, I.; Delclaux, F.

    1983-05-01

    The objective of the present paper is to show the new capabilities of the double multiple streamtube (DMS) model for predicting the aerodynamic loads and performance of the Darrieus vertical-axis turbine. The original DMS model has been improved (DMSV model) by considering the variation in the upwind and downwind induced velocities as a function of the azimuthal angle for each streamtube. A comparison is made of the rotor performance for several blade geometries (parabola, catenary, troposkien, and Sandia shape). A new formulation is given for an approximate troposkien shape by considering the effect of the gravitational field. The effects of three NACA symmetrical profiles, 0012, 0015 and 0018, on the aerodynamic performance of the turbine are shown. Finally, a semiempirical dynamic-stall model has been incorporated and a better approximation obtained for modeling the local aerodynamic forces and performance for a Darrieus rotor.

  6. Multiple volume compressor for hot gas engine

    SciTech Connect

    Stotts, R.E.

    1986-07-22

    An apparatus is described for pumping down a hot gas engine that includes: a multiple volume, single stage compressor having a plurality of axially aligned compression chambers, each chamber having a different capacity, piston means reciprocally mounted in each chamber, the piston means being joined together whereby they move in unison within the chambers, drive means connected to at least one of the piston means for reciprocating the piston means within the chambers, intake means for connecting an inlet in each chamber to the engine for pumping working gas from the engine, discharge means for connecting an outlet in each chamber to a gas supply reservoir for storing the gas, a bypass loop associated with each chamber for connecting the inlet and the outlet of each chamber in communication, and a positionable means in each loop selectively opening and closing the bypass loop whereby the capacity of the compressor can be changed.

  7. Multiple channel optical data acquisition system

    DOEpatents

    Fasching, G.E.; Goff, D.R.

    1985-02-22

    A multiple channel optical data acquisition system is provided in which a plurality of remote sensors monitoring specific process variable are interrogated by means of a single optical fiber connecting the remote station/sensors to a base station. The remote station/sensors derive all power from light transmitted through the fiber from the base station. Each station/sensor is individually accessed by means of a light modulated address code sent over the fiber. The remote station/sensors use a single light emitting diode to both send and receive light signals to communicate with the base station and provide power for the remote station. The system described can power at least 100 remote station/sensors over an optical fiber one mile in length.

  8. Enabling department-scale supercomputing

    SciTech Connect

    Greenberg, D.S.; Hart, W.E.; Phillips, C.A.

    1997-11-01

    The Department of Energy (DOE) national laboratories have one of the longest and most consistent histories of supercomputer use. The authors summarize the architecture of DOE`s new supercomputers that are being built for the Accelerated Strategic Computing Initiative (ASCI). The authors then argue that in the near future scaled-down versions of these supercomputers with petaflop-per-weekend capabilities could become widely available to hundreds of research and engineering departments. The availability of such computational resources will allow simulation of physical phenomena to become a full-fledged third branch of scientific exploration, along with theory and experimentation. They describe the ASCI and other supercomputer applications at Sandia National Laboratories, and discuss which lessons learned from Sandia`s long history of supercomputing can be applied in this new setting.

  9. Large-Scale Renewable Energy Guide Webinar

    Energy.gov [DOE]

    Webinar introduces the “Large Scale Renewable Energy Guide." The webinar will provide an overview of this important FEMP guide, which describes FEMP's approach to large-scale renewable energy projects and provides guidance to Federal agencies and the private sector on how to develop a common process for large-scale renewable projects.

  10. Alignment engineering in liquid crystalline elastomers: Free-form microstructures with multiple functionalities

    SciTech Connect

    Zeng, Hao; Cerretti, Giacomo; Wiersma, Diederik S. E-mail: wiersma@lens.unifi.it; Wasylczyk, Piotr; Martella, Daniele; Parmeggiani, Camilla E-mail: wiersma@lens.unifi.it

    2015-03-16

    We report a method to fabricate polymer microstructures with local control over the molecular orientation. Alignment control is achieved on molecular level in a structure of arbitrary form that can be from 1 to 100 μm in size, by fixing the local boundary conditions with micro-grating patterns. The method makes use of two-photon polymerization (Direct Laser Writing) and is demonstrated specifically in liquid-crystalline elastomers. This concept allows for the realization of free-form polymeric structures with multiple functionalities which are not possible to realize with existing techniques and which can be locally controlled by light in the micrometer scale.

  11. An examination of scale-dependent resource use by Eastern Hognose snakes in southcentral New Hampshire.

    SciTech Connect

    LaGory, K. E.; Walston, L. J.; Goulet, C; Van Lonkhuyzen, R. A.; Najjar, S.; Andrews, C.; Environmental Science Division; Univ. of New Hampshire; U.S. Air Force

    2009-11-01

    The decline of many snake populations is attributable to habitat loss, and knowledge of habitat use is critical to their conservation. Resource characteristics (e.g., relative availability of different habitat types, soils, and slopes) within a landscape are scale-dependent and may not be equal across multiple spatial scales. Thus, it is important to identify the relevant spatial scales at which resource selection occurs. We conducted a radiotelemetry study of eastern hognose snake (Heterodon platirhinos) home range size and resource use at different hierarchical spatial scales. We present the results for 8 snakes radiotracked during a 2-year study at New Boston Air Force Station (NBAFS) in southern New Hampshire, USA, where the species is listed by the state as endangered. Mean home range size (minimum convex polygon) at NBAFS (51.7 {+-} 14.7 ha) was similar to that reported in other parts of the species range. Radiotracked snakes exhibited different patterns of resource use at different spatial scales. At the landscape scale (selection of locations within the landscape), snakes overutilized old-field and forest edge habitats and underutilized forested habitats and wetlands relative to availability. At this scale, snakes also overutilized areas containing sandy loam soils and areas with lower slope (mean slope = 5.2% at snake locations vs. 6.7% at random locations). We failed to detect some of these patterns of resource use at the home range scale (i.e., within the home range). Our ability to detect resource selection by the snakes only at the landscape scale is likely the result of greater heterogeneity in macrohabitat features at the broader landscape scale. From a management perspective, future studies of habitat selection for rare species should include measurement of available habitat at spatial scales larger than the home range. We suggest that the maintenance of open early successional habitats as a component of forested landscapes will be critical for the

  12. Scaling exponents for ordered maxima

    SciTech Connect

    Ben-Naim, E.; Krapivsky, P. L.; Lemons, N. W.

    2015-12-22

    We study extreme value statistics of multiple sequences of random variables. For each sequence with N variables, independently drawn from the same distribution, the running maximum is defined as the largest variable to date. We compare the running maxima of m independent sequences and investigate the probability SN that the maxima are perfectly ordered, that is, the running maximum of the first sequence is always larger than that of the second sequence, which is always larger than the running maximum of the third sequence, and so on. The probability SN is universal: it does not depend on the distribution from which the random variables are drawn. For two sequences, SN~N–1/2, and in general, the decay is algebraic, SN~N–σm, for large N. We analytically obtain the exponent σ3≅1.302931 as root of a transcendental equation. Moreover, the exponents σm grow with m, and we show that σm~m for large m.

  13. Scaling exponents for ordered maxima

    DOE PAGES [OSTI]

    Ben-Naim, E.; Krapivsky, P. L.; Lemons, N. W.

    2015-12-22

    We study extreme value statistics of multiple sequences of random variables. For each sequence with N variables, independently drawn from the same distribution, the running maximum is defined as the largest variable to date. We compare the running maxima of m independent sequences and investigate the probability SN that the maxima are perfectly ordered, that is, the running maximum of the first sequence is always larger than that of the second sequence, which is always larger than the running maximum of the third sequence, and so on. The probability SN is universal: it does not depend on the distribution frommore » which the random variables are drawn. For two sequences, SN~N–1/2, and in general, the decay is algebraic, SN~N–σm, for large N. We analytically obtain the exponent σ3≅1.302931 as root of a transcendental equation. Moreover, the exponents σm grow with m, and we show that σm~m for large m.« less

  14. A hybrid molecular dynamics/fluctuating hydrodynamics method for modelling liquids at multiple scales in space and time

    SciTech Connect

    Korotkin, Ivan Karabasov, Sergey; Markesteijn, Anton; Nerukh, Dmitry; Scukins, Arturs; Farafonov, Vladimir; Pavlov, Evgen

    2015-07-07

    A new 3D implementation of a hybrid model based on the analogy with two-phase hydrodynamics has been developed for the simulation of liquids at microscale. The idea of the method is to smoothly combine the atomistic description in the molecular dynamics zone with the Landau-Lifshitz fluctuating hydrodynamics representation in the rest of the system in the framework of macroscopic conservation laws through the use of a single “zoom-in” user-defined function s that has the meaning of a partial concentration in the two-phase analogy model. In comparison with our previous works, the implementation has been extended to full 3D simulations for a range of atomistic models in GROMACS from argon to water in equilibrium conditions with a constant or a spatially variable function s. Preliminary results of simulating the diffusion of a small peptide in water are also reported.

  15. DND-CAT;s new triple area detector system for simultaneous data collection at multiple length scales

    SciTech Connect

    Weigand, Steven J.; Keane, Denis T.

    2011-11-17

    The DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) built and currently manages sector 5 at the Advanced Photon Source (APS), Argonne National Laboratory. One of the principal techniques supported by DND-CAT is Small and Wide-Angle X-ray Scattering (SAXS/WAXS), with an emphasis on simultaneous data collection over a wide azimuthal and reciprocal space range using a custom SAXS/WAXS detector system. A new triple detector system is now in development, and we describe the key parameters and characteristics of the new instrument, which will be faster, more flexible, more robust, and will improve q-space resolution in a critical reciprocal space regime between the traditional WAXS and SAXS ranges.

  16. SOLAR POLAR X-RAY JETS AND MULTIPLE BRIGHT POINTS: EVIDENCE FOR SYMPATHETIC ACTIVITY

    SciTech Connect

    Pucci, Stefano; Romoli, Marco; Poletto, Giannina; Sterling, Alphonse C.

    2012-02-15

    We present an analysis of X-ray bright points (BPs) and X-ray jets observed by Hinode/X-Ray Telescope on 2007 November 2-4, within the solar northern polar coronal hole. After selecting small subregions that include several BPs, we followed their brightness evolution over a time interval of a few hours, when several jets were observed. We find that most of the jets occurred in close temporal association with brightness maxima in multiple BPs: more precisely, most jets are closely correlated with the brightening of at least two BPs. We suggest that the jets result from magnetic connectivity changes that also induce the BP variability. We surmise that the jets and implied magnetic connectivity we describe are small-scale versions of the active-region-scale phenomenon, whereby flares and eruptions are triggered by interacting bipoles.

  17. Recent Accomplishments in the Irradiation Testing of Engineering-Scale Monolithic Fuel Specimens

    SciTech Connect

    N.E. Woolstenhulme; D.M. Wachs; M.K. Meyer; H.W. Glunz; R.B. Nielson

    2012-10-01

    The US fuel development team is focused on qualification and demonstration of the uranium-molybdenum monolithic fuel including irradiation testing of engineering-scale specimens. The team has recently accomplished the successful irradiation of the first monolithic multi-plate fuel element assembly within the AFIP-7 campaign. The AFIP-6 MKII campaign, while somewhat truncated by hardware challenges, exhibited successful irradiation of a large-scale monolithic specimen under extreme irradiation conditions. The channel gap and ultrasonic data are presented for AFIP-7 and AFIP-6 MKII, respectively. Finally, design concepts are summarized for future irradiations such as the base fuel demonstration and design demonstration experiment campaigns.

  18. Invariant relationships deriving from classical scaling transformations

    SciTech Connect

    Bludman, Sidney; Kennedy, Dallas C.

    2011-04-15

    Because scaling symmetries of the Euler-Lagrange equations are generally not variational symmetries of the action, they do not lead to conservation laws. Instead, an extension of Noether's theorem reduces the equations of motion to evolutionary laws that prove useful, even if the transformations are not symmetries of the equations of motion. In the case of scaling, symmetry leads to a scaling evolutionary law, a first-order equation in terms of scale invariants, linearly relating kinematic and dynamic degrees of freedom. This scaling evolutionary law appears in dynamical and in static systems. Applied to dynamical central-force systems, the scaling evolutionary equation leads to generalized virial laws, which linearly connect the kinetic and potential energies. Applied to barotropic hydrostatic spheres, the scaling evolutionary equation linearly connects the gravitational and internal energy densities. This implies well-known properties of polytropes, describing degenerate stars and chemically homogeneous nondegenerate stellar cores.

  19. Prompt Neutron Multiplicity Measurements with Portable Detectors

    SciTech Connect

    S. Mukhopadhyay, R. Wolff, R. Maurer, S. Mitchell, E. X. Smith, P. Guss, J. L. Lacy, L. Sun, A. Athanasiades

    2011-09-01

    Mobile detection of kilogram quantities of special nuclear materials (SNM) during maritime transportation is a challenging problem for the U.S. Department of Homeland Security. Counting neutrons emitted by the SNM and partitioning them from background neutrons of multiple origins is the most effective passive means of detecting the SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment is complex due to the presence of spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. This work studied the possibilities of building a prototype neutron detector using boron- 10 (10B) as the converter in a novel form factor called “straws” that would address the above problem by examining multiplicity distributions of neutrons originating from a fissioning source. Currently, commercially manufactured fission meters (FM) are available that separate cosmic neutrons from non-cosmic neutrons and quantitatively determine the strength of a fissioning source; however, these FMs use 3He, which is becoming increasingly difficult to procure; also the size and weight of a commercial FM is not conducive to manual neutron detection operations in a maritime environment. The current project may provide a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to the FM. The prototype detector provides a large-area, efficient, lightweight, more granular neutron responsive detection surface (to facilitate imaging) to ease the application of the new FMs. A novel prototype fission meter is being designed at National Security Technologies, LLC, using a thin uniform coating of 10B as neutron converter (only 1 micron thick) inside a large array of thin (4 mm diameter) copper tubes. The copper tubes are only 2-mil thick, and each holds the stretched anode wire under tension and high voltage. The tubes are filled with

  20. Subcritical Measurements Multiple HEU Metal Castings

    SciTech Connect

    Mihalczo, John T [ORNL] [ORNL; Archer, Daniel E [ORNL] [ORNL; Wright, Michael C [ORNL] [ORNL

    2008-01-01

    Experiments with the standard annular highly enriched uranium (HEU) metal castings at Y-12 were performed in which up to 5 castings ({approx}90kg) were assembled in a tightly packed array with minimal spacing between castings. The fission chain multiplication process was initiated by a time tagged {sup 253}Cf spontaneously fissioning neutron source or time and directionally tagged neutrons from a small portable DT neutron generator and the prompt neutron time behavior measured with plastic scintillation detectors sensitive the fast neutron (>1 MeV) and gamma ray without distinction. These experiments were performed to provide data to benchmark methods for the calculation of the prompt neutron time behavior. Previous measurements with a single casting have been reported. This paper presents the experimental results for multiple castings. The prompt time decay was obtained by time coincidence correlation measurements between the detectors and the time tagged neutron source emission (equivalent to randomly pulsed neutron measurements) and between pairs of plastic scintillation detectors (equivalent to a 2-detector Rossi-alpha measurement). These standard HEU storage castings at the Y-12 plant had 5.000-in-OD, 3.500-in-ID, masses between 17,636 and 17,996 g, impurity content of 992 ppm, density of 18.75 g/cm{sup 3} and average enrichment of 93.16 wt % {sup 235}U. The castings were in tight fitting 025-in.-thick, 8.0-in-high stainless steel (SS-304) cylindrical cans for contamination control which were 8.0 in high. One can had an inside diameter of 3.0 in so that the Cf source could be located on the axes of this casting. Four 1 x 1 x 6 in plastic scintillators with the long dimension perpendicular to axes of the castings and adjacent to the outer surface of the casting cans were used. The detectors were enclosed in 1/4.-in.-thick lead shields on four 1 x 6 surfaces and on the 1 x 1 surface. The small surface of the lead shield was adjacent to the steel table. The

  1. Multiple soft limits of cosmological correlation functions

    SciTech Connect

    Joyce, Austin; Khoury, Justin; Simonovi?, Marko E-mail: jkhoury@sas.upenn.edu

    2015-01-01

    We derive novel identities satisfied by inflationary correlation functions in the limit where two external momenta are taken to be small. We derive these statements in two ways: using background-wave arguments and as Ward identities following from the fixed-time path integral. Interestingly, these identities allow us to constrain some of the O(q{sup 2}) components of the soft limit, in contrast to their single-soft analogues. We provide several nontrivial checks of our identities both in the context of resonant non-Gaussianities and in small sound speed models. Additionally, we extend the relation at lowest order in external momenta to arbitrarily many soft legs, and comment on the many-soft extension at higher orders in the soft momentum. Finally, we consider how higher soft limits lead to identities satisfied by correlation functions in large-scale structure.

