National Library of Energy BETA

Sample records for motor gasoline diesel

  1. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    SciTech Connect (OSTI)

    Destaillats, Hugo; Jakober, Chris A.; Robert, Michael A.; Riddle, Sarah G.; Destaillats, Hugo; Charles, M. Judith; Green, Peter G.; Kleeman, Michael J.

    2007-12-01

    Carbonyls from gasoline powered light-duty vehicles (LDVs) and heavy-duty diesel powered vehicles (HDDVs) operated on chassis dynamometers were measured using an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery, 4-fluorobenzaldehyde for_C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 ? 2000 ?g/L fuel for LDVs and 1.8 - 27000 mu g/L fuel for HDDVs. Gas-phase species accounted for 81-95percent of the total carbonyls from LDVs and 86-88percent from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19percent of particulate organic carbon (POC) emissions from low-emission LDVs and 37percent of POC emissions from three-way catalyst equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9percent depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas- and particle-phase under the dilution factors of 126-584 used in the current study.

  2. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update

    Learn more... Price trends and regional differences What causes fluctuations in motor gasoline prices? Retail gasoline prices are mainly affected by crude oil prices and the level of gasoline supply relative to demand. Strong and increasing demand for gasoline and other petroleum products in the United States and the rest of the world at times places intense pressure on available supplies. Even when crude oil prices are stable... read more in Gasoline Explained What causes fluctuations in diesel

  3. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update

    Detailed Price and CV Report Motor Gasoline Prices & Coefficients of Variation Spreadsheet

  4. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update

    Methodology For Gasoline and Diesel Fuel Pump Components The components for the gasoline and diesel fuel pumps are calculated in the following manner in cents per gallon and then converted into a percentage: Crude Oil - the monthly average of the composite refiner acquisition cost, which is the average price of crude oil purchased by refiners. Refining Costs & Profits - the difference between the monthly average of the spot price of gasoline or diesel fuel (used as a proxy for the value of

  5. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update

    Retail motor gasoline city definitions The table below shows the counties included in the sampling area for the ten cities that EIA publishes retail motor gasoline prices for. EIA does not have gasoline prices by county. City Counties included Boston Barnstable County, MA Bristol County, MA Dukes County, MA Essex County, MA Hillsborough County, NH Merrimack County, NH Middlesex County, MA Nantucket County, MA Norfolk County, MA Plymouth County, MA Rockingham County, NH Strafford County, NH

  6. Diesel vs Gasoline Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    "swing" between diesel and gasoline production deer08leister.pdf (217.54 KB) More Documents & Publications Marathon Sees Diesel Fuel in Future ITP Petroleum Refining: Energy ...

  7. Motor gasolines, summer 1979

    SciTech Connect (OSTI)

    Shelton, E.M.

    1980-02-01

    Analytical data for 2401 samples of motor gasoline, from service stations throughout the country, were collected and analyzed under agreement between the Bartlesville Energy Technology Center and the American Petroleum Institute. The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing areas and districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The antiknock (octane) index ((R + M)/2) averages of gasoline sold in this country were 88.6, 89.3, and 93.7 unleaded, regular, and premium grades of gasolines, respectively.

  8. ,"New York Gasoline and Diesel Retail Prices"

    U.S. Energy Information Administration (EIA) (indexed site)

    ...","Frequency","Latest Data for" ,"Data 1","New York Gasoline and Diesel Retail ... 4:27:01 PM" "Back to Contents","Data 1: New York Gasoline and Diesel Retail Prices" ...

  9. Motor gasolines, summer 1985

    SciTech Connect (OSTI)

    Dickson, C.L.; Woodward, P.W.

    1986-06-01

    Samples for this report were collected from service stations throughout the country and were analyzed in laboratories of various refiners, motor manufacturers, chemical companies, and research institutes. Analytical data for the 1571 motor gasoline and 206 motor gasoline/alcohol blend samples were submitted to the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma, for reporting. This work is jointly funded by the American Petroleum Institute (API) and the United States Department of Energy (DOE), Bartlesville Project Office (DOE cooperative agreement No. FC22-83FE60149). The data are representative of the products of 62 marketers, large and small, which manufacture and supply gasoline. They are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map shows the marketing areas, districts, and sampling locations. The report includes trend charts of selected properties of motor fuels over the last twenty-five years. Twelve octane distribution graphs for leaded and unleaded grades of gasoline are presented for areas 1, 2, 3, and 4. The average antiknock (octane) index (R + M)/2 of gasoline sold in the United States during June, July, and August 1985 was 87.4 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, and 88.8 for leaded below 93.0 grades of gasoline. Analyses of motor gasoline containing various alcohols are reported in separate tables beginning with this report. The average antiknock (octane) index (R + M)/2 of gasoline containing alcohols was 88.6 for unleaded below 90.0, 91.4 for unleaded 90.0 and above, and 90.2 for leaded below 93.0 grades of gasoline. 16 figs., 8 tabs.

  10. Motor gasolines, summer 1983

    SciTech Connect (OSTI)

    Shelton, E.M.

    1984-02-01

    The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, chemical companies, and research institutes. The analytical data for 1583 samples of motor gasoline, were submitted to the National Institute for Petroleum and Energy Research, Bartlesville, Oklahoma for study, necessary calculations, and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER) and the American Petroleum Institute (API). They represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, and leaded antiknock index (R+M)/2 below 93.0 grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.5 for unleaded below 90.0, 91.4 for unleaded 90.0 and above, and 89.0 for leaded below 93.0 grades of gasoline. 16 figures, 5 tables.

  11. Motor gasolines, summer 1980

    SciTech Connect (OSTI)

    Shelton, E.M.

    1981-02-01

    Analytical data for 2062 samples of motor gasoline were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The anitknock (octane) index ((R + M)/2) averages of gasolines sold in this country were 87.8 for the unleaded below 90.0, 91.6 for the unleaded 90.0 and above, 88.9 for the regular, and 92.8 for the premium grades of gasoline.

  12. Motor gasolines, Summer 1982

    SciTech Connect (OSTI)

    Shelton, E.M.

    1983-03-01

    The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The analytical data for 796 samples of motor gasoline, were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). They represent the products of 22 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R + M)/2 below 90.0, unleaded antiknock index (R + M)/2 90.0 and above, leaded antiknock index (R + M)/2 below 93.0, and leaded antiknock index (R + M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R + M)/2 averages of gasoline sold in this country were 87.3 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, 89.0 for leaded below 93.0, and no data in this report for 93.0 and above grades of leaded gasoline.

