National Library of Energy BETA

Sample records for mound brine tank

  1. POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS

    SciTech Connect

    Eibling, R; Erich Hansen, E; Bradley Pickenheim, B

    2007-03-29

    High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the material transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the amount of

  2. Evaluation of brine disposal from the Bryan Mound site of the strategic petroleum reserve program. Final report

    SciTech Connect

    Case, Robert J.; Chittenden, Jr, Mark E.; Harper, Jr, Donald E.; Kelly, Jr, Francis J.; Loeblich, Laurel A.; McKinney, Larry D.; Minello, Thomas J.; Park, E. Taisoo; Randall, Robert E.; Slowey, J. Frank

    1981-01-01

    On March 10, 1980, the Department of Energy's Strategic Petroleum Reserve Program began leaching the Bryan Mound salt dome and discharging the resulting brine into the coastal waters off Freeport, Texas. During the months of March and April, a team of scientists and engineers from Texas A and M University conducted an intensive environmental study of the area surrounding the diffuser site. A pipeline has been laid from the Bryan Mound site to a location 12.5 statute miles (20 km) offshore. The last 3060 ft (933 m) of this pipeline is a 52-port diffuser through which brine can be discharged at a maximum rate of 680,000 barrels per day. Initially, 16 ports were open which permitted a maximum discharge rate of 350,000 barrels per day and a continuous brine discharge was achieved on March 13, 1980. The purpose of this report is to describe the findings of the project team during the intensive postdisposal study period of March and April, 1980. The major areas of investigation are physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos, phytoplankton, zooplankton, and data management.

  3. Environmental assessment of the brine pipeline replacement for the Strategic Petroleum Reserve Bryan Mound Facility in Brazoria County, Texas

    SciTech Connect

    Not Available

    1993-09-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0804, for the proposed replacement of a deteriorated brine disposal pipeline from the Strategic Petroleum Reserve (SPR) Bryan Mound storage facility in Brazoria County, Texas, into the Gulf of Mexico. In addition, the ocean discharge outfall would be moved shoreward by locating the brine diffuser at the end of the pipeline 3.5 miles offshore at a minimum depth of 30 feet. The action would occur in a floodplain and wetlands; therefore, a floodplain/wetlands assessment has been prepared in conjunction with this EA. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 USC. 4321, et seg.). Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact (FONSI). This FONSI also includes a Floodplain Statement of Findings in accordance with 10 CFR Part 1022.

  4. Shrimp and redfish studies, bryan mound brine disposal site off Freeport, Texas, 1979-1981. Volume IV. Interview sampling survey of shrimp catch and effort. Technical memo

    SciTech Connect

    Johnson, M.F.

    1981-06-01

    An interview sampling survey of shrimp catch and fishing effort was conducted at specified ports along the Texas coast to strengthen the information base required to determine the effect of the disposal of brine from the Bryan Mound salt dome off Freeport, Texas on commercial brown shrimp (Penaeus aztecus) and white shrimp (Penaeus setiferus) populations in the Gulf of Mexico. The data recorded included port number, vessel name, official vessel number, shrimp dealer number, date of landing, area fished, depth of capture, days fished, and pounds of shrimp caught by species and size categories.

  5. Evaluation of brine disposal from the Bryan Mound site of the Strategic Petroleum Reserve Program. Final report

    SciTech Connect

    Hann, R.W. Jr.; Randall, R.E.

    1980-12-01

    The purpose of this report is to describe the environmental conditions found by the principal investigators during the predisposal study conducted from September 1977 through February 1980 prior to the start of brine discharge in March 1980. The major areas of investigation are physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos, phytoplankton, zooplankton, and data management. Volume 1 describes the results of the predisposal study, and it is divided into eight chapters entitled: Physical Oceanography, Analysis of the Discharge Plume, Water and Sediment Quality, Nekton, Benthos, Zooplankton, Phytoplankton, and Data Management. Volume 2 consists of appendices which contain additional supporting data in the form of figures and tables.

  6. Accident Investigation of the February 7, 2013, Scissor Lift Accident in the West Hackberry Brine Tank-14 Resulting in Injury, Strategic Petroleum Reserve West Hackberry, LA

    Energy.gov [DOE]

    On February 15, 2013, an Accident Investigation Board (the Board) was appointed to investigate an accident that resulted in serious injuries caused when a scissor lift tipped over in Brine Tank-14 (WHT-14) at the Strategic Petroleum Reserve, West Hackberry, Louisiana, site on February 7, 2013. The Board’s responsibilities have been completed with respect to this investigation. The analysis and the identification of the direct cause, root causes, contributing causes, and judgments of need resulting from this investigation were performed in accordance with the Department of Energy (DOE) Order 225.1B, Accident Investigations.

  7. Monsanto MOUND FACILITY

    Office of Legacy Management (LM)

    Monsanto . MOUND FACILITY Operated for the United States Department of Energy March 26, 1981 Dr. William E. Mott, Director Environmental and Safety Engineering Division U. S. ...

  8. MOUND Environmental Restoration Program

    Office of Legacy Management (LM)

    ... Th de two aboveground propane tanks (Building 43 tank and' Building nk) and two piec ... The sandblasting operations were part of the cleaning of the large clariflocculator tanks ...

  9. Mound Supports Galileo

    SciTech Connect

    Monsanto Research Corporation

    1986-01-01

    This video describes the invention of Radioisotope Thermoelectric Generators (RTGs) at Mound Laboratory, and radioisotope heat source production from 1 watt-thermal to 2400 watts-thermal. RTGs have been used in many space vehicles, but the RTG built for the Galileo mission to orbit Jupiter is the largest. This RTG unit will produce 4400 watts-thermal and convert to 300 watts-electric. The plutonium-238 heat source assembly and test at Mound is described. The RTGs are tested under simulated mission conditions. The RTG leakage radiation is carefully measured for background compensation for on-board radiation monitoring instruments.

  10. Mound, Ohio, Site Fact Sheet

    Office of Legacy Management (LM)

    Mound, Ohio, Site This fact sheet provides information about the Mound, Ohio, Site. These sites are managed by the U.S. Department of Energy Office of Legacy Management under the Comprehensive Environmental Response, Compensation, and Liability Act. Location of the Mound, Ohio, Site Site Description and History The Mound site 1 in Miamisburg, Ohio, named for a nearby Native American burial ground, is located approximately 10 miles southwest of Dayton, Ohio. The Great Miami River fows southwest

  11. Mound publications for 1991

    SciTech Connect

    Nowka, Stephen L.

    1992-05-01

    This document is a compilation of all Mound formal technical publications and oral presentations for calendar year 1991. It is intended to serve as an aid to personnel in obtaining or referring to specific publications by giving the proper complete reference for each information item published during the year. Some items, such as proceedings publications, may have issue dates or periods of coverage prior to 1991; however, they were formally published during 1991.

  12. Mound facility physical characterization

    SciTech Connect

    Tonne, W.R.; Alexander, B.M.; Cage, M.R.; Hase, E.H.; Schmidt, M.J.; Schneider, J.E.; Slusher, W.; Todd, J.E.

    1993-12-01

    The purpose of this report is to provide a baseline physical characterization of Mound`s facilities as of September 1993. The baseline characterizations are to be used in the development of long-term future use strategy development for the Mound site. This document describes the current missions and alternative future use scenarios for each building. Current mission descriptions cover facility capabilities, physical resources required to support operations, current safety envelope and current status of facilities. Future use scenarios identify potential alternative future uses, facility modifications required for likely use, facility modifications of other uses, changes to safety envelope for the likely use, cleanup criteria for each future use scenario, and disposition of surplus equipment. This Introductory Chapter includes an Executive Summary that contains narrative on the Functional Unit Material Condition, Current Facility Status, Listing of Buildings, Space Plans, Summary of Maintenance Program and Repair Backlog, Environmental Restoration, and Decontamination and Decommissioning Programs. Under Section B, Site Description, is a brief listing of the Site PS Development, as well as Current Utility Sources. Section C contains Site Assumptions. A Maintenance Program Overview, as well as Current Deficiencies, is contained within the Maintenance Program Chapter.

  13. EIS-0001: Strategic Petroleum Reserve, Bryan Mound Salt Dome, Brazoria County, Texas

    Energy.gov [DOE]

    The Strategic Petroleum Reserve prepared this SEIS to address the environmental impacts of construction and operation of two types of brine disposal systems and a new water supply system. This EIS supplements FES 76/77-6, Bryan Mound Storage Site.

  14. Tank 12H residuals sample analysis report

    SciTech Connect

    Oji, L. N.; Shine, E. P.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.

    2015-06-11

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 12H final characterization samples to determine the residual tank inventory prior to grouting. Eleven Tank 12H floor and mound residual material samples and three cooling coil scrape samples were collected and delivered to SRNL between May and August of 2014.

  15. EIS-0014: Mound Facility, Miamisburg, Ohio

    Energy.gov [DOE]

    The U.S. Department of Energy prepared this EIS to assess the environmental implications of its continuing and future programs at the Mound Facility (formerly designated Mound Laboratory), located in Miamisburg, Ohio.

  16. Mounded LPG storage - Experience and developments

    SciTech Connect

    Barber, D.

    1988-01-01

    Liquefied petroleum gas (LPG) is stored after production, and for distribution and use, in pressure vessels which vary in size from a few kilogrammes to many thousands of tons. The types of LPG under consideration are commercial butane, commercial propane, or mixtures of the two gases in varying proportions. Mounded storage systems are becoming popular as an alternative to the better-known traditional systems. The most widely used and therefore best-known of the traditional systems are the above-ground pressure-vessel designs. These more commonly comprise factory-made cylinders which are installed horizontally, being supported on saddles at each end of the vessel. When such vessels are installed in an LPG terminal, depot, or filling plant, they are required in multiple units to facilitate the storage of more than one grade of product and to enable regular maintenance and inspection to be carried out. Today's safety regulations require such installations to be divided into sub-groups of six tanks, with all the tanks located at a safe distance from one another, and from other facilities in the immediate area. These safety distances are being increased as a result of experience, which means terminals now require large areas of land.

  17. Viscous heavy brines

    SciTech Connect

    House, R.F.; Hoover, L.D.

    1984-07-10

    Hydroxyethyl cellulose and a sequestrant are added to a heavy brine containing one or more salts selected from calcium chloride, calcium bromide, and zinc bromide to increase the viscosity of the brine. Preferably the brine contains zinc bromide, has a density in the range from about 14.2-19.2 pounds per gallon, and the sequestrant is a polyphosphonic acid or water soluble salt thereof.

  18. Microsoft Word - 20110322_MoundNotice.docx

    Office of Legacy Management (LM)

    Legal Notice for Mound Site 2011 CERCLA Five-Year Review has been removed from the LM website. This document is outdated and no longer neededrequired...

  19. Thickened heavy brines

    SciTech Connect

    House, R.F.; Hoover, L.D.

    1983-12-13

    A thickened brine solution useful as a well servicing fluid is prepared, said solution consisting essentially of water, at least 20% by weight zinc bromide, calcium bromide, and a viscosifying amount of hydroxyethyl cellulose.

  20. Mound Site Community Involvement Plan 2012

    Office of Legacy Management (LM)

    Involvement Plan for the U.S. Department of Energy Mound, Ohio, Site January 2015 LMS/MND/S02885-0.0 This page intentionally left blank U.S. Department of Energy Mound Community Involvement Plan January 2015 Doc. No. S02885-0.0 Page i Contents Abbreviations .................................................................................................................................. ii 1.0 Purpose and Introduction

  1. Sulphur Extraction at Bryan Mound

    SciTech Connect

    Kirby, Carolyn L; Lord, Anna C. Snider

    2015-08-01

    The Bryan Mound caprock was subjected to extens ive sulphur mining prior to the development of the Strategic Petroleum Reserve. Undoubtedl y, the mining has modified the caprock integrity. Cavern wells at Bryan Mound have been subject to a host of well integr ity concerns with many likely compromised by the cavernous capro ck, surrounding corrosive environment (H 2 SO 4 ), and associated elevated residual temperatures al l of which are a product of the mining activities. The intent of this study was to understand the sulphur mining process and how the mining has affected the stability of the caprock and how the compromised caprock has influenced the integrity of the cavern wells. After an extensiv e search to collect pert inent information through state agencies, literature sear ches, and the Sandia SPR librar y, a better understanding of the caprock can be inferred from the knowledge gaine d. Specifically, the discovery of the original ore reserve map goes a long way towards modeling caprock stability. In addition the gained knowledge of sulphur mining - subs idence, superheated corrosive wa ters, and caprock collapse - helps to better predict the post mi ning effects on wellbore integrity. This page intentionally left blank

  2. Brine stability study

    SciTech Connect

    Gary Garland

    2015-04-15

    This is a study of the brine formulations that we were using in our testing were stable over time. The data includes charts, as well as, all of the original data from the ICP-MS runs to complete this study.

  3. Reindustrialization Workshop Held at Mound Site

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has partnered with local communities to determine the best reuse of land, assets, and facilities, and the Mound-site community is no exception. In May, DOE’s...

  4. DOE - Office of Legacy Management -- Mound Site

    Office of Legacy Management (LM)

    Ohio Mound, Ohio, Site Site Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents Fact Sheet Annual Institutional Controls Report Community Involvement Plan Long-Term Surveillance and Maintenance Plan Operations and Maintenance Plan Internal Links Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Administrative Records External Links Mound Development Corporation (MDC) Ohio Environmental Protection Agency U.S. Environmental Protection

  5. Enforcement Letter, EG&G Mound Applied Technologies- August 22, 1996

    Energy.gov [DOE]

    Issued to EG&G Mound Applied Technologies related to the Inadvertent Transfer of Radiological Contamination at the Mound Plant

  6. City of Blue Mound, Kansas (Utility Company) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Mound, Kansas (Utility Company) Jump to: navigation, search Name: City of Blue Mound Place: Kansas Phone Number: (913) 756-2447 Outage Hotline: (913) 756-2447 References: EIA Form...

  7. Mound, Ohio, Second Five-Year Review

    Office of Legacy Management (LM)

    Report Second Five-Year Review for the Mound, Ohio, Site Miamisburg, Ohio September 2006 Office of Legacy Management DOE M/1308-2006 -L Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy U.S. Department of Energy Mound, Ohio, Second Five-Year Review September 2006

  8. Offshore oceanographic and environmental monitoring services for the Strategic Petroleum Reserve. Volume I. Appendices. Annual report for the Bryan Mound Site, September 1982-August 1983

    SciTech Connect

    1984-03-01

    The Department of Energy's Strategic Petroleum Reserve Program began leaching the Bryan Mound salt dome and discharging brine into the coastal waters offshore of Freeport, Texas on March 10, 1980. This report describes the findings of a team of Texas A and M University scientists and engineers who have conducted a study to evaluate the effects of the Bryan Mound brine discharge on the marine environment. The study addresses the areas of physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos and data management. It focuses on the period from September 1982 through August 1983. The ambient physical environment and its temporal and spatial variability were studied by means of continuously recording in situ current/conductivitiy/temperature meters and twelve, one-day synoptic hydrographic cruises. The quarterly water and sediment quality data show a small increase in salinity, sodium and chloride ions occurs in the bottom waters and sediment pore waters near the diffuser relative to those values measured at stations farther away. Data from the brine plume study for this reporting study show the largest areal extent within the +1 o/oo above ambient salinity contour was 40.0 km/sup 2/ which occurred on August 11, 1983. It appears that brine disposal at Bryan Mound has had neglible if any influence on the nekton community surrounding the diffuser. The benthic quarterly data from 26 stations, including 7 collections made after the diffuser outflow rate was increased to 1,000,000 barrels/day, show the total numbers of species at the diffuser station were higher than most other nearfield stations as well as many farfield stations in both the pre- and post-1,000,000 barrels/day brine flow periods. 138 references, 175 figures, 53 tables.

  9. Mound site environmental report for calendar year 1991

    SciTech Connect

    Bauer, L.R.

    1992-06-01

    Mound is a government-owned facility operated by EG&G Mound Applied Technologies for the U.S. Department of Energy (DOE). This integrated production, development, and research site performs work in support of DOE`s weapon and energy related programs, with emphasis on explosive, nuclear, and energy technology. The purpose of this report is to inform the public about the impact of Mound`s operations on the population and the environment. This report summarizes data from the Environmental Monitoring Program, through which Mound maintains continuous surveillance of radiological and nonradiological substances released from the facility.

  10. Independent technical review of the Mound Plant

    SciTech Connect

    Not Available

    1994-06-01

    This report documents an Independent Technical Review (ITR) of the facilities, organizations, plans, and activities required to transition particular elements of the Mound Plant from Defense Program (DP) funded operation as appropriate either to community developed reuse or safe deactivation leading to decontamination and decommissioning (D&D). The review was conducted at the request of the Dr. Willis Bixby, Deputy Assistant Secretary, U.S. Department of Energy EM-60, Office of Facility Transition and Management and is a consensus of the nine member ITR Team. Information for the review was drawn from documents provided to the ITR Team by the Miamisburg Area Office (MB) of the DOE, EG&G, the City of Miamisburg, and others; and from presentations, discussions, interviews, and facility inspections at the Mound Plant during the weeks of March 14 and March 28, 1994. During the week of April 25, 1994, the ITR Team met at Los Alamos, New Mexico to develop consensus recommendations. A presentation of the core recommendations was made at the Mound Plant on May 5, 1994. This is an independent assessment of information available to, and used by, the Mound Plant personnel. Repetition of the information is not meant to imply discovery by the ITR Team. Team members, however, acting as independent reviewers, frequently assess the information from a perspective that differs significantly from that of the Mound Plant personnel. The report is based on information obtained and conditions observed during the March 1994 review interval. The ITR process and normal site work often initiate rapid, beneficial changes in understanding and organization immediately following the review. These changes frequently alter conditions observed during the review, but the report does not address changes subsequent to the review interval.

  11. CX-009718: Categorical Exclusion Determination

    Energy.gov [DOE]

    Replace Brine Disposal System Header to Bryan Mound Brine Tank, GFE CX(s) Applied: B1.3 Date: 12/11/2012 Location(s): Texas Offices(s): Strategic Petroleum Reserve Field Office

  12. Mound site environmental report for calendar year 1992

    SciTech Connect

    Bauer, L.R.

    1993-07-01

    The purpose of this report is to inform the public about the impact of Mound operations on the population and the environment. Mound is a government-owned facility operated by EG&G Mound Applied Technologies for the US Department of Energy (DOE). This integrated production, development, and research site performs work in support of DOE`s weapon and energy related programs, with emphasis on explosive, nuclear and energy technologies.

  13. DOE - Office of Legacy Management -- Mound_Benefits

    Office of Legacy Management (LM)

    Ohio > Mound_Benefits Mound, Ohio, Site Former Workers' Employment Verification and Benefits Administration Contractor Employment Verification Mercer, Mound Benefits Center (866) 296-5036 Medical and Life Insurance for Former EG&G, BWXTO, and CH2M HILL Employees For questions about health insurance coverage and/or dependent information, life insurance and/or beneficiaries, etc.: Mound Benefits Center P.O. Box 10361 Des Moines, IA 50306-0361 Benefit Center Website (866) 296-5036 9:00 a.m.

  14. Mound Museum Volunteers: Preserving a Laboratory’s Legacy

    Energy.gov [DOE]

    The Mound Science and Energy Museum (MSEM) owes its success to dedicated volunteers and supporters. The MSEM currently has 40 active volunteers and 200 dues-paying members.

  15. Miamisburg Mound Community Improvement Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    finances; Manufacturing; Research and development; Trainining and education;Other:Economic Development Phone Number: 937-865-4462 Website: www.mound.com...

  16. Renewed Importance of the Mound Site Annual Institutional Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Annual, routine IC inspections are conducted at many LM sites. However, inspections at the Mound site are anything but routine, due to its unique nature. 1862.jpg Collaboration ...

  17. Enforcement Letter-Mound-08/22/1996

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy (DOE) by EG&G Mound (EG&G) in the Noncompliance Tracking System (NTS). ... We also reviewed your Contamination Control Review Team investigation report which ...

  18. Gas evolution from geopressured brines

    SciTech Connect

    Matthews, C.S.

    1980-06-01

    The process of gas evolution from geopressured brine is examined using as a basis the many past studies of gas evolution from liquids in porous media. A discussion of a number of speculations that have been made concerning gas evolution from geopressured brines is provided. According to one, rapid pressure reduction will cause methane gas to evolve as when one opens a champagne bottle. It has been further speculated that evolved methane gas would migrate up to form an easily producible cap. As a result of detailed analyses, it can be concluded that methane gas evolution from geopressured brines is far too small to ever form a connected gas saturation except very near to the producing well. Thus, no significant gas cap could ever form. Because of the very low solubility of methaned in brine, the process of methane gas evolution is not at all analogous to evolution of carbon dioxide from champagne. A number of other speculations and questions on gas evolution are analyzed, and procedures for completing wells and testing geopressured brine reservoirs are discussed, with the conclusion that presently used procedures will provide adequate data to enable a good evaluation of this resource.

  19. Tank Closure

    Office of Environmental Management (EM)

    of SRS Tank Closure Program Two Tank Farms - F Area and H Area Permitted by SC as Industrial Wastewater Facilities under the Pollution Control Act Three agency Federal...

  20. Batteries from Brine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Batteries from Brine Batteries from Brine March 31, 2014 - 2:59pm Addthis Low-temp geothermal technologies are meeting a growing demand for strategic materials in clean manufacturing. Here, lithium is extracted from geothermal brines in California. Low-temp geothermal technologies are meeting a growing demand for strategic materials in clean manufacturing. Here, lithium is extracted from geothermal brines in California. Consumer uses of lithium batteries have soared over the last decade,

  1. Brine Sampling and Evaluation Program, 1991 report

    SciTech Connect

    Deal, D.E.; Abitz, R.J.; Myers, J.; Martin, M.L.; Milligan, D.J.; Sobocinski, R.W.; Lipponer, P.P.J.; Belski, D.S.

    1993-09-01

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plan (WIPP) during 1991. These BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. When excavations began at the WIPP in 1982, small brine seepages (weeps) were observed on the walls. Brine studies began as part of the Site Validation Program and were formalized as a program in its own right in 1985. During nine years of observations (1982--1991), evidence has mounted that the amount of brine seeping into the WIPP excavations is limited, local, and only a small fraction of that required to produce hydrogen gas by corroding the metal in the waste drums and waste inventory. The data through 1990 is discussed in detail and summarized by Deal and others (1991). The data presented in this report describes progress made during the calendar year 1991 and focuses on four major areas: (1) quantification of the amount of brine seeping across vertical surfaces in the WIPP excavations (brine ``weeps); (2) monitoring of brine inflow, e.g., measuring brines recovered from holes drilled downward from the underground drifts (downholes), upward from the underground drifts (upholes), and from subhorizontal holes; (3) further characterization of brine geochemistry; and (4) preliminary quantification of the amount of brine that might be released by squeezing the underconsolidated clays present in the Salado Formation.

  2. Viscous heavy brine completion fluids. [Oil wells

    SciTech Connect

    Darlington, R.K.; Hunter, D.V.

    1982-01-01

    An activated hydroxyethyl cellulose (HEC) has been developed which will viscosify brines of any density up to 19.2 lb/gal containing calcium chloride, calcium bromide and/or zinc bromide. The use of activated hydroxyethyl cellulose allows preparation of viscosified brines at ambient emperature and without undissolved polymer solids. The time required to prepare a viscosified brine is greatly reduced. In addition, the rheology of brines viscosified with activated HEC can be accurately predicted allowing brines with equivalent solution rheology properties to be prepared batch after batch. 29 refs.

  3. Environmental assessment for Mound Plant decontamination and decommissioning projects, Mound Plant, Miamisburg, Ohio

    SciTech Connect

    1995-05-01

    The U.S. Department of Energy (DOE) has prepared an Environmental Assessment (EA) for seven decontamination and decommissioning (D&D) projects at the Mound Plant in Miamisburg, Ohio, that have not been previously addressed in the Final Environmental Impact Statement for the Mound Facility (June 1979). Based on the information presented in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and the Department is issuing this Finding of No Significant Impact (FONSI).

  4. Improved Water Flooding through Injection Brine Modification

    SciTech Connect

    Robertson, Eric Partridge; Thomas, Charles Phillip; Morrow, Norman

    2003-01-01

    Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of waterflooding, by far the most widely applied method of improved oil recovery. Laboratory waterflood tests show that injection of dilute brine can increase oil recovery. Numerous fields in the Powder River basin have been waterflooded using low salinity brine (about 500 ppm) from the Madison limestone or Fox Hills sandstone. Although many uncertainties arise in the interpretation and comparison of field production data, injection of low salinity brine appears to give higher recovery compared to brine of moderate salinity (about 7,000 ppm). Laboratory studies of the effect of brine composition on oil recovery cover a wide range of rock types and crude oils. Oil recovery increases using low salinity brine as the injection water ranged from a low of no notable increase to as much as 37.0% depending on the system being studied. Recovery increases using low salinity brine after establishing residual oil saturation (tertiary mode) ranged from no significant increase to 6.0%. Tests with two sets of reservoir cores and crude oil indicated slight improvement in recovery for low salinity brine. Crude oil type and rock type (particularly the presence and distribution of kaolinite) both play a dominant role in the effect that brine composition has on waterflood oil recovery.

  5. Strategic Petroleum Reserve (SPR) additional geologic site characterization studies, Bryan Mound Salt Dome, Texas

    SciTech Connect

    Neal, J.T.; Magorian, T.R.; Ahmad, S.

    1994-11-01

    This report revises the original report that was published in 1980. Some of the topics covered in the earlier report were provisional and it is now practicable to reexamine them using new or revised geotechnical data and that obtained from SPR cavern operations, which involves 16 new caverns. Revised structure maps and sections show interpretative differences as compared with the 1980 report and more definition in the dome shape and caprock structural contours, especially a major southeast-northwest trending anomalous zone. The original interpretation was of westward tilt of the dome, this revision shows a tilt to the southeast, consistent with other gravity and seismic data. This interpretation refines the evaluation of additional cavern space, by adding more salt buffer and allowing several more caverns. Additional storage space is constrained on this nearly full dome because of low-lying peripheral wetlands, but 60 MMBBL or more of additional volume could be gained in six or more new caverns. Subsidence values at Bryan Mound are among the lowest in the SPR system, averaging about 11 mm/yr (0.4 in/yr), but measurement and interpretation issues persist, as observed values are about the same as survey measurement accuracy. Periodic flooding is a continuing threat because of the coastal proximity and because peripheral portions of the site are at elevations less than 15 ft. This threat may increase slightly as future subsidence lowers the surface, but the amount is apt to be small. Caprock integrity may be affected by structural features, especially the faulting associated with anomalous zones. Injection wells have not been used extensively at Bryan Mound, but could be a practicable solution to future brine disposal needs. Environmental issues center on the areas of low elevation that are below 15 feet above mean sea level: the coastal proximity and lowland environment combined with the potential for flooding create conditions that require continuing surveillance.

  6. EA-1001: Commercialization of the Mound Plant, Golden, Colorado

    Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to commercialize surplus facilities such as the U.S. Department of Energy's Mound Plant in Miamisburg, Ohio.  Commercialization will make...

  7. EA-1239: Disposition of Mound Plant's South Property, Miamisburg, Ohio

    Energy.gov [DOE]

    DOE prepared an EA for the proposed title transfer of 123 acres of land referred to as the “South Property” at the Miamisburg Environmental Management Project Mound Plant in Miamisburg, Ohio.

  8. Blue Mounds, Wisconsin: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Blue Mounds is a village in Dane County, Wisconsin. It falls under Wisconsin's 2nd...

  9. Microsoft Word - S07757_2011 Mound IC Report

    Office of Legacy Management (LM)

    No. S07757 Page A-1 Scope: Entire Mound Site Preliminary inspections performed on: April 5 and 7, 2011 Physical Inspection Walk around on: April 12, 2011 Review led by: Art ...

  10. Renewed Importance of the Mound Site Annual Institutional Controls Assessments

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) completed its 2014 annual institutional controls (IC) assessment of the Mound site in Miamisburg, Ohio, and confirmed that the...

  11. Bryan Mound SPR cavern 113 remedial leach stage 1 analysis. ...

    Office of Scientific and Technical Information (OSTI)

    Title: Bryan Mound SPR cavern 113 remedial leach stage 1 analysis. The U.S. Strategic Petroleum Reserve implemented the first stage of a leach plan in 2011-2012 to expand storage ...

  12. DOE - Office of Legacy Management -- Mound Laboratory - OH 19

    Office of Legacy Management (LM)

    U.S. Department of Energy (DOE) Office of Legacy Management (LM) is conducting the fourth ... and current Office of Legacy Management activities at the Mound Site in Miamisburg, Ohio. ...

  13. Environmental assessment for commercialization of the Mound Plant

    SciTech Connect

    Not Available

    1994-10-26

    In November 1993 US DOE decided to phase out operations at the Mound Plant in Miamisburg, Ohio, with the goal of releasing the site for commercial use. The broad concept is to transform the plant into an advanced manufacturing center with the main focus on commercializing products and other technology. DOE proposes to lease portions of the Mound Plant to commercial enterprises. This Environmental Impact statement has a finding of no significant impact in reference to such action.

  14. Microsoft Word - S07757_2011 Mound IC Report

    Office of Legacy Management (LM)

    Site-Wide Institutional Controls Applied to the Former DOE Mound Site Property June 2011 LMS/MND/S07757 This page intentionally left blank LMS/MND/S07757 Annual Assessment of the Effectiveness of Site-Wide Institutional Controls Applied to the Former DOE Mound Site Property June 2011 This page intentionally left blank U.S. Department of Energy Annual Assessment of the Effectiveness of Site-Wide Institutional Controls June 2011 Doc. No. S07757 Page i Contents Abbreviations

  15. Brine disposal process for Morcinek coal mine

    SciTech Connect

    Tait, J.H.

    1995-04-01

    This paper describes the work to develop a commercial brine disposal process for the Morcinek mine, located 45 km south of the city of Katowice in Poland. Currently, brine is discharged into the Odra river and methane from the mine is released into the atmosphere. The process would use the released methane and convert a large percentage of the brine into potable water for commercial use. Thus, the proposed process has two environmental benefits. The brine salinity is about 31,100 ppm. Major brine components are Na (10,300 ppm), Ca (1,170 ppm), Mg (460 ppm), Cl (18,500 ppm) and SO{sub 4}{sup 2-} (252 ppm). Present in smaller amounts are K, S, Sr, B, Ba and NO{sub 3}. The process integrates a reverse osmosis (RO) unit and a submerged combustion evaporator. Extensive studies made at the Lawrence Livermore National Laboratory established the pretreatment method of the brine before it enters the RO unit. Without adequate pretreatment, mineral phases in the brine would become super-saturated and would precipitate in the RO unit. The pretreatment consists of first adding sodium carbonate to increase both the pH and the carbonate concentration of the brine. This addition causes precipitation of carbonate solids containing Ca, Mg, Sr, and Ba. After filtration of these precipitates, the fluid is acidified with HCl to prevent precipitation in the RO unit as the brine increases in salinity.

  16. EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS

    SciTech Connect

    Duignan, M.; Steeper, T.; Steimke, J.

    2012-12-10

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These

  17. Brine Migration Experimental Studies for Salt Repositories

    Office of Energy Efficiency and Renewable Energy (EERE)

    Experiments were used to examine water content in Permian salt samples including impact of variation in thermal regime on water content of evaporites and other mineral species, behavior of brine inclusions in salt, and evolution of the gas/liquid brine/salt system.

  18. Molecular Simulation of Carbon Dioxide, Brine, and Clay Mineral...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Molecular Simulation of Carbon Dioxide, Brine, and Clay Mineral Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide, Brine, and Clay ...

  19. Summary Results for Brine Migration Modeling Performed by LANL...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Results for Brine Migration Modeling Performed by LANL, LBNL and SNL for the Used Fuel Disposition Program Summary Results for Brine Migration Modeling Performed by LANL, LBNL and ...

  20. Modeling acid-gas generation from boiling chloride brines (Journal...

    Office of Scientific and Technical Information (OSTI)

    Modeling acid-gas generation from boiling chloride brines Citation Details In-Document Search Title: Modeling acid-gas generation from boiling chloride brines This study ...

  1. Raft River Geothermal Field Well Head Brine Sample

    SciTech Connect

    Tim Lanyk

    2015-12-18

    Raw data and data workup of assay for real-world brine sample. Brine sample was taken at the well head.

  2. TOUGHREACT Testing in High Ionic Strength Brine Sandstone Systems...

    Office of Scientific and Technical Information (OSTI)

    Title: TOUGHREACT Testing in High Ionic Strength Brine Sandstone Systems Deep saline formations and oil and gas reservoirs often contain concentrated brine solutions of ionic ...