  2. Sensitivity technologies for large scale simulation.

    SciTech Connect

    Collis, Samuel Scott; Bartlett, Roscoe Ainsworth; Smith, Thomas Michael; Heinkenschloss, Matthias; Wilcox, Lucas C.; Hill, Judith C.; Ghattas, Omar; Berggren, Martin Olof; Akcelik, Volkan; Ober, Curtis Curry; van Bloemen Waanders, Bart Gustaaf; Keiter, Eric Richard

    2005-01-01

    order approximation of the Euler equations and used as a preconditioner. In comparison to other methods, the AD preconditioner showed better convergence behavior. Our ultimate target is to perform shape optimization and hp adaptivity using adjoint formulations in the Premo compressible fluid flow simulator. A mathematical formulation for mixed-level simulation algorithms has been developed where different physics interact at potentially different spatial resolutions in a single domain. To minimize the implementation effort, explicit solution methods can be considered, however, implicit methods are preferred if computational efficiency is of high priority. We present the use of a partial elimination nonlinear solver technique to solve these mixed level problems and show how these formulation are closely coupled to intrusive optimization approaches and sensitivity analyses. Production codes are typically not designed for sensitivity analysis or large scale optimization. The implementation of our optimization libraries into multiple production simulation codes in which each code has their own linear algebra interface becomes an intractable problem. In an attempt to streamline this task, we have developed a standard interface between the numerical algorithm (such as optimization) and the underlying linear algebra. These interfaces (TSFCore and TSFCoreNonlin) have been adopted by the Trilinos framework and the goal is to promote the use of these interfaces especially with new developments. Finally, an adjoint based a posteriori error estimator has been developed for discontinuous Galerkin discretization of Poisson's equation. The goal is to investigate other ways to leverage the adjoint calculations and we show how the convergence of the forward problem can be improved by adapting the grid using adjoint-based error estimates. Error estimation is usually conducted with continuous adjoints but if discrete adjoints are available it may be possible to reuse the discrete version

  3. Membranes for nanometer-scale mass fast transport

    DOEpatents

    Bakajin, Olgica; Holt, Jason; Noy, Aleksandr; Park, Hyung Gyu

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  4. Reducing Waste in Extreme Scale Systems through Introspective Analysis

    SciTech Connect

    Bautista-Gomez, Leonardo; Gainaru, Ana; Perarnau, Swann; Engelmann, Christian; Cappello, Franck; Snir, Marc

    2016-01-01

    Resilience is an important challenge for extreme- scale supercomputers. Today, failures in supercomputers are assumed to be uniformly distributed in time. However, recent studies show that failures in high-performance computing systems are partially correlated in time, generating periods of higher failure density. Our study of the failure logs of multiple supercomputers show that periods of higher failure density occur with up to three times more than the average. We design a monitoring system that listens to hardware events and forwards important events to the runtime to detect those regime changes. We implement a runtime capable of receiving notifications and adapt dynamically. In addition, we build an analytical model to predict the gains that such dynamic approach could achieve. We demonstrate that in some systems, our approach can reduce the wasted time by over 30%.

  5. Multiple-Input Multiple-Output (MIMO) Linear Systems Extreme Inputs/Outputs

    DOE PAGES [OSTI]

    Smallwood, David O.

    2007-01-01

    A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the autospectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the autospectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input autospectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less than one willmore » result in a trace intermediate between these extremes. Least favorable response and some classes of critical response are special cases of the development. It is shown that the derivation for stationary random waveforms can also be applied to nonstationary random, transients, and deterministic waveforms.« less

  6. Permeation absorption sampler with multiple detection

    DOEpatents

    Zaromb, Solomon

    1990-01-01

    A system for detecting analytes in air or aqueous systems includes a permeation absorption preconcentrator sampler for the analytes and analyte detectors. The preconcentrator has an inner fluid-permeable container into which a charge of analyte-sorbing liquid is intermittently injected, and a fluid-impermeable outer container. The sample is passed through the outer container and around the inner container for trapping and preconcentrating the analyte in the sorbing liquid. The analyte can be detected photometrically by injecting with the sorbing material a reagent which reacts with the analyte to produce a characteristic color or fluorescence which is detected by illuminating the contents of the inner container with a light source and measuring the absorbed or emitted light, or by producing a characteristic chemiluminescence which can be detected by a suitable light sensor. The analyte can also be detected amperometrically. Multiple inner containers may be provided into which a plurality of sorbing liquids are respectively introduced for simultaneously detecting different analytes. Baffles may be provided in the outer container. A calibration technique is disclosed.

  7. Multiple capillary biochemical analyzer with barrier member

    DOEpatents

    Dovichi, Norman J.; Zhang, Jian Z.

    1996-01-01

    A multiple capillary biochemical analyzer for sequencing DNA and performing other analyses, in which a set of capillaries extends from wells in a microtiter plate into a cuvette. In the cuvette the capillaries are held on fixed closely spaced centers by passing through a sandwich construction having a pair of metal shims which squeeze between them a rubber gasket, forming a leak proof seal for an interior chamber in which the capillary ends are positioned. Sheath fluid enters the chamber and entrains filament sample streams from the capillaries. The filament sample streams, and sheath fluid, flow through aligned holes in a barrier member spaced close to the capillary ends, into a collection chamber having a lower glass window. The filament streams are illuminated above the barrier member by a laser, causing them to fluoresce. The fluorescence is viewed end-on by a CCD camera chip located below the glass window. The arrangement ensures an equal optical path length from all fluorescing spots to the CCD chip and also blocks scattered fluorescence illumination, providing more uniform results and an improved signal to noise ratio.

  8. Multiple capillary biochemical analyzer with barrier member

    DOEpatents

    Dovichi, N.J.; Zhang, J.Z.

    1996-10-22

    A multiple capillary biochemical analyzer is disclosed for sequencing DNA and performing other analyses, in which a set of capillaries extends from wells in a microtiter plate into a cuvette. In the cuvette the capillaries are held on fixed closely spaced centers by passing through a sandwich construction having a pair of metal shims which squeeze between them a rubber gasket, forming a leak proof seal for an interior chamber in which the capillary ends are positioned. Sheath fluid enters the chamber and entrains filament sample streams from the capillaries. The filament sample streams, and sheath fluid, flow through aligned holes in a barrier member spaced close to the capillary ends, into a collection chamber having a lower glass window. The filament streams are illuminated above the barrier member by a laser, causing them to fluoresce. The fluorescence is viewed end-on by a CCD camera chip located below the glass window. The arrangement ensures an equal optical path length from all fluorescing spots to the CCD chip and also blocks scattered fluorescence illumination, providing more uniform results and an improved signal-to-noise ratio. 12 figs.

  9. Knowledge Framework Implementation with Multiple Architectures - 13090

    SciTech Connect

    Upadhyay, H.; Lagos, L.; Quintero, W.; Shoffner, P.; DeGregory, J.

    2013-07-01

    Multiple kinds of knowledge management systems are operational in public and private enterprises, large and small organizations with a variety of business models that make the design, implementation and operation of integrated knowledge systems very difficult. In recent days, there has been a sweeping advancement in the information technology area, leading to the development of sophisticated frameworks and architectures. These platforms need to be used for the development of integrated knowledge management systems which provides a common platform for sharing knowledge across the enterprise, thereby reducing the operational inefficiencies and delivering cost savings. This paper discusses the knowledge framework and architecture that can be used for the system development and its application to real life need of nuclear industry. A case study of deactivation and decommissioning (D and D) is discussed with the Knowledge Management Information Tool platform and framework. D and D work is a high priority activity across the Department of Energy (DOE) complex. Subject matter specialists (SMS) associated with DOE sites, the Energy Facility Contractors Group (EFCOG) and the D and D community have gained extensive knowledge and experience over the years in the cleanup of the legacy waste from the Manhattan Project. To prevent the D and D knowledge and expertise from being lost over time from the evolving and aging workforce, DOE and the Applied Research Center (ARC) at Florida International University (FIU) proposed to capture and maintain this valuable information in a universally available and easily usable system. (authors)

  10. Nanoparticles modified with multiple organic acids

    DOEpatents

    Cook, Ronald Lee; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew; Elliott, Brian John; Kreutzer, Cory; Wilson, Carolina; Meiser, Manfred

    2007-07-17

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  11. Multiple shock initiation of LX-17

    SciTech Connect

    Tarver, C.M.; Cook, T.M.; Urtiew, P.A.; Tao, W.C.

    1993-07-01

    The response of the insensitive TATB-based high explosive LX-17 to multiple shock impacts is studied experimentally in a four inch gas gun using embedded manganin gauges and numerically using the ignition and growth reactive flow model of shock initiation and detonation. Pressure histories are reported for LX-17 cylinders which are subjected to sustained shock pulses followed by secondary compressions from shocks reflected from metal discs attached to the backs of the explosive targets. These measured and calculated pressure histories show that the threshold for hot spot growth in LX-17 is 7 GPa, that LX-17 can be dead pressed at slightly lower pressures, and that the reaction rates behind reflected shocks increase greatly as the impedance of the metal increases. A study of the response of LX-17 to the collision of two reacting, diverging shocks forming a Mach stem wave inside the LX-17 charge demonstrated that this interaction can result in a high pressure region of sufficient size and strength to cause detonation under certain conditions.

  12. Multiple connection for an undersea cable system

    SciTech Connect

    Guazzo, L.; Trezeguet, J.P.

    1984-05-08

    A multiple connection is claimed for connecting a plurality of armored cables to the housing of electrical apparatus in an undersea system having a cable interconnection point where a plurality of cables serving different destinations are brought together. Each of these cables comprise a core surrounded by armor and are terminated by a length of bared core extending beyond a severed end of the armor. The housing has a hollow cable-fixing part through which the bared cable cores pass, characterized in that said connection comprises: a steel binding ring through which the armored portion of each of said cables, is threaded, said ring serving to bind said armored portions of cable together; a steel tube threaded over said bared cores of said cables, having one end abutting against severed end portions of the armor of said cables and having its other end fixed mechanically to said hollow cable-fixing part of the electrical apparatus housing; and auxiliary armor wound around the portions of armored cable bound together by said ring and around the adjacent portion of said steel tube.

  13. From binaries to multiples. II. Hierarchical multiplicity of F and G dwarfs

    SciTech Connect

    Tokovinin, Andrei

    2014-04-01

    Statistics of hierarchical multiplicity among solar-type dwarfs are studied using the distance-limited sample of 4847 targets presented in the accompanying Paper I. Known facts about binaries (multiplicity fraction 0.46, lognormal period distribution with median period 100 yr and logarithmic dispersion 2.4, and nearly uniform mass-ratio distribution independent of the period) are confirmed with a high statistical significance. The fraction of hierarchies with three or more components is 0.13 0.01, and the fractions of targets with n = 1, 2, 3, ... components are 54:33:8:4:1. Subsystems in the secondary components are almost as frequent as in the primary components, but in half of such cases both inner pairs are present. The high frequency of those 2+2 hierarchies (4%) suggests that both inner pairs were formed by a common process. The statistics of hierarchies can be reproduced by simulations, assuming that the field is a mixture coming from binary-rich and binary-poor environments. Periods of the outer and inner binaries are selected recursively from the same lognormal distribution, subject to the stability constraint and accounting for the correlation between inner subsystems. The simulator can be used to evaluate the frequency of multiple systems with specified parameters. However, it does not reproduce the observed excess of inner periods shorter than 10 days, caused by tidal evolution.

  14. Large-Scale Information Systems

    SciTech Connect

    D. M. Nicol; H. R. Ammerlahn; M. E. Goldsby; M. M. Johnson; D. E. Rhodes; A. S. Yoshimura

    2000-12-01

    Large enterprises are ever more dependent on their Large-Scale Information Systems (LSLS), computer systems that are distinguished architecturally by distributed components--data sources, networks, computing engines, simulations, human-in-the-loop control and remote access stations. These systems provide such capabilities as workflow, data fusion and distributed database access. The Nuclear Weapons Complex (NWC) contains many examples of LSIS components, a fact that motivates this research. However, most LSIS in use grew up from collections of separate subsystems that were not designed to be components of an integrated system. For this reason, they are often difficult to analyze and control. The problem is made more difficult by the size of a typical system, its diversity of information sources, and the institutional complexities associated with its geographic distribution across the enterprise. Moreover, there is no integrated approach for analyzing or managing such systems. Indeed, integrated development of LSIS is an active area of academic research. This work developed such an approach by simulating the various components of the LSIS and allowing the simulated components to interact with real LSIS subsystems. This research demonstrated two benefits. First, applying it to a particular LSIS provided a thorough understanding of the interfaces between the system's components. Second, it demonstrated how more rapid and detailed answers could be obtained to questions significant to the enterprise by interacting with the relevant LSIS subsystems through simulated components designed with those questions in mind. In a final, added phase of the project, investigations were made on extending this research to wireless communication networks in support of telemetry applications.

  15. Spin-orbit interaction in multiple quantum wells

    SciTech Connect

    Hao, Ya-Fei

    2015-01-07

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.

  16. Control of Multiple Robotic Sentry Vehicles

    SciTech Connect

    Feddema, J.; Klarer, P.; Lewis, C.

    1999-04-01

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

  17. Organic light emitting device having multiple separate emissive layers

    DOEpatents

    Forrest, Stephen R. (Ann Arbor, MI)

    2012-03-27

    An organic light emitting device having multiple separate emissive layers is provided. Each emissive layer may define an exciton formation region, allowing exciton formation to occur across the entire emissive region. By aligning the energy levels of each emissive layer with the adjacent emissive layers, exciton formation in each layer may be improved. Devices incorporating multiple emissive layers with multiple exciton formation regions may exhibit improved performance, including internal quantum efficiencies of up to 100%.

  18. Multiple Motivations Institutional Change Principle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Multiple Motivations Institutional Change Principle Multiple Motivations Institutional Change Principle The multiple motivations principle suggests that a portfolio approach-rather than a single strategy-may be required to achieve change. Research demonstrates that people and institutions adopt new behaviors for many reasons. They likely need more than one reason for changing their current behavior. Therefore, people may shift to more sustainable, energy-efficient behaviors in the workplace

  19. U-198: IBM Lotus Expeditor Multiple Vulnerabilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    8: IBM Lotus Expeditor Multiple Vulnerabilities U-198: IBM Lotus Expeditor Multiple Vulnerabilities June 25, 2012 - 7:00am Addthis PROBLEM: Multiple vulnerabilities have been reported in IBM Lotus Expeditor. PLATFORM: IBM Lotus Expeditor 6.x ABSTRACT: The vulnerabilities can be exploited by malicious people to conduct cross-site scripting attacks, disclose potentially sensitive information, bypass certain security restrictions, and compromise a user's system.. Reference Links: Vendor Advisory

  20. Scaling Rules for Pre-Injector Design

    SciTech Connect

    Tom Schwarz; Dan Amidei

    2003-07-13

    Proposed designs of the prebunching system of the NLC and TESLA are based on the assumption that scaling the SLC design to NLC/TESLA requirements should provide the desired performance. A simple equation is developed to suggest a scaling rule in terms of bunch charge and duration. Detailed simulations of prebunching systems scaled from a single design have been run to investigate these issues.