  13. Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles

    SciTech Connect (OSTI)

    Ban-Weiss, George A.; Lunden, Melissa M.; Kirchstetter, Thomas W.; Harley, Robert A.

    2009-04-10

    Average particle number concentrations and size distributions from {approx}61,000 light-duty (LD) vehicles and {approx}2500 medium-duty (MD) and heavy-duty (HD) trucks were measured during the summer of 2006 in a San Francisco Bay area traffic tunnel. One of the traffic bores contained only LD vehicles, and the other contained mixed traffic, allowing pollutants to be apportioned between LD vehicles and diesel trucks. Particle number emission factors (particle diameter D{sub p} > 3 nm) were found to be (3.9 {+-} 1.4) x 10{sup 14} and (3.3 {+-} 1.3) x 10{sup 15} kg{sup -1} fuel burned for LD vehicles and diesel trucks, respectively. Size distribution measurements showed that diesel trucks emitted at least an order of magnitude more particles for all measured sizes (10 < D{sub p} < 290 nm) per unit mass of fuel burned. The relative importance of LD vehicles as a source of particles increased as D{sub p} decreased. Comparing the results from this study to previous measurements at the same site showed that particle number emission factors have decreased for both LD vehicles and diesel trucks since 1997. Integrating size distributions with a volume weighting showed that diesel trucks emitted 28 {+-} 11 times more particles by volume than LD vehicles, consistent with the diesel/gasoline emission factor ratio for PM{sub 2.5} mass measured using gravimetric analysis of Teflon filters, reported in a companion paper.

  14. DOE's Gasoline/Diesel PM Split Study

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE's GasolineDiesel PM Split Study Eric M. Fujita, David E. Campbell, William P. Arnott, Barbara Zielinska and Judith C. Chow Division of Atmospheric Sciences Desert Research ...

  15. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, ...

  16. Motor Gasoline Assessment, Spring 1997

    Reports and Publications

    1997-01-01

    Analyzes the factors causing the run up of motor gasoline prices during spring 1996 and the different market conditions during spring 1997 that caused prices to decline.

  17. Price of Motor Gasoline Through Retail Outlets

    Annual Energy Outlook

    & Stocks by State (Dollars per Gallon Excluding Taxes) Data Series: Retail Price - Motor Gasoline Retail Price - Regular Gasoline Retail Price - Midgrade Gasoline Retail Price...

  18. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update

    Gasoline Price Data Collection Procedures Every Monday, retail prices for all three grades of gasoline are collected by telephone from a sample of approximately 800 retail gasoline ...

  19. Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel

    Alternative Fuels and Advanced Vehicles Data Center

    Use Michigan Fleet Reduces Gasoline and Diesel Use to someone by E-mail Share Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Facebook Tweet about Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Twitter Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Google Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Delicious Rank Alternative Fuels Data

  20. DOE's Gasoline/Diesel PM Split Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications DOE's GasolineDiesel PM Split Study DOE's GasolineDiesel PM Split Study Long-Term Changes in Gas- and Particle-Phase Emissions from On-Road Diesel ...

  1. Gasoline and Diesel Fuel Update

    Annual Energy Outlook

    February 16, 2016 Reformulated Gasoline States in each PADD Region Procedures & Methodology Gasoline Data collection procedures Sampling methodology Coefficient of variation...

  2. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update

    On-Highway Diesel Fuel Prices & Coefficients of Variation Report

  3. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update

    Procedures, Methodology, and Coefficients of Variation Diesel Fuel Price Data Collection Procedures Every Monday, cash self-serve on-highway diesel prices (including taxes) are collected from a sample of approximately 400 retail diesel outlets in the continental U.S. The sample includes a combination of truck stops and service stations that sell on-highway diesel fuel. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The prices

  4. DOE's Gasoline/Diesel PM Split Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005deerfujita.pdf More Documents & Publications DOE's GasolineDiesel PM Split Study DOE's ...

  5. Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Diesel and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference ...

  6. ,"New York City Gasoline and Diesel Retail Prices"

    U.S. Energy Information Administration (EIA) (indexed site)

    ...","Frequency","Latest Data for" ,"Data 1","New York City Gasoline and Diesel Retail ... 4:27:10 PM" "Back to Contents","Data 1: New York City Gasoline and Diesel Retail ...

  7. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update

    Price Data Collection Procedures Every Monday, retail on-highway diesel prices are collected by telephone and fax from a sample of approximately 350 retail diesel outlets, including truck stops and service stations. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The Environmental Protection Agency (EPA) requires that all on-highway diesel sold be ULSD by December 1, 2010 (September 1, 2006 in California). In January 2007, the

  8. Gasoline and Diesel Fuel Update

    Annual Energy Outlook

    ... Sold for Local Consumption", and demographic data from the Bureau of the Census and Department of Transportation on population, number of gasoline stations and number of vehicles. ...

  9. Gasoline and Diesel Fuel Update

    Annual Energy Outlook

    These data are made available through EIA's hotline (202-586-6966), EIA's web page, and through EIA's email notification, regular and wireless. Previous Diesel Fuel Price Data ...

  10. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update

    Procedures, Methodology, and Coefficients of Variation Gasoline price data collection procedures Every Monday, retail prices for all three grades of gasoline are collected by telephone from a sample of approximately 800 retail gasoline outlets. The prices are published around 5:00 p.m. ET Monday, except on government holidays, when the data are released on Tuesday (but still represent Monday's price). The reported price includes all taxes and is the pump price paid by a consumer as of 8:00 a.m.

  11. Gasoline and Diesel Fuel Update

    Annual Energy Outlook

    to the States covered by each primary publication cell. The distribution of allocations was proportional to the annual State total volume of retail on-highway diesel fuel sales. ...

  12. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update

    Gasoline Pump Components History WHAT WE PAY FOR IN A GALLON OF REGULAR GASOLINE Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage) Taxes (percentage) Crude Oil (percentage) Jan-00 1.289 7.8 13.0 32.1 47.1 Feb-00 1.377 17.9 7.5 30.1 44.6 Mar-00 1.517 15.4 12.8 27.3 44.6 Apr-00 1.465 10.1 20.2 28.3 41.4 May-00 1.485 20.2 9.2 27.9 42.7 Jun-00 1.633 22.2 8.8 25.8 43.1 Jul-00 1.551 13.2 15.8 27.2 43.8 Aug-00 1.465 15.8 7.5 28.8 47.8 Sep-00 1.550

  13. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update

    Diesel Fuel Pump Components History WHAT WE PAY FOR IN A GALLON OF DIESEL FUEL Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage) Taxes (percentage) Crude Oil (percentage) May-02 1.305 5.1 11.3 36.9 46.6 Jun-02 1.286 6.6 11.2 37.5 44.7 Jul-02 1.299 5.3 12.1 37.1 45.5 Aug-02 1.328 8.6 7.8 36.3 47.4 Sep-02 1.411 12.0 7.5 34.2 46.3 Oct-02 1.462 11.4 10.9 33 44.8 Nov-02 1.420 12.0 12.8 33.9 41.2 Dec-02 1.429 12.7 9.3 33.7 44.3 Jan-03 1.488 10.7

  14. Load Expansion with Diesel/Gasoline RCCI for Improved Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will describe preliminary emission results of gasolinediesel RCCI in a ...