  3. Environmental survey preliminary report, Mound Plant, Miamisburg, Ohio

    SciTech Connect

    Not Available

    1987-03-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Mound Plant, conducted August 18 through 29, 1986. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Mound Plant. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Mound Plant, and interviews with site personnel. The Survey found no environmental problems at the Mound Plant that represent an immediate threat to human life. The environmental problems identified at the Mound Plant by the Survey confirm that the site is confronted with a number of environmental problems which are by and large a legacy from past practices at a time when environmental problems were less well understood. Theses problems vary in terms of their magnitude and risk, as described in this report. Although the sampling and analysis performed by the Mound Plant Survey will assist in further identifying environmental problems at the site, a complete understanding of the significance of some of the environmental problems identified requires a level of study and characterization that is beyond the scope of the Survey. Actions currently under way or planned at the site, particularly the Phase II activities of the Comprehensive Environmental Analysis and Response Program (CEARP) as developed and implemented by the Albuquerque Operations Office, will contribute toward meeting this requirement. 85 refs., 24 figs., 20 tabs.

  4. How temperature and pressure affect clear brines

    SciTech Connect

    Hubbard, J.T.

    1984-04-01

    The correct application of the expansivity and compressibility of brine fluids under the influence of temperature and pressure is needed to calculate the actual hydrostatic pressure in a well. Well operations can benefit by reducing unintentional overbalance, lessening fluid losses, and lowering recommended fluid densities, hence reducing fluid costs. Since the early 1970s, the effects of temperature and pressure on the density of clear brine fluids have been questioned. As early as 1973, studies were started to define density loss with increased temperature in zinc bromide brines. This article describes a continuing study, begun in 1978, which has characterized the expansivity and compressibility of single salt brine solutions, such as are used in workover and completion fluids.

  5. Property:BrineConstituents | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Chloride type brine, "The content of potassium and calcium are high, while that of lithium, boron and sulfate is very low", See table 1 of Izquierdo et al. (2006). + Chena...

  6. Test fire environmental testing operations at Mound Applied Technologies

    SciTech Connect

    1992-03-01

    This paper describes Mound Laboratory`s environmental testing operations. The function of environmental testing is to perform quality environmental (thermal, mechanical, spin, resistance, visual) testing/conditioning of inert/explosive products to assure their compliance with specified customer acceptance criteria. Capabilities, organization, equipment specifications, and test facilities are summarized.

  7. Integrated process for coalbed brine disposal

    SciTech Connect

    Brandt, H. |; Bourcier, W.L.; Jackson, K.J.

    1994-03-01

    A brine disposal process is described that converts the brine stream of a coalbed gas producing site into clean water for agricultural use, combustion products and water vapor that can be released into the atmosphere and dry solids that can be recycled for industrial consumption. The process uses a reverse osmosis unit, a submerged combustion evaporator and a pulse combustion dryer. Pretreatment of the brine feedstream is necessary to prevent fouling of the membranes of the reverse osmosis unit and to separate from the brine stream hazardous metal and other constituents that may make the permeate from the reverse osmosis unit unsuitable for agricultural or other use. A chemical modeling code is used to calculate the saturation states of solids that may precipitate and foul the reverse osmosis membranes. Sodium carbonate is added to the brine to precipitate carbonates of Ba, Ca, Mg and Sr prior to filtration, acidification, and passage into the reverse osmosis unit. Optimization of the process in terms of types and amounts of additives is possible with analysis using the modeling code. The minimum amounts of additives to prevent scaling are calculated. In a typical operation, a brine feedstream of 1,000 m{sup 3}/day (6,290 bpd) that may have a total dissolved salt concentration (TDS) of 7,000 ppm will be separated into a permeate stream of 750 m{sup 3}/day (4,718 bpd) with a TDS of 400 ppm and a concentrated brine stream of 250 m{sup 3}/day (1,573 bpd) with a TDS of 26,800 ppm. The submerged combustion evaporator will concentrate this latter stream to a concentration of 268,000 ppm and reduce the volume to 25 m{sup 3}/day (158 bpd). The pulse combustion dryer can dry the concentrated brine mixture to a low moisture salt. Energy costs to operate the reverse osmosis unit are primarily the pumping costs.

  8. Hydrocarbon content of geopressured brines. Final report

    SciTech Connect

    Osif, T.L.

    1985-08-01

    Design Well data (bottomhole pressure minus wellhead pressure, GWR, and hydrocarbon composition) is presented as a function of producing conditions. These are examined in conjunction with the following models to attempt to deduce the reservoir brine saturation level: (1) reservoir contains gas dispersed in the pores and the gas saturation is greater than critical; (2) reservoir brine is gas-saturated; (3) bubble point below hydrostatic pressure; and (4) bubble point between hydrostatic pressure and reservoir pressure. 24 figs., 10 tabs. (ACR)

  9. Dual Tank Fuel System

    DOEpatents

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  10. Hanford Tank Waste Residuals

    Office of Environmental Management (EM)

    Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - 27 million ...

  11. ANALYSIS OF THE TANK 5F FINAL CHARACTERIZATION SAMPLES-2011

    SciTech Connect

    Oji, L.; Diprete, D.; Coleman, C.; Hay, M.

    2012-08-03

    The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the

  12. ANALYSIS OF THE TANK 5F FINAL CHARATERIZATION SAMPLES-2011

    SciTech Connect

    Oji, L.; Diprete, D.; Coleman, C.; Hay, M.

    2012-01-20

    The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the

  13. Analysis Of The Tank 5F Final Characterization Samples-2011

    SciTech Connect

    Oji, L. N.; Diprete, D.; Coleman, C. J.; Hay, M. S.

    2012-09-27

    The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the

  14. Brine flow in heated geologic salt.

    SciTech Connect

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  15. Portable brine evaporator unit, process, and system

    DOEpatents

    Hart, Paul John; Miller, Bruce G.; Wincek, Ronald T.; Decker, Glenn E.; Johnson, David K.

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  16. Tank 241-U-204 tank characterization plan

    SciTech Connect

    Bell, K.E.

    1995-03-23

    This document is the tank characterization plan for Tank 241-U-204 located in the 200 Area Tank Farm on the Hanford Reservation in Richland, Washington. This plan describes Data Quality Objectives (DQO) and presents historical information and scheduled sampling events for tank 241-U-204.

  17. Audit of Shutdown and Transition of the Mound Plant, IG-0408 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Shutdown and Transition of the Mound Plant, IG-0408 Audit of Shutdown and Transition of the Mound Plant, IG-0408 Audit of Shutdown and Transition of the Mound Plant, IG-0408 (68.17 KB) More Documents & Publications EIS-0302: Notice of Intent to Prepare an Environmental Impact Statement EIS-0302: Withdrawal of Notice of Intent to Prepare an Environmental Impact Statement Semiannual Report to Congress: April 1 - September 30, 1997

  18. Five-Year Review Report Fourth Five-Year Review for the Mound...

    Office of Legacy Management (LM)

    ...... 3. Tanks, Vaults, Storage Vessels X NA Good ...... 3. Tanks, Vaults, Storage Vessels NA Good ...

  19. Feed tank transfer requirements

    SciTech Connect

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

  20. Experimental Methods to Estimate Accumulated Solids in Nuclear Waste Tanks - 13313

    SciTech Connect

    Duignan, Mark R.; Steeper, Timothy J.; Steimke, John L.

    2013-07-01

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: - Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream. - Magnetic wand used to manually remove stainless steel solids from samples and the tank heel. - Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas. - Laser range finders to determine the volume and shape of the solids mounds. - Core sampler to determine the stainless steel solids distribution within the solids mounds. - Computer driven positioner that placed the laser range finders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities

  1. Enforcement Letter, CH2M Hill Mound, Inc- December 22, 2004

    Energy.gov [DOE]

    Issued to CH2M Hill Mound, Inc. related to a Radioactive Contamination Event during Remediation Activities at the Miamisburg Closure Project

  2. Fourth Five-Year Review for the Mound, Ohio, Site Miamisburg, Ohio

    Office of Legacy Management (LM)

    for the Mound, Ohio, Site Miamisburg, Ohio September 2016 LMS/MND/S14085 This page intentionally left blank Approved by: Five-Year Review Report Fourth Five-Year Review for the Mound, Ohio, Site Miamisburg, Ohio September 2016 ~ ~ '"-..._ ~ :~.< Susan Smiley Mound Site Manager U .S. Department of Energy Office of Legacy Management LMS/MND/S14085 Date: I I This page intentionally left blank U.S. Department of Energy Mound, Ohio, Fourth Five-Year Review September 2016 Doc. No. S14085 Page

  3. RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM

    SciTech Connect

    Harris, S.; Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual material in Tank 19 prior to operational closure. Tank 19 is a Type IV underground waste storage tank located in the F-Tank Farm. It is a cylindrical-shaped, carbon steel tank with a diameter of 85 feet, a height of 34.25 feet, and a working capacity of 1.3 million gallons. Tank 19 was placed in service in 1961 and initially received a small amount of low heat waste from Tank 17. It then served as an evaporator concentrate (saltcake) receiver from February 1962 to September 1976. Tank 19 also received the spent zeolite ion exchange media from a cesium removal column that once operated in the Northeast riser of the tank to remove cesium from the evaporator overheads. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual waste, Huff and Thaxton [2009] developed a plan to sample the waste during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 19 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 19. The procedure computes the uncertainty in analyte concentration as a

  4. Method of removing benzene from petroleum desalter brine

    SciTech Connect

    Hart, P.R.

    1993-08-17

    A method is described for removing benzene from petroleum refinery desalter effluent brine containing dispersed oil, solids, oily solids and benzene comprising contacting the brine with a sufficient amount for the purpose of flocculating oily solids of a combination of a aluminum chlorohydrate and a water soluble cationic polymer selected from the group consisting of polyamines and dialkyldiallylammonium polymers, in a ratio of from 1:10 to 100:1 at a temperature of about 250 F, separating the resulting floc from the brine; and thereafter contacting the brine with a sufficient amount for the purpose of reducing benzene levels in the brine of an oil solvent in combination with a demulsifier.

  5. Expected brine movement at potential nuclear waste repository salt sites

    SciTech Connect

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

  6. Characteristics and origin of Earth-mounds on the Eastern Snake River Plain, Idaho

    SciTech Connect

    Tullis, J.A.

    1995-09-01

    Earth-mounds are common features on the Eastern Snake River Plain, Idaho. The mounds are typically round or oval in plan view, <0.5 m in height, and from 8 to 14 m in diameter. They are found on flat and sloped surfaces, and appear less frequently in lowland areas. The mounds have formed on deposits of multiple sedimentary environments. Those studied included alluvial gravel terraces along the Big Lost River (late Pleistocene/early Holocene age), alluvial fan segments on the flanks of the Lost River Range (Bull Lake and Pinedale age equivalents), and loess/slopewash sediments overlying basalt flows. Backhoe trenches were dug to allow characterization of stratigraphy and soil development. Each mound has features unique to the depositional and pedogenic history of the site; however, there are common elements to all mounds that are linked to the history of mound formation. Each mound has a {open_quotes}floor{close_quotes} of a sediment or basement rock of significantly different hydraulic conductivity than the overlying sediment. These paleosurfaces are overlain by finer-grained sediments, typically loess or flood-overbank deposits. Mounds formed in environments where a sufficient thickness of fine-grained sediment held pore water in a system open to the migration to a freezing front. Heaving of the sediment occurred by the growth of ice lenses. Mound formation occurred at the end of the Late Pleistocene or early in the Holocene, and was followed by pedogenesis. Soils in the mounds were subsequently altered by bioturbation, buried by eolian deposition, and eroded by slopewash runoff. These secondary processes played a significant role in maintaining or increasing the mound/intermound relief.

  7. Tank Farms - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Farms Office of River Protection About ORP ORP Projects & Facilities Tank Farms Retrieval Activities PHOENIX - Tank Monitoring Waste Treatment & Immobilization Plant 242-A Evaporator 222-S Laboratory Newsroom Contracts & Procurements Contact ORP Tank Farms Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Tank Farms What are Tank Farms? For more than 40 years, facilities at the Hanford Site produced plutonium Tanks by the Numbers critical to the

  8. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and ...

  9. Tank Waste Strategy Update

    Office of Environmental Management (EM)

    Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management ...

  10. FIELD IMPLEMENTATION PLAN FOR A WILLISTON BASIN BRINE EXTRACTION AND

    Office of Scientific and Technical Information (OSTI)

    STORAGE TEST (Other) | SciTech Connect Other: FIELD IMPLEMENTATION PLAN FOR A WILLISTON BASIN BRINE EXTRACTION AND STORAGE TEST Citation Details In-Document Search Title: FIELD IMPLEMENTATION PLAN FOR A WILLISTON BASIN BRINE EXTRACTION AND STORAGE TEST The Energy & Environmental Research Center (EERC) successfully completed all technical work of Phase I, including development of a field implementation plan (FIP) for a brine extraction and storage test (BEST) in the North Dakota portion

  11. AX Tank Farm tank removal study

    SciTech Connect

    SKELLY, W.A.

    1998-10-14

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  12. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and...

    Office of Scientific and Technical Information (OSTI)

    Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer Citation Details In-Document Search Title: Geochemical Impacts of Carbon ...

  13. Molecular Simulation of Carbon Dioxide Brine and Clay Mineral...

    Office of Scientific and Technical Information (OSTI)

    of Carbon Dioxide Brine and Clay Mineral Interactions and Determination of Contact Angles. Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide ...

  14. Fate of Magnesium Chloride Brine Applied to Suppress Dust from...

    Office of Scientific and Technical Information (OSTI)

    Within the deep vadose zone, which consists of interlayered basalt lava flows and sedimentary interbeds, brine has moved up to 110 m laterally. This lateral migration suggests ...

  15. Relationship Between Flowability And Tank Closure Grout Quality

    SciTech Connect

    Langton, C. A.; Stefanko, D. B.; Hay, M. S.

    2012-10-08

    After completion of waste removal and chemical cleaning operations, Tanks 5-F and 6-F await final closure. The project will proceed with completing operational closure by stabilizing the tanks with grout. Savannah River Remediation's (SRR) experience with grouting Tanks 18-F and 19-F showed that slump-flow values were correlated with flow/spread inside these tanks. Less mounding was observed when using grouts with higher slump-flow. Therefore, SRNL was requested to evaluate the relationship between flowability and cured properties to determine whether the slump-flow maximum spread of Mix LP#8-16 could be increased from 28 inches to 30 inches without impacting the grout quality. A request was also made to evaluate increasing the drop height from 5 feet to 10 feet with the objective of enhancing the flow inside the tank by imparting more kinetic energy to the placement. Based on a review of the grout property data for Mix LP#8-16 collected from Tank 18-F and 19-F quality control samples, the upper limit for slump-flow measured per ASTM C 1611 can be increased from 28 to 30 inches without affecting grout quality. However, testing should be performed prior to increasing the drop height from 5 to 10 feet or observations should be made during initial filling operations to determine whether segregation occurs as a function of drop heights between 5 and 10 feet. Segregation will negatively impact grout quality. Additionally, increasing the delivery rate of grout into Tanks 5-F and 6-F by using a higher capacity concrete/grout pump will result in better grout spread/flow inside the tanks.

  16. Overview of surface studies on high energy materials at Mound

    SciTech Connect

    Moddeman, W.E.; Collins, L.W.; Wang, P.S.; Haws, L.D.; Wittberg, T.N.

    1980-01-01

    Since 1975 Mound has been examining the surface structure of high energy materials and the interaction of these materials with various metal containers. The high energy materials that have been studied include: the pyrotechnic TiH/sub x//KClO/sub 4/, the Al/Cu/sub 2/O machinable thermite, the PETN, HMX and RDX explosives, and two plastic bonded explosives (PBX). Aluminum and alloys of Fe, Ni and Cr have been used as the containment materials. Two aims in this research are: (1) the elucidation of the mechanism of pyrotechnic ignition and (2) the compatibility of high energy materials with their surroundings. New information has been generated by coupling Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS) with thermal data. In particular, AES and XPS studies on the pyrotechnic materials and on thermites have shown the mechanism of ignition to be nearly independent of the type of oxidizer present but directly related to surface chemistry of the fuels. In studies on the two PBX's, PBX-9407 and LX-16, it was concluded that the Exon coating on 9407 was complete and greater than or equal to 100A; whereas in LX-16, the coating was < 100A or even incomplete. AES and scanning Auger have been used to characterize the surface composition and oxide thickness for an iron-nickel alloy and showed the thicker oxides to have the least propensity for atmospheric hydrocarbon adsorption. Data are presented and illustrations made which highlight this new approach to studying ignition and compatibility of high energy materials. Finally, the salient features of the X-SAM-800 purchased by Mound are discussed in light of future studies on high energy materials.

  17. HANFORD TANK CLEANUP UPDATE

    SciTech Connect

    BERRIOCHOA MV

    2011-04-07

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  18. Origin, distribution, and movement of brine in the Permian Basin (U. S. A. ). A model for displacement of connate brine

    SciTech Connect

    Bein, A.; Dutton, A.R. )

    1993-06-01

    Na-Cl, halite Ca-Cl, and gypsum Ca-Cl brines with salinities from 45 to >300 g/L are identified and mapped in four hydrostratigraphic units in the Permian Basin area beneath western Texas and Oklahoma and eastern New Mexico, providing spatial and lithologic constraints on the interpretation of the origin and movement of brine. Na-Cl brine is derived from meteoric water as young as 5-10 Ma that dissolved anhydrite and halite, whereas Ca-Cl brine is interpreted to be ancient, modified-connate Permian brine that now is mixing with, and being displaced by, the Na-Cl brine. Displacement fronts appear as broad mixing zones with no significant salinity gradients. Evolution of Ca-Cl brine composition from ideal evaporated sea water is attributed to dolomitization and syndepositional recycling of halite and bittern salts by intermittent influx of fresh water and sea water. Halite Ca-Cl brine in the evaporite section in the northern part of the basin differs from gypsum Ca-Cl brine in the south-central part in salinity and Na/Cl ratio and reflects segregation between halite- and gypsum-precipitating lagoons during the Permian. Ca-Cl brine moved downward through the evaporite section into the underlying Lower Permian and Pennsylvanian marine section that is now the deep-basin brine aquifer, mixing there with pre-existing sea water. Buoyancy-driven convection of brine dominated local flow for most of basin history, with regional advection governed by topographically related forces dominant only for the past 5 to 10 Ma. 71 refs., 11 figs.

  19. RECOMMENDATIONS FOR SAMPLING OF TANK 18 IN F TANK FARM

    SciTech Connect

    Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual floor material in Tank 18 prior to operational closure. Tank 18 is an 85-foot diameter, 34-foot high carbon steel tank with nominal operating volume of 1,300,000 gallons. It is a Type IV tank, and has been in service storing radioactive materials since 1959. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual material, Huff and Thaxton [2009] developed a plan to sample the material during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual floor material separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 18 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 18. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North hemisphere is currently supported by a single Mantis rover sample obtained from a compact region near the center riser. A floor scrape sample was

  20. Reduce completion fluid costs with on-site brine tests

    SciTech Connect

    Thomas, D.C.; Darlington, R.K.; Kinney, W.R.; Lowell, J.L.

    1982-09-01

    A newly developed field kit makes on-site brine completion fluid testing practical. Simple titration procedures are used to analyze brine for calcium, zinc, chloride and bromide with an accuracy and repeatability that compares favorably with expensive laboratory techniques. This article describes the field testing theory and details analytical procedures used.

  1. Tank evaluation system shielded annular tank application

    SciTech Connect

    Freier, D.A.

    1988-10-04

    TEST (Tank Evaluation SysTem) is a research project utilizing neutron interrogation techniques to analyze the content of nuclear poisons and moderators in tank shielding. TEST experiments were performed on an experimental SAT (Shielded Annular Tank) at the Rocky Flats Plant. The purpose of these experiments was threefold: (1) to assess TEST application to SATs, (2) to determine if Nuclear Safety inspection criteria could be met, and (3) to perform a preliminary calibration of TEST for SATs. Several experiments were performed, including measurements of 11 tank shielding configurations, source-simulated holdup experiments, analysis of three detector modes, resolution studies, and TEST scanner geometry experiments. 1 ref., 21 figs., 4 tabs.

  2. Investigation of the September 13, 2011, Fatality at the Strategic Petroleum Reserve Bryan Mound Site

    Office of Energy Efficiency and Renewable Energy (EERE)

    On September 13, 2011, a recently-hired, untrained subcontractor employee struck three large elevated pipes while operating a front deck mower at the Cavern 5 area of the Strategic Petroleum Reserve Bryan Mound (SPR-BM) site.

  3. Progress Toward Operable Unit 1 Groundwater Cleanup at the Mound, Ohio,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Site | Department of Energy Progress Toward Operable Unit 1 Groundwater Cleanup at the Mound, Ohio, Site Progress Toward Operable Unit 1 Groundwater Cleanup at the Mound, Ohio, Site July 2, 2015 - 12:41pm Addthis What does this project do? Goal 1. Protect human health and the environment. Groundwater in Operable Unit 1 (OU-1) has been impacted by volatile organic compound (VOC)-contaminated materials in the former solid waste landfill. The remedy for controlling contamination from residual

  4. Cost estimate for muddy water palladium production facility at Mound

    SciTech Connect

    McAdams, R.K.

    1988-11-30

    An economic feasibility study was performed on the ''Muddy Water'' low-chlorine content palladium powder production process developed by Mound. The total capital investment and total operating costs (dollars per gram) were determined for production batch sizes of 1--10 kg in 1-kg increments. The report includes a brief description of the Muddy Water process, the process flow diagram, and material balances for the various production batch sizes. Two types of facilities were evaluated--one for production of new, ''virgin'' palladium powder, and one for recycling existing material. The total capital investment for virgin facilities ranged from $600,000 --$1.3 million for production batch sizes of 1--10 kg, respectively. The range for recycle facilities was $1--$2.3 million. The total operating cost for 100% acceptable powder production in the virgin facilities ranged from $23 per gram for a 1-kg production batch size to $8 per gram for a 10-kg batch size. Similarly for recycle facilities, the total operating cost ranged from $34 per gram to $5 per gram. The total operating cost versus product acceptability (ranging from 50%--100% acceptability) was also evaluated for both virgin and recycle facilities. Because production sizes studied vary widely and because scale-up factors are unknown for batch sizes greater than 1 kg, all costs are ''order-of-magnitude'' estimates. All costs reported are in 1987 dollars.

  5. Earth-mounded concrete bunker PLAP technical approach

    SciTech Connect

    Eng, R.

    1989-11-01

    Under the US DOE Prototype License Application Project (PLAP), Ebasco Services Incorporated was commissioned to develop a preliminary design of the Earth-Mounded Concrete Bunker (EMCB) concept for low-level radioactive waste (LLW) disposal. The EMCB disposal concept is of great interest because it represents the only engineered LLW disposal technology currently in use in the commercial sector. By definition, the EMCB disposal structure is located partially below grade and partially above grade. The concrete bunker is an engineered structure designed to be structurally stable for the prerequisite time horizon. The basic design parameters of the disposal facility were stipulated by US DOE, a northeast site location, representative waste, 30 year operational life, and a 250,000 ft{sup 3}/year disposal capacity. The design was developed to satisfy only US NRC Part 61 disposal requirements, not individual state requirements that may go beyond Part 61 requirements. The technical safety analysis of the preliminary design was documented according to the format specifications of NUREG-1199, to the extent practicable with quite limited resources.

  6. Radionuclide transport in sandstones with WIPP brine

    SciTech Connect

    Weed, H.C.; Bazan, F.; Fontanilla, J.; Garrison, J.; Rego, J.; Winslow, A.M.

    1981-02-01

    Retardation factors (R) have been measured for the transport of /sup 3/H, /sup 95m/Tc, and /sup 85/Sr in WIPP brine using St. Peter, Berea, Kayenta, and San Felipe sandstone cores. If tritium is assumed to have R=1, /sup 95m/Tc has R=1.0 to 1.3 and therefore is essentially not retarded. Strontium-85 has R = 1.0 to 1.3 on St. Peter, Berea, and Kayenta, but R=3 on San Felipe. This is attributed to sorption on the matrix material of San Felipe, which has 45 volume % matrix compared with 1 to 10 volume % for the others. Retardation factors (R/sub s/) for /sup 85/Sr calculated from static sorption measurements are unity for all the sandstones. Therefore, the static and transport results for /sup 85/Sr disagree in the case of San Felipe, but agree for St. Peter, Berea, and Kayenta.

  7. Feed tank transfer requirements

    SciTech Connect

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B.

  8. Technique for thermodynamic crystallization temperature of brine fluids

    SciTech Connect

    Clark, D.E.; Hubbard, J.T.

    1983-03-01

    The application of high density solids free brine fluids has proven to be technically and economically successful in hydrocarbon completion and workover operations. The use of inorganic salts such as calcium chloride, calcium bromide, zinc bromide, and sodium bromide has contributed to the development of complex salt systems. As the density and complexity of these systems becomes more detailed, the requirement for proper fluid design becomes increasingly important. When a brine solution is cooled sufficiently, a temperature is reached where the solution will be saturated. A further decrease in temperature will result in the precipitation of salt from the solution. The temperature at which this transpires, provided no super-cooling occurs, is the crystallization point of the solution. A correctly formulated solids free brine should have the optimum crystallization point for the temperature conditions it will encounter. A recently developed semiautomatic procedure constructs a cooling curve plot of each brine tested. This cooling curve plot allows the determination of the super-cooling potential, the Thermodynamic Crystallization Temperature, and the Last Crystal To Dissolve Temperature. The device provides a permanent record of the cooling curve with repeatable accuracy, which assists in the development of error free brine formulation tables, brine density, and/or crystallization point adjustments, and brine analysis.

  9. Concentration of Actinides in Plant Mounds at Safety Test Nuclear Sites in Nevada

    SciTech Connect

    David S. Shafer; Jenna Gommes

    2008-09-15

    Plant mounds or blow-sand mounds are accumulations of soil particles and plant debris around large shrubs and are common features in deserts in the southwestern United States. Believed to be an important factor in their formation, the shrubs create surface roughness that causes wind-suspended particles to be deposited and resist further suspension. Shrub mounds occur in some plant communities on the Nevada Test Site, the Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR), including areas of surface soil contamination from past nuclear testing. In the 1970s as part of early studies to understand properties of actinides in the environment, the Nevada Applied Ecology Group (NAEG) examined the accumulation of isotopes of Pu, {sup 241}Am, and U in plant mounds at safety test sites. The NAEG studies found concentrations of these contaminants to be greater in shrub mounds than in the surrounding areas of desert pavement. For example, at Project 57 on the NTTR, it was estimated that 15 percent of the radionuclide inventory of the site was associated with shrub mounds, which accounted for 17 percent of the surface area of the site, a ratio of inventory to area of 0.85. At Clean Slate III at the TTR, 29 percent of the inventory was associated with approximately 32 percent of the site covered by shrub mounds, a ratio of 0.91. While the total inventory of radionuclides in intershrub areas was greater, the ratio of radionuclide inventory to area was 0.40 and 0.38, respectively, at the two sites. The comparison between the shrub mounds and adjacent desert pavement areas was made for only the top 5 cm since radionuclides at safety test sites are concentrated in the top 5 cm of intershrub areas. Not accounting for radionuclides associated with the shrub mounds would cause the inventory of contaminants and potential exposure to be underestimated. As part of its Environmental Restoration Soils Subproject, the U.S. Department of Energy (DOE), National Nuclear

  10. Formate brines -- New fluids for drilling and completions

    SciTech Connect

    Ramsey, M.S.; Shipp, J.A.

    1996-01-01

    The term ``formate brines`` refers broadly to three primary compounds dissolved in water -- sodium formate (NaCOOH), potassium formate (KCOOH) and cesium formate (CsCOOH). Each is chemically classified as an alkali-metal salt of formic acid. They offer properties that in many respects are superior to their predecessors, halide brines such as zinc bromide and calcium bromide, without the undesirable side effects of those more common halide brine systems. This article introduces the technology and provides an overview of published work to date regarding formates.

  11. Office of Inspector General report on audit of shutdown and transition of the Mound Plant

    SciTech Connect

    1997-06-24

    With the end of the Cold War, the Department of Energy (Department) has greatly reduced the production of nuclear weapons and redirected the capabilities and focus of the weapons complex. As part of this redirection, the Mound Plant was transferred from a Defense Program site to an Environmental Management site with emphasis on accelerated cleanup and transition of facilities and personal property to the local community. This audit was initiated to determine if the shutdown and transition of the Mound Plant was progressing effectively and efficiently. The Department prepared a Nonnuclear Consolidation Plan (NCP) designed to reduce its costs of operation by closing and consolidating facilities. In contrast to the goal of the NCP, the Department plans to keep a portion of the Mound Plant open solely to perform work for other Federal agencies. Specifically, the Department has decided to continue assembling and testing isotopic heat sources and radioisotope thermoelectric generators (HS/RTG) at the Mound Plant despite the transfer or planned transfer of all other production operations.The Office of Nuclear Energy, Science and Technology decided to continue its HS/RTG operations at the Mound Plant without adequately considering the overall economic goals of the Department. As a result, the Department may not achieve the savings envisioned by the NCP. Also, the Department may incur between $4 million and $8.5 million more than necessary each year to continue its HS/RTG operations at the Mound Plant. Additionally, if the HS/RTG operations stay at the Mound Plant, the Department will spend more than $3 million to consolidate these operations into one location.

  12. Tank 241-BY-103 tank characterization plan

    SciTech Connect

    Homi, C.S., Westinghouse Hanford

    1996-05-10

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term storage and long-term management of single-shell tank 241-BY-103.

  13. Environmental assessment and planning at Mound - environmental monitoring capabilities and personnel profiles

    SciTech Connect

    1996-07-01

    Through its long experience with radioactive materials, Mound has developed a comprehensive, routine, offsite, environmental surveillance program to safeguard its employees, the physical plant, and the integrity of the surrounding environment from any potential adverse effects of its widely diverse operations. Effluent samples are analyzed for radiological and non-radiological parameters. The environment surrounding Mound Facility is continuously monitored - air, water, foodstuffs, vegetation, soil, and silt samples are analyzed to ensure that radioisotopic concentrations and other possible pollutants are well within the stringent standards adopted by the Department of Energy, the Environmental Protection Agencies (both federal and state), and various regional and local agencies. Moreover, this environmental surveillance program has been designed to ensure that the facility is designed, constructed, managed, operated, and maintained in a manner that continues to meet all federal, state, and local standards for environmental protection. Work in environmental science has been broadened to assess environmental factors associated with various aspects of the National Energy Plan. Both the management and staff at Mound have undertaken a firm commitment to make Mound`s environmental monitoring capabilities available to agencies that have the responsibility for the resolution of important environmental issues.

  14. A BASIS FOR MODIFYING THE TANK 12 COMPOSITE SAMPLING DESIGN

    SciTech Connect

    Shine, G.

    2014-11-25

    The SRR sampling campaign to obtain residual solids material from the Savannah River Site (SRS) Tank Farm Tank 12 primary vessel resulted in obtaining appreciable material in all 6 planned source samples from the mound strata but only in 5 of the 6 planned source samples from the floor stratum. Consequently, the design of the compositing scheme presented in the Tank 12 Sampling and Analysis Plan, Pavletich (2014a), must be revised. Analytical Development of SRNL statistically evaluated the sampling uncertainty associated with using various compositing arrays and splitting one or more samples for compositing. The variance of the simple mean of composite sample concentrations is a reasonable standard to investigate the impact of the following sampling options. Composite Sample Design Option (a). Assign only 1 source sample from the floor stratum and 1 source sample from each of the mound strata to each of the composite samples. Each source sample contributes material to only 1 composite sample. Two source samples from the floor stratum would not be used. Composite Sample Design Option (b). Assign 2 source samples from the floor stratum and 1 source sample from each of the mound strata to each composite sample. This infers that one source sample from the floor must be used twice, with 2 composite samples sharing material from this particular source sample. All five source samples from the floor would be used. Composite Sample Design Option (c). Assign 3 source samples from the floor stratum and 1 source sample from each of the mound strata to each composite sample. This infers that several of the source samples from the floor stratum must be assigned to more than one composite sample. All 5 source samples from the floor would be used. Using fewer than 12 source samples will increase the sampling variability over that of the Basic Composite Sample Design, Pavletich (2013). Considering the impact to the variance of the simple mean of the composite sample concentrations

  15. Conversion of the Bryan Mound geological site characterization reports to a three-dimensional model.

    SciTech Connect

    Stein, Joshua S.; Rautman, Christopher Arthur

    2005-04-01

    The Bryan Mound salt dome, located near Freeport, Texas, is home to one of four underground crude oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Bryan Mound site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 20 oil-storage caverns at the site. This work provides an internally consistent geologic model of the Bryan Mound site that can be used in support of future work.

  16. Hanford tanks initiative plan

    SciTech Connect

    McKinney, K.E.

    1997-07-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy`s Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System`s tank waste retrieval Program.

  17. experimental tank tests

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    experimental tank tests - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power ...

  18. From Hydrogen Fuel Cells to High-Altitude-Pilot Protection Suits— Mound Science and Energy Museum Programs Cover a Wide Range of Topics

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Mound Science and Energy Museum (MSEM) is an active, volunteer-led organization located at the former U.S. Department of Energy (DOE) Mound site in Miamisburg, Ohio. MSEM keeps the 60-year...

  19. Overview of the earth mounded concrete bunker prototype license application project: Objectives and approach

    SciTech Connect

    Conner, J.E.