  1. Extreme Scale Computing, Co-Design

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Information Science, Computing, Applied Math » Extreme Scale Computing, Co-design » Publications Publications Ramon Ravelo, Qi An, Timothy C. Germann, and Brad Lee Holian, "Large-scale molecular dynamics simulations of shock induced plasticity in tantalum single crystals," AIP Conference Proceedings 1426, 1263-1266 (2012). Frank J. Cherne, Guy Dimonte, and Timothy C. Germann, "Richtymer-Meshkov instability examined with large-scale molecular dynamics simulations," AIP

  2. Intrinsic carrier multiplication efficiency in bulk Si crystals...

    Office of Scientific and Technical Information (OSTI)

    We estimated the carrier multiplication efficiency in the most common solar-cell material, ... of carriers quantitatively, which are crucial for the design of the solar cells. ...

  3. Matrix multiplication operations with data pre-conditioning in...

    Office of Scientific and Technical Information (OSTI)

    with data pre-conditioning in a high performance computing architecture Citation Details In-Document Search Title: Matrix multiplication operations with data ...

  4. T-681:IBM Lotus Symphony Multiple Unspecified Vulnerabilities

    Energy.gov [DOE]

    Multiple unspecified vulnerabilities in IBM Lotus Symphony 3 before FP3 have unknown impact and attack vectors, related to "critical security vulnerability issues."

  5. ALS Capabilities Reveal Multiple Functions of Ebola Virus

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reveal Multiple Functions of Ebola Virus Print A central dogma of molecular biology is that a protein's sequence dictates its fold, and the fold dictates its function....

  6. Characterization of Tritium Breeding Ratio and Energy Multiplication...

    Office of Scientific and Technical Information (OSTI)

    Factor of Lithium-based Ternary Alloys in IFE Blankets Citation Details In-Document Search Title: Characterization of Tritium Breeding Ratio and Energy Multiplication Factor of ...

  7. V-107: Wireshark Multiple Denial of Service Vulnerabilities

    Energy.gov [DOE]

    Multiple vulnerabilities have been reported in Wireshark, which can be exploited by malicious people to cause a DoS (Denial of Service).

  8. Efficient merging of data from multiple samples for determination...

    Office of Scientific and Technical Information (OSTI)

    Title: Efficient merging of data from multiple samples for determination of anomalous substructure Authors: Akey, David L. ; Terwilliger, Thomas C. ; Smith, Janet L. 1 ; LANL) ...

  9. V-043: Perl Locale::Maketext Module '_compile()' Multiple Code...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    V-043: Perl Locale::Maketext Module 'compile()' Multiple Code Injection Vulnerabilities ... Arbitrary Code and View Arbitrary Files V-002: EMC NetWorker Module for Microsoft ...

  10. V-145: IBM Tivoli Federated Identity Manager Products Java Multiple...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    V-145: IBM Tivoli Federated Identity Manager Products Java Multiple Vulnerabilities April 30, 2013 - 12:09am Addthis PROBLEM: IBM Tivoli Federated Identity Manager Products Java ...

  11. Matrix multiplication operations with data pre-conditioning in...

    Office of Scientific and Technical Information (OSTI)

    Matrix multiplication operations with data pre-conditioning in a high performance computing architecture Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A Mechanisms...

  12. Building multiple adsorption sites in porous polymer networks...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Building multiple adsorption sites in porous polymer networks for carbon capture applications Previous Next List Weigang Lu, Wolfgang M. Verdegaal, Jiamei Yu, Perla B Balbuena,...

  13. Complex matrix multiplication operations with data pre-conditioning...

    Office of Scientific and Technical Information (OSTI)

    operand of the complex matrix multiplication operation to a first target vector register. ... and replicate the second complex vector value within a second target vector register. ...

  14. Matrix multiplication operations with data pre-conditioning in...

    Office of Scientific and Technical Information (OSTI)

    vector operand of the matrix multiplication operation to a first target vector register. ... the element to each of a plurality of elements of a second target vector register. ...

  15. Frequency domain quantum optimal control under multiple constraints...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Frequency domain quantum optimal control under multiple constraints Citation Details In-Document Search This content will become ...

  16. AltaRock Energy Announces Successful Multiple-Zone Stimulation...

    Energy Saver

    Geothermal Systems Demonstration AltaRock Energy Announces Successful Multiple-Zone Stimulation of Well at the Newberry Enhanced Geothermal Systems Demonstration January 22, 2013 - ...

  17. Direct imaging of multiple planets orbiting the star HR 8799...

    Office of Scientific and Technical Information (OSTI)

    Direct imaging of multiple planets orbiting the star HR 8799 Citation Details In-Document ... Resource Type: Journal Article Resource Relation: Journal Name: Science, vol. 322, no. ...

  18. U-277: Google Chrome Multiple Flaws Let Remote Users Execute...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Addthis PROBLEM: Google Chrome Multiple Flaws Let Remote Users Execute Arbitrary Code PLATFORM: Version(s): prior to 22.0.1229.92 ABSTRACT: Several vulnerabilities were...

  19. Atomic Scale Characterization of Compound Semiconductors using...

    Office of Scientific and Technical Information (OSTI)

    more fundamental understanding of carrier dynamics in photovoltaic (PV) device structures. ... Applying these improved analysis conditions to III-V based PV gives an atomic scale ...

  20. Large-Scale Liquid Hydrogen Handling Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - Storage tanks - Liquid Pumps - Vaporizers - Ancillaries 2 1 Concern is that Scaling up from Small Units Could Significantly Underestimate Costs of Larger Units Larger ...

  1. Driving Innovation, Speeding Adoption, Scaling Savings

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Driving Innovation, Speeding Adoption, Scaling Savings An Overview of the Building Technologies Office Roland Risser 2016 Building Technologies Office Peer Review April 4, 2016 2 ...

  2. Extreme Scale Computing, Co-design

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Extreme Scale Computing, Co-design Informing system design, ensuring productive and efficient code Project Description To address the increasingly complex problems of the modern ...

  3. Characterizing Scaled Wind Farm Technology Facility Inflow

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scaled Wind Farm Technology Facility Inflow - Sandia Energy Energy Search Icon Sandia Home ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  4. SCALING OF COMPOSITE WIND TURBINE BLADES FOR

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    COMPOSITE MATERIALS FOR MEGAWATT-SCALE WIND TURBINE BLADES: DESIGN CONSIDERATIONS AND ... Both VARTM and prepreg materials have particular design challenges for manufacturing ...

  5. Scaling of Magnetic Reconnection in Relativistic Collisionless...

    Office of Scientific and Technical Information (OSTI)

    Title: Scaling of Magnetic Reconnection in Relativistic Collisionless Pair Plasmas Authors: Liu, Yi-Hsin ; Guo, Fan ; Daughton, William ; Li, Hui ; Hesse, Michael Publication Date: ...

  6. Small-Scale Renewable Energy Incentive Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Vermont's Small Scale Renewable Energy Incentive Program (SSREIP), initiated in June 2003, currently provides funding for new solar water heating and advanced wood pellet heating installations. T...

  7. Large-Scale Computational Fluid Dynamics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Large-Scale Computational Fluid Dynamics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future ...

  8. Promoting Sustainability on a Global Scale

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Promoting Sustainability on a Global Scale Biomass 2013 Washington, 1 August 2013 Martina ... framework for GHG calculations -Sustainability criteria & indicators Roundtable on ...

  9. Commercial-Scale Renewable-Energy Grants

    Energy.gov [DOE]

    The Rhode Island Commerce Corporation (Commerce RI) seeks to fund commercial scale renewable energy projects to generate electricity for onsite consumption. Commerce RI provides incentives for...

  10. Connecting the Molecular and the Continuum Scales

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    range of phenomena, from climate change to contaminant remediation. Accomplishments: Used molecular dynamics (MD) simulations to determine molecular-scale diffusion coefficients of...

  11. Extreme Scale Computing, Co-Design

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Information Science, Computing, Applied Math Extreme Scale Computing, Co-design Publications Publications Ramon Ravelo, Qi An, Timothy C. Germann, and Brad Lee Holian, ...

  12. INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING...

    Energy.gov [DOE] (indexed site)

    Industrial Scale Demonstration of Smart Manufacturing (554.65 KB) More Documents & Publications CX-010754: Categorical Exclusion Determination RAPID FREEFORM SHEET METAL FORMING: ...

  13. Promoting Sustainability on a Global Scale | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Promoting Sustainability on a Global Scale Promoting Sustainability on a Global Scale Promoting Sustainability on a Global Scale Martina Otto, Head of the Policy Unit, United ...

  14. DLFM library tools for large scale dynamic applications

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DLFM library tools for large scale dynamic applications DLFM library tools for large scale dynamic applications Large scale Python and other dynamic applications may spend huge ...

  15. Process Development and Scale up of Advanced Electrolyte Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Scale up of Advanced Electrolyte Materials Process Development and Scale up of Advanced ... More Documents & Publications Process Development and Scale up of Advanced Electrolyte ...

  16. Presentation on the Large-Scale Renewable Energy Guide | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presentation on the Large-Scale Renewable Energy Guide Presentation on the Large-Scale Renewable Energy Guide Presentation covers the Large-Scale RE Guide: Developing Renewable ...

  17. Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery Algenol Biofuels Inc., will create a pilot-scale biorefinery ...

  18. Design Optimization of Radionuclide Nano-Scale Batteries

    SciTech Connect

    Schoenfeld, D.W.; Tulenko, J.S.; Wang, J.; Smith, B.

    2004-10-06

    Radioisotopes have been used for power sources in heart pacemakers and space applications dating back to the 50's. Two key properties of radioisotope power sources are high energy density and long half-life compared to chemical batteries. The tritium battery used in heart pacemakers exceeds 500 mW-hr, and is being evaluated by the University of Florida for feasibility as a MEMS (MicroElectroMechanical Systems) power source. Conversion of radioisotope sources into electrical power within the constraints of nano-scale dimensions requires cutting-edge technologies and novel approaches. Some advances evolving in the III-V and II-IV semiconductor families have led to a broader consideration of radioisotopes rather free of radiation damage limitations. Their properties can lead to novel battery configurations designed to convert externally located emissions from a highly radioactive environment. This paper presents results for the analytical computational assisted design and modeling of semiconductor prototype nano-scale radioisotope nuclear batteries from MCNP and EGS programs. The analysis evaluated proposed designs and was used to guide the selection of appropriate geometries, material properties, and specific activities to attain power requirements for the MEMS batteries. Plans utilizing high specific activity radioisotopes were assessed in the investigation of designs employing multiple conversion cells and graded junctions with varying band gap properties. Voltage increases sought by serial combination of VOC s are proposed to overcome some of the limitations of a low power density. The power density is directly dependent on the total active areas.

  19. Horizontally scaling dChache SRM with the Terracotta platform

    SciTech Connect

    Perelmutov, T.; Crawford, M.; Moibenko, A.; Oleynik, G.; /Fermilab

    2011-01-01

    The dCache disk caching file system has been chosen by a majority of LHC experiments Tier 1 centers for their data storage needs. It is also deployed at many Tier 2 centers. The Storage Resource Manager (SRM) is a standardized grid storage interface and a single point of remote entry into dCache, and hence is a critical component. SRM must scale to increasing transaction rates and remain resilient against changing usage patterns. The initial implementation of the SRM service in dCache suffered from an inability to support clustered deployment, and its performance was limited by the hardware of a single node. Using the Terracotta platform, we added the ability to horizontally scale the dCache SRM service to run on multiple nodes in a cluster configuration, coupled with network load balancing. This gives site administrators the ability to increase the performance and reliability of SRM service to face the ever-increasing requirements of LHC data handling. In this paper we will describe the previous limitations of the architecture SRM server and how the Terracotta platform allowed us to readily convert single node service into a highly scalable clustered application.

  20. Test Plan: WIPP bin-scale CH TRU waste tests

    SciTech Connect

    Molecke, M.A.

    1990-08-01

    This WIPP Bin-Scale CH TRU Waste Test program described herein will provide relevant composition and kinetic rate data on gas generation and consumption resulting from TRU waste degradation, as impacted by synergistic interactions due to multiple degradation modes, waste form preparation, long-term repository environmental effects, engineered barrier materials, and, possibly, engineered modifications to be developed. Similar data on waste-brine leachate compositions and potentially hazardous volatile organic compounds released by the wastes will also be provided. The quantitative data output from these tests and associated technical expertise are required by the WIPP Performance Assessment (PA) program studies, and for the scientific benefit of the overall WIPP project. This Test Plan describes the necessary scientific and technical aspects, justifications, and rational for successfully initiating and conducting the WIPP Bin-Scale CH TRU Waste Test program. This Test Plan is the controlling scientific design definition and overall requirements document for this WIPP in situ test, as defined by Sandia National Laboratories (SNL), scientific advisor to the US Department of Energy, WIPP Project Office (DOE/WPO). 55 refs., 16 figs., 19 tabs.

  1. Aerosol cluster impact and break-up : II. Atomic and Cluster Scale Models.

    SciTech Connect

    Lechman, Jeremy B.; Takato, Yoichi

    2010-09-01

    Understanding the interaction of aerosol particle clusters/flocs with surfaces is an area of interest for a number of processes in chemical, pharmaceutical, and powder manufacturing as well as in steam-tube rupture in nuclear power plants. Developing predictive capabilities for these applications involves coupled phenomena on multiple length and timescales from the process macroscopic scale ({approx}1m) to the multi-cluster interaction scale (1mm-0.1m) to the single cluster scale ({approx}1000 - 10000 particles) to the particle scale (10nm-10{micro}m) interactions, and on down to the sub-particle, atomic scale interactions. The focus of this report is on the single cluster scale; although work directed toward developing better models of particle-particle interactions by considering sub-particle scale interactions and phenomena is also described. In particular, results of mesoscale (i.e., particle to single cluster scale) discrete element method (DEM) simulations for aerosol cluster impact with rigid walls are presented. The particle-particle interaction model is based on JKR adhesion theory and is implemented as an enhancement to the granular package in the LAMMPS code. The theory behind the model is outlined and preliminary results are shown. Additionally, as mentioned, results from atomistic classical molecular dynamics simulations are also described as a means of developing higher fidelity models of particle-particle interactions. Ultimately, the results from these and other studies at various scales must be collated to provide systems level models with accurate 'sub-grid' information for design, analysis and control of the underlying systems processes.

  2. Broken Scale Invariance and Anomalous Dimensions

    DOE R&D Accomplishments

    Wilson, K. G.

    1970-05-01

    Mack and Kastrup have proposed that broken scale invariance is a symmetry of strong interactions. There is evidence from the Thirring model and perturbation theory that the dimensions of fields defined by scale transformations will be changed by the interaction from their canonical values. We review these ideas and their consequences for strong interactions.

  3. INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    TRANSFORMATIONAL ENERGY PRODUCTIVITY GAINS | Department of Energy INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING TRANSFORMATIONAL ENERGY PRODUCTIVITY GAINS INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING TRANSFORMATIONAL ENERGY PRODUCTIVITY GAINS University of Texas at Austin - Austin, TX A Smart Manufacturing (SM) platform can integrate information technology, performance metrics, and models and simulations driven by real-time plant sensor data. This

  4. Enhancements in SCALE 6.1

    SciTech Connect

    Rearden, Bradley T; Petrie Jr, Lester M; Peplow, Douglas E.; Jessee, Matthew Anderson; Wiarda, Dorothea; Williams, Mark L; Lefebvre, Robert A; Lefebvre, Jordan P; Gauld, Ian C; Goluoglu, Sedat

    2012-01-01

    The SCALE code system developed at Oak Ridge National Laboratory provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, licensees, and research institutions around the world have used SCALE for nuclear safety analysis and design. SCALE provides a 'plug-and-play' framework with 89 computational modules, including three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution. SCALE's graphical user interfaces assist with accurate system modeling, visualization, and convenient access to desired results. SCALE 6.1 builds on the existing capabilities and ease-of-use of SCALE and provides several new features such as enhanced lattice physics capabilities and multigroup Monte Carlo depletion, improved options and capabilities for sensitivity and uncertainty analysis calculations, improved flexibility in shielding and criticality accident alarm system calculations with automated variance reduction, and new options for the definition of group structures for depletion calculations. The SCALE 6.1 development team has focused on improved robustness via substantial additional regression testing and verification for new and existing features, providing improved performance relative to SCALE 6.0, especially in reactor physics calculations and in the nuclear data used for source term characterization and shielding calculations.