  15. In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials 2002 ...

  16. ,"Motor Gasoline Sales Through Retail Outlets Prices "

    U.S. Energy Information Administration (EIA) (indexed site)

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Motor Gasoline Sales Through Retail Outlets Prices ",60,"Annual",2014,"6301984" ,"Release...

  17. EIS-0039: Motor Gasoline Deregulation and the Gasoline Tilt

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Economic Regulatory Administration developed this EIS to evaluate the environmental impacts, including social and economic impacts, that may result from either of two proposed regulatory changes: (1) the exemption of motor gasoline from the Department of Energy's Mandatory Petroleum Price and Allocation Regulations, and (2) the adoption of the gasoline tilt, a proposed regulation that would allow refiners to recover an additional amount of their total increased costs on gasoline.

  18. A Comparison of Two Gasoline and Two Diesel Cars with Varying...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control Technologies A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control ...

  19. Load Expansion with Diesel/Gasoline RCCI for Improved Engine Efficiency and Emissions

    Energy.gov [DOE]

    This poster will describe preliminary emission results of gasoline/diesel RCCI in a medium-duty diesel engine.

  20. ,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural...

    U.S. Energy Information Administration (EIA) (indexed site)

    AM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and ... "Date","U.S. Finished Motor Gasoline Stocks at Refineries, Bulk ...

  1. ,"U.S. Motor Gasoline Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","U.S. Motor Gasoline Refiner Sales ... AM" "Back to Contents","Data 1: U.S. Motor Gasoline Refiner Sales Volumes" ...

  2. Gasoline and Diesel Fuel Update - Energy Information Administration

    U.S. Energy Information Administration (EIA) (indexed site)

    ‹ See all petroleum reports Gasoline and Diesel Fuel Update Gasoline Release Date: November 14, 2016 | Next Release Date: November 21, 2016 Diesel Fuel Release Date: November 14, 2016 | Next Release Date: November 21, 2016 Notice: Due to the pipeline disruption in the Southeast, the EPA and DOE have issued a waiver of the federal RFG requirements in the affected RFG areas in Delaware, District of Columbia, Maryland, New Jersey, and Virginia. These RFG areas may contain conventional gasoline

  3. Motor gasoline assessment, Spring 1997

    SciTech Connect (OSTI)

    1997-07-01

    The springs of 1996 and 1997 provide an excellent example of contrasting gasoline market dynamics. In spring 1996, tightening crude oil markets pushed up gasoline prices sharply, adding to the normal seasonal gasoline price increases; however, in spring 1997, crude oil markets loosened and crude oil prices fell, bringing gasoline prices down. This pattern was followed throughout the country except in California. As a result of its unique reformulated gasoline, California prices began to vary significantly from the rest of the country in 1996 and continued to exhibit distinct variations in 1997. In addition to the price contrasts between 1996 and 1997, changes occurred in the way in which gasoline markets were supplied. Low stocks, high refinery utilizations, and high imports persisted through 1996 into summer 1997, but these factors seem to have had little impact on gasoline price spreads relative to average spread.

  4. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrotreating and Hydrocracking: A Design Case | Department of Energy Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case The goal of the U.S. Department of Energy's Bioenergy Technologies Office (BETO) is to enable the development of biomass technologies. PNNL-23053.pdf (0 B) More Documents & Publications Design

  5. Trends in motor gasolines: 1942-1981

    SciTech Connect (OSTI)

    Shelton, E M; Whisman, M L; Woodward, P W

    1982-06-01

    Trends in motor gasolines for the years of 1942 through 1981 have been evaluated based upon data contained in surveys that have been prepared and published by the Bartlesville Energy Technology Center (BETC). These surveys have been published twice annually since 1935 describing the properties of motor gasolines from throughout the country. The surveys have been conducted in cooperation with the American Petroleum Institute (API) since 1948. Various companies from throughout the country obtain samples from retail outlets, analyze the samples by the American Society for Testing and Materials (ASTM) procedures, and report data to the Bartlesville center for compilation, tabulation, calculation, analysis and publication. A typical motor gasoline report covers 2400 samples from service stations throughout the country representing some 48 companies that manufacture and supply gasoline. The reports include trend charts, octane plots, and tables of test results from about a dozen different tests. From these data in 77 semiannual surveys, a summary report has thus been assembled that shows trends in motor gasolines throughout the entire era of winter 1942 to 1943 to the present. Trends of physical properties including octane numbers, antiknock ratings, distillation temperatures, Reid vapor pressure, sulfur and lead content are tabulated, plotted and discussed in the current report. Also included are trend effects of technological advances and the interactions of engine design, societal and political events and prices upon motor gasoline evolution during the 40 year period.

  6. U.S. Motor Gasoline Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    Formulation Grade: Gasoline, Average Regular Gasoline Midgrade Gasoline Premium Gasoline Conventional, Average Conventional Regular Conventional Midgrade Conventional Premium ...

  7. Diesel engines vs. spark ignition gasoline engines -- Which is ``greener``?

    SciTech Connect (OSTI)

    Fairbanks, J.W.