    1989-11-01

    This paper presents an overview of the objectives and approach taken in developing the Earth-mounded Concrete Bunker Prototype License Application Project. The Prototype License Application Project was initiated by the Department of Energy`s National Low-Level Waste Management Program in early 1987 and completed in November 1988. As part of this project a prototype safety analysis report was developed. The safety analysis report evaluates the licensibility of an earth-mounded concrete bunker for a low-level radioactive waste (LLW) disposal facility located on a hypothetical site in the northeastern United States. The project required approximately five person-years and twenty months to develop.

  20. Tank Waste Committee Page 1

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    September 13, 2011 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE MEETING October 6, 2011 Richland, WA Topics in this Meeting Summary Welcome and Introductions ............................................................................................................ 1 Review of Tank Removal Study ..................................................................................................... 1 Review of Tank Closure Documents

  1. Light Duty Vehicle CNG Tanks

    Energy.gov [DOE] (indexed site)

    Duty Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects ... Uh, sorry no Commercial CNG Tanks Tank Type I Type IV Material steel carbon fiber Capacity ...

  2. Compressed/Liquid Hydrogen Tanks

    Office of Energy Efficiency and Renewable Energy (EERE)

    Currently, DOE's physical hydrogen storage R&D focuses on the development of high-pressure (10,000 psi) composite tanks, cryo-compressed tanks, conformable tanks, and other advanced concepts...

  3. Enhanced Tank Waste Strategy Update

    Office of Environmental Management (EM)

    in the EM complex Radioactive tank waste stabilization, treatment, and disposal ... Programmatic support activities* 10% Radioactive tank waste stabilization, treatment and ...

  4. Reverberant Tank | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Reverberant Tank Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleReverberantTank&oldid596388" Feedback Contact needs updating Image needs...

  5. Tow Tank | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tow Tank Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleTowTank&oldid596389" Feedback Contact needs updating Image needs updating Reference...

  6. Annual Assessment of the Effectiveness of Institutional Controls at the Mound, Ohio, Site Miamisburt, Ohio

    Office of Legacy Management (LM)

    6 LMS/MND/S14084 This page intentionally left blank U.S. Department of Energy Annual Assessment of the Effectiveness of Institutional Controls, Mound Site June 2016 Doc. No. S14084 Page i Contents Abbreviations ...................................................................................................................................v 1.0 Introduction ............................................................................................................................1 2.0 Period of

  7. Marketing research for EE G Mound Applied Technologies' heat treatment process of high strength materials

    SciTech Connect

    Shackson, R.H.

    1991-10-09

    This report summarizes research conducted by ITI to evaluate the commercialization potential of EG G Mound Applied Technologies' heat treatment process of high strength materials. The remainder of the report describes the nature of demand for maraging steel, extent of demand, competitors, environmental trends, technology life cycle, industry structure, and conclusion. (JL)

  8. Tank 241-SX-115 tank characterization plan

    SciTech Connect

    Sasaki, L.M.

    1995-04-24

    This document is a plan which serves as the contractual agreement between the Characterization Project, Sampling Operations, and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-SX-115.

  9. Tank 241-BY-105 tank characterization plan

    SciTech Connect

    Schreiber, R.D.

    1995-02-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, PNL 325 Analytical Chemistry Laboratory, and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-BY-105.

  10. Actinide (III) solubility in WIPP Brine: data summary and recommendations

    SciTech Connect

    Borkowski, Marian; Lucchini, Jean-Francois; Richmann, Michael K.; Reed, Donald T.

    2009-09-01

    The solubility of actinides in the +3 oxidation state is an important input into the Waste Isolation Pilot Plant (WIPP) performance assessment (PA) models that calculate potential actinide release from the WIPP repository. In this context, the solubility of neodymium(III) was determined as a function of pH, carbonate concentration, and WIPP brine composition. Additionally, we conducted a literature review on the solubility of +3 actinides under WIPP-related conditions. Neodymium(III) was used as a redox-invariant analog for the +3 oxidation state of americium and plutonium, which is the oxidation state that accounts for over 90% of the potential release from the WIPP through the dissolved brine release (DBR) mechanism, based on current WIPP performance assessment assumptions. These solubility data extend past studies to brine compositions that are more WIPP-relevant and cover a broader range of experimental conditions than past studies.

  11. Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report | Department of Energy Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Full

  12. Pressurizer tank upper support

    DOEpatents

    Baker, Tod H.; Ott, Howard L.

    1994-01-01

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

  13. Pressurizer tank upper support

    DOEpatents

    Baker, T.H.; Ott, H.L.

    1994-01-11

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

  14. Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential...

    Office of Environmental Management (EM)

    Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential August 21, 2013 - 12:00am Addthis Utilizing a 1...

  15. Brine pH Modification Scale Control Technology. 2. A Review.pdf...

    OpenEI (Open Energy Information) [EERE & EIA]

    Brine pH Modification Scale Control Technology. 2. A Review.pdf Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Brine pH Modification Scale...

  16. Tank 48 - Chemical Destruction

    SciTech Connect

    Simner, Steven P.; Aponte, Celia I.; Brass, Earl A.

    2013-01-09

    Small tank copper-catalyzed peroxide oxidation (CCPO) is a potentially viable technology to facilitate the destruction of tetraphenylborate (TPB) organic solids contained within the Tank 48H waste at the Savannah River Site (SRS). A maturation strategy was created that identified a number of near-term development activities required to determine the viability of the CCPO process, and subsequent disposition of the CCPO effluent. Critical activities included laboratory-scale validation of the process and identification of forward transfer paths for the CCPO effluent. The technical documentation and the successful application of the CCPO process on simulated Tank 48 waste confirm that the CCPO process is a viable process for the disposition of the Tank 48 contents.

  17. Tank waste characterization basis

    SciTech Connect

    Brown, T.M.

    1996-08-09

    This document describes the issues requiring characterization information, the process of determining high priority tanks to obtain information, and the outcome of the prioritization process. In addition, this document provides the reasoning for establishing and revising priorities and plans.

  18. Uranium (VI) solubility in carbonate-free ERDA-6 brine

    SciTech Connect

    Lucchini, Jean-francois; Khaing, Hnin; Reed, Donald T

    2010-01-01

    When present, uranium is usually an element of importance in a nuclear waste repository. In the Waste Isolation Pilot Plant (WIPP), uranium is the most prevalent actinide component by mass, with about 647 metric tons to be placed in the repository. Therefore, the chemistry of uranium, and especially its solubility in the WIPP conditions, needs to be well determined. Long-term experiments were performed to measure the solubility of uranium (VI) in carbonate-free ERDA-6 brine, a simulated WIPP brine, at pC{sub H+} values between 8 and 12.5. These data, obtained from the over-saturation approach, were the first repository-relevant data for the VI actinide oxidation state. The solubility trends observed pointed towards low uranium solubility in WIPP brines and a lack of amphotericity. At the expected pC{sub H+} in the WIPP ({approx} 9.5), measured uranium solubility approached 10{sup -7} M. The objective of these experiments was to establish a baseline solubility to further investigate the effects of carbonate complexation on uranium solubility in WIPP brines.

  19. Durability of concrete materials in high-magnesium brine

    SciTech Connect

    Wakeley, L.D.; Poole, T.S.; Burkes, J.P.

    1994-03-01

    Cement pastes and mortars representing 11 combinations of candidate concrete materials were cast in the laboratory and monitored for susceptibility to chemical deterioration in high-magnesium brine. Mixtures were selected to include materials included in the current leading candidate concrete for seals at the Waste Isolation Pilot Plant (WIPP). Some materials were included in the experimental matrix to answer questions that had arisen during study of the concrete used for construction of the liner of the WIPP waste-handling shaft. Mixture combinations compared Class C and Class F fly ashes, presence or absence of an expansive component, and presence or absence of salt as a mixture component. Experimental conditions exposed the pastes and mortars to extreme conditions, those being very high levels of Mg ion and an effectively unlimited supply of brine. All pastes and mortars showed deterioration with brine exposure. In general, mortars deteriorated more extensively than the corresponding pastes. Two-inch cube specimens of mortar were not uniformly deteriorated, but showed obvious zoning even after a year in the brine, with a relatively unreacted zone remaining at the center of each cube. Loss of calcium from the calcium hydroxide of paste/aggregate interfaces caused measurable strength loss in the reacted zone comprising the outer portion of every mortar specimen. The current candidate mass concrete for WIPP seals includes salt as an initial component, and has a relatively closed initial microstructure. Both of these features contribute to its suitability for use in large placements within the Salado Formation.

  20. EIS-0302: Transfer of the Heat Source/Radioisotope Thermoelectric Generator Assembly and Test Operations From the Mound Site

    Energy.gov [DOE]

    This EIS analyzes DOE's proposed transfer of the Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) operations at the Mound Site near Miamisburg, Ohio, to an alternative DOE site.

  1. Assessment of Brine Management for Geologic Carbon Sequestration

    SciTech Connect

    Breunig, Hanna M.; Birkholzer, Jens T.; Borgia, Andrea; Price, Phillip N.; Oldenburg, Curtis M.; McKone, Thomas E.

    2013-06-13

    Geologic carbon sequestration (GCS) is the injection of carbon dioxide (CO2), typically captured from stationary emission sources, into deep geologic formations to prevent its entry into the atmosphere. Active pilot facilities run by regional United States (US) carbon sequestration partnerships inject on the order of one million metric tonnes (mt) CO2 annually while the US electric power sector emits over 2000 million mt-CO2 annually. GCS is likely to play an increasing role in US carbon mitigation initiatives, but scaling up GCS poses several challenges. Injecting CO2 into sedimentary basins raises fluid pressure in the pore space, which is typically already occupied by naturally occurring, or native, brine. The resulting elevated pore pressures increase the likelihood of induced seismicity, of brine or CO2 escaping into potable groundwater resources, and of CO2 escaping into the atmosphere. Brine extraction is one method for pressure management, in which brine in the injection formation is brought to the surface through extraction wells. Removal of the brine makes room for the CO2 and decreases pressurization. Although the technology required for brine extraction is mature, this form of pressure management will only be applicable if there are cost-­effective and sustainable methods of disposing of the extracted brine. Brine extraction, treatment, and disposal may increase the already substantial capital, energy, and water demands of Carbon dioxide Capture and Sequestration (CCS). But, regionally specific brine management strategies may be able to treat the extracted water as a source of revenue, energy, and water to subsidize CCS costs, while minimizing environmental impacts. By this approach, value from the extracted water would be recovered before disposing of any resulting byproducts. Until a price is placed on carbon, we expect that utilities and other CO2 sources will be

  2. Progress on radiometric dating of Wolfcamp brines using /sup 4/He and /sup 40/Ar

    SciTech Connect

    Zaikowski, A.; Kosanke, B.J.; Hubbard, N.

    1984-01-01

    Ground water samples (brines) from deep wells in the Palo Duro Basin, Texas are being analyzed for noble gases in an attempt to obtain radiometric ages for these brines. The brines contain radiogenic /sup 4/He and /sup 40/Ar produced from the radioactive decay of U, Th, and K. Consideration of hydrochemical data for the brines, various isotopic, chemical, and mineralogical data for the aquifer rocks and noble gas production rates allow estimating the age of the brines to be about 130 million years at two wells. At a third well interaquifer mixing has occurred and the age is presently indeterminate. 9 references, 3 figures, 1 table.

  3. Tank Waste System Integrated Project Team

    Office of Environmental Management (EM)

    Tank Waste System Tank Waste System Integrated Project Team Integrated Project Team Steve Schneider Office of Engineering and Technology Tank Waste Corporate Board July 29, 2009 2 ...

  4. Chemistry and mineralogy of samples from the strategic petroleum reserve Bryan Mound site

    SciTech Connect

    Bild, R. W.

    1980-08-01

    The goal of the Strategic Petroleum Reserve (SPR) program is to protect the United States from a temporary cutoff of imported crude oil by stockpiling a reserve of oil in caverns in Gulf Coast salt domes. Some suitable caverns already exist as a result of solution mining activities by commercial mining companies. Most of the caverns for the program, however, will be solution mined specifically for the SPR program. The tasks assigned to Sandia National Laboratories include conducting a geotechnical program and providing interim technical support for the leaching of the first five caverns in the Bryan Mound, Texas, salt dome. This report describes chemical, mineralogical and petrological work done at Sandia as of May 1, 1980 in support of Bryan Mound activities. Samples of Bryan Mound salt cores, sidewall samples and drill cuttings have been subjected to chemical, mineralogical and petrographic analysis. Halite (NaCl) was the major mineral in all samples with anhydrite (CaSO/sub 4/) a common accessory. Minor or trace sylvite (KCl) and quartz (SiO/sub 2/) were detected in some sidewall samples. Other minor minerals found in drill cuttings included quartz; mixed carbonates of Fe, Ca and Mg; and several iron oxides. Possibly the carbonates are reaction products with the basic drilling mud or possibly pieces of caprock which contaminated the cuttings. The iron oxides were probably produced by corrosion of the drill stem or bit. Densities of several core samples were determined and insoluble residue was counted for radioactivity.

  5. Pre-operational safety appraisal Tritiated Scrap Recovery Facility, Mound facility

    SciTech Connect

    Dauby, J.J.; Flanagan, T.M.; Metcalf, L.W.; Rhinehammer, T.B.

    1996-07-01

    The purpose of this report is to identify, assess, and document the hazards which are associated with the proposed operation of the Tritiated Scrap Recovery Facility at Mound Facility. A Pre-operational Safety Appraisal is a requirement as stated in Department of Energy Order 5481.1, Safety Analysis and Review System. The operations to be conducted in the new Tritiated Scrap Waste Recovery Facility are not new, but a continuation of a prime mission of Mound`s i.e. recovery of tritium from waste produced throughout the DOE complex. The new facility is a replacement of an existing process started in the early 1960`s and incorporates numerous design changes to enhance personnel and environmental safety. This report also documents the safety of a one time operation involving the recovery of tritium from material obtained by the Department of Energy from the State of Arizona. This project will involve the processing of 240,000 curies of tritium contained in glass ampoules that were to be used in items such as luminous dial watches. These were manufactured by the now defunct American Atomics Corporation, Tucson, Arizona.

  6. Tank Waste Committee

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3/15 Tank Waste Committee Priorities for advice on FY17 budget Not in priority order, numbering refers to last year's related advice points, per DOE response  (#1) The Board strongly urges DOE-Headquarters (HQ) to request full funding from Congress to meet all legal requirements of the ongoing cleanup work in FY 2016 and 2017 in addition to the following specific requests.  (#2) The Board advises DOE-ORP continue to request funding to proceed to empty leaking tanks (particularly AY-102 and

  7. Tank depletion flow controller

    DOEpatents

    Georgeson, Melvin A.

    1976-10-26

    A flow control system includes two bubbler tubes installed at different levels within a tank containing such as radioactive liquid. As the tank is depleted, a differential pressure transmitter monitors pressure differences imparted by the two bubbler tubes at a remote, shielded location during uniform time intervals. At the end of each uniform interval, balance pots containing a dense liquid are valved together to equalize the pressures. The resulting sawtooth-shaped signal generated by the differential pressure transmitter is compared with a second sawtooth signal representing the desired flow rate during each time interval. Variations in the two signals are employed by a control instrument to regulate flow rate.

  8. TANK SPACE OPTIONS REPORT

    SciTech Connect

    WILLIS WL; AHRENDT MR

    2009-08-11

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  9. Tank Waste Committee Page 1

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    January 8, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE MEETING January 8, 2014 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Status Update on Tank Farms ....................................................................................................................... 1 Follow-up on DOE Framework

  10. DOE Vehicular Tank Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    enable the deployment of hydrogen storage tanks in early market fuel cell applications for ... codes and standards for on-board hydrogen tanks, including SAE J2579 and Global Technical ...

  11. Tank Waste | Department of Energy

    Office of Environmental Management (EM)

    Tank Waste Tank Waste October 17, 2016 Mark Edgren, ORP chief of staff, left, presents Larry Shaffer and Clinton Summers with a plaque announcing their Grand Challenge-winning ...

  12. Modeling acid-gas generation from boiling chloride brines

    SciTech Connect

    Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

    2009-11-16

    This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent

  13. Tank Waste Committee Page 1

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    10, 2013 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE April 10, 2013 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Integrated Project Team Update on Double-Shell Tank AY-102 ................................................................. 2 Update on Single-Shell Tank (SST) T-111 and SSTs with Decreasing Levels

  14. Tank Waste Committee Page 1

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    9, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE April 9, 2014 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Update on Double-Shell Tank Construction-Extent of Conditions Report ................................................ 2 Review of Responses to HAB Advice #271 Leaking Tanks and HAB Advice #273 Openness

  15. SRS Tank Structural Integrity Program

    SciTech Connect

    Maryak, Matthew

    2010-11-01

    The mission of the Structural Integrity Program is to ensure continued safe management and operation of the waste tanks for whatever period of time these tanks are required. Matthew Maryak provides an overview of the Structural Integrity Program to open Session 5 (Waste Storage and Tank Inspection) of the 2010 EM Waste Processing Technical Exchange.

  16. Stratification in hot water tanks

    SciTech Connect

    Balcomb, J.D.

    1982-04-01

    Stratification in a domestic hot water tank, used to increase system performance by enabling the solar collectors to operate under marginal conditions, is discussed. Data taken in a 120 gallon tank indicate that stratification can be achieved without any special baffling in the tank. (MJF)

  17. Plating Tank Control Software

    Energy Science and Technology Software Center

    1998-03-01

    The Plating Tank Control Software is a graphical user interface that controls and records plating process conditions for plating in high aspect ratio channels that require use of low current and long times. The software is written for a Pentium II PC with an 8 channel data acquisition card, and the necessary shunt resistors for measuring currents in the millampere range.

  18. Pre-injection brine production for managing pressure in compartmentalized CO₂ storage reservoirs

    DOE PAGES [OSTI]

    Buscheck, Thomas A.; White, Joshua A.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Aines, Roger D.; Bourcier, William L.; Bielicki, Jeffrey M.

    2014-12-31

    We present a reservoir management approach for geologic CO₂ storage that combines CO₂ injection with brine extraction. In our approach,dual-mode wells are initially used to extract formation brine and subsequently used to inject CO₂. These wells can also be used to monitor the subsurface during pre-injection brine extraction so that key data is acquired and analyzed prior to CO₂ injection. The relationship between pressure drawdown during pre-injection brine extraction and pressure buildup during CO₂ injection directly informs reservoir managers about CO₂ storage capacity. These data facilitate proactive reservoir management, and thus reduce costs and risks. The brine may be usedmore » directly as make-up brine for nearby reservoir operations; it can also be desalinated and/or treated for a variety of beneficial uses.« less

  19. Pre-injection brine production for managing pressure in compartmentalized CO₂ storage reservoirs

    SciTech Connect

    Buscheck, Thomas A.; White, Joshua A.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Aines, Roger D.; Bourcier, William L.; Bielicki, Jeffrey M.

    2014-12-31

    We present a reservoir management approach for geologic CO₂ storage that combines CO₂ injection with brine extraction. In our approach,dual-mode wells are initially used to extract formation brine and subsequently used to inject CO₂. These wells can also be used to monitor the subsurface during pre-injection brine extraction so that key data is acquired and analyzed prior to CO₂ injection. The relationship between pressure drawdown during pre-injection brine extraction and pressure buildup during CO₂ injection directly informs reservoir managers about CO₂ storage capacity. These data facilitate proactive reservoir management, and thus reduce costs and risks. The brine may be used directly as make-up brine for nearby reservoir operations; it can also be desalinated and/or treated for a variety of beneficial uses.

  20. Tank characterization technical sampling basis

    SciTech Connect

    Brown, T.M.

    1998-04-28

    Tank Characterization Technical Sampling Basis (this document) is the first step of an in place working process to plan characterization activities in an optimal manner. This document will be used to develop the revision of the Waste Information Requirements Document (WIRD) (Winkelman et al. 1997) and ultimately, to create sampling schedules. The revised WIRD will define all Characterization Project activities over the course of subsequent fiscal years 1999 through 2002. This document establishes priorities for sampling and characterization activities conducted under the Tank Waste Remediation System (TWRS) Tank Waste Characterization Project. The Tank Waste Characterization Project is designed to provide all TWRS programs with information describing the physical, chemical, and radiological properties of the contents of waste storage tanks at the Hanford Site. These tanks contain radioactive waste generated from the production of nuclear weapons materials at the Hanford Site. The waste composition varies from tank to tank because of the large number of chemical processes that were used when producing nuclear weapons materials over the years and because the wastes were mixed during efforts to better use tank storage space. The Tank Waste Characterization Project mission is to provide information and waste sample material necessary for TWRS to define and maintain safe interim storage and to process waste fractions into stable forms for ultimate disposal. This document integrates the information needed to address safety issues, regulatory requirements, and retrieval, treatment, and immobilization requirements. Characterization sampling to support tank farm operational needs is also discussed.

  1. Geothermal Brine Brings Low-Cost Power with Big Potential | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Brine Brings Low-Cost Power with Big Potential Geothermal Brine Brings Low-Cost Power with Big Potential January 3, 2014 - 9:05am Addthis John Fox, CEO of Electratherm, with Tim Reinhardt, Low-Temperature and Coproduced Technology Manager for the Department of Energy, join Joel Murphy, general manager of the Florida Canyon Mine for Jipangu International. The mine's byproduct of geothermal brine allows for an additional revenue stream from existing infrastructure. John Fox, CEO of

  2. Summary Results for Brine Migration Modeling Performed by LANL, LBNL and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SNL for the Used Fuel Disposition Program | Department of Energy Results for Brine Migration Modeling Performed by LANL, LBNL and SNL for the Used Fuel Disposition Program Summary Results for Brine Migration Modeling Performed by LANL, LBNL and SNL for the Used Fuel Disposition Program The report summarizes laboratory and field observations and numerical modeling related to coupled processes involving brine and vapor migration in geologic salt, focusing on recent developments and studies

  3. Tank characterization data report: Tank 241-C-112

    SciTech Connect

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-04-01

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. It is probable that tank 241-C-112 exceeds the 1,000 g-mol inventory criteria established for the Ferrocyanide USQ; however, extensive energetic analysis of the waste has determined a maximum exothermic value of -9 cal/g dry waste. This value is substantially below any levels of concern (-75 cal/g). In addition, an investigation of potential mechanisms to generate concentration levels of radionuclides high enough to be of concern was performed. No credible mechanism was postulated that could initiate the formation of such concentration levels in the tank. Tank 241-C-112 waste is a complex material made up primarily of water and inert salts. The insoluble solids are a mixture of phosphates, sulfates, and hydroxides in combination with aluminum, calcium, iron, nickel, and uranium. Disodium nickel ferrocyanide and sodium cesium nickel ferrocyanide probably exist in the tank; however, there appears to have been significant degradation of this material since the waste was initially settled in the tank.

  4. The Mound site survey project for the characterization of radioactive materials in site soils

    SciTech Connect

    Stought, R.L.; Edling, D.A.; Draper, D.G.

    1988-05-16

    This report summarizes the results of a site survey project conducted at Monsanto Research Corporation's Mound Facility during 1982--1985. The objectives of the site survey were: To characterize the nineteen sites previously identified as having known levels of contamination; to identify and characterize by quantity and type of radionuclide(s) any additional major sites having levels of contamination exceeding 10 pCi/g (for Pu-238) of soil; to estimate the volume of contaminated soil; and to estimate the cost of stabilizing or removing the contaminated soil. This report provides information on objectives 1 and 2 above. A separate report will address objectives 3 and 4.

  5. The Mound site survey project for the characterization of radioactive materials in site soils

    SciTech Connect

    Stought, R.L.; Edling, D.A.; Draper, D.G.

    1988-05-16

    This report summarizes the results of a site survey project conducted at Monsanto Research Corporation`s Mound Facility during 1982--1985. The objectives of the site survey were: To characterize the nineteen sites previously identified as having known levels of contamination; to identify and characterize by quantity and type of radionuclide(s) any additional major sites having levels of contamination exceeding 10 pCi/g (for Pu-238) of soil; to estimate the volume of contaminated soil; and to estimate the cost of stabilizing or removing the contaminated soil. This report provides information on objectives 1 and 2 above. A separate report will address objectives 3 and 4.

  6. Simulation and economic evaluation of a solar evaporation system for concentrating sodium chloride brines

    SciTech Connect

    Smith, M.K.; Newell, T.A. )

    1991-01-01

    An hourly simulation program has been developed for detailed modelin of an evaporation surface (ES) and an evaporation pond (EP) for reconcentration of a solar pond's (SP's) surface brine. The results are relavant to other systems in which it is desirable to concentrate a brine. The simulation results are used in three ways: first, for general comparison of brine reconcentration performance for a variety of locations; second, development of an ES design method based on long term monthly averaged weather data; and third, an economic comparison between ESs and EPs. The results show that regions with moderate to high precipitation favor ESs over EPs. Dry climates will generally favor EPs for brine reconcentration.

  7. he Hanford Story Tank Waste Cleanup | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    he Hanford Story Tank Waste Cleanup he Hanford Story Tank Waste Cleanup Addthis Description The Hanford Story Tank Waste Cleanup

  8. Community Geothermal Technology Program: Electrodeposition of minerals in geothermal brine

    SciTech Connect

    Not Available

    1990-12-31

    Objective was to study the materials electrodeposited from geothermal brine, from the HGP-A well in Puna, Hawaii. Due to limitations, only one good set of electrodeposited material was obtained; crystallography indicates that vaterite forms first, followed by calcite and then perhaps aragonite as current density is increased. While the cost to weight ratio is reasonable, the deposition rate is very slow. More research is needed, such as reducing the brittleness. The electrodeposited material possibly could be used as building blocks, tables, benches, etc. 49 figs, 4 tabs, 7 refs.

  9. Tank characterization data report: Tank 241-C-112

    SciTech Connect

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-09-01

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. Analysis of the process history of the tank as well as studies of simulants provided valuable information about the physical and chemical condition of the waste. This information, in combination with the analysis of the tank waste, sup ports the conclusion that an exothermic reaction in tank 241-C-112 is not plausible. Therefore, the contents of tank 241-C-112 present no imminent threat to the workers at the Hanford Site, the public, or the environment from its forrocyanide inventory. Because an exothermic reaction is not credible, the consequences of this accident scenario, as promulgated by the General Accounting Office, are not applicable.

  10. Focused risk assessment: Mound Plant, Miami-Erie Canal Operable Unit 4

    SciTech Connect

    Rogers, D.R.; Dunning, D.F.

    1994-09-29

    In 1969, an underground waste line at Mound Plant ruptured and released plutonium-238 in a dilute nitric acid solution to the surrounding soils. Most of the acid was neutralized by the native soils. The plutonium, which in a neutral solution is tightly sorbed onto clay particles, remained within the spill area. During remediation, a severe storm eroded some of the contaminated soil. Fine grained plutonium-contaminated clay particles were carried away through the natural drainage courses to the remnants of the Miami-Erie Canal adjacent to Mound Plant, and then into the Great Miami River. This focused risk assessment considers exposure pathways relevant to site conditions, including incidental ingestion of contaminated soils, ingestion of drinking water and fish, and inhalation of resuspended soils and sediments. For each potential exposure pathway, a simplified conceptual model and exposure scenarios have been used to develop conservative estimates of potential radiation dose equivalents and health risks. The conservatism of the dose and risk estimates provides a substantive margin of safety in assuring that the public health is protected.

  11. Hanford tank waste pretreatment overview

    SciTech Connect

    Gasper, K.A.

    1994-12-31

    The U.S. Department of Energy (DOE) has established the Tank Waste Remediation System (TWRS) to safely manage and dispose of the Hanford Site tank waste. Pretreatment is one of the major program elements of the TWRS. The scope of the TWRS Tank Waste Pretreatment Program is to treat tank waste to separate it into high- and low-level waste fractions and to provide additional treatment as required to feed low-level and high-level waste immobilization processes. The Pretreatment Program activities include technology development, design, fabrication, construction, and operation of facilities to support the pretreatment of radioactive mixed waste retrieved from 28 large underground double-shell tanks and 149 single-shell tanks.

  12. Tank Waste Committee Page 1

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... is revising the report and he does not think a ... the DOE guide on technology readiness Tank Waste Committee ... glass described in the 2001 Performance Assessment. ...

  13. Tank Waste Committee Page 1

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1 Single Shell Tank WMA-C Resource Conservation and Recovery ActComprehensive ... Chris said DOE will follow the Resource Conservation and Recovery Act (RCRA) to address ...

  14. Thermal Enhanced Oil Recovery Using Geopressured-Geothermal Brine

    SciTech Connect

    1989-12-01

    This white paper presents a unique plan for an Oil Industry-DOE cost sharing research project for Thermal Enhanced Oil Recovery (TEOR) of medium and heavy oil using geopressured-geothermal brine. This technology would provide an environmentally clean method of recovery as opposed to the burning of crude oil or natural gas used widely by the industry, but presently under scrutiny by federal and state air quality agencies, as well as provide an alternative to the very expensive operational and mechanical problems associated with heating water on the surface for injection. An example test reservoir is a shallow, small structural reservoir about 1-l/2 miles long by 1/2 mile wide. It is presently producing heavy oil (18.6 API gravity) from 5 wells, and is marginally economic. One of three nearby geopressured-geothermal wells could be re-entered and recompleted to supply about 400 F brine from 13-16,000 feet. This brine can be used to heat and drive the heavy oil. It is anticipated that about one million barrels of oil may be recovered by this project. Over 3 million barrels are estimated to be in place; only 2.7% of the oil in place has been produced. The suggested teaming arrangement includes: (1) EG&G Idaho, Inc., which presently provides technical and management support to DOE in the Gulf EG&G would supply coordination, management and Coast Geopressured-Geothermal Program. technical support to DOE for the Thermal Enhanced Oil Recovery Project. (2) A small business which would supply the field, geologic and well data, production wells, and production operation. They would cost-share the project and provide revenue from increased production (5% of increased production) to help offset DOE costs. Though DOE would cost-share brine supply and injection system, they would not assume well ownership. The small business would supply engineering and operations for brine supply, injection system, and collection of field producing and injection data. Phase 1--Geologic, reservoir

  15. Tank Farms - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    About Us Projects & Facilities Tank Farms About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental

  16. Tank Waste Remediation System Tank Waste Analysis Plan. FY 1995

    SciTech Connect

    Haller, C.S.; Dove, T.H.

    1994-11-01

    This documents lays the groundwork for preparing the implementing the TWRS tank waste analysis planning and reporting for Fiscal Year 1995. This Tank Waste Characterization Plan meets the requirements specified in the Hanford Federal Facility Agreement and Consent Order, better known as the Tri-Party Agreement.

  17. Cryograb: A Novel Approach to the Retrieval of Waste from Underground Storage Tanks - 13501

    SciTech Connect

    O'Brien, Luke; Baker, Stephen; Bowen, Bob; Mallick, Pramod; Smith, Gary; King, Bill; Judd, Laurie

    2013-07-01

    The UK's National Nuclear Laboratory (NNL) is investigating the use of cryogenic technology for the recovery of nuclear waste. Cryograb, freezing the waste on a 'cryo-head' and then retrieves it as a single mass which can then be treated or stabilized as necessary. The technology has a number of benefits over other retrieval approaches in that it minimizes sludge disturbance thereby reducing effluent arising and it can be used to de-water, and thereby reduce the volume of waste. The technology has been successfully deployed for a variety of nuclear and non-nuclear waste recovery operations. The application of Cryograb for the recovery of waste from US underground storage tanks is being explored through a US DOE International Technology Transfer and Demonstration programme. A sample deployment being considered involves the recovery of residual mounds of sludge material from waste storage tanks at Savannah River. Operational constraints and success criteria were agreed prior to the completion of a process down selection exercise which specified the preferred configuration of the cryo-head and supporting plant. Subsequent process modeling identified retrieval rates and temperature gradients through the waste and tank infrastructure. The work, which has been delivered in partnership with US DOE, SRNL, NuVision Engineering and Frigeo AB has demonstrated the technical feasibility of the approach (to TRL 2) and has resulted in the allocation of additional funding from DOE to take the programme to bench and cold pilot-scale trials. (authors)

  18. A Computer Program To Calculate The Leaching of Radionuclides and the Corrosion of Cemented Waste Forms in Water or Brine

    Energy Science and Technology Software Center

    1990-12-01

    DIFMOD calculates the leaching of radionuclides and the corrosion of cemented waste forms in contact with water or brine.

  19. Tank Waste Committee Page 1

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    April 17, 2012 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE MEETING April 17, 2012 Richland, WA Topics in this Meeting Summary Welcome & Introductions ............................................................................................................................. 1 Discussion of Tank-Related Permit Units ..................................................................................................... 1 Discussion of IDF and Risk Budget Tool

  20. Organic liner for thermoset composite tank

    DOEpatents

    Garvey, Raymond E.

    1991-01-01

    A cryogenic tank that is made leak-proof under cryogenic conditions by successive layers of epoxy lining the interior of the tank.

  1. Underground Storage Tanks: New Fuels and Compatibility

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    July 29, 2014 Ryan Haerer EPA Office of Underground Storage Tanks 1 Storing High Octane ... The Underground Storage Tank Universe EPA: Protect Human Health and the Environment ...