  5. Multiple pass and multiple layer friction stir welding and material enhancement processes

    DOEpatents

    Feng, Zhili [Knoxville, TN; David, Stan A. [Knoxville, TN; Frederick, David Alan [Harriman, TN

    2010-07-27

    Processes for friction stir welding, typically for comparatively thick plate materials using multiple passes and multiple layers of a friction stir welding tool. In some embodiments a first portion of a fabrication preform and a second portion of the fabrication preform are placed adjacent to each other to form a joint, and there may be a groove adjacent the joint. The joint is welded and then, where a groove exists, a filler may be disposed in the groove, and the seams between the filler and the first and second portions of the fabrication preform may be friction stir welded. In some embodiments two portions of a fabrication preform are abutted to form a joint, where the joint may, for example, be a lap joint, a bevel joint or a butt joint. In some embodiments a plurality of passes of a friction stir welding tool may be used, with some passes welding from one side of a fabrication preform and other passes welding from the other side of the fabrication preform.

  6. DOE small scale fuel alcohol plant design

    SciTech Connect

    LaRue, D.M.; Richardson, J.G.

    1980-01-01

    The Department of Energy, in an effort to facilitate the deployment of rural-based ethanol production capability, has undertaken this effort to develop a basic small-scale plant design capable of producing anhydrous ethanol. The design, when completed, will contain all necessary specifications and diagrams sufficient for the construction of a plant. The design concept is modular; that is, sections of the plant can stand alone or be integrated into other designs with comparable throughput rates. The plant design will be easily scaled up or down from the designed flow rate of 25 gallons of ethanol per hour. Conversion factors will be provided with the final design package to explain scale-up and scale-down procedures. The intent of this program is to provide potential small-scale producers with sound information about the size, engineering requirements, costs and level of effort in building such a system.

  7. UTILITY-SCALE PHOTOVOLTAIC SOLAR | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    UTILITY-SCALE PHOTOVOLTAIC SOLAR UTILITY-SCALE PHOTOVOLTAIC SOLAR SOLAR: UTILITY-SCALE PHOTOVOLTAIC SOLAR POSTER (1.07 MB) More Documents & Publications UTILITY-SCALE PHOTOVOLTAIC SOLAR Download LPO's Illustrated Poster Series ANTELOPE VALLEY SOLAR RANCH MESQUITE

  8. Large-scale convective instability in an electroconducting medium with small-scale helicity

    SciTech Connect

    Kopp, M. I.; Tur, A. V.; Yanovsky, V. V.

    2015-04-15

    A large-scale instability occurring in a stratified conducting medium with small-scale helicity of the velocity field and magnetic fields is detected using an asymptotic many-scale method. Such a helicity is sustained by small external sources for small Reynolds numbers. Two regimes of instability with zero and nonzero frequencies are detected. The criteria for the occurrence of large-scale instability in such a medium are formulated.

  9. Tools and Models for Integrating Multiple Cellular Networks

    SciTech Connect

    Gerstein, Mark

    2015-11-06

    In this grant, we have systematically investigated the integrated networks, which are responsible for the coordination of activity between metabolic pathways in prokaryotes. We have developed several computational tools to analyze the topology of the integrated networks consisting of metabolic, regulatory, and physical interaction networks. The tools are all open-source, and they are available to download from Github, and can be incorporated in the Knowledgebase. Here, we summarize our work as follow. Understanding the topology of the integrated networks is the first step toward understanding its dynamics and evolution. For Aim 1 of this grant, we have developed a novel algorithm to determine and measure the hierarchical structure of transcriptional regulatory networks [1]. The hierarchy captures the direction of information flow in the network. The algorithm is generally applicable to regulatory networks in prokaryotes, yeast and higher organisms. Integrated datasets are extremely beneficial in understanding the biology of a system in a compact manner due to the conflation of multiple layers of information. Therefore for Aim 2 of this grant, we have developed several tools and carried out analysis for integrating system-wide genomic information. To make use of the structural data, we have developed DynaSIN for protein-protein interactions networks with various dynamical interfaces [2]. We then examined the association between network topology with phenotypic effects such as gene essentiality. In particular, we have organized E. coli and S. cerevisiae transcriptional regulatory networks into hierarchies. We then correlated gene phenotypic effects by tinkering with different layers to elucidate which layers were more tolerant to perturbations [3]. In the context of evolution, we also developed a workflow to guide the comparison between different types of biological networks across various species using the concept of rewiring [4], and Furthermore, we have developed

  10. Understanding transport through dimensionless parameter scaling experiments

    SciTech Connect

    Petty, C.C.; Luce, T.C.

    1997-07-01

    The related methods of dimensional analysis, similarity, and scale invariance provide a powerful technique for analyzing physical systems. For example, the complex plasma dynamics governed by the Vlasov-Maxwell system of equations can be characterized by sets of dimensionless quantities through the application of these techniques. Significant progress has been made recently towards predicting and understanding radial heat transport using dimensionless parameter scaling techniques. Previous experiments on the DIII-D tokamak have measured the variation of heat transport with the relative gyroradius ({rho}*); in this paper, the scaling of heat transport with plasma beta ({beta}) and normalized collisionality ({nu}) for L-mode and H-mode plasmas on the DIII-D tokamak is reported. Following the scale invariance approach to confinement scaling, the thermal diffusivity ({chi}) is assumed to depend only on local dimensionless quantities. Understanding the beta and collisionality scaling of transport helps to differentiate between various proposed mechanisms of turbulent transport and allows the origin of power degradation and density scaling of confinement to be determined.

  11. Enhancements in SCALE 6.1

    SciTech Connect

    Rearden, Bradley T

    2010-01-01

    The Standardized Computer Analysis for Licensing Evaluation (SCALE) code system developed at Oak Ridge National Laboratory provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides a 'plug-and-play' framework with nearly 80 computational modules, including three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution. SCALE's graphical user interfaces assist with accurate system modeling and convenient access to desired results. SCALE 6.1, scheduled for release in the fall of 2010, provides improved reliability and introduces a number of enhanced features, some of which are briefly described here. SCALE 6.1 provides state-of-the-art capabilities for criticality safety, reactor physics, and radiation shielding in a robust yet user-friendly package. The new features and improved reliability of this latest release of SCALE are intended to improve safety and efficiency throughout the nuclear community.

  12. Modernization Enhancements in SCALE 6.2

    SciTech Connect

    Rearden, Bradley T; Lefebvre, Robert A; Lefebvre, Jordan P; Clarno, Kevin T; Williams, Mark L; Petrie Jr, Lester M; Mertyurek, Ugur

    2014-01-01

    SCALE is a widely used suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, industry, and research institutions around the world have used SCALE for nuclear safety analysis and design. However, the underlying architecture of SCALE is based on a 40-year old design with dozens of independent functional modules and control programs, primarily implemented in the Fortran programming language, with extensive use of customized intermediate files to control the logical flow of the analysis. Data are passed between individual computational codes using custom binary files that are read from and written to the hard disk. The SCALE modernization plan provides a progression towards SCALE 7, which will provide an object-oriented parallel-enabled software infrastructure with state-of-the-art methods implemented as reusable components. This paper provides a brief overview of the goals of SCALE modernization and details some modernized features available with SCALE 6.2.

  13. Scaling phenomena in fatigue and fracture

    SciTech Connect

    Barenblatt, G.I.

    2004-12-01

    The general classification of scaling laws will be presented and the basic concepts of modern similarity analysis--intermediate asymptotics, complete and incomplete similarity--will be introduced and discussed. The examples of scaling laws corresponding to complete similarity will be given. The Paris scaling law in fatigue will be discussed as an instructive example of incomplete similarity. It will be emphasized that in the Paris law the powers are not the material constants. Therefore, the evaluation of the life-time of structures using the data obtained from standard fatigue tests requires some precautions.

  14. Method and system for small scale pumping

    DOEpatents

    Insepov, Zeke; Hassanein, Ahmed

    2010-01-26

    The present invention relates generally to the field of small scale pumping and, more specifically, to a method and system for very small scale pumping media through microtubes. One preferred embodiment of the invention generally comprises: method for small scale pumping, comprising the following steps: providing one or more media; providing one or more microtubes, the one or more tubes having a first end and a second end, wherein said first end of one or more tubes is in contact with the media; and creating surface waves on the tubes, wherein at least a portion of the media is pumped through the tube.

  15. Compact wire array sources: power scaling and implosion physics.

    SciTech Connect

    Serrano, Jason Dimitri; Chuvatin, Alexander S.; Jones, M. C.; Vesey, Roger Alan; Waisman, Eduardo M.; Ivanov, V. V.; Esaulov, Andrey A.; Ampleford, David J.; Cuneo, Michael Edward; Kantsyrev, Victor Leonidovich; Coverdale, Christine Anne; Rudakov, L. I.; Jones, Brent Manley; Safronova, Alla S.; Vigil, Marcelino Patricio

    2008-09-01

    A series of ten shots were performed on the Saturn generator in short pulse mode in order to study planar and small-diameter cylindrical tungsten wire arrays at {approx}5 MA current levels and 50-60 ns implosion times as candidates for compact z-pinch radiation sources. A new vacuum hohlraum configuration has been proposed in which multiple z pinches are driven in parallel by a pulsed power generator. Each pinch resides in a separate return current cage, serving also as a primary hohlraum. A collection of such radiation sources surround a compact secondary hohlraum, which may potentially provide an attractive Planckian radiation source or house an inertial confinement fusion fuel capsule. Prior to studying this concept experimentally or numerically, advanced compact wire array loads must be developed and their scaling behavior understood. The 2008 Saturn planar array experiments extend the data set presented in Ref. [1], which studied planar arrays at {approx}3 MA, 100 ns in Saturn long pulse mode. Planar wire array power and yield scaling studies now include current levels directly applicable to multi-pinch experiments that could be performed on the 25 MA Z machine. A maximum total x-ray power of 15 TW (250 kJ in the main pulse, 330 kJ total yield) was observed with a 12-mm-wide planar array at 5.3 MA, 52 ns. The full data set indicates power scaling that is sub-quadratic with load current, while total and main pulse yields are closer to quadratic; these trends are similar to observations of compact cylindrical tungsten arrays on Z. We continue the investigation of energy coupling in these short pulse Saturn experiments using zero-dimensional-type implosion modeling and pinhole imaging, indicating 16 cm/?s implosion velocity in a 12-mm-wide array. The same phenomena of significant trailing mass and evidence for resistive heating are observed at 5 MA as at 3 MA. 17 kJ of Al K-shell radiation was obtained in one Al planar array fielded at 5.5 MA, 57 ns and we

  16. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    DOE PAGES [OSTI]

    Squire, J.; Bhattacharjee, A.

    2015-10-20

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Furthermore, given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic naturemore » of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.« less

  17. Stator for a rotating electrical machine having multiple control windings

    DOEpatents

    Shah, Manoj R.; Lewandowski, Chad R.

    2001-07-17

    A rotating electric machine is provided which includes multiple independent control windings for compensating for rotor imbalances and for levitating/centering the rotor. The multiple independent control windings are placed at different axial locations along the rotor to oppose forces created by imbalances at different axial locations along the rotor. The multiple control windings can also be used to levitate/center the rotor with a relatively small magnetic field per unit area since the rotor and/or the main power winding provides the bias field.

  18. V-145: IBM Tivoli Federated Identity Manager Products Java Multiple

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vulnerabilities | Department of Energy 45: IBM Tivoli Federated Identity Manager Products Java Multiple Vulnerabilities V-145: IBM Tivoli Federated Identity Manager Products Java Multiple Vulnerabilities April 30, 2013 - 12:09am Addthis PROBLEM: IBM Tivoli Federated Identity Manager Products Java Multiple Vulnerabilities PLATFORM: IBM Tivoli Federated Identity Manager versions 6.1, 6.2.0, 6.2.1, and 6.2.2. IBM Tivoli Federated Identity Manager Business Gateway versions 6.1.1, 6.2.0, 6.2.1

  19. Advancing Solar Technologies at the Utility Scale

    Energy.gov [DOE]

    This video provides an overview of the utility-scale solar inverter testing capabilities at the U.S. Department of Energy’s new Energy Systems Integration Facility (ESIF) at the National Renewable...

  20. bench scale dev | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High Pressure Stripping for Post-Combustion CO2 Capture Project No.: DE-FE0004360 The...

  1. SCE&G- Customer Scale Solar Program

    Energy.gov [DOE]

    South Carolina Electric & Gas (SCE&G) Customer Scale Solar Rebate Program, a part of SCE&G's voluntary Distributed Energy Resource Program, was approved by an order issued on July 15,...

  2. Duke Energy Carolinas Customer Scale Rebate Program

    Energy.gov [DOE]

    Duke Energy Carolinas' Customer Scale Solar Rebate Program, a part of Duke Energy's voluntary Distributed Energy Resource Program,  was approved by an order issued on July 15, 2015.

  3. External Surveillance of Geothermal Scale Deposits Employing...

    OpenEI (Open Energy Information) [EERE & EIA]

    can detect scale buildup in pipes to 1-2 m accuracy. Radiography has also detected corrosion in piping. Development of this technique is shown to be useful of monitoring...

  4. TMD Evolution at Moderate Hard Scales

    SciTech Connect

    Rogers, Ted; Collins, John C.

    2016-01-01

    We summarize some of our recent work on non-perturbative transverse momentum dependent (TMD) evolution, emphasizing aspects that are necessary for dealing with moderately low scale processes like semi-inclusive deep inelastic scattering.

  5. Large-Scale PCA for Climate

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Large-Scale PCA for Climate Large-Scale PCA for Climate The most widely used tool for extracting important patterns from the measurements of atmospheric and oceanic variables is the Empirical Orthogonal Function (EOF) technique. EOFs are popular because of their simplicity and their ability to reduce the dimensionality of large nonlinear, high-dimensional systems into fewer dimensions while preserving the most important patterns of variations in the measurements. Because EOFs are a particular

  6. Extreme Scale Computing, Co-design

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Information Science, Computing, Applied Math » Extreme Scale Computing, Co-design Extreme Scale Computing, Co-design Computational co-design may facilitate revolutionary designs in the next generation of supercomputers. Get Expertise Tim Germann Physics and Chemistry of Materials Email Allen McPherson Energy and Infrastructure Analysis Email Turab Lookman Physics and Condensed Matter and Complex Systems Email Computational co-design involves developing the interacting components of a

  7. Extreme Scale Computing, Co-design

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Extreme Scale Computing, Co-design Informing system design, ensuring productive and efficient code Project Description To address the increasingly complex problems of the modern world, scientists at Los Alamos are pushing the scale of computing to the extreme, forming partnerships with other national laboratories and industry to develop supercomputers that can achieve "exaflop" speeds-that is, a quintillion (a million trillion) calculations per second. To put such speed in perspective,

  8. Large scale structure from viscous dark matter

    SciTech Connect

    Blas, Diego; Floerchinger, Stefan; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim E-mail: stefan.floerchinger@cern.ch E-mail: ntetrad@phys.uoa.gr

    2015-11-01

    Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale k{sub m} for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be accounted for by effective non-equilibrium viscosity and pressure terms. For mildly non-linear scales, these mainly arise from momentum transport within the ideal and cold but inhomogeneous fluid, while momentum transport due to more microscopic degrees of freedom is suppressed. As a consequence, concrete expressions with no free parameters, except the matching scale k{sub m}, can be derived from matching evolution equations to standard cosmological perturbation theory. Two-loop calculations of the matter power spectrum in the viscous theory lead to excellent agreement with N-body simulations up to scales k=0.2 h/Mpc. The convergence properties in the ultraviolet are better than for standard perturbation theory and the results are robust with respect to variations of the matching scale.