    1997-12-31

    Criteria emissions, i.e., NO{sub x}, PM, CO, CO{sub 2}, and H{sub 2}, from recently manufactured automobiles, compared on the basis of what actually comes out of the engines, the diesel engine is greener than spark ignition gasoline engines and this advantage for the diesel engine increases with time. SI gasoline engines tend to get out of tune more than diesel engines and 3-way catalytic converters and oxygen sensors degrade with use. Highway measurements of NO{sub 2}, H{sub 2}, and CO revealed that for each model year, 10% of the vehicles produce 50% of the emissions and older model years emit more than recent model year vehicles. Since 1974, cars with SI gasoline engines have uncontrolled emission until the 3-way catalytic converter reaches operating temperature, which occurs after roughly 7 miles of driving. Honda reports a system to be introduced in 1998 that will alleviate this cold start problem by storing the emissions then sending them through the catalytic converter after it reaches operating temperature. Acceleration enrichment, wherein considerable excess fuel is introduced to keep temperatures down of SI gasoline engine in-cylinder components and catalytic converters so these parts meet warranty, results in 2,500 times more CO and 40 times more H{sub 2} being emitted. One cannot kill oneself, accidentally or otherwise, with CO from a diesel engine vehicle in a confined space. There are 2,850 deaths per year attributable to CO from SI gasoline engine cars. Diesel fuel has advantages compared with gasoline. Refinery emissions are lower as catalytic cracking isn`t necessary. The low volatility of diesel fuel results in a much lower probability of fires. Emissions could be improved by further reducing sulfur and aromatics and/or fuel additives. Reformulated fuel has become the term covering reducing the fuels contribution to emissions. Further PM reduction should be anticipated with reformulated diesel and gasoline fuels.

  8. DOE's Gasoline/Diesel PM Split Study

    Office of Energy Efficiency and Renewable Energy (EERE)

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: National Renewable Energy Laboratory

  9. Motor Gasoline Market Model documentation report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The purpose of this report is to define the objectives of the Motor Gasoline Market Model (MGMM), describe its basic approach and to provide detail on model functions. This report is intended as a reference document for model analysts, users, and the general public. The MGMM performs a short-term (6- to 9-month) forecast of demand and price for motor gasoline in the US market; it also calculates end of month stock levels. The model is used to analyze certain market behavior assumptions or shocks and to determine the effect on market price, demand and stock level.

  10. Motor gasolines, winter 1981-1982

    SciTech Connect (OSTI)

    Shelton, E M

    1982-07-01

    Analytical data for 905 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 30 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since winter 1959-1960 survey for the leaded gasolines, and since winter 1979-1980 survey for the unleaded gasolines. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.4 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, and 88.9 for leaded below 93.0. Only one sample was reported as 93.0 for leaded gasolines with an antiknock index (R+M)/2 93.0 and above.

  11. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    U.S. Energy Information Administration (EIA) (indexed site)

    at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information Administration Petroleum Marketing Annual 1996 Table 31. Motor...

  12. Biomass to Gasoline and DIesel Using Integrated Hydropyrolysis and Hydroconversion

    SciTech Connect (OSTI)

    Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; Tan, Eric; Gephart, John; Shonnard, David

    2013-01-02

    Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The DOE funding enabled rapid development of the IH2 technology from initial proof-of-principle experiments through continuous testing in a 50 kg/day pilot plant. As part of this project, engineering work on IH2 has also been completed to design a 1 ton/day demonstration unit and a commercial-scale 2000 ton/day IH2 unit. These studies show when using IH2 technology, biomass can be converted directly to transportation quality fuel blending components for the same capital cost required for pyrolysis alone, and a fraction of the cost of pyrolysis plus upgrading of pyrolysis oil. Technoeconomic work for IH2 and lifecycle analysis (LCA) work has also been completed as part of this DOE study and shows IH2 technology can convert biomass to gasoline and diesel blending components for less than $2.00/gallon with greater than 90% reduction in greenhouse gas emissions. As a result of the work completed in this DOE project, a joint development agreement was reached with CRI Catalyst Company to license the IH2 technology. Further larger-scale, continuous testing of IH2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.

  13. U.S. average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012

    U.S. Energy Information Administration (EIA) (indexed site)

    average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012 Despite the recent run-up in gasoline prices, the U.S. Energy Information Administration expects falling crude oil prices will lead to a small decline in average motor fuel costs this year compared with last year. The price for regular gasoline is expected to average $3.55 a gallon in 2013 and $3.39 next year, according to EIA's new Short-Term Energy Outlook. That's down from $3.63 a gallon in 2012. For

  14. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    U.S. Energy Information Administration (EIA) (indexed site)

    of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information Administration Petroleum Marketing Annual 1997 Table 43....

  15. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    U.S. Energy Information Administration (EIA) (indexed site)

    1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) - Continued Geographic Area Month Premium All Grades Sales...

  16. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    U.S. Energy Information Administration (EIA) (indexed site)

    2000 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) - Continued Geographic Area Month Premium All Grades Sales...

  17. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Premium All...

  18. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual 2000 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Premium All...

  19. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    U.S. Energy Information Administration (EIA) (indexed site)

    of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information Administration Petroleum Marketing Annual 1996 Table 43....

  20. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) (indexed site)

    Information AdministrationPetroleum Marketing Annual 1999 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and Selected States (Cents per...

  1. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) (indexed site)

    Energy Information Administration Petroleum Marketing Annual 1995 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  2. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    U.S. Energy Information Administration (EIA) (indexed site)

    250 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  3. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) (indexed site)

    Information Administration Petroleum Marketing Annual 1995 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  4. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    U.S. Energy Information Administration (EIA) (indexed site)

    Energy Information Administration Petroleum Marketing Annual 1995 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  5. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    U.S. Energy Information Administration (EIA) (indexed site)

    Petroleum Marketing Annual 1998 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

  6. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) (indexed site)

    134 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  7. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) (indexed site)

    134 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  8. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) (indexed site)

    220 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  9. Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) (indexed site)

    - - - - - - - - - - - - See footnotes at end of table. 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 116 Energy Information...

  10. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    U.S. Energy Information Administration (EIA) (indexed site)

    - - - - W W - - - - - - See footnotes at end of table. 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State 292 Energy...

  11. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    U.S. Energy Information Administration (EIA) (indexed site)

    Petroleum Marketing Annual 1999 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

  12. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) (indexed site)

    Information AdministrationPetroleum Marketing Annual 1998 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and Selected States (Cents per...

  13. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) (indexed site)

    - - - - W W - - - - - - See footnotes at end of table. 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 86 Energy Information...

  14. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    U.S. Energy Information Administration (EIA) (indexed site)

    Petroleum Marketing Annual 1995 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

  15. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) (indexed site)

    - - - - 64.7 64.7 - - - - - - See footnotes at end of table. 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 86 Energy Information...

  16. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    U.S. Energy Information Administration (EIA) (indexed site)

    250 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  17. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) (indexed site)

    220 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  18. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) (indexed site)

    Information Administration Petroleum Marketing Annual 1995 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  19. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) (indexed site)

    Energy Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  20. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) (indexed site)

    Information AdministrationPetroleum Marketing Annual 1998 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  1. Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) (indexed site)

    Information Administration Petroleum Marketing Annual 1995 Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  2. Microsoft Word - Summer 2006 Motor Gasoline Prices.doc

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Since November 2005, we had been forecasting monthly average 2006 motor gasoline prices to ... three basic elements: 1. Crude oil costs - the West Texas Intermediate (WTI) crude ...

