National Library of Energy BETA

Sample records for multifamily dwellings ho

  1. HUD rehabilitation energy guidelines for multi-family dwellings

    SciTech Connect

    1996-09-01

    The Guidebook has been prepared to help people, like yourself, involved in the rehabilitation of a multi-family building. It will help you understand the basics of residential energy conservation, and to think positively about the potential economic benefits. The Guidebook, and the HUD Rehabilitation Energy Guidelines, are applicable to all climates from hot and humid Florida to the northern reaches of Alaska.

  2. Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings

    SciTech Connect

    Klocke, S.; Faakye, O.; Puttagunta, S.

    2014-10-01

    ​While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of CARB's multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.

  3. Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings

    SciTech Connect

    Klocke, S.; Faakye, O.; Puttagunta, S.

    2014-10-01

    While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of Consortium for Advanced Residential Building's (CARB’s) multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.

  4. Building America Case Study: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York (Fact Sheet)

    SciTech Connect

    Not Available

    2014-11-01

    While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of CARB's multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.

  5. National impacts of the Weatherization Assistance Program in single-family and small multifamily dwellings

    SciTech Connect

    Brown, M.A.; Berry, L.G.; Balzer, R.A.; Faby, E.

    1993-05-01

    Since 1976, the US Department of Energy (DOE) has operated one of the largest energy conservation programs in the nation -- the low-income Weatherization Assistance Program. The program strives to increase the energy efficiency of dwellings occupied by low-income persons in order to reduce their energy consumption, lower their fuel bills, increase the comfort of their homes, and safeguard their health. It targets vulnerable groups including the elderly, people with disabilities, and families with children. The most recent national evaluation of the impacts of the Program was completed in 1984 based on energy consumption data for households weatherized in 1981. DOE Program regulations and operations have changed substantially since then: new funding sources, management principles, diagnostic procedures, and weatherization technologies have been incorporated. Many of these new features have been studied in isolation or at a local level; however, no recent evaluation has assessed their combined, nationwide impacts to date or their potential for the future. In 1990, DOE initiated such an evaluation. This evaluation is comprised of three ``impact`` studies (the Single-Family Study, High-Density Multifamily Study, and Fuel-Oil Study) and two ``policy`` studies. Altogether, these five studies will provide a comprehensive national assessment of the Weatherization Assistance Program as it existed in the 1989 Program Year (PY 1989). This report presents the results of the first phase of the Single-Family Study. It evaluates the energy savings and cost effectiveness of the Program as it has been applied to the largest portion of its client base -- low-income households that occupy single-family dwellings, mobile homes, and small (2- to 4-unit) multifamily dwellings. It is based upon a representative national sample that covers the full range of conditions under which the program was implemented in PY 1989.

  6. New Whole-House Solutions Case Study: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York

    SciTech Connect

    2014-11-01

    While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient; the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of Building America team Consortium for Advanced Residential Building's (CARB) multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in three multifamily buildings.

  7. HUD rehabilitation energy guidelines for multi-family dwellings (for microcomputers). Data file

    SciTech Connect

    1996-09-01

    The guidebook and Microsoft Excel worksheet diskette allows the user to calculate which enery consevation improvements are cost-effective when properties are rehabilitated. The information is applicable for all climates, from Florida to Alaska. The information is presented in a manner so that owners of building can better assess the needs and opportunities of a particular renovation project. They will also be able to ask better question of designers, builders, and contractors. The guidebook explains how properlly rehabilitating dwellings can increase energy efficiency and reduce costs. It discusses the issues and factors that determine how much energy a building will consume, including heat flow, air leakage, insulation, and heating and cooling systems. The guide also includes the specific HUD Rehabilitation Energy Guidelines for Dwellings with general and location-specific recommendations for energy conservation improvements. These guidelines are followed by examples of typical energy conservation measures in different climates. Each of these examples includes a Cost Effectiveness Excel Worksheet to show the overall simple payback. This easy-to-use worksheet walks through the entire evaluation process. The user simply enters in the appropriate information, much of which is menu driven. Appendicies provide a table that shows counties nationwide by climate zone, a list of resources, a glossary, and sample surveys and worksheets to help owners with their rehabilitation projects. Regulatory Background: The guidelines used in this guidebook are the Department of Housing and Urban Development`s `Standards for Cost Effective Energy Conservation` for property rehabilitation undertaken with HUD assistance. The information that used to be included in the regulations, with respect to energy efficiency, published as 24CFR39, is now contained in these guidelines.

  8. Building America Case Study: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York (Fact Sheet), Whole-House Solutions for New Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information, see Multifamily Envelope Leakage Model

  9. Building America Whole-House Solutions for New Homes: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York

    Energy.gov [DOE]

    In this project, the Consortium for Advanced Residential Buildings team sought to create a well-documented design and implementation strategy for air sealing in low-rise multifamily buildings that would assist in compliance with new building infiltration requirements of the 2012 IECC.

  10. Multifamily Performance Program

    Energy.gov [DOE]

    Under NYSERDA’s Multifamily Performance Program (MPP), new construction of multifamily buildings and existing multifamily buildings are eligible for incentives that improve energy savings through...

  11. Building America Case Study: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York (Fact Sheet), Whole-House Solutions for New Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    information, see the Building America report, Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Buildings,

  12. Information Technology Tools for Multifamily Building Programs...

    Energy Saver

    Information Technology Tools for Multifamily Building Programs Information Technology Tools for Multifamily Building Programs Better Buildings Neighborhood Program Multifamily ...

  13. Financing Multifamily Energy Efficiency Upgrades | Department...

    Energy Saver

    Multifamily Energy Efficiency Upgrades Financing Multifamily Energy Efficiency Upgrades Better Buildings Residential Network Peer Exchange Call Series: Financing Multifamily Energy ...

  14. MECHANICAL SYSTEMS - MULTIFAMILY: Venting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    MECHANICAL SYSTEMS - MULTIFAMILY: Venting MECHANICAL SYSTEMS - MULTIFAMILY: Venting 5_venting.zip (2.87 MB) More Documents & Publications MECHANICAL SYSTEMS - MULTIFAMILY: Combustion MECHANICAL SYSTEMS - MULTIFAMILY: Building as a System MECHANICAL SYSTEMS - MULTIFAMILY: Steam System Piping

  15. Multifamily Weatherization Frequently Asked Questions

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Multifamily Weatherization Frequently Asked Questions 1. How do Grantees define a multifamily building? It depends. There is not one all-encompassing definition for multifamily buildings and how they are addressed within WAP. There are nuances related to multifamily eligibility, multifamily auditing, and multifamily reporting that each carry their own definitions.  Eligibility: In order to be eligible for WAP funding, one of the following must be true: o At least 50% of the residential units

  16. DEVELOPMENT OF A FLEXIBLE, MULTIZONE, MULTIFAMILY BUILDING SIMULATION MODEL

    SciTech Connect

    Malhotra, Mini; Im, Piljae

    2012-01-01

    Weatherization of multifamily buildings is gaining increased attention in the U.S. Available energy audit tools for multifamily buildings were found to need desirable improvements. On the wish list of field experts for enhanced features was the basic ability to model multizone buildings (i.e., one thermal zone per dwelling unit) with simplified user inputs, which allows a better analysis of decentralized and centralized HVAC and domestic hot water systems of multifamily buildings without having to create detailed building models. To address the desired capabilities, development of an enhanced energy audit tool was begun in 2011. The tool is a strategically structured, flexible, one-zone-per-unit, DOE-2.1e model coupled with a simplified user interface to model small to large multifamily buildings with decentralized or centralized systems and associated energy measures. This paper describes the modeling concept and its implementation.

  17. MECHANICAL SYSTEMS - MULTIFAMILY: Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combustion MECHANICAL SYSTEMS - MULTIFAMILY: Combustion 4_combustion.zip (14.52 MB) More Documents & Publications MECHANICAL SYSTEMS - MULTIFAMILY: Venting MECHANICAL SYSTEMS - MULTIFAMILY: Building as a System

  18. Commercial and Multifamily Building Benchmarking and Disclosure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Multifamily Building Benchmarking and Disclosure Commercial and Multifamily Building Benchmarking and Disclosure Better Buildings Residential Network Peer Exchange Call: ...

  19. Building America Webinar: Multifamily Ventilation Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Joe Lstiburek Building America Webinar: Multifamily Ventilation Strategies and ... of Energy Building America webinar, Multifamily Ventilation Strategies and ...

  20. Building America Webinar: Multifamily Ventilation Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sean Maxwell Building America Webinar: Multifamily Ventilation Strategies and ... of Energy Buildng America webinar, Multifamily Ventilation Strategies and ...

  1. Multifamily Envelope Leakage Model

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Multifamily Envelope Leakage Model © Steven Winter Associates, Inc. 2013 Acknowledgements * Sponsored by Department of Energy's Building America Program © Steven Winter Associates, Inc. 2013 NEW YORK, NY | WASHINGTON, DC | NORWALK, CT CALL US 866.676.1972 | SWINTER.COM Outline/Agenda * Introduce multifamily air leakage testing * Statement of the problem * Steps taken for a solution * Model results * Applying the model * Benefits of the model © Steven Winter Associates, Inc. 2013 NEW YORK, NY

  2. Multifamily Ventilation Retrofit Strategies

    SciTech Connect

    Ueno, K.; Lstiburek, J.; Bergey, D.

    2012-12-01

    In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

  3. Training on Multifamily Retrofits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    » Multifamily Retrofits » Training on Multifamily Retrofits Training on Multifamily Retrofits Training on Multifamily Retrofits Ensure the people making decisions and installing measures in your buildings are properly trained to deal with multifamily properties by taking advantage of our national training network. DOE's Weatherization Assistance Program supports full-service training centers that specialize in multifamily retrofit training. These organizations offer professional training to

  4. Generating Demand for Multifamily Building Upgrades | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Generating Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades Better Buildings Residential Network Peer Exchange Call Series: Generating...

  5. Moving Multifamily Buildings From Assessments to Upgrades

    Energy.gov [DOE]

    Better Buildings Neighborhood Program Multifamily Peer Exchange Call: Moving Multifamily Buildings from Assessments to Upgrades, call slides and discussion summary, January 24, 2013.

  6. Information Technology Tools for Multifamily Building Programs

    Energy.gov [DOE]

    Better Buildings Neighborhood Program Multifamily / Low-Income Peer Exchange Call: Information Technology Tools for Multifamily Building Programs, Call Slides and Discussion Summary, March 15, 2012.

  7. Energy Efficiency Upgrades in Multifamily Housing | Department...

    Office of Environmental Management (EM)

    Energy Efficiency Upgrades in Multifamily Housing Energy Efficiency Upgrades in Multifamily Housing Better Buildings Residential Network Case Study: Energy Efficiency Upgrades in ...

  8. Building America Webinar: Ventilation in Multifamily Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ventilation in Multifamily Buildings Building America Webinar: Ventilation in Multifamily Buildings This webinar was presented by research team Consortium for Advanced Residential ...

  9. Generating Demand for Multifamily Building Upgrades | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Generating Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades Better Buildings Residential Network Peer Exchange Call Series: Generating ...

  10. HUD Multifamily Property Listings Eligible for Weatherization...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HUD Multifamily Property Listings Eligible for Weatherization Assistance HUD Multifamily Property Listings Eligible for Weatherization Assistance February 23, 2016 - 4:29pm Addthis ...

  11. Retrofit Ventilation Strategies in Multifamily Buildings Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Retrofit Ventilation Strategies in Multifamily Buildings Webinar Retrofit Ventilation Strategies in Multifamily Buildings Webinar Slides from the Building America webinar on ...

  12. Multifamily Home Energy Solutions Program

    Energy.gov [DOE]

    Energy Trust of Oregon offers owners of multifamily properties, with two or more units, cash incentives for upgrades to windows, appliances, water heaters, building envelope, heating and cooling,...

  13. Financing Multifamily Energy Efficiency Upgrades

    Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Financing Multifamily Energy Efficiency Upgrades, Call Slides and Discussion Summary, February 12, 2015.

  14. Ventilation in Multifamily Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program www.buildingamerica.gov Buildings Technologies Program Date: November 1, 2011 Ventilation in Multifamily Buildings Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-324-9601; Pass code: 5551971 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction November 1, 2011 Cheryn Engebrecht

  15. Evaluation of Crawlspace Retrofits in Multifamily Buildings

    SciTech Connect

    Rudd, Armin

    2014-09-01

    In 2011 and early 2012, Building Science Corporation (BSC) collaborated with Innova Services Corporation on a multifamily community unvented crawlspace retrofit project at Oakwood Gardens in Lansdale, Pennsylvania. BSC provided design consulting services and pre- and post-retrofit evaluation, testing, and data monitoring. The existing condition was a vented crawlspace with an uninsulated floor between the crawlspace and the dwelling units above. The crawlspace was therefore a critically weak link in the building enclosure and was ripe for improvement. Saving energy was the primary interest and goal, but the greatest challenge in this unvented crawlspace retrofit project was working through a crawlspace bulk water intrusion problem caused by inadequate site drainage, window well drainage, foundation wall drainage, and a rising water table during rainy periods.

  16. Multifamily Energy Efficiency Retrofit Financing and Savings

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presents the challenges encountered in the multifamily sector and how energy efficiency programs can respond successfully.

  17. Shared Space vs. In-Unit Upgrades in Multifamily Buildings |...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Shared Space vs. In-Unit Upgrades in Multifamily Buildings Shared Space vs. In-Unit Upgrades in Multifamily Buildings Better Buildings Neighborhood Program Multifamily Peer...

  18. Building America Webinar: Central Multifamily Water Heating Systems...

    Energy Saver

    Energy-Efficient Controls for Multifamily Domestic Hot Water Building America Webinar: Central Multifamily Water Heating Systems - Energy-Efficient Controls for Multifamily ...

  19. Building America Webinar: Central Multifamily Water Heating Systems...

    Energy Saver

    Multifamily Central Heat Pump Water Heating Building America Webinar: Central Multifamily Water Heating Systems - Multifamily Central Heat Pump Water Heating This presentation will ...

  20. Trends in Multifamily Programs: What's Working and What's Challenging...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Trends in Multifamily Programs: What's Working and What's Challenging Better Buildings Residential Network Multifamily Low-Income Peer Exchange Call Series: Trends in Multifamily ...

  1. Overcoming Multifamily Sector Barriers in Austin, Texas | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Overcoming Multifamily Sector Barriers in Austin, Texas Overcoming Multifamily Sector Barriers in Austin, Texas Presents techniques on overcoming the barriers of multifamily energy...

  2. Strategies to Address Split Incentives in Multifamily Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to Address Split Incentives in Multifamily Buildings Strategies to Address Split Incentives in Multifamily Buildings Better Buildings Neighborhood Program Multifamily Low-Income ...

  3. Shared Space vs. In-Unit Upgrades in Multifamily Buildings |...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Shared Space vs. In-Unit Upgrades in Multifamily Buildings Shared Space vs. In-Unit Upgrades in Multifamily Buildings Better Buildings Neighborhood Program Multifamily Peer ...

  4. Multifamily Ventilation - Best Practice? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Multifamily Ventilation - Best Practice? Multifamily Ventilation - Best Practice? This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. cq2_multifamily_ventilation_griffiths.pdf (2.78 MB) More Documents & Publications Critical Question #2: What are the Best Practices for Ventilation Specific to Multifamily Buildings? Ventilation in Multifamily Buildings Building America Technology Solutions for

  5. Ventilation in Multifamily Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ventilation in Multifamily Buildings Ventilation in Multifamily Buildings This webinar, hosted by Building America,was conducted on November 1, 2011, and describes ways to save energy in buildings through effective ventilation techniques. carb_ventilation_webinar.pdf (3.71 MB) More Documents & Publications Multifamily Ventilation - Best Practice? Critical Question #2: What are the Best Practices for Ventilation Specific to Multifamily Buildings? Building America Webinar: Multifamily

  6. MECHANICAL SYSTEMS - MULTIFAMILY: Steam System Piping | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Steam System Piping MECHANICAL SYSTEMS - MULTIFAMILY: Steam System Piping 12_steam_system_piping.zip (11.12 MB) More Documents & Publications MECHANICAL SYSTEMS - MULTIFAMILY: Venting MECHANICAL SYSTEMS - MULTIFAMILY: Combustion MECHANICAL SYSTEMS - MULTIFAMILY: Steam System Basics

  7. Central Multifamily Water Heating Systems

    Energy.gov [DOE]

    The Building America Program is hosting a no-cost, webinar-based training on Central Multifamily Water Heating Systems. The webinar will focus the effective use of central heat pump water heaters...

  8. APS- Multifamily Energy Efficiency Program

    Energy.gov [DOE]

    In order to meet Arizona's 22% energy reduction by 2020 goal, APS offers energy efficiency incentives to multifamily building residents. CFLs, thermostat shut-offs and water controls are offered...

  9. Installation on Multifamily Retrofits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Multifamily Retrofits » Installation on Multifamily Retrofits Installation on Multifamily Retrofits Over the last thirty years, DOE's Weatherization Assistance Program has cultivated the most experienced and connected group of whole-building energy retrofit professionals in the nation. The Weatherization Program has weatherized nearly 300,000 multifamily units since Graphic describing the Weatherization workforce as trained, equipped, and accountable. 2010. Many groups within the Weatherization

  10. Financing Multifamily Energy Upgrades | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Financing Multifamily Energy Upgrades Financing Multifamily Energy Upgrades Better Buildings Residential Network case studies feature members to fulfill our mission to share best practices and learn from one another to increase the number of homes that are energy efficient. Financing Multifamily Energy Upgrades (960.67 KB) More Documents & Publications Financing Multifamily Energy Efficiency Upgrades NYSERDA Summary of Reported Data Better Buildings Network View | June 2016

  11. Overcoming Multifamily Sector Barriers in Austin, Texas

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presents techniques on overcoming the barriers of multifamily energy efficiency projects, including how to market to property managers.

  12. Commercial and Multifamily Building Benchmarking and Disclosure

    Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call: Commercial and Multifamily Building Benchmarking and Disclosure, Call Slides, July 25, 2013.

  13. Incorporating Energy Efficiency into Multifamily, Affordable...

    Energy Saver

    Housing Rehabilitation Projects (201) Better Buildings Residential Network Peer Exchange Call Series: Incorporating Energy Efficiency into Multifamily, Affordable Housing ...

  14. Building America Webinar: Multifamily Ventilation Strategies and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Compartmentalization Requirements | Department of Energy Multifamily Ventilation Strategies and Compartmentalization Requirements Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements This Building America webinar, held on Sept. 24, 2014, focused on key challenges in multifamily ventilation and strategies to address these challenges. Sean Maxwell, Consortium for Advanced Residential Buildings, discussed make-up air strategies in new construction

  15. Multifamily Envelope Leakage Model

    SciTech Connect

    Faakye, Omari; Griffiths, Dianne

    2015-05-08

    “The cost for blower testing is high, because it is labor intensive, and it may disrupt occupants in multiple units. This high cost and disruption deter program participants, and dissuade them from pursuing energy improvements that would trigger air leakage testing, such as improvements to the building envelope.” This statement found in a 2012 report by Heschong Mahone Group for several California interests emphasizes the importance of reducing the cost and complexity of blower testing in multifamily buildings. Energy efficiency opportunities are being bypassed. The cost of single blower testing is on the order of $300. The cost for guarded blower door testing—the more appropriate test for assessing energy savings opportunities—could easily be six times that, and that’s only if you have the equipment and simultaneous access to multiple apartments. Thus, the proper test is simply not performed. This research seeks to provide an algorithm for predicting the guarded blower door test result based upon a single, total blower door test.

  16. Evaluation of Crawlspace Retrofits in Multifamily Buildings

    SciTech Connect

    Rudd, A.

    2014-09-01

    In 2011 and early 2012, Building Science Corporation (BSC) collaborated with Innova Services Corporation on a multifamily community unvented crawlspace retrofit project at Oakwood Gardens in Lansdale, Pennsylvania. BSC provided design consulting services and pre- and post-retrofit evaluation, testing, and data monitoring. The existing condition was a vented crawlspace with an uninsulated floor between the crawlspace and the dwelling units above. The crawlspace was therefore a critically weak link in the building enclosure and was ripe for improvement. Saving energy was the primary interest and goal, but the greatest challenge in this unvented crawlspace retrofit project was working through a crawlspace bulk water intrusion problem caused by inadequate site drainage, window well drainage, foundation wall drainage, and a rising water table during rainy periods. While the unvented crawlspace retrofit was effective in reducing heat loss, and the majority of the bulk water drainage problems had been resolved, the important finding was that some of the wood joists embedded in masonry pockets behind the brick veneer were showing signs of moisture damage.

  17. MECHANICAL SYSTEMS - MULTIFAMILY: Building as a System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Building as a System MECHANICAL SYSTEMS - MULTIFAMILY: Building as a System 1_building_as_a_system.zip (21.11 MB) More Documents & Publications MECHANICAL SYSTEMS - MULTIFAMILY: Venting MECHANICAL SYSTEMS - MULTIFAMILY: Combustion

  18. DOE Tour of Zero Floorplans: Revive Sustainable Multifamily Living by

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Philgreen Construction | Department of Energy Sustainable Multifamily Living by Philgreen Construction DOE Tour of Zero Floorplans: Revive Sustainable Multifamily Living by Philgreen Construction DOE Tour of Zero Floorplans: Revive Sustainable Multifamily Living

  19. Saving Energy in Multifamily Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Saving Energy in Multifamily Buildings Saving Energy in Multifamily Buildings This presentation is for the Building Technologies program webinar titled Saving Energy in Multifamily Buildings delivered on July 25, 2011. multifamily_bldg_webinar.pdf (2.54 MB) More Documents & Publications Building America Webinar: Saving Energy in Multifamily Buildings Technology Solutions for Existing Homes Overview: Quantifying the Financial Benefits of Multifamily Retrofits Building America Technology

  20. Generating Demand for Multifamily Building Upgrades | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades Better Buildings Residential Network Peer Exchange Call Series: Generating Demand for Multifamily Building Upgrades, call slides and discussion summary, May 14, 2015. Call Slides and Discussion Summary (1.2 MB) More Documents & Publications Strategies to Address Split Incentives in Multifamily Buildings Outreach to Multifamily Landlords and Tenants Moving Multifamily Buildings From Assessments to

  1. WPN 16-5: MULTIFAMILY WEATHERIZATION | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5: MULTIFAMILY WEATHERIZATION WPN 16-5: MULTIFAMILY WEATHERIZATION Effective: May 5, 2016 To provide Grantees with consolidated guidance on previously issued Weatherization Program Notices (WPNs) on weatherizing multifamily buildings in the Weatherization Assistance Program (WAP). This supersedes WPN 10-7 and WPN 11-9. WPN 16-5: MULTIFAMILY WEATHERIZATION (523.67 KB) WPN Multifamily FAQs 5 5 16.pdf (454.45 KB) More Documents & Publications WAP Memorandum 014: Feedback on Draft Multifamily

  2. Shared Space vs. In-Unit Upgrades in Multifamily Buildings

    Energy.gov [DOE]

    Better Buildings Neighborhood Program Multifamily Peer Exchange Call: Shared Space vs. In-Unit Upgrades in Multifamily Buildings, Call Slides and Summary, May 9, 2013.

  3. Puget Sound Energy- Multi-Family Efficiency Retrofit Program

    Energy.gov [DOE]

    PSE’s Multifamily Program incentives include a range of measures aimed at assisting existing multifamily buildings. There are prescriptive rebates for equipment such as windows, insulation, light...

  4. Promoting Combined Heat and Power (CHP) for Multifamily Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 The U.S. Department of Housing and ...

  5. Strategies to Address Split Incentives in Multifamily Buildings

    Energy.gov [DOE]

    Better Buildings Neighborhood Program Multifamily / Low-Income Peer Exchange Call: Strategies to Address Split Incentives in Multifamily Buildings, Call Slides and Discussion Summary, April 26, 2012.

  6. Overcoming Persistent Barriers to Energy Efficiency in Multifamily...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Overcoming Persistent Barriers to Energy Efficiency in Multifamily Housing through Partnerships Overcoming Persistent Barriers to Energy Efficiency in Multifamily Housing through ...

  7. Building America Webinar: Saving Energy in Multifamily Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Saving Energy in Multifamily Buildings Building America Webinar: Saving Energy in Multifamily Buildings This webinar introduced the Building America team Partnership for Advanced ...

  8. WPN 11-13: Documentation Required for Eligible Multifamily Property...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Eligible Multifamily Property Listings for Use in the Weatherization Assistance Program WPN 11-13: Documentation Required for Eligible Multifamily Property Listings for ...

  9. Building America Expert Meeting: Multifamily Hydronic and Steam...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Multifamily Hydronic and Steam Heating Controls and Distribution Retrofits Building America Expert Meeting: Multifamily Hydronic and Steam Heating Controls and Distribution ...

  10. Cost-Effective Modeling and Savings Projections for Multifamily...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cost-Effective Modeling and Savings Projections for Multifamily Projects Better Buildings Residential Network Multifamily and Low-Income Housing Peer Exchange Call Series: Cost-Eff...

  11. Building America Webinar: Central Multifamily Water Heating Systems...

    Energy Saver

    Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems The webinar was presented on January 21, 2015, and focused on the ...

  12. Austin Energy- Multi-Family Energy Efficiency Rebate Program

    Energy.gov [DOE]

    The Austin Energy Multi-Family Program provides cash incentives to owners, developers, and property managers of apartments and other multi-family properties for making energy efficiency...

  13. Building America Webinar: Multifamily Ventilation Strategies...

    Energy.gov [DOE] (indexed site)

    ASHRAE Standard 62.2-2013 ventilation requirements in multifamily buildings that are also constructed to LEED compartmentalization requirements of the currently proposed ASHRAE ...

  14. Building America Webinar: Multifamily Ventilation Strategies and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Compartmentalization Requirements - Joe Lstiburek | Department of Energy Joe Lstiburek Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements - Joe Lstiburek This presentation will be delivered at the U.S. Department of Energy Building America webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, on September 24, 2014. Joe Lstiburek, Building Science Corporation, will present various balanced ventilation options that

  15. Building America Webinar: Ventilation in Multifamily Buildings | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Ventilation in Multifamily Buildings Building America Webinar: Ventilation in Multifamily Buildings This webinar was presented by research team Consortium for Advanced Residential Buildings (CARB), and discussed ventilation strategies for multifamily buildings, including how to successfully implement those strategies through smart design, specification, and construction techniques. webinar_ventilation_multifamily_20111101.wmv (22.17 MB) More Documents & Publications Building

  16. Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements

    Office of Energy Efficiency and Renewable Energy (EERE)

    The webinar will focus on key challenges in multifamily ventilation and strategies to address these challenges.

  17. Building America Whole-House Solutions for Existing Homes: Multifamily

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Individual Heating and Ventilation Systems | Department of Energy Multifamily Individual Heating and Ventilation Systems Building America Whole-House Solutions for Existing Homes: Multifamily Individual Heating and Ventilation Systems The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems in multifamily buildings. Multifamily Individual Heating and Ventilation Systems - Lawrence,

  18. Outreach to Multifamily Landlords and Tenants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Outreach to Multifamily Landlords and Tenants Outreach to Multifamily Landlords and Tenants Better Buildings Residential Multifamily/Low-Income Peer Exchange Call Series: Outreach to Multifamily Landlords and Tenants, Call Slides and Discussion Summary, May 8, 2014. Call Slides and Discussion Summary (526.45 KB) More Documents & Publications Trends in Multifamily Programs: What's Working and What's Challenging Strategies to Overcome Split Incentive Tenant / Landlord Issues Coordinating

  19. Energy Efficiency Upgrades in Multifamily Housing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Efficiency Upgrades in Multifamily Housing Energy Efficiency Upgrades in Multifamily Housing Better Buildings Residential Network Case Study: Energy Efficiency Upgrades in Multifamily Housing. This case study addresses multifamily energy upgrade experiences by two members of the Better Buildings Residential Network-Elevate Energy and the International Center for Appropriate and Sustainable Technology (ICAST). Energy Efficiency Upgrades in Multifamily Housing (426.94 KB) More Documents

  20. Closing Gaps in Modeling Multifamily Retrofits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Closing Gaps in Modeling Multifamily Retrofits Closing Gaps in Modeling Multifamily Retrofits This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. cq6_closing_gaps_multifamily_dentz.pdf (1.61 MB) More Documents & Publications Critical Question #6: What are the Challenges and Solutions for Modeling Multifamily Buildings? Building America Webinar: Central Multifamily Water Heating Systems -

  1. Multifamily Retrofit Tools and Workforce Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Multifamily Retrofit Tools and Workforce Resources Multifamily Retrofit Tools and Workforce Resources The U.S. Department of Energy (DOE) has specific multifamily tools and resources that help alleviate lender and building owner uncertainty about energy upgrade results. Setting the standard for the industry, DOE has the ability to directly retrofit many of the nation's multifamily properties through its deployment programs. Using DOE affiliated multifamily resources means that contractors,

  2. America's Got Multifamily Talent (201) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    America's Got Multifamily Talent (201) America's Got Multifamily Talent (201) Better Buildings Residential Network Peer Exchange Call Series: America's Got Multifamily Talent (201), call slides and discussion summary, September 8, 2016. Call Slides and Discussion Summary (3.8 MB) More Documents & Publications Incorporating Energy Efficiency into Multifamily, Affordable Housing Rehabilitation Projects (201) Outreach to Multifamily Landlords and Tenants Capitalizing on Multibenefits of Energy

  3. Five case studies of multifamily weatherization programs

    SciTech Connect

    Kinney, L; Wilson, T.; Lewis, G.; MacDonald, M.

    1997-12-31

    The multifamily case studies that are the subject of this report were conducted to provide a better understanding of the approach taken by program operators in weatherizing large buildings. Because of significant variations in building construction and energy systems across the country, five states were selected based on their high level of multifamily weatherization. This report summarizes findings from case studies conducted by multifamily weatherization operations in five cities. The case studies were conducted between January and November 1994. Each of the case studies involved extensive interviews with the staff of weatherization subgrantees conducting multifamily weatherization, the inspection of 4 to 12 buildings weatherized between 1991 and 1993, and the analysis of savings and costs. The case studies focused on innovative techniques which appear to work well.

  4. Building America Case Study: Predicting Envelope Leakage in Attached Dwellings (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Predicting Envelope Leakage in Attached Dwellings PROJECT INFORMATION Project Name: Predicting Envelope Leakage in Attached Dwellings Consortium for Advanced Residential Buildings, carb-swa.com Building Component: Building envelope Application: New and retrofit; multifamily Year Tested: 2013 Applicable Climate Zone(s): All POTENTIAL BENEFITS OF MODEL Requires substantially fewer resources in the field-equipment, personnel, and time, because only solo test values are needed. Does not require

  5. Retrofit Ventilation Strategies in Multifamily Buildings Webinar |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Retrofit Ventilation Strategies in Multifamily Buildings Webinar Retrofit Ventilation Strategies in Multifamily Buildings Webinar Slides from the Building America webinar on November 30, 2011. webinar_hybrid_insulation_20111130.pdf (3.78 MB) More Documents & Publications Building America Expert Meeting: Foundations Research Results Building America Expert Meeting: Interior Insulation Retrofit of Mass Masonry Wall Assemblies Building America Technology Solutions for

  6. The multifamily building evaluation project

    SciTech Connect

    1995-03-01

    In 1991 the New York State Energy Office embarked on a comprehensive multi-year study of multifamily housing in New York City. The principal objective of the evaluation was to determine the degree to which new windows and boiler/burner retrofits installed in 22 multifamily buildings located in the New York City region save energy and whether the savings persist over a minimum of two years. Window and boiler retrofits were selected because they are popular measures and are frequently implemented with assistance from government and utility energy programs. Approaches prospectively, energy consumption monitoring and a series of on-site inspections helped explain why energy savings exceeded or fell short of expectations. In 1993, the scope of the evaluation expanded to include the monitoring of domestic hot water (DHW) consumption in order to better understand the sizing of combined heating/DHW boilers and water consumption patterns. The evaluation was one of ten proposals selected from over 100 candidates in a nationwide competition for a US Department of Energy Building Efficiency Program Grant. The Energy Office managed the project, analyzed the data and prepared the reports, Lawrence Berkeley Laboratory served as technical advisor, and EME Group (New York City) installed meters and dataloggers, collected data, and inspected the retrofits. The New York State Energy Research and Development Authority collaborated with the Energy Office on the DHW monitoring component. Results did not always follow predictable patterns. Some buildings far exceeded energy saving estimates while others experienced an increase in consumption. Persistence patterns were mixed. Some buildings showed a steady decline in energy savings while others demonstrated a continual improvement. A clear advantage of the research design was a frequent ability to explain results.

  7. HUD CHP GUIDE #2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 HUD CHP GUIDE 2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 The U.S. Department of Housing ...

  8. Technology Solutions for New Homes Case Study: Multifamily Zero...

    Energy Saver

    Case Study: Multifamily Zero Energy Ready Home Analysis AvalonBay Communities, which is a large multifamily ... planned to be certified to the ENERGY STAR Homes Version 3 program. ...

  9. SWS Online Tool now includes Multifamily Content, plus a How...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SWS Online Tool now includes Multifamily Content, plus a How-To Webinar SWS Online Tool now includes Multifamily Content, plus a How-To Webinar This announcement contains ...

  10. Cost-Effective Modeling and Savings Projections for Multifamily Projects

    Energy.gov [DOE]

    Better Buildings Residential Network Multifamily and Low-Income Housing Peer Exchange Call Series: Cost-Effective Modeling and Savings Projections for Multifamily Projects, Call Slides and Discussion Summary, June 26, 2014.