  9. Classifying forest productivity at different scales

    SciTech Connect

    Graham, R.L.

    1991-01-01

    Spatial scale is an important consideration when evaluating, using, or constructing forest productivity classifications. First, the factors which dominate spatial variability in forest productivity are scale dependent. For example, within a stand, spatial variability in productivity is dominated by microsite differences; within a national forest such as the Cherokee National Forest, spatial variability is dominated by topography and land-use history (e.g., years since harvest); within a large region such as the southeast, spatial variability is dominated by climatic patterns. Second, classifications developed at different spatial scales are often used for different purposes. For example, stand-level classifications are often keys or rules used in the field to judge the quality or potential of a site. National-forest classifications are often presented as maps or tables and may be used in forest land planning. Regional classifications may be maps or tables and may be used to quantify or predict resource availability. These scale-related differences in controlling factors and purposes will affect both the methods and the data used to develop classifications. In this paper, I will illustrate these points by describing and comparing three forest productivity classifications, each developed for a specific purpose at a specific scale. My objective is not to argue for or against any of these particular classifications but rather to heighten awareness of the critical role that spatial scale plays in the use and development of forest productivity classifications. 8 refs., 2 figs., 1 tab.

  10. BENCH SCALE SALTSTONE PROCESS DEVELOPMENT MIXING STUDY

    SciTech Connect

    Cozzi, A.; Hansen, E.

    2011-08-03

    The Savannah River National Laboratory (SRNL) was requested to develop a bench scale test facility, using a mixer, transfer pump, and transfer line to determine the impact of conveying the grout through the transfer lines to the vault on grout properties. Bench scale testing focused on the effect the transfer line has on the rheological property of the grout as it was processed through the transfer line. Rheological and other physical properties of grout samples were obtained prior to and after pumping through a transfer line. The Bench Scale Mixing Rig (BSMR) consisted of two mixing tanks, grout feed tank, transfer pump and transfer hose. The mixing tanks were used to batch the grout which was then transferred into the grout feed tank. The contents of the feed tank were then pumped through the transfer line (hose) using a progressive cavity pump. The grout flow rate and pump discharge pressure were monitored. Four sampling stations were located along the length of the transfer line at the 5, 105 and 205 feet past the transfer pump and at 305 feet, the discharge of the hose. Scaling between the full scale piping at Saltstone to bench scale testing at SRNL was performed by maintaining the same shear rate and total shear at the wall of the transfer line. The results of scaling down resulted in a shorter transfer line, a lower average velocity, the same transfer time and similar pressure drops. The condition of flow in the bench scale transfer line is laminar. The flow in the full scale pipe is in the transition region, but is more laminar than turbulent. The resulting plug in laminar flow in the bench scale results in a region of no-mixing. Hence mixing, or shearing, at the bench scale should be less than that observed in the full scale, where this plug is non existent due to the turbulent flow. The bench scale tests should be considered to be conservative due to the highly laminar condition of flow that exists. Two BSMR runs were performed. In both cases, wall

  11. Wind Power Forecasting Error Distributions over Multiple Timescales: Preprint

    SciTech Connect

    Hodge, B. M.; Milligan, M.

    2011-03-01

    In this paper, we examine the shape of the persistence model error distribution for ten different wind plants in the ERCOT system over multiple timescales. Comparisons are made between the experimental distribution shape and that of the normal distribution.

  12. V-096: Mozilla Thunderbird / SeaMonkey Multiple Vulnerabilities

    Energy.gov [DOE]

    A weakness and multiple vulnerabilities have been reported in Mozilla Thunderbird and SeaMonkey, which can be exploited by malicious people to disclose potentially sensitive information, conduct spoofing attacks, bypass certain security restrictions, and compromise a user's system.

  13. T-542: SAP Crystal Reports Server Multiple Vulnerabilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    Multiple vulnerabilities in SAP Crystal Reports Server 2008, which can be exploited by malicious users to disclose potentially sensitive information and by malicious people to conduct cross-site scripting attacks, manipulate certain data, and compromise a user's system.

  14. U-171: DeltaV Products Multiple Vulnerabilities

    Energy.gov [DOE]

    Multiple vulnerabilities have been reported in DeltaV products, which can be exploited by malicious people to conduct cross-site scripting attacks, SQL injection attacks, cause a DoS (Denial of Service), and compromise a vulnerable system.

  15. Theory of Multiple Coulomb Scattering from Extended Nuclei

    DOE R&D Accomplishments

    Cooper, L. N.; Rainwater, J.

    1954-08-01

    Two independent methods are described for calculating the multiple scattering distribution for projected angle scattering resulting when very high energy charged particles traverse a thick scatterer. The results are compared with the theories of Moliere and Olbert.

  16. Phenomenology of COMPASS data: Multiplicities and phenomenology - part II

    DOE PAGES [OSTI]

    Anselmino, M.; Boglione, M.; Gonzalez H., J. O.; Melis, S.; Prokudin, A.

    2015-01-23

    In this study, we present some of the main features of the multidimensional COMPASS multiplicities, via our analysis using the simple Gaussian model. We briefly discuss these results in connection with azimuthal asymmetries.

  17. SCALED ELECTRON MODEL OF A DOGBONE MUON RLA WITH MULTI-PASS ARCS

    SciTech Connect

    Kevin Beard, Rolland Johnson, Vasiliy Morozov, Yves Roblin, Andrew Hutton, Geoffrey Krafft, Slawomir Bogacz

    2012-07-01

    The design of a dogbone RLA with linear-field multi-pass arcs was earlier developed for accelerating muons in a Neutrino Factory and a Muon Collider. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Such an RLA may have applications going beyond muon acceleration. This paper describes a possible straightforward test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected at the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to a readily available at CEBAF 1.5 GHz. The footprint of a complete RLA fits in an area of 25 by 7 m. The scheme utilizes only fixed magnetic fields including injection and extraction. The hardware requirements are not very demanding, making it straightforward to implement. In this report, we have shown first of all that measuring the energy spectrum of the fast neutrons in the liquid scintillators allows one to distinguish the two chemical forms of plutonium. In addition, combining this information with the Feynman 2-neutron and 3-neutron correlations allows one to extract the {alpha}-ratio without explicitly knowing the multiplication. Given the {alpha}-ratio one can then extract the multiplication as well as the {sup 239}Pu and {sup 240}Pu masses directly from the moment equations.

  18. A Metascalable Computing Framework for Large Spatiotemporal-Scale Atomistic Simulations

    SciTech Connect

    Nomura, K; Seymour, R; Wang, W; Kalia, R; Nakano, A; Vashishta, P; Shimojo, F; Yang, L H

    2009-02-17

    A metascalable (or 'design once, scale on new architectures') parallel computing framework has been developed for large spatiotemporal-scale atomistic simulations of materials based on spatiotemporal data locality principles, which is expected to scale on emerging multipetaflops architectures. The framework consists of: (1) an embedded divide-and-conquer (EDC) algorithmic framework based on spatial locality to design linear-scaling algorithms for high complexity problems; (2) a space-time-ensemble parallel (STEP) approach based on temporal locality to predict long-time dynamics, while introducing multiple parallelization axes; and (3) a tunable hierarchical cellular decomposition (HCD) parallelization framework to map these O(N) algorithms onto a multicore cluster based on hybrid implementation combining message passing and critical section-free multithreading. The EDC-STEP-HCD framework exposes maximal concurrency and data locality, thereby achieving: (1) inter-node parallel efficiency well over 0.95 for 218 billion-atom molecular-dynamics and 1.68 trillion electronic-degrees-of-freedom quantum-mechanical simulations on 212,992 IBM BlueGene/L processors (superscalability); (2) high intra-node, multithreading parallel efficiency (nanoscalability); and (3) nearly perfect time/ensemble parallel efficiency (eon-scalability). The spatiotemporal scale covered by MD simulation on a sustained petaflops computer per day (i.e. petaflops {center_dot} day of computing) is estimated as NT = 2.14 (e.g. N = 2.14 million atoms for T = 1 microseconds).

  19. CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure Control

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Systems Are Under Way, but Challenges Remain | Department of Energy CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure Control Systems Are Under Way, but Challenges Remain CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure Control Systems Are Under Way, but Challenges Remain GAO is making recommendations to the Department of Homeland Security (DHS) to develop a strategy for coordinating control systems security efforts and to enhance information sharing with relevant

  20. High mass throughput particle generation using multiple nozzle spraying

    DOEpatents

    Pui, David Y.H.; Chen, Da-Ren

    2004-07-20

    Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.

  1. High mass throughput particle generation using multiple nozzle spraying

    DOEpatents

    Pui, David Y. H.; Chen, Da-Ren

    2009-03-03

    Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.

  2. High mass throughput particle generation using multiple nozzle spraying

    DOEpatents

    Pui, David Y. H.; Chen, Da-Ren

    2015-06-09

    Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.

  3. Ultrafast photodetectors allow direct observation of multiple electrons

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    generated by a single photon Ultrafast photodetectors Ultrafast photodetectors allow direct observation of multiple electrons generated by a single photon The new technique involves monitoring photocurrent transients in specially engineered photodetectors that provide very high temporal resolution of only 50 picoseconds. September 11, 2015 Andrew Fidler of Los Alamos National Laboratory examines an ultrafast photodetector used to measure quantum dot carrier multiplication in real time.

  4. Binary Tracers and Multiple Geophysical Data Set Inversion Methods to

    Office of Scientific and Technical Information (OSTI)

    Improve EGS Reservoir Characterization and Imaging (Technical Report) | SciTech Connect Technical Report: Binary Tracers and Multiple Geophysical Data Set Inversion Methods to Improve EGS Reservoir Characterization and Imaging Citation Details In-Document Search Title: Binary Tracers and Multiple Geophysical Data Set Inversion Methods to Improve EGS Reservoir Characterization and Imaging Authors: Reimus, Paul W. [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date:

  5. Refrigerator-Freezers (multiple defrost waiver) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Refrigerator-Freezers (multiple defrost waiver) Refrigerator-Freezers (multiple defrost waiver) The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. Residential

  6. Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale

    SciTech Connect

    Chang, Y.C.; Mani, V.; Mohanty, K.K.

    1997-08-01

    Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.

  7. Scaling of interceptors for theater defense

    SciTech Connect

    Canavan, G.H.

    1993-11-01

    For nominal GBI and SBI cost parameters GNIs are preferred for missile ranges under {approx} 1.000 km; for multiple theaters breakeven ranges decreases to {approx} 500 km. Penalties for using GBIs rather than SBIs for long-range missiles are {approx} factor of 2; penalties for using SBIs for short-range missiles an be larger.

  8. Valid flow combinations for stable sheath in a magnetized multiple ion species plasma

    SciTech Connect

    Sharma, Devendra; Kaw, Predhiman K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2012-11-15

    Theoretical study is done of the entry criterion for the plasma flow into the electrostatic boundary layer, or sheath, forming in a magnetized multiple ion species plasma. Finding valid entry velocity combinations in a magnetized set up requires a magnetized equivalent of the generalized Bohm criterion. A magnetized generalized entry criterion is obtained with the scale length distribution in a region of validity for the stable solutions. The analysis finds that the valid entry flow velocity combinations with distinct values of individual ion species can correspond to a unique system phase velocity. Magnetization effects govern the region of validity whose boundaries collapse to the unmagnetized sheath criterion in the limit of normal incidence, independent of the strength of the magnetic field. Considerably smaller entry velocities, in comparison to the unmagnetized system sound velocity, are recovered for the species in appropriate regime of magnetization in the cases of oblique incidences.

  9. Multi-Scale Initial Conditions For Cosmological Simulations

    SciTech Connect

    Hahn, Oliver; Abel, Tom; /KIPAC, Menlo Park /ZAH, Heidelberg /HITS, Heidelberg

    2011-11-04

    We discuss a new algorithm to generate multi-scale initial conditions with multiple levels of refinements for cosmological 'zoom-in' simulations. The method uses an adaptive convolution of Gaussian white noise with a real-space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory (2LPT). The new algorithm achieves rms relative errors of the order of 10{sup -4} for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier-space-induced interference ringing. An optional hybrid multi-grid and Fast Fourier Transform (FFT) based scheme is introduced which has identical Fourier-space behaviour as traditional approaches. Using a suite of re-simulations of a galaxy cluster halo our real-space-based approach is found to reproduce correlation functions, density profiles, key halo properties and subhalo abundances with per cent level accuracy. Finally, we generalize our approach for two-component baryon and dark-matter simulations and demonstrate that the power spectrum evolution is in excellent agreement with linear perturbation theory. For initial baryon density fields, it is suggested to use the local Lagrangian approximation in order to generate a density field for mesh-based codes that is consistent with the Lagrangian perturbation theory instead of the current practice of using the Eulerian linearly scaled densities.

  10. PROPERTIES IMPORTANT TO MIXING FOR WTP LARGE SCALE INTEGRATED TESTING

    SciTech Connect

    Koopman, D.; Martino, C.; Poirier, M.

    2012-04-26

    Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL was to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i

  11. Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs

    SciTech Connect

    Bollig, Evan F.; Flyer, Natasha; Erlebacher, Gordon

    2012-08-30

    This paper presents parallelization strategies for the radial basis function-finite difference (RBF-FD) method. As a generalized finite differencing scheme, the RBF-FD method functions without the need for underlying meshes to structure nodes. It offers high-order accuracy approximation and scales as O(N) per time step, with N being with the total number of nodes. To our knowledge, this is the first implementation of the RBF-FD method to leverage GPU accelerators for the solution of PDEs. Additionally, this implementation is the first to span both multiple CPUs and multiple GPUs. OpenCL kernels target the GPUs and inter-processor communication and synchronization is managed by the Message Passing Interface (MPI). We verify our implementation of the RBF-FD method with two hyperbolic PDEs on the sphere, and demonstrate up to 9x speedup on a commodity GPU with unoptimized kernel implementations. On a high performance cluster, the method achieves up to 7x speedup for the maximum problem size of 27,556 nodes.

  12. Multiple-robot drug delivery strategy through coordinated teams of microswimmers

    SciTech Connect

    Kei Cheang, U; Kim, Min Jun; Lee, Kyoungwoo; Julius, Anak Agung

    2014-08-25

    Untethered robotic microswimmers are very promising to significantly improve various types of minimally invasive surgeries by offering high accuracy at extremely small scales. A prime example is drug delivery, for which a large number of microswimmers is required to deliver sufficient dosages to target sites. For this reason, the controllability of groups of microswimmers is essential. In this paper, we demonstrate simultaneous control of multiple geometrically similar but magnetically different microswimmers using a single global rotating magnetic field. By exploiting the differences in their magnetic properties, we triggered different swimming behaviors from the microswimmers by controlling the frequency and the strength of the global field, for example, one swim and the other does not while exposed to the same control input. Our results show that the balance between the applied magnetic torque and the hydrodynamic torque can be exploited for simultaneous control of two microswimmers to swim in opposite directions, with different velocities, and with similar velocities. This work will serve to establish important concepts for future developments of control systems to manipulate multiple magnetically actuated microswimmers and a step towards using swarms of microswimmers as viable workforces for complex operations.