  3. Maximizing Potential of Diesel and Gasoline for a Cleaner, More Efficient

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Engine | Department of Energy Maximizing Potential of Diesel and Gasoline for a Cleaner, More Efficient Engine Maximizing Potential of Diesel and Gasoline for a Cleaner, More Efficient Engine September 27, 2011 - 3:52pm Addthis A team of researchers and engineers at Argonne National Laboratory, led by Steve Ciatti, pictured above, is looking at the possibility of using gasoline to power diesel engines, thereby increasing overall efficiency and reducing pollution. | Image courtesy of ANL A

  4. An experimental investigation of low octane gasoline in diesel engines.

    SciTech Connect (OSTI)

    Ciatti, S. A.; Subramanian, S.

    2011-09-01

    Conventional combustion techniques struggle to meet the current emissions norms. In particular, oxides of nitrogen (NO{sub x}) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines. Advance combustion concepts have proved the potential to combine fuel efficiency and improved emission performance. Low-temperature combustion (LTC) offers reduced NO{sub x} and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NO{sub x} emissions is dependent on achieving optimal combustion phasing. Diesel operated LTC is limited by early knocking combustion, whereas conventional gasoline operated LTC is limited by misfiring. So the concept of using an unconventional fuel with the properties in between those two boundary fuels has been experimented in this paper. Low-octane (84 RON) gasoline has shown comparable diesel efficiencies with the lowest NO{sub x} emissions at reasonable high power densities (NO{sub x} emission was 1 g/kW h at 12 bar BMEP and 2750 rpm).

  5. Fact #645: October 18, 2010 Price of Diesel Fuel versus Gasoline in Europe

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy 5: October 18, 2010 Price of Diesel Fuel versus Gasoline in Europe Fact #645: October 18, 2010 Price of Diesel Fuel versus Gasoline in Europe A comparison between the average annual price of a gallon of gasoline and a gallon of highway diesel fuel in several European countries shows that a large change took place in 2008. In most of the selected countries, the price of gasoline was 30 to 95 cents higher than that of diesel from 2001 to 2007. In 2008, the price

  6. Fact #889: September 7, 2015 Average Diesel Price Lower than Gasoline for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the First Time in Six Years | Department of Energy 9: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years Fact #889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years SUBSCRIBE to the Fact of the Week In July of 2015, the nationwide average price of diesel was lower than the average price of a regular gallon of gasoline for the first time since June 2009. Both gasoline and diesel prices fluctuate throughout the

  7. Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995

    Reports and Publications

    1994-01-01

    Provisions of the Clean Air Act Amendments of 1990 designed to reduce ground-level ozone will increase the demand for reformulated motor gasoline in a number of U.S. metropolitan areas. This article discusses the effects of the new regulations on the motor gasoline market and the refining industry.

  8. Motor Gasoline Outlook and State MTBE Bans

    Annual Energy Outlook

    MTBE has apparently been making its way from leaking underground storage tanks, gasoline spills, and two-stroke gasoline engines into surface and ground water. (For more ...

  9. California Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    855 2.860 2.853 2.880 2.866 2.812 2000-2016 All Grades - Reformulated Areas 2.855 2.860 2.853 2.880 2.866 2.812 1995-2016 Regular 2.799 2.805 2.798 2.824 2.809 2.755 2000-2016 Reformulated Areas 2.799 2.805 2.798 2.824 2.809 2.755 1995-2016 Midgrade 2.928 2.934 2.926 2.955 2.941 2.892 2000-2016 Reformulated Areas 2.928 2.934 2.926 2.955 2.941 2.892 1995-2016 Premium 3.044 3.050 3.041 3.072 3.059 3.005 2000-2016 Reformulated Areas 3.044 3.050 3.041 3.072 3.059 3.005 1995-2016 Diesel (On-Highway)

  10. PADD 4 Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    328 2.356 2.374 2.383 2.358 2.324 1993-2016 All Grades - Conventional Areas 2.328 2.356 2.374 2.383 2.358 2.324 1994-2016 Regular 2.244 2.269 2.286 2.293 2.268 2.235 1992-2016 Conventional Areas 2.244 2.269 2.286 2.293 2.268 2.235 1992-2016 Midgrade 2.426 2.462 2.485 2.498 2.472 2.437 1994-2016 Conventional Areas 2.426 2.462 2.485 2.498 2.472 2.437 1994-2016 Premium 2.650 2.681 2.702 2.716 2.692 2.657 1994-2016 Conventional Areas 2.650 2.681 2.702 2.716 2.692 2.657 1994-2016 Diesel (On-Highway)

  11. Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks

    Energy.gov [DOE]

    Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks

  12. Motor Gasoline Outlook and State MTBE Bans

    Reports and Publications

    2003-01-01

    The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending state bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year.

  13. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L; Lewis Sr, Samuel Arthur; Storey, John Morse; Cho, Kukwon; Wagner, Robert M; Parks, II, James E

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  14. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    U.S. Energy Information Administration (EIA) (indexed site)

    - - 466.1 466.1 See footnotes at end of table. 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State 356 Energy Information...

  15. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) (indexed site)

    253.2 2,222.4 W W 206.4 134.3 - 340.7 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

  16. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    U.S. Energy Information Administration (EIA) (indexed site)

    - - 532.1 532.1 See footnotes at end of table. 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State 356 Energy Information...

  17. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) (indexed site)

    150.0 2,026.7 W W 234.5 161.7 - 396.3 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

  18. Restructuring: The Changing Face of Motor Gasoline Marketing

    Reports and Publications

    2001-01-01

    This report reviews the U.S. motor gasoline marketing industry during the period 1990 to 1999, focusing on changes that occurred during the period. The report incorporates financial and operating data from the Energy Information Administration's Financial Reporting System (FRS), motor gasoline outlet counts collected by the National Petroleum News from the states, and U.S. Census Bureau salary and employment data published in County Business Patterns.

  19. The motor gasoline industry: Past, present, and future. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    Motor gasoline constitutes the largest single component of US demand for petroleum products and is the Nation's most widely used transportation fuel. Because of its importance as a transportation fuel, motor gasoline has been the focus of several regulatory and tax policy initiatives in recent years. Much of the US refining capacity is specifically geared toward maximizing motor gasoline production, and future investments by the petroleum industry in refining infrastructure are likely to be made largely to produce larger volumes of clean motor gasoline. This report addresses major events and developments that have had an impact on motor gasoline supply, distribution, prices, and demand. The report provides historical perspective as well as analyses of important events from the 1970's and 1980's. Long-term forecasts are provided for the period from 1990 to 2010 in an effort to present and analyze possible future motor gasoline trends. Other forecasts examine the near-term impact of the invasion of Kuwait. 18 figs., 10 tabs.