  2. Tank Closure & Waste Management Environmental Impact Statement...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    RODs: Tanks with leaks removed to get at leak contamination. Tank gear, pipes, valves, etc to be removed. RTD contaminated soils where necessary. Watch for...

  3. Tank Stabilization September 30, 1999 Summary

    Office of Environmental Management (EM)

    a schedule to pump liquid radioactive hazardous waste from single-shell tanks to double-shell tanks Parties DOE; State of Washington, Department of Ecology Date 09301999; ...

  4. High-Pressure Hydrogen Tank Testing

    Office of Energy Efficiency and Renewable Energy (EERE)

    Many types of compressed hydrogen tanks have been certified worldwide and demonstrated in several prototype fuel cell vehicles. The following information discusses high-pressure hydrogen tank...

  5. Shark Tank: Residential Energy Efficiency Edition | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Edition Shark Tank: Residential Energy Efficiency Edition Better Buildings Residential Network Peer Exchange Call Series: Shark Tank: Residential Energy Efficiency Edition, call ...

  6. Shark Tank: Residential Energy Efficiency Edition - Episode ...

    Energy Saver

    Edition - Episode 2 (301) Shark Tank: Residential Energy Efficiency Edition - Episode 2 (301) Better Buildings Residential Network Peer Exchange Call Series: Shark Tank: ...

  7. Draft Tank Closure & Waste Management EIS - Summary

    Office of Environmental Management (EM)

    Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford ... (Ecology) Title: Draft Tank Closure and Waste Management Environmental Impact Statement ...

  8. Independent Oversight Review, Hanford Tank Farms- November 2011

    Energy.gov [DOE]

    Review of Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades

  9. An aerial radiological survey of the EG G Mound Applied Technologies and surrounding area, Miamisburg, Ohio

    SciTech Connect

    Not Available

    1992-11-01

    An aerial radiological survey was conducted over EG G Mound Applied Technologies, Miamisburg, Ohio, during the period of June 9--24, 1989. The purpose of the 41-square-kilometer (16-square-mile) survey was to document the terrestrial gamma environment of the plant and surrounding area. In addition, ground-based exposure rate measurements and soil samples were obtained to support the aerial data. An exposure rate contour map at 1 meter above ground level was.constructed from the gamma data and overlaid on an aerial photograph and map of the area. Exposure rates measured in the area typically ranged from 9 to 11 microroentgens per hour ([mu]R/h).

  10. A radioactive waste excavation at Mound Area 7 using INEL dig-face monitoring technology

    SciTech Connect

    Carpenter, M.V.; Josten, N.E.

    1996-12-31

    Dig-face characterization is a method to improve the safety and efficiency during hazardous waste retrieval. A dig-face characterization system consists of on-site hardware for collecting detailed information on the changing chemical, radiological, and physical conditions in the subsurface throughout a hazardous site excavation. The dig-face characterization concept originated at the Idaho National Engineering Laboratory where it has been under development since 1992. In August 1995, a prototype dig-face system was taken to Mound Laboratory, Ohio, to monitor a hazardous waste site excavation. Mound Area 7 was the site of previous disposal of {sup 232}Th, {sup 227}Ac, and other waste. The dig-face characterization system was used to monitor a 20-ft x 20-ft x 5-ft-deep excavation intended to remove the {sup 227}Ac contaminated soils. Radiological, geophysical, and topographical sensors were scanned across each of four successive excavated soil levels, each 1-ft to 2-ft thick. The radiation sensors produced highly detailed images showing the location of the contaminants {sup 232}Th and {sup 227}Ac, and the clear delineation between them. When combined into a single data set, the four levels of collected data produced a three dimensional image of the contamination. The radiation sensor data indicated that only a small portion of the excavated soil was actually contaminated. The information produced by the dig-face system was used to direct precise excavation activities in the area containing the {sup 227}Ac and to plan subsequent removal of the separate {sup 232}Th plume.

  11. Chemical-equilibrium calculations for aqueous geothermal brines

    SciTech Connect

    Kerrisk, J.F.

    1981-05-01

    Results from four chemical-equilibrium computer programs, REDEQL.EPAK, GEOCHEM, WATEQF, and SENECA2, have been compared with experimental solubility data for some simple systems of interest with geothermal brines. Seven test cases involving solubilities of CaCO/sub 3/, amorphous SiO/sub 2/, CaSO/sub 4/, and BaSO/sub 4/ at various temperatures from 25 to 300/sup 0/C and in NaCl or HCl solutions of 0 to 4 molal have been examined. Significant differences between calculated results and experimental data occurred in some cases. These differences were traced to inaccuracies in free-energy or equilibrium-constant data and in activity coefficients used by the programs. Although currently available chemical-equilibrium programs can give reasonable results for these calculations, considerable care must be taken in the selection of free-energy data and methods of calculating activity coefficients.

  12. Savannah River Site - Tank 48 Briefing on SRS Tank 48 Independent Technical

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Review | Department of Energy Briefing on SRS Tank 48 Independent Technical Review Savannah River Site - Tank 48 Briefing on SRS Tank 48 Independent Technical Review This presentation outlines the SRS Tank 48 ITR listing observations, conclusions, and TPB processing. Savannah River Site - Tank 48 Briefing on SRS Tank 48 Independent Technical Review (42.28 KB) More Documents & Publications Savannah River Site - Tank 48 SRS Review Report Technology Maturation Plan (TMP) Wet Air Oxidation

  13. Tests of proprietary chemical additives as antiscalants for hypersaline geothermal brine. Final report

    SciTech Connect

    Harrar, J.E.; Locke, F.E.; Otto, C.H. Jr.; Deutscher, S.B.; Frey, W.P.; Lorensen, L.E.; Snell, E.O.; Lim, R.; Ryon, R.W.; Quong, R.

    1980-01-01

    The Lawrence Livermore Laboratory brine treatment test system has been used to carry out a short-term evaluation of a number of proprietary chemical additives as antiscalants for the hypersaline brine of the Salton Sea Geothermal Field. In addition, a test of sludge seeding was conducted as a technique for scale control. The effect of each additive on the rate of precipitation of silica from the effluent brine at 90/sup 0/C was measured, and scaling rates of brine treated with nine of the additives were measured at 125 and 210/sup 0/C. Corrosion rates of mild steel in the treated brines were estimated using Petrolite linear polarization resistance equipment. None of the additives had a direct effect on the rates of silica precipitation, and none had a beneficial effect on the scale formed at 210/sup 0/C. At 125/sup 0/C, two additives, Drewsperse 747 (Drew Chemical) and SC-210 (Southwest Specialty Chemicals) afforded a marginal degree of scale reduction. The Austral-Erwin additive diminished the adherence of scale formed at points of high velocity fluid flow but increased solids accumulation at other points. Sludge seeding shows some promise because it reduces the degree of silica supersaturation of the brine. Results of analyses of solids precipitated from effluent brines (Woolsey No. 1 and acidified Magmamax No. 1) are presented.

  14. Insulated solar storage tanks

    SciTech Connect

    Eldighidy, S.M. )

    1991-01-01

    This paper presents the theoretical and experimental investigation of an insulated parallelepiped, outdoor solar, water-filled storage tank of size 1 m {times} 0.5 m {times} 0.3 m, that is made from galvanized iron. The absorption coefficient of the insulating material has been determined. The effects of plastic covers and insulation thickness on the water temperature and the energy gained or lost by water are investigated. Moreover, the effects of insulation thickness on the temperature profiles of the insulating material are discussed. The results show that the absorption coefficient decreases as the insulation thickness increases. Also, it is found that the glass wool insulation of 2.5 cm thickness has the best results compared with the other thicknesses (5 cm, 7.5 cm, and 10 cm) as far as the water temperature and the energy gained by water are concerned.

  15. Tank farms hazards assessment

    SciTech Connect

    Broz, R.E.

    1994-09-30

    Hanford contractors are writing new facility specific emergency procedures in response to new and revised US Department of Energy (DOE) Orders on emergency preparedness. Emergency procedures are required for each Hanford facility that has the potential to exceed the criteria for the lowest level emergency, an Alert. The set includes: (1) a facility specific procedure on Recognition and Classification of Emergencies, (2) area procedures on Initial Emergency Response and, (3) an area procedure on Protective Action Guidance. The first steps in developing these procedures are to identify the hazards at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. These steps are called a Hazards Assessment. The final product is a document that is similar in some respects to a Safety Analysis Report (SAR). The document could br produced in a month for a simple facility but could take much longer for a complex facility. Hanford has both types of facilities. A strategy has been adopted to permit completion of the first version of the new emergency procedures before all the facility hazards Assessments are complete. The procedures will initially be based on input from a task group for each facility. This strategy will but improved emergency procedures in place sooner and therefore enhance Hanford emergency preparedness. The purpose of this document is to summarize the applicable information contained within the Waste Tank Facility ``Interim Safety Basis Document, WHC-SD-WM-ISB-001`` as a resource, since the SARs covering Waste Tank Operations are not current in all cases. This hazards assessment serves to collect, organize, document and present the information utilized during the determination process.

  16. Weeks Island brine diffuser site study: baseline conditions and environmental assessment technical report

    SciTech Connect

    1980-12-12

    This technical report presents the results of a study conducted at two alternative brine diffuser sites (A and B) proposed for the Weeks Island salt dome, together with an analysis of the potential physical, chemical, and biological effects of brine disposal for this area of the Gulf of Mexico. Brine would result from either the leaching of salt domes to form or enlarge oil storage caverns, or the subsequent use of these caverns for crude oil storage in the Strategic Petroleum Reserve (SPR) program. Brine leached from the Weeks Island salt dome would be transported through a pipeline which would extend from the salt dome either 27 nautical miles (32 statute miles) for Site A, or 41 nautical miles (47 statute miles) for Site B, into Gulf waters. The brine would be discharged at these sites through an offshore diffuser at a sustained peak rate of 39 ft/sup 3//sec. The disposal of large quantities of brine in the Gulf could have a significant impact on the biology and water quality of the area. Physical and chemical measurements of the marine environment at Sites A and B were taken between September 1977 and July 1978 to correlate the existing environmental conditions with the estimated physical extent of tthe brine discharge as predicted by the MIT model (US Dept. of Commerce, 1977a). Measurements of wind, tide, waves, currents, and stratification (water column structure) were also obtained since the diffusion and dispersion of the brine plume are a function of the local circulation regime. These data were used to calculate both near- and far-field concentrations of brine, and may also be used in the design criteria for diffuser port configuration and verification of the plume model. Biological samples were taken to characterize the sites and to predict potential areas of impact with regard to the discharge. This sampling focused on benthic organisms and demersal fish. (DMC)

  17. Tank vapor mitigation requirements for Hanford Tank Farms

    SciTech Connect

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.

  18. Light Duty Vehicle CNG Tanks

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing Workshop Advanced Manufacturing Office, EERE, US DOE Arlington VA, January 13, 2014 Advanced Research Projects Agency-Energy Can I put my luggage in the trunk? Uh, sorry no Commercial CNG Tanks Tank Type I Type IV Material steel carbon fiber Capacity 12 gallon 12 gallon Weight 490 lb 190 lb Cost $1,700 $4,300 50% less trunk space too

  19. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm

    SciTech Connect

    Balsley, S.D.; Krumhansl, J.L.; Borns, D.J.; McKeen, R.G.

    1998-07-01

    A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option.

  20. Tank Waste Committee Page 1

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    June 9, 2011 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE MEETING June 9, 2011 Richland, WA Topics in this Meeting Summary Welcome and Introductions .......................................................................................................................... 1 Waste Management Area C Performance Assessment ................................................................................. 1 Closure Schedule for WMA C

  1. Retooling Michigan: Tanks to Turbines

    Energy.gov [DOE]

    A company that has manufactured geared systems for the M1 Abrams tank for more than 20 years is now part of the forces working toward energy security and independence.

  2. Tank Farm Area Cleanup Decision-Making

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Area Cleanup Decision-Making Groundwater Vadose Zone Single Shell Tank System Closure (tanks, structures and pipelines) * Washington State Hazardous Waste Management Act (Resource Conservation & Recovery Act Closure Plan for dangerous waste constituents) + * DOE Order 435.1 (435.1 closure plan for radioactive residual constituents in tanks and components of tanks) Single Shell Tank System Releases to Soil (Environmental Media) - Options: Hazardous/Dangerous waste constituents and

  3. High-Pressure Hydrogen Tanks

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DoE Review February 8 th , 2005 Mark J. Warner, P.E. Principal Engineer Quantum Technologies, Inc. Irvine, CA Low Cost, High Efficiency, Low Cost, High Efficiency, High Pressure Hydrogen Storage High Pressure Hydrogen Storage This presentation does not contain any proprietary or confidential information. 70 MPa Composite Tanks Vent Line Ports Defueling Port (optional) Fill Port Filter Check Valve Vehicle Interface Bracket with Stone Shield In Tank Regulator with Solenoid Lock-off Pressure Relief

  4. Calculation of brine properties. [Above 80/sup 0/F and for salt...

    Office of Scientific and Technical Information (OSTI)

    Brine saturation pressure is calculated as a percentage of the pure water saturation ... temperature and pressure and are obtained from the ASME equation-of-state for pure water. ...

  5. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    SciTech Connect

    Olander, D.R.

    1984-08-01

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.

  6. Savannah River Site - Tank 48 Briefing on SRS Tank 48 Independent...

    Office of Environmental Management (EM)

    SRS Tank 48 Independent Technical Review August 2006 2 SRS Tank 48 ITR SRS Tank 48 ITR Key ITR Observation Two distinct problems: Removing tetraphenylborate (TPB) waste and then ...

  7. EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review

    Office of Energy Efficiency and Renewable Energy (EERE)

    Environmental Management Advisory BoardEM Tank Waste Subcommittee Report for SRS / Hanford TankWaste ReviewReport Number TWS #003EMAB EM-TWS SRS / Hanford Tank WasteJune 23, 2011

  8. Recovery of energy from geothermal brine and other hot water sources

    DOEpatents

    Wahl, III, Edward F.; Boucher, Frederic B.

    1981-01-01

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  9. Brine Sampling and Evaluation Program 1992--1993 report and summary of BSEP data since 1982

    SciTech Connect

    Deal, D.E.; Abitz, R.J.; Belski, D.S.

    1995-04-01

    This report is the last one that is currently scheduled in the sequence of reports of new data, and therefore, also includes summary comments referencing important data obtained by BSEP since 1983. These BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the (WIPP) Waste Isolation Pilot Plant. A project concern is that enough brine might be present after sealing and closure to generate large quantities of hydrogen gas by corroding the metal in the waste drums and waste inventory. This report describes progress made during the calendar years 1992 and 1993 and focuses on four major areas: (1) monitoring of brine inflow, e.g., measuring brines recovered from holes drilled downward from the underground drifts (downholes), upward from the underground drifts (upholes), and from subhorizontal holes from the underground drifts; (2) observations of weeps in the Air Intake Shaft (AIS); (3) further characterization of brine geochemistry; and (4) additional characterization of the hydrologic conditions in the fractured zone beneath the excavations.

  10. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    SciTech Connect

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

  11. Tank Closure and Waste Management Environmental Impact Statement...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Tank Waste and Closure of Single-Shell Tanks at the Hanford Site, Richland, Washington" ... associated smaller underground storage tanks, presents a major source of potential ...

  12. Hanford Tank Waste Retrieval, Treatment, and Disposition Framework...

    Energy Saver

    wastes stored in 177 underground tanks (tank farms) located on Hanford's Central Plateau. ... and the ultimate closure of the tanks and decommissioning of the treatment facilities. ...

  13. High-Level Liquid Waste Tank Integrity Workshop - 2008

    Office of Environmental Management (EM)

    techniques for primarysecondary tank wall and concrete * * Develop tank integrity roadmap and execution plan Develop tank integrity roadmap and execution plan including...

  14. Tank Waste and Waste Processing | Department of Energy

    Office of Environmental Management (EM)

    Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing The Defense Waste Processing Facility set a record by producing 267 canisters filled ...

  15. Evaluation of Tank 241-T-111 Level Data and In-Tank Video Inspection

    SciTech Connect

    Schofield, John S.; Feero, Amie J.

    2014-03-17

    This document summarizes the status of tank T-111 as of January 1, 2014 and estimates a leak rate and post-1994 leak volume for the tank.

  16. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  17. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  18. Savannah River Site - Tank 48 Transmittal Letter of SRS Tank 48 Review |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Transmittal Letter of SRS Tank 48 Review Savannah River Site - Tank 48 Transmittal Letter of SRS Tank 48 Review This letter reviews the Path Forward for Savannah River Site Tank 48 and outlines best judgment on all issues and recommendations on how to procede. Savannah River Site - Tank 48 Transmittal Letter of SRS Tank 48 Review (76.8 KB) More Documents & Publications Savannah River Site - Tank 48 Briefing on SRS Tank 48 Independent Technical Review Savannah River

  19. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    SciTech Connect

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  20. Auxiliary resonant DC tank converter

    DOEpatents

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  1. Dig-face monitoring during excavation of a radioactive plume at Mound Laboratory, Ohio

    SciTech Connect

    Josten, N.E.; Gehrke, R.J.; Carpenter, M.V.

    1995-12-01

    A dig-face monitoring system consists of onsite hardware for collecting information on changing chemical, radiological, and physical conditions in the subsurface soil during the hazardous site excavation. A prototype dig-face system was take to Mount Laboratory for a first trial. Mound Area 7 was the site of historical disposals of {sup 232}Th, {sup 227}Ac, and assorted debris. The system was used to monitor a deep excavation aimed at removing {sup 227}Ac-contaminated soils. Radiological, geophysical, and topographic sensors were used to scan across the excavation dig-face at four successive depths as soil was removed. A 3-D image of the contamination plumes was developed; the radiation sensor data indicated that only a small portion of the excavated soil volume was contaminated. The spatial information produced by the dig-face system was used to direct the excavation activities into the area containing the {sup 227}Ac and to evaluate options for handling the separate {sup 232}Th plume.

  2. Certification of the Mound 1 kW package for shipping of plutonium dioxide source material

    SciTech Connect

    Annese, C.E.; Mount, M.K.

    1994-01-01

    The Department of Energy (DOE) has established procedures for obtaining certification of packagings used by DOE and its contractors for the transport of radioactive materials. Specifically, DOE Orders 5480.3 and 1540.2 provide references for other DOE Orders which must be followed when an applicant submits a Safety Analysis Report for Packaging (SARP). From the orders, Department EH of DOE, has internal oversight responsibility for transportation and Packaging safety; package certification falls under EH responsibility; transportation and packaging safety division in EH certifies packages for DOE; and use of DOE certified packages is authorized by DOT. An independent review of the SARP must confirm that the packaging designs and operations meet safety criteria at least equivalent to these standards. This paper will discuss the independent review process of the shielding section of the Mound 1 kW SARP; describe the geometry of the packaging and the load configurations; discuss the analysis of the various neutron and photon source terms that were used for the load configuration under analysis; and provide illustrations of the use of the monte-carlo code, COG{sup 3}, which was utilized to perform the shielding analysis.

  3. TANK48 CFD MODELING ANALYSIS

    SciTech Connect

    Lee, S.

    2011-05-17

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitative mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single

  4. In-tank recirculating arsenic treatment system

    DOEpatents

    Brady, Patrick V.; Dwyer, Brian P.; Krumhansl, James L.; Chwirka, Joseph D.

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  5. Tank Waste Disposal Program redefinition

    SciTech Connect

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H.; Holton, L.K.; Hunter, V.L.; Triplett, M.B.

    1991-10-01

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  6. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume III. Biological oceanography. Final report

    SciTech Connect

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J.

    1983-02-01

    The Department of Energy's Strategic Petroleum Reserve Program began discharging brine into the Gulf of Mexico from its West Hackberry site near Cameron, Louisiana in May 1981. The brine originates from underground salt domes being leached with water from the Intracoastal Waterway, making available vast underground storage caverns for crude oil. The effects of brine discharge on aquatic organisms are presented in this volume. The topics covered are: benthos; nekton; phytoplankton; zooplankton; and data management.

  7. Behavior of natural uranium, thorium, and radium isotopes in the Wolfcamp brine aquifers, Palo Duro Basin, Texas

    SciTech Connect

    Laul, J.C.; Smith, M.R.; Hubbard, N.

    1984-10-01

    Previously reported results for Palo Duro deep brines show that Ra is highly soluble and not retarded. Relative to Ra, U and Th are highly sorbed. Uranium, like thorium, is in the +4 valence state, indicating a reducing environment. Additional data reported here support these results. However, one Wolfcamp brine sample gives somewhat different results. Radium appears to be somewhat sorbed. Uranium is largely in the +6 valence state, indicating a less reducing condition. In all brines, kinetics for sorption (/sup 228/Th) and desorption (/sup 224/Ra) are rapid. This Wolfcamp brine was tested for the effects of colloids for Ra, U, and Th concentrations. No effects were found.

  8. Code System for the Radioactive Liquid Tank Failure Study.

    Energy Science and Technology Software Center

    2000-01-03

    Version 01 RATAF calculates the consequences of radioactive liquid tank failures. In each of the processing systems considered, RATAF can calculate the tank isotopic concentrations in either the collector tank or the evaporator bottoms tank.

  9. Idaho Nuclear Technology and Engineering Center Tank Farm Facility...

    Energy Saver

    and disposal of the tanks, vaults, and associated piping and ancillary equipment at INTEC. The TFF tank system comprises the eleven 300,000-gal tanks, four 30,000-gal tanks, ...

  10. Grouting at the Idaho National Laboratory Tank Farm Facility...

    Office of Environmental Management (EM)

    Small Tank Farm Facility * A system of 11 underground, 300,000-gallon stainless steel tanks - Tanks are fifty feet in diameter and twenty-five feet tall - Eight tanks have...

  11. Tank waste concentration mechanism study

    SciTech Connect

    Pan, L.C.; Johnson, L.J.

    1994-09-01

    This study determines whether the existing 242-A Evaporator should continue to be used to concentrate the Hanford Site radioactive liquid tank wastes or be replaced by an alternative waste concentration process. Using the same philosophy, the study also determines what the waste concentration mechanism should be for the future TWRS program. Excess water from liquid DST waste should be removed to reduce the volume of waste feed for pretreatment, immobilization, and to free up storage capacity in existing tanks to support interim stabilization of SSTS, terminal cleanout of excess facilities, and other site remediation activities.

  12. TANK SPACE ALTERNATIVES ANALYSIS REPORT

    SciTech Connect

    TURNER DA; KIRCH NW; WASHENFELDER DJ; SCHAUS PS; WODRICH DD; WIEGMAN SA

    2010-04-27

    This report addresses the projected shortfall of double-shell tank (DST) space starting in 2018. Using a multi-variant methodology, a total of eight new-term options and 17 long-term options for recovering DST space were evaluated. These include 11 options that were previously evaluated in RPP-7702, Tank Space Options Report (Rev. 1). Based on the results of this evaluation, two near-term and three long-term options have been identified as being sufficient to overcome the shortfall of DST space projected to occur between 2018 and 2025.

  13. Tank waste remediation system tank waste retrieval risk management plan

    SciTech Connect

    Klimper, S.C.

    1997-11-07

    This Risk Management Plan defines the approach to be taken to manage programmatic risks in the TWRS Tank Waste Retrieval program. It provides specific instructions applicable to TWR, and is used to supplement the guidance given by the TWRS Risk Management procedure.

  14. Comparative safety analysis of LNG storage tanks

    SciTech Connect

    Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

    1982-07-01

    LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

  15. Ohmsett Tow Tank | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tank Overseeing Organization Ohmsett Hydrodynamic Testing Facility Type Tow Tank Length(m) 203.0 Beam(m) 19.8 Depth(m) 2.4 Water Type Freshwater Cost(per day) Contact POC Towing...

  16. Hanford Single-Shell Tank Integrity Program

    Office of Environmental Management (EM)

    production reactors to irradiate fuel and produce plutonium. * Four large ... Type III 100 Series Tanks 241-BY, S, TX, and TY Farms, 48 Tanks 758,000 gallon capacity ...

  17. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    ... different types of waste and the efficiency of each removal technology is a ... interior of the tanks and the contour map of residuals left in the tanks after retrieval. ...

  18. Technical requirements specification for tank waste retrieval

    SciTech Connect

    Lamberd, D.L.

    1996-09-26

    This document provides the technical requirements specification for the retrieval of waste from the underground storage tanks at the Hanford Site. All activities covered by this scope are conducted in support of the Tank Waste Remediation System (TWRS) mission.

  19. Early diagenesis of a phylloid algal-mound complex, Laborcita Formation, southeastern New Mexico

    SciTech Connect

    Ward, W.B.; Meyers, W.J.; Goldstein, R.

    1985-02-01

    Marine carbonate cementation was the initial stage in the paragenesis of phylloid algal mounds in the Laborcita Formation (Wolfcampian), Sacramento Mountains, New Mexico, and the cements are almost identical to those in Holocene coral reefs of Belize. These cements include relics of botryoids and crusts of needle crystals, in part defined by inclusion patterns and luminescent ghosts in mosaic calcite. Individual needle crystals are pseudohexagonal in cross section and range from less than 1 to 30 ..mu..m wide. These nonluminescent early cements line cavity walls, coat phylloid-algal blades and stromatolites, and are interlayered with marine sediment. Early cements also include bladed, fibrous, and rare radiaxial fibrous calcites, which are microdolomite-rich. They have a proximal nonluminescent zone, a central bright-luminescent zone, and a distal blotchy, moderate-luminescent zone. The bright zone may be time equivalent to bright-luminescent micritic coatings on botryoids and grains. Botryoids are encrusted by isopachous bladed cement, some of which has prismatic overgrowths containing an early inclusion-rich zone. This initial cementation was followed closely by: (1) dissolution of algal blades and mollusks, (2) in-situ brecciation, and (3) cementation by blocky calcite. Botryoidal and acicular cements are interpreted as originally marine aragonite precipitates, based on morphology, occurrence, susceptibility to diagenesis, and similarity to Holocene reef cements. The same criteria, plus the microdolomite inclusions, indicate that the bladed, fibrous, and radiaxial cements had a marine Mg-calcite precursor. This assemblage followed by prismatic overgrowths, dissolution, and blocky-calcite cementation indicates an evolution from marine to freshwater diagenesis.

  20. DOUBLE SHELL TANK (DST) EMERGENCY PUMPING GUIDE

    SciTech Connect

    REBERGER, D.W.

    2006-03-17

    This document provides preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanford's 28 DSTs. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified.

  1. Hanford Communities Issue Briefing on Tank Farms

    Energy.gov [DOE]

    Department of Energy Office of River Protection representatives Stacy Charboneau (Deputy Manager) and Tom Fletcher (Tank Farms Assistant Manager) and Washington State Department of Ecology's Suzanne Dahl (Tank Waste Section Manager) discuss Hanford's complex tank waste retrieval mission with members of the community.

  2. Remote inspection of underground storage tanks

    SciTech Connect

    Griebenow, B.L.; Martinson, L.M. )

    1992-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) operates the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy. The ICPP's mission is to process government-owned spent nuclear fuel. The process involves dissolving the fuel, extracting off uranium, and calcining the waste to a solid form for storage, Prior to calcining, WINCO temporarily stores the liquid waste from this process in eleven 1,135,600-l(300,000-gal), 15,2-m (50-ft)-diam, high-level liquid waste tanks. Each of these stainless steel tanks is contained within an underground concrete vault. The only access to the interior of the tanks is through risers that extend from ground level to the dome of the tanks. WINCO is replacing these tanks because of their age and the fact that they do not meet all of the current design requirements. The tanks will be replaced in two phases. WINCO is now in the Title I design stage for four new tank and vault systems to replace five of the existing systems. The integrity of the six remaining tanks must be verified to continue their use until they can be replaced in the second phase. To perform any integrity analysis, the inner surface of the tanks must be inspected. The remote tank inspection (RTI) robotic system, designed by RedZone Robotics of Pittsburgh, Pennsylvania, was developed to access the interior of the tanks and position various end effectors required to perform tank wall inspections.

  3. Tank Waste Committee Page 1

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    March 8, 2011 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE MEETING March 8, 2011 Richland, WA Topics in this Meeting Summary Welcome and Introductions ............................................................................................................ 1 Waste Management Area C Performance Assessment ................................................................... 1 Garnet Cutting for Mobile Arm Retrieval System

  4. Tank Waste Committee Page 1

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3, 2011 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE MEETING September 13, 2011 Richland, WA Topics in this Meeting Summary Welcome and Introductions ............................................................................................................ 1 Appendix I of the Tri-Party Agreement (TPA)............................................................................... 2 Waste Management Area (WMA) C Performance Assessment (PA) Closure Schedule ............... 7

  5. Tank Farms and Waste Feed Delivery - 12507

    SciTech Connect

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are

  6. Silica separation from reinjection brines at Monte Amiata geothermal plants, Italy

    SciTech Connect

    Vitolo, S.; Cialdella, M.L. . Dipartimento di Ingegneria Chimica)

    1994-06-01

    A process for the separation of silica from geothermal reinjection brines is reported, in which the phases of coagulation, sedimentation and filtration of silica are involved. The effectiveness of lime and calcium chloride as coagulating agents has been investigated and the separating operations have been set out. Attention has been focused on Monte Amiata reinjection geothermal brines, whose scaling effect causes serious problems in the operation and maintenance of reinjection facilities. The study has been conducted using different amounts of added coagulants and at different temperatures, to determine optimal operating conditions. Though calcium chloride was revealed to be effective as a coagulant of the polymeric silica fraction, lime has also proved capable of removing monomeric dissolved silica at high dosages. Investigation on the behavior of coagulated brine has revealed the feasibility of separating the coagulated silica by sedimentation and filtration.

  7. ASSESSMENT OF TECHNETIUM LEACHABILITY IN CEMENT STABILIZED BASIN 43 GROUNDWATER BRINE

    SciTech Connect

    COOKE GA; DUNCAN JB; LOCKREM LL

    2008-09-30

    This report is an initial report on the laboratory effort executed under RPP-PLAN-33338, Test Plan for the Assessment of Technetium Leachability in Cement-Stabilized Basin 43 Groundwater Brine. This report delineates preliminary data obtained under subcontract 21065, release 30, from the RJ Lee Group, Inc., Center for Laboratory Sciences. The report is predicated on CLS RPT-816, Draft Report: Assessment of Technetium Leachability in Cement Stabilized Basin 43 Groundwater Brine. This document will be revised on receipt of the final RJ Lee Group, Inc., Center for Laboratory Sciences report, which will contain data subjected to quality control and quality assurance criteria.

  8. EERE Success Story-Nevada: Geothermal Brine Brings Low-Cost Power with

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Big Potential | Department of Energy Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential EERE Success Story-Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential August 21, 2013 - 12:00am Addthis Utilizing a $1 million EERE investment, heat from geothermal fluids-a byproduct of gold mining-will be generating electricity this year for less than $0.06 per kilowatt hour with ElectraTherm's new plug-and-play technology. Building on this first-of-its-kind success, this

  9. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect

    Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi; Trebotich, David; Birkholzer, Jens

    2015-09-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  10. Hanford single-shell tank grouping study

    SciTech Connect

    Remund, K.M.; Anderson, C.M.; Simpson, B.C.

    1995-10-01

    A tank grouping study has been conducted to find Hanford single-shell tanks with similar waste properties. The limited sampling resources of the characterization program could be allocated more effectively by having a better understanding of the groups of tanks that have similar waste types. If meaningful groups of tanks can be identified, tank sampling requirements may be reduced, and the uncertainty of the characterization estimates may be narrowed. This tank grouping study considers the analytical sampling information and the historical information that is available for all single-shell tanks. The two primary sources of historical characterization estimates and information come from the Historical Tank Content Estimate (HTCE) Model and the Sort on Radioactive Waste Tanks (SORWT) Model. The sampling and historical information are used together to come up with meaningful groups of similar tanks. Based on the results of analyses presented in this report, credible tank grouping looks very promising. Some groups defined using historical information (HTCE and SORWT) correspond well with those based on analytical data alone.

  11. ICPP Tank Farm planning through 2012

    SciTech Connect

    Palmer, W.B.; Millet, C.B.; Staiger, M.D.; Ward, F.S.

    1998-04-01

    Historically, liquid high-level waste (HLW) generated at the Idaho Chemical Processing Plant has been stored in the Tank Farm after which it is calcined with the calcine being stored in stainless steel bins. Following the curtailment of spent nuclear fuel reprocessing in 1992, the HLW treatment methods were re-evaluated to establish a path forward for producing a final waste form from the liquid sodium bearing wastes (SBW) and the HLW calcine. Projections for significant improvements in waste generation, waste blending and evaporation, and calcination were incorporated into the Tank Farm modeling. This optimized modeling shows that all of the SBW can be calcined by the end of 2012 as required by the Idaho Settlement Agreement. This Tank Farm plan discusses the use of each of the eleven HLW tanks and shows that two tanks can be emptied, allowing them to be Resource Conservation and Recovery Act closed by 2006. In addition, it describes the construction of each tank and vault, gives the chemical concentrations of the contents of each tank, based on historical input and some sampling, and discusses the regulatory drivers important to Tank Farm operation. It also discusses new waste generation, the computer model used for the Tank Farm planning, the operating schedule for each tank, and the schedule for when each tank will be empty and closed.