  13. Scaling of multitension cosmic superstring networks

    SciTech Connect

    Tye, S.-H. Henry; Wasserman, Ira; Wyman, Mark

    2005-05-15

    Brane inflation in superstring theory ends when branes collide, initiating the hot big bang. Cosmic superstrings are produced during the brane collision. The cosmic superstrings produced in a D3-brane-antibrane inflationary scenario have a spectrum: (p,q) bound states of p fundamental (F) strings and q D-strings, where p and q are coprime. By extending the velocity-dependent one-scale network evolution equations for Abelian Higgs cosmic strings to allow a spectrum of string tensions, we construct a coupled (infinite) set of equations for strings that interact through binding and self-interactions. We apply this model to a network of (p,q) superstrings. Our numerical solutions show that (p,q) networks rapidly approach a stable scaling solution. We also extract the relative densities of each string type from our solutions. Typically, only a small number of the lowest tension states are populated substantially once scaling is reached. The model we study also has an interesting new feature: the energy released in (p,q) string binding is by itself adequate to allow the network to reach scaling. This result suggests that the scaling solution is robust. To demonstrate that this result is not trivial, we show that choosing a different form for string interactions can lead to network frustration.

  14. Probing the Planck Scale with Proton Decay

    SciTech Connect

    Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi; Thormeier, Marc

    2004-04-28

    We advocate the idea that proton decay may probe physics at the Planck scale instead of the GUT scale. This is possible because supersymmetric theories have dimension-5 operators that can induce proton decay at dangerous rates, even with R-parity conservation. These operators are expected to be suppressed by the same physics that explains the fermion masses and mixings. We present a thorough analysis of nucleon partial lifetimes in models with a string-inspired anomalous U(1)_X family symmetry which is responsible for the fermionic mass spectrum as well as forbidding R-parity violating interactions. Protons and neutrons can decay via R-parity conserving non-renormalizable superpotential terms that are suppressed by the Planck scale and powers of the Cabibbo angle. Many of the models naturally lead to nucleon decay near present limits without any reference to grand unification.

  15. Atomic-scale electrochemistry on the surface of a manganite

    SciTech Connect

    Vasudevan, Rama K.; Tselev, Alexander; Baddorf, Arthur P.; Kalinin, Sergei V.

    2015-04-09

    The doped manganese oxides (manganites) have been widely studied for their colossal magnetoresistive effects, for potential applications in oxide spintronics, electroforming in resistive switching devices, and are materials of choice as cathodes in modern solid oxide fuel cells. However, little experimental knowledge of the dynamics of the surfaces of perovskite manganites at the atomic scale exists. Here, through in-situ scanning tunnelling microscopy (STM), we demonstrate atomic resolution on samples of La0.625Ca0.375MnO3 grown on (001) SrTiO3 by pulsed laser deposition (PLD). Furthermore, by applying triangular DC waveforms of increasing amplitude to the STM tip, and measuring the tunnelling current, we demonstrate the ability to both perform and monitor surface electrochemical processes at the atomic level, including, for the first time in a manganite, formation of single and multiple oxygen vacancies, disruption of the overlying manganite layers, and removal and deposition of individual atomic units or clusters. Our work paves the way for better understanding of surface oxygen reactions in these systems.

  16. Atomic-scale electrochemistry on the surface of a manganite

    DOE PAGES [OSTI]

    Vasudevan, Rama K.; Tselev, Alexander; Baddorf, Arthur P.; Kalinin, Sergei V.

    2015-04-09

    The doped manganese oxides (manganites) have been widely studied for their colossal magnetoresistive effects, for potential applications in oxide spintronics, electroforming in resistive switching devices, and are materials of choice as cathodes in modern solid oxide fuel cells. However, little experimental knowledge of the dynamics of the surfaces of perovskite manganites at the atomic scale exists. Here, through in-situ scanning tunnelling microscopy (STM), we demonstrate atomic resolution on samples of La0.625Ca0.375MnO3 grown on (001) SrTiO3 by pulsed laser deposition (PLD). Furthermore, by applying triangular DC waveforms of increasing amplitude to the STM tip, and measuring the tunnelling current, we demonstratemore » the ability to both perform and monitor surface electrochemical processes at the atomic level, including, for the first time in a manganite, formation of single and multiple oxygen vacancies, disruption of the overlying manganite layers, and removal and deposition of individual atomic units or clusters. Our work paves the way for better understanding of surface oxygen reactions in these systems.« less

  17. Atomic-scale electrochemistry on the surface of a manganite

    SciTech Connect

    Vasudevan, Rama K; Tselev, Alexander; Baddorf, Arthur P; Kalinin, Sergei V

    2015-01-01

    The doped manganese oxides (manganites) have been widely studied for their colossal magnetoresistive effects, for potential applications in oxide spintronics, electroforming in resistive switching devices, and are materials of choice as cathodes in modern solid oxide fuel cells. However, little experimental knowledge of the dynamics of the surfaces of perovskite manganites at the atomic scale exists. Here, through in-situ scanning tunnelling microscopy (STM), we demonstrate atomic resolution on samples of La0.625Ca0.375MnO3 grown on (001) SrTiO3 by pulsed laser deposition (PLD). Furthermore, by applying triangular DC waveforms of increasing amplitude to the STM tip, and measuring the tunnelling current, we demonstrate the ability to both perform and monitor surface electrochemical processes at the atomic level, including, for the first time in a manganite, formation of single and multiple oxygen vacancies, disruption of the overlying manganite layers, and removal and deposition of individual atomic units or clusters. Our work paves the way for better understanding of surface oxygen reactions in these systems.

  18. OBSERVATION OF MAGNETIC RECONNECTION DRIVEN BY GRANULAR SCALE ADVECTION

    SciTech Connect

    Zeng Zhicheng; Cao Wenda; Ji Haisheng

    2013-06-01

    We report the first evidence of magnetic reconnection driven by advection in a rapidly developing large granule using high spatial resolution observations of a small surge event (base size {approx} 4'' Multiplication-Sign 4'') with the 1.6 m aperture New Solar Telescope at the Big Bear Solar Observatory. The observations were carried out in narrowband (0.5 A) He I 10830 A and broadband (10 A) TiO 7057 A. Since He I 10830 A triplet has a very high excitation level and is optically thin, its filtergrams enable us to investigate the surge from the photosphere through the chromosphere into the lower corona. Simultaneous space data from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory were used in the analysis. It is shown that the surge is spatio-temporally associated with magnetic flux emergence in the rapidly developing large granule. During the development of the granule, its advecting flow ({approx}2 km s{sup -1}) squeezed the magnetic flux into an intergranular lane area, where a magnetic flux concentration was formed and the neighboring flux with opposite magnetic polarity was canceled. During the cancellation, the surge was produced as absorption in He I 10830 A filtergrams while simultaneous EUV brightening occurred at its base. The observations clearly indicate evidence of a finest-scale reconnection process driven by the granule's motion.

  19. Multiplicity dependence of jet-like two-particle correlation structures in pPb collisions at ?sNN = 5.02 TeV

    DOE PAGES [OSTI]

    Abelev, B.; Adam, J.; Adamov, D.; Aggarwal, M. M.; Agnello, M.

    2014-11-20

    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in pPb collisions at a nucleonnucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 T,assoc T,trig morejet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple partonparton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity pPb collisions. Further, the number scales only in the intermediate multiplicity region with the number of binary nucleonnucleon collisions estimated with a Glauber Monte-Carlo simulation.less

  20. Large-Scale PV Integration Study

    SciTech Connect

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  1. DUSEL Facility Cooling Water Scaling Issues

    SciTech Connect

    Daily, W D

    2011-04-05

    Precipitation (crystal growth) in supersaturated solutions is governed by both kenetic and thermodynamic processes. This is an important and evolving field of research, especially for the petroleum industry. There are several types of precipitates including sulfate compounds (ie. barium sulfate) and calcium compounds (ie. calcium carbonate). The chemical makeup of the mine water has relatively large concentrations of sulfate as compared to calcium, so we may expect that sulfate type reactions. The kinetics of calcium sulfate dihydrate (CaSO4 {center_dot} 2H20, gypsum) scale formation on heat exchanger surfaces from aqueous solutions has been studied by a highly reproducible technique. It has been found that gypsum scale formation takes place directly on the surface of the heat exchanger without any bulk or spontaneous precipitation in the reaction cell. The kinetic data also indicate that the rate of scale formation is a function of surface area and the metallurgy of the heat exchanger. As we don't have detailed information about the heat exchanger, we can only infer that this will be an issue for us. Supersaturations of various compounds are affected differently by temperature, pressure and pH. Pressure has only a slight affect on the solubility, whereas temperature is a much more sensitive parameter (Figure 1). The affect of temperature is reversed for calcium carbonate and barium sulfate solubilities. As temperature increases, barium sulfate solubility concentrations increase and scaling decreases. For calcium carbonate, the scaling tendencies increase with increasing temperature. This is all relative, as the temperatures and pressures of the referenced experiments range from 122 to 356 F. Their pressures range from 200 to 4000 psi. Because the cooling water system isn't likely to see pressures above 200 psi, it's unclear if this pressure/scaling relationship will be significant or even apparent. The most common scale minerals found in the oilfield include

  2. A High Resolution Scale-of-four

    DOE R&D Accomplishments

    Fitch, V.

    1949-08-25

    A high resolution scale-of-four has been developed to be used in conjunction with the nuclear particle detection devices in applications where the counting rate is unusually high. Specifically, it is intended to precede the commercially available medium resolution scaling circuits and so decrease the resolving time of the counting system. The circuit will function reliably on continuously recurring pulses separated by less than 0.1 microseconds. It will resolve two pulses (occurring at a moderate repetition rate) which are spaced at 0.04 microseconds. A five-volt input signal is sufficient to actuate the device.

  3. Large-Scale Renewable Energy Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Large-Scale Renewable Energy Guide Large-Scale Renewable Energy Guide Presentation covers the Large-scale RE Guide: Developing Renewable Energy Projects Larger than 10 MWs at...

  4. Large-Scale First-Principles Molecular Dynamics Simulations on...

    Office of Scientific and Technical Information (OSTI)

    for large-scale parallel platforms such as BlueGeneL. Strong scaling tests for a Materials Science application show an 86% scaling efficiency between 1024 and 32,768 CPUs. ...

  5. Final Technical Report Laramie County Community College: Utility-Scale Wind Energy Technology

    SciTech Connect

    Douglas P. Cook

    2012-05-22

    The Utility-Scale Wind Energy Technology U.S. Department of Energy (DOE) grant EE0000538, provided a way ahead for Laramie County Community College (LCCC) to increase educational and training opportunities for students seeking an Associate of Applied Science (AAS) or Associate of Science (AS) degree in Wind Energy Technology. The DOE grant enabled LCCC to program, schedule, and successfully operate multiple wind energy technology cohorts of up to 20-14 students per cohort simultaneously. As of this report, LCCC currently runs four cohorts. In addition, the DOE grant allowed LCCC to procure specialized LABVOLT electronic equipment that directly supports is wind energy technology curriculum.

  6. Automated High Throughput Protein Crystallization Screening at Nanoliter Scale and Protein Structural Study on Lactate Dehydrogenase

    SciTech Connect

    Fenglei Li

    2006-08-09

    The purposes of our research were: (1) To develop an economical, easy to use, automated, high throughput system for large scale protein crystallization screening. (2) To develop a new protein crystallization method with high screening efficiency, low protein consumption and complete compatibility with high throughput screening system. (3) To determine the structure of lactate dehydrogenase complexed with NADH by x-ray protein crystallography to study its inherent structural properties. Firstly, we demonstrated large scale protein crystallization screening can be performed in a high throughput manner with low cost, easy operation. The overall system integrates liquid dispensing, crystallization and detection and serves as a whole solution to protein crystallization screening. The system can dispense protein and multiple different precipitants in nanoliter scale and in parallel. A new detection scheme, native fluorescence, has been developed in this system to form a two-detector system with a visible light detector for detecting protein crystallization screening results. This detection scheme has capability of eliminating common false positives by distinguishing protein crystals from inorganic crystals in a high throughput and non-destructive manner. The entire system from liquid dispensing, crystallization to crystal detection is essentially parallel, high throughput and compatible with automation. The system was successfully demonstrated by lysozyme crystallization screening. Secondly, we developed a new crystallization method with high screening efficiency, low protein consumption and compatibility with automation and high throughput. In this crystallization method, a gas permeable membrane is employed to achieve the gentle evaporation required by protein crystallization. Protein consumption is significantly reduced to nanoliter scale for each condition and thus permits exploring more conditions in a phase diagram for given amount of protein. In addition

  7. Validation of Multiple Tools for Flat Plate Photovoltaic Modeling Against Measured Data

    SciTech Connect

    Freeman, J.; Whitmore, J.; Blair, N.; Dobos, A. P.

    2014-08-01

    This report expands upon a previous work by the same authors, published in the 40th IEEE Photovoltaic Specialists conference. In this validation study, comprehensive analysis is performed on nine photovoltaic systems for which NREL could obtain detailed performance data and specifications, including three utility-scale systems and six commercial scale systems. Multiple photovoltaic performance modeling tools were used to model these nine systems, and the error of each tool was analyzed compared to quality-controlled measured performance data. This study shows that, excluding identified outliers, all tools achieve annual errors within +/-8% and hourly root mean squared errors less than 7% for all systems. It is further shown using SAM that module model and irradiance input choices can change the annual error with respect to measured data by as much as 6.6% for these nine systems, although all combinations examined still fall within an annual error range of +/-8.5%. Additionally, a seasonal variation in monthly error is shown for all tools. Finally, the effects of irradiance data uncertainty and the use of default loss assumptions on annual error are explored, and two approaches to reduce the error inherent in photovoltaic modeling are proposed.

  8. Characterization of Filtration Scale-Up Performance

    SciTech Connect

    Daniel, Richard C.; Billing, Justin M.; Luna, Maria L.; Cantrell, Kirk J.; Peterson, Reid A.; Bonebrake, Michael L.; Shimskey, Rick W.; Jagoda, Lynette K.

    2009-03-09

    The scale-up performance of sintered stainless steel crossflow filter elements planned for use at the Pretreatment Engineering Platform (PEP) and at the Waste Treatment and Immobilization Plant (WTP) were characterized in partial fulfillment (see Table S.1) of the requirements of Test Plan TP RPP WTP 509. This test report details the results of experimental activities related only to filter scale-up characterization. These tests were performed under the Simulant Testing Program supporting Phase 1 of the demonstration of the pretreatment leaching processes at PEP. Pacific Northwest National Laboratory (PNNL) conducted the tests discussed herein for Bechtel National, Inc. (BNI) to address the data needs of Test Specification 24590-WTP-TSP-RT-07-004. Scale-up characterization tests employ high-level waste (HLW) simulants developed under the Test Plan TP-RPP-WTP-469. The experimental activities outlined in TP-RPP-WTP-509 examined specific processes from two broad areas of simulant behavior: 1) leaching performance of the boehmite simulant as a function of suspending phase chemistry and 2) filtration performance of the blended simulant with respect to filter scale-up and fouling. With regard to leaching behavior, the effect of anions on the kinetics of boehmite leaching was examined. Two experiments were conducted: 1) one examined the effect of the aluminate anion on the rate of boehmite dissolution and 2) another determined the effect of secondary anions typical of Hanford tank wastes on the rate of boehmite dissolution. Both experiments provide insight into how compositional variations in the suspending phase impact the effectiveness of the leaching processes. In addition, the aluminate anion studies provide information on the consequences of gibbsite in waste. The latter derives from the expected fast dissolution of gibbsite relative to boehmite. This test report concerns only results of the filtration performance with respect to scale-up. Test results for boehmite

  9. Scaling Relationships Based on Scaled Tank Mixing and Transfer Test Results

    SciTech Connect

    Piepel, Gregory F.; Holmes, Aimee E.; Heredia-Langner, Alejandro

    2013-09-18

    This report documents the statistical analyses performed (by Pacific Northwest National Laboratory for Washington River Protection Solutions) on data from 26 tests conducted using two scaled tanks (43 and 120 inches) in the Small Scale Mixing Demonstration platform. The 26 tests varied several test parameters, including mixer-jet nozzle velocity, base simulant, supernatant viscosity, and capture velocity. For each test, samples were taken pre-transfer and during five batch transfers. The samples were analyzed for the concentrations (lbs/gal slurry) of four primary components in the base simulants (gibbsite, stainless steel, sand, and ZrO2). The statistical analyses including modeling the component concentrations as functions of test parameters using stepwise regression with two different model forms. The resulting models were used in an equivalent performance approach to calculate values of scaling exponents (for a simple geometric scaling relationship) as functions of the parameters in the component concentration models. The resulting models and scaling exponents are displayed in tables and graphically. The sensitivities of component concentrations and scaling exponents to the test parameters are presented graphically. These results will serve as inputs to subsequent work by other researchers to develop scaling relationships that are applicable to full-scale tanks.