  20. Summer 2003 Motor Gasoline Outlook.doc

    Gasoline and Diesel Fuel Update

    ... d Average pump price for regular gasoline. ... production, including fuel ethanol blended into ... -Hill Forecast CONTROL0301. Energy Information AdministrationShort-Term Energy ...

  1. Fact #889: September 7, 2015 Average Diesel Price Lower than Gasoline for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the First Time in Six Years - Dataset | Department of Energy 9: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years - Dataset Fact #889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years - Dataset Excel file and dataset for Average Diesel Price Lower than Gasoline for the First Time in Six Years fotw#889_web.xlsx (19.04 KB) More Documents & Publications Fact #859 February 9, 2015 Excess Supply is the Most

  2. Fact #861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles

    Energy.gov [DOE]

    Based on a worksheet developed by Argonne National Laboratory, the idle fuel consumption rate for selected gasoline and diesel vehicles with no load (no use of accessories such as air conditioners,...

  3. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) (indexed site)

    71.8 W 70.5 78.9 W 76.0 83.6 W 69.2 75.2 See footnotes at end of table. 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District and State 176 Energy Information...

  4. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) (indexed site)

    W 68.4 70.8 W W 78.6 W 85.7 81.8 W 69.3 73.8 See footnotes at end of table. 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District and State 176 Energy Information...

  5. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) (indexed site)

    61.5 70.8 92.7 90.7 81.5 72.8 - 78.0 See footnotes at end of table. 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 146 Energy Information...

  6. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) (indexed site)

    62.6 71.7 92.3 89.9 82.6 72.7 - 78.2 See footnotes at end of table. 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 146 Energy Information...

  7. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect (OSTI)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-25

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using similar methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The "as received" feedstock to the pyrolysis plant will be "reactor ready". This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed

  8. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect (OSTI)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-28

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using the same methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The “as received” feedstock to the pyrolysis plant will be “reactor ready.” This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps

  9. Fact #576: June 22, 2009 Carbon Dioxide from Gasoline and Diesel Fuel |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 6: June 22, 2009 Carbon Dioxide from Gasoline and Diesel Fuel Fact #576: June 22, 2009 Carbon Dioxide from Gasoline and Diesel Fuel The amount of carbon dioxide released into the atmosphere by a vehicle is primarily determined by the carbon content of the fuel. However, there is a small portion of the fuel that is not oxidized into carbon dioxide when the fuel is burned. The Environmental Protection Agency (EPA) has published information on carbon dioxide emissions from

  10. Motor Gasoline Consumption 2008 - Historical Perspective and Short-Term Projections

    Reports and Publications

    2008-01-01

    This report reviews how gasoline markets relate to population, income, prices, and the growing role of ethanol. It also analyzes the structural shift in motor gasoline markets that took place in the late 1990s.

  11. MTBE, Oxygenates, and Motor Gasoline (Released in the STEO October 1999)

    Reports and Publications

    1999-01-01

    The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an increase in MTBE production between 1990 and 1994. MTBE demand increased from 83,000 in 1990 to 161,000 barrels per day in 1994. The reformulated gasoline (RFG) program provided a further boost to oxygenate blending. The MTBE contained in motor gasoline increased to 269,000 barrels per day by 1997.

  12. Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking

    SciTech Connect (OSTI)

    Jones, S. B.; Valkenburg, C.; Walkton, C. W.; Elliott, D. C.; Holladay, J. E.; Stevens, D. J.; Kinchin, C.; Czernik, S.

    2010-02-01

    The Biomass Program develops design cases to understand the current state of conversion technologies and to determine where improvements need to take place in the future. This design case is the first to establish detailed cost targest for the production of diesel and gasoline blendstock from biomass via a fast pyrolysis process.

  13. Life Cycle Assessment of Gasoline and Diesel Produced via Fast Pyrolysis and Hydroprocessing

    SciTech Connect (OSTI)

    Hsu, D. D.

    2011-03-01

    In this work, a life cycle assessment (LCA) estimating greenhouse gas (GHG) emissions and net energy value (NEV) of the production of gasoline and diesel from forest residues via fast pyrolysis and hydroprocessing, from production of the feedstock to end use of the fuel in a vehicle, is performed. The fast pyrolysis and hydrotreating and hydrocracking processes are based on a Pacific Northwest National Laboratory (PNNL) design report. The LCA results show GHG emissions of 0.142 kg CO2-equiv. per km traveled and NEV of 1.00 MJ per km traveled for a process using grid electricity. Monte Carlo uncertainty analysis shows a range of results, with all values better than those of conventional gasoline in 2005. Results for GHG emissions and NEV of gasoline and diesel from pyrolysis are also reported on a per MJ fuel basis for comparison with ethanol produced via gasification. Although pyrolysis-derived gasoline and diesel have lower GHG emissions and higher NEV than conventional gasoline does in 2005, they underperform ethanol produced via gasification from the same feedstock. GHG emissions for pyrolysis could be lowered further if electricity and hydrogen are produced from biomass instead of from fossil sources.

  14. Prices of Refiner Motor Gasoline Sales to End Users

    U.S. Energy Information Administration (EIA) (indexed site)

    Product Sales Type: Gasoline, All Grades - Sales to End Users (U.S. only) Gasoline, All Grades - Through Retail Outlets Gasoline, All Grades - Other End Users Gasoline, All Grades ...

  15. ,"U.S. Sales for Resale, Total Refiner Motor Gasoline Sales Volumes...

    U.S. Energy Information Administration (EIA) (indexed site)

    Resale, Total Refiner Motor Gasoline Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ...

  16. Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD...

    U.S. Energy Information Administration (EIA) (indexed site)

    Information Administration Petroleum Marketing Annual 1995 Table A1. RefinerReseller Motor Gasoline Prices by Grade, PAD District and State, 1984-Present (Cents per Gallon...

  17. Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) (indexed site)

    table. 56 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  18. Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) (indexed site)

    table. 56 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  19. Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales...

    U.S. Energy Information Administration (EIA) (indexed site)

    Information Administration Petroleum Marketing Annual 1995 Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type (Cents per Gallon Excluding Taxes) - Continued...

  20. Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD...