  11. MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY Nearly 70% of households in Maine rely on fuel oil as their primary energy source for home heating, more than any other state. Coupled with the state's long, cold winters, homeowners' dependence on oil renders them particularly vulnerable to fluctuating fuel costs. Especially for the state's aging multifamily housing

  12. Building America Webinar: Central Multifamily Water Heating Systems -

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy-Efficient Controls for Multifamily Domestic Hot Water | Department of Energy Energy-Efficient Controls for Multifamily Domestic Hot Water Building America Webinar: Central Multifamily Water Heating Systems - Energy-Efficient Controls for Multifamily Domestic Hot Water This presentation will be delivered at the U.S. Department of Energy Building America webinar on January 21, 2015, by Jordan Dentz and Eric Ansanelli of the Levy Partnership. Central domestic hot water (CDHW) systems are

  13. Building America Webinar: Central Multifamily Water Heating Systems -

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Multifamily Central Heat Pump Water Heating | Department of Energy Multifamily Central Heat Pump Water Heating Building America Webinar: Central Multifamily Water Heating Systems - Multifamily Central Heat Pump Water Heating This presentation will be delivered by Elizabeth Weitzel, Davis Energy Group, at the U.S. Department of Energy Building America webinar on January 21, 2015.The presentation will focus on the findings of an evaluation effort of a nominal 10.5 ton central HPWH installed at

  14. Building America Webinar: Saving Energy in Multifamily Buildings |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Saving Energy in Multifamily Buildings Building America Webinar: Saving Energy in Multifamily Buildings This webinar introduced the Building America team Partnership for Advanced Residential Retrofit (PARR) and its partners, outlined team objectives, and highlighted their current research program, Energy Savers. webinar_multifamily_bldgs_20110726.wmv (16.04 MB) More Documents & Publications Building America Webinar: Retrofit Ventilation Strategies in Multifamily

  15. Challenges and Solutions for Multifamily Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solutions for Multifamily Modeling Challenges and Solutions for Multifamily Modeling This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. cq6_modeling_multifamily_puttagunta.pdf (923.2 KB) More Documents & Publications Critical Question #6: What are the Challenges and Solutions for Modeling Multifamily Buildings? Building America Webinar: High Performance Space Conditioning Systems, Part II -

  16. Program Management on Multifamily Retrofits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Multifamily Retrofits » Program Management on Multifamily Retrofits Program Management on Multifamily Retrofits Completing a multifamily retrofit is a complex process that requires subject matter expertise in a number of disciplines. Weatherization agencies and organizations are experienced in completing successful projects under challenging conditions, and have broad expertise working with local stakeholders. Use the "Grantee Contacts" page at the U.S. DOE's Weatherization Assistance

  17. DOE Tour of Zero: Revive Sustainable Multifamily Living by Philgreen

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Construction | Department of Energy Sustainable Multifamily Living by Philgreen Construction DOE Tour of Zero: Revive Sustainable Multifamily Living by Philgreen Construction 1 of 10 Philgreen Construction built this multifamily building in Fort Collins, Colorado, to the performance criteria of the DOE Zero Energy Ready Home (ZERH) program. The average unit at Revive Sustainable Multifamily Living is 1,158 square feet. 2 of 10 The townhomes should save their homeowners about $1,586 in energy

  18. Energy Impact Illinois: Overcoming Barriers in the Multifamily Sector

    Energy.gov [DOE]

    Presents how Energy Impact Illinois overcame barriers in the multifamily sector through financing partnerships and expert advice.

  19. Multi-Family Housing Loans and Grants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Multi-Family Housing Loans and Grants Multi-Family Housing Loans and Grants Multi-family housing programs offer rural rental housing loans to provide affordable multi-family rental housing for very low-, low-, and moderate-income families, the elderly, and persons with disabilities. This is primarily a direct mortgage program, but funds may also be used to buy and improve land and to provide necessary facilities such as water and waste disposal systems and solar energy systems. Partner Agency:

  20. DOE Tour of Zero: Revive Sustainable Multifamily Living by Philgreen

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Construction | Department of Energy Sustainable Multifamily Living by Philgreen Construction DOE Tour of Zero: Revive Sustainable Multifamily Living by Philgreen Construction Addthis 1 of 10 Philgreen Construction built this multifamily building in Fort Collins, Colorado, to the performance criteria of the DOE Zero Energy Ready Home (ZERH) program. The average unit at Revive Sustainable Multifamily Living is 1,158 square feet. 2 of 10 The townhomes should save their homeowners about $1,586

  1. HUD Multifamily Property Listings Eligible for Weatherization Assistance |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy HUD Multifamily Property Listings Eligible for Weatherization Assistance HUD Multifamily Property Listings Eligible for Weatherization Assistance February 23, 2016 - 4:29pm Addthis Housing and Urban Development (HUD) multifamily properties eligible for weatherization assistance. On January 25, 2010, the Department of Energy (DOE) implemented rule 71-CFR-3847 for its Weatherization Assistance Program (WAP). Under the rule, if a public housing, assisted multi-family or Low

  2. Incorporating Energy Efficiency into Multifamily, Affordable Housing Rehabilitation Projects (201)

    Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Incorporating Energy Efficiency into Multifamily, Affordable Housing Rehabilitation Projects (201).

  3. Better Buildings Residential Network Multifamily & Low-Income...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... peerexchange@rossstrategic.com 6 Data & Evaluation Financing & Revenue Marketing & Outreach Multifamily Low-Income Housing Program Sustainability ...

  4. Text-Alternative Version of Building America Webinar: Multifamily

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ventilation Strategies and Compartmentalization Requirements | Department of Energy Multifamily Ventilation Strategies and Compartmentalization Requirements Text-Alternative Version of Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements Multifamily Ventilation Strategies and Compartmentalization Requirements September 24, 2014 Sean Maxwell, Senior Energy Consultant, Steven Winter Associates Joe Lstiburek, Founding Principal of Building Science

  5. Balancing Hydronic Systems in Multifamily Buildings

    SciTech Connect

    Ruch, Russell; Ludwig, Peter; Maurer, Tessa

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution, and controls. The imbalance leads to tenant discomfort, higher energy use intensity, and inefficient building operation. This research, conducted by Building America team Partnership for Advanced Residential Retrofit, explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61°F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1°F to 15.5°F.

  6. Balancing Hydronic Systems in Multifamily Buildings

    SciTech Connect

    Ruch, R.; Ludwig, P.; Maurer, T.

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. This paper explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The research was conducted by The Partnership for Advanced Residential Retrofit (PARR) in conjunction with Elevate Energy. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61 degrees F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1 degrees F to 15.5 degrees F.

  7. Overcoming Persistent Barriers to Energy Efficiency in Multifamily Housing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    through Partnerships | Department of Energy Overcoming Persistent Barriers to Energy Efficiency in Multifamily Housing through Partnerships Overcoming Persistent Barriers to Energy Efficiency in Multifamily Housing through Partnerships This presentation, held on Jan. 30, 2014, provides information on how to leverage state policies and programs to advance multifamily energy efficiency efforts. Presentation (12.16 MB) Transcript (135 KB) More Documents & Publications HIA ZERH Judge Bios

  8. Engagement with Utilities on Multifamily Retrofits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Multifamily Retrofits » Engagement with Utilities on Multifamily Retrofits Engagement with Utilities on Multifamily Retrofits Weatherization professionals often have existing relationships with the local utilities, which can facilitate access to helpful data. | Photo by Warren Gretz, NREL 04893 Weatherization professionals often have existing relationships with the local utilities, which can facilitate access to helpful data. | Photo by Warren Gretz, NREL 04893 Energy modeling software is a

  9. Capitalizing on Multibenefits of Energy Upgrades at Multifamily Housing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (301) | Department of Energy Capitalizing on Multibenefits of Energy Upgrades at Multifamily Housing (301) Capitalizing on Multibenefits of Energy Upgrades at Multifamily Housing (301) Buildings Residential Network Peer Exchange Call Series: Capitalizing on Multibenefits of Energy Upgrades at Multifamily Housing (301), call slides and discussion summary. Call Slides and Discussion Summary (3.36 MB) More Documents & Publications Staged Upgrades as a Strategy for Residential Energy

  10. EERE Success Story-Connecticut: Bridgeport Multifamily Weatherization |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Connecticut: Bridgeport Multifamily Weatherization EERE Success Story-Connecticut: Bridgeport Multifamily Weatherization November 8, 2013 - 12:00am Addthis EERE's Weatherization Assistance Program weatherized a multifamily facility in Bridgeport, Connecticut, that provides safe housing for individuals, veterans, and the homeless received weatherization; the services performed have saved the facility nearly $7,000 in annual energy costs. Because the state had not yet

  11. Building America Expert Meeting: Code Challenges with Multifamily Area

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Separation Walls | Department of Energy Code Challenges with Multifamily Area Separation Walls Building America Expert Meeting: Code Challenges with Multifamily Area Separation Walls This Building America Expert Meeting was conducted by the IBACOS team on Sept. 29, 2014, and focused on air sealing of area separation wall assemblies in multifamily buildings. This is an identified barrier that limits the ability of builders to cost effectively achieve higher energy efficiency and quality

  12. Building America Expert Meeting: Multifamily Hydronic and Steam Heating

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Controls and Distribution Retrofits | Department of Energy Multifamily Hydronic and Steam Heating Controls and Distribution Retrofits Building America Expert Meeting: Multifamily Hydronic and Steam Heating Controls and Distribution Retrofits This expert meeting was conducted on July 13, 2011 by the ARIES Collaborative in New York City. The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family

  13. Rural Development Multi-Family Housing Energy Efficiency Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Rural Development Multi-Family Housing Energy Efficiency Initiative Rural Development Multi-Family Housing Energy Efficiency Initiative In order to help create a more energy independent rural America for the next century, the USDA Rural Development Multi-Family Housing Energy Efficiency Initiative enables applicants to several USDA housing programs to increase their program funding eligibility by incorporating green building practices into project designs, construction,

  14. Text-Alternative Version of Building America Webinar: Central Multifamily

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Heating Systems | Department of Energy Central Multifamily Water Heating Systems Text-Alternative Version of Building America Webinar: Central Multifamily Water Heating Systems Central Multifamily Water Heating Systems January 21, 2015 Elizabeth Weitzel, Alliance for Residential Building Innovation (ARBI) Jordan Dentz, Advanced Residential Integrated Energy Solutions (ARIES) Eric Ansanelli, Advanced Residential Integrated Energy Solutions (ARIES) Gail: Hello everyone, I'm Gail Werren

  15. Better Buildings Challenge Expands to Multifamily Housing | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Better Buildings Challenge Expands to Multifamily Housing Better Buildings Challenge Expands to Multifamily Housing December 4, 2013 - 12:00am Addthis The U.S. Departments of Energy and Housing and Urban Development on December 3 expanded the Better Buildings Challenge to multifamily housing such as apartments and condominiums. The departments also launched the Better Buildings Accelerators to support efforts led by state and local governments to cut energy waste and eliminate market

  16. WPN 11-9: Updated Guidance on Eligible Multifamily Property Listings...

    Energy Saver

    9: Updated Guidance on Eligible Multifamily Property Listings for Use in the Weatherization Assistance Program WPN 11-9: Updated Guidance on Eligible Multifamily Property Listings...

  17. Building America Webinar: Central Multifamily Water Heating Systems

    Energy.gov [DOE]

    This U.S. Department of Energy Building America webinar, Central Multifamily Water Heating Systems, will take place on January 21, 2015.

  18. Moving Multifamily Buildings From Assessments to Upgrades | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Commercial and Multifamily Building Benchmarking and Disclosure Assessing Revenue Streams: What Is Right for Your Program? Shared Space vs. In-Unit ...

  19. Conway Street Apartments: A Multifamily Deep Energy Retrofit...

    Office of Scientific and Technical Information (OSTI)

    CONSORTIUM FOR ADVANCED RESIDENTIAL BUILDINGS; MULTIFAMILY; RETROFIT; ZERO ENERGY; SOLAR THERMAL; DRAIN WATER RECOVERY SYSTEM; DEMAND-CONTROLLED RECIRCULATION SYSTEM; BRICK;...

  20. DHCD- Multifamily Energy Efficiency and Housing Affordability Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Maryland Department of Housing and Community Development (DHCD) provides several programs to increase energy efficiency of multifamily homes of low and moderate income households. These affordable...

  1. WAP Memorandum 014: Feedback on Draft Multifamily and Rental WPNs

    Energy.gov [DOE]

    DOE is requesting feedback on the draft Multifamily WPNs and FAQs as well as the draft Rental WPNs and FAQs by Dec. 11, 2015.

  2. Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008

    Office of Energy Efficiency and Renewable Energy (EERE)

    The paper describes the software and provides case studies of CHP installed in multi-family housing (e.g. Cambridge, MA; Danbury, CT).

  3. Addressing Barriers to Upgrade Projects at Affordable Multifamily Properties (201)

    Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Addressing Barriers to Upgrade Projects at Affordable Multifamily Properties (201), call slides and discussion summary.

  4. EERE Success Story-Connecticut: Bridgeport Multifamily Weatherization...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EERE Success Story-Connecticut: Bridgeport Multifamily ... saved the facility nearly 7,000 in annual energy costs. ... of renewable energy and energy efficiency technologies. ...

  5. Outreach to Multifamily Landlords and Tenants | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Trends in Multifamily Programs: What's Working and What's Challenging Strategies to Overcome Split Incentive Tenant Landlord Issues Coordinating Energy Efficiency With Water ...

  6. Final Rule on Amending Eligibility Provisions to Multifamily...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Final Rule on Amending Eligibility Provisions to Multifamily Buildings for the Weatherization Assistance Program U.S. Department of Energy (DOE) Office of Energy Efficiency and ...

  7. Addressing Barriers to Upgrade Projects at Affordable Multifamily...

    Energy Saver

    Incorporating Energy Efficiency into Multifamily, Affordable Housing Rehabilitation Projects (201) Where Do We Go From Here? The Changing Landscape of Residential Energy Efficiency ...

  8. Capitalizing on Multibenefits of Energy Upgrades at Multifamily...

    Energy Saver

    Call Slides and Discussion Summary (3.36 MB) More Documents & Publications Staged Upgrades as a Strategy for Residential Energy Efficiency Trends in Multifamily Programs: What's ...

  9. Building America Case Study: Solar Water Heating in Multifamily...

    Energy Saver

    Solar Water Heating in Multifamily Buildings Greenfield, Massachusetts PROJECT INFORMATION ... Incentives Used: * Commonwealth Solar Hot Water Program * 30% Federal tax credit * ...

  10. SoCalGas- Multi-Family Residential Rebate Program

    Energy.gov [DOE]

    Southern California Gas Company provides incentives to encourage the owners and managers of multi-family residential buildings to increase their energy efficiency. The program offers rebates for...

  11. Conway Street Apartments: A Multifamily Deep Energy Retrofit

    SciTech Connect

    Aldrich, R.; Williamson, J.

    2014-11-01

    While single-family, detached homes account for 63% of households (EIA 2009); multi-family homes account for a very large portion of that remaining housing stock, and this fraction is growing. Through recent research efforts, CARB has been evaluating strategies and technologies that can make dramatic improvements in energy performance in multi-family buildings.

  12. Three-body dwell time

    SciTech Connect

    Kelkar, N. G.

    2010-06-15

    The lifetime of an unstable state or resonance formed as an intermediate state in two-body scattering is known to be related to the dwell time or the time spent within a given region of space by the two interacting particles. This concept is extended to the case of three-body systems and a relation connecting the three-body dwell time with the two-body dwell times of the substructures of the three-body system is derived for the case of separable wave functions. The Kapur-Peierls formalism is revisited to discover one of the first definitions of dwell time in the literature. An extension of the Kapur-Peierls formalism to the three-body case shows that the lifetime of a three-body resonance can indeed be given by the three-body dwell time.

  13. Field Testing of Compartmentalization Methods for Multifamily Construction

    SciTech Connect

    Ueno, K.; Lstiburek, J. W.

    2015-03-01

    The 2012 International Energy Conservation Code (IECC) has an airtightness requirement of 3 air changes per hour at 50 Pascals test pressure (3 ACH50) for single-family and multifamily construction (in climate zones 3–8). The Leadership in Energy & Environmental Design certification program and ASHRAE Standard 189 have comparable compartmentalization requirements. ASHRAE Standard 62.2 will soon be responsible for all multifamily ventilation requirements (low rise and high rise); it has an exceptionally stringent compartmentalization requirement. These code and program requirements are driving the need for easier and more effective methods of compartmentalization in multifamily buildings.

  14. Be SMART Multi-Family Efficiency Loan Program

    Energy.gov [DOE]

    Under the Be SMART Multi-Family Program, the Maryland Department of Housing and Community Development (DHCD) offers loans for energy efficiency improvements in existing multi-family rental proper...

  15. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    SciTech Connect

    Dentz, Jordan; Podorson, David; Varshney, Kapil

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  16. ConEd (Electric)- Multifamily Energy Efficiency Incentives Program

    Energy.gov [DOE]

    Con Edison offers New York Multifamily electric customers a rebate program for energy efficient cooling and lighting equipment in 5-75 unit buildings in the eligible service area. All equipment...

  17. DOE Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings

    Energy.gov [DOE]

    The Building America Program is hosting a no-cost, webinar-based training on Retrofitting Central Space Conditioning Strategies for Multifamily Buildings. The webinar will focus on improving the...

  18. Audits and Quality Control on Multifamily Retrofits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Audits and Quality Control on Multifamily Retrofits Audits and Quality Control on Multifamily Retrofits Thermal scanning pre- and post-installation ensures an accurate work scope is developed and assists with quality control after the job is done. | Photo by Dennis Schroeder, NREL 28597-C Thermal scanning pre- and post-installation ensures an accurate work scope is developed and assists with quality control after the job is done. | Photo by Dennis Schroeder, NREL 28597-C All energy retrofit

  19. Measure Guideline. Air Sealing Attics in Multifamily Buildings

    SciTech Connect

    Otis, Casey; Maxwell, Sean

    2012-06-01

    This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

  20. Obama Administration Expands Better Buildings Challenge to Multifamily

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Housing, Launches New Programs to Boost U.S. Energy Efficiency | Department of Energy Expands Better Buildings Challenge to Multifamily Housing, Launches New Programs to Boost U.S. Energy Efficiency Obama Administration Expands Better Buildings Challenge to Multifamily Housing, Launches New Programs to Boost U.S. Energy Efficiency December 3, 2013 - 9:45am Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on $2 billion in financing commitments from the private sector for energy

  1. Client and Tenant Education on Multifamily Retrofits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Client and Tenant Education on Multifamily Retrofits Client and Tenant Education on Multifamily Retrofits Client education is a critical step in successful building retrofits. | Photo by Dennis Schroeder, NREL 28546 Client education is a critical step in successful building retrofits. | Photo by Dennis Schroeder, NREL 28546 Even the best energy retrofit plans work only as well as the people occupying the building will allow. The Weatherization Assistance Program understands that a building is

  2. Building America Webinar: Central Multifamily Water Heating Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems The webinar was presented on January 21, 2015, and focused on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water distribution. Presenters and specific topics for this webinar included: Elizabeth Weitzel from the Building America team, Alliance for Residential Building Innovation, presenting

  3. Measure Guideline: Air Sealing Attics in Multifamily Buildings

    SciTech Connect

    Otis, C.; Maxwell, S.

    2012-06-01

    This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

  4. Better Buildings Residential Network Case Study: Financing Multifamily Energy Upgrades

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Financing Multifamily Energy Upgrades BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.gov/bbrn B etter Buildings Residential Network case studies feature members to fulfill our mission to share best practices and learn from one another to increase the number of homes that are energy efficient. The New York City Energy Efficiency Corporation (NYCEEC) is a Residential Network member that focuses on financing energy efficiency and clean energy upgrades for multifamily and

  5. WEATHERIZATION PROGRAM NOTICE 16-XX EFFECTIVE DATE: SUBJECT: MULTIFAMILY WEATHERIZATION

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6-XX EFFECTIVE DATE: SUBJECT: MULTIFAMILY WEATHERIZATION PURPOSE: To provide Grantees with consolidated guidance on previously issued Weatherization Program Notices (WPNs) on weatherizing multifamily buildings in the Weatherization Assistance Program (WAP). This supersedes WPN 10-7 and WPN 11-9 SCOPE: The provisions of this guidance apply to Grantees applying for financial assistance under the Department of Energy (DOE) WAP. LEGAL AUTHORITY: Title IV, Energy Conservation and Production Act, as

  6. WPN 11-13: Documentation Required for Eligible Multifamily Property

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Listings for Use in the Weatherization Assistance Program | Department of Energy 13: Documentation Required for Eligible Multifamily Property Listings for Use in the Weatherization Assistance Program WPN 11-13: Documentation Required for Eligible Multifamily Property Listings for Use in the Weatherization Assistance Program Effective: Sept. 19, 2011 To issue guidance for Grantees and Subgrantees of the U.S. Department of Energy (DOE) Weatherization Assistance Program (WAP) regarding

  7. Weatherization Memorandum 016: Multifamily Housing - HUD Lists | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Memorandum 016: Multifamily Housing - HUD Lists Weatherization Memorandum 016: Multifamily Housing - HUD Lists Effective: May 31, 2016 This memorandum serves to transmit updated information to the WAP network on current buildings identified by the U.S. Department of Housing and Urban Development (HUD) and published by the U.S. Department of Energy (DOE) that meet certain income eligibility requirements and may meet other WAP requirements without the need for further evaluation or

  8. Cascade Apartments: Deep Energy Multifamily Retrofit

    SciTech Connect

    Gordon, A.; Mattheis, L.; Kunkle, R.; Howard, L.; Lubliner, M.

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions: 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

  9. Cascade Apartments: Deep Energy Multifamily Retrofit

    SciTech Connect

    Gordon, A.; Mattheis, L.; Kunkle, R.; Howard, L.; Lubliner, M.

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions : 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

  10. DOE Tour of Zero Floorplans: Reclaimed Modern by Dwell Development...

    Energy Saver

    Zero Floorplans: Reclaimed Modern by Dwell Development DOE Tour of Zero Floorplans: Reclaimed Modern by Dwell Development DOE Tour of Zero Floorplans: Reclaimed Modern by Dwell...

  11. Phay Ho | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Phay Ho Assistant Physicist Telephone (630) 252-1257 E-mail pho

  12. Energy Savers: A one-stop energy efficiency shop for multifamily...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A one-stop energy efficiency shop for multifamily building owners Energy Savers: A one-stop energy efficiency shop for multifamily building owners This is a document from Energy ...

  13. Trends in Multifamily Programs: What’s Working and What’s Challenging

    Energy.gov [DOE]

    Better Buildings Residential Network Multifamily / Low-Income Peer Exchange Call Series: Trends in Multifamily Programs: What’s Working and What’s Challenging, Call Slides and Discussion Summary, January 9, 2014.

  14. PG&E (Gas)- Multi-Family Residential Energy Efficiency Rebates

    Energy.gov [DOE]

    Through the Rebates for Multi-Family Properties Program, PG&E offers prescriptive rebates for owners and managers of multi-family properties of two or more units. Boilers, furnaces, clothes...

  15. Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements- Sean Maxwell

    Energy.gov [DOE]

    This presentation is included in the Building America webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, on September 24, 2014.

  16. Using Solar Hot Water to Address Piping Heat Losses in Multifamily...

    Office of Scientific and Technical Information (OSTI)

    Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION residential; Residential Buildings; ARBI; Building America; TRNSYS; multifamily; domestic hot water; solar water ...

  17. HUD CHP GUIDE #2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    May 2009 | Department of Energy 2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 HUD CHP GUIDE #2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 The U.S. Department of Housing and Urban Development's (HUD's) 2002 Energy Action Plan includes an initiative to promote the use of combined heat and power (CHP) in multifamily housing. This 2009 guide "Feasibility Screening for Combined Heat and Power in Multifamily Housing" describes the U.S.

  18. Guidelines for Home Energy Professionals Project: Multifamily Job Task Analyses Needs Assessment

    SciTech Connect

    Dirr, N.; Hepinstall, D.; Douglas, M.; Buck, S.; Larney, C.

    2013-01-01

    This report describes the efforts carried out to determine whether there is a need to develop separate, multifamily-specific JTAs for the four proposed job categories. The multifamily SWS market committee considered these job designations to be the best candidates for developing JTAs and certification blueprints, as well as having the greatest potential for promoting job growth in the multifamily home performance industry.

  19. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    SciTech Connect

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01

    Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

  20. List 2: Eligible Multifamily Buildings 10-CFR-440.22(b)(4)(ii) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 2: Eligible Multifamily Buildings 10-CFR-440.22(b)(4)(ii) List 2: Eligible Multifamily Buildings 10-CFR-440.22(b)(4)(ii) List 2: Eligible Multifamily Buildings 10-CFR-440.22(b)(4)(ii) HUD list of multifamily housing units eligible for weatherization that have less than three years remaining on HUD housing contracts. As of December 2014. List 2 - multifamily contract_expires_less than 3 yrs 2015 final.xlsx (430.5 KB) More Documents & Publications

  1. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    SciTech Connect

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01

    In this project, the ARIES Building America team collected apartment temperature data from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. Data was analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating in an effort to answer the question, "What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?" This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort.

  2. Simplified multizone blower door techniques for multifamily buildings. Final report

    SciTech Connect

    1995-09-01

    This research focused on the applicability of (a) two-blower-door and (b) single-blower-door multi-zone pressurization techniques for estimating the air leakage characteristics of New York State multi-family apartment buildings. The research also investigated the magnitude of external leakage area in multi-family buildings and used computer simulations to estimate the effect of decreasing external and internal leakage areas on air infiltration rates. This research investigates whether two blower doors can be used to determine the ELA of the exterior envelope and the ELA of partitions. Two multi-zone versions of the single-blower-door pressurization method are also examined.

  3. National Energy Audit Tool for Multifamily Buildings Development Plan

    SciTech Connect

    Malhotra, Mini; MacDonald, Michael; Accawi, Gina K; New, Joshua Ryan; Im, Piljae

    2012-03-01

    The U.S. Department of Energy's (DOE's) Weatherization Assistance Program (WAP) enables low-income families to reduce their energy costs by providing funds to make their homes more energy efficient. In addition, the program funds Weatherization Training and Technical Assistance (T and TA) activities to support a range of program operations. These activities include measuring and documenting performance, monitoring programs, promoting advanced techniques and collaborations to further improve program effectiveness, and training, including developing tools and information resources. The T and TA plan outlines the tasks, activities, and milestones to support the weatherization network with the program implementation ramp up efforts. Weatherization of multifamily buildings has been recognized as an effective way to ramp up weatherization efforts. To support this effort, the 2009 National Weatherization T and TA plan includes the task of expanding the functionality of the Weatherization Assistant, a DOE-sponsored family of energy audit computer programs, to perform audits for large and small multifamily buildings This report describes the planning effort for a new multifamily energy audit tool for DOE's WAP. The functionality of the Weatherization Assistant is being expanded to also perform energy audits of small multifamily and large multifamily buildings. The process covers an assessment of needs that includes input from national experts during two national Web conferences. The assessment of needs is then translated into capability and performance descriptions for the proposed new multifamily energy audit, with some description of what might or should be provided in the new tool. The assessment of needs is combined with our best judgment to lay out a strategy for development of the multifamily tool that proceeds in stages, with features of an initial tool (version 1) and a more capable version 2 handled with currently available resources. Additional development in the

  4. Implementing a Zero Energy Ready Home Multifamily Project

    SciTech Connect

    Springer, David; German, Alea

    2015-08-01

    An objective of this project was to gain a highly visible foothold for residential buildings built to the U.S. Department of Energy's Zero Energy Ready Home (ZERH) specification that can be used to encourage participation by other California builders. This report briefly describes two single family homes that were ZERH-certified, and focuses on the experience of working with developer Mutual Housing on a 62 unit multi-family community at the Spring Lake subdivision in Woodland, CA. The Spring Lake project is expected to be the first ZERH certified multi-family project nationwide. This report discusses challenges encountered, lessons learned, and how obstacles were overcome.

  5. Building America Expert Meeting Report. Hydronic Heating in Multifamily Buildings

    SciTech Connect

    Dentz, Jordan

    2011-10-01

    This expert meeting was presented by the ARIES Collaborative, and discussed cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the goals of reducing energy waste and improving occupant comfort.

  6. Retrofit of a Multifamily Mass Masonry Building in New England

    SciTech Connect

    Ueno, K.; Kerrigan, P.; Wytrykowska, H.; Van Straaten, R.

    2013-08-01

    Merrimack Valley Habitat for Humanity (MVHfH) has partnered with Building Science Corporation to provide high performance affordable housing for 10 families in the retrofit of an existing brick building (a former convent) into condominiums. The research performed for this project provides information regarding advanced retrofit packages for multi-family masonry buildings in Cold climates. In particular, this project demonstrates safe, durable, and cost-effective solutions that will potentially benefit millions of multi-family brick buildings throughout the East Coast and Midwest (Cold climates). The retrofit packages provide insight on the opportunities for and constraints on retrofitting multifamily buildings with ambitious energy performance goals but a limited budget. The condominium conversion project will contribute to several areas of research on enclosures, space conditioning, and water heating. Enclosure items include insulation of mass masonry building on the interior, airtightness of these types of retrofits, multi-unit building compartmentalization, window selection, and roof insulation strategies. Mechanical system items include combined hydronic and space heating systems with hydronic distribution in small (low load) units, and ventilation system retrofits for multifamily buildings.

  7. WPN 10-15: Final Rule on Amending Eligibility Provisions to Multifamily

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Buildings for the Weatherization Assistance Program | Department of Energy 5: Final Rule on Amending Eligibility Provisions to Multifamily Buildings for the Weatherization Assistance Program WPN 10-15: Final Rule on Amending Eligibility Provisions to Multifamily Buildings for the Weatherization Assistance Program Effective: March 2, 2010 To issue guidance on implementing recent changes to the WAP requirements for determining eligibility of certain multifamily buildings as identified by HUD

  8. Overcoming Persistent Barriers to Energy Efficiency in Multifamily Housing through Partnerships

    Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Overcoming Persistent Barriers to Energy Efficiency in Multifamily Housing through Partnerships.

  9. Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings- Introduction

    Energy.gov [DOE]

    This Building America webinar was held on July 16, 2014, and provided information about mproving the performance of central space conditioning systems in multifamily buildings.

  10. Using Solar Hot Water to Address Piping Heat Losses in Multifamily...

    Office of Scientific and Technical Information (OSTI)

    Subject: residential; Residential Buildings; ARBI; Building America; TRNSYS; multifamily; domestic hot water; solar water heater; recirculation Word Cloud More Like This Full Text ...

  11. Text-Alternative Version of Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings

    Office of Energy Efficiency and Renewable Energy (EERE)

    A text-alternative version of the Building America webinar, Retrofitting Central Space Conditioning Strategies for Multifamily Buildings held on July 16, 2014.

  12. Short-Term Test Results. Multifamily Home Energy Efficiency Retrofit

    SciTech Connect

    Lyons, James

    2013-01-01

    Multifamily deep energy retrofits (DERs) represent great potential for energy savings, while also providing valuable insights on research-generated efficiency measures, cost-effectiveness metrics, and risk factor strategies for the multifamily housing industry. This report describes the Bay Ridge project, a base scope retrofit with a goal of achieving 30% savings (relative to pre-retrofit), and a DER scope with a goal of 50% savings (relative to pre-retrofit). Findings from the short-term testing at Bay Ridge include air infiltration reductions of greater than 60% in the DER building; a hybrid heat pump system with a Savings to Investment Ratio (SIR) > 1 (relative to a high efficiency furnace) which also provides the resident with added incentive for energy savings; and duct leakage reductions of > 60% using an aerosolized duct sealing approach.

  13. Low-Load HVAC Systems for Single and Multifamily Applications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Load HVAC Systems for Single and Multifamily Applications Anthony Grisolia Managing Director Innovation Programs Andrew Poerschke Specialist Innovation Programs CONFIDENTIAL Agenda Basis for Thermal Comfort Comparative Modeling Newtown Townhouse Case Study Plug and Play System Future Work How IBACOS Thinks About Comfort Risks Home 24 Home 25 Home 26 Same Plan Same Street Same Orientation Different Occupants 0.5 CLO 1.0 MET ASHRAE 55 Comfort Aggregate of 36 Homes 0.5 CLO 1.0 MET 47% of data

  14. Need for Systematic Retrofit Analysis in Multifamily Buildings

    SciTech Connect

    Malhotra, Mini; Im, Piljae

    2014-01-01

    Multifamily housing offers high potential for energy savings through retrofits. A comprehensive energy audit with systematic evaluation of alternative energy measures is one of the key steps to realizing the full energy savings potential. However, this potential often remains unrealized when the selection of measures is (1) based on a one-size-fits-all approach originating from accustomed practices, (2) intended merely to meet code-compliance requirements, and/or (3) influenced by owner renter split incentive. In such cases, the benefits of comprehensive energy auditing are disregarded in view of the apparent difficulty in diagnosing multifamily buildings, evaluating alternative measures, and installing customized sets of measures. This paper highlights some of the barriers encountered in a multifamily housing retrofit project in Georgia and demonstrates the merits of systematic retrofit analysis by identifying opportunities for higher energy savings and improved comfort and indoor air quality that were missed in this project. The study uses a whole-building energy analysis conducted for a 10-unit, low-rise, multifamily building of a 110-unit apartment complex. The analysis projected a 24% energy savings from the measures installed in the building with a payback period of 10 years. Further analysis with a systematic evaluation of alternative measures showed that without compromising on the objectives of durability, livability, and appearance of the building, energy savings of up to 34% were achievable with a payback period of 7 years. The paper concludes by outlining recommendations that may benefit future retrofit projects by improving the audit process, streamlining tasks, and achieving higher energy savings.

  15. Field Testing of Compartmentalization Methods for Multifamily Construction

    SciTech Connect

    Ueno, K.; Lstiburek, J.

    2015-03-01

    The 2012 IECC has an airtightness requirement of 3 air changes per hour at 50 Pascals test pressure for both single-family and multifamily construction in Climate Zones 3-8. Other programs (LEED, ASHRAE 189, ASHRAE 62.2) have similar or tighter compartmentalization requirements, driving the need for easier and more effective methods of compartmentalization in multifamily buildings. Builders and practitioners have found that fire-resistance rated wall assemblies are a major source of difficulty in air sealing/compartmentalization, particularly in townhouse construction. This problem is exacerbated when garages are “tucked in” to the units and living space is located over the garages. In this project, Building Science Corporation examined the taping of exterior sheathing details to improve air sealing results in townhouse and multifamily construction, when coupled with a better understanding of air leakage pathways. Current approaches are cumbersome, expensive, time consuming, and ineffective; these details were proposed as a more effective and efficient method. The effectiveness of these air sealing methods was tested with blower door testing, including “nulled” or “guarded” testing (adjacent units run at equal test pressure to null out inter-unit air leakage, or “pressure neutralization”). Pressure diagnostics were used to evaluate unit-to-unit connections and series leakage pathways (i.e., air leakage from exterior, into the fire-resistance rated wall assembly, and to the interior).