  10. Scaling Relationships Based on Scaled Tank Mixing and Transfer Test Results

    SciTech Connect

    Piepel, Gregory F.; Holmes, Aimee E.; Heredia-Langner, Alejandro; Lee, Kearn P.; Kelly, Steven E.

    2014-01-01

    This report documents the statistical analyses performed (by Pacific Northwest National Laboratory for Washington River Protection Solutions) on data from 26 tests conducted using two scaled tanks (43 and 120 inches) in the Small Scale Mixing Demonstration platform. The 26 tests varied several test parameters, including mixer-jet nozzle velocity, base simulant, supernatant viscosity, and capture velocity. For each test, samples were taken pre-transfer and during five batch transfers. The samples were analyzed for the concentrations (lbs/gal slurry) of four primary components in the base simulants (gibbsite, stainless steel, sand, and ZrO2). The statistical analyses including modeling the component concentrations as functions of test parameters using stepwise regression with two different model forms. The resulting models were used in an equivalent performance approach to calculate values of scaling exponents (for a simple geometric scaling relationship) as functions of the parameters in the component concentration models. The resulting models and scaling exponents are displayed in tables and graphically. The sensitivities of component concentrations and scaling exponents to the test parameters are presented graphically. These results will serve as inputs to subsequent work by other researchers to develop scaling relationships that are applicable to full-scale tanks.

  11. Efficient preconditioning of the electronic structure problem in large scale ab initio molecular dynamics simulations

    SciTech Connect

    Schiffmann, Florian; VandeVondele, Joost

    2015-06-28

    We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling’s iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filtering small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step.

  12. OBSERVATIONS OF HIERARCHICAL SOLAR-TYPE MULTIPLE STAR SYSTEMS

    SciTech Connect

    Roberts, Lewis C. Jr.; Tokovinin, Andrei; Mason, Brian D.; Hartkopf, William I.; Riddle, Reed L.

    2015-10-15

    Twenty multiple stellar systems with solar-type primaries were observed at high angular resolution using the PALM-3000 adaptive optics system at the 5 m Hale telescope. The goal was to complement the knowledge of hierarchical multiplicity in the solar neighborhood by confirming recent discoveries by the visible Robo-AO system with new near-infrared observations with PALM-3000. The physical status of most, but not all, of the new pairs is confirmed by photometry in the Ks band and new positional measurements. In addition, we resolved for the first time five close sub-systems: the known astrometric binary in HIP 17129AB, companions to the primaries of HIP 33555, and HIP 118213, and the companions to the secondaries in HIP 25300 and HIP 101430. We place the components on a color–magnitude diagram and discuss each multiple system individually.

  13. Neutron multiplicity counting: Confidence intervals for reconstruction parameters

    DOE PAGES [OSTI]

    Verbeke, Jerome M.

    2016-03-09

    From nuclear materials accountability to homeland security, the need for improved nuclear material detection, assay, and authentication has grown over the past decades. Starting in the 1940s, neutron multiplicity counting techniques have enabled quantitative evaluation of masses and multiplications of fissile materials. In this paper, we propose a new method to compute uncertainties on these parameters using a model-based sequential Bayesian processor, resulting in credible regions in the fissile material mass and multiplication space. These uncertainties will enable us to evaluate quantitatively proposed improvements to the theoretical fission chain model. Additionally, because the processor can calculate uncertainties in real time,more » it is a useful tool in applications such as portal monitoring: monitoring can stop as soon as a preset confidence of non-threat is reached.« less

  14. Commercial-Scale Project Development and Finance Workshop Agenda...

    Energy Saver

    Commercial-Scale Project Development and Finance Workshop Agenda and Presentations: Colorado Commercial-Scale Project Development and Finance Workshop Agenda and Presentations: ...

  15. Community- and Facility-Scale Tribal Renewable Energy Project...

    Energy Saver

    and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Agenda Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance ...

  16. 2013 Commercial-Scale Tribal Renewable Energy Project Development...

    Energy Saver

    Commercial-Scale Tribal Renewable Energy Project Development and Finance Workshop Presentations and Agenda 2013 Commercial-Scale Tribal Renewable Energy Project Development and ...

  17. Physical Modeling of Scaled Water Distribution System Networks...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Physical Modeling of Scaled Water Distribution System Networks. Citation Details In-Document Search Title: Physical Modeling of Scaled Water Distribution System ...

  18. Funding Opportunity Coming Soon: Scaling up the Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Coming Soon: Scaling up the Next Generation of Building Efficiency Packages Funding Opportunity Coming Soon: Scaling up the Next Generation of Building Efficiency Packages May 10, ...

  19. Alaska Facility- and Community-Scale Project Development Regional...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Facility- and Community-Scale Project Development Regional Energy Workshops Alaska Facility- and Community-Scale Project Development Regional Energy Workshops April 13, 2015 - ...

  20. Creating Large Scale Database Servers (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Creating Large Scale Database Servers Citation Details In-Document Search Title: Creating Large Scale Database Servers The BaBar experiment at the Stanford Linear Accelerator ...

  1. Large scale quantum simulations of electrode-electrolyte interfaces...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Large scale quantum simulations of electrode-electrolyte interfaces PI Name: Giulia Galli ... Science We will apply large-scale quantum simulation methods to model the ...

  2. Spring Forward: Top Strategies for Growing and Scaling Your Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Spring Forward: Top Strategies for Growing and Scaling Your Program (301) Spring Forward: Top Strategies for Growing and Scaling Your Program (301) May 2

  3. Large-Scale Renewable Energy Guide: Developing Renewable Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities Large-Scale Renewable Energy Guide: Developing Renewable Energy ...

  4. The Effective Field Theory of Cosmological Large Scale Structures...

    Office of Scientific and Technical Information (OSTI)

    The Effective Field Theory of Cosmological Large Scale Structures Citation Details In-Document Search Title: The Effective Field Theory of Cosmological Large Scale Structures...

  5. Charged Pion Photoproduction And Scaling (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Charged Pion Photoproduction And Scaling Citation Details In-Document Search Title: Charged Pion Photoproduction And Scaling You are accessing a document from the Department of ...

  6. Scaling up Renewable Energy in Developing Countries: finance...

    OpenEI (Open Energy Information) [EERE & EIA]

    Scaling up Renewable Energy in Developing Countries: finance and investment perspectives Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Scaling up Renewable Energy in...

  7. Review of Recent Pilot Scale Cellulosic Ethanol Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Review of Recent Pilot Scale Cellulosic Ethanol Demonstration Review of Recent Pilot Scale Cellulosic Ethanol Demonstration Opening Plenary Session: Celebrating Successes-The ...

  8. Investigation of Micro- and Macro-Scale Transport Processes for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Investigation of Micro- and Macro-Scale Transport Investigation of Micro and Macro Scale Transport Processes for Improved Fuel Cell Performance 2010 DOE Hydrogen Program Fuel Cell ...

  9. Rapid Software Prototyping Into Large Scale Control Systems ...

    Office of Scientific and Technical Information (OSTI)

    Rapid Software Prototyping Into Large Scale Control Systems Citation Details In-Document Search Title: Rapid Software Prototyping Into Large Scale Control Systems Authors: Fishler, ...

  10. Determination of Large-Scale Cloud Ice Water Concentration by...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Determination of Large-Scale Cloud Ice Water Concentration by Combining ... Title: Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface ...

  11. An Updated Site Scale Saturated Zone Ground Water Transport Model...

    Office of Scientific and Technical Information (OSTI)

    An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca Mountain. Citation Details In-Document Search Title: An Updated Site Scale Saturated Zone Ground Water ...

  12. Large Scale Production Computing and Storage Requirements for...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and ...

  13. Large-Scale Residential Energy Efficiency Programs Based on CFLs...

    OpenEI (Open Energy Information) [EERE & EIA]

    Large-Scale Residential Energy Efficiency Programs Based on CFLs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Large-Scale Residential Energy Efficiency Programs Based...

  14. Community- and Facility-Scale Tribal Renewable Energy Project...

    Office of Environmental Management (EM)

    and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop: Colorado Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance ...

  15. Predicting fracture in micron-scale polycrystalline silicon MEMS...

    Office of Scientific and Technical Information (OSTI)

    Predicting fracture in micron-scale polycrystalline silicon MEMS structures. Citation Details In-Document Search Title: Predicting fracture in micron-scale polycrystalline silicon ...

  16. Tribal Renewable Energy Advanced Course: Facility Scale Project...

    Energy.gov [DOE] (indexed site)

    process for developing facility-scale renewable energy projects on tribal lands, ... payment) How to pay for a facility-scale project (or the renewable energy from it). ...

  17. 2014 Commercial-Scale Renewable Energy Project Development and...

    Energy Saver

    4 Commercial-Scale Renewable Energy Project Development and Finance Workshop Agenda and Presentations 2014 Commercial-Scale Renewable Energy Project Development and Finance ...

  18. Tribal Renewable Energy Advanced Course: Community Scale Project...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Community Scale Project Development Tribal Renewable Energy Advanced Course: Community Scale Project Development Watch the DOE Office of Indian Energy renewable energy course ...

  19. Sustainable Manufacturing via Multi-Scale, Physics-Based Process...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and ... design framework enabled by multi-scale, physics-based process models. ...

  20. Large-Scale Manufacturing of Nanoparticle-Based Lubrication Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Large-Scale Manufacturing of Nanoparticle-Based Lubrication Additives Large-Scale Manufacturing of Nanoparticle-Based Lubrication Additives PDF icon nanoparticulate-basedlubricati...

  1. Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up...

    Energy.gov [DOE] (indexed site)

    for Lightweighting Materials Scale-Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis Scale-Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis

  2. Large Scale Computing and Storage Requirements for Advanced Scientific...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2014 ASCRFrontcover.png Large Scale Computing and Storage Requirements for ...

  3. Scaling Law of Coherent Synchrotron Radiation in a Rectangular...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Scaling Law of Coherent Synchrotron Radiation in a Rectangular Chamber Citation Details In-Document Search Title: Scaling Law of Coherent Synchrotron Radiation in...

  4. Electric Power Industry Needs for Grid-Scale Storage Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industry Needs for Grid-Scale Storage Applications Electric Power Industry Needs for Grid-Scale Storage Applications Stationary energy storage technologies will address the growing ...

  5. Scale dependence of entrainment-mixing mechanisms in cumulus...

    Office of Scientific and Technical Information (OSTI)

    Scale dependence of entrainment-mixing mechanisms in cumulus clouds Title: Scale dependence of entrainment-mixing mechanisms in cumulus clouds This work empirically examines the ...

  6. ACCOLADES: A Scalable Workflow Framework for Large-Scale Simulation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ACCOLADES: A Scalable Workflow Framework for Large-Scale Simulation and Analyses of Automotive Engines Title ACCOLADES: A Scalable Workflow Framework for Large-Scale Simulation and...

  7. Large Scale Computing and Storage Requirements for High Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Large Scale Computing and Storage Requirements for High Energy Physics HEPFrontcover.png Large Scale Computing and Storage Requirements for High Energy Physics An HEP ASCR ...

  8. Scaling behavior and complexity of plastic deformation for a...

    Office of Scientific and Technical Information (OSTI)

    Scaling behavior and complexity of plastic deformation for a bulk metallic glass at cryogenic temperatures Citation Details In-Document Search Title: Scaling behavior and ...

  9. Verenium Pilot- and Demonstration-Scale Biorefinery | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Verenium Pilot- and Demonstration-Scale Biorefinery Verenium Pilot- and Demonstration-Scale Biorefinery The Verenium facility will produce ethanol from lignocellulosic agricultural ...

  10. Energy scaling advantages of resistive memory crossbar based...

    Office of Scientific and Technical Information (OSTI)

    Energy scaling advantages of resistive memory crossbar based computation and its application to sparse coding Prev Next Title: Energy scaling advantages of resistive memory ...

  11. Time-Off Awards Scale | Department of Energy

    Energy.gov [DOE] (indexed site)

    scale has been adopted by the servicing human resources office. Time-Off Awards Scale (28.38 KB) Responsible Contacts Lorrenda Buckner HUMAN RESOURCES SPECIALIST (PERFORMANCE ...

  12. Investigation of Micro- and Macro-Scale Transport Processes for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance These ...

  13. Reconstruction of the primordial power spectrum of curvature perturbations using multiple data sets

    SciTech Connect

    Hunt, Paul; Sarkar, Subir E-mail: s.sarkar@physics.ox.ac.uk

    2014-01-01

    Detailed knowledge of the primordial power spectrum of curvature perturbations is essential both in order to elucidate the physical mechanism ('inflation') which generated it, and for estimating the cosmological parameters from observations of the cosmic microwave background and large-scale structure. Hence it ought to be extracted from such data in a model-independent manner, however this is difficult because relevant cosmological observables are given by a convolution of the primordial perturbations with some smoothing kernel which depends on both the assumed world model and the matter content of the universe. Moreover the deconvolution problem is ill-conditioned so a regularisation scheme must be employed to control error propagation. We demonstrate that 'Tikhonov regularisation' can robustly reconstruct the primordial spectrum from multiple cosmological data sets, a significant advantage being that both its uncertainty and resolution are then quantified. Using Monte Carlo simulations we investigate several regularisation parameter selection methods and find that generalised cross-validation and Mallow's C{sub p} method give optimal results. We apply our inversion procedure to data from the Wilkinson Microwave Anisotropy Probe, other ground-based small angular scale CMB experiments, and the Sloan Digital Sky Survey. The reconstructed spectrum (assuming the standard ?CDM cosmology) is not scale-free but has an infrared cutoff at k?<5 10{sup ?4}Mpc{sup ?1} (due to the anomalously low CMB quadrupole) and several features with ? 2? significance at k/Mpc{sup ?1} ? 0.00130.0025, 0.03620.0402 and 0.0510.056, reflecting the 'WMAP glitches'. To test whether these are indeed real will require more accurate data, such as from the Planck satellite and new ground-based experiments.

  14. Community-Scale Tribal Renewable Energy Workshop

    Energy.gov [DOE]

    The DOE Office of Indian Energy, with support from the National Renewable Energy Laboratory (NREL), is offering an interactive workshop at the Agua Caliente Resort and Casino in Rancho Mirage, California, that that will walk participants through the process for developing community-scale renewable energy projects on tribal lands.

  15. Amplitude scaling of solar array discharges

    SciTech Connect

    Bogorad, A.; Bowman, C.; Rayadurg, L. . Astro-Space Div.); Sterner, T.; Loman, J.; Armenti, J. . Astro Space Div.)

    1990-12-01

    Sections of solar panel of four different sizes were charged in a 20-keV monoenergetic electron beam. The measured amplitudes of discharge transients coupled into power lines scaled linearly with the length of the rows of parallel-connected solar cells in the solar cell circuits.

  16. Large-scale quasi-geostrophic magnetohydrodynamics

    SciTech Connect

    Balk, Alexander M.

    2014-12-01

    We consider the ideal magnetohydrodynamics (MHD) of a shallow fluid layer on a rapidly rotating planet or star. The presence of a background toroidal magnetic field is assumed, and the 'shallow water' beta-plane approximation is used. We derive a single equation for the slow large length scale dynamics. The range of validity of this equation fits the MHD of the lighter fluid at the top of Earth's outer core. The form of this equation is similar to the quasi-geostrophic (Q-G) equation (for usual ocean or atmosphere), but the parameters are essentially different. Our equation also implies the inverse cascade; but contrary to the usual Q-G situation, the energy cascades to smaller length scales, while the enstrophy cascades to the larger scales. We find the Kolmogorov-type spectrum for the inverse cascade. The spectrum indicates the energy accumulation in larger scales. In addition to the energy and enstrophy, the obtained equation possesses an extra (adiabatic-type) invariant. Its presence implies energy accumulation in the 30° sector around zonal direction. With some special energy input, the extra invariant can lead to the accumulation of energy in zonal magnetic field; this happens if the input of the extra invariant is small, while the energy input is considerable.