    U.S. Energy Information Administration (EIA) (indexed site)

    AdministrationPetroleum Marketing Annual 1999 401 Table A1. RefinerReseller Motor Gasoline Prices by Grade, PAD District and State, 1984-Present (Cents per Gallon...

  1. Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales...

    U.S. Energy Information Administration (EIA) (indexed site)

    Information Administration Petroleum Marketing Annual 1995 Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type (Million Gallons per Day) - Continued Year...

  2. Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) (indexed site)

    table. 56 Energy Information Administration Petroleum Marketing Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  3. An Experimental Investigation of Low Octane Gasoline in Diesel...

    Energy.gov (indexed) [DOE]

    Enable Low Temperature Combustion High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel ... of Two-Stage Combustion in Low-Emissions Diesel Engines

  4. Gasoline and Diesel Fuel Update - Energy Information Administration

    Annual Energy Outlook

    U.S. On-Highway Diesel Fuel Prices* (dollars per gallon)full history Change from 032116 ... collected on a gallon of fuel that are paid to the federal, state, or local government. ...

  5. ,"U.S. Motor Gasoline Prices"

    U.S. Energy Information Administration (EIA) (indexed site)

    Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Motor Gasoline Prices",6,"Monthly","8/2016","1/15/1983" ,"Release Date:","11/1/2016" ,"Next Release Date:","12/1/2016" ,"Excel File

  6. Short-Term Energy Outlook Model Documentation: Motor Gasoline Consumption Model

    Reports and Publications

    2011-01-01

    The motor gasoline consumption module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of total U.S. consumption of motor gasolien based on estimates of vehicle miles traveled and average vehicle fuel economy.

  7. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Smith, David E

    2013-01-01

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  8. Assessment of Summer 1997 Motor Gasoline Price Increase

    Reports and Publications

    1998-01-01

    Assesses the 1997 late summer gasoline market and some of the important issues surrounding that event.

  9. U.S. Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Gasoline - All Grades 2.835 3.576 3.680 3.575 3.437 2.520 1993-2015 All Grades - Conventional Areas 2.793 3.528 3.610 3.511 3.376 2.423 1994-2015 All Grades - Reformulated Areas 2.921 3.675 3.822 3.707 3.559 2.718 1994-2015 Regular 2.782 3.521 3.618 3.505 3.358 2.429 1990-2015 Conventional Areas 2.742 3.476 3.552 3.443 3.299 2.334 1990-2015 Reformulated Areas 2.864 3.616 3.757 3.635 3.481 2.629 1994-2015 Midgrade 2.902 3.644 3.756 3.663 3.539 2.645

  10. U.S. Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    May-16 Jun-16 Jul-16 Aug-16 Sep-16 Oct-16 View History Gasoline - All Grades 2.371 2.467 2.345 2.284 2.327 2.359 1993-2016 All Grades - Conventional Areas 2.303 2.405 2.263 2.226 2.270 2.297 1994-2016 All Grades - Reformulated Areas 2.509 2.593 2.512 2.402 2.442 2.485 1994-2016 Regular 2.268 2.366 2.239 2.178 2.219 2.249 1990-2016 Conventional Areas 2.199 2.303 2.157 2.119 2.161 2.186 1990-2016 Reformulated Areas 2.413 2.497 2.411 2.300 2.339 2.382 1994-2016 Midgrade 2.510 2.603 2.488 2.427

  11. Motor Gasoline Market Spring 2007 and Implications for Spring 2008

    Reports and Publications

    2008-01-01

    This report focuses on the major factors that drove the widening difference between wholesale gasoline and crude oil prices in 2007 and explores how those factors might impact gasoline prices in 2008.

  12. Why Do Motor Gasoline Prices Vary Regionally? California Case Study

    Reports and Publications

    1998-01-01

    Analysis of the difference between the retail gasoline prices in California and the average U.S. retail prices.

  13. Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by...

    U.S. Energy Information Administration (EIA) (indexed site)

    3.3 3.4 7.9 3.3 W 11.3 See footnotes at end of table. 13. U.S. Refiner Reformulated Motor Gasoline Volumes by Grade and Sales Type 26 Energy Information Administration ...

  14. Table 8. U.S. Refiner Conventional Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) (indexed site)

    88.4 87.8 80.1 70.0 NA 72.6 See footnotes at end of table. 8. U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type 16 Energy Information Administration ...

  15. Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by...

    U.S. Energy Information Administration (EIA) (indexed site)

    5.7 5.9 4.4 12.9 NA 17.3 See footnotes at end of table. 9. U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type 18 Energy Information Administration ...

  16. Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) (indexed site)

    92.8 92.5 84.0 72.5 W 80.7 See footnotes at end of table. 12. U.S. Refiner Reformulated Motor Gasoline Prices by Grade and Sales Type 24 Energy Information Administration ...

  17. Table 8. U.S. Refiner Conventional Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) (indexed site)

    87.4 86.9 78.3 68.5 W 70.8 See footnotes at end of table. 8. U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type 16 Energy Information Administration ...

  18. Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) (indexed site)

    92.4 92.1 83.7 74.1 W 80.9 See footnotes at end of table. 12. U.S. Refiner Reformulated Motor Gasoline Prices by Grade and Sales Type 24 Energy Information Administration ...

  19. Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) (indexed site)

    98.0 98.0 86.6 75.0 - 80.1 See footnotes at end of table. 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type 20 Energy Information Administration ...

  20. Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) (indexed site)

    94.0 93.9 83.2 73.8 - 79.3 See footnotes at end of table. 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type 20 Energy Information Administration ...

  1. Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by...

    U.S. Energy Information Administration (EIA) (indexed site)

    3.6 3.7 7.9 3.1 W 11.0 See footnotes at end of table. 13. U.S. Refiner Reformulated Motor Gasoline Volumes by Grade and Sales Type 26 Energy Information Administration ...

  2. Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales...

    U.S. Energy Information Administration (EIA) (indexed site)

    NA 26.6 See footnotes at end of table. 14 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type...

  3. Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales...

    U.S. Energy Information Administration (EIA) (indexed site)

    NA 27.4 See footnotes at end of table. 14 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type...

  4. Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by...

    U.S. Energy Information Administration (EIA) (indexed site)

    0.1 18.7 See footnotes at end of table. 18 Energy Information Administration Petroleum Marketing Annual 1995 Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by Grade...

  5. Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking

    Energy.gov [DOE]

    The Biomass Program develops design cases to understand the current state of conversiontechnologies and to determine where improvements need to take place in the future. The bestavailable bench and pilot-scale conversion data are integrated with detailed process flow andengineering models to identify technical barriers where research and development could leadto significant cost improvements and to calculate production costs. Past design cases focusedon finding pathways toward cost-competitive production of ethanol. This design case is thefirst to establish detailed cost targets for the production of diesel and gasoline blendstock frombiomass via a fast pyrolysis process.