  12. Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations

    SciTech Connect

    Birkholzer, J.T.; Nicot, J.-P.; Oldenburg, C.M.; Zhou, Q.; Kraemer, S.; Bandilla, K.W.

    2011-05-01

    Industrial-scale storage of CO{sub 2} in saline sedimentary basins will cause zones of elevated pressure, larger than the CO{sub 2} plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards along these conduits and mix with groundwater resources. This paper discusses the potential for such brine leakage to occur in temperature- and salinity-stratified systems. Using static mass-balance calculations as well as dynamic well flow simulations, we evaluate the minimum reservoir pressure that would generate continuous migration of brine up a leaking wellbore into a freshwater aquifer. Since the brine invading the well is denser than the initial fluid in the wellbore, continuous flow only occurs if the pressure perturbation in the reservoir is large enough to overcome the increased fluid column weight after full invasion of brine into the well. If the threshold pressure is exceeded, brine flow rates are dependent on various hydraulic (and other) properties, in particular the effective permeability of the wellbore and the magnitude of pressure increase. If brine flow occurs outside of the well casing, e.g., in a permeable fracture zone between the well cement and the formation, the fluid/solute transfer between the migrating fluid and the surrounding rock units can strongly retard brine flow. At the same time, the threshold pressure for continuous flow to occur decreases compared to a case with no fluid/solute transfer.

  13. Performance of CRA in concentrated brines at 130 to 180 C -- Effect of H{sub 2}S, elemental sulfur and brine composition

    SciTech Connect

    Schmitt, G.; Pankoke, U.; Klemp, G.; Bruckhoff, W.; Siegmund, G.

    1997-08-01

    Failure analysis of localized corrosion at 28Cr32Ni (Alloy 28) tubing in a sour gas well prompted systematic investigations on the performance of relevant corrosion resistant alloys (CRA) in synthetic high salinity brines at high H{sub 2}S partial pressures in the absence and presence of elemental sulfur at 130 to 180 C. The CRAs included superaustenitic steels, nickel and nickel-cobalt base alloys and titanium alloys. CRAs with pitting resistance equivalents (PRE) of 39 and lower (including 28Cr32Ni) suffered in unbuffered brines from pitting and crevice corrosion already at 130 C. Alloy C276 and Ti Beta-C alloys proved complete resistance in all media tested up to 180 C. The effect of medium composition on CRA performance was studied at 130 C with respect to the presence of elemental sulfur, H{sub 2}S, iron sulfide, and CaCo{sub 3} in NaCl/CaCl{sub 2} brines with a total of 160 g/l chloride.

  14. CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS

    SciTech Connect

    Hommel, S.; Fountain, D.

    2012-03-28

    The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

  15. Alternative Fuels Data Center: Filling CNG Fuel Tanks

    Alternative Fuels and Advanced Vehicles Data Center

    Filling CNG Fuel Tanks to someone by E-mail Share Alternative Fuels Data Center: Filling CNG Fuel Tanks on Facebook Tweet about Alternative Fuels Data Center: Filling CNG Fuel Tanks on Twitter Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Google Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Delicious Rank Alternative Fuels Data Center: Filling CNG Fuel Tanks on Digg Find More places to share Alternative Fuels Data Center: Filling CNG Fuel Tanks on

  16. High-Pressure Hydrogen Tanks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Tanks High-Pressure Hydrogen Tanks Presentation on High-Pressure Hydrogen Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory 04_warner_quantum.pdf (4.52 MB) More Documents & Publications High Pressure Hydrogen Tank Manufacturing Fuel Tank Manufacturing, Testing, Field Performance, and Certification Tank Manufacturing, Testing, Deployment and Field Performance

  17. High Pressure Hydrogen Tank Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel Systems Technologies Worldwide, Inc. August 11, 2011 This presentation does not contain any proprietary, confidential, or otherwise restricted information History of Innovations... Announced breakthrough in all-composite lightweight, high capacity, low-cost fuel storage technologies. * Developed a series of robust, OEM compatible electronic control products. Developed H 2 storage system for SunLine Tran-sit Hythane®

  18. 241-SY Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-25

    This report provides the results of an extent of condition construction history review for tanks 241-SY-101, 241-SY-102, and 241-SY-103. The construction history of the 241-SY tank farm has been reviewed to identify issues similar to those experienced during tank 241-AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank 241-AY-102 as the comparison benchmark. In the 241-SY tank farm, the third DST farm constructed, refractory quality and stress relief were improved, while similar tank and liner fabrication issues remained.

  19. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    SciTech Connect

    MACKEY, T.C.

    2006-03-17

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

  20. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  1. Hanford waste tank bump accident analysis

    SciTech Connect

    MALINOVIC, B.

    2003-03-21

    This report provides a new evaluation of the Hanford tank bump accident analysis (HNF-SD-Wh4-SAR-067 2001). The purpose of the new evaluation is to consider new information and to support new recommendations for final safety controls. This evaluation considers historical data, industrial failure modes, plausible accident scenarios, and system responses. A tank bump is a postulated event in which gases, consisting mostly of water vapor, are suddenly emitted from the waste and cause tank headspace pressurization. A tank bump is distinguished from a gas release event in two respects: First, the physical mechanism for release involves vaporization of locally superheated liquid, and second, gases emitted to the head space are not flammable. For this reason, a tank bump is often called a steam bump. In this report, even though non-condensible gases may be considered in bump models, flammability and combustion of emitted gases are not. The analysis scope is safe storage of waste in its current configuration in single-shell tanks (SSTs) and double-shell tanks (DSTs). The analysis considers physical mechanisms for tank bump to formulate criteria for bump potential, application of the criteria to the tanks, and accident analysis of bump scenarios. The result of consequence analysis is the mass of waste released from tanks for specific scenarios where bumps are credible; conversion to health consequences is performed elsewhere using standard Hanford methods (Cowley et al. 2000). The analysis forms a baseline for future extension to consider waste retrieval.

  2. Chemical composition of Hanford Tank SY-102

    SciTech Connect

    Birnbaum, E.; Agnew, S.; Jarvinen, G.; Yarbro, S.

    1993-12-01

    The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of the radioactive waste, both current and future, stored in double-shell and single-shell tanks at the Hanford sites. One major program element in TWRS is pretreatment which was established to process the waste prior to disposal using the Hanford Waste Vitrification Plant. In support of this program, Los Alamos National Laboratory has developed a conceptual process flow sheet which will remediate the entire contents of a selected double-shelled underground waste tank, including supernatant and sludge, into forms that allow storage and final disposal in a safe, cost-effective and environmentally sound manner. The specific tank selected for remediation is 241-SY-102 located in the 200 West Area. As part of the flow sheet development effort, the composition of the tank was defined and documented. This database was built by examining the history of liquid waste transfers to the tank and by performing careful analysis of all of the analytical data that have been gathered during the tank`s lifetime. In order to more completely understand the variances in analytical results, material and charge balances were done to help define the chemistry of the various components in the tank. This methodology of defining the tank composition and the final results are documented in this report.

  3. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011

    SciTech Connect

    West, B.; Waltz, R.

    2012-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

  4. Shaker Table Experiments with Rare Earth Elements Sorption from Geothermal Brine

    SciTech Connect

    Gary Garland

    2015-07-21

    This dataset described shaker table experiments ran with sieved -50 +100 mesh media #1 in brine #1 that have 2ppm each of the 7 REE metals at different starting pH's of 3.5, 4.5, and 5.5. The experimental conditions are 2g media to 150mL of REE solution, at 70C.

  5. RealGasBrine v1.0 option of TOUGH+ v1.5

    SciTech Connect

    Moridis, George

    2015-02-27

    RealGasBrine v1.0 is a numerical code that for the simulation of the behavior of gas-bearing porous and/fractured geologic media. It is an option of TOUGH+ v1.5 [Moridis, 2014], a successor to the TOUGH2 [Pruess et al., 1999; 2012] family of codes for multi-component, multiphase ?uid and heat ?ow developed at the Lawrence Berkeley National Laboratory. RealGasBrine v1.0 needs the TOUGH+ v1.5 core code in order to compile and execute. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available. RealGasBrine v1.0 describes the non-isothermal two- (for pure water) or three-phase (for brine) flow of an aqueous phase and a real gas mixture in a gas-bearing medium, with a particular focus in ultra-tight (such as tight-sand and shale gas) systems. Up to 12 individual real gases can be tracked, and salt can precipitate as solid halite. The capabilities of the code include coupled flow and thermal effects, real gas behavior, Darcy and non-Darcy flow, several isotherm options of gas sorption onto the grains of the porous media, complex fracture descriptions, gas solubility into water, and geomechanical effects on flow properties. RealGasBrine v1.0 allows the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in any problem involving the flow of gases in geologic media, including the geologic storage of greenhouse gas mixtures, the behavior of geothermal reservoirs with multi-component condensable (H2O and CO2) and non-condensable gas mixtures, the transport of water and released H2 in nuclear waste storage applications, etc.

  6. NMAC 20.5.2 Petroleum Storage Tanks Registration of Tanks | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    .2 Petroleum Storage Tanks Registration of Tanks Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NMAC 20.5.2 Petroleum...

  7. Disposal/recovery options for brine waters from oil and gas production in New York State. Final report

    SciTech Connect

    Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

    1996-03-01

    Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated.

  8. Tank 241-A-105 leak assessment

    SciTech Connect

    Not Available

    1991-06-01

    Tank 241-A-105 is one of 149 single shell tanks constructed at Hanford to contain and store highly radioactive wastes originating from the processing of spent nuclear reactor fuel. Radiation detection and temperature monitoring devices installed beneath the tank indicate that several episodes of leakage of waste from the tank have occurred. The aim of this study was to evaluate the previous estimates and reanalyze the data to provide a more accurate estimate of leakage from the tank. The principal conclusions of this study are as follows: Earlier investigators estimated leakage prior to August 1968 at 5,000 to 15,000 gallons. Their estimate appears reasonable. Leakage while the tank was being sluiced (8/68--11/70) probably exceeded 5,000 gallons, but probably did not exceed 30,000 gallons. Insufficient data are available to be more precise. Cooling water added to the tank during the sprinkling phase (11/70 -- 12/78) was approximately 610,000 gallons. Sufficient heat was generated in the tank to evaporate most, and perhaps nearly all, of this water. Radionuclides escaping into the soil under the tank cannot be estimated directly because of many uncertainties. Based on a range of leakage from 10,000 to 45,000 gallons, assumed compositions, and decayed to 1/1/91, radioactivity under the tank is expected to be in the range of 85,000--760,000 curies. Measured radiation peaks were nearly all located directly below the perimeter of the tank and, except in rare cases, they showed no tendency to spread horizontally. Moreover, the maximum radiation readings detected are a very small fraction of the radiation reading in the tank. This is the basis for the conclusion that the rate of leakage and, most likely, the quantity leaked, was small. 51 refs., 5 figs., 3 tabs.

  9. PCB Analysis Plan for Tank Archive Samples

    SciTech Connect

    NGUYEN, D.M.

    2001-03-22

    This analysis plan specifies laboratory analysis, quality assurance/quality control (QA/QC), and data reporting requirements for analyzing polychlorinated biphenyls (PCB) concentrations in archive samples. Tank waste archive samples that are planned for PCB analysis are identified in Nguyen 2001. The tanks and samples are summarized in Table 1-1. The analytical data will be used to establish a PCB baseline inventory in Hanford tanks.

  10. SRS F Tank Farm Performance Assessment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Operations Office Art SRS F Tank Farm Performance Assessment The Department of Energy (DOE) is providing the Savannah River Site (SRS) F Tank Farm Performance Assessment (FTF PA) for external review by the Nuclear Regulatory Commission (NRC), the South Carolina Department of Health and Environmental Control (SCDHEC), and the Environmental Protection Agency (EPA). This document provides information to support subsequent DOE, NRC, SCDHEC, and EPA F Area Tank Closure Program actions and decisions,

  11. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    SciTech Connect

    West, B.; Waltz, R.

    2011-06-23

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

  12. FY 1996 Tank waste analysis plan

    SciTech Connect

    Homi, C.S.

    1996-09-18

    This Tank Waste Analysis Plan (TWAP) describes the activities of the Tank Waste Remediation System (TWRS) Characterization Project to plan, schedule, obtain, and document characterization information on Hanford waste tanks. This information is required to meet several commitments of Programmatic End-Users and the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement. This TWAP applies to the activities scheduled to be completed in fiscal year 1996.

  13. Hydrogen Tank Testing R&D

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4.29.2010 | Presented by Joe Wong, P.Eng. DOE Tank Safety Workshop Hydrogen Tank Safety Testing 1 POWERTECH - Hydrogen & CNG Services  Certification testing of individual high pressure components  Design Verification, Performance, End-of-Life testing of complete fuel systems  Design, construction, and operation of Hydrogen Fill Stations  Safety Studies  Standards Development 2 PRESENTATION  Discuss CNG Field Performance Data  Discuss Safety Testing of Type 4 Tanks

  14. ICPP tank farm closure study. Volume 1

    SciTech Connect

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.

  15. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    SciTech Connect

    Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.

    2008-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

  16. Dynamics of solid-containing tanks

    SciTech Connect

    Veletsos, A.S.; Younan, A.H.; Bandyopadhyay, K.

    1997-01-01

    Making use of a relatively simple, approximate but reliable method of analysis, a study is made of the responses to horizontal base shaking of vertical, circular cylindrical tanks that are filled with a uniform viscoelastic material. The method of analysis is described, and comprehensive numerical data are presented that elucidate the underlying response mechanisms and the effects and relative importance of the various parameters involved. In addition to the characteristics of the ground motion and a dimensionless measure of the tank wall flexibility relative to the contained medium, the parameters examined include the ratio of tank-height to tank-radius and the physical properties of the contained material. Both harmonic and earthquake-induced ground motions are considered. The response quantities investigated are the dynamic wall pressures, the critical forces in the tank wall, and the forces exerted on the foundation. Part A of the report deals with rigid tanks while the effects of tank wall flexibility are examined in Part B. A brief account is also given in the latter part of the interrelationship of the critical responses of solid-containing tanks and those induced in tanks storing a liquid of the same mass density.

  17. EMAB Tank Waste Subcommittee Report Presentation

    Office of Environmental Management (EM)

    EM Environmental Management Tank Waste Subcommittee (EM- -TWS) TWS) Report to the Report ... Low Assess Candidate Low- -Activity Waste Forms Activity Waste Forms Charge 3: ...

  18. Onboard Storage Tank Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (R&D) needs; regulations, codes and standards (RCS); and a path forward to enable the successful deployment of hydrogen storage tanks in early market fuel cell applications. ...

  19. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    4800 EDTECN: DRF UC: Cost Center: Charge Code: B&R Code: Total Pages: 13 Key Words: Waste Management Area C, Performance Assessment, tank closure, waste inventory...

  20. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    EDTECN: DRF UC: Cost Center: Charge Code: B&R Code: Total Pages: 16 Key Words: Waste Management Area C, Perfonnance Assessment, tank closure, waste inventory...

  1. Tank waste remediation systems technical baseline database

    SciTech Connect

    Porter, P.E.

    1996-10-16

    This document includes a cassette tape that contains Hanford generated data for the Tank Waste Remediation Systems Technical Baseline Database as of October 09, 1996.

  2. continuously jet-stirred tank reactor

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    continuously jet-stirred tank reactor - Sandia Energy Energy Search Icon Sandia Home ... Predictive Simulation of Engines Transportation Energy Consortiums Engine Combustion ...

  3. Carderock Tow Tank 3 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    3 Jump to: navigation, search Basic Specifications Facility Name Carderock Tow Tank 3 Overseeing Organization United States Naval Surface Warfare Center Hydrodynamic Testing...

  4. Hanford Technology Development (Tank Farms) - 12509

    SciTech Connect

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of tank waste are a byproduct of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. One key part of the ongoing work at Hanford is retrieving waste from the single-shell tanks, some of which have leaked in the past, and transferring that waste to the double-shell tanks - none of which have ever leaked. The 56 million gallons of radioactive tank waste is stored in 177 underground tanks, 149 of which are single-shell tanks built between 1943 and 1964. The tanks sit approximately 250 feet above the water table. Hanford's single-shell tanks are decades past their 20-year design life. In the past, up to 67 of the single-shell tanks are known or suspected to have leaked as much as one million gallons of waste to the surrounding soil. Starting in the late 1950's, waste leaks from dozens of the single-shell tanks were detected or suspected. Most of the waste is in the soil around the tanks, but some of this waste is thought to have reached groundwater. The Vadose Zone Project was established to understand the radioactive and chemical contamination in the soil beneath the tanks as the result of leaks and discharges from past plutonium-production operations. The vadose zone is the area of

  5. Supporting document for the historical tank content estimate for S tank farm

    SciTech Connect

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200 West Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to all the SSTs in the S Tank Farm of the southwest quadrant of the 200 West Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  6. Supporting document for the historical tank content estimate for BY Tank Farm

    SciTech Connect

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the BY Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices contain data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  7. Supporting document for the SW Quadrant Historical Tank Content Estimate for U-Tank Farm

    SciTech Connect

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1994-06-01

    This Supporting Document provides historical characterization information gathered on U-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate of the SW Quadrant at the Hanford 200 West Area.

  8. Supporting document for the historical tank content estimate for B Tank Farm

    SciTech Connect

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the B Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  9. Supporting document for the historical tank content estimate for AN-tank farm

    SciTech Connect

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AN-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  10. Supporting document for the historical tank content estimate for C-tank farm

    SciTech Connect

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on C-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  11. Supporting document for the historical tank content estimate for BY-Tank farm

    SciTech Connect

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on BY-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  12. Supporting document for the historical tank content estimate for AP-tank farm

    SciTech Connect

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AP-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  13. Supporting document for the historical tank content estimate for AW-tank farm

    SciTech Connect

    Brevick, C.H., Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AW-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  14. Supporting document for the historical tank content estimate for A-Tank farm

    SciTech Connect

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on A-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  15. Supporting document for the historical tank content estimate for BX-tank farm

    SciTech Connect

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on BX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  16. Supporting document for the historical tank content estimate for AY-tank farm

    SciTech Connect

    Brevick, C H; Stroup, J L; Funk, J. W.

    1997-03-12

    This Supporting Document provides historical in-depth characterization information on AY-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  17. Supporting document for the historical tank content estimate for the S-tank farm

    SciTech Connect

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-25

    This Supporting Document provides historical in-depth characterization information on S-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

  18. Supporting document for the historical tank content estimate for B-Tank farm

    SciTech Connect

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on B-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  19. Supporting document for the historical tank content estimate for AX-tank farm

    SciTech Connect

    Brevick, C.H., Westinghouse Hanford

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on AX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  20. Supporting document for the historical tank content estimate for the SX-tank farm

    SciTech Connect

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-25

    This Supporting Document provides historical in-depth characterization information on SX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

  1. Supporting document for the historical tank content estimate for A Tank Farm

    SciTech Connect

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the A Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  2. Tank characterization report for single-shell tank 241-BY-112

    SciTech Connect

    Baldwin, J.H.

    1997-08-22

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-BY-112. This report supports the requirements of the Tri-Party Agreement Milestone M-44-10. (This tank has been designated a Ferrocyanide Watch List tank.)

  3. Tank farms essential drawing plan

    SciTech Connect

    Domnoske-Rauch, L.A.

    1998-08-04

    The purpose of this document is to define criteria for selecting Essential Drawings, Support Drawings, and Controlled Print File (CPF) drawings and documents for facilities that are part of East and West Tank Farms. Also, the drawings and documents that meet the criteria are compiled separate listings. The Essential Drawing list and the Support Drawing list establish a priority for updating technical baseline drawings. The CPF drawings, denoted by an asterisk (*), defined the drawings and documents that Operations is required to maintain per the TWRS Administration Manual. The Routing Boards in Buildings 272-WA and 272-AW are not part of the CPF.

  4. Screening the Hanford tanks for trapped gas

    SciTech Connect

    Whitney, P.

    1995-10-01

    The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Hydrogen gas is generated within the waste in these tanks. This document presents the results of a screening of Hanford`s nuclear waste storage tanks for the presence of gas trapped in the waste. The method used for the screening is to look for an inverse correlation between waste level measurements and ambient atmospheric pressure. If the waste level in a tank decreases with an increase in ambient atmospheric pressure, then the compressibility may be attributed to gas trapped within the waste. In this report, this methodology is not used to estimate the volume of gas trapped in the waste. The waste level measurements used in this study were made primarily to monitor the tanks for leaks and intrusions. Four measurement devices are widely used in these tanks. Three of these measure the level of the waste surface. The remaining device measures from within a well embedded in the waste, thereby monitoring the liquid level even if the liquid level is below a dry waste crust. In the past, a steady rise in waste level has been taken as an indicator of trapped gas. This indicator is not part of the screening calculation described in this report; however, a possible explanation for the rise is given by the mathematical relation between atmospheric pressure and waste level used to support the screening calculation. The screening was applied to data from each measurement device in each tank. If any of these data for a single tank indicated trapped gas, that tank was flagged by this screening process. A total of 58 of the 177 Hanford tanks were flagged as containing trapped gas, including 21 of the 25 tanks currently on the flammable gas watch list.

  5. Progress Continues Toward Closure of Two Underground Waste Tanks...

    Energy.gov [DOE] (indexed site)

    Grouting of two Savannah River Site waste tanks began in August. Here, the first trucks with grout arrive at F Tank Farm. Grouting of two Savannah River Site waste tanks began in ...

  6. Technical Assessment of Compressed Hydrogen Storage Tank Systems...

    Energy.gov [DOE] (indexed site)

    estimated for compressed hydrogen storage tanks with design pressures of 350 bar (5000 ... were estimated for both type III and IV tanks in both single and multi-tank ...

  7. Wave Tank WEC Array Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wave Tank WEC Array Analysis Wave Tank WEC Array Analysis Wave Tank WEC Array Analysis 42benccolumbia-powerrhinefrank.ppt (2.04 MB) More Documents & Publications Direct Drive ...

  8. Independent Activity Report, Hanford Tank Farms - April 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tank Farms - April 2013 Independent Activity Report, Hanford Tank Farms - April 2013 April 2013 Operational Awareness at the Hanford Tank Farms HIAR-HANFORD-2013-04-15 The Office...

  9. SRS Waste Tanks 5 and 6 Are Operationally Closed | Department...

    Office of Environmental Management (EM)

    Waste Tanks 5 and 6 Are Operationally Closed SRS Waste Tanks 5 and 6 Are Operationally Closed December 19, 2013 - 12:00pm Addthis The final amount of grout is poured into Tank 6, ...

  10. Hanford Site C Tank Farm Meeting Summary - May 2009 | Department...

    Office of Environmental Management (EM)

    May 2009 Hanford Site C Tank Farm Meeting Summary - May 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  11. Hanford Site C Tank Farm Meeting Summary - July 2010 | Department...

    Office of Environmental Management (EM)

    July 2010 Hanford Site C Tank Farm Meeting Summary - July 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  12. Hanford Site C Tank Farm Meeting Summary - September 2010 | Department...

    Office of Environmental Management (EM)

    10 Hanford Site C Tank Farm Meeting Summary - September 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  13. Hanford Site C Tank Farm Meeting Summary - January 2010 | Department...

    Office of Environmental Management (EM)

    0 Hanford Site C Tank Farm Meeting Summary - January 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank Farm...

  14. Hanford Site C Tank Farm Meeting Summary - May 2011 | Department...

    Office of Environmental Management (EM)

    1 Hanford Site C Tank Farm Meeting Summary - May 2011 PDF icon Hanford Site C Tank Farm Meeting Summary More Documents & Publications Hanford Site C Tank Farm Meeting Summary -...

  15. Hanford Site C Tank Farm Meeting Summary - September 2009 | Department...

    Office of Environmental Management (EM)

    09 Hanford Site C Tank Farm Meeting Summary - September 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  16. Hanford Site C Tank Farm Meeting Summary - January 2011 | Department...

    Office of Environmental Management (EM)

    1 Hanford Site C Tank Farm Meeting Summary - January 2011 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank Farm...

  17. Hanford Site C Tank Farm Meeting Summary - May 2010 | Department...

    Office of Environmental Management (EM)

    0 Hanford Site C Tank Farm Meeting Summary - May 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank Farm...

  18. Field test of plutonium and thorium contaminated clay soils from the Mound Site using the ACT*DE*CON Process

    SciTech Connect

    Johnson, J.O.; Swift, N.A.; Church, R.H.; Neff, R.A.

    1998-12-31

    A treatability test was run during the summer and fall of 1997 to demonstrate the effectiveness of ACT*DE*CON for removing plutonium and thorium from the clay soils around Mound. ACT*DE*CON is a proprietary solution patented by Selentec. The process utilized a highly selective dissolution of the contaminants by the use of a chemical wash. The pilot scale process involved pretreatment of the soil in an attrition scrubber with ACT*DE*CON solution. This blended solution was then passed through a counter-current extraction chamber where additional contact with ACT*DE*CON solution occurred, followed by a rinse cycle. During this process sand was added to aid contact of the solution with the soil particles. The sand is removed during the rinse step and reused. The chelating agent is separated from the contaminant and recycled back into the process, along with the reverse osmosis permeate. The resulting solution can be further treated to concentrate the contaminant. Three different types of environmental soils were tested -- plutonium and thorium contaminated soils with the natural clay content, and plutonium contaminated soils with a high percentage of fine clay particles. The goal of these tests was to reduce the plutonium levels from several hundreds of pCi/g to between 25 and 75 pCi/g and the thorium from a couple hundred pCi/g to less than 5 pCi/g. The results of these four tests are presented along with a discussion of the operating parameters and the lessons learned relating to full scale implementation at Mound as well as other potential applications of this process.

  19. Hanford Determines Double-Shell Tank Leaked Waste From Inner Tank |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Determines Double-Shell Tank Leaked Waste From Inner Tank Hanford Determines Double-Shell Tank Leaked Waste From Inner Tank October 22, 2012 - 12:00pm Addthis Media Contacts Lori Gamache, ORP 509-372-9130 John Britton, WRPS 509-376-5561 RICHLAND - The Department of Energy's Office of River Protection (ORP), working with its Hanford tank operations contractor Washington River Protection Solutions, has determined that there is a slow leak of chemical and radioactive waste

  20. Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak

    SciTech Connect

    Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.; Engeman, Jason K.

    2013-11-14

    As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances of the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor.

  1. Alternative Fuels Data Center: CNG Fuel System and Tank Maintenance

    Alternative Fuels and Advanced Vehicles Data Center

    CNG Fuel System and Tank Maintenance to someone by E-mail Share Alternative Fuels Data Center: CNG Fuel System and Tank Maintenance on Facebook Tweet about Alternative Fuels Data Center: CNG Fuel System and Tank Maintenance on Twitter Bookmark Alternative Fuels Data Center: CNG Fuel System and Tank Maintenance on Google Bookmark Alternative Fuels Data Center: CNG Fuel System and Tank Maintenance on Delicious Rank Alternative Fuels Data Center: CNG Fuel System and Tank Maintenance on Digg Find

  2. Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory

    Alternative Fuels and Advanced Vehicles Data Center

    Propane Tank Overfill Safety Advisory to someone by E-mail Share Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Facebook Tweet about Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Twitter Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Google Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Delicious Rank Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Digg

  3. Mixing liquid holding tanks for uniform concentration

    SciTech Connect

    Sprouse, K.M.

    1988-01-01

    Achieving uniform concentration within liquid holding tanks can often times be a difficult task for the nuclear chemical process industry. This is due to the fact that nuclear criticality concerns require these tanks to be designed with high internal aspect ratios such that the free movement of fluid is greatly inhibited. To determine the mixing times required to achieve uniform concentrations within these tanks, an experimental program was conducted utilizing pencil tanks, double-pencil tanks, and annular tanks of varying geometries filled with salt-water solutions (simulant for nitric acid actinide solutions). Mixing was accomplished by air sparging and/or pump recirculation. Detailed fluid mechanic mixing models were developed --from first principles--to analyze and interpret the test results. These nondimensional models show the functionality of the concentration inhomogeneity (defined as the relative standard deviation of the true concentration within the tank) in relationship to the characteristic mixing time--among other variables. The results can be readily used to scale tank geometries to sizes other than those studied here.

  4. Tank waste remediation system compensatory measure removal

    SciTech Connect

    MILLIKEN, N.J.

    1999-05-18

    In support of Fiscal Year 1998 Performance Agreement TWR1.4.3, ''Replace Compensatory Measures,'' the Tank Waste Remediation System is documenting the completion of field modifications supporting the removal of the temporary exemptions from the approved Tank Waste Remediation System Technical Safety Requirements (TSRs), HNF-SD-WM-TSR-006. These temporary exemptions or compensatory measures expire September 30, 1998.

  5. Tanks Focus Area annual report FY2000

    SciTech Connect

    2000-12-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for over 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.

  6. Annual radioactive waste tank inspection program - 1999

    SciTech Connect

    Moore, C.J.

    2000-04-14

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1999 to evaluate these vessels and auxiliary appurtenances along with evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report.

  7. Annual radioactive waste tank inspection program - 1996

    SciTech Connect

    McNatt, F.G.

    1997-04-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1996 to evaluate these vessels, and evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

  8. Annual radioactive waste tank inspection program - 1992

    SciTech Connect

    McNatt, F.G.

    1992-12-31

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1992 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report.

  9. Annual Radioactive Waste Tank Inspection Program - 1997

    SciTech Connect

    McNatt, F.G.

    1998-05-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1997 to evaluate these vessels, and evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report.

  10. Annual Radioactive Waste Tank Inspection Program - 1998

    SciTech Connect

    McNatt, F.G.

    1999-10-27

    Aqueous radioactive wastes from Savannah River Site separations processes are contained in large underground carbon steel tanks. Inspections made during 1998 to evaluate these vessels and auxiliary appurtenances, along with evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

  11. Annual radioactive waste tank inspection program: 1995

    SciTech Connect

    McNatt, F.G. Sr.

    1996-04-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1995 to evaluate these vessels and evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report

  12. Tank Waste Committee Summaries - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hanford Advisory Board Committee Meeting Information Tank Waste Committee Hanford Advisory Board Convening Report SSAB Guidance Memorandum of Understanding Membership Nomination and Appointment Process Operating Ground Rules Calendars Advice and Responses Full Board Meeting Information Committee Meeting Information Outgoing Board Correspondence Key Board Products and Special Reports HAB Annual Report HAB and Committee Lists Points of Contact Related Links Tank Waste Committee Summaries Email

  13. Utah Underground Storage Tank Installation Permit | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Storage Tank Installation Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Underground Storage Tank Installation Permit Form Type Application...

  14. Texas Petroleum Storage Tanks Webpage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Petroleum Storage Tanks Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Texas Petroleum Storage Tanks Webpage Author Texas Commission on...

  15. Hydrogen Tank Testing R&D | Department of Energy

    Energy.gov [DOE] (indexed site)

    These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. hydrogentanktestingostw.pdf (1.53 MB) More Documents & Publications CNG and Hydrogen Tank ...

  16. Final Tank Closure and Waste Management Environmental Impact...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    remaining in 177 underground storage tanks; store the high-level radioactive waste ... (SST) system, which consists of 149 underground tanks, ancillary equipment, and soils. ...

  17. Testing and Certification of Gaseous Storage Tanks for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Testing and Certification of Gaseous Storage Tanks for Vehicles: The European Commission (EC) Perspective Testing and Certification of Gaseous Storage Tanks for Vehicles: The ...

  18. Tank Closure and Waste Management Environmental Impact Statement...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... The SST (149 tanks) and DST (28 tanks) systems contain both hazardous and radioactive waste (mixed waste). The second set of proposed actions analyzed in this environmental impact ...

  19. Tank Closure and Waste Management Environmental Impact Statement...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    from the high-level radioactive waste tanks, Fast Flux Test Facility decommissioning, ... or closure of the Hanford Site (Hanford) tanks, decommissioning of the Fast Flux Test ...

  20. Tank Closure and Waste Management Environmental Impact Statement...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and radionuclide composition in the tanks, as well as equipment, soils, and waste forms. ... activities for storage, retrieval, treatment, and disposal of waste in the Hanford tanks. ...

  1. Savannah River Site Contractor Achieves Tank Waste Milestone...

    Office of Environmental Management (EM)

    gallons of salt waste in underground tanks for disposition since October last year. ... Operations. "Processing salt waste is essential for us and our mission to close tanks. ...

  2. Final Meeting Summary Page 1 Tank Waste Committee Meeting August...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Intrusion in Hanford Single-Shell Tanks ......Water Intrusion in Hanford Single-Shell Tanks Agency briefing Jeremy Johnson, U.S. ...

  3. Nevada Underground Tank Program Webpage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Underground Tank Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Nevada Underground Tank Program Webpage Abstract Provides overview of...

  4. Renewable Energy Plants in Your Gas Tank: From Photosynthesis...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities) Renewable Energy Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities) Below is information ...

  5. DOE Selects Washington River Protection Solutions, LLC for Tank...

    Energy Saver

    Washington River Protection Solutions, LLC for Tank Operations Contract at Hanford Site DOE Selects Washington River Protection Solutions, LLC for Tank Operations Contract at ...