  17. WETS - Azura Half Scale Testing MOIS Documentation

    DOE Data Explorer

    Nelson, Eric

    2015-05-30

    This submission includes documentation on the Modular Ocean Instrumentation System (MOIS) installation on the Azura 1/2 scale wave energy converter at the Marine Station Kaneohe Bay (MCBH). Data from the deployment will be uploaded over the course of the test. The instrumentation and data come from the NREL team participating in this testing.

  18. Benchmark Generation and Simulation at Extreme Scale

    SciTech Connect

    Lagadapati, Mahesh; Mueller, Frank; Engelmann, Christian

    2016-01-01

    The path to extreme scale high-performance computing (HPC) poses several challenges related to power, performance, resilience, productivity, programmability, data movement, and data management. Investigating the performance of parallel applications at scale on future architectures and the performance impact of different architectural choices is an important component of HPC hardware/software co-design. Simulations using models of future HPC systems and communication traces from applications running on existing HPC systems can offer an insight into the performance of future architectures. This work targets technology developed for scalable application tracing of communication events. It focuses on extreme-scale simulation of HPC applications and their communication behavior via lightweight parallel discrete event simulation for performance estimation and evaluation. Instead of simply replaying a trace within a simulator, this work promotes the generation of a benchmark from traces. This benchmark is subsequently exposed to simulation using models to reflect the performance characteristics of future-generation HPC systems. This technique provides a number of benefits, such as eliminating the data intensive trace replay and enabling simulations at different scales. The presented work features novel software co-design aspects, combining the ScalaTrace tool to generate scalable trace files, the ScalaBenchGen tool to generate the benchmark, and the xSim tool to assess the benchmark characteristics within a simulator.

  19. Evaporation of water with single and multiple impinging air jets

    SciTech Connect

    Trabold, T.A.; Obot, N.T. )

    1991-08-01

    An experimental investigation of impingement water evaporation under a single jet and arrays of circular jets was made. The parametric study included the effects of jet Reynolds number and standoff spacing for both single and multiple jets, as well as surface-to-nozzle diameter ratio and fractional nozzle open area for single and multiple jets, respectively. The nozzle exit temperature of the air jet, about the same as that of the laboratory, was 3-6C higher than that of the evaporating water. Predictive equations are provided for mass transfer coefficient in terms of the flow and geometric conditions.

  20. Multiple operating system rotation environment moving target defense

    DOEpatents

    Evans, Nathaniel; Thompson, Michael

    2016-03-22

    Systems and methods for providing a multiple operating system rotation environment ("MORE") moving target defense ("MTD") computing system are described. The MORE-MTD system provides enhanced computer system security through a rotation of multiple operating systems. The MORE-MTD system increases attacker uncertainty, increases the cost of attacking the system, reduces the likelihood of an attacker locating a vulnerability, and reduces the exposure time of any located vulnerability. The MORE-MTD environment is effectuated by rotation of the operating systems at a given interval. The rotating operating systems create a consistently changing attack surface for remote attackers.

  1. Using Multiple Unmanned Systems for a Site Security Task

    SciTech Connect

    Matthew O. Anderson; Curtis W. Nielsen; Mark D. McKay; Derek C. Wadsworth; Ryan C. Hruska; John A. Koudelka

    2009-04-01

    Unmanned systems are often used to augment the ability of humans to perform challenging tasks. While the value of individual unmanned vehicles have been proven for a variety of tasks, it is less understood how multiple unmanned systems should be used together to accomplish larger missions such as site security. The purpose of this paper is to discuss efforts by researchers at the Idaho National Laboratory (INL) to explore the utility and practicality of operating multiple unmanned systems for a site security mission. This paper reviews the technology developed for a multi-agent mission and summarizes the lessons-learned from a technology demonstration.

  2. Multiple-stage structure transformation of organic-inorganic hybrid

    Office of Scientific and Technical Information (OSTI)

    perovskite CH 3 NH 3 PbI 3 (Journal Article) | SciTech Connect Multiple-stage structure transformation of organic-inorganic hybrid perovskite CH 3 NH 3 PbI 3 Citation Details In-Document Search Title: Multiple-stage structure transformation of organic-inorganic hybrid perovskite CH 3 NH 3 PbI 3 In this study, by performing spatially resolved Raman and photoluminescence spectroscopy with varying excitation wavelength, density, and data acquisition parameters, we achieve a unified

  3. Method for measuring multiple scattering corrections between liquid scintillators

    DOE PAGES [OSTI]

    Verbeke, J. M.; Glenn, A. M.; Keefer, G. J.; Wurtz, R. E.

    2016-04-11

    In this study, a time-of-flight method is proposed to experimentally quantify the fractions of neutrons scattering between scintillators. An array of scintillators is characterized in terms of crosstalk with this method by measuring a californium source, for different neutron energy thresholds. The spectral information recorded by the scintillators can be used to estimate the fractions of neutrons multiple scattering. With the help of a correction to Feynman's point model theory to account for multiple scattering, these fractions can in turn improve the mass reconstruction of fissile materials under investigation.

  4. Multiple-stage structure transformation of organic-inorganic hybrid

    Office of Scientific and Technical Information (OSTI)

    perovskite CH3NH3PbI3 (Journal Article) | DOE PAGES Multiple-stage structure transformation of organic-inorganic hybrid perovskite CH 3 NH 3 PbI 3 Title: Multiple-stage structure transformation of organic-inorganic hybrid perovskite CH 3 NH 3 PbI 3 In this study, by performing spatially resolved Raman and photoluminescence spectroscopy with varying excitation wavelength, density, and data acquisition parameters, we achieve a unified understanding towards the spectroscopy signatures of the

  5. Project Profile: CSP Energy Storage Solutions — Multiple Technologies Compared

    Energy.gov [DOE]

    US Solar Holdings, under the Thermal Storage FOA, is aiming to demonstrate commercial, utility-scale thermal energy storage technologies and provide a path to cost-effective energy storage for CSP plants >50 MW.

  6. Scaled Experimental Modeling of VHTR Plenum Flows

    SciTech Connect

    ICONE 15

    2007-04-01

    Abstract The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (“thermal striping”) in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, Reynolds number scaling distortions will occur at matching Richardson numbers due primarily to the necessity of using a reduced number of channels connected to the plenum than in the prototype (which has approximately 11,000 core channels connected to the upper plenum) in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums.

  7. Compaction Scale Up and Optimization of Cylindrical Fuel Compacts for the Next Generation Nuclear Plant

    SciTech Connect

    Jeffrey J. Einerson; Jeffrey A. Phillips; Eric L. Shaber; Scott E. Niedzialek; W. Clay Richardson; Scott G. Nagley

    2012-10-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of designed experiments have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel. Results from these experiments are included. The scale-up effort is nearing completion with the process installed and operational using nuclear fuel materials. The process is being certified for manufacture of qualification test fuel compacts for the AGR-5/6/7 experiment at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL).

  8. Laboratory measurements of large-scale carbon sequestration flows in saline reservoirs

    SciTech Connect

    Backhaus, Scott N

    2010-01-01

    Brine saturated with CO{sub 2} is slightly denser than the original brine causing it to sink to the bottom of a saline reservoir where the CO{sub 2} is safely sequestered. However, the buoyancy of pure CO{sub 2} relative to brine drives it to the top of the reservoir where it collects underneath the cap rock as a separate phase of supercritical fluid. Without additional processes to mix the brine and CO{sub 2}, diffusion in this geometry is slow and would require an unacceptably long time to consume the pure CO{sub 2}. However, gravity and diffusion-driven convective instabilities have been hypothesized that generate enhanced CO{sub 2}-brine mixing promoting dissolution of CO{sub 2} into the brine on time scale of a hundred years. These flows involve a class of hydrodynamic problems that are notoriously difficult to simulate; the simultaneous flow of mUltiple fluids (CO{sub 2} and brine) in porous media (rock or sediment). The hope for direct experimental confirmation of simulations is dim due to the difficulty of obtaining high resolution data from the subsurface and the high pressures ({approx}100 bar), long length scales ({approx}100 meters), and long time scales ({approx}100 years) that are characteristic of these flows. We have performed imaging and mass transfer measurements in similitude-scaled laboratory experiments that provide benchmarks to test reservoir simulation codes and enhance their predictive power.

  9. VariableR reclustering in multiple top quark events - Oral Presentatio...

    Office of Scientific and Technical Information (OSTI)

    VariableR reclustering in multiple top quark events - Oral Presentation Citation Details In-Document Search Title: VariableR reclustering in multiple top quark events - Oral...

  10. V-028: Splunk Multiple Cross-Site Scripting and Denial of Service...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    28: Splunk Multiple Cross-Site Scripting and Denial of Service Vulnerabilities V-028: Splunk Multiple Cross-Site Scripting and Denial of Service Vulnerabilities November 20, 2012 -...

  11. V-230: IBM TRIRIGA Application Platform Multiple Cross-Site Scripting...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0: IBM TRIRIGA Application Platform Multiple Cross-Site Scripting Vulnerabilities V-230: IBM TRIRIGA Application Platform Multiple Cross-Site Scripting Vulnerabilities August 29, ...

  12. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass...

    Energy.gov [DOE] (indexed site)

    ... processing multiple biomass feedstock types * Operated pyoil stabilization and metals removal unit * PNNL completed catalytic hydrothermal gasification * Demonstrated 1 st ...

  13. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    SciTech Connect

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2011-08-15

    'The Hanford double-shell tank (DST) system provides the staging location for waste feed delivery to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Hall (2008) includes WTP acceptance criteria that describe physical and chemical characteristics of the waste that must be certified as acceptable before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST. The objectives of Washington River Protection Solutions' (WRPS) Small Scale Mixing Demonstration (SSMD) project are to understand and demonstrate the DST sampling and batch transfer performance at multiple scales using slurry simulants comprised of UDS particles and liquid (Townson 2009). The SSMD project utilizes geometrically scaled DST feed tanks to generate mixing, sampling, and transfer test data. In Phase 2 of the testing, RPP-49740, the 5-part simulant defined in RPP-48358 was used as the waste slurry simulant. The Phase 2 test data are being used to estimate the expected performance of the prototypic systems in the full-scale DSTs. As such, understanding of the how the small-scale systems as well as the simulant relate to the full-scale DSTs and actual waste is required. The focus of this report is comparison of the size and density of the 5-part SSMD simulant to that of the Hanford waste. This is accomplished by computing metrics for particle mobilization, suspension, settling, transfer line intake, and pipeline transfer from the characterization of the 5-part SSMD simulant and characterizations of the Hanford waste. In addition, the effects of the suspending fluid characteristics on the test results are considered, and a computational fluid dynamics tool useful to quantify uncertainties from simulant selections is discussed.'

  14. Scaling laws in magnetized plasma turbulence

    SciTech Connect

    Boldyrev, Stanislav

    2015-06-28

    Interactions of plasma motion with magnetic fields occur in nature and in the laboratory in an impressively broad range of scales, from megaparsecs in astrophysical systems to centimeters in fusion devices. The fact that such an enormous array of phenomena can be effectively studied lies in the existence of fundamental scaling laws in plasma turbulence, which allow one to scale the results of analytic and numerical modeling to the sized of galaxies, velocities of supernovae explosions, or magnetic fields in fusion devices. Magnetohydrodynamics (MHD) provides the simplest framework for describing magnetic plasma turbulence. Recently, a number of new features of MHD turbulence have been discovered and an impressive array of thought-provoking phenomenological theories have been put forward. However, these theories have conflicting predictions, and the currently available numerical simulations are not able to resolve the contradictions. MHD turbulence exhibits a variety of regimes unusual in regular hydrodynamic turbulence. Depending on the strength of the guide magnetic field it can be dominated by weakly interacting Alfv\\'en waves or strongly interacting wave packets. At small scales such turbulence is locally anisotropic and imbalanced (cross-helical). In a stark contrast with hydrodynamic turbulence, which tends to ``forget'' global constrains and become uniform and isotropic at small scales, MHD turbulence becomes progressively more anisotropic and unbalanced at small scales. Magnetic field plays a fundamental role in turbulent dynamics. Even when such a field is not imposed by external sources, it is self-consistently generated by the magnetic dynamo action. This project aims at a comprehensive study of universal regimes of magnetic plasma turbulence, combining the modern analytic approaches with the state of the art numerical simulations. The proposed study focuses on the three topics: weak MHD turbulence, which is relevant for laboratory devices, the solar

  15. Method and system of integrating information from multiple sources

    DOEpatents

    Alford, Francine A.; Brinkerhoff, David L.

    2006-08-15

    A system and method of integrating information from multiple sources in a document centric application system. A plurality of application systems are connected through an object request broker to a central repository. The information may then be posted on a webpage. An example of an implementation of the method and system is an online procurement system.

  16. Tunnel junction multiple wavelength light-emitting diodes

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1992-11-24

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

  17. Tunnel junction multiple wavelength light-emitting diodes

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1992-01-01

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

  18. Multiple Whole Genome Alignments Without a Reference Organism

    SciTech Connect

    Dubchak, Inna; Poliakov, Alexander; Kislyuk, Andrey; Brudno, Michael

    2009-01-16

    Multiple sequence alignments have become one of the most commonly used resources in genomics research. Most algorithms for multiple alignment of whole genomes rely either on a reference genome, against which all of the other sequences are laid out, or require a one-to-one mapping between the nucleotides of the genomes, preventing the alignment of recently duplicated regions. Both approaches have drawbacks for whole-genome comparisons. In this paper we present a novel symmetric alignment algorithm. The resulting alignments not only represent all of the genomes equally well, but also include all relevant duplications that occurred since the divergence from the last common ancestor. Our algorithm, implemented as a part of the VISTA Genome Pipeline (VGP), was used to align seven vertebrate and sixDrosophila genomes. The resulting whole-genome alignments demonstrate a higher sensitivity and specificity than the pairwise alignments previously available through the VGP and have higher exon alignment accuracy than comparable public whole-genome alignments. Of the multiple alignment methods tested, ours performed the best at aligning genes from multigene families?perhaps the most challenging test for whole-genome alignments. Our whole-genome multiple alignments are available through the VISTA Browser at http://genome.lbl.gov/vista/index.shtml.

  19. Emulating Multiple Inheritance in Fortran 2003/2008

    DOE PAGES [OSTI]

    Morris, Karla

    2015-01-01

    Although the high-performance computing (HPC) community increasingly embraces object-oriented programming (OOP), most HPC OOP projects employ the C++ programming language. Until recently, Fortran programmers interested in mining the benefits of OOP had to emulate OOP in Fortran 90/95. The advent of widespread compiler support for Fortran 2003 now facilitates explicitly constructing object-oriented class hierarchies via inheritance and leveraging related class behaviors such as dynamic polymorphism. Although C++ allows a class to inherit from multiple parent classes, Fortran and several other OOP languages restrict or prohibit explicit multiple inheritance relationships in order to circumvent several pitfalls associated with them. Nonetheless, whatmore » appears as an intrinsic feature in one language can be modeled as a user-constructed design pattern in another language. The present paper demonstrates how to apply the facade structural design pattern to support a multiple inheritance class relationship in Fortran 2003. The design unleashes the power of the associated class relationships for modeling complicated data structures yet avoids the ambiguities that plague some multiple inheritance scenarios.« less

  20. Breach, Leach, and Transport-Multiple Species GRID

    Energy Science and Technology Software Center

    2006-04-01

    BLTMS-GRID is a FORTRAN code developed to facilitate specifications of a finite-element grid for the Nuclear Regulatory Commission code called Breach, Leach, and Transport - Multiple Species (BLT-MS). BLTMS-GRID is an open-source code. It functions under a DOS window.