  16. DOE Zero Energy Ready Home Case Study: Dwell Development, Reclaimed...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dwell Development, Reclaimed Modern, Seattle, WA DOE Zero Energy Ready Home Case Study: Dwell Development, Reclaimed Modern, Seattle, WA DOE Zero Energy Ready Home Case Study: ...

  17. Building America Expert Meeting: Code Challenges with Multifamily...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    For example, fire blocking sealants approved for use to seal framing penetrations within a dwelling are not allowed to be used to seal the perimeter of the 34" air space required ...

  18. Building America Technology Solutions for New and Existing Homes: Field Testing of Compartmentalization Methods for Multifamily Construction

    Energy.gov [DOE]

    This case study describes Building America efforts to understand how to improve air sealing in townhouse and multifamily construction.

  19. YoungHo Shin | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    YoungHo Shin YoungHo Shin Principal Process Development Engineer Telephone (630) 252-4861 E-mail yshin@anl.gov

  20. Critical Question #2: What are the Best Practices for Ventilation Specific to Multifamily Buildings?

    Energy.gov [DOE]

    What is the best practice to address ASHRAE 62.2 Addendum J (multifamily)? Why is exhaust only (with supply in hallway) the current standard practice? Are there options to avoid air exchange with neighbors? How do stack and wind pressures affect ventilation performance in multifamily homes? What systems actually function as intended and can be implemented by builders and contractors?

  1. Building America Case Study: Field Testing of Compartmentalization Methods for Multifamily Construction (Fact Sheet)

    SciTech Connect

    Not Available

    2015-01-01

    The 2012 IECC has an airtightness requirement of 3 air changes per hour at 50 Pascals test pressure for both single family and multifamily construction in Climate Zones 3-8. Other programs (LEED, ASHRAE 189, ASHRAE 62.2) have similar or tighter compartmentalization requirements, thus driving the need for easier and more effective methods of compartmentalization in multifamily buildings.

  2. Ming-Yang Ho | Photosynthetic Antenna Research Center

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ming-Yang Ho Ming-Yang Ho Ming-Yang Ho Graduate Student E-mail: mxh504@psu.edu Website: Pennsylvania State University Graduate Students...

  3. Short-Term Test Results: Multifamily Home Energy Efficiency Retrofit

    SciTech Connect

    Lyons, J.

    2013-01-01

    Multifamily deep energy retrofits (DERs) represent great potential for energy savings, while also providing valuable insights on research-generated efficiency measures, cost-effectiveness metrics, and risk factor strategies for the multifamily housing industry. The Bay Ridge project is comprised of a base scope retrofit with a goal of achieving 30% savings (relative to pre-retrofit), and a DER scope with a goal of 50% savings (relative to pre-retrofit). The base scope has been applied to the entire complex, except for one 12-unit building which underwent the DER scope. Findings from the implementation, commissioning, and short-term testing at Bay Ridge include air infiltration reductions of greater than 60% in the DER building; a hybrid heat pump system with a Savings to Investment Ratio (SIR) > 1 (relative to a high efficiency furnace) which also provides the resident with added incentive for energy savings; and duct leakage reductions of > 60% using an aerosolized duct sealing approach. Despite being a moderate rehab instead of a gut rehab, the Bay Ridge DER is currently projected to achieve energy savings ≥ 50% compared to pre-retrofit, and the short-term testing supports this estimate.

  4. Evaluation of Ventilation Strategies in New Construction Multifamily Buildings

    SciTech Connect

    Maxwell, S.; Berger, D.; Zuluaga, M.

    2014-07-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

  5. Evaluation of Ventilation Strategies in New Construction Multifamily Buildings

    SciTech Connect

    Maxwell, S.; Berger, D.; Zuluaga, M.

    2014-07-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the "fresh" air is coming from is gaining significance as air-tightness standards for enclosures become more stringent. CARB researchers have found that most new high performance, multifamily housing in the Northeast use one of four strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, but there is no guarantee that those conditions will exist consistently in the finished building. In this research project, CARB evaluated the four ventilation strategies in the field to validate system performance.

  6. Building America Expert Meeting Report: Hydronic Heating in Multifamily Buildings

    SciTech Connect

    Dentz, J.

    2011-10-01

    The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the goals of reducing energy waste and improving occupant comfort. The U.S. Department of Energy's Building America program develops technologies with the goal of reducing energy use by 30% to 50% in residential buildings. Toward this goal, the program sponsors 'Expert Meetings' focused on specific building technology topics. The meetings are intended to sharpen Building America research priorities, create a forum for sharing information among industry leaders and build partnerships with professionals and others that can help support the program's research needs and objectives. The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multifamily buildings with the goals of reducing energy waste and improving occupant comfort. The objectives of the meeting were to: (1) Share knowledge and experience on new and existing solutions: what works, what doesn't and why, and what's new; (2) Understand the market barriers to currently offered solutions: what disconnects exist in the market and what is needed to overcome or bridge these gaps; and (3) Identify research needs.

  7. Implementing a Zero Energy Ready Home Multifamily Project

    SciTech Connect

    Springer, David; German, Alea

    2015-08-17

    Building cost-effective, high-performance homes that provide superior comfort, health, and durability is the goal of the U.S. Department of Energy’s (DOE’s) Zero Energy Ready Home (ZERH) program. Building America research and other innovative programs throughout the country have addressed many of the technical challenges of building to the ZERH standard. The cost-effectiveness of measure packages that result in 30% source energy savings compared to a code-compliant home have been demonstrated. However, additional challenges remain, particularly with respect to convincing production builders of the strong business case for ZERH. The Alliance for Residential Building Innovation (ARBI) team believes that the keys to successfully engaging builders and developers in the California market are to help them leverage development agreement requirements, code compliance requirements, incentives, and competitive market advantages of ZERH certification, and navigate through this process. A primary objective of this project was to gain a highly visible foothold for residential buildings that are built to the DOE ZERH specification that can be used to encourage participation by other California builders. This report briefly describes two single-family homes that were ZERH certified and focuses on the experience of working with developer Mutual Housing on a 62-unit multifamily community at the Spring Lake subdivision in Woodland, California. The Spring Lake project is expected to be the first ZERH-certified multifamily project in the country. This report discusses the challenges encountered, lessons learned, and how obstacles were overcome.

  8. List 1: Eligible Multifamily Buildings 10-CFR-440.22(b)(4)(i) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 1: Eligible Multifamily Buildings 10-CFR-440.22(b)(4)(i) List 1: Eligible Multifamily Buildings 10-CFR-440.22(b)(4)(i) HUD list of multifamily housing units eligible for weatherization that have three or more years remaining on HUD housing contracts. As of December 2014. List 1 consists of three sub-lists: Public Housing - 100% of buildings in the identified properties meet the necessary qualifications Public Housing - Only specified buildings in the identified properties meet the

  9. SWS Online Tool now includes Multifamily Content, plus a How-To Webinar |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy SWS Online Tool now includes Multifamily Content, plus a How-To Webinar SWS Online Tool now includes Multifamily Content, plus a How-To Webinar This announcement contains information on the integration of multifamily content in the SWS Online Tool, and a How-To Webinar on August 27, 2013. mf_content_now_available.pdf (116.96 KB) More Documents & Publications The Standard Work Specifications for Single-Family Home Energy Upgrades are now available€ at your

  10. Evaluation of CNT Energy Savers Retrofit Packages Implemented in Multifamily Buildings

    SciTech Connect

    Farley, Jenne; Ruch, Russell

    2013-09-01

    This evaluation explored the feasibility of designing prescriptive retrofit measure packages for typical Chicago region multifamily buildings in order to achieve 25%-30% source energy savings through the study of three case studies. There is an urgent need to scale up energy efficiency retrofitting of Chicago's multifamily buildings in order to address rising energy costs and a rapidly depletingrental stock. Aimed at retrofit program administrators and building science professionals, this research project investigates the possibility of using prescriptive retrofit packages as a time- and resource-effective approach to the process of retrofitting multifamily buildings.

  11. Evaluation of CNT Energy Savers Retrofit Packages Implemented in Multifamily Buildings

    SciTech Connect

    Farley, Jenne; Ruch, Russell

    2013-09-01

    This evaluation explored the feasibility of designing prescriptive retrofit measure packages for typical Chicago region multifamily buildings in order to achieve 25%-30% source energy savings through the study of three case studies. There is an urgent need to scale up energy efficiency retrofitting of Chicago's multifamily buildings in order to address rising energy costs and a rapidly depleting rental stock. Aimed at retrofit program administrators and building science professionals, this research project investigates the possibility of using prescriptive retrofit packages as a time- and resource-effective approach to the process of retrofitting multifamily buildings.

  12. Technology Solutions for New Homes Case Study: Multifamily Zero Energy Ready Home Analysis

    Energy.gov [DOE]

    AvalonBay Communities, which is a large multifamily developer, was developing a three-building complex in Elmsford, New York. The buildings were planned to be certified to the ENERGY STAR® Homes...

  13. Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings

    Energy.gov [DOE]

    This webinar will focus on improving the performance of central space conditioning systems in multifamily buildings. Presenters will discuss hydronic heating strategies and the evaluation of thermostatically controlled radiator valves (TRVs).

  14. ConEd (Gas)- Multi-family Energy Efficiency Incentives Program

    Energy.gov [DOE]

    Con Edison offers a free energy audit and rebates for Multifamily buildings. Incentives are offered for energy efficient heating equipment for 5-75 unit buildings in the eligible service area....

  15. Ameren Illinois (Electric & Gas)- Multi-Family Properties Energy Efficiency Incentives

    Energy.gov [DOE]

    The shell measure segment offers incentives for air sealing the shell of multifamily buildings. Incentives will be paid based on the total CFM reduction. Insulation incentives will be based on sq...

  16. Final Rule on Amending Eligibility Provisions to Multifamily Buildings for the Weatherization Assistance Program

    Energy.gov [DOE]

    U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization Assistance Program (WAP) Program Guidance 10-14 dealing with HUD multifamily buildings eligibility for weatherization services.

  17. National Weatherization Assistance Program Impact Evaluation: Energy Impacts for Small Multifamily Buildings

    SciTech Connect

    Blasnik, Michael; Dalhoff, Greg; Carroll, David; ucar, Ferit

    2014-09-01

    This report estimates energy savings, energy cost savings, and cost effectiveness attributable to weatherizing small multifamily buildings under the auspices of the Department of Energy's Weatherization Assistance Program during Program Year 2008.

  18. National Weatherization Assistance Program Impact Evaluation: Energy Impacts for Large Multifamily Buildings

    SciTech Connect

    Blasnik, Michael; Dalhoff, Greg; Carroll, David; Ucar, Ferit

    2015-10-01

    This report estimates energy savings, energy cost savings, and cost effectiveness attributable to weatherizing large multifamily buildings under the auspices of the Department of Energy's Weatherization Assistance Program during Program Year 2008.

  19. PG&E- Multi-Family Residential Energy Efficiency Rebate Program

    Energy.gov [DOE]

    PG&E offers prescriptive rebates for owners and managers of multi-family properties of two or more units. Appliances, boilers, water heating, HVAC, and lighting improvements are among the...

  20. Seattle City Light- Multi-Family Residential Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Seattle City Light provides incentives for multi-family housing properties with 5 or more units to increase their energy efficiency. Rebates are offered for common area lighting and weatherization...

  1. Guidelines for Home Energy Upgrade Professionals: Standard Work Specifications for Multifamily Energy Upgrades (Fact Sheet)

    SciTech Connect

    Not Available

    2011-08-01

    This fact sheet provides essential information about the 2011 publication of the Workforce Guidelines for Multifamily Home Energy Upgrades, including their origin, their development with the help of industry leaders to create the standard work specifications for retrofit work.

  2. Multifamily Building Operator Job/Task Analysis and Report: September 2013

    SciTech Connect

    Owens, C. M.

    2013-09-01

    The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Building Operator JTA identifies and catalogs all of the tasks performed by multifamily building operators, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

  3. Multifamily Quality Control Inspector Job/Task Analysis and Report: September 2013

    SciTech Connect

    Owens, C. M.

    2013-09-01

    The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Quality Control Inspector JTA identifies and catalogs all of the tasks performed by multifamily quality control inspectors, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

  4. Multifamily Retrofit Project Manager Job/Task Analysis and Report: September 2013

    SciTech Connect

    Owens, C. M.

    2013-09-01

    The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Retrofit Project Manager JTA identifies and catalogs all of the tasks performed by multifamily retrofit project managers, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

  5. Multifamily Energy Auditor Job/Task Analysis and Report: September 2013

    SciTech Connect

    Owens, C. M.

    2013-09-01

    The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Energy Auditor JTA identifies and catalogs all of the tasks performed by multifamily energy auditors, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

  6. Final Rule on Amending Eligibility Provisions to Multifamily Buildings for the Weatherization Assistance Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WEATHERIZATION PROGRAM NOTICE 10-15 EFFECTIVE DATE: March 2, 2010 SUBJECT: FINAL RULE ON AMENDING ELIGIBILITY PROVISIONS TO MULTI-FAMILY BUILDINGS FOR THE WEATHERIZATION ASSISTANCE PROGRAM PURPOSE: To issue guidance on implementing recent changes to the Weatherization Assistance Program (WAP) requirements for determining eligibility of certain multi-family buildings as identified by the Department of Housing and Urban Development (HUD) and the Department of Agriculture (USDA). LEGAL AUTHORITY:

  7. SWS Online Tool now includes Multifamily Content, plus a How-To Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Multifamily Housing Content Now Available via the Standard Work Specifications Online Tool The National Renewable Energy Laboratory, along with the U.S. Department of Energy (DOE), are pleased to announce that the Standard Work Specifications (SWS) for Multifamily Housing Energy Upgrades are now incorporated within the SWS Online Tool. In addition to this content, the tool also now includes: Explore the Standard Work Specifications Online Tool. An interactive glossary Basic Quality Control

  8. Cascade Apartments - Deep Energy Multifamily Retrofit , Kent, Washington (Fact Sheet)

    SciTech Connect

    Not Available

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions : 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

  9. Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)

    SciTech Connect

    Not Available

    2013-11-01

    The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basement with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments

  10. Building America Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Evaluation of Ventilation Strategies in New Construction Multifamily Buildings New York, New York PROJECT INFORMATION Project Name: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings Location: New York, NY Consortium for Advanced Residential Buildings (CARB): http://carb-swa.com Application: New construction; multifamily Building Component: Mechanical Ventilation Date completed: 2013 Climate Zone: Mixed-humid In multifamily buildings, particularly in the Northeast,

  11. Technology Solutions Case Study: Balancing Hydronic Systems in Multifamily Buildings, Chicago, Illinois

    SciTech Connect

    2014-09-01

    In multifamily building hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. In this case study , Partnership for Advanced Residential Retrofit and Elevate Energy. explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs.

  12. S3TEC Seminar - Dr. Cliff Ho, Sandia National Laboratories |...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Dr. Cliff Ho, Sandia National Laboratories Seminar Wednesday Mar 2, 2016 12:00pm Location: 1-150 Speaker: Cliff Ho S3TEC welcomes Dr. Cliff Ho

  13. Improving Building Envelope and Duct Airtightness of US Dwellings...

    Office of Scientific and Technical Information (OSTI)

    Improving Building Envelope and Duct Airtightness of US Dwellings - the Current State of Energy Retrofits Citation Details In-Document Search Title: Improving Building Envelope and...

  14. DOE Tour of Zero Floorplans: Emerald Star by Dwell Development | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Emerald Star by Dwell Development DOE Tour of Zero Floorplans: Emerald Star by Dwell Development DOE Tour of Zero Floorplans: Emerald Star by Dwell Development

  15. Critical Question #6: What are the Challenges and Solutions for Modeling Multifamily Buildings?

    Office of Energy Efficiency and Renewable Energy (EERE)

    There are a lot of differences between modeling single-family and multifamily buildings in regard to central systems, shared walls, shared spaces, etc. What is the best way to optimize energy efficiency packages? How does Building America work around the challenges of modeling these buildings? What tools do they have? What additions could improve the accuracy of simulation tools?

  16. Retrofit of a MultiFamily Mass Masonry Building in New England

    SciTech Connect

    Ueno, K.; Kerrigan, P.; Wytrykowska, H.; Van Straaten, R.

    2013-08-01

    Merrimack Valley Habitat for Humanity (MVHfH) has partnered with Building Science Corporation to provide high performance affordable housing for 10 families in the retrofit of an existing brick building (a former convent) into condominiums. The research performed for this project provides information regarding advanced retrofit packages for multi-family masonry buildings in Cold climates. In particular, this project demonstrates safe, durable, and cost-effective solutions that will potentially benefit millions of multi-family brick buildings throughout the East Coast and Midwest (Cold climates). The retrofit packages provide insight on the opportunities for and constraints on retrofitting multifamily buildings with ambitious energy performance goals but a limited budget. The condominium conversion project will contribute to several areas of research on enclosures, space conditioning, and water heating. Enclosure items include insulation of mass masonry building on the interior, airtightness of these types of retrofits, multi-unit building compartmentalization, window selection, and roof insulation strategies. Mechanical system items include combined hydronic and space heating systems with hydronic distribution in small (low load) units, and ventilation system retrofits for multifamily buildings.

  17. Byggmeister Test Home. Cold Climate Multifamily Masonry Building Condition Assessment and Retrofit Analysis

    SciTech Connect

    Wytrykowska, H.; Ueno, K.; Van Straaten, R.

    2012-09-01

    This report describes a retrofit project undertaken by Building Science Corporation and partner Byggmeister on a multifamily brick row house located in Jamaica Plain, MA. This project studied the row house to determine the right combination of energy efficiency measures that are feasible, affordable, and suitable for this type of construction and acceptable to homeowners.

  18. Davis-Bacon Labor Rates for Weatherization Work in Multifamily Buildings

    Energy.gov [DOE]

    U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization Assistance Program Notice 10-04 deals with labor rates (wages) for weatherization work in large multifamily buildings that comply with the Davis-Bacon Act requirements of the 2009 Recovery Act.

  19. Technology Solutions Case Study: Field Testing of Compartmentalization Methods for Multifamily Construction

    SciTech Connect

    2015-01-01

    Fire-resistance rated (or area separation) wall assemblies present a great difficulty in air sealing/compartmentalization, particularly in townhouse construction. To address this challenge, Building Science Corporation partnered with builder K. Hovnanian Homes to determine whether taping exterior sheathing details improves air sealing in townhouse and multifamily construction, and to better understand air leakage pathways.

  20. WPN 93-14: 40 Percent Waiver Provisions for Multifamily and Mobile Home Units

    Energy.gov [DOE]

    This program notice provides guidance on multifamily and mobile home units weatherized by states, which adopt the approved 4.0 version of NEAT or other similar approved energy audits and receive a waiver of the 40 percent requirement from DOE.

  1. Byggmeister Test Home: Cold Climate Multifamily Masonry Building Condition Assessment and Retrofit Analysis

    SciTech Connect

    Wytrykowska, H.; Ueno, K.; Van Straaten, R.

    2012-09-01

    This report describes a retrofit project undertaken by Building Science Corporation and partner Byggmeister on a multifamily brick row house located in Jamaica Plain, MA. This project studied the row house to determine the right combination of energy efficiency measures that are feasible, affordable, and suitable for this type of construction and acceptable to homeowners.

  2. Building America Case Study: Balancing Hydronic Systems in Multifamily Buildings, Chicago, Illinois (Fact Sheet)

    SciTech Connect

    Not Available

    2014-09-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. This paper explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The research was conducted by The Partnership for Advanced Residential Retrofit (PARR) in conjunction with Elevate Energy. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61 degrees F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1 degrees F to 15.5 degrees F.

  3. list2_eligible_multifamily_buildings_10-cfr-440-22b4ii.xls | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy list2_eligible_multifamily_buildings_10-cfr-440-22b4ii.xls list2_eligible_multifamily_buildings_10-cfr-440-22b4ii.xls list2_eligible_multifamily_buildings_10-cfr-440-22b4ii.xls (648.5 KB) More Documents & Publications hud_list-1_07-01-11.xls hud_list-1_07-01-11.xls rd_mfh_low_and_very_low.xls

  4. Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Steam System Balancing and Tuning for Multifamily Residential Buildings Chicago, Illinois PROJECT INFORMATION Project Name: Steam System Balancing and Tuning for Multifamily Residential Buildings Location: Chicago, IL Partners: Partnership for Advanced Residential Retrofit www.gastechnology.org Building Component: Steam heating distribution system and controls Application: Retrofit; Multifamily Year Tested: 2011-2012 Applicable Climate Zone(s): Cold humid continental PERFORMANCE DATA Cost of

  5. Interim Final Report for the Strengthening Retrofit Markets for Comprehensive Savings in Multifamily Buildings

    SciTech Connect

    Meinking, Rick; Adamson, Joy M

    2013-12-20

    Energy efficiency is vitally important in Maine. Nearly 70% of Maine households rely on fuel oil as their primary energy source for home heating, a higher share than in any other state. Coupled with the state's long, cold winters, Maine's dependence on oil renders homeowners particularly vulnerable to fluctuating fuel costs. With $4.5 million in seed funding from the Energy Department's Better Buildings Neighborhood Program, the Governor's Energy Office (GEO), through Efficiency Maine Trust (the Trust), is spurring Maine landlords to lower their monthly energy bills and improve comfort for their tenants during the state's cold winter months and increasingly warmer summers. Maine's aging multifamily housing stock can be expensive to heat and costly to maintain. It is not unusual to find buildings with little or no insulation, drafty windows, and significant air leaks, making them ideal candidates for energy efficiency upgrades. Maine modeled its Multifamily Efficiency Program (MEP) after the state's highly successful Home Energy Savings Program (HESP) for single-family homes. HESP provided cash incentives and financing opportunities to owners of one-to four-unit structures, which resulted in thousands of energy assessments and whole-house energy upgrades in 225 communities. Maine's new MEP multifamily energy efficiency upgrade and weatherization initiative focuses on small to medium-sized (i.e., five to 20 units) apartment buildings. The program's energy efficiency upgrades will provide at least 20% energy savings for each upgraded multifamily unit. The Trust’s MEP relies on a network of approved program partners who help move projects through the pipeline from assessment to upgrade. MEP has two components: benchmarking and development of an Energy Reduction Plan (ERP). Using the ENERGY STAR® Portfolio Manager benchmarking tool, MEP provides an assessment of current energy usage in the building, establishes a baseline for future energy efficiency improvements

  6. Cutting energy costs in multifamily housing: Practical case studies for the builder and developer

    SciTech Connect

    Whiddon, W.I.

    1986-01-01

    This book is based on an expert evaluation of nine existing and three proposed multifamily housing projects across the US. The existing buildings include three lowrise projects (three to four stories), six midrises (five to seven stories), and three highrise buildings (nine to thirty-nine stories). Two projects were designed and built in the late 1950's, two in the late 1960's, and five late in the ''energy-crisis'' of the 1970's. The existing projects range from municipally subsidized elderly housing, to HUD Section-8 suburban developments, to luxury urban highrise buildings. The three ''future'' buildings, designed by the NAHB research team, were based on trends anticipated in the multifamily industry by IREM and NAHB leaders, over the next five years. The key trends identified were: downsizing of units (by 10 to 20%); increased project size (in number of units), denser developments (more midrise and highrise projects), and increased amenities - all in the context of more affordable housing.

  7. Strategy Guideline: Energy Retrofits for Low-Rise Multifamily Buildings in Cold Climates

    SciTech Connect

    Frozyna, K.; Badger, L.

    2013-04-01

    This Strategy Guideline explains the benefits of evaluating and identifying energy efficiency retrofit measures that could be made during renovation and maintenance of multifamily buildings. It focuses on low-rise multifamily structures (three or fewer stories) in a cold climate. These benefits lie primarily in reduced energy use, lower operating and maintenance costs, improved durability of the structure, and increased occupant comfort. This guideline focuses on retrofit measures for roof repair or replacement, exterior wall repair or gut rehab, and eating system maintenance. All buildings are assumed to have a flat ceiling and a trussed roof, wood- or steel-framed exterior walls, and one or more single or staged boilers. Estimated energy savings realized from the retrofits will vary, depending on the size and condition of the building, the extent of efficiency improvements, the efficiency of the heating equipment, the cost and type of fuel, and the climate location.

  8. Measure Guideline: Steam System Balancing and Tuning for Multifamily Residential Buildings

    SciTech Connect

    Choi, J.; Ludwig, P.; Brand, L.

    2013-04-01

    This report was written as a resource for professionals involved in multifamily audits, retrofit delivery, and program design, as well as for building owners and contractors. It is intended to serve as a guide for those looking to evaluate and improve the efficiency and operation of one-pipe steam heating systems. In centrally heated multifamily buildings with steam or hydronic systems, the cost of heat for tenants is typically absorbed into the owner's operating costs. Highly variable and rising energy costs have placed a heavy burden on landlords. In the absence of well-designed and relevant efficiency efforts, increased operating costs would be passed on to tenants who often cannot afford those increases. Misinvestment is a common problem with older heating systems -- multiple contractors may inadequately or inappropriately upgrade parts of systems and reduce system functionality and efficiency, or the system has not been properly maintained.

  9. Wisconsin Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the Wisconsin Uniform Dwelling Code

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Wisconsin homeowners. Moving to either the 2009 or 2012 IECC from the current Wisconsin state code is cost effective over a 30-year life cycle. On average, Wisconsin homeowners will save $2,484 over 30 years under the 2009 IECC, with savings still higher at $10,733 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for both the 2009 and 2012 IECC. Average annual energy savings are $149 for the 2009 IECC and $672 for the 2012 IECC.

  10. DOE Fact Sheet: Cost-Effectiveness of Deep Green Alterations of Multi-family Buildings in

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fact Sheet: Cost-Effectiveness of Deep Green Alterations of Multi-family Buildings in Seattle Overview The City of Seattle was a multiple awardee of the Climate Action Champions (CAC) Notice of Technical Assistance (NOTA). The U.S. Department of Energy (DOE)'s Office of Energy Efficiency and Renewable Energy offered technical assistance from its Commercial Building Partnerships (CBP) Program to provide CACs with additional opportunities for technical assistance to support and advance their

  11. Existing Whole-House Solutions Case Study: Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts

    SciTech Connect

    2013-11-01

    The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. In this project, Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent).

  12. Better Buildings Residential Network Case Study: Energy Efficiency Upgrades in Multifamily Housing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Learn more at betterbuildings.energy.gov/bbrn BETTER BUILDINGS RESIDENTIAL NETWORK Better Buildings Residential Network case studies feature members to fulfill our mission to share best practices and learn from one another to increase the number of homes that are energy efficient. This case study addresses multifamily energy upgrade experiences by two members of the Better Buildings Residential Network-Elevate Energy and the International Center for Appropriate and Sustainable Technology

  13. Effectiveness of duct sealing and duct insulation in multi-family buildings. Final report

    SciTech Connect

    Karins, N.H.; Tuluca, A.; Modera, M.

    1997-07-01

    This research investigated the cost-effectiveness of sealing and insulating the accessible portions of duct systems exposed to unconditioned areas in multifamily housing. Airflow and temperature measurements were performed in 25 apartments served by 10 systems a 9 multi-family properties. The measurements were performed before and after each retrofit, and included apartment airflow (supply and return), duct system temperatures, system fan flow and duct leakage area. The costs for each retrofit were recorded. The data were analyzed and used to develop a prototypical multifamily house. This prototype was used in energy simulations (DOE-2.1E) and air infiltration simulations (COMIS 2.1). The simulations were performed for two climates: New York City and Albany. In each climate, one simulation was performed assuming the basement was tight, and another assuming the basement was leaky. Simulation results and average retrofit costs were used to calculate cost-effectiveness. The results of the analysis indicate that sealing leaks of the accessible ductwork is cost-effective under all conditions simulated (simple payback was between 3 and 4 years). Insulating the accessible ductwork, however, is only cost-effective for buildings with leaky basement, in both climates (simple paybacks were less than 5 years). The simple payback period for insulating the ducts in buildings with tight basements was greater than 10 years, the threshold of cost-effectiveness for this research. 13 refs., 5 figs., 27 tabs.

  14. Evaluation and demonstration of decentralized space and water heating versus centralized services for new and rehabilitated multifamily buildings. Final report

    SciTech Connect

    Belkus, P.; Tuluca, A.

    1993-06-01

    The general objective of this research was aimed at developing sufficient technical and economic know-how to convince the building and design communities of the appropriateness and energy advantages of decentralized space and water heating for multifamily buildings. Two main goals were established to guide this research. First, the research sought to determine the cost-benefit advantages of decentralized space and water heating versus centralized systems for multifamily applications based on innovative gas piping and appliance technologies. The second goal was to ensure that this information is made available to the design community.

  15. Building America Expert Meeting: Code Challenges with Multifamily Area Separation Walls

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Focus Meeting Code Challenges with Multi-Family Area Separation Walls Date/Time: Monday, Sept. 29, 2014, 10:30 am to 12:30 pm EST Location: web meeting Host: IBACOS, Inc., www.IBACOS.com Meeting Manager: Armin Rudd, arudd@abtsystems.us Agenda 10:30: Opening by Armin Rudd and Duncan Prahl Explain the reason, purpose, goals and expected outcomes of the meeting Facilitated open discussion *Review typical UL 263 (ASTM E119) area separation wall Designs (U336, U347, U373) *Review the tested

  16. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings and Thermostatic Radiator Valve Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Focusing on affordable housing including new and existing multifamily buildings WHY IS THIS IMPORTANT?  ~14 million units in the U.S. use steam or hot water heating  Space heating the largest energy use in mixed and cold climate buildings  Overheating study found nearly all apartments overheated most of the time: average heating season temp. 76.2°F Long-term temperature data from ~100 apartments in 18 buildings:  Almost all apartments overheated most of the time  Average heating

  17. Reducing energy costs in multifamily housing: guidelines for using energy-management companies

    SciTech Connect

    Shafer, P.

    1986-03-01

    This publication is designed to provide guidelines to help sponsors of multi-family projects assisted or insured by the U.S. Department of Housing and Urban Development (HUD), as well as other building owners, utilize performance agreements as a way to make energy-efficiency improvements. These guidelines are based on experience gained in a demonstration project initiated by HUD to test the feasibility of using Energy Management Companies (EMCs) to make energy improvements in assisted housing for the elderly or handicapped.

  18. Bay Ridge Gardens - Mixed-Humid Affordable Multifamily Housing Deep Energy Retrofit

    SciTech Connect

    Lyons, J.; Moore, M.; Thompson, M.

    2013-08-01

    Under this project, Newport Partners (as part of the BA-PIRC research team) evaluated the installation, measured performance, and cost-effectiveness of efficiency upgrade measures for a tenant-in-place DER at the Bay Ridge multifamily (MF) development in Annapolis, Maryland. The design and construction phase of the Bay Ridge project was completed in August 2012. This report summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete. The Bay Ridge project is comprised of a 'base scope' retrofit which was estimated to achieve a 30%+ savings (relative to pre-retrofit) on 186 apartments, and a 'DER scope' which was estimated to achieve 50% savings (relative to pre-retrofit) on a 12-unit building. The base scope was applied to the entire apartment complex, except for one 12-unit building which underwent the DER scope. A wide range of efficiency measures was applied to pursue this savings target for the DER building, including improvements/replacements of mechanical equipment and distribution systems, appliances, lighting and lighting controls, the building envelope, hot water conservation measures, and resident education. The results of this research build upon the current body of knowledge of multifamily retrofits. Towards this end, the research team has collected and generated data on the selection of measures, their estimated performance, their measured performance, and risk factors and their impact on potential measures.

  19. Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit

    SciTech Connect

    Lyons, James; Moore, Mike; Thompson, Margo

    2013-08-01

    Under this project, Newport Partners (as part of the BA-PIRC research team) evaluated the installation, measured performance, and cost effectiveness of efficiency upgrade measures for a tenant-in-place deep energy retrofit (DER) at the Bay Ridge multifamily development in Annapolis, Maryland. This report summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete. The Bay Ridge project is comprised of a "base scope" retrofit which was estimated to achieve a 30%+ savings (relative to pre-retrofit) on 186 apartments, and a "DER scope" which was estimated to achieve 50% savings (relative to pre-retrofit) on a 12-unit building. A wide range of efficiency measures was applied to pursue this savings target for the DER building, including improvements/replacements of mechanical equipment and distribution systems, appliances, lighting and lighting controls, the building envelope, hot water conservation measures, and resident education. The results of this research build upon the current body of knowledge of multifamily retrofits. Towards this end, the research team has collected and generated data on the selection of measures, their estimated performance, their measured performance, and risk factors and their impact on potential measures.

  20. Predicted Versus Actual Savings for a Low-Rise Multifamily Retrofit in Boulder, Colorado

    SciTech Connect

    Arena, L.; Williamson, J.

    2013-11-01

    To determine the most cost-effective methods of improving buildings, accurate analysis and prediction of the energy use of existing buildings is essential. However, multiple studies confirm that analysis methods tend to over-predict energy use in poorly insulated, leaky homes and thus, the savings associated with improving those homes. In NREL's report titled 'Assessing and Improving the Accuracy of Energy Analysis of Residential Buildings,' researchers propose a method for improving the accuracy of residential energy analysis methods. A key step in this process involves the comparisons of predicted versus metered energy use and savings. In support of this research need, CARB evaluated the retrofit of a multifamily building in Boulder, CO. The updated property is a 37 unit, 2 story apartment complex built in 1950, which underwent renovations in early 2009 to bring it into compliance with Boulder, CO's SmartRegs ordinance. Goals of the study were to: 1) evaluate predicted versus actual savings due to the improvements, 2) identify areas where the modeling assumptions may need to be changed, and 3) determine common changes made by renters that would negatively impact energy savings. In this study, CARB seeks to improve the accuracy of modeling software while assessing retrofit measures to specifically determine which are most effective for large multifamily complexes in the cold climate region. Other issues that were investigated include the effects of improving building efficiency on tenant comfort, the impact on tenant turnover rates, and the potential market barriers for this type of community scale project.