  6. Voluntary Protection Program Onsite Review, Tank Farm Operations...

    Office of Environmental Management (EM)

    Tank Farm Operations Contract - November 2010 Voluntary Protection Program Onsite Review, Tank Farm Operations Contract - November 2010 November 2010 Evaluation to determine ...

  7. Montana Underground Storage Tanks Webpage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Underground Storage Tanks Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Underground Storage Tanks Webpage Abstract Provides overview...

  8. Alaska Underground Storage Tanks Website | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Underground Storage Tanks Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska Underground Storage Tanks Website Author Division of Spill...

  9. Hawaii Department of Health Underground Storage Tank Webpage...

    OpenEI (Open Energy Information) [EERE & EIA]

    Underground Storage Tank Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Department of Health Underground Storage Tank Webpage Abstract...

  10. Chemical stabilization of Hanford tank residual waste (Journal...

    Office of Scientific and Technical Information (OSTI)

    Chemical stabilization of Hanford tank residual waste Citation Details In-Document Search Title: Chemical stabilization of Hanford tank residual waste Authors: Cantrell, Kirk J. ; ...

  11. Final Environmental Impact Statement for the Tank Waste Remediation...

    Office of Environmental Management (EM)

    TITLE: Final Environmental Impact Statement for the Tank Waste Remediation System, Hanford ... related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for ...

  12. Record of Decision for the Tank Waste Remediation System, Hanford...

    Office of Environmental Management (EM)

    DEPARTMENT OF ENERGY Record of Decision for the Tank Waste Remediation System, Hanford ... of radioactive, hazardous, and mixed waste within the Tank Waste Remediation System ...

  13. Hanford Site C Tank Farm Meeting Summary - February 2009 | Department...

    Office of Environmental Management (EM)

    February 2009 Hanford Site C Tank Farm Meeting Summary - February 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site...

  14. Radioactive tank waste remediation focus area

    SciTech Connect

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  15. Annual radioactive waste tank inspection program -- 1993

    SciTech Connect

    McNatt, F.G. Sr.

    1994-05-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1993 to evaluate these vessels, and evaluations based on data accrued by inspections made since the tanks were constructed, are the subject of this report. The 1993 inspection program revealed that the condition of the Savannah River Site waste tanks had not changed significantly from that reported in the previous annual report. No new leaksites were observed. No evidence of corrosion or materials degradation was observed in the waste tanks. However, degradation was observed on covers of the concrete encasements for the out-of-service transfer lines to Tanks 1 through 8.

  16. Mortality Among Mound Workers Exposed to Polonium-210 and Other Sources of Radiation, 1944–1979

    SciTech Connect

    Boice, John D.; Cohen, Sarah S.; Mumma, Michael T.; Ellis, Elizabeth Dupree; Cragle, Donna L.; Eckerman, Keith F.; Wallace, Phillip W.; Chadda, Bandana; Sonderman, Jennifer S.; Wiggs, Laurie D.; Richter, Bonnie S.; Leggett, Richard W.

    2014-02-14

    Polonium-210 is a naturally occurring radioactive element that decays by emitting an alpha particle. It is in the air we breathe and also a component of tobacco smoke. Polonium-210 is used as an anti-static device in printing presses and gained widespread notoriety in 2006 after the poisoning and subsequent death of a Russian citizen in London. More is known about the lethal effects of polonium-210 at high doses than about late effects from low doses. In this paper, cancer mortality was examined among 7,270 workers at the Mound nuclear facility near Dayton, OH where polonium-210 was used (1944–1972) in combination with beryllium as a source of neutrons for triggering nuclear weapons. Other exposures included external gamma radiation and to a lesser extent plutonium-238, tritium and neutrons. Vital status and cause of death was determined through 2009. Standardized mortality ratios (SMRs) were computed for comparisons with the general population. Lifetime occupational doses from all places of employment were sought and incorporated into the analysis. Over 200,000 urine samples were analyzed to estimate radiation doses to body organs from polonium and other internally deposited radionuclides. Cox proportional hazards models were used to evaluate dose-response relationships for specific organs and tissues. Vital status was determined for 98.7% of the workers of which 3,681 had died compared with 4,073.9 expected (SMR 0.90; 95% CI 0.88–0.93). The mean dose from external radiation was 26.1 mSv (maximum 939.1 mSv) and the mean lung dose from external and internal radiation combined was 100.1 mSv (maximum 17.5 Sv). Among the 4,977 radiation workers, all cancers taken together (SMR 0.86; 95% CI 0.79–0.93), lung cancer (SMR 0.85; 95% CI 0.74–0.98), and other types of cancer were not significantly elevated. Cox regression analysis revealed a significant positive dose-response trend for esophageal cancer [relative risk (RR) and 95% confidence interval at 100 mSv of 1

  17. Mortality Among Mound Workers Exposed to Polonium-210 and Other Sources of Radiation, 1944–1979

    DOE PAGES [OSTI]

    Boice, John D.; Cohen, Sarah S.; Mumma, Michael T.; Ellis, Elizabeth Dupree; Cragle, Donna L.; Eckerman, Keith F.; Wallace, Phillip W.; Chadda, Bandana; Sonderman, Jennifer S.; Wiggs, Laurie D.; et al

    2014-02-14

    Polonium-210 is a naturally occurring radioactive element that decays by emitting an alpha particle. It is in the air we breathe and also a component of tobacco smoke. Polonium-210 is used as an anti-static device in printing presses and gained widespread notoriety in 2006 after the poisoning and subsequent death of a Russian citizen in London. More is known about the lethal effects of polonium-210 at high doses than about late effects from low doses. In this paper, cancer mortality was examined among 7,270 workers at the Mound nuclear facility near Dayton, OH where polonium-210 was used (1944–1972) in combinationmore » with beryllium as a source of neutrons for triggering nuclear weapons. Other exposures included external gamma radiation and to a lesser extent plutonium-238, tritium and neutrons. Vital status and cause of death was determined through 2009. Standardized mortality ratios (SMRs) were computed for comparisons with the general population. Lifetime occupational doses from all places of employment were sought and incorporated into the analysis. Over 200,000 urine samples were analyzed to estimate radiation doses to body organs from polonium and other internally deposited radionuclides. Cox proportional hazards models were used to evaluate dose-response relationships for specific organs and tissues. Vital status was determined for 98.7% of the workers of which 3,681 had died compared with 4,073.9 expected (SMR 0.90; 95% CI 0.88–0.93). The mean dose from external radiation was 26.1 mSv (maximum 939.1 mSv) and the mean lung dose from external and internal radiation combined was 100.1 mSv (maximum 17.5 Sv). Among the 4,977 radiation workers, all cancers taken together (SMR 0.86; 95% CI 0.79–0.93), lung cancer (SMR 0.85; 95% CI 0.74–0.98), and other types of cancer were not significantly elevated. Cox regression analysis revealed a significant positive dose-response trend for esophageal cancer [relative risk (RR) and 95% confidence interval at 100 m

  18. Recovery Act: Molecular Simulation of Dissolved Inorganic Carbons for Underground Brine CO2 Sequestration

    SciTech Connect

    Goddard, William

    2012-11-30

    To further our understanding and develop the method for measuring the DICs under geological sequestration conditions, we studied the infrared spectra of DICs under high pressure and temperature conditions. First principles simulations of DICs in brine conditions were performed using a highly optimized ReaxFF-DIC forcefield. The thermodynamics stability of each species were determined using the 2PT method, and shown to be consistent with the Reax simulations. More importantly, we have presented the IR spectra of DIC in real brine conditions as a function of temperature and pressure. At near earth conditions, we find a breaking of the O-C-O bending modes into asymmetric and symmetric modes, separated by 100cm{sup -1} at 400K and 5 GPa. These results can now be used to calibrate FTIR laser measurements.

  19. Development of bushings and bearings for use in hot brine pumps

    SciTech Connect

    Hosang, George W.; Stetson, Alvin, R.

    1982-10-08

    The exploitation of geothermal resources often requires that naturally heated subterranean brines be pumped to the surface from depths of up to 6000 feet underground while minimizing heat losses and maintaining sufficient fluid pressure to prevent boiling. To accomplish this requires the use of downhole brine pumps capable of months of uninterrupted operation. Significant problems have occurred with pump lineshaft bearings in the geothermal wells. The objective of this research program was to determine the nature of the problems associated with commonly reported premature failures of downhole lineshaft pump bearings. Using the information gathered, a series of bearing endurance tests was performed on a variety of candidate bearing materials. These tests were accomplished using test rigs specially developed to simulate actual geothermal field conditions and to isolate specific bearing wear problems.

  20. West Hackberry Brine Disposal Project pre-discharge characterization. Final report

    SciTech Connect

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.

    1982-01-01

    The physical, chemical and biological attributes are described for: (1) a coastal marine environment centered about a Department of Energy Strategic Petroleum Reserve (SPR) brine disposal site 11.4 km off the southwest coast of Louisiana; and (2) the lower Calcasieu and Sabine estuarine systems that provide leach waters for the SPR project. A three month sampling effort, February through April 1981, and previous investigations from the study area are integrated to establish baseline information for evaluation of impacts from brine disposal in the nearshore marine waters and from freshwater withdrawal from the coastal marsh of the Chenier Plain. January data are included for some tasks that sampled while testing and mobilizing their instruments prior to the February field effort. The study addresses the areas of physical oceanography, estuarine hydrology and hydrography, water and sediment quality, benthos, nekton, phytoplankton, zooplankton, and data management.

  1. Comparison of selected oil-field brines from fields in the Permian basin, West Texas-southeast New Mexico

    SciTech Connect

    White, H.G. III

    1992-04-01

    Stiff diagrams of oil-field brines from the west Texas Permian basin are identifiable within the geological framework. Plotted from a simple analysis of three cations and three anions, older Paleozoic waters can be categorized as either 'pristine' or modified, usually by a later influx of Permian or early Pennsylvanian water. These different plots can be segregated by geologic province. The Permian brines differ by age and also by environment (shelf, basin, etc.).

  2. CHARACTERIZATION OF TANK 19F SAMPLES

    SciTech Connect

    Oji, L.; Diprete, D.; Click, D.

    2009-12-17

    The Savannah River National Laboratory (SRNL) was asked by Liquid Waste Operations to characterize Tank 19F closure samples. Tank 19F slurry samples analyzed included the liquid and solid fractions derived from the slurry materials along with the floor scrape bottom Tank 19F wet solids. These samples were taken from Tank 19F in April 2009 and made available to SRNL in the same month. Because of limited amounts of solids observed in Tank 19F samples, the samples from the north quadrants of the tank were combined into one Tank 19F North Hemisphere sample and similarly the south quadrant samples were combined into one Tank 19F South Hemisphere sample. These samples were delivered to the SRNL shielded cell. The Tank 19F samples were analyzed for radiological, chemical and elemental components. Where analytical methods yielded additional contaminants other than those requested by the customer, these results were also reported. The target detection limits for isotopes analyzed were based on detection values of 1E-04 {micro}Ci/g for most radionuclides and customer desired detection values of 1E-05 {micro}Ci/g for I-129, Pa-231, Np-237, and Ra-226. While many of the target detection limits, as specified in the technical task request and task technical and quality assurance plans were met for the species characterized for Tank 19F, some were not met. In a number of cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  3. CHARACTERIZATION OF THE TANK 18F SAMPLES

    SciTech Connect

    Oji, L.; Click, D.; Diprete, D.

    2009-12-17

    The Savannah River National Laboratory (SRNL) was asked by Liquid Waste Operations to characterize Tank 18F closure samples. Tank 18F slurry samples analyzed included the liquid and solid fractions derived from the 'as-received' slurry materials along with the floor scrape bottom Tank 18F wet solids. These samples were taken from Tank 18F in March 2009 and made available to SRNL in the same month. Because of limited amounts of solids observed in Tank 18F samples, the samples from the north quadrants of the tank were combined into one North Tank 18F Hemisphere sample and similarly the south quadrant samples were combined into one South Tank 18F Hemisphere sample. These samples were delivered to the SRNL shielded cell. The Tank 18F samples were analyzed for radiological, chemical and elemental components. Where analytical methods yielded additional contaminants other than those requested by the customer, these results were also reported. The target detection limits for isotopes analyzed were 1E-04 {micro}Ci/g for most radionuclides and customer desired detection values of 1E-05 {micro}Ci/g for I-129, Pa-231, Np-237, and Ra-226. While many of the minimum detection limits, as specified in the technical task request and task technical and quality assurance plans were met for the species characterized for Tank 18F, some were not met due to spectral interferences. In a number of cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  4. Lifecycle Verification of Tank Liner Polymers

    SciTech Connect

    Anovitz, Lawrence {Larry} M; Smith, Barton

    2014-03-01

    This report describes a method that was developed for the purpose of assessing the durability of thermoplastic liners used in a Type IV hydrogen storage tank during the tank s expected service life. In the method, a thermoplastic liner specimen is cycled between the maximum and minimum expected working temperatures while it is differentially pressurized with high-pressure hydrogen gas. The number of thermal cycling intervals corresponds to those expected within the tank s design lifetime. At prescribed intervals, hydrogen permeation measurements are done in situ to assess the ability of the liner specimen to maintain its hydrogen barrier properties and to model its permeability over the tank lifetime. Finally, the model is used to assess whether the steady-state leakage rate in the tank could potentially exceed the leakage specification for hydrogen fuel cell passenger vehicles. A durability assessment was performed on a specimen of high-density polyethylene (HDPE) that is in current use as a tank liner. Hydrogen permeation measurements were performed on several additional tank liner polymers as well as novel polymers proposed for use as storage tank liners and hydrogen barrier materials. The following technical barriers from the Fuel Cell Technologies Program MYRDD were addressed by the project: D. Durability of on-board storage systems lifetime of at least 1500 cycles G. Materials of construction vessel containment that is resistant to hydrogen permeation M. Lack of Tank Performance Data and Understanding of Failure Mechanisms And the following technical targets1 for on-board hydrogen storage systems R&D were likewise addressed: Operational cycle life (1/4 tank to full) FY 2017: 1500 cycles; Ultimate: 1500 cycles Environmental health & safety Permeation and leakage: Meets or exceeds applicable standards Loss of useable H2: FY 2017: 0.05 g/h/kg H2; Ultimate: 0.05 g/h/kg H2

  5. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed, The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts, For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates.

  6. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed. The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts. For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates. 54 figs.

  7. Targeted Pressure Management During CO2 Sequestration: Optimization of Well Placement and Brine Extraction

    DOE PAGES [OSTI]

    Cihan, Abdullah; Birkholzer, Jens; Bianchi, Marco

    2014-12-31

    Large-scale pressure increases resulting from carbon dioxide (CO2) injection in the subsurface can potentially impact caprock integrity, induce reactivation of critically stressed faults, and drive CO2 or brine through conductive features into shallow groundwater. Pressure management involving the extraction of native fluids from storage formations can be used to minimize pressure increases while maximizing CO2 storage. However, brine extraction requires pumping, transportation, possibly treatment, and disposal of substantial volumes of extracted brackish or saline water, all of which can be technically challenging and expensive. This paper describes a constrained differential evolution (CDE) algorithm for optimal well placement and injection/ extractionmore » control with the goal of minimizing brine extraction while achieving predefined pressure contraints. The CDE methodology was tested for a simple optimization problem whose solution can be partially obtained with a gradient-based optimization methodology. The CDE successfully estimated the true global optimum for both extraction well location and extraction rate, needed for the test problem. A more complex example application of the developed strategy was also presented for a hypothetical CO2 storage scenario in a heterogeneous reservoir consisting of a critically stressed fault nearby an injection zone. Through the CDE optimization algorithm coupled to a numerical vertically-averaged reservoir model, we successfully estimated optimal rates and locations for CO2 injection and brine extraction wells while simultaneously satisfying multiple pressure buildup constraints to avoid fault activation and caprock fracturing. The study shows that the CDE methodology is a very promising tool to solve also other optimization problems related to GCS, such as reducing ‘Area of Review’, monitoring design, reducing risk of leakage and increasing storage capacity and trapping.« less

  8. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    SciTech Connect

    McLing, Travis; Smith, William; Smith, Robert

    2014-12-31

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO₂-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at a proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO₂. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO₂ will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO₂ driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ

  9. Ground-water hydraulics of the deep-basin brine aquifer, Palo Duro Basin, Texas panhandle

    SciTech Connect

    Smith, D.A.

    1985-01-01

    The Deep-Basin Brine aquifer of the Palo Duro Basin (Texas Panhandle) underlies thick Permian bedded evaporites that are being evaluated as a potential high-level nuclear waste isolation repository. Potentiometric surface maps of 5 units of the Deep-Basin Brine aquifer were drawn using drill-stem test (DST) pressure data, which were analyzed by a geostatistical technique (kriging) to smooth the large variation in the data. The potentiometric surface maps indicate that the Deep-Basin Brine aquifer could be conceptually modeled as 5 aquifer units; a Lower Permian (Wolfcamp) aquifer, upper and lower Pennsylvanian aquifers, a pre-Pennsylvanian aquifer, and a Pennsylvanian to Wolfcampian granite-wash aquifer. The hydraulic head maps indicate that ground-water flow in each of the units is west to east with a minor northerly component near the Amarillo Uplift, the northern structural boundary of the basin. The Wolfcamp potentiometric surface indicates the strongest component of northerly flow. Inferred flow direction in Pennsylvanian aquifers is easterly, and in the pre-Pennsylvanian aquifer near its pinch-out in the basin center, flow is inferred to be to the north. In the granite-wash aquifer the inferred flow direction is east across the northern edge of the basin and southeast along the Amarillo Uplift.

  10. Assessment of Contaminated Brine Fate and Transport in MB139 at WIPP

    SciTech Connect

    Kuhlman, Kristopher L.; Malama, Bwalya

    2014-07-01

    Following the radionuclide release event of February 14, 2014 at the Waste Isolation Pilot Plant (WIPP), actinide contamination has been found on the walls and floor in Panel 7 as a result of a release in Room 7 of Panel 7. It has been proposed to decontaminate Panel 7 at the WIPP by washing contaminated surfaces in the underground with fresh water. A cost-effective cleanup of this contamination would allow for a timely return to waste disposal operations at WIPP. It is expected that the fresh water used to decontaminate Panel 7 will flow as contaminated brine down into the porosity of the materials under the floor – the run-of-mine (ROM) salt above Marker Bed 139 (MB139) and MB139 itself – where its fate will be controlled by the hydraulic and transport properties of MB139. Due to the structural dip of MB139, it is unlikely that this brine would migrate northward towards the Waste-Handling Shaft sump. A few strategically placed shallow small-diameter observation boreholes straddling MB139 would allow for monitoring the flow and fate of this brine after decontamination. Additionally, given that flow through the compacted ROM salt floor and in MB139 would occur under unsaturated (or two-phase) conditions, there is a need to measure the unsaturated flow properties of crushed WIPP salt and salt from the disturbed rock zone (DRZ).

  11. LIFE ESTIMATION OF HIGH LEVEL WASTE TANK STEEL FOR F-TANK FARM CLOSURE PERFORMANCE ASSESSMENT

    SciTech Connect

    Subramanian, K

    2007-10-01

    High level radioactive waste (HLW) is stored in underground storage tanks at the Savannah River Site. The SRS is proceeding with closure of the 22 tanks located in F-Area. Closure consists of removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. A performance assessment is being performed in support of closure of the F-Tank Farm. Initially, the carbon steel construction materials of the high level waste tanks will provide a barrier to the leaching of radionuclides into the soil. However, the carbon steel liners will degrade over time, most likely due to corrosion, and no longer provide a barrier. The tank life estimation in support of the performance assessment has been completed. The estimation considered general and localized corrosion mechanisms of the tank steel exposed to the contamination zone, grouted, and soil conditions. The estimation was completed for Type I, Type III, and Type IV tanks in the F-Tank Farm. The tank life estimation in support of the F-Tank Farm closure performance assessment has been completed. The estimation considered general and localized corrosion mechanisms of the tank steel exposed to the contamination zone, grouted, and soil conditions. The estimation was completed for Type I, Type III, and Type IV tanks in the F-Tank Farm. Consumption of the tank steel encased in grouted conditions was determined to occur either due to carbonation of the concrete leading to low pH conditions, or the chloride-induced de-passivation of the steel leading to accelerated corrosion. A deterministic approach was initially followed to estimate the life of the tank liner in grouted conditions or in soil conditions. The results of this life estimation are shown in Table 1 and Table 2 for grouted and soil conditions respectively. The tank life has been estimated under conservative assumptions of diffusion rates. However, the same process of

  12. Combustion modeling in waste tanks

    SciTech Connect

    Mueller, C.; Unal, C.; Travis, J.R. |

    1997-08-01

    This paper has two objectives. The first one is to repeat previous simulations of release and combustion of flammable gases in tank SY-101 at the Hanford reservation with the recently developed code GASFLOW-II. The GASFLOW-II results are compared with the results obtained with the HMS/TRAC code and show good agreement, especially for non-combustion cases. For combustion GASFLOW-II predicts a steeper pressure rise than HMS/TRAC. The second objective is to describe a so-called induction parameter model which was developed and implemented into GASFLOW-II and reassess previous calculations of Bureau of Mines experiments for hydrogen-air combustion. The pressure time history improves compared with the one-step model, and the time rate of pressure change is much closer to the experimental data.

  13. Tank characterization report for Single-Shell Tank 241-T-107

    SciTech Connect

    Valenzuela, B.D.; Jensen, L.

    1994-09-01

    Single shell tank 241-T-107 is a Hanford Site Ferrocyanide Watch List tank most recently sampled in March 1993. Analyses of materials obtained from tank T-107 were conducted to support the Ferrocyanide Unreviewed Safety Question (USQ) and the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-06 as well as Milestones M-44-05 and M-44-07. Characterization of the tank waste T-107 will support the ferrocyanide safety issue in order to classify the tank as safe, conditionally safe, or unsafe. This tank characterization report expands on the data found in Ferrocyanide Safety Program: Data Interpretation Report for Tank 241-T-107 Core Samples. Analysis of core samples obtained from tank T-107 strongly indicate the cyanide and oxidizer (nitrate/nitrite) concentrations in the tank waste are not significant enough to support a self-sustaining exothermic reaction. Therefore, the contents of tank T-107 present no imminent threat to the workers at the Hanford Site, the public, or the environment. Because the possibility of an exothermic reaction is remote, the consequences of an accident scenario, as proposed by the General Accounting Office, are not applicable.

  14. Vadose zone characterization project at the Hanford Tank Farms: U Tank Farm Report

    SciTech Connect

    1997-05-01

    The U.S. Department of Energy Grand Junction Office (DOE-GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the gamma-ray-emitting radionuclides that are distributed in the vadose zone sediments beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources when possible, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information regarding vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. This information is presently limited to detection of gamma-emitting radionuclides from both natural and man-made sources. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank in a tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the U Tank Farm. Logging operations used high-purity germanium detection systems to acquire laboratory-quality assays of the gamma-emitting radionuclides in the sediments around and below the tanks. These assays were acquired in 59 boreholes that surround the U Tank Farm tanks. Logging of all boreholes was completed in December 1995, and the last Tank Summary Data Report for the U Tank Farm was issued in September 1996.

  15. TANK 4 CHARACTERIZATION, SETTLING, AND WASHING STUDIES

    SciTech Connect

    Bannochie, C.; Pareizs, J.; Click, D.; Zamecnik, J.

    2009-09-29

    A sample of PUREX sludge from Tank 4 was characterized, and subsequently combined with a Tank 51 sample (Tank 51-E1) received following Al dissolution, but prior to a supernate decant by the Tank Farm, to perform a settling and washing study to support Sludge Batch 6 preparation. The sludge source for the majority of the Tank 51-E1 sample is Tank 12 HM sludge. The Tank 51-E1 sample was decanted by SRNL prior to use in the settling and washing study. The Tank 4 sample was analyzed for chemical composition including noble metals. The characterization of the Tank 51-E1 sample, used here in combination with the Tank 4 sample, was reported previously. SRNL analyses on Tank 4 were requested by Liquid Waste Engineering (LWE) via Technical Task Request (TTR) HLE-TTR-2009-103. The sample preparation work is governed by Task Technical and Quality Assurance Plan (TTQAP), and analyses were controlled by an Analytical Study Plan and modifications received via customer communications. Additional scope included a request for a settling study of decanted Tank 51-E1 and a blend of decanted Tank 51-E1 and Tank 4, as well as a washing study to look into the fate of undissolved sulfur observed during the Tank 4 characterization. The chemistry of the Tank 4 sample was modeled with OLI Systems, Inc. StreamAnalyzer to determine the likelihood that sulfate could exist in this sample as insoluble Burkeite (2Na{sub 2}SO{sub 4} {center_dot} Na{sub 2}CO{sub 3}). The OLI model was also used to predict the composition of the blended tank materials for the washing study. The following conclusions were drawn from the Tank 4 analytical results reported here: (1) Any projected blend of Tank 4 and the current Tank 51 contents will produce a SB6 composition that is lower in Ca and U than the current SB5 composition being processed by DWPF. (2) Unwashed Tank 4 has a relatively large initial S concentration of 3.68 wt% on a total solids basis, and approximately 10% of the total S is present as an

  16. RealGasBrine v1.0 option of TOUGH+ v1.5

    Energy Science and Technology Software Center

    2015-02-27

    RealGasBrine v1.0 is a numerical code that for the simulation of the behavior of gas-bearing porous and/fractured geologic media. It is an option of TOUGH+ v1.5 [Moridis, 2014], a successor to the TOUGH2 [Pruess et al., 1999; 2012] family of codes for multi-component, multiphase ?uid and heat ?ow developed at the Lawrence Berkeley National Laboratory. RealGasBrine v1.0 needs the TOUGH+ v1.5 core code in order to compile and execute. It is written in standard FORTRANmore » 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available. RealGasBrine v1.0 describes the non-isothermal two- (for pure water) or three-phase (for brine) flow of an aqueous phase and a real gas mixture in a gas-bearing medium, with a particular focus in ultra-tight (such as tight-sand and shale gas) systems. Up to 12 individual real gases can be tracked, and salt can precipitate as solid halite. The capabilities of the code include coupled flow and thermal effects, real gas behavior, Darcy and non-Darcy flow, several isotherm options of gas sorption onto the grains of the porous media, complex fracture descriptions, gas solubility into water, and geomechanical effects on flow properties. RealGasBrine v1.0 allows the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in any problem involving the flow of gases in geologic media, including the geologic storage of greenhouse gas mixtures, the behavior of geothermal reservoirs with multi-component condensable (H2O and CO2) and non-condensable gas mixtures, the transport of water and released H2 in nuclear waste storage applications, etc.« less

  17. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    SciTech Connect

    David B. Burnett

    2005-09-29

    This study is developing a comprehensive study of what is involved in the desalination of oil field produced brine and the technical developments and regulatory changes needed to make the concept a commercial reality. It was originally based on ''conventional'' produced water treatment and reviewed (1) the basics of produced water management, (2) the potential for desalination of produced brine in order to make the resource more useful and available in areas of limited fresh water availability, and (3) the potential beneficial uses of produced water for other than oil production operations. Since we have begun however, a new area of interest has appeared that of brine water treatment at the well site. Details are discussed in this technical progress report. One way to reduce the impact of O&G operations is to treat produced brine by desalination. The main body of the report contains information showing where oil field brine is produced, its composition, and the volume available for treatment and desalination. This collection of information all relates to what the oil and gas industry refers to as ''produced water management''. It is a critical issue for the industry as produced water accounts for more than 80% of all the byproducts produced in oil and gas exploration and production. The expense of handling unwanted waste fluids draws scarce capital away for the development of new petroleum resources, decreases the economic lifetimes of existing oil and gas reservoirs, and makes environmental compliance more expensive to achieve. More than 200 million barrels of produced water are generated worldwide each day; this adds up to more than 75 billion barrels per year. For the United States, the American Petroleum Institute estimated about 18 billion barrels per year were generated from onshore wells in 1995, and similar volumes are generated today. Offshore wells in the United States generate several hundred million barrels of produced water per year. Internationally

  18. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    DOE PAGES [OSTI]

    McLing, Travis; Smith, William; Smith, Robert

    2014-12-31

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO₂-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at amore » proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO₂. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO₂ will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO₂ driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ reservoir

  19. TANK MIXING STUDY WITH FLOW RECIRCULATION

    SciTech Connect

    Lee, S.

    2014-06-25

    The primary objective of this work is to quantify the mixing time when two miscible fluids are mixed by one recirculation pump and to evaluate adequacy of 2.5 hours of pump recirculation to be considered well mixed in SRS tanks, JT-71/72. The work scope described here consists of two modeling analyses. They are the steady state flow pattern analysis during pump recirculation operation of the tank liquid and transient species transport calculations based on the initial steady state flow patterns. The modeling calculations for the mixing time are performed by using the 99% homogeneity criterion for the entire domain of the tank contents.

  20. CHARACTERIZATION OF TANK 11H AND TANK 51H POST ALUMINUM DISSOLUTION PROCESS SAMPLES

    SciTech Connect

    Hay, M; Daniel McCabe, D

    2008-05-16

    A dip sample of the liquid phase from Tank 11H and a 3-L slurry sample from Tank 51H were obtained and sent to Savannah River National Laboratory for characterization. These samples provide data to verify the amount of aluminum dissolved from the sludge as a result of the low temperature aluminum dissolution process conducted in Tank 51H. The characterization results for the as-received Tank 11H and Tank 51H supernate samples and the total dried solids of the Tank 51H sludge slurry sample appear quite good with respect to the precision of the sample replicates and minimal contamination present in the blank. The two supernate samples show similar concentrations for the major components as expected.

  1. Tank characterization report for double-shell Tank 241-AW-105

    SciTech Connect

    DiCenso, A.T.; Amato, L.C.; Franklin, J.D.; Lambie, R.W.; Stephens, R.H.; Simpson, B.C.

    1994-09-28

    In May 1990, double-shell Tank 241-AW-105 was sampled to determine proper handling of the waste, to address corrosivity and compatibility issues, and to comply with requirements of the Washington Administrative Code. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics. It also addresses expected concentration and bulk inventory data for the waste contents based on this latest sampling data and background tank information. This report summarizes the available information regarding the waste in Tank 241-AW-105, and using the historical information to place the analytical data in context, arranges this information in a useful format for making management and technical decisions concerning this waste tank. In addition, conclusions and recommendations are given based on safety issues and further characterization needs.

  2. Tank characterization report for single-shell tank 241-C-109

    SciTech Connect

    DiCenso, A.T.; Amato, L.C.; Lambie, R.W.; Franklin, J.D.; Seymour, B.J.; Johnson, K.W.; Stevens, R.H.; Remund, K.M.; Sasaki, L.M.; Simpson, B.C.

    1995-02-01

    This document provides the characterization information and interprets the data for Single-Shell Tank 241-C-109. Single-Shell Tank 241-C-109 is an underground storage tank containing high-level radioactive waste. It is located in the C Tank Farm in the Hanford Site`s 200 East Area. The tank was sampled in September of 1992 to address the Ferrocyanide Unreviewed Safety Question. Analyses of tank waste were also performed to support Hanford Federal Facility Agreement and Consent Order Milestone M-44-08. Tank 241-C-109 went into service in 1946 and received first-cycle decontamination waste from bismuth phosphate process operations at B Plant in 1948. Other waste types added that are expected to contribute to the current contents include ferrocyanide scavenging waste and Strontium Semiworks waste. It is the last tank in a cascade with Tanks 241-C-107 and 241-C-108. The tank has a capacity of 2,010 kL (530 kgal) and currently contains 250 kL (66 kgal) of waste, existing primarily of sludge. Approximately 9.15 kL (4 kgal) of supernate remain. The sludge is heterogeneous, with significantly different chemical compositions depending on waste depth. The major waste constituents include aluminum, calcium, iron, nickel, nitrate, nitrite, phosphate, sodium, sulfate and uranium. The major radionuclides present are Cesium 137 and Strontium 90. The results of this characterization indicate that the waste in this tank is adequately described in the Dangerous Waste Permit Application of the Single-Shell Tank System.

  3. Vandose Zone Characterization Project at the Hanford Tank Farms: SX Tank Farm Report

    SciTech Connect

    Brodeur, J.R.; Koizumi, C.J.; Bertsch, J.F.

    1996-09-01

    The SX Tank Farm is located in the southwest portion of the 200 West Area of the Hanford Site. This tank farm consists of 15 single-shell tanks (SSTs), each with an individual capacity of 1 million gallons (gal). These tanks currently store high-level nuclear waste that was primarily generated from what was called the oxidation-reduction or {open_quotes}REDOX{close_quotes} process at the S-Plant facility. Ten of the 15 tanks are listed in Hanlon as {open_quotes}assumed leakers{close_quotes} and are known to have leaked various amounts of high-level radioactive liquid to the vadose zone sediment. The current liquid content of each tank varies, but the liquid from known leaking tanks has been removed to the extent possible. In 1994, the U.S. Department of Energy Richland Office (DOE-RL) requested the DOE Grand Junction Projects Office (GJPO), Grand Junction, Colorado, to perform a baseline characterization of contamination in the vadose zone at all the SST farms with spectral gamma-ray logging of boreholes surrounding the tanks. The SX Tank Farm geophysical logging was completed, and the results of this baseline characterization are presented in this report.

  4. Tank characterization report for single-shell tank 241-BX-112

    SciTech Connect

    Winkelman, W.D.

    1996-09-18

    This characterization report summarizes information on the historical uses, currant status, and sampling and analysis results of waste stored in single-shell tank 241-BX-112.

  5. Tank characterization report for single-shell tank 241-BY-102

    SciTech Connect

    Sasaki, L.M., Fluor Daniel Hanford

    1997-03-13

    This characterization report summarizes information on the historical uses, current status, and sampling and analysis results of waste stored in tank 241-BY-102.

  6. Tank characterization report for single-shell tank 241-T-105

    SciTech Connect

    Field, J.G.

    1997-01-21

    This characterization report summarizes information on the historical uses, current status, and sampling and analysis results of waste stored in tank 241-T-105.

  7. EM Tank Waste Subcommittee Report for SRS and Hanford Tank Waste...

    Office of Environmental Management (EM)

    of the Environmental Management Tank Waste Subcommittee (EM- TWS) of the ... to three charges from EM-1 regarding the Waste Treatment and Immobilization Plant at ...

  8. Hanford Tank Farm Workers Begin Tank Waste Retrieval Ahead of Schedule |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Tank Farm Workers Begin Tank Waste Retrieval Ahead of Schedule Hanford Tank Farm Workers Begin Tank Waste Retrieval Ahead of Schedule March 16, 2016 - 12:35pm Addthis Workers connect the power supply and instrumentation in AP-02A. Workers connect the power supply and instrumentation in AP-02A. Workers on the AY-102 Recovery Project install transfer lines to connect process equipment, such as the slurry pump, sluicers, and water distribution skid, to the waste transfer

  9. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    o To avoid these problems, they will use a bounding max based on data since not enough data to figure central tendency. o C-200 tanks had big difference between estimated...

  10. Vitrification technology for Hanford Site tank waste

    SciTech Connect

    Weber, E.T.; Calmus, R.B.; Wilson, C.N.

    1995-04-01

    The US Department of Energy`s (DOE) Hanford Site has an inventory of 217,000 m{sup 3} of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing.

  11. Haynes Tow Tank | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    labor) Special Physical Features The tank includes a 7.6m by 3.7m by 1.5m deep sediment pit. Towing Capabilities Towing Capabilities Yes Maximum Velocity(ms) 1.8 Length of...

  12. Tank Waste Corporate Board | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The following documents are associated with the Tank Waste Corporate Board Meeting held on November 6th, 2008. Note: (Please contact Steven Ross at steven.ross@em.doe.gov for a HLW ...

  13. The Hanford Story: Tank Waste Cleanup

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fourth chapter of The Hanford Story explains how the DOE Office of River Protection will use the Waste Treatment Plant to treat the 56 million gallons of radioactive waste in the Tank Farms.

  14. Grouting Begins on Next SRS Waste Tank

    Office of Energy Efficiency and Renewable Energy (EERE)

    AIKEN, S.C. – Cement trucks hauling specially-formulated grout are once again traversing the Savannah River Site (SRS) after grouting activities on the next underground radioactive liquid waste storage tank began this month.

  15. MIT Tow Tank | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Institute of Technology Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 36.6 Beam(m) 2.4 Depth(m) 1.2 Water Type Saltwater Cost(per day) 750 Towing...

  16. Renewable Energy: Plants in Your Gas Tank

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plants in Your Gas Tank: From Photosynthesis to Ethanol Grades: 5-8, 9-12 Topic: Biomass Authors: Chris Ederer, Eric Benson, Loren Lykins Owner: ACTS This educational material is...

  17. Tank waste remediation system operational scenario

    SciTech Connect

    Johnson, M.E.

    1995-05-01

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the strontium and cesium capsules) in an environmentally sound, safe, and cost-effective manner (DOE 1993). This operational scenario is a description of the facilities that are necessary to remediate the Hanford Site tank wastes. The TWRS Program is developing technologies, conducting engineering analyses, and preparing for design and construction of facilities necessary to remediate the Hanford Site tank wastes. An Environmental Impact Statement (EIS) is being prepared to evaluate proposed actions of the TWRS. This operational scenario is only one of many plausible scenarios that would result from the completion of TWRS technology development, engineering analyses, design and construction activities and the TWRS EIS. This operational scenario will be updated as the development of the TWRS proceeds and will be used as a benchmark by which to evaluate alternative scenarios.

  18. Toxic chemical considerations for tank farm releases

    SciTech Connect

    Van Keuren, J.C.; Davis, J.S., Westinghouse Hanford

    1996-08-01

    This topical report contains technical information used to determine the accident consequences of releases of toxic chemical and gases for the Tank Farm Final Safety Analysis report (FSAR).It does not provide results for specific accident scenarios but does provide information for use in those calculations including chemicals to be considered, chemical concentrations, chemical limits and a method of summing the fractional contributions of each chemical. Tank farm composites evaluated were liquids and solids for double shell tanks, single shell tanks, all solids,all liquids, headspace gases, and 241-C-106 solids. Emergency response planning guidelines (ERPGs) were used as the limits.Where ERPGs were not available for the chemicals of interest, surrogate ERPGs were developed. Revision 2 includes updated sample data, an executive summary, and some editorial revisions.

  19. Single Shell Tank (SST) Program Plan

    SciTech Connect

    HAASS, C.C.

    2000-03-21

    This document provides an initial program plan for retrieval of the single-shell tank waste. Requirements, technical approach, schedule, organization, management, and cost and funding are discussed. The program plan will be refined and updated in fiscal year 2000.

  20. Wet processing of palladium for use in the tritium facility at Westinghouse, Savannah River, SC. Preparation of palladium using the Mound Muddy Water process

    SciTech Connect

    Baldwin, D.P.; Zamzow, D.S.

    1998-11-10

    Palladium used at Savannah River for tritium storage is currently obtained from a commercial source. In order to better understand the processes involved in preparing this material, Savannah River is supporting investigations into the chemical reactions used to synthesize this material and into the conditions necessary to produce palladium powder that meets their specifications. This better understanding may help to guarantee a continued reliable source for this material in the future. As part of this evaluation, a work-for-others contract between Westinghouse Savannah River Company and the Ames Laboratory Metallurgy and Ceramics Program was initiated. During FY98, the process for producing palladium powder developed in 1986 by Dan Grove of Mound Applied Technologies (USDOE) was studied to understand the processing conditions that lead to changes in morphology in the final product. This report details the results of this study of the Mound Muddy Water process, along with the results of a round-robin analysis of well-characterized palladium samples that was performed by Savannah River and Ames Laboratory. The Mound Muddy Water process is comprised of three basic wet chemical processes, palladium dissolution, neutralization, and precipitation, with a number of filtration steps to remove unwanted impurity precipitates.

  1. High Pressure Hydrogen Tank Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Tank Manufacturing High Pressure Hydrogen Tank Manufacturing Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. High Pressure Hydrogen Tank Manufacturing (1.51 MB) More Documents & Publications High-Pressure Hydrogen Tanks Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed Hydrogen Storage Systems-Current

  2. Supplemental Treatment Technologies Hanford Advisory Board Tank Waste Committee

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Supplemental Treatment Technologies Hanford Advisory Board Tank Waste Committee Billie Mauss Technology Program Manager April 15, 2010 WP 1 - Waste Retrieval and Closure Technologies $5.2 M Challenge *Increase capability to remove tank waste material *Reduce waste volumes *Increase storage capacity in existing tanks *Ability to assess environmental safety of grouted waste residuals in tanks Possible Solutions * Develop alternative chemical cleaning methods to control tank heel chemistry *

  3. Fuel Tank Manufacturing, Testing, Field Performance, and Certification |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Tank Manufacturing, Testing, Field Performance, and Certification Fuel Tank Manufacturing, Testing, Field Performance, and Certification Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA. csqw_newhouse.pdf (3.43 MB) More Documents & Publications Tank Manufacturing, Testing, Deployment and Field Performance CNG and Hydrogen Tank Safety, R&D, and Testing Type 4 Tank Testing,

  4. Microsoft Word - Tank Waste Report 9-30-05.doc

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Accelerated Tank Waste Retrieval Activities at the Hanford Site DOE/IG-0706 October 2005 REPORT ON THE ACCELERATED TANK WASTE RETRIEVAL ACTIVITIES AT THE HANFORD SITE TABLE OF CONTENTS Tank Waste Retrieval Details of Finding 1 Recommendations and Comments 4 Appendices Objective, Scope, and Methodology 6 Prior Reports 7 Management Comments 8 Tank Waste Retrieval Page 1 Details of Finding Tank Waste The Department will not meet Tri-Party Agreement (Agreement) Retrieval Activities milestones for

  5. Single-Shell Tank Evaluations - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Single-Shell Tank Evaluations Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site Budget Hanford Site Safety Standards DOE - ORP Contracts/Procurements DOE - RL Contracts/Procurements Integrated Waste Feed Delivery Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RI/FS 100-D/H Operable Units RI/FS Sitewide Probabilistic Seismic Hazard Analysis Environmental Email Email Page | Print Print Page | Text

  6. Double shell tank waste analysis plan

    SciTech Connect

    Mulkey, C.H.; Jones, J.M.

    1994-12-15

    Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations.

  7. Think Tank: Delaware Department of Natural Resources

    Alternative Fuels and Advanced Vehicles Data Center

    Spring 2009 Number 58 UST Regulations Revision Update Jill Hall The Tank Management Branch (TMB) conducted 3 public workshops in October 2008 to roll out changes to the Delaware Regulations Governing Underground Storage Tanks (UST Regulations). The UST Regulations were completely re- vamped last year and became effective January 11, 2008. Changes were made last year for 2 reasons: (1) the UST Reg- ulations were woefully out of date with regards to technological changes, and (2) the Federal

  8. Tank waste remediation system mission analysis

    SciTech Connect

    Baynes, P.A.; Woods, J.W.; Collings, J.L.

    1993-03-01

    Mission analysis is an iterative process that expands the mission statement, identifies needed information, and provides sufficient insight to proceed with the necessary, subsequent analyses. The Tank Waste Remediation System (TWRS) mission analysis expands the TWRS Program problem statement: ``remediate tank waste.`` It also and the mission statement: ``store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost effective manner.`` The mission analysis expands the problem and mission statements to accomplish four primary tasks. First, it defines the mission in enough detail to provide any follow-on work with a consistent foundation. Second, it defines the TWRS boundaries. Third, it identifies the following for TWRS: (1) current conditions, (2) acceptable final conditions, (3) requirement sources for the final product and the necessary systems, (4) organizations authorized to issue requirements, and (5) the criteria to determine when the problem is solved. Finally, it documents the goals to be achieved.This document concludes that tank safety issues should be resolved quickly and tank waste should be treated and immobilized quickly because of the hazardous nature of the tank waste and the age and condition of the existing tanks. In addition, more information is needed (e.g., waste acceptance criteria, condition of existing waste) to complete the TWRS mission analysis.

  9. Tank waste remediation system mission analysis

    SciTech Connect

    Baynes, P.A.; Woods, J.W. ); Collings, J.L. )

    1993-03-01

    Mission analysis is an iterative process that expands the mission statement, identifies needed information, and provides sufficient insight to proceed with the necessary, subsequent analyses. The Tank Waste Remediation System (TWRS) mission analysis expands the TWRS Program problem statement: remediate tank waste.'' It also and the mission statement: store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost effective manner.'' The mission analysis expands the problem and mission statements to accomplish four primary tasks. First, it defines the mission in enough detail to provide any follow-on work with a consistent foundation. Second, it defines the TWRS boundaries. Third, it identifies the following for TWRS: (1) current conditions, (2) acceptable final conditions, (3) requirement sources for the final product and the necessary systems, (4) organizations authorized to issue requirements, and (5) the criteria to determine when the problem is solved. Finally, it documents the goals to be achieved.This document concludes that tank safety issues should be resolved quickly and tank waste should be treated and immobilized quickly because of the hazardous nature of the tank waste and the age and condition of the existing tanks. In addition, more information is needed (e.g., waste acceptance criteria, condition of existing waste) to complete the TWRS mission analysis.

  10. RECENT PROGRESS IN DOE WASTE TANK CLOSURE

    SciTech Connect

    Langton, C

    2008-02-01

    The USDOE complex currently has over 330 underground storage tanks that have been used to process and store radioactive waste generated from the production of weapons materials. These tanks contain over 380 million liters of high-level and low-level radioactive waste. The waste consists of radioactively contaminated sludge, supernate, salt cake or calcine. Most of the waste exists at four USDOE locations, the Hanford Site, the Savannah River Site, the Idaho Nuclear Technology and Engineering Center and the West Valley Demonstration Project. A summary of the DOE tank closure activities was first issued in 2001. Since then, regulatory changes have taken place that affect some of the sites and considerable progress has been made in closing tanks. This paper presents an overview of the current regulatory changes and drivers and a summary of the progress in tank closures at the various sites over the intervening six years. A number of areas are addressed including closure strategies, characterization of bulk waste and residual heel material, waste removal technologies for bulk waste, heel residuals and annuli, tank fill materials, closure system modeling and performance assessment programs, lessons learned, and external reviews.

  11. Underground storage tank management plan

    SciTech Connect

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  12. PILOT TESTING: PRETREATMENT OPTIONS TO ALLOW RE-USE OF FRAC FLOWBACK AND PRODUCED BRINE FOR GAS SHALE RESOURCE DEVELOPMENT

    SciTech Connect

    Burnett, David

    2012-12-31

    The goal of the A&M DOE NETL Project No. DE-FE0000847 was to develop a mobile, multifunctional water treatment capability designed specifically for “pre-treatment” of field waste brine. The project consisted of constructing s mobile “field laboratory” incorporating new technology for treating high salinity produced water and using the lab to conduct a side-by-side comparison between this new technology and that already existing in field operations. A series of four field trials were performed utilizing the mobile unit to demonstrate the effectiveness of different technology suitable for use with high salinity flow back brines and produced water. The design of the mobile unit was based on previous and current work at the Texas A&M Separation Sciences Pilot Plant. The several treatment techniques which have been found to be successful in both pilot plant and field tests had been tested to incorporate into a single multifunctional process train. Eight different components were evaluated during the trials, two types of oil and grease removal, one BTEX removal step, three micro-filters, and two different nanofilters. The performance of each technique was measured by its separation efficiency, power consumption, and ability to withstand fouling. The field trials were a success. Four different field brines were evaluated in the first trial in New York. Over 16,000 gallons of brine were processed. Using a power cost of $.10 per kWh, media pretreatment power use averaged $0.004 per barrel, solids removal $.04 per barrel and brine “softening” $.84 per barrel. Total power cost was approximately $1.00 per barrel of fluid treated. In Pennsylvania, brines collected from frac ponds were tested in two additional trials. Each of the brines was converted to an oil-free, solids-free brine with no biological activity. Brines were stable over time and would be good candidates for use as a make-up fluid in a subsequent fracturing fluid design. Reports on all of the field

  13. ANALYSIS OF SAMPLES FROM TANK 6F CHEMICAL CLEANING

    SciTech Connect

    Poirier, M.; Fink, S.

    2010-02-02

    Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. In mechanical sludge removal, personnel add liquid (e.g., inhibited water or supernate salt solution) to the tank to form a slurry. They mix the liquid and sludge with pumps, and transfer the slurry to another tank for further processing. Mechanical sludge removal effectively removes the bulk of the sludge from a tank, but is not able to remove all of the sludge. In Tank 6F, SRR estimated a sludge heel of 5,984 gallons remained after mechanical sludge removal. To remove this sludge heel, SRR performed chemical cleaning. The chemical cleaning included two oxalic acid strikes, a spray wash, and a water wash. SRR conducted the first oxalic acid strike as follows. Personnel added 110,830 gallons of 8 wt % oxalic acid to Tank 6F and mixed the contents of Tank 6F with two submersible mixer pumps (SMPs) for approximately four days. Following the mixing, they transferred 115,903 gallons of Tank 6F material to Tank 7F. The SMPs were operating when the transfer started and were shut down approximately five hours after the transfer started. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Mapping of the tank following the transfer indicated that 2,400 gallons of solids remained in the tank. SRR conducted the second oxalic acid strike as follows. Personnel added 28,881 gallons of 8 wt % oxalic acid to Tank 6F. Following the acid addition, they visually inspected the tank and transferred 32,247 gallons of Tank 6F material to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Mapping of the tank following the transfer indicated that 3,248 gallons of solids remained in the tank. Following the oxalic acid strikes, SRR performed Spray Washing with oxalic acid to remove waste collected on internal structures, cooling coils, tank top internals, and tank

  14. Geochemistry of Ca, Sr, Ba and Ra sulfates in some deep brines from the Palo Duro basin, Texas

    SciTech Connect

    Langmuir, D.; Melchior, D.

    1985-11-01

    The geochemistry of Ca, Sr, Ba and Ra sulfates in some deep brines from the Palo Duro Basin of north Texas, was studied to define geochemical controls on radionuclides such as /sup 90/Sr and /sup 226/Ra. Published solubility data for gypsum, anhydrite, celestite, barite and RaSO/sub 4/ were first reevaluated, in most cases using the ion interaction approach of Pitzer, to determine solubility products of the sulfates as a function of temperature and pressure. Ionic strengths of the brines were from 2.9 to 4.8 m, their temperatures and pressures up to 40/sup 0/C and 130 bars. Saturation indices of the sulfates were computed with the ion-interaction approach in one brine from the arkosic granite wash facies and four from the carbonate Wolfcamp Formation. All five brines are saturated with respect to gypsum, anhydrite and celestite, and three of the five with respect to barite. All are undersaturated by from 5 to 6 orders of magnitude with respect to pure RaSO/sub 4/. /sup 226/Ra concentrations in the brines, which ranged from 10/sup -11.3/ to 10/sup -12.7/ m, are not controlled by RaSO/sub 4/ solubility or adsorption, but possibly by the solubility of trace Ra solid solutions in sulfates including celestite and barite.

  15. The sup 36 Cl ages of the brines in the Magadi-Natron basin, east Africa

    SciTech Connect

    Kaufman, A.; Margaritz, M.A.; Hollos, G. ); Paul, M.; Boaretto, E. ); Hillaire-Marcel, C. ); Taieb, M. )

    1990-10-01

    The depression in the East African Rift which includes both Lake Magadi and Lake Natron forms a closed basin within which almost all the dissolved chloride originates in precipitation, since there is no important source of very ancient sedimentary chloride. This provides an ideal setting for the evaluation of the {sup 36}Cl methodology as a geochemical and hydrological tracer. The main source of recent water, as represented by the most dilute samples measured, is characterized by a {sup 36}Cl/Cl ratio of 2.5 {times} 10{sup {minus}14}, in agreement with the calculated value expected in precipitation. Surface evaporation increases the chlorinity of the local freshwater inflow by about a factor of 110 without changing the isotopic ratio, indicating that little chloride enters the system in the form of sediment leachate. A second type of brine found in the basin occurs in a hot deep groundwater reservoir and is characterized by lower {sup 36}Cl/Cl ratios (<1.2 {times} 10{sup {minus}14}). By comparing this value with the 2.5 {times} 10{sup {minus}14} in recent recharge, one obtains an approximate salt accumulation age of 760 Ka which is consistent with thee time of the first appearance of the lake. These older brines also have lower {sup 18}O and {sup 2}H values which indicate that they were recharged during a climatically different era. The {sup 36}Cl/Cl ratios in the inflowing waters and in the accumulated brine, together with the known age of the Lake Magadi basin, may be used to estimate the importance of the hypogene and epigene, as opposed to the meteoric, mode of {sup 36}Cl production. Such a calculation shows that the hypogene and epigene processes together contribute less than 6% of the total {sup 36}Cl present in the lake.

  16. U. S. Department of Energy Savannah River Operations Office - F and H Tank

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Farm Closure Documents F and H Tank Farm Closure Documents F and H Tank Farm Closure Documents F Tank Farm Closure Documents F Tank Farm Performance Assessment F Tank Farm Performance Assessment -- Revision 1 Tank 18/Tank 19 Special Analysis Industrial Wastewater General Closure Plan for F-Area Waste Tank System -- Final Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 DOE agreement to cease waste removal SC approval to Closure Module and agreement to cease waste

  17. ICPP tank farm closure study. Volume 2: Engineering design files

    SciTech Connect

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

  18. Brine migration test for Asse Mine, Federal Republic of Germany: final test plan

    SciTech Connect

    Not Available

    1983-07-01

    The United States and the Federal Republic of Germany (FRG) will conduct a brine migration test in the Asse Salt Mine in the FRG as part of the US/FRG Cooperative Radioactive Waste Management Agreement. Two sets of two tests each will be conducted to study both liquid inclusion migration and vapor migration in the two salt types chosen for the experiments: (1) pure salt, for its characteristics similar to the salt that might occur in potential US repositories, and (2) transitional salt, for its similarity to the salt that might occur in potential repositories in Germany.

  19. Advanced biochemical processes for geothermal brines FY 1998 annual operating plan

    SciTech Connect

    1997-10-01

    As part of the overall Geothermal Energy Research which is aimed at the development of economical geothermal resources production systems, the aim of the Advanced Biochemical Processes for Geothermal Brines (ABPGB) effort is the development of economic and environmentally acceptable methods for disposal of geothermal wastes and conversion of by-products to useful forms. Methods are being developed for dissolution, separation and immobilization of geothermal wastes suitable for disposal, usable in inert construction materials, suitable for reinjection into the reservoir formation, or used for recovery of valuable metals.

  20. Supporting document for the historical tank content estimate for SY-tank farm

    SciTech Connect

    Brevick, C.H.

    1997-08-12

    The purpose of this historical characterization document is to present the synthesized summaries of the historical records concerning the physical characteristics, radiological, and chemical composition of mixed wastes stored in underground double-shell tanks and the physical condition of these tanks. The double-shell tanks are located on the United States Department of Energy`s Hanford Site, approximately 25 miles northwest or Richland, Washington. The document will be used to assist in characterizing the waste in the tanks in conjunction with the current program of sampling and analyzing the tank wastes. Los Alamos National Laboratory (LANL) developed computer models that used the historical data to attempt to characterize the wastes and to generate estimates of each tank`s inventory. A historical review of the tanks may reveal anomalies or unusual contents that could be critical to characterization and post characterization activities. This document was developed by reviewing the operating plant process histories, waste transfer data, and available physical and chemical data from numerous resources. These resources were generated by numerous contractors from 1945 to the present. Waste characterization, the process of describing the character or quality of a waste, is required by Federal law (Resource Conservation and Recovery Act [RCRA]) and state law (Washington Administrative Code [WAC] 173-303, Dangerous Waste Regulations). Characterizing the waste is necessary to determine methods to safely retrieve, transport, and/or treat the wastes.

  1. Tank characterization report for single-shell tank 241-B-109

    SciTech Connect

    Benar, C.J.

    1997-05-29

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-B-109. This tank has been listed on the Organic Salts Watch List. This-report supports the requirements of the Tri-Party Agreement Milestone M 44-10.

  2. Tank 241-C-106 in-tank imaging system operational test report

    SciTech Connect

    Pedersen, L.T.

    1998-07-07

    This document presents the results of operational testing of the 241-C-106 In-Tank Video Camera Imaging System. This imaging system was installed as a component of Project W-320 to monitor sluicing and waste retrieval activities in Tank 241-C-106.

  3. Discovery of the First Leaking Double-Shell Tank - Hanford Tank 241-AY-102

    SciTech Connect

    Harrington, Stephanie J.; Sams, Terry L.

    2013-11-06

    A routine video inspection of the annulus space between the primary tank and secondary liner of double-shell tank 241-AY-102 was performed in August 2012. During the inspection, unexpected material was discovered. A subsequent video inspection revealed additional unexpected material on the opposite side of the tank, none of which had been observed during inspections performed in December 2006 and January 2007. A formal leak assessment team was established to review the tank's construction and operating histories, and preparations for sampling and analysis began to determine the material's origin. A new sampling device was required to collect material from locations that were inaccessible to the available sampler. Following its design and fabrication, a mock-up test was performed for the new sampling tool to ensure its functionality and capability of performing the required tasks. Within three months of the discovery of the unexpected material, sampling tools were deployed, material was collected, and analyses were performed. Results indicated that some of the unknown material was indicative of soil, whereas the remainder was consistent with tank waste. This, along with the analyses performed by the leak assessment team on the tank's construction history, lead to the conclusion that the primary tank was leaking into the annulus. Several issues were encountered during the deployment of the samplers into the annulus. As this was the first time samples had been required from the annulus of a double-shell tank, a formal lessons learned was created concerning designing equipment for unique purposes under time constraints.

  4. Tank characterization report for single-shell tank 241-T-107

    SciTech Connect

    Sasaki, L.M.

    1997-05-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-T-107. This tank is listed on the Ferrocyanide Watch List. This report supports the requirements of the Tri-Party Agreement Milestone M-44-05.

  5. System for removing liquid waste from a tank

    DOEpatents

    Meneely, Timothy K. (Penn Hills, PA); Sherbine, Catherine A. (N. Versailles Township, Allegheny County, PA)

    1994-01-01

    A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid therethrough. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank.

  6. System for removing liquid waste from a tank

    DOEpatents

    Meneely, T.K.; Sherbine, C.A.

    1994-04-26

    A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid there through. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank. 2 figures.

  7. Tank waste decision analysis report. Draft

    SciTech Connect

    Johnson, M.E.; Grygiel, M.L.; Baynes, P.A.; Bekemeier, J.P.; Zimmerman, B.D.; Triplett, M.B.

    1993-03-31

    The Assistant Secretary for Environmental Restoration and Waste Management and the director of the Washington State Department of Ecology agreed to the need to re-evaluate treatment and disposal plans for Hanford Site tank waste. Re-evaluation of the tank waste treatment and disposal plans (referred to as rebaselining) was necessary to (1) provide an integrated system approach for achieving safe storage, (2) resolve tank safety issues, and (3) treat and dispose of all Hanford Site tank waste. Rebaselining evaluated new approaches to remediate Hanford Site tank waste and, thus, reaffirm existing plans or recommend a new technical strategy. To facilitate this integrated system approach for managing the program elements, the US Department of Energy formed the Tank Waste Remediation System (TWRS). While conducting this re-evaluation, the US Department of Energy agreed to continue supporting the existing plan for treatment and disposal of Hanford Site tank waste. The selection of a proposed new technical strategy for the TWRS Program is a complex task involving the evaluation of a large body of data. The data that is available to support the selection of a proposed new technical strategy is based on engineering estimates and preliminary technology development. To accommodate this complex, dynamic situation, a systems engineering approach is being applied to structure and analyze technical strategies and to manage the TWRS Program. Systems engineering is a generalized and systematic methodology for defining problems, evaluating solutions, and implementing the solutions. This report describes the development of the TWRS Program systems engineering analysis, the analytical methodologies that support it, and the results of the analyses that were used to define the proposed new technical strategy.

  8. Tank Inspection NDE Results for Fiscal Year 2014, Waste Tanks 26, 27, 28 and 33

    SciTech Connect

    Elder, J.; Vandekamp, R.

    2014-09-29

    Ultrasonic nondestructive examinations (NDE) were performed on waste storage tanks 26, 27, 28 and 33 at the Savannah River Site as a part of the “In-Service Inspection (ISI) Program for High Level Waste Tanks.” No reportable conditions were identified during these inspections. The results indicate that the implemented corrosion control program continues to effectively mitigate corrosion in the SRS waste tanks. Ultrasonic inspection (UT) is used to detect general wall thinning, pitting and interface attack, as well as vertically oriented cracks through inspection of an 8.5 inch wide strip extending over the accessible height of the primary tank wall and accessible knuckle regions. Welds were also inspected in tanks 27, 28 and 33 with no reportable indications. In a Type III/IIIA primary tank, a complete vertical strip includes scans of five plates (including knuckles) so five “plate/strips” would be completed at each vertical strip location. In FY 2014, a combined total of 79 plate/strips were examined for thickness mapping and crack detection, equating to over 45,000 square inches of area inspected on the primary tank wall. Of the 79 plate/strips examined in FY 2014 all but three have average thicknesses that remain at or above the construction minimum thickness which is nominal thickness minus 0.010 inches. There were no service induced reportable thicknesses or cracking encountered. A total of 2 pits were documented in 2014 with the deepest being 0.032 inches deep. One pit was detected in Tank 27 and one in Tank 33. No pitting was identified in Tanks 26 or 28. The maximum depth of any pit encountered in FY 2014 is 5% of nominal thickness, which is less than the minimum reportable criteria of 25% through-wall for pitting. In Tank 26 two vertical strips were inspected, as required by the ISI Program, due to tank conditions being outside normal chemistry controls for more than 3 months. Tank 28 had an area of localized thinning on the exterior wall of the

  9. TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS

    SciTech Connect

    Lee, S.; Leishear, R.; Poirier, M.

    2012-05-31

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest the solid

  10. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer

    DOE PAGES [OSTI]

    Bacon, Diana H.; Dai, Zhenxue; Zheng, Liange

    2014-12-31

    An important risk at CO2 storage sites is the potential for groundwater quality impacts. As part of a system to assess the potential for these impacts a geochemical scaling function has been developed, based on a detailed reactive transport model of CO2 and brine leakage into an unconfined, oxidizing carbonate aquifer. Stochastic simulations varying a number of geochemical parameters were used to generate a response surface predicting the volume of aquifer that would be impacted with respect to regulated contaminants. The brine was assumed to contain several trace metals and organic contaminants. Aquifer pH and TDS were influenced by CO2more » leakage, while trace metal concentrations were most influenced by the brine concentrations rather than adsorption or desorption on calcite. Organic plume sizes were found to be strongly influenced by biodegradation.« less

  11. Tank characterization report for single-shell tank 241-C-109

    SciTech Connect

    Simpson, B.C.

    1997-05-23

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices.

  12. LABORATORY REPORT ON THE REMOVAL OF PERTECHNETATE FROM TANK 241-AN-105 SIMULANT USING PUROLITE A530E

    SciTech Connect

    DUNCAN JB; HAGERTY KJ; MOORE WP; JOHNSON JM

    2012-06-29

    This effort falls under the technetium management initiative and will provide data for those who will make decisions regarding the handling and disposition of technetium. To that end, the objective of this effort is to challenge Purolite{reg_sign} A530E against a double-shell tank simulant from tank 241-AN-105 spiked with pertechnetate (TcO{sub 4}{sup -}). The Purolite{reg_sign} A530E is commercially available and is currently being used at the 200 West Pump and Treat Groundwater Treatment Plant to remove pertechnetate. It has been demonstrated that Purolite{reg_sign} A530E is highly effective in removing TcO{sub 4}{sup -} from a water matrix. Purolite{reg_sign} A530E is the commercial product of the Oak Ridge National Laboratory's Biquat{trademark} resin. Further work has demonstrated that technetium-loaded A530E achieves a leachability index in Cast Stone of 12.5 (RPP-RPT-39195, Assessment of Technetium Leachability in Cement-Stabilized Basin 43 Groundwater Brine).

  13. TANK 50 BATCH 0 SALTSTONE FORMULATION CONFIRMATION

    SciTech Connect

    Langton, C.

    2006-06-05

    Savannah River National Laboratory (SRNL) personnel were requested to confirm the Tank 50 Batch 0 grout formulation per Technical Task Request, SSF-TTR-2006-0001 (task 1 of 2) [1]. Earlier Batch 0 formulation testing used a Tank 50 sample collected in September 2005 and is described elsewhere [2]. The current testing was performed using a sample of Tank 50 waste collected in May 2006. This work was performed according to the Technical Task and Quality Assurance Plan (TT/QAP), WSRC-RP-2006-00594 [3]. The salt solution collected from Tank 50 in May 2006 contained approximately 3 weight percent more solids than the sample collected in September 2005. The insoluble solids took longer to settle in the new sample which was interpreted as indicating finer particles in the current sample. The saltstone formulation developed for the September 2005 Tank 50 Batch 0 sample was confirmed for the May 2006 sample with one minor exception. Saltstone prepared with the Tank 50 sample collected in May 2006 required 1.5 times more Daratard 17 set retarding admixture than the saltstone prepared with the September In addition, a sample prepared with lower shear mixing (stirring with a spatula) had a higher plastic viscosity (57 cP) than samples made with higher shear mixing in a blender (23cP). The static gel times of the saltstone slurries made with low shear mixing were also shorter ({approx}32 minutes) than those for comparable samples made in the blender ({approx}47 minutes). The addition of the various waste streams (ETP, HEU-HCAN, and GPE-HCAN) to Tank 50 from September 2005 to May 2006 has increased the amount of set retarder, Daratard 17, required for processing saltstone slurries through the Saltstone facility. If these streams are continued to be added to Tank 50, the quantity of admixtures required to maintain the same processing conditions for the Saltstone facility will probably change and additional testing is recommended to reconfirm the Tank 50 Saltstone formulation.