  1. ENERGY STAR Webinar- Update: EPA’s Research into a Potential 1-100 Water Score for Multifamily Housing

    Energy.gov [DOE]

    Hosted by the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR, this webinar will cover research and findings to date on the water use for multifamily properties. EPA will solicit your input on some specific questions its encountered and are also open to any related observations and questions you may have.

  2. Building America Technology Solutions for New and Existing Homes: Multifamily Central Heat Pump Water Heaters (Fact Sheet)

    Energy.gov [DOE]

    To evaluate the performance of central heat pump water heaters for multifamily applications, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California, for 16 months.

  3. Building America Whole-House Solutions for Existing Homes: Cascade Apartments- Deep Energy Multifamily Retrofit (Fact Sheet)

    Energy.gov [DOE]

    In December of 2009-10, King County Housing Authority implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington, which resulted in annual energy cost savings of 22%, improved comfort and air quality for residents, and increased durability of the units.

  4. Obama Administration Expands Better Buildings Challenge to Multifamily Housing, Launches New Programs to Boost U.S. Energy Efficiency

    Energy.gov [DOE]

    Building on $2 billion in financing commitments from the private sector for energy efficiency updates to commercial buildings under the President's Better Buildings Challenge, the U.S. Departments of Energy and Housing and Urban Development today expanded the Challenge to multifamily housing such as apartments and condominiums.

  5. Building America Whole-House Solutions for New Homes: Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Multifamily Dwellings, Upstate New York Building America Whole-House Solutions for New Homes: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily ...

  6. WPN 10-15a: Guidance Regarding Accrual of Benefits to Low-Income Tenants in Multifamily Buildings Under the Weatherization Assistance Program

    Energy.gov [DOE]

    To issue guidance for Grantees on establishing procedures to ensure that the benefits of weatherization assistance in connection with multifamily buildings compromised of rental units will accrue primarily to the low-income tenants residing in such units.

  7. Building America Technology Solutions for New and Existing Homes: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet)

    Energy.gov [DOE]

    This research effort, conducted by the Consortium for Advanced Residential Buildings, included several weeks of building pressure monitoring to validate system performance of four different strategies for providing make-up air to multifamily apartments.

  8. Building America Case Study: Multifamily Zero Energy Ready Home Analysis, Elmsford, New York (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Multifamily Zero Energy Ready Home Analysis Elmsford, New York PROJECT INFORMATION Project Name: Avalon Green III Location: Elmsford, NY Partners: AvalonBay Communities avaloncommunities.com Advanced Residential Integrated Solutions Collaborative (ARIES) Building Components: Whole building Application: New construction, multifamily Year Tested: 2015 Applicable Climate Zone: 4 PERFORMANCE DATA Cost of energy-efficiency measure (including labor): $1,000-$1,300 per unit Projected source energy

  9. Cascade Apartments - Deep Energy Multifamily Retrofit , Kent, Washington (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cascade Apartments - Deep Energy Multifamily Retrofit Kent, Washington PROJECT INFORMATION Construction: Retrofit Type: Multifamily, affordable Builder: King County Housing Authority, Kent, Washington http://www.kcha.org/ Size: 108 units in 27 four-plexes Rent: 30% of household income Date completed: 2010 Climate Zone: Marine PERFORMANCE DATA State low-income weatherization investment: $385,850 for all 108 units $15,850 per 4-plex $3,858 per unit Site savings per unit: Billing analysis:

  10. Evaluation of a Multifamily Retrofit in Climate Zone 5, Boulder, Colorado (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    a Multifamily Retrofit in Climate Zone 5 Boulder, Colorado PROJECT INFORMATION Project Name: Evaluation of a Low-Rise Multifamily Retrofit in Boulder, CO Location: Boulder, CO Consortium of Advanced Residential Buildings www.carb-swa.com Building Component: Building envelope, lighting, appliances, water conservation Application: Retrofit Years Tested: 2012 Applicable Climate Zone(s): Cold, very cold PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $3,300-$6,100 per unit with

  11. Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Multifamily Individual Heating and Ventilation Systems Lawrence, Massachusetts PROJECT INFORMATION Construction: Retrofit Type: Multifamily, affordable Builder: Merrimack Valley Habitat for Humanity (MVHfH) www.merrimackvalleyhabitat.org Size: 840 to 1,170 ft 2 units Price Range: $125,000-$130,000 Date completed: Slated for 2014 Climate Zone: Cold (5A) PERFORMANCE DATA HERS Index Range: 48 to 63 Projected annual energy cost savings: $1,797 Incremental cost of energy efficiency measures: $3,747

  12. Measure Guideline. Steam System Balancing and Tuning for Multifamily Residential Buildings

    SciTech Connect

    Choi, Jayne; Ludwig, Peter; Brand, Larry

    2013-04-01

    This guideline provides building owners, professionals involved in multifamily audits, and contractors insights for improving the balance and tuning of steam systems. It provides readers an overview of one-pipe steam heating systems, guidelines for evaluating steam systems, typical costs and savings, and guidelines for ensuring quality installations. It also directs readers to additional resources for details not included here. Measures for balancing a distribution system that are covered include replacing main line vents and upgrading radiator vents. Also included is a discussion on upgrading boiler controls and the importance of tuning the settings on new or existing boiler controls. The guideline focuses on one-pipe steam systems, though many of the assessment methods can be generalized to two-pipe steam systems.

  13. Efficient Multifamily Homes in a Hot Humid Climate by Atlantic Housing Partners

    SciTech Connect

    Chaser, Dave; Martin, Eric

    2013-04-01

    With assistance from the Florida Solar Energy Center (FSEC) and its Building America Partnership for Improved Residential Construction (BA-PIRC), Atlantic Housing Partners (AHP) has implemented a high performance, systems engineered package of measures. This report demonstrates how the initiative achieves Building America (BA) goals of 30%-50% energy savings. Specifically, the goals are documented as being achieved in the new construction multifamily housing sector in the hot humid climate. Results from energy modeling of the high performance package are presented. The role of utility allowance calculations, used as part of the low-income housing tax credit process, to value those energy savings is discussed, as is customer satisfaction with heat pump water heaters.

  14. Efficient Multifamily Homes in a Hot-Humid Climate by Atlantic Housing Partners

    SciTech Connect

    Chasar, D.; Martin, E.

    2013-04-01

    With assistance from the Florida Solar Energy Center (FSEC) and its Building America Partnership for Improved Residential Construction (BA-PIRC), Atlantic Housing Partners (AHP) has implemented a high performance, systems engineered package of measures. This report demonstrates how the initiative achieves Building America (BA) goals of 30%-50% energy savings. Specifically, the goals are documented as being achieved in the new construction multifamily housing sector in the hot humid climate. Results from energy modeling of the high performance package are presented. The role of utility allowance calculations, used as part of the low-income housing tax credit process, to value those energy savings is discussed, as is customer satisfaction with heat pump water heaters.

  15. Existing Whole-House Solutions Case Study: Cascade Apartments - Deep Energy Multifamily Retrofit

    SciTech Connect

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington, which resulted in annual energy cost savings of 22%, improved comfort and air quality for residents, and increased durability of the units. This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary Building America research questions: 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio of the retrofit package after considering utility window incentives and KCHA capital improvement funding.

  16. Using Solar Hot Water to Address Piping Heat Losses in Multifamily Buildings

    SciTech Connect

    Springer, David; Seitzler, Matt; Backman, Christine; Weitzel, Elizabeth

    2015-10-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  17. Radon in HUD assisted multifamily housing: Policy recommendations to the Congress

    SciTech Connect

    Not Available

    1991-04-01

    The report complies with Section 1091 of the Stewart B. McKinney Homeless Assistance Amendments Act of 1988 which requires that the HUD Secretary report to the Congress on a recommended policy for addressing radon contamination in specified housing. The housing specified in the Act is virtually all rental housing predominantly for low-income and moderate-income households. Almost all of it is multifamily housing: row houses, walk-up apartment buildings, or high-rise buildings. There is inadequate information on the extent to which excessive concentrations of radon occur above the first floor of multistory buildings and on the variation in radon concentrations in attached houses in the same row. HUD's recommended policy is in the four topic areas specified in the Act: research, education, testing, and mitigation.

  18. Building America Case Study: Zero Energy Ready Home Multifamily Project: Mutual Housing at Spring Lake, Woodland, California

    SciTech Connect

    2015-09-01

    Building cost effective, high performance homes that provide superior comfort, health, and durability is the goal of the Department of Energy's (DOE's) Zero Energy Ready Homes (ZERH) program. Through Building America research and other innovative programs throughout the country, many of the technical challenges to building to the ZERH standard have been addressed. This case study describes the development of a 62-unit multifamily community constructed by nonprofit developer Mutual Housing at the Spring Lake subdivision in Woodland, CA. The Spring Lake project is expected to be the first ZERH-certified multifamily project nationwide. Building America team Alliance for Residential Building Innovation worked with Mutual Housing throughout the project. The case study discusses challenges encountered, lessons learned, and how obstacles were overcome. An objective of this project was to gain a highly visible foothold for residential buildings built to the DOE ZERH specification that can be used to encourage participation by other California builders.

  19. New Whole-House Solutions Case Study: Zero Energy Ready Home Multifamily Project: Mutual Housing at Spring Lake

    SciTech Connect

    D. Springer and A. German

    2015-09-01

    Building cost effective, high performance homes that provide superior comfort, health, and durability is the goal of the Department of Energy's (DOE's) Zero Energy Ready Homes (ZERH) program. This case study describes the development of a 62-unit multifamily community constructed by nonprofit developer Mutual Housing at the Spring Lake subdivision in Woodland, California. The Spring Lake project is expected to be the first ZERH-certified multifamily project nationwide. Building America team Alliance for Residential Building Innovation worked with Mutual Housing throughout the project. An objective of this project was to gain a highly visible foothold for residential buildings built to the DOE ZERH specification that can be used to encourage participation by other California builders.

  20. Mining User Dwell Time for Personalized Web Search Re-Ranking

    SciTech Connect

    Xu, Songhua; Jiang, Hao; Lau, Francis

    2011-01-01

    We propose a personalized re-ranking algorithm through mining user dwell times derived from a user's previously online reading or browsing activities. We acquire document level user dwell times via a customized web browser, from which we then infer conceptword level user dwell times in order to understand a user's personal interest. According to the estimated concept word level user dwell times, our algorithm can estimate a user's potential dwell time over a new document, based on which personalized webpage re-ranking can be carried out. We compare the rankings produced by our algorithm with rankings generated by popular commercial search engines and a recently proposed personalized ranking algorithm. The results clearly show the superiority of our method. In this paper, we propose a new personalized webpage ranking algorithmthrough mining dwell times of a user. We introduce a quantitative model to derive concept word level user dwell times from the observed document level user dwell times. Once we have inferred a user's interest over the set of concept words the user has encountered in previous readings, we can then predict the user's potential dwell time over a new document. Such predicted user dwell time allows us to carry out personalized webpage re-ranking. To explore the effectiveness of our algorithm, we measured the performance of our algorithm under two conditions - one with a relatively limited amount of user dwell time data and the other with a doubled amount. Both evaluation cases put our algorithm for generating personalized webpage rankings to satisfy a user's personal preference ahead of those by Google, Yahoo!, and Bing, as well as a recent personalized webpage ranking algorithm.

  1. Predicted Versus Actual Savings for a Low-Rise Multifamily Retrofit in Boulder, Colorado

    SciTech Connect

    Arena, L.; Williamson, J.

    2013-11-01

    To determine the most cost-effective methods of improving buildings, accurate analysis and prediction of the energy use of existing buildings is essential. However, multiple studies confirm that analysis methods tend to over-predict energy use in poorly insulated, leaky homes and thus, the savings associated with improving those homes. In this project, the Building America CARB team evaluated the retrofit of a multifamily building in Boulder, CO. The updated property is a 37 unit, 2 story apartment complex built in 1950, which underwent renovations in early 2009 to bring it into compliance with Boulder, CO's SmartRegs ordinance. Goals of the study were to: 1) evaluate predicted versus actual savings due to the improvements, 2) identify areas where the modeling assumptions may need to be changed, and 3) determine common changes made by renters that would negatively impact energy savings. Other issues that were investigated include the effects of improving building efficiency on tenant comfort, the impact on tenant turnover rates, and the potential market barriers for this type of community scale project.

  2. Existing Whole-House Solutions Case Study: Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, Annapolis, Maryland

    SciTech Connect

    2013-10-01

    Under this project, the BA-PIRC research team evaluated the installation, measured performance, and cost-effectiveness of efficiency upgrade measures for a tenant-in-place deep energy retrofit at the Bay Ridge multifamily development in Annapolis, Maryland. The design and construction phase of the Bay Ridge project was completed in August 2012. This case study summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete.

  3. DOE Tour of Zero: Emerald Star by Dwell Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Emerald Star by Dwell Development DOE Tour of Zero: Emerald Star by Dwell Development 1 of 17 Dwell Development built this 2117-square-foot home in Seattle, Washington, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 17 Reclaimed wood and metal roofing from old barns provides the unique exterior cladding of the home, which is located in Seattle's historic Ballard neighborhood. 3 of 17 Durable standing-seam metal roofing covers the shed

  4. DOE Tour of Zero: Emerald Star by Dwell Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Emerald Star by Dwell Development DOE Tour of Zero: Emerald Star by Dwell Development Addthis 1 of 17 Dwell Development built this 2117-square-foot home in Seattle, Washington, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 17 Reclaimed wood and metal roofing from old barns provides the unique exterior cladding of the home, which is located in Seattle's historic Ballard neighborhood. 3 of 17 Durable standing-seam metal roofing covers the

  5. Technology Solutions Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York

    SciTech Connect

    2014-09-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the "fresh" air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the "normal leakage paths through the building envelope" disappear. Consortium for Advanced Residential Buildings researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. This research effort included several weeks of building pressure monitoring to validate system performance of the different strategies for providing make-up air to apartments.

  6. Building America Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet)

    SciTech Connect

    Not Available

    2014-09-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

  7. Habitability and energy performance of earth sheltered dwellings

    SciTech Connect

    Boyer, L.L.; Grondzik, W.T.

    1980-12-01

    The High Plains region of the central United States has become host to an emerging dwelling concept which incorporates the use of earth shelter technologies. Traditionally, inhabitants of this region have been sensitized to the need for windstorm protection. More recently, dramatic potentials for energy savings have served as a strong secondary inducement to the exploration of earth sheltered housing as an energy alternative. Habitability and passive energy design of earth sheltered structures are key focal elements being investigated at Oklahoma State University. Habitability aspects have received little treatment elsewhere, and existing passive energy design strategies have generally not considered the passive cooling benefits of earth sheltered construction. Extended questionnaires were used to obtain earth sheltered occupant responses to both habitability and energy design aspects including measured energy usage. Preliminary analysis has been completed on about 80 (eighty) projects in the State of Oklahoma, and the study is being extended to 8 (eight) additional surrounding states. Initial results indicate that occupants are generally satisfied with such attributes as structural safety, thermal comfort, and acoustical environment; but have some reservations concerning daylighting, site design, and energy design and performance. Energy usage patterns tend to indicate that, in fact, sizeable savings are being realized by owners of current generation earth shelters. However, it is anticipated that with optimized passive systems design, the presently realized savings could be further increased by perhaps a factor of two. An appropriate design balance must be realized between passive heating and passive cooling needs.

  8. Simulation of an underground solar energy storage for a dwelling

    SciTech Connect

    Bourret, B.; Javelas, R. )

    1991-01-01

    The system under study consists of an underground insulated storage beneath a slab floor of an individual dwelling. The storage is charged by solar collectors via two arrays of air ducts buried horizontally in the soil at two depths: 2 m (summer working) and 0.4 m (winter working). Energy transfer from the storage to the house is made by conduction in the soil toward the slab. This system is described by a simulation model bidimensional by slices, the approach is bidimensional in the perpendicular plane to the ducts, and the authors take several slices in the direction of the ducts. The yearly storage efficiency varies from 0.53-0.83 when the thermal insulation resistance varies from 0-5 m{sup 2} kW{sup {minus}1}. The influences of soil thermal characteristic and airflow rates are also analyzed. This system presents good performances that can be compared with those of the best active solar device for private homes in a temperature climate: direct solar heating floors.

  9. Theoretical rate coefficients for allyl + HO2 and allyloxy decomposition

    SciTech Connect

    Goldsmith, C. F.; Klippenstein, S. J.; Green, W. H.

    2011-01-01

    The kinetics of the allyl + HO{sub 2} bimolecular reaction, the thermal decomposition of C{sub 3}H{sub 5}OOH, and the unimolecular reactions of C{sub 3}H{sub 5}O are studied theoretically. High-level ab initio calculations of the C{sub 3}H{sub 5}OOH and C{sub 3}H{sub 5}O potential energy surfaces are coupled with RRKM master equation methods to compute the temperature- and pressure-dependence of the rate coefficients. Variable reaction coordinate transition state theory is used to characterize the barrierless transition states for the allyl + HO{sub 2} and C{sub 3}H{sub 5}O + OH reactions. The predicted rate coefficients for allyl + HO{sub 2} ? C{sub 3}H{sub 5}OOH ? products are in good agreement with experimental values. The calculations for allyl + HO{sub 2} ? C{sub 3}H{sub 6} + O{sub 2} underpredict the observed rate. The new rate coefficients suggest that the reaction of allyl + HO{sub 2} will promote chain-branching significantly more than previous models suggest.

  10. Building America Case Study: Zero Energy Read Home Multifamily Project: Mutual Housing at Spring Lake, Woodland, California (Fact Sheet), Whole-House Solutions for New Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Zero Energy Ready Home Multifamily Project: Mutual Housing at Spring Lake Woodland, California PROJECT INFORMATION Construction: New home Type: Multifamily, affordable Partners: Developer: Mutual Housing California, mutualhousing.com Builder: Sunseri Construction, sunsericonstruction.com Alliance for Residential Building Innovation, arbi.davisenergy.com Size: 709 ft 2 -1,515 ft 2 Date Completed: 2015 Climate Zone: Hot-dry PERFORMANCE DATA 2013 Title-24 Compliance Margin: 17%-23% Percentage

  11. Building America Case Study: Evaluation of Passive Vents in New-Construction Multifamily Buildings, New York, New York

    SciTech Connect

    2015-10-15

    Exhaust ventilation and corresponding outdoor air strategies are being implemented in high-performance new construction multifamily buildings to meet program or code requirements for improved indoor air quality, but a lack of clear design guidance is resulting in poor performance of these systems despite the best intentions of the programs or standards. CARB's 2014 'Evaluation of Ventilation Strategies in New Construction Multifamily Buildings' consistently demonstrated that commonly used outdoor air strategies are not performing as expected. Of the four strategies evaluated in 2014, the exhaust ventilation system that relied on outdoor air from a pressurized corridor was ruled out as a potential best practice due to its conflict with meeting requirements within most fire codes. Outdoor air that is ducted directly to the apartments was a strategy determined to have the highest likelihood of success, but with higher first costs and operating costs. Outdoor air through space conditioning systems was also determined to have good performance potential, with proper design and execution. The fourth strategy, passive systems, was identified as the least expensive option for providing outdoor air directly to apartments, with respect to both first costs and operating costs. However, little is known about how they actually perform in real-world conditions or how to implement them effectively. Based on the lack of data available on the performance of these low-cost systems and their frequent use in the high-performance building programs that require a provision for outdoor air, this research project sought to further evaluate the performance of passive vents.

  12. EA-2001: Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings' Baseline Standards Update (RIN 1904-AD39)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) is publishing this final rule to implement provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal commercial and multi-family high-rise residential buildings. This rule updates the baseline Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2013.

  13. EA-2001: Energy Efficiency Design Standards: New Federal Commercial and Multi-Family High-Rise Residential Buildings and New Federal Low-Rise Residential Buildings

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is publishing this final rule to implement provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal commercial and multi-family high-rise residential buildings. This rule updates the baseline Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2013.

  14. General relation between density of states and dwell times in mesoscopic systems

    SciTech Connect

    Iannaccone, G. Dipartimento di Ingegneria dell'Informazione: Elettronica, Informatica e Telecomunicazioni, Universita degli Studi di Pisa, Via Diotisalvi 2, I-56126 Pisa )

    1995-02-15

    A relevant relation between the dwell time and the density of states for a three-dimensional system of arbitrary shape with an arbitrary number of incoming channels is derived. This result extends the one obtained by Gasparian and co-workers for the case of a one-dimensional symmetrical potential barrier. We believe that such a strong relation is rich in physical significance because the dwell time is the most widely accepted time measure of a particle's dynamics and the density of states in a given region is one of the most relevant properties of a system in equilibrium.

  15. Isolation of 163Ho from dysprosium target material by HPLC for neutrino mass measurements

    DOE PAGES [OSTI]

    Mocko, Veronika; Taylor, Wayne  A.; Nortier, Francois M.; Engle, Jonathan  W.; Barnhart, Todd  E.; Nickles, Robert  J.; Pollington, Anthony  D.; Kunde, Gerd  J.; Rabin, Michael  W.; Birnbaum, Eva  R.

    2015-04-29

    The rare earth isotope 163Ho is of interest for neutrino mass measurements. This report describes the isolation of 163Ho from a proton-irradiated dysprosium target and its purification. A Dy metal target was irradiated with 16 MeV protons for 10 h. After target dissolution, 163Ho was separated from the bulk Dy via cation-exchange high performance liquid chromatography using 70 mmol dm–3 α-hydroxyisobutyric acid as the mobile phase. Subsequent purification of the collected Ho fraction was performed to remove the α-hydroxyisobutyrate chelating agent and to concentrate the Ho in a low ionic strength aqueous matrix. The final solution was characterized by MC-ICP-MSmore » to determine the 163Ho/165Ho ratio, 163Ho and the residual Dy content. The HPLC purification process resulted in a decontamination factor 1.4E5 for Dy. As a result, the isolated Ho fraction contained 24.8 ±1.3 ng of 163Ho corresponding to holmium recovery of 72 ± 3%.« less

  16. Water exchange dynamics around H?O? and OH? ions

    SciTech Connect

    Roy, Santanu; Dang, Liem X.

    2015-05-01

    Proton transfer in water and other solvents is a complicated process and an active research area. Conformational changes of water hydrating a proton can have a significant influence on proton dynamics. A hydrated proton leads to H?O? that forms three hydrogen bonds with neighboring water molecules. In this letter, we report the first computer simulation of the dynamics of water exchanging between the first and second solvation shells of H?O?. Employing different rate theories for chemical reactions such as the transition state theory, the Grote-Hynes theory, the reactive flux method, and the Impey-Madden-McDonald method, we calculate the solvent exchange rates from molecular dynamics simulations that account for explicit polarization effects. In addition, we also study water exchanges around OH? and find that the corresponding time scale (~50 picoseconds [ps]) is much smaller than that for H?O? (~100 ps). Results from all the rate theories are computed and compared. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  17. Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings" (DOE/EA-1918)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings" (DOE/EA-1918) June 28, 2013 1 Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings" (DOE/EA-1918) SUMMARY The U.S. Department of Energy (DOE) has prepared this environmental assessment (EA) for DOE's Final Rule, 10

  18. EA-1918: Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and MultiFamily High-Rise Residential Buildings" RIN 1904-AC60

    Energy.gov [DOE]

    This EA evaluates the environmental impacts of implementing provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal buildings, including commercial and multi-family high-rise residential buildings. This EA addresses Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2010. The Final Rule was published in the Federal Register on July 9, 2013, 78 FR 40945.

  19. Wood-Producing Sunflower? Mining Genetic Diversity in Desert-Dwelling Wild Species (2010 JGI User Meeting)

    ScienceCinema

    Knapp, Steve

    2016-07-12

    Steve Knapp from Monsanto on "Wood-Producing Sunflower? Mining Genetic Diversity in Desert-Dwelling Wild Species" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  20. Theoretical study of reactions of HO{sub 2} in low-temperature oxidation of benzene

    SciTech Connect

    Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z.; Kennedy, Eric M.; Mackie, John C.

    2010-07-15

    We have generated a set of thermodynamic and kinetic parameters for the reactions involving HO{sub 2} in the very early stages of benzene oxidation at low temperatures using density functional theory (DFT). In particular, we report the rate constants for the reactions of HO{sub 2} with benzene and phenyl. The calculated reaction rate constant for the abstraction of H-C{sub 6}H{sub 5} by HO{sub 2} is found to be in good agreement with the limited experimental values. HO{sub 2} addition to benzene is found to be more important than direct abstraction. We show that the reactions of HO{sub 2} with the phenyl radical generate the propagating radical OH in a highly exoergic reaction. The results presented herein should be useful in modeling the oxidation of aromatic compounds at low temperatures. (author)

  1. HIA 2015 DOE Zero Energy Ready Home Case Study: Dwell Development, Reclaimed Modern, Seattle, WA

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dwell Development Reclaimed Modern Seattle, WA DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed

  2. Design, development and testing of a solar-powered multi-family residential size prototype turbocompressor heat pump

    SciTech Connect

    None

    1981-03-01

    A program described to design, fabricate, and conduct preliminary testing of a prototype solar-powered Rankine cycle turbocompressor heat pump module for a multi-family residential building is presented. A solar system designed to use the turbocompressor heat pump module including all of the subsystems required and the various system operating modes is described in Section I. Section II includes the preliminary design analyses conducted to select the heat pump module components and operating features, working fluid, configuration, size and performance goals, and estimated performance levels in the cooling and heating modes. Section III provides a detailed description of the other subsystems and components required for a complete solar installation. Using realistic performance and cost characteristics for all subsystems, the seasonal performance of the UTC heat pump is described in various US locations. In addition, the estimated energy savings and an assessment of the economic viability of the solar system is presented in Section III. The detailed design of the heat pump module and the arrangement of components and controls selected to conduct the laboratory performance tests are described in Section IV. Section V provides a description of the special laboratory test facility, including the subsystems to simulate the collectors and storage tanks for building load and ambient conditions and the instrumentation, monitoring, and data acquisition equipment. The test results and sample computer analyses and comparisons with predicted performance levels are presented in Section VI. Various appendices provide supplementary and background information concerning working fluid selection (A), configuration selection (B), capacity control concepts (C), building models (D), computer programs used to determine component and system performance and total system economics (E), and weather data (F).

  3. Itinerant and localized magnetization dynamics in antiferromagnetic Ho

    DOE PAGES [OSTI]

    Rettig, L.; Dornes, C.; Thielemann-Kuhn, N.; Pontius, N.; Zabel, H.; Schlagel, D. L.; Lograsso, T. A.; Chollet, M.; Robert, A.; Sikorski, M.; et al

    2016-06-21

    Using femtosecond time-resolved resonant magnetic x-ray diffraction at the Ho L3 absorption edge, we investigate the demagnetization dynamics in antiferromagnetically ordered metallic Ho after femtosecond optical excitation. Here, tuning the x-ray energy to the electric dipole (E1, 2p → 5d) or quadrupole (E2, 2p → 4f) transition allows us to selectively and independently study the spin dynamics of the itinerant 5d and localized 4f electronic subsystems via the suppression of the magnetic (2 1 3–τ) satellite peak. We find demagnetization time scales very similar to ferromagnetic 4f systems, suggesting that the loss of magnetic order occurs via a similar spin-flipmore » process in both cases. The simultaneous demagnetization of both subsystems demonstrates strong intra-atomic 4f–5d exchange coupling. In addition, an ultrafast lattice contraction due to the release of magneto-striction leads to a transient shift of the magnetic satellite peak.« less

  4. Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit: Annapolis, Maryland. Building America Case Study: Whole-House Solutions for Existing Homes (Fact Sheet)

    SciTech Connect

    Not Available

    2013-10-01

    Under this project, Newport Partners (as part of the BA-PIRC research team) evaluated the installation, measured performance, and cost-effectiveness of efficiency upgrade measures for a tenant-in-place DER at the Bay Ridge multifamily (MF) development in Annapolis, Maryland. The design and construction phase of the Bay Ridge project was completed in August 2012. This report summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete. The Bay Ridge project is comprised of a "base scope" retrofit which was estimated to achieve a 30%+ savings (relative to pre-retrofit) on 186 apartments, and a "DER scope" which was estimated to achieve 50% savings (relative to pre-retrofit) on a 12-unit building. The base scope was applied to the entire apartment complex, except for one 12-unit building which underwent the DER scope. A wide range of efficiency measures was applied to pursue this savings target for the DER building, including improvements/replacements of mechanical equipment and distribution systems, appliances, lighting and lighting controls, the building envelope, hot water conservation measures, and resident education. The results of this research build upon the current body of knowledge of multifamily retrofits. Towards this end, the research team has collected and generated data on the selection of measures, their estimated performance, their measured performance, and risk factors and their impact on potential measures.

  5. Building America Whole-House Solutions for New Homes: Challenges of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York | Department of Energy Whole-House Solutions for New Homes: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York Building America Whole-House Solutions for New Homes: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York In this project, the Consortium for Advanced Residential Buildings team sought to create a

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Conservation Loan Program. The terms of this loan are similar to loans for single-family dwellings, with a hig... Eligibility: Residential, Multifamily Residential...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Conservation Loan Program. The terms of this loan are similar to loans for single-family dwellings, with a hig... Eligibility: Residential, Multifamily Residential Savings...

  8. Economic analysis of a passive solar multiple-family dwelling for upstate New York

    SciTech Connect

    Laquatra, J. Jr.

    1982-02-01

    The objective of this study was to examine the economic feasibility of passive solar energy as applied to a multiple-family dwelling in three upstate New York cities: Buffalo, Rochester, and Syracuse. Specifically, two passive solar applications - a Trombe wall and a direct-gain system - for a nine-unit structure designed by Total Environmental Action, Inc. were analyzed through the use of a solar economic performance code. City-specific data, including climatological information, building construction costs, utility rates, and property taxes were used, as were various economic parameters to reflect economic conditions in general and specifically those of the solar systems' owners.

  9. DOE Zero Energy Ready Home Case Study: Dwell Development, Seattle, Washington

    SciTech Connect

    none,

    2013-09-01

    This Challenge Home is one of 42 homes in a micro-community of ultra-modern, energy-efficient homes built by Dwell Development on an urban gray-field site in South Seattle. Every home will achieve a 5-Star Built Green rating from the regional master builders association and meet the criteria of the Northwest ENERGY STAR program, which is more strict than the national ENERGY STAR criteria. Also, the home won a 2013 Housing Innovation Award in the "systems builder" category.

  10. Building America Case Study: Predicting Envelope Leakage in Attached Dwellings (Fact Sheet)

    SciTech Connect

    Not Available

    2014-12-01

    'The cost for blower testing is high, because it is labor intensive, and it may disrupt occupants in multiple units. This high cost and disruption deters program participants, and dissuades them from pursuing energy improvements that would trigger air leakage testing, such as improvements to the building envelope.' This statement found in a 2012 report by Heschong Mahone Group emphasizes the importance of reducing the cost and complexity of blower testing in multifamily buildings. Energy efficiency opportunities are being bypassed. The cost of single blower testing is on the order of $300. The cost for guarded blower door testing, the more appropriate test for assessing energy savings opportunities, could easily be six times that and that's only if you have the equipment and simultaneous access to multiple apartments. Thus, the proper test is simply not performed. The objective of the 2013 research project was to develop the model for predicting fully guarded test results (FGT), using unguarded test data and specific building features of apartment units. The model developed has a coefficient of determination R2 value of 0.53 with a root mean square error (RMSE) of 0.13. Both statistical metrics indicate that the model is relatively strong. When tested against data that was not included in the development of the model, prediction accuracy was within 19%, which is reasonable given that seasonal differences in blower door measurements can vary by as much as 25%.

  11. Isolation of 163Ho from dysprosium target material by HPLC for neutrino mass measurements

    SciTech Connect

    Mocko, Veronika; Taylor, Wayne  A.; Nortier, Francois M.; Engle, Jonathan  W.; Barnhart, Todd  E.; Nickles, Robert  J.; Pollington, Anthony  D.; Kunde, Gerd  J.; Rabin, Michael  W.; Birnbaum, Eva  R.

    2015-04-29

    The rare earth isotope 163Ho is of interest for neutrino mass measurements. This report describes the isolation of 163Ho from a proton-irradiated dysprosium target and its purification. A Dy metal target was irradiated with 16 MeV protons for 10 h. After target dissolution, 163Ho was separated from the bulk Dy via cation-exchange high performance liquid chromatography using 70 mmol dm–3 α-hydroxyisobutyric acid as the mobile phase. Subsequent purification of the collected Ho fraction was performed to remove the α-hydroxyisobutyrate chelating agent and to concentrate the Ho in a low ionic strength aqueous matrix. The final solution was characterized by MC-ICP-MS to determine the 163Ho/165Ho ratio, 163Ho and the residual Dy content. The HPLC purification process resulted in a decontamination factor 1.4E5 for Dy. As a result, the isolated Ho fraction contained 24.8 ±1.3 ng of 163Ho corresponding to holmium recovery of 72 ± 3%.

  12. New Magnetic confirguration in paramagnetic phase of HoCo2 (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: New Magnetic confirguration in paramagnetic phase of HoCo2 Citation ... OSTI Identifier: 1045775 Report Number(s): IS-J 7695 Journal ID: 0021-8979 DOE Contract ...

  13. The growth of Ho:YAG single crystals by Czochralski method and investigating the formed cores

    SciTech Connect

    Hasani Barbaran, J. Ghani Aragi, M. R.; Javaheri, I.; Baharvand, B.; Tabasi, M.; Layegh Ahan, R.; Jangjo, E.

    2015-12-15

    Ho:YAG single crystals were grown by Czochralski technique, and investigated by the X-ray diffraction (XRD) and optical methods. The crystals were cut and polished in order to observe and analyze their cores. It was found that the deviation of the cores formed in the Czochralski grown Ho:YAG single crystals are resulted from non-symmetrical status of thermal insulation around the Iridium crucible.