  14. Sensitivity study of CO2 storage capacity in brine aquifers withclosed boundaries: Dependence on hydrogeologic properties

    SciTech Connect

    Zhou, Q.; Birkholzer, J.; Rutqvist, J.; Tsang, C-F.

    2007-02-07

    In large-scale geologic storage projects, the injected volumes of CO{sub 2} will displace huge volumes of native brine. If the designated storage formation is a closed system, e.g., a geologic unit that is compartmentalized by (almost) impermeable sealing units and/or sealing faults, the native brine cannot (easily) escape from the target reservoir. Thus the amount of supercritical CO{sub 2} that can be stored in such a system depends ultimately on how much pore space can be made available for the added fluid owing to the compressibility of the pore structure and the fluids. To evaluate storage capacity in such closed systems, we have conducted a modeling study simulating CO{sub 2} injection into idealized deep saline aquifers that have no (or limited) interaction with overlying, underlying, and/or adjacent units. Our focus is to evaluate the storage capacity of closed systems as a function of various reservoir parameters, hydraulic properties, compressibilities, depth, boundaries, etc. Accounting for multi-phase flow effects including dissolution of CO{sub 2} in numerical simulations, the goal is to develop simple analytical expressions that provide estimates for storage capacity and pressure buildup in such closed systems.

  15. Fluid sampling and chemical modeling of geopressured brines containing methane. Final report, March 1980-February 1981

    SciTech Connect

    Dudak, B.; Galbraith, R.; Hansen, L.; Sverjensky, D.; Weres, O.

    1982-07-01

    The development of a flowthrough sampler capable of obtaining fluid samples from geopressured wells at temperatures up to 400/sup 0/F and pressures up to 20,000 psi is described. The sampler has been designed, fabricated from MP35N alloy, laboratory tested, and used to obtain fluid samples from a geothermal well at The Geysers, California. However, it has not yet been used in a geopressured well. The design features, test results, and operation of this device are described. Alternative sampler designs are also discussed. Another activity was to review the chemistry and geochemistry of geopressured brines and reservoirs, and to evaluate the utility of available computer codes for modeling the chemistry of geopressured brines. The thermodynamic data bases for such codes are usually the limiting factor in their application to geopressured systems, but it was concluded that existing codes can be updated with reasonable effort and can usefully explain and predict the chemical characteristics of geopressured systems, given suitable input data.

  16. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    SciTech Connect

    David B. Burnett

    2004-09-29

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  17. Summary Results for Brine Migration Modeling Performed by LANL LBNL and SNL for the UFD Program.

    SciTech Connect

    Kuhlman, Kristopher L

    2014-09-01

    This report summarizes laboratory and field observations and numerical modeling related to coupled processes involving brine and vapor migration in geologic salt, focusing on recent developments and studies conducted at Sandia, Los Alamos, and Berkeley National Laboratories. Interest into the disposal of heat-generating waste in salt has led to interest into water distribution and migration in both run-of-mine crushed and intact geologic salt. Ideally a fully coupled thermal-hydraulic-mechanical-chemical simulation is performed using numerical models with validated constitutive models and parameters. When mechanical coupling is not available, mechanical effects are prescribed in hydraulic models as source, boundary, or initial conditions. This report presents material associated with developing appropriate initial conditions for a non-mechanical hydrologic simulation of brine migration in salt. Due to the strong coupling between the mechanical and hydrologic problems, the initial saturation will be low for the excavation disturbed zone surrounding the excavation. Although most of the material in this report is not new, the author hopes it is presented in a format making it useful to other salt researchers.

  18. Brine migration test report: Asse Salt Mine, Federal Republic of Germany: Technical report

    SciTech Connect

    Coyle, A.J.; Eckert, J.; Kalia, H.

    1987-01-01

    This report presents a summary of Brine Migration Tests which were undertaken at the Asse mine of the Federal Republic of Germany (FRG) under a bilateral US/FRG agreement. This experiment simulates a nuclear waste repository at the 800-m (2624-ft) level of the Asse salt mine in the Federal Republic of Germany. This report describes the Asse salt mine, the test equipment, and the pretest properties of the salt in the mine and in the vicinity of the test area. Also included are selected test data (for the first 28 months of operation) on the following: brine migration rates, thermomechaical behavior of the salt (including room closure, stress reading, and thermal profiles), borehole gas pressures, and borehole gas analyses. In addition to field data, laboratory analyses of pretest salt properties are included in this report. The operational phase of these experiments was completed on October 4, 1985, with the commencement of cooldown and the start of posttest activities. 7 refs., 68 figs., 48 tabs.

  19. Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-08-14

    In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

  20. Rethinking the Hanford Tank Waste Program

    SciTech Connect

    Parker, F. L.; Clark, D. E.; Morcos, N.

    2002-02-26

    The program to treat and dispose of the highly radioactive wastes stored in underground tanks at the U.S. Department of Energy's Hanford site has been studied. A strategy/management approach to achieve an acceptable (technically sound) end state for these wastes has been developed in this study. This approach is based on assessment of the actual risks and costs to the public, workers, and the environment associated with the wastes and storage tanks. Close attention should be given to the technical merits of available waste treatment and stabilization methodologies, and application of realistic risk reduction goals and methodologies to establish appropriate tank farm cleanup milestones. Increased research and development to reduce the mass of non-radioactive materials in the tanks requiring sophisticated treatment is highly desirable. The actual cleanup activities and milestones, while maintaining acceptable safety standards, could be more focused on a risk-to-benefit cost effectiveness, as agreed to by the involved stakeholders and in accordance with existing regulatory requirements. If existing safety standards can be maintained at significant cost savings under alternative plans but with a change in the Tri-Party Agreement (a regulatory requirement), those plans should be carried out. The proposed strategy would also take advantage of the lessons learned from the activities and efforts in the first phase of the two-phased cleanup of the Hanford waste tank farms.

  1. THE ROLE OF LAND USE IN ENVIRONMENTAL DECISION MAKING AT THREE DOE MEGA-CLEANUP SITES FERNALD & ROCKY FLATS & MOUND

    SciTech Connect

    JEWETT MA

    2011-01-14

    This paper explores the role that future land use decisions have played in the establishment of cost-effective cleanup objectives and the setting of environmental media cleanup levels for the three major U.S. Department of Energy (DOE) sites for which cleanup has now been successfully completed: the Rocky Flats, Mound, and Fernald Closure Sites. At each site, there are distinct consensus-building histories throughout the following four phases: (1) the facility shut-down and site investigation phase, which took place at the completion of their Cold War nuclear-material production missions; (2) the decision-making phase, whereby stakeholder and regulatory-agency consensus was achieved for the future land-use-based environmental decisions confronting the sites; (3) the remedy selection phase, whereby appropriate remedial actions were identified to achieve the future land-use-based decisions; and (4) the implementation phase, whereby the selected remedial actions for these high-profile sites were implemented and successfully closed out. At each of the three projects, there were strained relationships and distrust between the local community and the DOE as a result of site contamination and potential health effects to the workers and local residents. To engage citizens and interested stakeholder groups - particularly in the role of final land use in the decision-making process, the site management teams at each respective site developed new public-participation strategies to open stakeholder communication channels with site leadership, technical staff, and the regulatory agencies. This action proved invaluable to the success of the projects and reaching consensus on appropriate levels of cleanup. With the implementation of the cleanup remedies now complete, each of the three DOE sites have become models for future environmental-remediation projects and associated decision making.

  2. Technology development activities supporting tank waste remediation

    SciTech Connect

    Bonner, W.F.; Beeman, G.H.

    1994-06-01

    This document summarizes work being conducted under the U.S. Department of Energy`s Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation.

  3. Double Shell Tank (DST) Utilities Specification

    SciTech Connect

    SUSIENE, W.T.

    2000-04-27

    This specification establishes the performance requirements and provides the references to the requisite codes and standards to he applied during the design of the Double-Shell Tank (DST) Utilities Subsystems that support the first phase of waste feed delivery (WFD). The DST Utilities Subsystems provide electrical power, raw/potable water, and service/instrument air to the equipment and structures used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. The DST Utilities Subsystems also support the equipment and structures used to deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Privatization Contractor facility where the waste will be immobilized. This specification is intended to be the basis for new projects/installations. This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program.

  4. Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report

    SciTech Connect

    Kos, S.E.

    1997-02-01

    The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm.

  5. In-tank pretreatment of high-level tank wastes: The SIPS system

    SciTech Connect

    Reich, M.; Powell, J.; Barletta, R.

    1996-03-01

    A new approach, termed SIPS (Small In-Tank Processing System), that enables the in-tank processing and separation of high-level tank wastes into high-level waste (HLW) and low-level waste (LLW) streams that are suitable for vitrification, is described. Presently proposed pretreatment systems, such as enhanced sludge washing (ESW) and TRUEX, require that the high-level tank wastes be retrieved and pumped to a large, centralized processing facility, where the various waste components are separated into a relatively small, radioactively concentrated stream (HLW), and a relatively large, predominantly non-radioactive stream (LLW). In SIPS, a small process module, typically on the order of 1 meter in diameter and 4 meters in length, is inserted into a tank. During a period of approximately six months, it processes the solid/liquid materials in the tank, separating them into liquid HLW and liquid LLW output streams that are pumped away in two small diameter (typically 3 cm o.d.) pipes. The SIPS concept appears attractive for pretreating high level wastes, since it would: (1) process waste in-situ in the tanks, (2) be cheaper and more reliable than a larger centralized facility, (3) be quickly demonstrable at full scale, (4) have less technical risk, (5) avoid having to transfer unstable slurries for long distances, and (6) be simple to decommission and dispose of. Further investigation of the SIPS concept appears desirable, including experimental testing and development of subscale demonstration units.

  6. Case Study in Corporate Memory Recovery: Hanford Tank Farms Miscellaneous Underground Waste Storage Tanks - 15344

    SciTech Connect

    Washenfelder, D. J.; Johnson, J. M.; Turknett, J. C.; Barnes, T. J.; Duncan, K. G.

    2015-01-07

    In addition to managing the 177 underground waste storage tanks containing 212,000 m3 (56 million gal) of radioactive waste at the U. S. Department of Energy’s Hanford Site 200 Area Tank Farms, Washington River Protection Solutions LLC is responsible for managing numerous small catch tanks and special surveillance facilities. These are collectively known as “MUSTs” - Miscellaneous Underground Storage Tanks. The MUSTs typically collected drainage and flushes during waste transfer system piping changes; special surveillance facilities supported Tank Farm processes including post-World War II uranium recovery and later fission product recovery from tank wastes. Most were removed from service following deactivation of the single-shell tank system in 1980 and stabilized by pumping the remaining liquids from them. The MUSTs were isolated by blanking connecting transfer lines and adding weatherproofing to prevent rainwater entry. Over the next 30 years MUST operating records were dispersed into large electronic databases or transferred to the National Archives Regional Center in Seattle, Washington. During 2014 an effort to reacquire the historical bases for the MUSTs’ published waste volumes was undertaken. Corporate Memory Recovery from a variety of record sources allowed waste volumes to be initially determined for 21 MUSTs, and waste volumes to be adjusted for 37 others. Precursors and symptoms of Corporate Memory Loss were identified in the context of MUST records recovery.

  7. Tank characterization report for single-shell tank 241-C-106

    SciTech Connect

    Schreiber, R.D.

    1996-09-25

    This tank characterization report summarizes information on the historical uses, current status, and sampling and analysis results of waste stored in single-shell underground tank 241-C-106. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09 (Ecology et al. 1996). Tank 241-C-106 is the only tank on the High-Heat Load Watch List. As a result of the analyses addressed by this report, the supernate and upper 60 percent of the sludge in the tank do not pose any safety concerns in addition to the high-heat load issue based on the decision limits of the safety screening data quality objective (DQO) (Dukelow et al. 1995). The lower 40 percent of the sludge was not sampled; therefore, no statements regarding the safety of this waste can be made. A portion of the tank sludge is scheduled to be retrieved in fiscal year 1997 in order to mitigate the high-heat load in the tank.

  8. AX tank farm waste inventory study for the Hanford Tanks Initiative (HTI) project

    SciTech Connect

    Becker, D.L.

    1997-12-22

    In May of 1996, the US Department of Energy implemented a four-year demonstration project identified as the Hanford Tanks Initiative (HTI). The HTI mission is to minimize technical uncertainties and programmatic risks by conducting demonstrations to characterize and remove tank waste using technologies and methods that will be needed in the future to carry out tank waste remediation and tank farm closure at the Hanford Site. Included in the HTI scope is the development of retrieval performance evaluation criteria supporting readiness to close single-shell tanks in the future. A path forward that includes evaluation of closure basis alternatives has been outlined to support the development of retrieval performance evaluation criteria for the AX Farm, and eventual preparation of the SEIS for AX Farm closure. This report documents the results of the Task 4, Waste Inventory study performed to establish the best-basis inventory of waste contaminants for the AX Farm, provides a means of estimating future soil inventories, and provides data for estimating the nature and extent of contamination (radionuclide and chemical) resulting from residual tank waste subsequent to retrieval. Included in the report are a best-basis estimate of the existing radionuclide and chemical inventory in the AX Farm Tanks, an estimate of the nature and extent of existing radiological and chemical contamination from past leaks, a best-basis estimate of the radionuclide and chemical inventory in the AX Farm Tanks after retrieval of 90 percent, 99 percent, and 99.9 percent of the waste, and an estimate of the nature and extent of radionuclide and chemical contamination resulting from retrieval of waste for an assumed leakage from the tanks during retrieval.

  9. Tank Waste Remediation System optimized processing strategy

    SciTech Connect

    Slaathaug, E.J.; Boldt, A.L.; Boomer, K.D.; Galbraith, J.D.; Leach, C.E.; Waldo, T.L.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility.

  10. Alternative Inspection Methods for Single Shell Tanks

    SciTech Connect

    Peters, Timothy J.; Alzheimer, James M.; Hurley, David E.

    2010-01-19

    This document was prepared to provide evaluations and recommendations regarding nondestructive evaluation methods that might be used to determine cracks and bowing in the ceiling of waste storage tanks on the Hanford site. The goal was to determine cracks as small as 1/16 in. wide in the ceiling, and bowing as small as 0.25 in. This report describes digital video camera methods that can be used to detect a crack in the ceiling of the dome, and methods for determining the surface topography of the ceiling in the waste storage tanks to detect localized movements in the surface. A literature search, combined with laboratory testing, comprised this study.

  11. Compliance review for the UNH Storage Tank

    SciTech Connect

    Low, J.M.

    1992-05-19

    The purpose of Project S-4257, USF-UNH 150,000 Gallon Storage Tank, is to provide interim storage for the liquid uranyl nitrate (UNH) product from H-Canyon until the UNH can be processed in the new Uranium Solidification Facility (Project S-2052). NPSR was requested by Project Management and DOE-SR to perform a design compliance review for the UNH Storage Tank to support the Operational Readiness Review (ORR) and the Operational Readiness Evaluation (ORE), respectively. The project was reviewed against the design criteria contained in the DOE Order 6430.1A, General Design Criteria. This report documents the results of the compliance review.

  12. NMAC 20.5 Petroleum Storage Tanks | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    5 Petroleum Storage Tanks Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NMAC 20.5 Petroleum Storage TanksLegal Abstract...

  13. NMED Petroleum Storage Tank Bureau webpage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Petroleum Storage Tank Bureau webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: NMED Petroleum Storage Tank Bureau webpage Abstract This is the...

  14. Idaho DEQ Storage Tanks Webpage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Storage Tanks Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho DEQ Storage Tanks Webpage Abstract This webpage provides an overview of the...

  15. NM Underground Storage Tank Registration | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Underground Storage Tank Registration Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: NM Underground Storage Tank RegistrationLegal...

  16. TANK FARM INTERIM SURFACE BARRIER MATERIALS AND RUNOFF ALTERNATIVES STUDY

    SciTech Connect

    HOLM MJ

    2009-06-25

    This report identifies candidate materials and concepts for interim surface barriers in the single-shell tank farms. An analysis of these materials for application to the TY tank farm is also provided.

  17. Metallurgical failure analysis of a propane tank boiling liquid...

    Office of Scientific and Technical Information (OSTI)

    The storage tank emptied when the liquid-phase excess flow valve tore out of the tank. The ensuing fire engulfed several propane delivery trucks, causing one of them to explode. A ...

  18. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC...

    Office of Scientific and Technical Information (OSTI)

    Title: HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS M&D Professional Services, Inc. (M&D) is under subcontract to Pacific ...

  19. Alpha Calutron tank | Y-12 National Security Complex

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Alpha Calutron tank The C-shaped alpha calutron tank, together with its emitters and collectors on the lower-edge door, was removed in a special drydock from the magnet for the...

  20. DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project...

    Energy.gov [DOE] (indexed site)

    High-Pressure Tanks and Analysis Project Review Meeting at Argonne National Laboratory. ... High-Pressure Tube Trailers and Tanks (PDF 4.21 MB), Slavador Aceves, Lawrence Livermore ...

  1. Workers Pour 1 Million Gallons of Grout into Massive Tanks |...

    Office of Environmental Management (EM)

    Pour 1 Million Gallons of Grout into Massive Tanks Workers Pour 1 Million Gallons of Grout into Massive Tanks May 15, 2012 - 12:00pm Addthis Cement trucks transport a specially ...

  2. Final Meeting Summary Page 1 Tank Waste Committee Meeting October...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... at WTP will be high quality glass because all of the tanks have not been characterized. ... Hanford poses a unique challenge due to the variety of material stored in the tanks. Vince ...

  3. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SENSITIVITY...

    Office of Scientific and Technical Information (OSTI)

    Title: HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SENSITIVITY OF DOUBLE SHELL ... the definition of the design ground motion or in the properties of the tank-waste system. ...

  4. Hydrogen Storage "Think Tank" Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Storage "Think Tank" Report Hydrogen Storage "Think Tank" Report This report is a compilation of information exchanged at a forum on March 14, 2003, in Washington, D.C....

  5. Authorization basis status report (miscellaneous TWRS facilities, tanks and components)

    SciTech Connect

    Stickney, R.G.

    1998-04-29

    This report presents the results of a systematic evaluation conducted to identify miscellaneous TWRS facilities, tanks and components with potential needed authorization basis upgrades. It provides the Authorization Basis upgrade plan for those miscellaneous TWRS facilities, tanks and components identified.

  6. Mixing Processes in High-Level Waste Tanks

    Office of Scientific and Technical Information (OSTI)

    ... A major motivation for the research has come from efforts at Savannah River to use a large tank process (Tank 48) for cesium precipitation from salt solutions, which release ...

  7. Independent Oversight Activity Report, Hanford Tank Farms - March...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    March 10-12, 2014 Independent Oversight Activity Report, Hanford Tank Farms - March 10-12, 2014 March 10-12, 2014 Hanford Tank Farm Operations HIAR-HANFORD-2014-03-10 This...

  8. Notification for Underground Storage Tanks (EPA Form 7530-1)...

    OpenEI (Open Energy Information) [EERE & EIA]

    Notification for Underground Storage Tanks (EPA Form 7530-1) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Notification for Underground Storage Tanks...

  9. Savings Project: Insulate Your Water Heater Tank | Department...

    Energy Saver

    Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Addthis Project Level medium Energy Savings 7%-16% annually Time to Complete 1.5 hours Overall Cost 30 This ...

  10. SRS Tank 48H Waste Treatment Project Technology Readiness Assessment

    Office of Environmental Management (EM)

    Savannah River Site Tank 48H Waste Treatment Project Technology Readiness Assessment Harry ... Energy Aiken, South Carolina SRS Tank 48H Waste Treatment Project SPD-07-195 Technology ...

  11. Hanford Site C Tank Farm Meeting Summary - October 2009 | Department...

    Office of Environmental Management (EM)

    October 2009 Hanford Site C Tank Farm Meeting Summary - October 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C...

  12. Hanford Site C Tank Farm Meeting Summary - March 2010 | Department...

    Office of Environmental Management (EM)

    March 2010 Hanford Site C Tank Farm Meeting Summary - March 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Meeting Summary for...

  13. STATUS OF CHEMICAL CLEANING OF WASTE TANKS AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT - 9114

    SciTech Connect

    Thaxton, D; Geoff Clendenen, G; Willie Gordon, W; Samuel Fink, S; Michael Poirier, M

    2008-12-31

    Chemical Cleaning is currently in progress for Tanks 5 and 6 at the Savannah River Site. The Chemical Cleaning process is being utilized to remove the residual waste heel remaining after completion of Mechanical Sludge Removal. This work is required to prepare the tanks for closure. Tanks 5 and 6 are 1950s vintage carbon steel waste tanks that do not meet current containment standards. These tanks are 22.9 meters (75 feet) in diameter, 7.5 meters (24.5 feet) in height, and have a capacity of 2.84E+6 liters (750,000 gallons). Chemical Cleaning adds 8 wt % oxalic acid to the carbon steel tank to dissolve the remaining sludge heel. The resulting acidic waste solution is transferred to Tank 7 where it is pH adjusted to minimize corrosion of the carbon steel tank. The Chemical Cleaning flowsheet includes multiple strikes of acid in each tank. Acid is delivered by tanker truck and is added to the tanks through a hose assembly connected to a pipe penetration through the tank top. The flowsheet also includes spray washing with acid and water. This paper includes an overview of the configuration required for Chemical Cleaning, the planned flowsheet, and an overview of technical concerns associated with the process. In addition, the current status of the Chemical Cleaning process in Tanks 5 and 6, lessons learned from the execution of the process, and the path forward for completion of cleaning in Tanks 5 and 6 will also be discussed.

  14. LESSONS LEARNED FROM PREVIOUS WASTE STORAGE TANK VAPOR CONTROL ATTEMPTS ON SINGLE SHELL TANK (SST) & DOUBLE SHELL TANK (DST) FARMS

    SciTech Connect

    BAKER, D.M.

    2004-08-03

    This report forms the basis for a feasibility study and conceptual design to control vapor emissions from waste storage tanks at the Hanford Site. The Carbtrol, Vapor Mixing, and High Efficiency Gas Absorber (HEGA) vapor controls were evaluated to determine the lessons learned from previous failed vapor control attempts. This document illustrates the resulting findings based on that evaluation.

  15. Tank Waste Corporate Board Meeting 07/24/08

    Energy.gov [DOE]

    The following documents are associated with the Tank Waste Corporate Board Meeting held on July 24th, 2008.

  16. High-Pressure Tube Trailers and Tanks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tube Trailers and Tanks High-Pressure Tube Trailers and Tanks Presentation on High-Pressure Tube Trailers and Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory 03_aceves_llnl.pdf (4.21 MB) More Documents & Publications Cryo-Compressed Hydrogen Storage: Performance and Cost Review Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular Applications OEM Perspective on Cryogenic H2

  17. Tank Waste Corporate Board Meeting 03/05/09

    Energy.gov [DOE]

    The following documents are associated with the Tank Waste Corporate Board Meeting held on March 5th, 2009. 

  18. Tank Waste Corporate Board Meeting 11/18/10

    Energy.gov [DOE]

    The following documents are associated with the Tank Waste Corporate Board Meeting held on November 18th, 2010.

  19. Tank Waste Corporate Board Meeting 08/01/12

    Energy.gov [DOE]

    The following documents are associated with the Tank Waste Corporate Board Meeting held on August 1st, 2012.

  20. A robotic end effector for inspection of storage tanks

    SciTech Connect

    Hughes, G.; Gittleman, M.

    1995-10-01

    The structural integrity of waste storage tanks is of primary importance to the DOE, and is one aspect of the High-Level Waste Tank Remediation focus area. Cracks and/or corrosion damage in the inner tank walls can lead to the release of dangerous substances into the environment. The detection and sizing of corrosion and cracking in steel tank walls through remote non destructive evaluation (NDE) is the primary focus of this work.

  1. Estimating Waste Inventory and Waste Tank Characterization | Department of

    Office of Environmental Management (EM)

    Energy Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue Discussion on Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue Discussion on Estimating Waste Inventory and Waste Tank Characterization (36.64 KB) More Documents & Publications Removal to Maximum Extent Practical Basis for Section 3116

  2. GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN

    SciTech Connect

    CANTRELL KJ; CONNELLY MP

    2010-03-09

    This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

  3. Tank Waste Corporate Board Meeting 07/29/09

    Energy.gov [DOE]

    The following documents are associated with the Tank Waste Corporate Board Meeting held on July 29th, 2009.

  4. SRS Tank 48H Waste Treatment Project Technology Readiness Assessment |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy SRS Tank 48H Waste Treatment Project Technology Readiness Assessment SRS Tank 48H Waste Treatment Project Technology Readiness Assessment Full Document and Summary Versions are available for download SRS Tank 48H Waste Treatment Project Technology Readiness Assessment (1.54 MB) Summary - Savannah River Site Tank 48H Waste Treatment Project (160.97 KB) More Documents & Publications Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for

  5. Tank Manufacturing, Testing, Deployment and Field Performance | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Tank Manufacturing, Testing, Deployment and Field Performance Tank Manufacturing, Testing, Deployment and Field Performance These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 - 29, 2010, in Beijing, China. ihfpv_newhouse.pdf (5.48 MB) More Documents & Publications Fuel Tank Manufacturing, Testing, Field Performance, and Certification International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings CNG and Hydrogen Tank

  6. Hanford Tank Waste Retrieval, Treatment and Disposition Framework |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with

  7. Hanford Tank Waste Retrieval, Treatment, and Disposition Framework |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Hanford Tank Waste Retrieval, Treatment, and Disposition Framework Hanford Tank Waste Retrieval, Treatment, and Disposition Framework Forty years of plutonium production at the Hanford Site has yielded a challenging nuclear waste legacy approximately 56 million gallons of radioactive and chemical wastes stored in 177 underground tanks (tank farms) located on Hanford's Central Plateau. The mission of the U.S. Department of Energy (DOE) Office of River Protection (ORP) is

  8. Underground Storage Tanks: New Fuels and Compatibility | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Underground Storage Tanks: New Fuels and Compatibility Underground Storage Tanks: New Fuels and Compatibility Breakout Session 1C-Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency haerer_biomass_2014.pdf (598.19 KB) More Documents & Publications Regulatory and Commercial

  9. Environmental Assessment for the Operation of the Glass Melter Thermal Treatment Unit at the US Department of Energy`s Mound Plant, Miamisburg, Ohio

    SciTech Connect

    1995-06-01

    The glass melter would thermally treat mixed waste (hazardous waste contaminated with radioactive constituents largely tritium, Pu-238, and/or Th-230) that was generated at the Mound Plant and is now in storage, by stabilizing the waste in glass blocks. Depending on the radiation level of the waste, the glass melter may operate for 1 to 6 years. Two onsite alternatives and seven offsite alternatives were considered. This environmental assessment indicates that the proposed action does not constitute a major Federal action significantly affecting the human environment according to NEPA, and therefore the finding of no significant impact is made, obviating the need for an environmental impact statement.

  10. Double Shell Tank AY-102 Radioactive Waste Leak Investigation

    SciTech Connect

    Washenfelder, Dennis J.

    2014-04-10

    PowerPoint. The objectives of this presentation are to: Describe Effort to Determine Whether Tank AY-102 Leaked; Review Probable Causes of the Tank AY-102 Leak; and, Discuss Influence of Leak on Hanford’s Double-Shell Tank Integrity Program.

  11. Mixer pump test plan for double shell tank AZ-101

    SciTech Connect

    STAEHR, T.W.

    1999-05-12

    Mixer pump systems have been chosen as the method for retrieval of tank wastes contained in double shell tanks at Hanford. This document describes the plan for testing and demonstrating the ability of two 300 hp mixer pumps to mobilize waste in tank AZ-101. The mixer pumps, equipment and instrumentation to monitor the test were installed by Project W-151.

  12. Justification for Continued Operation for Tank 241-Z-361

    SciTech Connect

    BOGEN, D.M.

    1999-09-01

    This justification for continued operations (JCO) summarizes analyses performed to better understand and control the potential hazards associated with Tank 241-2-361. This revision to the JCO has been prepared to identify and control the hazards associated with sampling the tank using techniques developed and approved for use in the Tank Waste Remediation System (TWRS) at Hanford.

  13. Potential for criticality in Hanford tanks resulting from retrieval of tank waste

    SciTech Connect

    Whyatt, G.A.; Sterne, R.J.; Mattigod, S.V.

    1996-09-01

    This report assesses the potential during retrieval operations for segregation and concentration of fissile material to result in a criticality. The sluicing retrieval of C-106 sludge to AY-102 and the operation of mixer pumps in SY-102 are examined in some detail. These two tanks (C-106, SY-102) were selected because of the near term plans for retrieval of these tanks and their high plutonium inventories relative to other tanks. Although all underground storage tanks are subcritical by a wide margin if assumed to be uniform in composition, the possibility retrieval operations could preferentially segregate the plutonium and locally concentrate it sufficiently to result in criticality was a concern. This report examines the potential for this segregation to occur.

  14. Tank characterization report for single-shell tank 241-C-204

    SciTech Connect

    Conner, J.M.

    1996-09-12

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-C-204. This report supports the requirements of Tri Party Agreement Milestone M 44 09.

  15. Tank characterization report for double-shell tank 241-AN-106

    SciTech Connect

    Douglas, J.G., Westinghouse Hanford

    1996-08-22

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste store in Tank 241-AN-106. This report supports the requirements of Tri- Party Agreement Milestone M-44-09.

  16. Tank characterization report for single-shell tank 241-T-104

    SciTech Connect

    Sasaki, L.M., Fluor Daniel Hanford

    1997-02-04

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-T-104. This report supports the requirements of the Tri- Party Agreement Milestone M-44-05.

  17. Tank characterization report for single-shell tank 241-S-106

    SciTech Connect

    Field, J.G.

    1998-04-20

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-S-106. This report supports the requirements of the Tri-Party Agreement Milestone M-44-ISB.

  18. SLUDGE BATCH 7 PREPARATION TANK 4 AND 12 CHARACTERIZATION

    SciTech Connect

    Bannochie, C.; Click, D.; Pareizs, J.

    2010-05-21

    Samples of PUREX sludge from Tank 4 and HM sludge from Tank 12 were characterized in preparation for Sludge Batch 7 (SB7) formulation in Tank 51. SRNL analyses on Tank 4 and Tank 12 were requested in separate Technical Assistance Requests (TAR). The Tank 4 samples were pulled on January 19, 2010 following slurry operations by F-Tank Farm. The Tank 12 samples were pulled on February 9, 2010 following slurry operations by H-Tank Farm. At the Savannah River National Laboratory (SRNL), two 200 mL dip samples of Tank 4 and two 200 mL dip samples of Tank 12 were received in the SRNL Shielded Cells. Each tank's samples were composited into clean 500 mL polyethylene storage bottles and weighed. The composited Tank 4 sample was 428.27 g and the composited Tank 12 sample was 502.15 g. As expected there are distinct compositional differences between Tank 4 and Tank 12 sludges. The Tank 12 slurry is much higher in Al, Hg, Mn, and Th, and much lower in Fe, Ni, S, and U than the Tank 4 slurry. The Tank 4 sludge definitely makes the more significant contribution of S to any sludge batch blend. This S, like that observed during SB6 washing, is best monitored by looking at the total S measured by digesting the sample and analyzing by inductively coupled plasma - atomic emission spectroscopy (ICPAES). Alternatively, one can measure the soluble S by ICP-AES and adjust the value upward by approximately 15% to have a pretty good estimate of the total S in the slurry. Soluble sulfate measurements by ion chromatography (IC) will be biased considerably lower than the actual total S, the difference being due to the non-sulfate soluble S and the undissolved S. Tank 12 sludge is enriched in U-235, and hence samples transferred into SRNL from the Tank Farm will need to be placed on the reportable special nuclear material inventory and tracked for total U per SRNL procedure requirements.

  19. Explosion proof vehicle for tank inspection

    DOEpatents

    Zollinger, William T.; Klingler, Kerry M.; Bauer, Scott G.

    2012-02-28

    An Explosion Proof Vehicle (EPV) having an interior substantially filled with an inert fluid creating an interior pressure greater than the exterior pressure. One or more flexible tubes provide the inert fluid and one or more electrical conductors from a control system to the vehicle. The vehicle is preferably used in subsurface tank inspection, whereby the vehicle is submerged in a volatile fluid.

  20. TANK 32 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect

    Tamburello, D; Richard Dimenna, R; Si Lee, S

    2009-01-27

    The transfer of liquid salt solution from Tank 32 to an evaporator is to be accomplished by activating the evaporator feed pump, with the supernate surface at a minimum height of approximately 74.4 inches above the sludge layer, while simultaneously turning on the downcomer with a flow rate of 110 gpm. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics (CFD) methods to determine the amount of entrained sludge solids pumped out of the tank toward the evaporator with the downcomer turned on. The analysis results shows that, for the minimum tank liquid level of 105 inches above the tank bottom (which corresponds to a liquid depth of 74.4 inches above the sludge layer), the evaporator feed pump will contain less than 0.1 wt% sludge solids in the discharge stream, which is an order of magnitude less than the 1.0 wt% undissolved solids (UDS) loading criteria to feed the evaporator. Lower liquid levels with respect to the sludge layer will result in higher amounts of sludge entrainment due to the increased plunging jet velocity from the downcomer disturbing the sludge layer.