  14. Pathway structure determination in complex stochastic networks with non-exponential dwell times

    SciTech Connect

    Li, Xin; Kolomeisky, Anatoly B.; Valleriani, Angelo

    2014-05-14

    Analysis of complex networks has been widely used as a powerful tool for investigating various physical, chemical, and biological processes. To understand the emergent properties of these complex systems, one of the most basic issues is to determine the structure and topology of the underlying networks. Recently, a new theoretical approach based on first-passage analysis has been developed for investigating the relationship between structure and dynamic properties for network systems with exponential dwell time distributions. However, many real phenomena involve transitions with non-exponential waiting times. We extend the first-passage method to uncover the structure of distinct pathways in complex networks with non-exponential dwell time distributions. It is found that the analysis of early time dynamics provides explicit information on the length of the pathways associated to their dynamic properties. It reveals a universal relationship that we have condensed in one general equation, which relates the number of intermediate states on the shortest path to the early time behavior of the first-passage distributions. Our theoretical predictions are confirmed by extensive Monte Carlo simulations.

  15. Electricity storage for grid-connected household dwellings with PV panels

    SciTech Connect

    Mulder, Grietus; Six, Daan; Ridder, Fjo De

    2010-07-15

    Classically electricity storage for PV panels is mostly designed for stand-alone applications. In contrast, we focus in this article on houses connected to the grid with a small-scale storage to store a part of the solar power for postponed consumption within the day or the next days. In this way the house owner becomes less dependent on the grid and does only pay for the net shortage of his energy production. Local storage solutions pave the way for many new applications like omitting over-voltage of the line and bridging periods of power-line black-out. Since 2009 using self-consumption of PV energy is publicly encouraged in Germany, which can be realised by electric storage. This paper develops methods to determine the optimal storage size for grid-connected dwellings with PV panels. From measurements in houses we were able to establish calculation rules for sizing the storage. Two situations for electricity storage are covered: - the storage system is an optimum to cover most of the electricity needs; - it is an optimum for covering the peak power need of a dwelling. After these calculation rules a second step is needed to determine the size of the real battery. The article treats the aspects that should be taken into consideration before buying a specific battery like lead-acid and lithium-ion batteries. (author)

  16. Multifamily Envelope Leakage Model

    SciTech Connect

    Faakye, O.; Griffiths, D.

    2015-05-01

    The objective of the 2013 research project was to develop the model for predicting fully guarded test results (FGT), using unguarded test data and specific building features of apartment units. The model developed has a coefficient of determination R2 value of 0.53 with a root mean square error (RMSE) of 0.13. Both statistical metrics indicate that the model is relatively strong. When tested against data that was not included in the development of the model, prediction accuracy was within 19%, which is reasonable given that seasonal differences in blower door measurements can vary by as much as 25%.

  17. ENERGY STAR Certified Homes, Version 3 (Rev. 07) National Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    following homes are eligible to earn the ENERGY STAR: Detached dwelling units 1 (e.g. ... Dwelling units 1 in multifamily buildings that are not eligible to earn the ENERGY STAR ...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Electric Vehicle Supply Equipment (EVSE) Requirements A multi-family residential dwelling or townhouse owner may install EVSE on or near a parking stall at the dwelling as long as ...

  19. Building America Technology Solutions for New and Existing Homes: Predicting Envelope Leakage in Attached Dwellings (Fact Sheet)

    Energy.gov [DOE]

    In an attempt to create a simplified tool for predicting leakage to the outside, the CARB team analyzed blower door test results from 112 attached dwelling units in four apartment complexes to investigate the correlation between building specifications and the ratio of guarded and solo test results.

  20. Cost and energy comparison study of above- and below-ground dwellings

    SciTech Connect

    Shapira, H.B.; Cristy, G.A.; Brite, S.E.; Yost, M.B.

    1983-08-01

    Designs of earth-sheltered (ES) homes were examined and compared with identical aboveground (AG) homes. The homes are identical except where changes were necessitated by earth-sheltering and energy conservation. The study involved design, construction costing, energy analysis, and life-cycle costing (LCC). It was concluded from this study that under present market conditions, if aboveground and earth-sheltered dwellings of equal size and quality are built on similar lots, the construction cost of the earth-sheltered structure compares poorly with that of the aboveground structure. Lowered operation and maintenance costs, including the lower fuel bills of the earth-sheltered structure, are outweighed by the current high interest rates, which cause an increase in monthly payments. 24 references.

  1. HUD rehabilation energy guidelines for one-to-four family dwellings (for microcomputers). Data file

    SciTech Connect

    1996-09-01

    The guidebook and Microsoft Excel worksheet diskette allows the user to calculate which enery consevation improvements are cost-effective when properties are rehabilitated. The information is applicable for all climates, from Florida to Alaska. The information is presented in a manner so that owners of building can better assess the needs and opportunities of a particular renovation project. They will also be able to ask better question of designers, builders, and contractors. The guidebook explains how properlly rehabilitating dwellings can increase energy efficiency and reduce costs. It discusses the issues and factors that determine how much energy a building will consume, including heat flow, air leakage, insulation, and heating and cooling systems. The guide also includes the specific HUD Rehabilitation Energy Guidelines for Dwellings with general and location-specific recommendations for energy conservation improvements. These guidelines are followed by examples of typical energy conservation measures in different climates. Each of these examples includes a Cost Effectiveness Excel Worksheet to show the overall simple payback. This easy-to-use worksheet walks through the entire evaluation process. The user simply enters in the appropriate information, much of which is menu driven. Appendicies provide a table that shows counties nationwide by climate zone, a list of resources, a glossary, and sample surveys and worksheets to help owners with their rehabilitation projects. Regulatory Background: The guidelines used in this guidebook are the Department of Housing and Urban Development`s `Standards for Cost Effective Energy Conservation` for property rehabilitation undertaken with HUD assistance. The information that used to be included in the regulations, with respect to energy efficiency, published as 24CFR39, is now contained in these guidelines.

  2. Simultaneous, in situ measurements of OH and HO sub 2 in the stratosphere

    SciTech Connect

    Stimpfle, R.M.; Wennberg, P.O.; Lapson, L.B.; Anderson, J.G. )

    1990-10-01

    Stratospheric OH and HO{sub 2} radical densities have been measured between 36 and 23 using a balloon-born, in situ instrument launched from Palestine, TX on August 25, 1989. OH is detected using the laser-induced fluorescence technique (LIF) employing a Cu-vapor-laser pumped dye laser coupled with an enclosed-flow detection chamber. HO{sub 2} is detected nearly simultaneously by adding NO to the sample flow to convert ambient HO{sub 2} to OH. Observed OH and HO{sub 2} densities ranged from 8.0 {plus minus} 2.8 {times} 10{sup 6} and 1.4 {plus minus} 0.5 {times} 10{sup 7} molec cm{sup {minus}3}, respectively, at 36 km, to 1.4 {plus minus} 0.5 {times} 10{sup 6} and 3.0 {plus minus} 1.0 {times} 10{sup 6} at 23 km, where the uncertainty is {plus minus} 1{sigma}. The HO{sub 2} density exhibits a maximum in the 34-30 km region of 1.7 {plus minus} 0.6 {times} 10{sup 7}. The data were obtained over a solar zenith angle variation of 51{degree} at 36 km to 61{degree} at 23 km. O{sub 3} and H{sub 2}O densities also were measured simultaneously with separate instruments.

  3. Crystal structures and phase transitions in Ba{sub 2}HoTaO{sub 6}

    SciTech Connect

    Kennedy, Brendan J. Saines, Paul J.; Kubota, Yoshiki; Minakata, Chiharu; Hano, Hiroko; Kato, Kenichi; Takata, Masaki

    2007-11-06

    The structure of the cation-ordered double perovskite Ba{sub 2}HoTaO{sub 6} was examined using synchrotron X-ray powder diffraction at fine temperature intervals over the range of 90-300 K. Ba{sub 2}HoTaO{sub 6} has a cubic structure in space group Fm3-barm at room temperature. A proper ferroelastic phase transition to I4/m tetragonal symmetry occurs near approximately 260 K. Analysis of the spontaneous tetragonal strain versus temperature indicated that the phase transition is second order in nature.

  4. HUD rehabilitation energy guidelines for one-to-four family dwellings

    SciTech Connect

    1996-09-01

    The Guidebook has been prepared to help people who are involved in the rehabilitation of a single-family house (or low-rise building with up to four housing units). It helps to understand the basics of residential energy conservation, and to think positively about the potential economic benefits. The Guidebook, and the HUD Rehabilitation Energy Guidelines are designed for all climates ranging from hot and humid Florida to the northern reaches of Alaska. Chapter 1 outlines how investments in energy conservation can be `cost-effective` and actually put money into your pocket each year. Chapter 2 provides an introduction to the issues and factors that determine how much energy your building will consume. Chapter 3 of the Guidebook contains the specific HUD Rehabilitation Energy Guidelines for One-to-Four Family Dwellings. Chapter 4 provides some examples of typical energy conservation measures in various climates. Appendix A is where you will find the climate zone for the appropriate county in your state. In the back of the book, Appendix G contains a blank copy of the One-to-Four Family Cost-Effectiveness Worksheet to copy or tear out for use on your project.

  5. Frustrated spin correlations in diluted spin ice Ho2-xLaxTi2O7

    SciTech Connect

    Ehlers, Georg; Ehlers, G.; Mamontov, E.; Zamponi, M.; Faraone, A.; Qiu, Y.; Cornelius, A.L.; Booth, C.H.; Kam, K.C.; Le Toquin, R.; Cheetham, A.K.; Gardner, J.S.

    2008-04-30

    We have studied the evolution of the structural properties as well as the static and dynamic spin correlations of spin ice Ho2Ti2O7, where Ho was partially replaced by non-magnetic La. The crystal structure of diluted samples Ho2-xLaxTi2O7 was characterized by x-ray and neutron diffraction and by Ho L-III-edge and Ti K-edge extended x-ray absorption fine structure (EXAFS) measurements. It is found that the pyrochlore structure remains intact until about x = 0.3, but a systematic increase in local disorder with increasing La concentration is observed in the EXAFS data, especially from the Ti K edge.Quasi-elastic neutron scattering and ac susceptibility measurements show that, in x<= 0.4 samples at temperatures above macroscopic freezing, the spin -spin correlations are short ranged and dynamic in nature. The main difference with pure spin ice in the dynamics is the appearance of a second, faster, relaxation process.

  6. Magnetic ordering in Ho{sub 2}Fe{sub 2}Si{sub 2}C

    SciTech Connect

    Susilo, R. A. Cadogan, J. M.; Cobas, R.; Hutchison, W. D.; Campbell, S. J.; Avdeev, M.

    2015-05-07

    We have used neutron diffraction and {sup 57}Fe Mössbauer spectroscopy, complemented by magnetisation and specific heat measurements, to examine the magnetic ordering of Ho{sub 2}Fe{sub 2}Si{sub 2}C. We have established that Ho{sub 2}Fe{sub 2}Si{sub 2}C orders antiferromagnetically below T{sub N} = 16(1) K with a magnetic structure involving ordering of the Ho sublattice along the b-axis with a propagation vector k=[0 0 1/2 ]. {sup 57}Fe Mössbauer spectra collected below T{sub N} show no evidence of a magnetic splitting, demonstrating the absence of long range magnetic ordering of the Fe sublattice. A small line broadening is observed in the {sup 57}Fe spectra below T{sub N}, which is due to a transferred hyperfine field—estimated to be around 0.3 T at 10 K—from the Ho sublattice.

  7. Yu Ho (Ric) Wen > Postdoc - Archer Group > Researchers, Postdocs &

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Graduates > The Energy Materials Center at Cornell Yu Ho (Ric) Wen Postdoc - Archer Group yw563@cornell.edu Ric completed his PhD from National Chung Cheng University, Taiwan. His current research involves rheology and structure of tethered hybrid materials and their applications to lubricants

  8. Analysis of emission spectra of Ho{sup 3+}:LFBCd glasses

    SciTech Connect

    Naresh, V. Buddhudu, S.

    2014-04-24

    In the present paper, we report on the absorption and emission properties of (0.1-1.5 mol %) Ho{sup 3+} doped LFBCd (Li{sub 2}O{sub ?}LiF{sub ?}B{sub 2}O{sub 3?}CdO) glasses prepared via melt quenching method. On exciting these glasses at (?{sub exci}) = 452 nm, two emissions at 556 nm ({sup 5}S{sub 2}?{sup 5}I{sub 8}; Green), 655 nm ({sup 5}F{sub 5}?{sup 5}I{sub 8}; Red) have been obtained. Upon exciting these glasses with a 980 nm diode laser, NIR emissions at 1195 nm ({sup 5}I{sub 6}?{sup 5}I{sub 8}), 1951 nm ({sup 5}I{sub 7}?{sup 5}I{sub 8}) have been measured for 1 mol % Ho{sup 3+}:LFBCd glass. For higher concentration beyond 1.0 mol %, emission quenching of Ho{sup 3+} glass has been noticed and which has successfully been explained in terms of an energy level diagram. From absorption cross-section data, stimulated emission cross-section has been evaluated by applying McCumber's theory and further cross-sectional gain has also been computed for the emissions at 1195 nm (?1.20 ?m) and 1951 nm (?2.0 ?m) of 1 mol % Ho{sup 3+}:LFBCd glass.

  9. Solid state phase equilibria and intermetallic compounds of the Al-Cr-Ho system

    SciTech Connect

    Pang, Mingjun; SAIC-GM-Wuling Automobile Co., Ltd., Liuzhou, Guangxi 545007 ; Zhan, Yongzhong; Du, Yong

    2013-02-15

    The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C were experimentally investigated. The phase relations at 500 Degree-Sign C are governed by 14 three-phase regions, 29 two-phase regions and 15 single-phase regions. The existences of 10 binary compounds and 2 ternary phases have been confirmed. Al{sub 11}Cr{sub 2}, Al{sub 11}Cr{sub 4} and Al{sub 17}Ho{sub 2} were not found at 500 Degree-Sign C. Crystal structures of Al{sub 9}Cr{sub 4} and Al{sub 8}Cr{sub 4}Ho were determined by the Rietveld X-ray powder data refinement. Al{sub 9}Cr{sub 4} was found to exhibit cubic structure with space group I4-bar 3m (no. 217) and lattice parameters a=0.9107(5) nm. Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} structure type with space group I4/mmm (no. 139) and lattice parameters a=0.8909(4) nm, c=0.5120(5) nm. It is concluded that the obtained Al{sub 4}Cr phase in this work should be {mu}-Al{sub 4}Cr by comparing with XRD pattern of the hexagonal {mu}-Al{sub 4}Mn compound. - Graphical abstract: The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Al-Cr-Ho system has been investigated. Black-Right-Pointing-Pointer Al{sub 9}Cr{sub 4} has cubic structure with space group I4-bar 3m. Black-Right-Pointing-Pointer Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} type with space group I4/mmm. Black-Right-Pointing-Pointer Al{sub 4}Cr phase is {mu}-type at 500 Degree-Sign C.

  10. National Program Requirements ENERGY STAR Certified Homes, Version 3 (Rev. 08)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program Requirements ENERGY STAR Certified Homes, Version 3 (Rev. 08) Required for homes permitted 11 starting 07/01/2016 Revised 07/01/2015 Page 1 of 4 Eligibility Requirements The following homes are eligible to earn the ENERGY STAR:  Detached dwelling units 1 (e.g. single family homes); OR  Dwelling units 1 in any multifamily building with 4 units or fewer; OR  Dwelling units 1 in multifamily buildings with 3 stories or fewer above-grade 2,3 ; OR  Dwelling units 1 in multifamily

  11. Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, Annapolis, Maryland (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bay Ridge Gardens-Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit Annapolis, Maryland PROJECT INFORMATION Construction: Existing Type: Apartment building: Bay Ridge Gardens Annapolis, MD www.bayridgegardens.com Size: 12 apartment units, 713 ft 2 and 909 ft 2 each Year of construction: 1970s Date completed: 2013 Climate Zone: Mixed-humid PERFORMANCE DATA Pre-retrofit annual energy use (normalized): 28.4 kilowatt-hour per square foot (kWh/ft 2 ) Post-retrofit annual energy use

  12. Study of Ho-doped Bi{sub 2}Te{sub 3} topological insulator thin films

    SciTech Connect

    Harrison, S. E.; Collins-McIntyre, L. J.; Zhang, S. L.; Chen, Y. L.; Hesjedal, T.; Baker, A. A.; Figueroa, A. I.; Laan, G. van der; Kellock, A. J.; Pushp, A.; Parkin, S. S. P.; Harris, J. S.

    2015-11-02

    Breaking time-reversal symmetry through magnetic doping of topological insulators has been identified as a key strategy for unlocking exotic physical states. Here, we report the growth of Bi{sub 2}Te{sub 3} thin films doped with the highest magnetic moment element Ho. Diffraction studies demonstrate high quality films for up to 21% Ho incorporation. Superconducting quantum interference device magnetometry reveals paramagnetism down to 2 K with an effective magnetic moment of ∼5 μ{sub B}/Ho. Angle-resolved photoemission spectroscopy shows that the topological surface state remains intact with Ho doping, consistent with the material's paramagnetic state. The large saturation moment achieved makes these films useful for incorporation into heterostructures, whereby magnetic order can be introduced via interfacial coupling.

  13. Measurement of HO{sub x}{center_dot} production rate due to radon decay in air

    SciTech Connect

    Ding, Huiling

    1993-08-01

    Radon in indoor air may cause the exposure of the public to excessive radioactivity. Radiolysis of water vapor in indoor air due to radon decay could produce ({center_dot}OH and HO{sub 2} {center_dot}) that may convert atmospheric constituents to compounds of lower vapor pressure. These lower vapor pressure compounds might then nucleate to form new particles in the indoor atmosphere. Chemical amplification was used to determine HO{sub x}{center_dot} production rate in indoor air caused by radon decay. Average HO{sub x}{center_dot} production rate was found to be (4.31{plus_minus}0.07) {times} 10{sup 5} HO{sub x}{center_dot} per Rn decay per second (Bq) 3.4 to 55.0% at 22C. This work provided G{sub (HO{sub x}{center_dot})}-value, 7.86{plus_minus}0.13 No./100 eV in air by directly measuring [HO{sub x}{center_dot}] formed from the radiolysis procedure. This G value implies that HO{sub x}{center_dot} produced by radon decay in air might be formed by multiple processes and may be result of positive ion-molecule reactions, primary radiolysis, and radical reactions. There is no obvious relation between HO{sub x}{center_dot} production rate and relative humidity. A laser-induced fluorescence (LIF) system has been used for {center_dot}OH production rate measurement; it consists of an excimer laser, a dye laser, a frequency doubler, a gaseous fluorescence chamber, and other optical and electronic parts. This system needs to be improved to eliminate the interferences of light scattering and artificial {center_dot}OH produced from the photolysis of O{sub 3}/H{sub 2}O.

  14. The generalized second law of thermodynamics in Ho?ava-Lifshitz cosmology

    SciTech Connect

    Jamil, Mubasher; Saridakis, Emmanuel N.; Setare, M.R. E-mail: msaridak@phys.uoa.gr

    2010-11-01

    We investigate the validity of the generalized second law of thermodynamics in a universe governed by Ho?ava-Lifshitz gravity. Under the equilibrium assumption, that is in the late-time cosmological regime, we calculate separately the entropy time-variation for the matter fluid and, using the modified entropy relation, that of the apparent horizon itself. We find that under detailed balance the generalized second law is generally valid for flat and closed geometry and it is conditionally valid for an open universe, while beyond detailed balance it is only conditionally valid for all curvatures. Furthermore, we also follow the effective approach showing that it can lead to misleading results. The non-complete validity of the generalized second law could either provide a suggestion for its different application, or act as an additional problematic feature of Ho?ava-Lifshitz gravity.

  15. Holographic dark energy with varying gravitational constant in Ho?ava-Lifshitz cosmology

    SciTech Connect

    Setare, M.R.; Jamil, Mubasher E-mail: mjamil@camp.nust.edu.pk

    2010-02-01

    We investigate the holographic dark energy scenario with a varying gravitational constant in a flat background in the context of Ho?ava-Lifshitz gravity. We extract the exact differential equation determining the evolution of the dark energy density parameter, which includes G variation term. Also we discuss a cosmological implication of our work by evaluating the dark energy equation of state for low redshifts containing varying G corrections.

  16. Visualiser of two-micron laser radiation based on Ho:CaF{sub 2} crystals

    SciTech Connect

    Lyapin, A A; Ryabochkina, P A; Ushakov, S N; Fedorov, P P

    2014-06-30

    The anti-Stokes luminescence spectra of Ho:CaF{sub 2} crystals corresponding to the {sup 5}G{sub 4} ? {sup 5}I{sub 8}, {sup 5}G{sub 5} ? {sup 5}I{sub 8}, {sup 5}F{sub 3} ? {sup 5}I{sub 8}, {sup 5}F{sub 4}({sup 5}S{sub 2}) ? {sup 5}I{sub 8}, {sup 5}F{sub 5} ? {sup 5}I{sub 8}, {sup 5}S{sub 2} ? {sup 5}I{sub 7}, {sup 5}I{sub 4} ? {sup 5}I{sub 8}, {sup 5}I{sub 5} ? {sup 5}I{sub 8}, {sup 5}F{sub 5} ? {sup 5}I{sub 7}, {sup 5}F{sub 3} ? {sup 5}I{sub 6}, {sup 5}I{sub 6} ? {sup 5}I{sub 8}, {sup 5}F{sub 5} ? {sup 5}I{sub 6}, and {sup 5}I{sub 5} ? {sup 5}I{sub 7} transitions upon excitation of the {sup 5}I{sub 7} level of Ho{sup 3+} ions are studied. A method for visualisation of IR radiation in the two-micron range using Ho:CaF{sub 2} crystals is proposed. The energy efficiency of conversion of two-micron laser radiation to radiation in the red spectral range 620 690 nm by a 1 mol % HoF{sub 3}:CaF{sub 2} crystal is estimated to be no higher than 0.02%. (nonlinear optical phenomena)

  17. White light emitting Ho{sup 3+}-doped CdS nanocrystal ingrained glass nanocomposites

    SciTech Connect

    Dey, Chirantan; Karmakar, Basudeb; Goswami, Madhumita

    2015-02-23

    We report the generation of white light from Ho{sup 3+} ion doped CdS nanocrystal ingrained borosilicate glass nanocomposites prepared by the conventional melt-quench method. Near visible 405?nm diode laser excited white light emission is produced by tuning the blue emission from the Ho{sup 3+} ions, green band edge, and orange-red surface-state emissions of the nanocrystalline CdS, which are further controlled by the size of the nanocrystals. The absorption and emission spectra evidenced the excitation of Ho{sup 3+} ions by absorption of photons emitted by the CdS nanocrystals. The high color rendering index (CRI?=?8489) and befitting chromaticity coordinates (x?=?0.3080.309, y?=?0.3260.338) of white light emission, near visible harmless excitation wavelength (405?nm), and high absorbance values at excitation wavelength point out that these glass nanocomposites may serve as a prominent candidate for resin free high power white light emitting diodes.

  18. Cosmological QCD phase transition in steady non-equilibrium dissipative Ho?avaLifshitz early universe

    SciTech Connect

    Khodadi, M. Sepangi, H.R.

    2014-07-15

    We study the phase transition from quarkgluon plasma to hadrons in the early universe in the context of non-equilibrium thermodynamics. According to the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electro-weak transition has occurred when the universe was about 110?s old. We focus attention on such a phase transition in the presence of a viscous relativistic cosmological background fluid in the framework of non-detailed balance Ho?avaLifshitz cosmology within an effective model of QCD. We consider a flat FriedmannRobertsonWalker universe filled with a non-causal and a causal bulk viscous cosmological fluid respectively and investigate the effects of the running coupling constants of Ho?avaLifshitz gravity, ?, on the evolution of the physical quantities relevant to a description of the early universe, namely, the temperature T, scale factor a, deceleration parameter q and dimensionless ratio of the bulk viscosity coefficient to entropy density (?)/s . We assume that the bulk viscosity cosmological background fluid obeys the evolution equation of the steady truncated (Eckart) and full version of the IsraelStewart fluid, respectively. -- Highlights: In this paper we have studied quarkhadron phase transition in the early universe in the context of the Ho?avaLifshitz model. We use a flat FRW universe with the bulk viscosity cosmological background fluid obeying the evolution equation of the steady truncated (Eckart) and full version of the IsraelStewart fluid, respectively.

  19. Sample dependence of giant magnetocaloric effect in a cluster-glass system Ho{sub 5}Pd{sub 2}

    SciTech Connect

    Toyoizumi, Saori Tamaki, Akira; Kitazawa, Hideaki; Mamiya, Hiroaki; Terada, Noriki; Tamura, Ryo; Dönni, Andreas; Kawamura, Yukihiko; Morita, Kengo

    2015-05-07

    In order to investigate the effect of vacancy on the magnetocaloric effect in Ho{sub 5}Pd{sub 2}, we have carried out X-ray diffraction, magnetization, and specific heat measurements in the rare-earth intermetallic compound Ho{sub 5+x}Pd{sub 2}(−0.4 ≤ x ≤ 0.4). The maximum magnetic entropy change −ΔS{sub m}{sup max}, the maximum adiabatic temperature change ΔT{sub ad}{sup max}, and the relative cooling power of Ho{sub 5+x}Pd{sub 2} take large values at x = 0−0.4 for the field change of 5 T. The paramagnetic Curie temperature θ{sub p} increases with an increase of x. This fact suggests that the enhancement of ferromagnetic coupling among the correlated spins leads to the increase of magnetocaloric effect.

  20. Energy Use Savings for a Typical New Residential Dwelling Unit Based on the 2009 and 2012 IECC as Compared to the 2006 IECC

    SciTech Connect

    Lucas, Robert G.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-01

    The 2009 and 2012 International Energy Conservation Codes (IECC) require a substantial improvement in energy efficiency compared to the 2006 IECC. This report averages the energy use savings for a typical new residential dwelling unit based on the 2009 and 2012 IECC compared to the 2006 IECC. Results are reported by the eight climate zones in the IECC and for the national average.

  1. AmeriFlux US-Ho3 Howland Forest (harvest site)

    SciTech Connect

    Hollinger, David; Hollinger, David

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ho3 Howland Forest (harvest site). Site Description - Closed conifer forest, minimal disturbance. References: Fernandez et al. (1993), Canadian Journal of Soil Science 73 317-328. Hollinger et al. (1999), Global Change Biology 5: 891-902. Savage KE, Davidson EA (2001), Global Biogeochemical Cycles 15 337-350. Scott et al. (2004), Environmental Management, Vol. 33, Supplement 1, pp. S9-S22. Hollinger et al. (2004), Global Change Biology 10: 1689-1706.

  2. AmeriFlux US-Ho1 Howland Forest (main tower)

    DOE Data Explorer

    Hollinger, David [USDA Forest Service; Hollinger, David [USDA Forest Service

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ho1 Howland Forest (main tower). Site Description - Closed conifer forest, minimal disturbance. References: Fernandez et al. (1993), Canadian Journal of Soil Science 73 317-328. Hollinger et al. (1999), Global Change Biology 5: 891-902. Savage KE, Davidson EA (2001), Global Biogeochemical Cycles 15 337-350. Scott et al. (2004), Environmental Management, Vol. 33, Supplement 1, pp. S9-S22. Hollinger et al. (2004), Global Change Biology 10: 1689-1706.

  3. AmeriFlux US-Ho2 Howland Forest (west tower)

    SciTech Connect

    Hollinger, David; Hollinger, David

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ho2 Howland Forest (west tower). Site Description - Closed conifer forest, minimal disturbance. References: Fernandez et al. (1993), Canadian Journal of Soil Science 73 317-328. Hollinger et al. (1999), Global Change Biology 5: 891-902. Savage KE, Davidson EA (2001), Global Biogeochemical Cycles 15 337-350. Scott et al. (2004), Environmental Management, Vol. 33, Supplement 1, pp. S9-S22. Hollinger et al. (2004), Global Change Biology 10: 1689-1706.

  4. Observation of large magnetocaloric effect in HoRu{sub 2}Si{sub 2}

    SciTech Connect

    Paramanik, Tapas Das, Kalipada; Das, I.

    2014-02-28

    Detailed magnetic, magnetotransport, and magnetocaloric measurements on HoRu{sub 2}Si{sub 2} have been performed. In this Letter, we report presence of spin reorientation transition below paramagnetic to antiferromagnetic transition temperature (T{sub N} = 19 K). Large magnetic entropy change 9.1 J/kg K and large negative magnetoresistance ∼21% in a magnetic field of 5 T has been observed around T{sub N}, which is associated with field induced spin-flip metamagnetic transition.

  5. Negative-parity states and {beta} decays in odd Ho and Dy nuclei with A=151,153

    SciTech Connect

    Al-Khudair, Falih H.; Long Guilu; Sun Yang

    2008-03-15

    We investigated the negative-parity states and electromagnetic transitions in {sup 151,153}Ho and {sup 151,153}Dy within the framework of the interacting boson fermion model 2 (IBFM-2). Spin assignments for some states with uncertain spin are made based on this calculation. Calculated excitation energies, electromagnetic transitions, and branching ratios are compared with available experimental data and a good agreement is obtained. The model wave functions were used to study {beta} decays from Ho to Dy isotones, and the calculated logft values are close to the experimental data.

  6. Multifamily Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Smart Colorado presentation (991.06 KB) More Documents & Publications Information ... Research Solutions Building America Whole-House Solutions for New Homes: Pulte Homes and ...

  7. Multifamily Energy Conservation Loan Program

    Energy.gov [DOE]

    NOTE: This program is only open for participants that have an existing mortgage with CT Housing Finance Authority. 

  8. Connecticut: Bridgeport Multifamily Weatherization | Department...

    Energy Saver

    the building and addressed health and safety issues, including improving indoor air quality, increasing domestic hot water temperature, ventilating the boiler room, and...

  9. Mechanical behaviors and phase transition of Ho{sub 2}O{sub 3} nanocrystals under high pressure

    SciTech Connect

    Yan, Xiaozhi; Ren, Xiangting; He, Duanwei E-mail: yangwg@hpstar.ac.cn; Chen, Bin; Yang, Wenge E-mail: yangwg@hpstar.ac.cn

    2014-07-21

    Mechanical properties and phase transition often show quite large crystal size dependent behavior, especially at nanoscale under high pressure. Here, we have investigated Ho{sub 2}O{sub 3} nanocrystals with in-situ x-ray diffraction and Raman spectroscopy under high pressure up to 33.5 GPa. When compared to the structural transition routine cubic -> monoclinic -> hexagonal phase in bulk Ho{sub 2}O{sub 3} under high pressure, the nano-sized Ho{sub 2}O{sub 3} shows a much higher onset transition pressure from cubic to monoclinic structure and followed by a pressure-induced-amorphization under compression. The detailed analysis on the Q (Q = 2π/d) dependent bulk moduli reveals the nanosized Ho{sub 2}O{sub 3} particles consist of a clear higher compressible shell and a less compressible core. Insight into these phenomena shed lights on micro-mechanism studies of the mechanical behavior and phase evolution for nanomaterials under high pressure, in general.

  10. Magnetism of Ho1-xTbxAl₂ alloys: Critical dependence of a first-order transition on Tb concentration

    DOE PAGES [OSTI]

    Khan, Mahmud; Mudryk, Ya.; Gschneidner, K. A.; Pecharsky, V. K.

    2011-12-27

    HoAl₂ exhibits a first-order spin reorientation transition at 20 K, which is manifested as a sharp peak in the heat capacity. When Ho is partially replaced by only 5% of Tb, the sharp heat-capacity peak in Ho1-xTbxAl₂ (x = 0.05) disappears, and then reappears again for x ≥ 0.07. For x = 0.05, the anomaly corresponding to the spin reorientation transition is barely seen in the heat capacity, but as x exceeds 0.07 the weak anomaly transforms to a sharp peak. The spin reorientation transition temperature increases to 29 K for x = 0.05, and as x increases further themore » transition shifts to lower temperature and returns to ~20 K for x = 0.25. The transition is no longer observed when x exceeds 0.60. Temperature-dependent x-ray powder-diffraction data confirm the first-order nature of the spin reorientation transition for the alloy with x = 0.40, and indicate that the compound retains the room-temperature cubic structure within the sensitivity of the technique. Experimental observations are discussed considering the easy magnetization directions of HoAl₂ and TbAl₂.« less

  11. Thermoelectric and Structural Characterization of Ba2Ho(Cu3-xCox)O6+y

    SciTech Connect

    Wong-Ng, W.; Li, Q.; Yang, Z.; Hu, Y.F.; Huang, Q.; Lowhorn, N.; Otani, M.; Kaduk, J.A.

    2009-03-18

    The search for thermoelectric materials for power generation and for solid-state cooling has led to increased interest of layered cobalt-containing oxides because of their thermal stability at high temperature and their desirable thermoelectric properties. This paper examines the effect of substitution of Co in the layered pervoskite Ba{sub 2}Ho(Cu{sub 3-x}Co{sub x})O{sub 6+y} (x = 0.3, 0.4, 0.5, 0.6, and 1.0). Structural analysis using the neutron Rietveld refinement technique reveals that when x {le} 0.4, Co substitutes mainly for Cu in the 'chain sites' of the Ba{sub 2}Ho(Cu{sub 3-x}Co{sub x})O{sub 6+y} structure. As x > 0.4, Co also enters in the Cu-O 'plane sites' as well. The thermoelectric properties of polycrystalline Ba{sub 2}Ho(Cu{sub 3-x}Co{sub x})O{sub 6+y} samples were studied in the temperature range of 10-390 K. In general, as the cobalt content x increases, the resistivity and Seebeck coefficient of these samples increase while the thermal conductivity decreases. Among the five Ba{sub 2}Ho(Cu{sub 3-x}Co{sub x})O{sub 6+y} compositions, the x = 0.4 member gives the highest figure of merit ZT of {approx} 0.02 at approximately 270 K.

  12. DTE Energy (Gas)- Residential Energy Efficiency Program

    Energy.gov [DOE]

    In addition to low income weatherization programs, the Multifamily Dwelling Program offers upgrades in units and common areas for buildings with 5 or more units. Common area improvements include ...

  13. South River EMC- Energy Star Homes Rebate Program

    Energy.gov [DOE]

    South River EMC offers incentives to home buyers and builders who purchase or construct Energy Star certified single-family site built homes, manufactured homes, and multi-family dwellings. Energy...

  14. Energy Conservation Loan

    Energy.gov [DOE]

    Loans for large residential properties are available through the Multi-Family Energy Conservation Loan Program. The terms of this loan are similar to loans for single-family dwellings, with a hig...

  15. Clifford Ho

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  16. Ultraviolet and white photon avalanche upconversion in Ho{sup 3+}-doped nanophase glass ceramics

    SciTech Connect

    Lahoz, F.; Martin, I.R.; Calvilla-Quintero, J.M.

    2005-01-31

    Ho{sup 3+}-doped fluoride nanophase glass ceramics have been synthesized from silica-based oxyfluoride glass. An intense white emission light is observed by the naked eye under near infrared excitation at 750 nm. This visible upconversion is due to three strong emission bands in the primary color components, red, green, and blue. Besides, ultraviolet signals are also recorded upon the same excitation wavelength. The excitation mechanism of both the ultraviolet and the visible emissions is a photon avalanche process with a relatively low pump power threshold at about 20 mW. The total upconverted emission intensity has been estimated to increase by about a factor of 20 in the glass ceramic compared to the precursor glass, in which an avalanche type mechanism is not generated.

  17. Effectiveness of solar heating and lighting in an underground concrete and glass dwelling high in the Rocky Mountains

    SciTech Connect

    Boyer, L.L. (Texas A M Univ., College Station, TX (United States). Div. of Design Technology)

    1993-01-01

    Solar heating and daylighting are two primary design features which can have a major impact on occupant perceptions of an underground living environment. A quantitative design analysis and evaluation of these features has been conducted for an energy conserving earth covered dwelling in a cold climate at high altitude in the Rocky Mountains. For this example, because of the solar contribution, a heating load reduction greater than 45 percent has been calculated and demonstrated on an operational basis, compared to the same earth sheltered construction without solar. The building envelope also has an effective time lag of several months which further increases the annual effectiveness. Also, depending on the sky conditions, the portion of exterior daylight reaching deep into the interior spaces easily exceeds 10 percent in the winter and can reach up to 50 percent or more. Thus, both heating and lighting by natural means are shown to be available in ample quantities in this cave-like structure. Pertinent design features to enhance such performance are highlighted.

  18. WEATHERIZATION PROGRAM NOTICE 16-XX EFFECTIVE DATE:

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6-XX EFFECTIVE DATE: SUBJECT: WEATHERIZATION OF RENTAL UNITS - Applicable to single family and multifamily dwellings PURPOSE: To provide Grantees with updated guidance on weatherizing rental units in the Weatherization Assistance Program (WAP). DOE has answered specific questions from Grantees related to the weatherization of rental units, whether single family building or multifamily dwellings, over a number of years. However, the responses to these questions have not been put forth in

  19. WE-A-17A-05: Differences in Applicator Configuration and Dwell Loading Between Standard and Image-Guided Tandem and Ring (T and R) HDR Brachytherapy

    SciTech Connect

    Damato, A; Cormack, R; Bhagwat, M; Buzurovic, I; Lee, L; Viswanathan, A

    2014-06-15

    Purpose: To investigate differences in: (i) relative location of the tandem and the ring compared to a rigid standard applicator model; and (ii) relative loading and changes in loading pattern between standard and image-guided planning. Methods: All T and R insertions performed in 2013 in our institution under CT- or MR-guidance were analyzed. Standard plans were generated using library applicator models with a fixed relationship between ring and tandem, standardized uniform dwell loading and normalization to point A. The graphic plans and the associated standard-plan dwell configurations were compared: the rings were rigidly registered, and the residual tandem shift, rotation and maximum distance between plan tandem dwell and corresponding model tandem dwell were calculated. The normalization ratio (NR = the ratio of graphic versus standard-plan total reference air kerma [TRAK]), the general loading difference (GLD = the difference between graphic and standard ratios of the tandem versus the ring TRAK), and the percent standard deviation (SD% = SD/mean) of the tandem and the ring TRAK for the graphic plan (all standard-plans SD% = 0) were calculated. Results: 71 T and R were analyzed. Residual tandem shift, rotation and maximum corresponding dwell distance were 1.2±0.8mm (0.4±0.4mm lateral, 0.9±0.8mm craniocaudal, 0.4±0.3mm anterior-posterior), 2.3±1.9deg and 3.4±2.3mm. NR was 0.86±0.11 indicating a lower overall loading of the graphic compared to the standard plans. GLD was -0.12±0.16 indicating a modest increased ring loading relative to the tandem in the graphic plans. SD% was 2.1±1.6% for tandem and 2.8±1.9% for ring, indicating small deviations from uniform loading. Conclusion: Variability in the relative locations of the tandem and the ring necessitates the independent registration of each component model for accurate digitization. Our clinical experience suggests that graphically planned T and R results on average in a lower total dose to the

  20. Spin structure and magnetic frustration in multiferroic RMn{sub 2}O{sub 5} (R=Tb,Ho,Dy)

    SciTech Connect

    Blake, G.R.; Chapon, L.C.; Radaelli, P.G.; Park, S.; Hur, N.; Cheong, S-W.; Rodriguez-Carvajal, J.

    2005-06-01

    We have studied the crystal and magnetic structures of the magnetoelectric materials RMn{sub 2}O{sub 5} (R=Tb,Ho,Dy) using neutron diffraction as a function of temperature. All three materials display incommensurate antiferromagnetic ordering below 40 K, becoming commensurate on further cooling. For R=Tb,Ho, a commensurate-incommensurate transition takes place at low temperatures. The commensurate magnetic structures have been solved and are discussed in terms of competing exchange interactions. The spin configuration within the ab plane is essentially the same for each system, and the radius of R determines the sign of the magnetic exchange between adjacent planes. The inherent magnetic frustration in these materials is lifted by a small lattice distortion, primarily involving shifts of the Mn{sup 3+} cations and giving rise to a canted antiferroelectric phase.

  1. Disorder from order among anisotropic next-nearest-neighbor Ising spin chains in SrHo2O4

    DOE PAGES [OSTI]

    Wen, J. -J.; Tian, W.; Garlea, V. O.; Koohpayeh, S. M.; McQueen, T. M.; Li, H. -F.; Yan, J. -Q.; Rodriguez-Rivera, J. A.; Vaknin, D.; Broholm, C. L.

    2015-02-26

    In this study, we describe why Ising spin chains with competing interactions in SrHo2O4 segregate into ordered and disordered ensembles at low temperatures (T). Using elastic neutron scattering, magnetization, and specific heat measurements, the two distinct spin chains are inferred to have Néel (↑↓↑↓) and double-Néel (↑↑↓↓) ground states, respectively. Below TN = 0.68(2)K, the Néel chains develop three-dimensional long range order (LRO), which arrests further thermal equilibration of the double-Néel chains so they remain in a disordered incommensurate state for T below TS = 0.52(2)K. SrHo2O4 distills an important feature of incommensurate low dimensional magnetism: kinetically trapped topological defectsmore » in a quasi–d–dimensional spin system can preclude order in d + 1 dimensions.« less

  2. Balancing structural distortions via competing 4f and itinerant interactions: A case of polymorphism in magnetocaloric HoCo2

    DOE PAGES [OSTI]

    Mudryk, Y.; Paudyal, D.; Pathak, A. K.; Pecharsky, V. K.; Gschneidner, Jr., K. A.

    2016-04-13

    The nature of multiple magnetostructural transformations in HoCo2 has been studied by employing magnetic and specific heat measurements, temperature and magnetic field dependent X-ray powder diffraction, and first-principles calculations. Unexpected increase of magnetization observed below the spin-reorientation temperature (TSR) suggests that the low-temperature transition involves a reduction of Co moment. First principles calculations confirm that the paramagnetic cubic to ferrimagnetic tetragonal transformation at TC is assisted by itinerant electron metamagnetism, and that the reduction of Co moment in HoCo2 occurs in parallel with the ferrimagnetic tetragonal to the nearly ferromagnetic orthorhombic transformation at TSRvia the rearrangement of both 3d statesmore » of Co and 5d states of Ho. The ac magnetic susceptibility measurements show significant magnetic frustration below TC. Furthermore, in contrast to earlier reports neither ac nor dc magnetic susceptibilities show anomalies in the paramagnetic region obeying the Curie–Weiss law.« less

  3. Ferromagnetic and paramagnetic magnetization of implanted GaN:Ho,Tb,Sm,Tm films

    SciTech Connect

    Maryško, M. Hejtmánek, J.; Laguta, V.; Sofer, Z.; Sedmidubský, D.; Šimek, P.; Veselý, M.; Mikulics, M.; Buchal, C.; Macková, A.; Malínský, P.; Wilhelm, R. A.

    2015-05-07

    The SQUID magnetic measurements were performed on the GaN films prepared by metal-organic vapour phase epitaxy and implanted by Tb{sup 3+}, Tm{sup 3+}, Sm{sup 3+}, and Ho{sup 3+} ions. The sapphire substrate was checked by the electron paramagnetic resonance method which showed a content of Cr{sup 3+} and Fe{sup 3+} impurities. The samples 5 × 5 mm{sup 2} were positioned in the classical straws and within an estimated accuracy of 10{sup −6 }emu, no ferromagnetic moment was detected in the temperature region of 2–300 K. The paramagnetic magnetization was studied for parallel and perpendicular orientation. In the case of GaN:Tb sample, at T = 2 K, a pronounced anisotropy with the easy axis perpendicular to the film was observed which can be explained by the lowest quasi-doublet state of the non-Kramers Tb{sup 3+} ion. The Weiss temperature deduced from the susceptibility data using the Curie-Weiss (C-W) law was found to depend substantially on the magnetic field.

  4. Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential BuildingsŽ

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings" and 10 CFR Part 435 "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings" (DOE/EA-1778) 2 SUMMARY The U.S.

  5. Electronic structure and 3d-4f exchange interactions in zircon-type RCrO{sub 4} oxides (R=Dy, Ho and Gd)

    SciTech Connect

    Ray, Avijeet Maitra, Tulika

    2015-06-24

    Using first principles density functional theory (DFT) calculations within GGA and GGA+U approximations we studied both ferromagnetic (FM) and antiferromagnetic (AFM) phases of zircon type RCrO{sub 4} (R= Dy, Ho, Gd) oxides. We estimated and compared the 3d-4f exchange interaction strengths J between the nearest neighbor R{sup 3+} and Cr{sup 5+} ions for R=Dy, Gd. Our results predict that DyCrO{sub 4}, GdCrO{sub 4} and HoCrO{sub 4} have ferromagnetic ground state which is consistent with experimental observations.

  6. Compositional investigation of ∼2 μm luminescence of Ho{sup 3+}-doped lead silicate glass

    SciTech Connect

    Liu, Xueqiang; Huang, Feifei; Gao, Song; Wang, Xin; Hu, Lili; Chen, Danping

    2015-11-15

    Graphical abstract: Ho{sup 3+}-doped lead silicate glass with lowest maximum phonon energy possesses highest ∼2 μm luminescence intensity. - Highlights: • With increment of lead oxide, maximum phonon energy in lead silicate glass decreased. • ∼2 μm luminescent intensity of Ho{sup 3+} increased with increment of lead oxide. • Lowest lead oxide content glass possesses highest quantum efficiency due to low maximum phonon energy. - Abstract: Lead silicate glass samples with varying lead oxide content were prepared in this study, and their luminescent properties were examined and analyzed. It was found that with increasing lead oxide content, the maximum phonon energies of the glass samples decreased, while their spontaneous transition probabilities first increased and then decreased. The influence of the spontaneous transition rate, A{sub 10}, and the multi-phonon relaxation rate, W{sub 10}, on the sample luminescent properties was analyzed using rate equations. As a result, it was found that with increasing lead oxide content, W{sub 10}/A{sub 10} decreased, while the quantum efficiency increased. Thus, the luminescent intensity at ∼2 μm increased in the glass samples with increased lead oxide content. The high luminescent intensity and long lifetime indicate that silicate glasses containing high levels of lead oxide could potentially be used in ∼2 μm lasers.

  7. Fragile singlet ground-state magnetism in the pyrochlore osmates R2Os2O7 ( R=Y and Ho)

    DOE PAGES [OSTI]

    Zhao, Z. Y.; Calder, S.; Aczel, A. A.; McGuire, M. A.; Sales, B. C.; Mandrus, D. G.; Chen, G.; Trivedi, N.; Zhou, H. D.; Yan, J. -Q.

    2016-04-25

    The singlet ground state magnetism in pyrochlore osmates Y2Os2O7 and Ho2Os2O7 is studied by DC and AC susceptibility, specific heat, and neutron powder di raction measurements. Despite the expected non-magnetic singlet in the strong spin-orbit coupling (SOC) limit for Os4+ (5d4), Y2Os2O7 exhibits a spin-glass (SG) ground state below 4 K with weak magnetism, suggesting possible proximity to a quantum phase transition between the non-magnetic state in the strong SOC limit and the magnetic state in the strong superexchange limit. Ho2Os2O7 has the same structural distortion as occurs in Y2Os2O7. However, the Os sublattice in Ho2Os2O7 shows long- range magneticmore » ordering below 36 K. We find that the sharp difference of the magnetic ground state between Y2Os2O7 and Ho2Os2O7 signals the singlet ground state magnetism in R2 Os2 O7 is fragile and can be disturbed by the weak 4f—5d interactions.« less

  8. Time-Resolved Quantitative Measurement of OH HO2 and CH2O in Fuel Oxidation Reactions by High Resolution IR Absorption Spectroscopy.

    SciTech Connect

    Huang, Haifeng; Rotavera, Brandon; Taatjes, Craig A.

    2014-08-01

    Combined with a Herriott-type multi-pass slow flow reactor, high-resolution differential direct absorption spectroscopy has been used to probe, in situ and quantitatively, hydroxyl (OH), hydroperoxy (HO 2 ) and formaldehyde (CH 2 O) molecules in fuel oxidation reactions in the reactor, with a time resolution of about 1 micro-second. While OH and CH 2 O are probed in the mid-infrared (MIR) region near 2870nm and 3574nm respectively, HO 2 can be probed in both regions: near-infrared (NIR) at 1509nm and MIR at 2870nm. Typical sensitivities are on the order of 10 10 - 10 11 molecule cm -3 for OH at 2870nm, 10 11 molecule cm -3 for HO 2 at 1509nm, and 10 11 molecule cm -3 for CH 2 O at 3574nm. Measurements of multiple important intermediates (OH and HO 2 ) and product (CH 2 O) facilitate to understand and further validate chemical mechanisms of fuel oxidation chemistry.

  9. Structure, upconversion photoluminescence, and dielectric properties of Ho{sup 3+}- and Yb{sup 3+}-codoped tetragonal tungsten bronze Sr{sub 4}La{sub 2}Ti{sub 4}Nb{sub 6}O{sub 30}

    SciTech Connect

    Wei, T.; Li, C.P.; Zhou, Q.J.; Li, Z.P.; Li, P.; Wu, J.; Yang, X.F.

    2015-04-15

    Highlights: • TTB-type SLTN: Ho-Ybx with space group P4/mbm was determined. • UC photoluminescence of SLTN: Ho-Ybx ceramics was first reported. • Bright UC green emission was observed at room temperature. • Two-photon energy transfer process was confirmed for the UC processes. • Temperature stability of dielectric permittivity was improved for SLTN: Ho-Ybx. - Abstract: Ho{sup 3+}- and Yb{sup 3+}-codoped Sr{sub 4}La{sub 2}Ti{sub 4}Nb{sub 6}O{sub 30} (Sr{sub 4}La{sub 1.94–x}Ho{sub 0.06}Yb{sub x}Ti{sub 4}Nb{sub 6}O{sub 30}, abbreviated as SLTN: Ho-Ybx) ceramics have been synthesized, and their structural, up-conversion (UC) photoluminescence, and dielectric properties have been carefully investigated. Through Rietveld structural refinement, SLTN: Ho-Ybx samples are determined as single tetragonal tungsten bronze (TTB) phase with space group P4/mbm in which larger Sr{sup 2+} ions fill the A{sub 2}-sites, relative smaller La{sup 3+}, Ho{sup 3+}, and Yb{sup 3+} ions occupy the A{sub 1}-sites, while Ti{sup 4+} and Nb{sup 4+} ions fill the B-sites. Under 980 nm near infrared (NIR) excitation, bright UC green emission, relatively weak red and near-infrared (NIR) emissions, originating from {sup 5}F{sub 4}/{sup 5}S{sub 2} → {sup 5}I{sub 8}, {sup 5}F{sub 5} → {sup 5}I{sub 8}, and {sup 5}F{sub 4}/{sup 5}S{sub 2} → {sup 5}I{sub 7} transitions of Ho{sup 3+} ions, are confirmed for SLTN: Ho-Ybx. Two-photon energy transfer process is proved through pumping laser power dependence of emission intensity measurement. Furthermore, the influence of Ho{sup 3+}- and Yb{sup 3+}- ions on the dielectric properties of SLTN: Ho-Ybx is also investigated and the temperature stability of dielectric permittivity is improved.

  10. Monitoring of HPWH for Multifamily Applications

    Energy.gov [DOE]

    This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

  11. Identifying Needed Capabilities in Multifamily Models

    Energy.gov [DOE]

    This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

  12. Retrofit Ventilation Strategies in Multifamily Buildings Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... air impermeable material Vapor permeability: 0.8 perms at 2" thickness Water ... Hybrid Foundation Retrofits 25 Air Gap Membrane Variant Spray foam sufficiently ...

  13. HUD Multifamily Property Listings Eligible for Weatherization...

    Energy.gov [DOE] (indexed site)

    ... of the residents of the building (50% for 2-4 unit buildings) must meet DOE's income eligibility requirement, which is currently set at 200% of the federal poverty level. ...

  14. Retrofit Incentives for Multifamily Buildings | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Note that each DOE Weatherization grantee - state, tribe or territory - administers Weatherization based on the unique characteristics and priorities of their service territory. If ...

  15. Better Buildings Residential Network Multifamily/ Low Income...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Summary January 9, 2014 Agenda Call Logistics and Introductions Featured ... Learned: Faith Graham, MPower Oregon Green For All's MPower Toolkit Describes the ...

  16. Quantifying the Financial Benefits of Multifamily Retrofits

    SciTech Connect

    D. Philbrick; Scheu, R.; Brand, L.

    2016-01-01

    The U.S. Department of Energy’s Building America research team Partnership for Advanced Residential Retrofit analyzed building, energy, and financial program data as well as other public and private data to examine the relationship between energy-efficiency retrofits and financial performance on three levels: building, city, and community.

  17. 3d-4f spin interaction and field-induced metamagnetism in RCrO{sub 4} (R?=?Ho, Gd, Lu) compounds

    SciTech Connect

    Midya, A.; Khan, N.; Bhoi, D.; Mandal, P.

    2014-05-07

    We observe that the zircon-type RCrO{sub 4} (R?=?Ho, Gd, Lu) compounds exhibit complicated magnetic properties and large magnetic entropy change due to the strong competition between ferromagnetic and antiferromagnetic interactions. For a field change of 7?T, the maximum values of entropy change and refrigerant capacity reach 28?J?kg{sup ?1}?K{sup ?1} and 740?J?kg{sup ?1}, respectively, for GdCrO{sub 4} whereas the corresponding values for HoCrO{sub 4} are 29?J?kg{sup ?1}?K{sup ?1} and 550?J?kg{sup ?1}. For GdCrO{sub 4} compound, the magnetic entropy change is quite large even at low temperatures well below the ferromagnetic transition.

  18. Disorder from order among anisotropic next-nearest-neighbor Ising spin chains in SrHo2O4

    SciTech Connect

    Wen, J. -J.; Tian, W.; Garlea, V. O.; Koohpayeh, S. M.; McQueen, T. M.; Li, H. -F.; Yan, J. -Q.; Rodriguez-Rivera, J. A.; Vaknin, D.; Broholm, C. L.

    2015-02-26

    In this study, we describe why Ising spin chains with competing interactions in SrHo2O4 segregate into ordered and disordered ensembles at low temperatures (T). Using elastic neutron scattering, magnetization, and specific heat measurements, the two distinct spin chains are inferred to have Nel (????) and double-Nel (????) ground states, respectively. Below TN = 0.68(2)K, the Nel chains develop three-dimensional long range order (LRO), which arrests further thermal equilibration of the double-Nel chains so they remain in a disordered incommensurate state for T below TS = 0.52(2)K. SrHo2O4 distills an important feature of incommensurate low dimensional magnetism: kinetically trapped topological defects in a quasiddimensional spin system can preclude order in d + 1 dimensions.

  19. The fluorite-pyrochlore transformation of Ho{sub 2-y}Nd{sub y}Zr{sub 2}O{sub 7}

    SciTech Connect

    Clements, Richard; Hester, James R.; Kennedy, Brendan J.; Ling, Chris D.; Stampfl, Anton P.J.

    2011-08-15

    Twelve members of the Ho{sub 2-y}Nd{sub y}Zr{sub 2}O{sub 7} series, prepared using conventional solid state methods, have been characterised by neutron powder diffraction. Ho{sub 2}Zr{sub 2}O{sub 7} has a defect fluorite structure whereas Nd{sub 2}Zr{sub 2}O{sub 7} is found to adopt the ordered pyrochlore structure with the composition induced fluorite-pyrochlore transformation occurring near y=1. Rietveld analysis on the neutron data for all the compositions reveals an increase in lattice parameter as a function of y across the entire series, with a small discontinuity associated with the transformation. The neutron profile results suggest that domains of pyrochlore-type initially begin to form before crystallising into a separate phase, and therefore that anion and cation ordering processes are distinct. There is a strong correlation between the extent of disorder in the anion sublattice and the x-parameter of 48f oxygen. These results point the way to a better understanding of the stability observed in pyrochlore structures. - Graphical abstract: Neutron diffraction profiles for Nd{sub 2-y}Ho{sub y}Zr{sub 2}O{sub 7} type oxides reveal details of the transformation from the ordered pyrochlore structure (y=0) to the disordered fluorite structure (y=2). Highlights: > Structures of twelve members of the Ho{sub 2-y}Nd{sub y}Zr{sub 2}O{sub 7} series studied using neutron powder diffraction. > Domains of pyrochlore-type materials form at low doping levels. > Higher doping stabilises the pyrochlore. > Anion and cation ordering processes are distinct.

  20. Low temperature (550-700 K) oxidation pathways of cyclic ketones: Dominance of HO2-elimination channels yielding conjugated cyclic coproducts

    DOE PAGES [OSTI]

    Scheer, Adam M.; Welz, Oliver; Vasu, Subith S.; Osborn, David L.; Taatjes, Craig A.

    2015-04-13

    The low-temperature oxidation of three cyclic ketones, cyclopentanone (CPO; C5H8O), cyclohexanone (CHO; C6H10 O), and 2-methyl-cyclopentanone (2-Me-CPO; CH3–C5H7 O), is studied between 550 and 700 K and at 4 or 8 Torr total pressure. Initial fuel radicals R are formedvia fast H-abstraction from the ketones by laser-photolytically generated chlorine atoms. Intermediates and products from the subsequent reactions of these radicals in the presence of excess O2 are probed with time and isomeric resolution using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. For CPO and CHO the dominant product channel in the R + O2 reactions is chain-terminating HO2-eliminationmore » yielding the conjugated cyclic coproducts 2-cyclopentenone and 2-cyclohexenone, respectively. Results on oxidation of 2-Me-CPO also show a dominant contribution from HO2-elimination. Moreover, the photoionization spectrum of the co-product suggests formation of 2-methyl-2-cyclopentenone and/or 2-cyclohexenone, resulting from a rapid Dowd–Beckwith rearrangement, preceding addition to O2, of the initial (2-oxocyclopentyl)methyl radical to 3-oxocyclohexyl. Cyclic ethers, markers for hydroperoxyalkyl radicals (QOOH), key intermediates in chain-propagating and chain-branching low-temperature combustion pathways, are only minor products. The interpretation of the experimental results is supported by stationary point calculations on the potential energy surfaces of the associated R + O2 reactions at the CBS-QB3 level. Furthermore, the calculations indicate that HO2-elimination channels are energetically favored and product formation via QOOH is disfavored. Lastly, the prominence of chain-terminating pathways linked with HO2 formation in low-temperature oxidation of cyclic ketones suggests little low-temperature reactivity of these species as fuels in internal combustion engines.« less

  1. Measurements and modeling of HO2 formation in the reactions of n-C3H7 and i-C3H7 radicals with O2.

    SciTech Connect

    Taatjes, Craig A.; Estupinan, Edgar Garcia; Klippenstein, Stephen J.

    2004-08-01

    The formation of HO{sub 2} in the reactions of C{sub 2}H{sub 5}, n-C{sub 3}H{sub 7}, and i-C{sub 3}H{sub 7} radicals with O{sub 2} is investigated using the technique of laser photolysis/long-path frequency-modulation spectroscopy. The alkyl radicals are formed by 266 nm photolysis of alkyl iodides. The formation of HO{sub 2} from the subsequent reaction of the alkyl radicals with O{sub 2} is followed by infrared frequency-modulation spectroscopy. The concentration of I atoms is simultaneously monitored by direct absorption of a second laser probe on the spin?orbit transition. The measured profiles are compared to a kinetic model taken from time-resolved master-equation results based on previously published ab initio characterizations of the relevant stationary points on the potential-energy surface. The ab initio energies are adjusted to produce agreement with the present experimental data and with available literature studies. The isomer specificity of the present results enables refinement of the model for i-C{sub 3}H{sub 7} + O{sub 2} and improved agreement with experimental measurements of HO{sub 2} production in propane oxidation.

  2. Lasing characteristics of ZrO{sub 2}Y{sub 2}O{sub 3}Ho{sub 2}O{sub 3} crystal

    SciTech Connect

    Borik, M A; Lomonova, E E; Kulebyakin, A V; Ushakov, S N; Lyapin, A A; Ryabochkina, P A; Chabushkin, A N

    2013-09-30

    The spectral dependences of the gain cross section of the {sup 5}I{sub 8} ? {sup 5}I{sub 7}, {sup 5}I{sub 7} ? {sup 5}I{sub 8} transition of Ho{sup 3+} ions in the ZrO{sub 2} 13.6 mol % Y{sub 2}O{sub 3} 0.4 mol % Ho{sub 2}O{sub 3} crystal are calculated at different relative population inversions using the absorption and luminescence spectra of the {sup 5}I{sub 8} ? {sup 5}I{sub 7} and {sup 5}I{sub 7} ? {sup 5}I{sub 8} transitions of Ho{sup 3+} ions at T=''300'' K. Lasing of these crystals at the {sup 5}I{sub 7} ? {sup 5}I{sub 8} transition is obtained for the first time under pumping by a Tm : YLiF{sub 4} laser (?{sub p} = 1.905 ?m). The lasing wavelength is 2.17 ?m. (lasers)

  3. Photoluminescence properties of Ho{sup 3+} ion in lithium-fluoroborate glass containing different modifier oxides

    SciTech Connect

    Balakrishna, A. Rajesh, D. Ratnakaram, Y. C.

    2014-04-24

    Trivalent holmium (0.5 mol%) doped lithium fluoro-borate glasses with the chemical compositions 49.5Li{sub 2}B{sub 4}O{sub 7−}20BaF{sub 2−}10NaF−20MO (where M=Mg, Ca, Cd and Pb), 49.5Li{sub 2}B{sub 4}O{sub 7−}20BaF{sub 2−}10NaF−10MgO−10CaO and 49.5Li{sub 2}B{sub 4}O{sub 7−}20BaF{sub 2−}10NaF−10CdO−10PbO were synthesized and investigated their photoluminescence properties. The variation in chemical composition by varying modifier oxides causes changes in the structural spectroscopic behavior of Ho{sup 3+} ions. These changes are examined by UV-VIS- NIR and luminescence spectroscopic techniques. The visible luminescence spectra were obtained by exciting samples at 409 nm radiation.

  4. Low temperature (550-700 K) oxidation pathways of cyclic ketones: Dominance of HO2-elimination channels yielding conjugated cyclic coproducts

    SciTech Connect

    Scheer, Adam M.; Welz, Oliver; Vasu, Subith S.; Osborn, David L.; Taatjes, Craig A.

    2015-04-13

    The low-temperature oxidation of three cyclic ketones, cyclopentanone (CPO; C5H8O), cyclohexanone (CHO; C6H10 O), and 2-methyl-cyclopentanone (2-Me-CPO; CH3–C5H7 O), is studied between 550 and 700 K and at 4 or 8 Torr total pressure. Initial fuel radicals R are formedvia fast H-abstraction from the ketones by laser-photolytically generated chlorine atoms. Intermediates and products from the subsequent reactions of these radicals in the presence of excess O2 are probed with time and isomeric resolution using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. For CPO and CHO the dominant product channel in the R + O2 reactions is chain-terminating HO2-elimination yielding the conjugated cyclic coproducts 2-cyclopentenone and 2-cyclohexenone, respectively. Results on oxidation of 2-Me-CPO also show a dominant contribution from HO2-elimination. Moreover, the photoionization spectrum of the co-product suggests formation of 2-methyl-2-cyclopentenone and/or 2-cyclohexenone, resulting from a rapid Dowd–Beckwith rearrangement, preceding addition to O2, of the initial (2-oxocyclopentyl)methyl radical to 3-oxocyclohexyl. Cyclic ethers, markers for hydroperoxyalkyl radicals (QOOH), key intermediates in chain-propagating and chain-branching low-temperature combustion pathways, are only minor products. The interpretation of the experimental results is supported by stationary point calculations on the potential energy surfaces of the associated R + O2 reactions at the CBS-QB3 level. Furthermore, the calculations indicate that HO2-elimination channels are energetically favored and product formation via QOOH is disfavored. Lastly, the prominence of chain-terminating pathways linked with HO2 formation in low-temperature oxidation of cyclic ketones suggests little low

  5. EA-1871: Environmental Assessment for Final Rule, 10 CFR 433, “EE Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings” and 10 CFR 435, “EE Standards for New Federal Residential Low-Rise Residential Buildings"

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE‘s Final Rule, 10 CFR 433, ―Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings‖ and 10 CFR 435, ―Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings‖ Baseline Standards Update. The final rule updates the baseline standards in 10 CFR 433 and 10 CFR 435 to the latest private sector standards based on the cost-effectiveness of the latest private sector standards and DOE‘s determination that energy efficiency has been improved in these codes as required by 42 U.S.C 6831 et seq. DOE is issuing its final determinations on American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 (ASHRAE 2007) and the International Code Council‘s 2009 International Energy Conservation Code (IECC) in the same edition of the Federal Register as this final rule.

  6. Reaction of HO{sub 2} with ClO: Flow tube studies of kinetics and product formation between 215 and 298 K

    SciTech Connect

    Knight, G.P.; Beiderhase, T.; Helleis, F.; Moortgat, G.K.; Crowley, J.N.

    2000-03-02

    Rate coefficients for the reaction between HO{sub 2} and ClO radicals were obtained using the discharge-flow/mass-spectrometry technique at total pressures of 1.1--1.7 Torr of He, and between 298 and 215 K. The room-temperature rate constant, determined using seven different combinations of HO{sub 2} and ClO precursors, was found to be (7.1 {+-} 1.8) x 10{sup {minus}12}({+-}2{sigma})cm{sup 3}s{sup {minus}1}. The temperature-dependent overall reaction rate coefficient is described by k{sub (3)} (298--215 K) = (7.1 {+-} 0.4) x 10{sup {minus}12} exp({minus}16 {+-} 17/T) cm{sub 3}s{sup {minus}1}. The previous observation of a strong negative temperature dependence in the title reaction below 298 K was not observed, resulting in a significantly lower rate coefficient at stratospheric temperatures. HOCl was the only product of the reaction, and an upper limit of 1% for the branching ratio for the formation of O{sub 3} and HCl was obtained at the low pressures of these experiments.

  7. Disorder from order among anisotropic next-nearest-neighbor Ising spin chains in SrHo2O4

    SciTech Connect

    Wen, J. -J.; Tian, W.; Garlea, V. O.; Koohpayeh, S. M.; McQueen, T. M.; Li, H. -F.; Yan, J. -Q.; Rodriguez-Rivera, J. A.; Vaknin, D.; Broholm, C. L.

    2015-02-26

    In this study, we describe why Ising spin chains with competing interactions in SrHo2O4 segregate into ordered and disordered ensembles at low temperatures (T). Using elastic neutron scattering, magnetization, and specific heat measurements, the two distinct spin chains are inferred to have Néel (↑↓↑↓) and double-Néel (↑↑↓↓) ground states, respectively. Below TN = 0.68(2)K, the Néel chains develop three-dimensional long range order (LRO), which arrests further thermal equilibration of the double-Néel chains so they remain in a disordered incommensurate state for T below TS = 0.52(2)K. SrHo2O4 distills an important feature of incommensurate low dimensional magnetism: kinetically trapped topological defects in a quasi–d–dimensional spin system can preclude order in d + 1 dimensions.

  8. Overcoming phase instability of RBaCo2O5+ (R = Y and Ho) by Sr substitution for application as cathodes in solid oxide fuel cells

    SciTech Connect

    Kim, Jung-Hyun; Young Nam, Kim; Bi, Zhonghe; Manthiram, Arumugam; Paranthaman, Mariappan Parans; Huq, Ashfia

    2013-01-01

    Phase instabilities of the RBaCo2O5+ (R = Y and Ho) layered-perovskites and their decompositions into RCoO3 and BaCoO3-z at 800 oC in air were investigated. This will restrict their high temperature applications such as cathodes in solid oxide fuel cell (SOFC). However, appropriate amount of Sr substitution ( 60 % for R = Y and 70 % for R = Ho) for Ba successfully stabilized the R(Ba1-xSrx)Co2O5+ phase at elevated temperatures. This can be explained by decreasing oxygen vacancies at R-O layer, decreasing R-O bonding length, and consequent improvement of structural integrity. In addition, the Sr substitution (x = 0.6 - 1.0) for Ba provided added benefit with respect to the chemical stability against Ce0.8Gd0.2O1.9 (GDC) electrolyte, which is a critical requirement for the cathodes in SOFC. Among the various compositions investigated, the Y(Ba0.3Sr0.7)Co2O5+ + GDC composite cathode delivered the optimum electrochemical performances with a stable phase demonstrating the potential as a cathode in SOFC.

  9. Building America Case Study: Low-Load Space-Conditioning Needs Assessment, Northeast and Mid-Atlantic (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Low-Load Space-Conditioning Needs Assessment Northeast and Mid-Atlantic PROJECT INFORMATION Construction: New Type: Multifamily apartments, attached single-family dwellings Consortium for Advanced Residential Buildings, carb-swa.com Building Component: Space conditioning Size: 209 ft 2 -2,895 ft 2 Climate Zones: Cold, mixed-humid DATABASE ATTRIBUTES * Dwelling unit characteristics: Location, floor level, position, square footage, volume, total and exposed enclosure area, window-to-wall ratio,

  10. Synthesis, properties and phase transitions of pyrochlore- and fluorite-like Ln{sub 2}RMO{sub 7} (Ln = Sm, Ho; R = Lu, Sc; M = Nb, Ta)

    SciTech Connect

    Shlyakhtina, A.V.; Belov, D.A.; Pigalskiy, K.S.; Shchegolikhin, A.N.; Kolbanev, I.V.; Karyagina, O.K.

    2014-01-01

    Graphical abstract: Temperature dependences of bulk conductivity for Sm{sub 2}ScTaO{sub 7} pyrochlore prepared at (1) 1400 °C, 20 h; and (2) 1200 °C, 40 h. - Highlights: • The phase formation of Ln{sub 2}RMO{sub 7} (Ln = Sm, Ho; R = Lu, Sc; M = Nb, Ta) at 1200–1600 °C. • The bulk conductivity and magnetic susceptibility were measured. • The bulk conductivity of Sm{sub 2}ScTaO{sub 7} has oxygen ion type at T ≥ 750 °C. • The first-order structural phase transition was observed in Sm{sub 2}ScTaO{sub 7} at ∼650–700 °C. • This phase transformation is not typical for defect fluorites. - Abstract: We have studied the new compounds with fluorite-like (Ho{sub 2}RNbO{sub 7} (R = Lu, Sc)) and pyrochlore-like (Sm{sub 2}ScTaO{sub 7}) structure as potential oxide ion conductors. The phase formation process (from 1200 to 1600 °C) and physical properties (electrical, thermo mechanical, and magnetic) for these compounds were investigated. Among the niobate materials the highest bulk conductivity is offered by the fluorite-like Ho{sub 2}ScNbO{sub 7} synthesized at 1600 °C: 3.8 × 10{sup −5} S/cm at 750 °C, whereas in Sm system the highest bulk conductivity, 7.3 × 10{sup −6} S/cm at 750 °C, is offered by the pyrochlore Sm{sub 2}ScTaO{sub 7} synthesized at 1400 °C. In Sm{sub 2}ScTaO{sub 7} pyrochlore we have observed the first-order phase transformation at ∼650–700 °C is related to rearrangement process in the oxygen sublattice of the pyrochlore structure containing B-site cations in different valence state and actually is absent in the defect fluorites. The two holmium niobates show Curie–Weiss paramagnetic behavior, with the prevalence of antiferromagnetic coupling. The magnetic susceptibility of Sm{sub 2}ScTaO{sub 7} is a weak function of temperature, corresponding to Van Vleck paramagnetism.

  11. Experimental and theoretical rate constants for CH{sub 4} + O{sub 2} {yields} CH{sub 3} + HO{sub 2}

    SciTech Connect

    Srinivasan, N.K.; Michael, J.V.; Harding, L.B.; Klippenstein, S.J.

    2007-04-15

    In this study, rate constants for the primary initiation process in low to moderate temperature CH{sub 4} oxidation CH{sub 4} + O{sub 2} {yields} CH{sub 3} + HO{sub 2} have been measured in a reflected shock tube apparatus between 1655 and 1822 K using multipass absorption spectrometric detection of OH radicals at 308 nm. After rapid dissociation of HO{sub 2} yielding H atoms, which are instantaneously converted to OH by H + O{sub 2} {yields} OH + O, the temporal concentration of OH radicals was observed as the final product from the rate-controlling title reaction. The present work utilizes 18 optical passes corresponding to a total path length of 1.6 m. This configuration gives a signal to noise ratio of unity at {proportional_to}3 x 10{sup 12} radicals cm{sup -3}. Hence, kinetics experiments could be performed at conditions of low [CH{sub 4}]{sub 0} (60-70 ppm), thereby substantially reducing secondary chemistry. Possible implications of CH{sub 4} dissociation contributing to the OH formation rates were considered. The present experimental results agree with a priori variational transition state theoretical (VTST) calculations, k{sub th}=3.37 x 10{sup -19}T{sup 2.745} exp (-26,041K/T)cm{sup 3}molecule{sup -1} s{sup -1}, clearly showing overlap of experiment and theory, within experimental error. The new rate constant values obtained in this study are 8-10 times higher than the values used in the popular mechanisms GRI-Mech 3.0 and Leeds Methane Mechanism, version 1.5. (author)

  12. Keys to success: Ten case studies of effective weatherization programs

    SciTech Connect

    Brown, M.A.; Berry, L.G.; Kolb, J.O.; White, D.L.; Kinney, L.F.; Wilson, T.

    1993-11-01

    In 1990, DOE initiated a nationwide evaluation of its Weatherization Program, with assistance from Oak Ridge National Laboratory and an advisory group of 40 weatherization professionals, program managers, and researchers. The evaluation is comprised of three impact studies covering the Program`s major market segments: Single-family homes, mobile homes, and dwellings in small (2 to 4-unit) multifamily buildings (the Single-Family Study), Single-family homes heated primarily with fuel oil (the Fuel-Oil Study), and Dwellings in buildings with five or more units (the Multifamily Study). The Single-Family Study, the subject of this report, is a critical part of this coordinated evaluation effort. Its focus on single-family dwellings, mobile homes, and dwellings in small multifamily buildings covers 83% of the income-eligible population and 96% of the dwellings weatherized during Program Year 1989. The first phase of the Single-Family Study involved the analysis of a massive data base of information collected from 368 local weatherization agencies and 543 electric and gas utilities. This analysis resulted in energy-saving and cost-effectiveness estimates for the Weatherization Program and the identification of a set of ten high-performing agencies located throughout the country. The second phase, which is the subject of this report, involves a ``process`` evaluation of these ten high performers, aimed at identifying those weatherization practices that explain their documented success.

  13. Composition-dependent structural and Raman spectroscopic studies on Y{sub 1-x}Ho{sub x}CrO{sub 3} (0≤x≤0.1)

    SciTech Connect

    Mall, Ashish Kumar; Garg, Ashish; Gupta, Rajeev

    2015-06-24

    In this paper we report the synthesis and structural characterization of polycrystalline holmium doped YCrO{sub 3} samples prepared by solid state reaction method. X-ray diffraction studies confirm the formation of single phase pure materials. Increasing Holmium substitution in Y{sub 1-x}Ho{sub x}CrO{sub 3} (0≤x≤0.1) allows a quasi-continuous tuning of the lattice in this multiferroic chromite without any magnetic interference effects of rare-earth ions. The composition dependent Raman scattering studies at room temperature reveal decreasing Raman mode frequencies with increasing holmium content consistent with the X-ray data. Decreasing phonon frequency shifts with increasing holmium content occurs, depending on the average rare-earth ion radius determined by the concentration of Y{sup +3} and Ho{sup +3}.

  14. The structure, thermal expansion and phase transition properties of Ho{sub 2}Mo{sub 3−x}W{sub x}O{sub 12} (x = 0, 1.0, 2.0) solid solutions

    SciTech Connect

    Liu, X.Z.; Hao, L.J.; Wu, M.M.; Ma, X.B.; Chen, D.F.; Liu, Y.T.

    2015-10-15

    Graphical abstract: A polymorph with Gd{sub 2}Mo{sub 3}O{sub 12}-type structure (space group: Pba2) for negative thermal expansion material Ho{sub 2}Mo{sub 3}O{sub 12} is observed above 700 °C, this polymorphism could be effectively supressed by W-substiution for Mo, the give the temperature dependence of Pba2 phase contents for Ho{sub 2}Mo{sub 3−x}W{sub x}O{sub 12} (x = 0.0, 1.0, 2.0). - Highlights: • The solid solution Ho{sub 2}Mo{sub 3−x}W{sub x}O{sub 12} was investigated by in situ X-ray diffraction. • It is found that the substitution slightly influence thermal expansion property. • A polymorph of Ho{sub 2}Mo{sub 3}O{sub 12} with Pba2 space group was observed above 700 °C. • The W-substitution for Mo effectively suppresses this transformation. - Abstract: Three solid solutions of Ho{sub 2}Mo{sub 3−x}W{sub x}O{sub 12}(x = 0, 1.0, 2.0) were prepared by solid state reaction method, the temperature dependent in-situ X-ray diffraction and thermal analysis were performed to investigate their structure and thermal expansion. All samples have orthorhombic structure(space group Pbcn# 60) with negative thermal expansion at the room temperature. the substitution of W for Mo enlarges the lattice constant and slightly influences the negative thermal expansion. An irreversible phase transformation to the Pba2 phase(Tb{sub 2}Mo{sub 3}O{sub 12} structure) was observed at high temperature for Mo-rich samples. This ploymorphism could be effectively suppressed by the W-substitution for Mo, this phenomenon could be explained by the lower electronegativity of W{sup 6+} than Mo{sup 6+}.

  15. Syntheses, structure and rare earth metal photoluminescence of new and known isostructural A{sub 2}Mo{sub 4}Sb{sub 2}O{sub 18} (A=Ce, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) compounds

    SciTech Connect

    Mohitkar, Shrikant A.; Kalpana, G.; Vidyasagar, K.

    2011-04-15

    Nine new A{sub 2}Mo{sub 4}Sb{sub 2}O{sub 18} (A=Ce, Pr, Eu, Tb, Ho, Er, Tm, Yb, Lu) compounds have been synthesized by solid-state reactions. They are isostructural with six reported analogues of yttrium and other lanthanides and the monoclinic unit cell parameters of all fifteen of them vary linearly with the size of A{sup 3+} ion. Single crystal X-ray structures of eight A{sub 2}Mo{sub 4}Sb{sub 2}O{sub 18} (A=Ce, Pr, Eu, Gd, Tb, Ho, Er, Tm) compounds have been determined. Neat A{sub 2}Mo{sub 4}Sb{sub 2}O{sub 18} (A=Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm) compounds exhibit characteristic rare earth metal photoluminescence. -- Graphical abstract: Among the fifteen isostructural A{sub 2}Mo{sub 4}Sb{sub 2}O{sub 18} (A=rare earth metal) molybdoantimonites, eight (A=Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm) compounds exhibit neat characteristic lanthanide photoluminescence in the 200-800 nm range at room temperature. Display Omitted Research highlights: {yields} Syntheses of nine new A{sub 2}Mo{sub 4}Sb{sub 2}O{sub 18} (A=Ce, Pr, Eu, Tb, Ho, Er, Tm, Yb, Lu) compounds. {yields} X-ray structures of eight A{sub 2}Mo{sub 4}Sb{sub 2}O{sub 18} (A=Ce, Pr, Eu, Gd, Tb, Ho, Er, Tm) compounds. {yields} Photoluminescence of neat A{sub 2}Mo{sub 4}Sb{sub 2}O{sub 18} (A=Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm) compounds.

  16. Optical and magneto-optical properties of single crystals of RFe{sub 2} (R = Gd, Tb, Ho, and Lu) and GdCo{sub 2} intermetallic compounds

    SciTech Connect

    Lee, S.J.

    1999-02-12

    The author has studied the diagonal and off-diagonal optical conductivity of RFe{sub 2}(R = Gd, Tb, Ho, Lu) and GdCo{sub 2} single crystals grown by the flux method. Using spectroscopic ellipsometry the author has measured the dielectric function from 1.5 to 5.5 eV. The magneto-optical Kerr spectrometer at temperatures between 7 and 295 K and applied magnetic fields between 0.5 to 1.6 T. The apparatus and calibration method are described in detail. Using magneto-optical data and optical constants he derives the experimental value of the off-diagonal conductivity components. Theoretical calculations of optical conductivities and magneto-optical parameters were performed using the tight binding-linear muffin tin orbitals method within the local spin density approximation. He applied this TB-LMTO method to LuFe{sub 2}. The theoretical results obtained agree well with the experimental data. The oxidation effects on the diagonal part of the optical conductivity were considered using a three-phase model. The oxidation effects on the magneto-optical parameters were also considered by treating the oxide layer as a nonmagnetic thin transparent layer. These corrections change not only the magnitude but also the shape of the optical conductivity and the magneto-optical parameters.

  17. Building America Case Study: Low-Load Space-Conditioning Needs Assessment, Northeast and Mid-Atlantic; Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-07-01

    With limited low-load options in the HVAC market, many new-construction housing units are being fitted with oversized equipment - thus facing penalties in system efficiency, comfort, and cost. To bridge the gap between currently available HVAC equipment and the rising demand for low-load HVAC equipment in the marketplace, HVAC equipment manufacturers need to be fully aware of multifamily buildings and single-family homes market needs. Over the past decade, Steven Winter Associates, Inc. (SWA) has provided certification and consulting services on hundreds of housing projects and has accrued a large pool of data. CARB compiled and analyzed these data to see what the thermal load ranges are in various multifamily apartments and attached single-family home types (duplex and townhouse). In total, design loads from 941 dwellings from SWA's recent multifamily and attached single-family work across the Northeast and Mid-Atlantic were analyzed. Information on the dwelling characteristics, design loads, and the specifications of installed mechanical equipment were analyzed to determine any trends that exist within the dataset. Of the 941 dwellings, CARB found that only 1% had right-sized heating equipment and 6% of the dwellings had right-sized cooling equipment (within 25% or less of design load).

  18. Temperature dependence of the radiation tolerance of nanocrystalline pyrochlores A2Ti2O7 (A = Gd, Ho and Lu)

    DOE PAGES [OSTI]

    Wen, J.; Sun, C.; Dholabhai, P. P.; Xia, Y.; Tang, M.; Chen, D.; Yang, D. Y.; Li, Y. H.; Uberuaga, B. P.; Wang, Y. Q.

    2016-05-15

    A potentially enhanced radiation resistance of nanocrystalline materials, as a consequence of the high density of interfaces and surfaces, has attracted much attention both to understand the fundamental role of these defect sinks and to develop them for high-radiation environments. Here, irradiation response of nanocrystalline A2Ti2O7 (A = Gd, Ho and Lu) pyrochlore powders with grain sizes of 20–30 nm was investigated by 1-MeV Kr2+ ion bombardment. In situ transmission electron microscopy (TEM) revealed that the critical amorphization fluence for each nanocrystalline compound at room temperature was greater than that for their coarse-grained counterparts, indicating an enhanced amorphization resistance. Themore » effect of temperature on the irradiation response of one of these compounds, nanocrystalline Lu2Ti2O7, was further examined by performing ion irradiation at an elevated temperature range of 480–600 K. The critical amorphization temperature (Tc) was found to be noticeably higher in nanocrystalline Lu2Ti2O7 (610 K) than its coarse-grained counterpart (480 K), revealing that nanocrystalline Lu2Ti2O7 is less resistant to amorphization compared to its coarse-grained phase under high temperatures. We interpret these results with the aid of atomistic simulations. Molecular statics calculations find that cation antisite defects are less energetically costly to form near surfaces than in the bulk, suggesting that the nanocrystalline form of these materials is generally less susceptible to amorphization than coarse-grained counterparts at low temperatures where defect kinetics are negligible. In contrast, at high temperatures, the annealing efficiency of antisite defects by cation interstitials is significantly reduced due to the sink properties of the surfaces in the nanocrystalline pyrochlore, which contributes to the observed higher amorphization temperature in the nano-grained phase than in coarse-grained counterpart. Altogether, these results provide new

  19. Magnetic structures of R5Ni2In4 and R 11Ni4In9 ( R = Tb and Ho): strong hierarchy in the temperature dependence of the magnetic ordering in the multiple rare-earth sublattices

    DOE PAGES [OSTI]

    Ritter, C.; Provino, A.; Manfrinetti, P.; Pecharsky, V. K.; Gschneidner, K. A.; Dhar, S. K.

    2015-11-09

    The magnetic properties and magnetic structures of the R5Ni2In4 and the microfibrous R 11Ni4In9 compounds with R = Tb and Ho have been examined using magnetization, heat capacity, and neutron diffraction data. Rare earth atoms occupy three and five symmetrically inequivalent rare earth sites in R5Ni2In4 and R 11Ni4In9 compounds, respectively. As a result of the intra- and inter-magnetic sublattice interactions, the magnetic exchange interactions are different for various rare earth sites; this leads to a cascade of magnetic transitions with a strong hierarchy in the temperature dependence of the magnetic orderings.

  20. Optical amplification in disordered electrooptic Tm{sup 3+} and Ho{sup 3+} codoped lanthanum-modified lead zirconate titanate ceramics and study of spectroscopy and communication between cations

    SciTech Connect

    Zhao, Hua; Zhang, Kun; Xu, Long; Sun, Fankui; Zhang, Jingwen; Chen, Xuesheng; Li, Kewen K.

    2014-02-21

    Rare earth doped electro-optic (EO) ceramics of lanthanum-modified lead zirconate titanate (PLZT) are promising in building multifunctional optical devices, by taking advantage of both EO effect and optical activity. In this work, the combination of the measured spectra of absorption and photoluminescence, the fluorescent decay, the calculated Judd-Ofelt parameters, and measured single pass gain in Tm{sup 3+}, Ho{sup 3+} codoped PLZT ceramics have marked them out as promising gain media in building electrically controllable lasers/optical amplifiers and other multifunctional devices. Optical energy storage was also observed in the optical amplification dynamics.

  1. Obama Administration Expands Better Buildings Challenge to Multifamily...

    Office of Environmental Management (EM)

    WASHINGTON - Building on 2 billion in financing commitments from the private sector for ... development, utilize private sector innovation and increase efficiency at minimum cost. ...

  2. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings

    SciTech Connect

    Dentz, Jordan; Henderson, Hugh

    2012-04-01

    The ARIES Collaborative, a Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, MA to implement and study improvements to the heating system in one of the non-profit’s housing developments. The heating control systems in the 42-unit Columbia CAST housing development were upgraded in an effort projected to reduce heating costs by 15% to 25%.

  3. Rural Development Multi-Family Housing Energy Efficiency Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    incorporating green building practices into project designs, construction, and operations. ... Rural Publication Date: NA Resource Link: http:www.rurdev.usda.goveehome.html

  4. SDG&E (Electric) - Multi-Family Residential Efficiency Program...

    Energy.gov [DOE] (indexed site)

    State California Program Type Rebate Program Rebate Amount Clothes Washers: 75-150 Room Air Conditioner: 50 Central Heat Pumps: 100 Insulation: 0.15sq. ft. CFLs: 4-10...

  5. America's Got Multifamily Talent (201) | Department of Energy

    Energy Saver

    Burden RFI | Department of Energy Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI These comments are submitted by the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) in response to the U.S. Department of Energy's (DOE) notice in the August 8, 2012 Federal Register requesting information to assist DOE in reviewing existing regulations and in making its

  6. Better Buildings Residential Network Multi-Family & Low-Income...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Discussion: What strategies or approaches has your ... (4663) * INHP program marketing drives customers to the ... was not proven to be a successful strategy. 25 Discussion: ...

  7. Text-Alternative Version of Building America Webinar: Multifamily...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Do you want to know more about these proven innovations born out of world-class research? ... Recently his work is focus on cost-effective retrofits including innovative approaches to ...

  8. Results from Development of Model Specifications for Multifamily Energy Retrofits

    SciTech Connect

    Brozyna, K.

    2012-08-01

    Specifications, modeled after CSI MasterFormat, provide the trade contractors and builders with requirements and recommendations on specific building materials, components and industry practices that comply with the expectations and intent of the requirements within the various funding programs associated with a project. The goal is to create a greater level of consistency in execution of energy efficiency retrofits measures across the multiple regions a developer may work. IBACOS and Mercy Housing developed sample model specifications based on a common building construction type that Mercy Housing encounters.

  9. Results From Development of Model Specifications for Multifamily Energy Retrofits

    SciTech Connect

    Brozyna, Kevin

    2012-08-01

    Specifications, modeled after CSI MasterFormat, provide the trade contractors and builders with requirements and recommendations on specific building materials, components and industry practices that comply with the expectations and intent of the requirements within the various funding programs associated with a project. The goal is to create a greater level of consistency in execution of energy efficiency retrofits measures across the multiple regions a developer may work. IBACOS and Mercy Housing developed sample model specifications based on a common building construction type that Mercy Housing encounters.

  10. Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings Webinar

    Energy.gov [DOE]

    This webinar, presented by research team Building Science Corporation, discussed insulating foundations and controlling water leakage as a critical measure for reducing heating load in homes in cold climates.

  11. Better Buildings Residential Network Multifamily & Low-Income...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... information & to join, email bbresidentialnetwork@ee.doe... Resources and documents for energy efficiency ... * Provide owners with a list of measures that are ...

  12. Building America Case Study: Rehabilitation of USDA Multifamily...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... housing command a premium for their tax credits in the syndication marketplace because of the perception that these properties represent a more secure invest- ment vehicle. ...

  13. Multifamily Energy Savings Program (Existing Buildings and New Construction)

    Office of Energy Efficiency and Renewable Energy (EERE)

    To begin participating in the program, eligible building owners/managers work with a Focus Energy Advisor to perform a free energy assessment and identify suitable building improvements. For...

  14. Building America Whole-House Solutions for Existing Homes: Multifamily...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Building America Whole-House Solutions for New Homes: Shaw Construction, Aspen, Colorado Building America Whole-House Solutions for Existing Homes: Conway Street Apartments - ...

  15. Commercial and Multifamily Building Tenant Energy Usage Aggregation and Privacy

    SciTech Connect

    Livingston, Olga V.; Pulsipher, Trenton C.; Wang, Na

    2014-11-17

    In a number of cities and states, building owners are required to disclose and/or benchmark their building energy use. This requires the building owner to possess monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer data as a way to give building owners the whole-building energy usage data while protecting customer privacy. However, no utilities or regulators appear to have conducted a concerted statistical, cybersecurity, and privacy analysis to justify the level of aggregation selected. Therefore, the Tennant Data Aggregation Task was established to help utilities address these issues and provide recommendations as well as a theoretical justification of the aggregation threshold. This study is focused on the use case of submitting data for ENERGY STAR Portfolio Manager (ESPM), but it also looks at other potential use cases for monthly energy consumption data.

  16. Implementing a Zero Energy Ready Home Multifamily Project (Technical...

    Office of Scientific and Technical Information (OSTI)

    country have addressed many of the technical challenges of building to the ZERH standard. ... National Renewable Energy Laboratory (NREL), Golden, CO (United States) Publication Date: ...

  17. MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY | Department...

    Energy Saver

    Program Design: MEP relied on a network of approved partners-qualified energy professionals and home performance contractors-to help move projects through the pipeline from ...

  18. Better Buildings Residential Network Multi-Family/ Low Income...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... INHP decided to find the expertise * Strong partner with a local utility * Contracted ... housing for: * low and moderate income families, * the elderly, * individuals with ...

  19. Conway Street Apartments: A Multifamily Deep Energy Retrofit...

    Office of Scientific and Technical Information (OSTI)

    for Advanced Residential Buildings (CARB), Norwalk, Connecticut Research Org: National Renewable Energy Laboratory (NREL), Golden, CO. Sponsoring Org: USDOE Office of Energy...

  20. Energy-Efficient Controls for Multifamily Domestic Hot Water

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    a time schedule * Time schedule off periods should approximate the peak DHW usage periods at the building. * When a user demands hot water during an "off" period, they will waste ...

  1. Steam System Balancing and Tuning for Multifamily Residential...

    Energy Saver

    Partners: Partnership for Advanced Residential Retrofit www.gastechnology.org Building ... Often, signifcant temperature differentials exist between apartments in the same building. ...

  2. Better Buildings Neighborhood Program Multi-family/ Low Income...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tool Track Portfolio Performance * Analyze energy usage - Integrated with EPA Portfolio Manager - Compare buildingportfolio to peers - Quantify pre & post-retrofit savings ...

  3. Better Buildings Neighborhood Program Multi-Family Peer Exchange...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... for data from many sources, but it can be harder to pinpoint energy usage throughout the building * It can be challenging logistically to access many units in a large ...

  4. Implementing a Zero Energy Ready Home Multifamily Project (Technical...

    Office of Scientific and Technical Information (OSTI)

    This report discusses challenges encountered, lessons learned, and how obstacles were overcome. Authors: Springer, David 1 ; German, Alea 1 + Show Author Affiliations Alliance ...

  5. Obama Administration Expands Better Buildings Challenge to Multifamily...

    Energy.gov [DOE] (indexed site)

    continue this progress - cutting carbon pollution, fostering economic growth and building ... the easiest ways to save money, reduce pollution and create jobs," said Nancy Sutley, ...

  6. Better Buildings Neighborhood Program Multi-Family Peer Exchange...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... with the University of Texas and Apartment Finders on a website with an interactive GIS interface-the plan is to highlight EE properties on it The goal of the project is ...

  7. Better Buildings Neighborhood Program Multi-family and Low Income...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ...pdfCondominiumEnergySmartTips.pdf http:shelteranalytics.comsitesdefaultfilesenergyefficiencyresourcetoolbox9-25-12.pdf Program Experience * New Orleans: Rolled out ...

  8. Better Buildings Neighborhood Program Multi-Family and Low Income...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Communities Agenda * Call Logistics and Attendance What kind of partnerships does your program have for ... York Jeanine Otte, CNT Energy, Chicago Rosemary ...

  9. Applying ICT and IoT to Multifamily Buildings

    Energy.gov [DOE] (indexed site)

    peak demand costs Utility Approved Revenue Grade Web Accessible Data Install Wireless HVAC Load Control Empower management with 247 control Mobile alerts...

  10. Better Buildings Multi-Family Peer Exchange Call Featuring: Stewards...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    using: Effective messaging: safety, comfort, health Work through developers, ... incentivesdisincentives Lessonsmodels from other areas (e.g., commercial, ...

  11. Better Buildings Residential Multifamily/Low-Income Peer Exchange...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Residential Network Group on Home Energy Pros Join to access: Peer exchange call ... savings impacted their bottom line. Solar screen rebates were also successful ...

  12. SCE - Multi-Family Residential Energy Efficiency Programs | Department...

    Energy.gov [DOE] (indexed site)

    High Efficiency Clothes Washers: 50 - 100unit Energy Star Refrigerators: 50unit Dual Pane Windows: 0.75sq. ft. Central Air and Heat Pumps: 150unit Water Heaters: 30...

  13. Seattle City Light - Multi-Family Residential Energy Efficiency...

    Energy.gov [DOE] (indexed site)

    for common area lighting and weatherization measures including the installation of dual-pane windows and increased insulation, although insulation-only jobs are not eligible...

  14. Building America Case Study: Balancing Hydronic Systems in Multifamily...

    Energy Saver

    The buildings become under- and over- heated, which causes tenant discomfort and higher ... at the buildings to quantify the possible extent, extremity, and duration of imbalance in ...

  15. Building America Expert Meeting Final Report: Multifamily Hydronic...

    Energy Saver

    ... Most hydronically heated homes are older, with only 1% being classified as New Construction (built within the past four years) in the 2005 AHS data. (U.S. Census Bureau, Current ...

  16. Steam Balancing and Tuning for Multifamily Residential Buildings in Chicagoland

    SciTech Connect

    Choi, J.; Ludwig, P.; Brand, L.

    2012-08-01

    Older heating systems often suffer from mis-investment--multiple contractors upgrading parts of systems in inadequate or inappropriate ways that reduce system functionality and efficiency--or from a lack of proper maintenance. This technical report addresses these barriers to information, contractor resources, and cost-savings. Building off of previous research, CNT Energy conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam; system balancing.

  17. Building America January 2015 Webinar: Multifamily Central Heat...

    Energy Saver

    sensor placement - Non-optimal setpoints * 140F heat ... of power and capacity to outdoor dry bulb and entering water temperature. Monitored data: Avg. inlet 125.4 F, Flow rate ...

  18. combined_supplemental_hud_multifamily_weatherization_list_2b...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2b.xls combinedsupplementalhudmultifamilyweatherizationlist2b.xls combinedsupplementalhudmultifamilyweatherizationlist2b.xls More Documents & Publications...

  19. combined_supplemental_hud_multifamily_weatherization_list_3-2...

    Energy.gov [DOE] (indexed site)

    lihtc.xls More Documents & Publications list2eligiblemultifamilybuildings10-cfr-440-22b4ii.xls rdmfhlowandverylow.xls hudlist-1...

  20. combined_supplemental_hud_multifamily_weatherization_list_1b...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1b.xls combinedsupplementalhudmultifamilyweatherizationlist1b.xls combinedsupplementalhudmultifamilyweatherizationlist1b.xls More Documents & Publications...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Refrigeration Equipment Multifamily Performance Program Under NYSERDA's Multifamily Performance Program (MPP), new construction of multifamily buildings and existing...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Whole Building, Other EE Multifamily Performance Program Under NYSERDA's Multifamily Performance Program (MPP), new construction of multifamily buildings and existing...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Other EE, LED Lighting Multifamily Performance Program Under NYSERDA's Multifamily Performance Program (MPP), new construction of multifamily buildings and existing...

  4. Magnetization and transport properties of single crystalline RPd2P2 (R=Y, La–Nd, Sm–Ho, Yb)

    DOE PAGES [OSTI]

    Drachuck, Gil; Böhmer, Anna E.; Bud'ko, Sergey L.; Canfield, Paul C.

    2016-05-27

    Single crystals of RPd2P2 (R=Y, La–Nd, Sm–Ho, Yb) were grown out of a high temperature solution rich in Pd and P and characterized by room-temperature powder X-ray diffraction, anisotropic temperature- and field-dependent magnetization and temperature-dependent in-plane resistivity measurements. In this series, YPd2P2 and LaPd2P2 YbPd2P2 (with Yb2+) are non-local-moment bearing. Furthermore, YPd2P2 and LaPd2P2 are found to be superconducting with Tc≃0.75 and 0.96 K respectively. CePd2P2 and PrPd2P2 magnetically order at low temperature with a ferromagnetic component along the crystallographic c-axis. The rest of the series manifest low temperature antiferromagnetic ordering. EuPd2P2 has Eu2+ ions and both EuPd2P2 and GdPd2P2 have isotropic paramagnetic susceptibilities consistent with L =0 and J=S=more » $$\\frac{7}{2}$$ and exhibit multiple magnetic transitions. For R=Eu–Dy, there are multiple, T>1.8 K transitions in zero applied magnetic field and for R=Nd, Eu, Gd, Tb, and Dy there are clear metamagnetic transitions at T=2.0 K for H< 55 kOe. Strong anisotropies arising mostly from crystal electric field (CEF) effects were observed for most magnetic rare earths with L≠0. The experimentally estimated CEF parameters B$_2^0$ were calculated from the anisotropic paramagnetic θab and θc values and compared to theoretical trends across the rare earth series. Lastly, the ordering temperatures as well as the polycrystalline averaged paramagnetic Curie–Weiss temperature, θave, were extracted from magnetization and resistivity measurements, and compared to the de-Gennes factor.« less

  5. Predicting Envelope Leakage in Attached Dwellings

    SciTech Connect

    Faakye, O.; Arena, L.; Griffiths, D.

    2013-07-01

    The most common method for measuring air leakage is to use a single blower door to pressurize and/or depressurize the test unit. In detached housing, the test unit is the entire home and the single blower door measures air leakage to the outside. In attached housing, this 'single unit', 'total', or 'solo' test method measures both the air leakage between adjacent units through common surfaces as well air leakage to the outside. Measuring and minimizing this total leakage is recommended to avoid indoor air quality issues between units, reduce energy losses to the outside, reduce pressure differentials between units, and control stack effect. However, two significant limitations of the total leakage measurement in attached housing are: for retrofit work, if total leakage is assumed to be all to the outside, the energy benefits of air sealing can be significantly over predicted; for new construction, the total leakage values may result in failing to meet an energy-based house tightness program criterion. The scope of this research is to investigate an approach for developing a viable simplified algorithm that can be used by contractors to assess energy efficiency program qualification and/or compliance based upon solo test results.

  6. Predicting Envelope Leakage in Attached Dwellings

    Energy.gov [DOE]

    This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

  7. SmartDwell | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    ID Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building...

  8. Synthesis, structural characterization, luminescent properties and theoretical study of three novel lanthanide metal-organic frameworks of Ho(III), Gd(III) and Eu(III) with 2,5-thiophenedicarboxylate anion

    SciTech Connect

    Marques, Lippy F.; Correa, Charlane C.; Ribeiro, Sidney J.L.; Santos, Molíria V. dos; Dutra, José Diogo L.; Freire, Ricardo O.; Machado, Flávia C.

    2015-07-15

    In this paper, the synthesis of three new metal-organic frameworks of lanthanides (LnMOFs) ([Ln{sub 2}(2,5-tdc){sub 3}(dmso){sub 2}]·H{sub 2}O){sub n} (Ln=Ho (1); Gd (2); Eu (3); 2,5-tdc=2,5-thiophenedicarboxylate anion; dmso=dimethylsulfoxide), and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. Crystal structure of (1) reveals that each lanthanide ion is seven-coordinated by oxygen atoms in an overall distorted capped trigonal – prismatic geometry. The 2,5-tdc{sup 2−} ligands connect four Ln(III) centers, adopting (κ{sup 1}–κ{sup 1})–(κ{sup 1}–κ{sup 1})–μ{sub 4} coordination mode, generating an 8-connected uninodal 3D network. In addition, theoretical studies for Eu(III) complex were performed using the Sparkle model for lanthanide complexes. - Graphical abstract: Three new metal-organic frameworks of lanthanides (LnMOFs) ([Ln{sub 2}(2,5-tdc){sub 3}(dmso){sub 2}]·H{sub 2}O){sub n} (Ln=Ho (1); Gd (2); Eu (3); 2,5-tdc=2,5-thiophenedicarboxylate anion; dmso=dimethylsulfoxide), were synthesized and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. - Highlights: • Three new LnMOFs were synthesized and fully characterized. • Ho{sup 3+}, Gd{sup 3+} and Eu{sup 3+} complexes photoluminescence properties were investigated. • Theoretical approaches for Eu{sup 3+} complex luminescence has been performed. • An energy level diagram is used to establish the ligand-to-metal energy transfer. • These metal−organic frameworks can act as light conversion molecular devices.

  9. WPN 16-6: WEATHERIZATION OF RENTAL UNITS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6: WEATHERIZATION OF RENTAL UNITS WPN 16-6: WEATHERIZATION OF RENTAL UNITS Effective: May 5, 2016 To provide Grantees with updated guidance on weatherizing rental units in the Weatherization Assistance Program (WAP). The Department of Energy (DOE) has answered specific questions from Grantees related to the weatherization of rental units, whether single family building or multifamily dwellings, over a number of years. However, the responses to these questions have not been put forth in guidance.

  10. Decay properties of long-lived isomers in the odd-odd N=81 nucleus {sup 146}Tb compared to the {sup 148}Ho and {sup 150}Tm nuclei

    SciTech Connect

    Kownacki, J.; Kisielinski, M.; Droste, Ch.; Morek, T.; Ruchowska, E.; Grodner, E.; Lieder, R. M.; Kowalczyk, M.; Wrzosek-Lipska, K.; Hadynska-KlePk, K.; Mierzejewski, J.; Andrzejewski, J.; Perkowski, J.; Napiorkowski, P. J.; Zielinska, M.; Kordyasz, A.; Srebrny, J.; Korman, A.

    2011-02-15

    Excited states of the {sup 146}Tb nucleus have been studied using {gamma}-ray and electron spectroscopy in off-beam and in-beam modes following {sup 112}Sn({sup 40}Ar,3n3p) reaction with the use of the OSIRIS-II, HPGe detector array and the conversion electron spectrometer. The multipolarity of the 343 keV transition deexciting the (7{sup -}) level in {sup 146}Tb shows mainly an E2 nature and the first excited state above the 23 s isomer is assigned as a (5{sup -},6{sup -}) state. The log ft values have been deduced for 11 {beta}{sup +}/EC transitions populating excited states in {sup 146}Gd. The systematic behavior of spins and parities of the long-lived levels at 0+x keV and the first excited states above them in the N=81 isotones {sup 146}Tb, {sup 148}Ho, and {sup 150}Tm is discussed.

  11. Magnetic structures of R5Ni2In4 and R11Ni4In9 ( R = Tb and Ho): Strong hierarchy in the temperature dependence of the magnetic ordering in the multiple rare-earth sublattices

    DOE PAGES [OSTI]

    Ritter, C.; Provino, A.; Manfrinetti, P.; Pecharsky, V. K.; Gschneidner, Jr., K. A.; Dhar, S. K.

    2015-11-09

    In this study, the magnetic properties and magnetic structures of the R5Ni2In4 and the microfibrous R 11Ni4In9 compounds with R = Tb and Ho have been examined using magnetization, heat capacity, and neutron diffraction data. Rare earth atoms occupy three and five symmetrically inequivalent rare earth sites in R5Ni2In4 and R 11Ni4In9 compounds, respectively. As a result of the intra- and inter-magnetic sublattice interactions, the magnetic exchange interactions are different for various rare earth sites; this leads to a cascade of magnetic transitions with a strong hierarchy in the temperature dependence of the magnetic orderings.

  12. Band gap tuning and orbital mediated electron–phonon coupling in HoFe{sub 1−x}Cr{sub x}O{sub 3} (0 ≤ x ≤ 1)

    SciTech Connect

    Kotnana, Ganesh; Jammalamadaka, S. Narayana

    2015-09-28

    We report on the evidenced orbital mediated electron–phonon coupling and band gap tuning in HoFe{sub 1−x}Cr{sub x}O{sub 3} (0 ≤ x ≤ 1) compounds. From the room temperature Raman scattering, it is apparent that the electron-phonon coupling is sensitive to the presence of both the Fe and Cr at the B-site. Essentially, an A{sub g} like local oxygen breathing mode is activated due to the charge transfer between Fe{sup 3+} and Cr{sup 3+} at around 670 cm{sup −1}, this observation is explained on the basis of Franck-Condon mechanism. Optical absorption studies infer that there exists a direct band gap in the HoFe{sub 1−x}Cr{sub x}O{sub 3} (0 ≤ x ≤ 1) compounds. Decrease in band gap until x = 0.5 is ascribed to the broadening of the oxygen p-orbitals as a result of the induced spin disorder due to Fe{sup 3+} and Cr{sup 3+} at B-site. In contrast, the increase in band gap above x = 0.5 is explained on the basis of the reduction in the available unoccupied d-orbitals of Fe{sup 3+} at the conduction band. We believe that above results would be helpful for the development of the optoelectronic devices based on the ortho-ferrites.

  13. Magnetic properties and magnetocaloric effect in the RCu{sub 2}Si{sub 2} and RCu{sub 2}Ge{sub 2} (R = Ho, Er) compounds

    SciTech Connect

    Mo, Zhao-Jun; Shen, Jun E-mail: tangcc@hebut.edu.cn; Wu, Jian-Feng; Yan, Li-Qin; Wang, Li-Chen; Sun, Ji-rong; Shen, Bao-Gen; Gao, Xin-Qiang; Tang, Cheng-Chun E-mail: tangcc@hebut.edu.cn

    2014-02-21

    The magnetic properties and magnetocaloric effect (MCE) in RCu{sub 2}Si{sub 2} and RCu{sub 2}Ge{sub 2} (R = Ho, Er) compounds have been investigated. All these compounds possess an antiferromagnetic (AFM)-paramagnetic (PM) transition around their respective Neel temperatures. The RCu{sub 2}Si{sub 2} compounds undergo spin-glassy behavior above Neel temperature. Furthermore, a field-induced metamagnetic transition from AFM to ferromagnetic (FM) states is observed in these compounds. The calculated magnetic entropy changes show that all RCu{sub 2}Si{sub 2} and RCu{sub 2}Ge{sub 2} (R = Ho, Er) compounds, especially, ErCu{sub 2}Si{sub 2} exhibits large MCEs with no thermal hysteresis and magnetic hysteresis loss. The value of −ΔS{sub M}{sup max} reaches 22.8 J/Kg K for magnetic field changes from 0 to 5 T. In particular, for field changes of 1 and 2 T, the giant reversible magnetic entropy changes −ΔS{sub M}{sup max} are 8.3 and 15.8 J/kg K at 2.5 K, which is lower than the boiling point of helium. The low-field giant magnetic entropy change, together with ignorable thermal hysteresis and field hysteresis loss of ErCu{sub 2}Si{sub 2} compound is expected to have effective applications in low temperature magnetic refrigeration.

  14. Correlation between upconversion photoluminescence and dielectric response in Ba-substituted (Sr{sub 1−x}Ba{sub x}){sub 4}(La{sub 0.85}Ho{sub 0.025}Yb{sub 0.125}){sub 2}Ti{sub 4}Nb{sub 6}O{sub 30}

    SciTech Connect

    Wei, T.; Wang, X. D.; Zhao, C. Z.; Liu, M. F.; Liu, J. M.

    2014-06-30

    The filled tetragonal tungsten bronze (Sr{sub 1−x}Ba{sub x}){sub 4}(La{sub 0.85}Ho{sub 0.025}Yb{sub 0.125}){sub 2}Ti{sub 4}Nb{sub 6}O{sub 30} (SBLTNx: Ho-Yb) ceramics with different Ba substitution levels (x) are prepared. The upconversion photoluminescence (UC-PL) and dielectric permittivity are investigated. The substitution of Sr{sup 2+} ions at the A{sub 2}-sites by larger Ba{sup 2+} ions results in substantial variation of the UC-PL intensity as a function of substitution level x. Furthermore, the dielectric response to the substitution of Sr{sup 2+} by Ba{sup 2+} suggests a close correlation between the UC-PL intensity and dielectric permittivity. The origin for this correlation is discussed based on the random stress field (RSF) model.

  15. Synthesis of nanocrystalline REBO{sub 3} (RE=Y, Nd, Sm, Eu, Gd, Ho) and YBO{sub 3}:Eu using a borohydride-based solution precursor route

    SciTech Connect

    Henkes, Amanda E.; Schaak, Raymond E.

    2008-12-15

    A solution precursor route has been used to synthesize a series of nanocrystalline rare-earth borates. Amorphous precursor powders are precipitated during an aqueous reaction between RE{sup 3+} and NaBH{sub 4}, and the isolated powders can be annealed in air at 700 deg. C to form YBO{sub 3}, NdBO{sub 3}, SmBO{sub 3}, EuBO{sub 3}, GdBO{sub 3}, and HoBO{sub 3}. YBO{sub 3}:Eu formed using this strategy shows red-orange emission properties that are similar to high-quality nanocrystals prepared by other methods. The materials have been characterized by FTIR spectroscopy, powder XRD, SEM, DSC, UV-Vis fluorimetry, and TEM with EDS and element mapping. - Graphical abstract: Amorphous nanoscopic precursor powders are formed through the aqueous reaction of RE{sup 3+} with NaBH{sub 4}. Once isolated, the powders can be annealed at 700 deg. C in air to form a series of nanocrystalline REBO{sub 3} orthoborates. Nanocrystalline YBO{sub 3}:Eu formed using this strategy shows red-orange emission properties when excited with UV light.

  16. Low-Load Space Conditioning Needs Assessment

    SciTech Connect

    Puttagunta, Srikanth

    2015-05-01

    With limited low-load options in the HVAC market, many new-construction housing units are being fitted with oversized equipment - thus facing penalties in system efficiency, comfort, and cost. To bridge the gap between currently available HVAC equipment and the rising demand for low-load HVAC equipment in the marketplace, HVAC equipment manufacturers need to be fully aware of multifamily buildings and single-family homes market needs. Over the past decade, Steven Winter Associates, Inc. (SWA) has provided certification and consulting services on hundreds of housing projects and has accrued a large pool of data. CARB compiled and analyzed these data to see what the thermal load ranges are in various multifamily apartments and attached single-family home types (duplex and townhouse). In total, design loads from 941 dwellings from SWA's recent multifamily and attached single-family work across the Northeast and Mid-Atlantic were analyzed. Information on the dwelling characteristics, design loads, and the specifications of installed mechanical equipment were analyzed to determine any trends that exist within the dataset.

  17. Syntheses and properties of a family of new compounds RE{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} (RE=La, Pr, Nd, Sm–Ho) with an ordered pyrochlore structure

    SciTech Connect

    Li, Kuo; Hu, Yufei; Wang, Yingxia; Kamiyama, Takashi; Wang, Bingwu; Li, Zhaofei; Lin, Jianhua

    2014-09-15

    Isostructural compounds RE{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} (RE=La, Pr, Nd, Sm–Ho) with an ordered pyrochlore structure were synthesized. The structure of La{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} was solved ab initio based on powder XRD data, and refined by combining with high resolution neutron diffraction data. La{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} crystallizes in the space group R-3m with the unit cell parameters a=7.52954(2) Å and c=17.59983(6) Å. The structures of other members in this family are confirmed by Rietveld refinement using powder X-ray diffraction data. The cations (RE, Sb and Co) in RE{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} are orderly distributed, presenting as [RE{sub 3}Co][Sb{sub 3}Co]O{sub 14} formula, and giving rise to two distinctive Kagome lattices constructed by RE{sup 3+} and Sb{sup 5+}, respectively. Co{sup 2+} occupies 8-coordinated and 6-coordinated environments, showing low spin (S=1/2) and high spin (S=3/2) states respectively. The magnetic susceptibility and UV–visual spectroscopy supports the magnetic observation. TDDFT calculation was performed to interpret the electronic states. The compounds [RE{sub 3}Co][Sb{sub 3}Co]O{sub 14} provide a profound example in which the ideal 2D Kagome lattice is derived from the 3D pyrochlore-type structure by an ordered distribution of the metal cations. - Graphical abstract: La{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} crystallizes in a pyrochlore related structure with an ordered distribution of cations, giving rise to two sets of ideal 2D Kagome lattices formed by La{sup 3+} or Sb{sup 5+} respectively. This rhombohedral pyrochlore is a tolerant structure for stable compounds composed by many light rare-earth and d-transition elements. Substituting Zn{sup 2+} or Mg{sup 2+} for Co{sup 2+} will provide a series of compounds useful for studying magnetic interactions in the rare-earth Kagome lattices. - Highlights: • Pyrochlore-type La{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} shows an ordered distribution of

  18. Tax Credits, Rebates & Savings | Department of Energy

    Energy.gov [DOE] (indexed site)

    Puget Sound Energy- Multi-Family Efficiency Retrofit Program PSE's Multifamily Program incentives include a range of measures aimed at assisting existing multifamily buildings....

  19. Text-Alternative Version of Building America Webinar: Central...

    Energy Saver

    Central Multifamily Water Heating Systems Text-Alternative Version of Building America Webinar: Central Multifamily Water Heating Systems Central Multifamily Water Heating Systems ...

  20. CONTRACT HO, AT(JO-l)-510

    Office of Legacy Management (LM)

    ... If and when the Contractor has, by means of deductions or otherwise, reimbursed the Government in full for advances made, any money remaining in the special bank account or ...

  1. DOE Zero Energy Ready Home Case Study: Dwell Development, Seattle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Case study of a DOE Zero Energy Ready Home in Seattle, WA, that scored HERS 34 without PV. This 2,000-square-foot system home has R-45 double-stud walls, an unvented flat roof with ...

  2. DOE ZERH Case Study: Dwell Development, Reclaimed Modern, Seattle, WA

    SciTech Connect

    none,

    2015-09-01

    Case study of a DOE 2015 Housing Innovation Award winning custom home in the cold climate that got a HERS 30 without PV, with 2x8 24” on center walls with blown fiberglass and 4” polysio rigid foam; basement with 2” XPS interior, 4” under slab, 4” exterior of foundation wall; vented attic with R-100 blown cellulose; wo air-to-air heat pumps SEER 14.1; HSPF 9.6; heat pump water heater.

  3. Anne Arundel County- High Performance Dwelling Property Tax Credit

    Office of Energy Efficiency and Renewable Energy (EERE)

    The state of Maryland permits local governments (Md Code: Property Tax § 9-242) to offer property tax credits for high performance buildings if they choose to do so. In October 2010 Anne Arundel...

  4. Improving Building Envelope and Duct Airtightness of US Dwellings...

    Office of Scientific and Technical Information (OSTI)

    of Science (SC) Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION Blower door, duct blaster, fan...

  5. Predicting Envelope Leakage in Attached Dwellings (Fact Sheet)

    SciTech Connect

    Not Available

    2013-11-01

    The most common method of measuring air leakage is to perform single (or solo) blower door pressurization and/or depressurization test. In detached housing, the single blower door test measures leakage to the outside. In attached housing, however, this "solo" test method measures both air leakage to the outside and air leakage between adjacent units through common surfaces. Although minimizing leakage to neighboring units is highly recommended to avoid indoor air quality issues between units, reduce pressure differentials between units, and control stack effect, the energy benefits of air sealing can be significantly overpredicted if the solo air leakage number is used in the energy analysis. Guarded blower door testing is more appropriate for isolating and measuring leakage to the outside in attached housing. This method uses multiple blower doors to depressurize adjacent spaces to the same level as the unit being tested. Maintaining a neutral pressure across common walls, ceilings, and floors acts as a "guard" against air leakage between units. The resulting measured air leakage in the test unit is only air leakage to the outside. Although preferred for assessing energy impacts, the challenges of performing guarded testing can be daunting.

  6. DOE Tour of Zero: Reclaimed Modern by Dwell Development | Department...

    Energy Saver

    a fluid-applied asphalt weather-resistant barrier that was also used for window flashing. ... house, serving as a continuous drainage plane and flashing for window and door openings

  7. DOE Tour of Zero: Reclaimed Modern by Dwell Development | Department...

    Energy Saver

    The wall assembly was finished with reclaimed metal and fiber cement siding. 4 of 19 The 7.39 kW of solar electric panels are mounted to the standing seam metal roof. 5 of 19 A ...

  8. DOE Zero Energy Ready Home Case Study 2013: Dwell Development...

    Energy Saver

    ... Two inches of closed-cell polyurethane foam is sprayed against the underside of the OSB ... Fixed shading covers the south-facing windows to block out overhead summer sun. Induction ...

  9. Durable Airtightness in Single-Family Dwellings - Field Measurementsand Analysis

    DOE PAGES [OSTI]

    Chan, Wanyu R.; Walker, Iain S.; Sherman, Max H.

    2015-06-01

    Here, durability of the building envelope is important to new homes that are increasingly built with improved levels of airtightness. It is also important to weatherized homes such that energy savings from retrofit measures, such as air sealing, are persistent. This paper presents a comparison of air leakage measurements collected in November 2013 through March 2014, with two sets of prior data collected between 2001-2003 from 17 new homes located near Atlanta, GA, and 17 homes near Boise, ID that were weatherized in 2007- 2008. The purpose of the comparison is to determine if there are changes to the airtightnessmore » of building envelopes over time. The air leakage increased in all but one of the new homes, with a mean increase of about 25%. The weatherized homes also showed an increase in the mean air leakage (12%). A regression analysis was performed to describe the relationship between prior and current measurements in terms of normalized leakage (NL). The best estimate of the ageing factor predicts a 15% increase in NL over ten years. Further analysis using ResDB data (LBNL’s Residential Diagnostic Database) showed the expected changes in air leakage if ageing were modelled. These results imply the need to examine the causes of increased leakage and methods to avoid them. This increase in leakage with time should be accounted for in long-term population-wide energy savings estimates, such as those used in ratings or energy savings programs.« less

  10. Magnetic structures of R5Ni2In4 and R11Ni4In9 ( R = Tb and Ho): Strong hierarchy in the temperature dependence of the magnetic ordering in the multiple rare-earth sublattices

    SciTech Connect

    Ritter, C.; Provino, A.; Manfrinetti, P.; Pecharsky, V. K.; Gschneidner, Jr., K. A.; Dhar, S. K.

    2015-11-09

    In this study, the magnetic properties and magnetic structures of the R5Ni2In4 and the microfibrous R 11Ni4In9 compounds with R = Tb and Ho have been examined using magnetization, heat capacity, and neutron diffraction data. Rare earth atoms occupy three and five symmetrically inequivalent rare earth sites in R5Ni2In4 and R 11Ni4In9 compounds, respectively. As a result of the intra- and inter-magnetic sublattice interactions, the magnetic exchange interactions are different for various rare earth sites; this leads to a cascade of magnetic transitions with a strong hierarchy in the temperature dependence of the magnetic orderings.

  11. Tax Credits, Rebates & Savings | Department of Energy

    Energy.gov [DOE] (indexed site)

    buildings and existing multifamily buildings are eligible for incentives that improve energy savings through... Eligibility: Multifamily Residential Savings Category: Clothes...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    other multi-family properties for making energy efficiency... Eligibility: Commercial, Construction, Multifamily Residential Savings Category: Solar Water Heat, Solar...

  13. Building America Webinar: Retrofit Ventilation Strategies in...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Retrofit Ventilation Strategies in Multifamily Buildings Webinar Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings Webinar This webinar, presented ...

  14. Building America Webinar: Retrofitting Central Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Space Conditioning Strategies for Multifamily Buildings - Introduction This ... mproving the performance of central space conditioning systems in multifamily buildings. ...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Property tax abatement for new non-residential and multifamily residential green buildings Eligibility: Commercial, Industrial, Multifamily Residential Savings Category:...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Energy.gov [DOE] (indexed site)

    Buildings Property tax abatement for new non-residential and multifamily residential green buildings Eligibility: Commercial, Industrial, Multifamily Residential Savings...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Energy.gov [DOE] (indexed site)

    measures through the Home Energy Loan Program. Participating single or multi-family... Eligibility: Residential, Multifamily Residential Savings Category: Solar...

  18. Building America Technology Solutions for New and Existing Homes...

    Energy.gov [DOE] (indexed site)

    Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, ... Expert Meeting: Multifamily Hydronic and Steam Heating Controls and Distribution ...

  19. Study of Multifamily Energy Retrofit Using Flexible Multizone Building Simulation Model

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

  20. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    SciTech Connect

    Dentz, J.; Henderson, H.; Varshney, K.

    2013-10-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. of Cambridge, Massachusetts, to implement and study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating control systems in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded.

  1. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    SciTech Connect

    Dentz, J.; Henderson, H.; Varshney, K.

    2014-09-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  2. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings - Phase 1: Boiler Control Replacement and Monitoring

    SciTech Connect

    Dentz, J.; Henderson, H.

    2012-04-01

    The ARIES Collaborative, a Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, MA to implement and study improvements to the heating system in one of the non-profit's housing developments. The heating control systems in the 42-unit Columbia CAST housing development were upgraded in an effort projected to reduce heating costs by 15 to 25 percent.

  3. The Best Way to Meet ASHRAE 62.2 in Multifamily Buildings

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

  4. Using Solar Hot Water to Address Piping Heat Losses in Multifamily...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy (EERE), Building Technologies Office (EE-5B) Country of Publication: United States Language: English Subject: ...

  5. California Solar Initiative- Multi-Family Affordable Solar Housing (MASH) Program

    Energy.gov [DOE]

    '''''Track 2 was closed in 2011. Track 1 incentives have been fully subscribed for all three program administrators and waitlists have been established. Contact the appropriate program...

  6. Burlington Electric Department- Multi-Family Rental Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Burlington Electric Department offers an innovative rebate program geared towards rental apartment owners. The program is designed to offer rebates on some of the most energy intensive household...

  7. Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland - Second Year of Data Collection

    SciTech Connect

    Choi, Jayne; Ludwig, Peter; Brand, Larry

    2013-08-01

    Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources.

  8. Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland

    SciTech Connect

    Choi, Jayne; Ludwig, Peter; Brand, Larry

    2012-08-01

    Older heating systems often suffer from mis-investment--multiple contractors upgrading parts of systems in inadequate or inappropriate ways that reduce system functionality and efficiency--or from a lack of proper maintenance. This technical report addresses these barriers to information, contractor resources, and cost-savings. Building off of previous research, CNT Energy conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam system balancing.

  9. California Solar Initiative- Multi-Family Affordable Solar Housing (MASH) Program

    Energy.gov [DOE]

    The California Solar Initiative (CSI), enacted by SB 1 of 2006, provides financial incentives to customers in investor-owned utility (IOU) territories of Pacific Gas and Electric Company (PG&...

  10. Evaluation of a Multifamily Retrofit in Climate Zone 5, Boulder, Colorado (Fact Sheet)

    SciTech Connect

    Not Available

    2013-11-01

    In 2009, a 37-unit apartment complex located in Boulder, Colorado, underwent an energy retrofit to comply with Boulder SmartRegs Ordinance, a mandate that requires all rental properties to meet certain energy efficiency standards by 2018. The Consortium of Advanced Residential Buildings (CARB), a U.S. Department of Energy Building America team, worked with city planners and building owners to evaluate this program and recently completed a case study evaluating the effectiveness of a collection of retrofit measures.

  11. Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland - Second Year of Data Collection

    SciTech Connect

    Choi, J.; Ludwig, P.; Brand, L.

    2013-08-01

    Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources. Building on previous research, CNT Energy identified 10 test buildings in Chicago and conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam system balancing. A package of common steam balancing measures was assembled and data were collected on the buildings before and after these retrofits were installed to investigate the process, challenges, and the cost effectiveness of improving steam systems through improved venting and control systems. The test buildings that received venting upgrades and new control systems showed 10.2% savings on their natural gas heating load, with a simple payback of 5.1 years. The methodologies for and findings from this study are presented in detail in this report. This report has been updated from a version published in August 2012 to include natural gas usage information from the 2012 heating season and updated natural gas savings calculations.

  12. Energy Savers: A one-stop energy efficiency shop for multifamily building owners

    Energy.gov [DOE]

    This is a document from Energy Impact Illinois posted on the website of U.S. Department of Energy's Better Buildings Neighborhood Program.

  13. Efficient Solutions for Existing Homes Case Study: Rehabilitations of USDA Multifamily Homes

    Energy.gov [DOE]

    Rea Ventures Group, LLC, partnered with Southface Energy Institute (Southface), a member of the U.S. Department of Energy's Partnership for Home Innovation Building America research team, to...

  14. Better Buildings Residential Network Peer Exchange Call Series: America's got Multifamily Talent (201)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Peer Exchange Call Series: Call Slides and Discussion Summary September 15, 2016 (201) Agenda  Agenda Review and Ground Rules  Opening Polls  Brief Residential Network Overview  Contestants:  Rebecca Schaaf, Senior Vice President, Energy SAHF (Network Member)  Ravi Malhotra, Founder and President, ICAST USA (Network Member)  Dan Teague, Business Development, WegoWise  Discussion:  What is the biggest obstacle you would face in embracing (or expanding) data

  15. Technology Solutions for Existing Homes Overview: Quantifying the Financial Benefits of Multifamily Retrofits

    Office of Energy Efficiency and Renewable Energy (EERE)

    In this project, the U.S. Department of Energy Building America team Partnership for Advanced Residential Retrofit (PARR) worked with Elevate Energy on three tasks: to conduct pre- and post...

  16. Technology Solutions Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts

    SciTech Connect

    2014-11-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency, which faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68°F) than day (73° F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  17. Technology Solutions Case Study: Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois

    SciTech Connect

    2013-10-01

    Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources.

  18. Building America Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts (Fact Sheet)

    SciTech Connect

    Not Available

    2014-11-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  19. Leveraging Limited Scope for Maximum Benefit in Occupied Renovation of Uninsulated Cold Climate Multifamily Housing

    SciTech Connect

    Neuhauser, K.; Bergey, D.; Osser, R.

    2012-03-01

    This project examines a large-scale renovation project within a 500 unit, 1960's era subsidized urban housing community. This research focuses on the airflow control and window replacement measures implemented as part of the renovations to the low-rise apartment buildings. The window replacement reduced the nominal conductive loss of the apartment enclosure by approximately 15%; air sealing measures reduced measured air leakage by approximately 40% on average.

  20. Technology Solutions Case Study: Evaluation of Passive Vents in New-Construction Multifamily Buildings

    SciTech Connect

    S. Puttagunta, S. Maxwell, D. Berger, and M. Zuluaga

    2015-10-01

    The Consortium for Advanced Residential Buildings (CARB) conducted research to gain more insight into passive vents. Because passive vents are meant to operate in a general environment of negative apartment pressure, the research assessed whether these negative pressures prevail through a variety of environmental conditions.

  1. combined_supplemental_hud_multifamily_weatherization_list_3-2A...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3-2A.xls combinedsupplementalhudmultifamilyweatherizationlist3-2A.xls combinedsupplementalhudmultifamilyweatherizationlist3-2A.xls More Documents & Publications...

  2. Technology Solutions Case Study: Low-Load Space-Conditioning Needs Assessment

    SciTech Connect

    2015-07-01

    Low-load options in the heating, ventilating, and air-conditioning (HVAC) market are limited, so many new-construction housing units are being fitted with oversized equipment that results in penalties in system efficiency, comfort, and cost. To bridge the gap between currently available HVAC equipment and the rising demand for low-load HVAC equipment in the marketplace, HVAC equipment manufacturers need to be fully aware of the needs of the multifamily building and attached single-family home markets. Over the past decade, Steven Winter Associates, Inc. has provided certification and consulting services for hundreds of housing projects and has accrued a large pool of data that describe multifamily and attached single-family home characteristics. In this project, the research team Consortium for Advanced Residential Buildings (CARB) compiled and analyzed the data from 941 low-load buildings in the Northeast and Mid-Atlantic regions to outline the heating and cooling design load characteristics of low-load dwellings. Within this data set, CARB found that only 1% of the dwellings had right-sized (within 25% of design load) heating equipment and 6% had right-sized cooling equipment.

  3. Mo{sub 2}NiB{sub 2}-type (Gd, Tb, Dy){sub 2}Ni{sub 2.35}Si{sub 0.65} and La{sub 2}Ni{sub 3}-type (Dy, Ho){sub 2}Ni{sub 2.5}Si{sub 0.5} compounds: Crystal structure and magnetic properties

    SciTech Connect

    Morozkin, A.V.; Isnard, O.; Nirmala, R.; Malik, S.K.

    2015-05-15

    The crystal structure of new Mo{sub 2}NiB{sub 2}-type (Gd, Tb, Dy){sub 2}Ni{sub 2.35}Si{sub 0.65} (Immm, No. 71, oI10) and La{sub 2}Ni{sub 3}-type (Dy, Ho){sub 2}Ni{sub 2.5}Si{sub 0.5} (Cmce No. 64, oC20) compounds has been established using powder X-ray diffraction studies. Magnetization measurements show that the Mo{sub 2}NiB{sub 2}-type Gd{sub 2}Ni{sub 2.35}Si{sub 0.65} undergoes a ferromagnetic transition at ~66 K, whereas isostructural Tb{sub 2}Ni{sub 2.35}Si{sub 0.65} shows an antiferromagnetic transition at ~52 K and a field-induced metamagnetic transition at low temperatures. Neutron diffraction study shows that, in zero applied field, Tb{sub 2}Ni{sub 2.35}Si{sub 0.65} exhibits c-axis antiferromagnetic order with propagation vector K=[1/2, 0, 1/2] below its magnetic ordering temperature and Tb magnetic moment reaches a value of 8.32(5) μ{sub B} at 2 K. The La{sub 2}Ni{sub 3}-type Dy{sub 2}Ni{sub 2.5}Si{sub 0.5} exhibits ferromagnetic like transition at ~42 K with coexisting antiferromagnetic interactions and field induced metamagnetic transition below ~17 K. The magnetocaloric effect of Gd{sub 2}Ni{sub 2.35}Si{sub 0.65}, Tb{sub 2}Ni{sub 2.35}Si{sub 0.65} and Dy{sub 2}Ni{sub 2.5}Si{sub 0.5} is calculated in terms of isothermal magnetic entropy change and it reaches a maximum value of −14.3 J/kg K, −5.3 J/kg K and −10.3 J/kg K for a field change of 50 kOe near 66 K, 52 K and 42 K, respectively. Low temperature magnetic ordering with enhanced anisotropic effects in Tb{sub 2}Ni{sub 2.35}Si{sub 0.65} and Dy{sub 2}Ni{sub 2.35}Si{sub 0.65} is accompanied by a positive magnetocaloric effect with isothermal magnetic entropy changes of +12.8 J/kg K and ~+9.9 J/kg K, respectively at 7 K for a field change of 50 kOe. - Graphical abstract: The (Gd, Tb, Dy){sub 2}Ni{sub 2.35}Si{sub 0.65} supplement the series of Mo{sub 2}NiB{sub 2}-type rare earth compounds, whereas the (Dy, Ho){sub 2}Ni{sub 2.5}Si{sub 0.5} supplement the series of La{sub 2}Ni{sub 3}-type rare

  4. ITP Industrial Distributed Energy: Combined Heat & Power Multifamily Performance Program-- Sea Park East 150 kW CHP System

    Energy.gov [DOE]

    Overview of Sea Park East 150 kilowatt (kW) Combined Heat and Power (CHP) System in Brooklyn, New York

  5. Iowa Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Iowa homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Iowa homeowners will save $7,573 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $454 for the 2012 IECC.

  6. Massachusetts Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Massachusetts homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Massachusetts homeowners will save $10,848 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $621 for the 2012 IECC.

  7. Rhode Island Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Rhode Island homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Rhode Island homeowners will save $11,011 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $629 for the 2012 IECC.

  8. Ohio Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Ohio homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Ohio homeowners will save $5,151 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $330 for the 2012 IECC.

  9. Pennsylvania Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IRC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Pennsylvania homeowners. Moving to the 2012 IECC from Chapter 11 of the 2009 International Residential Code (IRC) is cost-effective over a 30-year life cycle. On average, Pennsylvania homeowners will save $8,632 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $515 for the 2012 IECC.

  10. Nevada Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Nevada homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Nevada homeowners will save $4,736 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 2 years for the 2012 IECC. Average annual energy savings are $360 for the 2012 IECC.

  11. Idaho Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Idaho homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Idaho homeowners will save $4,057 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $285 for the 2012 IECC.

  12. Delaware Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Delaware homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Delaware homeowners will save $10,409 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $616 for the 2012 IECC.

  13. Existing Whole-House Solutions Case Study: Evaluation of a Multifamily Retrofit in Climate Zone 5, Boulder, Colorado

    SciTech Connect

    2013-11-01

    In 2009, a 37-unit apartment complex located in Boulder, Colorado, underwent an energy retrofit to comply with Boulder SmartRegs Ordinance, a mandate that requires all rental properties to meet certain energy efficiency standards by 2018. The Consortium of Advanced Residential Buildings (CARB), a U.S. Department of Energy Building America team, worked with city planners and building owners to evaluate this program and recently completed a case study evaluating the effectiveness of a collection of retrofit measures.

  14. Oklahoma Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IRC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Oklahoma homeowners. Moving to the 2012 IECC from Chapter 11 of the 2009 International Residential Code (IRC) is cost effective over a 30-year life cycle. On average, Oklahoma homeowners will save $5,786 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $408 for the 2012 IECC.

  15. WPN 11-9: Updated Guidance on Eligible Multifamily Property Listings for Use in the Weatherization Assistance Program

    Energy.gov [DOE]

    To notify interested parties of supplemental listings of properties that have been determined to meet certain criteria under the Weatherization Assistance Program (WAP).

  16. Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings- Steam Systems, Retrofit Measure Packages, Hydronic Systems

    Energy.gov [DOE]

    This presentation is included in the July 16, 2014, Building America webinar, and provides information about best practices, costs, and savings associated with optimizing steam and hydronic systems through increased main line air venting, replacing radiator vents, improving circulation pump efficiency, and upgrading boiler control systems.

  17. Tax Credits, Rebates & Savings | Department of Energy

    Energy.gov [DOE] (indexed site)

    and property managers of apartments and other multi-family properties for making energy efficiency... Eligibility: Commercial, Construction, Multifamily Residential Savings...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Energy.gov [DOE] (indexed site)

    Illinois (Electric & Gas)- Multi-Family Properties Energy Efficiency Incentives The shell measure segment offers incentives for air sealing the shell of multifamily buildings....

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Equipment, LED Lighting, Commercial Refrigeration Equipment Austin Energy- Multi-Family Energy Efficiency Rebate Program The Austin Energy Multi-Family Program provides cash...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Energy.gov [DOE] (indexed site)

    Austin Energy- Multi-Family Energy Efficiency Rebate Program The Austin Energy Multi-Family Program provides cash incentives to owners, developers, and property managers of...