  6. Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks Charles E. Wyman, PhD President and CEO Vertimass LLC Irvine, California DOE Bioenergy Technologies Office (BETO) Bioenergy 2015 Washington, DC June 24, 2015 1" Vertimass Transformative fungible biofuels Vertimass Overview * Vertimass catalyst converts ethanol into gasoline blend stock that eliminates blend wall as obstacle to market growth * Hydrocarbon products also

  7. Motor Gasoline Market Spring 2007 and Implications for Spring...

    Annual Energy Outlook

    began to decline, and with the transition from methyl tertiary butyl ether (MTBE) to ethanol completed and the end of the summer driving season drawing near, gasoline prices...

  8. Assessment of Summer 1997 motor gasoline price increase

    SciTech Connect (OSTI)

    1998-05-01

    Gasoline markets in 1996 and 1997 provided several spectacular examples of petroleum market dynamics. The first occurred in spring 1996, when tight markets, following a long winter of high demand, resulted in rising crude oil prices just when gasoline prices exhibit their normal spring rise ahead of the summer driving season. Rising crude oil prices again pushed gasoline prices up at the end of 1996, but a warm winter and growing supplies weakened world crude oil markets, pushing down crude oil and gasoline prices during spring 1997. The 1996 and 1997 spring markets provided good examples of how crude oil prices can move gasoline prices both up and down, regardless of the state of the gasoline market in the United States. Both of these spring events were covered in prior Energy Information Administration (EIA) reports. As the summer of 1997 was coming to a close, consumers experienced yet another surge in gasoline prices. Unlike the previous increase in spring 1996, crude oil was not a factor. The late summer 1997 price increase was brought about by the supply/demand fundamentals in the gasoline markets, rather than the crude oil markets. The nature of the summer 1997 gasoline price increase raised questions regarding production and imports. Given very strong demand in July and August, the seemingly limited supply response required examination. In addition, the price increase that occurred on the West Coast during late summer exhibited behavior different than the increase east of the Rocky Mountains. Thus, the Petroleum Administration for Defense District (PADD) 5 region needed additional analysis (Appendix A). This report is a study of this late summer gasoline market and some of the important issues surrounding that event.

  9. Report - Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect (OSTI)

    Jones, S. B.; Valkenburg, C.; Walton, C. W.; Elliott, D. C.; Holladay, J. E.; Stevens, D. J.; Kinchin, C.; Czernik, S.

    2009-02-01

    The purpose of this design case study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels.

  10. EIA-878 Motor Gasoline Price Survey - Reference Guide

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Price Survey (EIA-878), prices are collected for the following gasoline grades as defined by octane rating and ethanol content (ranging from no ethanol through up to 10% ethanol). ...

  11. Simulated comparisons of emissions and fuel efficiency of diesel and gasoline hybrid electric vehicles

    SciTech Connect (OSTI)

    Gao, Zhiming; Chakravarthy, Veerathu K; Daw, C Stuart

    2011-01-01

    This paper presents details and results of hybrid and plug-in hybrid electric passenger vehicle (HEV and PHEV) simulations that account for the interaction of thermal transients from drive cycle demands and engine start/stop events with aftertreatment devices and their associated fuel penalties. The simulations were conducted using the Powertrain Systems Analysis Toolkit (PSAT) software developed by Argonne National Laboratory (ANL) combined with aftertreatment component models developed at Oak Ridge National Lab (ORNL). A three-way catalyst model is used in simulations of gasoline powered vehicles while a lean NOx trap model in used to simulated NOx reduction in diesel powered vehicles. Both cases also use a previously reported methodology for simulating the temperature and species transients associated with the intermittent engine operation and typical drive cycle transients which are a significant departure from the usual experimental steady-state engine-map based approach adopted often in vehicle system simulations. Comparative simulations indicate a higher efficiency for diesel powered vehicles but the advantage is lowered by about a third (for both HEVs and PHEVs) when the fuel penalty associated with operating a lean NOx trap is included and may be reduced even more when fuel penalty associated with a particulate filter is included in diesel vehicle simulations. Through these preliminary studies, it is clearly demonstrated how accurate engine and exhaust systems models that can account for highly intermittent and transient engine operation in hybrid vehicles can be used to account for impact of emissions in comparative vehicle systems studies. Future plans with models for other devices such as particulate filters, diesel oxidation and selective reduction catalysts are also discussed.

  12. Long Term Processing Using Integrated Hydropyrolysis plus Hydroconversion (IH2) for the Production of Gasoline and Diesel from Biomass

    SciTech Connect (OSTI)

    Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; McLeod, Celeste; Del Paggio, Alan; Gephart, John; Starr, Jack; Hahn, John

    2013-06-09

    Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of a new, economical, technology named integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The life cycle analysis (LCA) shows that the use of the IH2 process to convert wood to gasoline and diesel results in a greater than 90% reduction in greenhouse gas emission compared to that found with fossil derived fuels. The technoeconomic analysis showed the conversion of wood using the IH2 process can produce gasoline and diesel at less than $2.00/gallon. In this project, the previously reported semi-continuous small scale IH2 test results were confirmed in a continuous 50 kg/day pilot plant. The continuous IH2 pilot plant used in this project was operated round the clock for over 750 hours and showed good pilot plant operability while consistently producing 26-28 wt % yields of high quality gasoline and diesel product. The IH2 catalyst showed good stability, although more work on catalyst stability is recommended. Additional work is needed to commercialize the IH2 technology including running large particle size biomass, modeling the hydropyrolysis step, studying the effects of process variables and building and operating a 1-50 ton/day demonstration scale plant. The IH2 is a true game changing technology by utilizing U.S. domestic renewable biomass resources to create transportation fuels, sufficient in quantity and quality to substantially reduce our reliance on foreign crude oil. Thus, the IH2 technology offers a path to genuine energy independence for the U. S., along with the creation of a significant number of new U.S. jobs to plant, grow, harvest, and process biomass crops into fungible

  13. ,"Motor Gasoline Sales to End Users, Total Refiner Sales Volumes...

    U.S. Energy Information Administration (EIA) (indexed site)

    ... Refiners (Thousand Gallons per Day)","New Mexico Total Gasoline Retail Sales by Refiners ...87,16127.8,1684.4,1377.2,128.8,497.8,835.6,2030.3,1178.7,674.5,56.4,3.9,4678.6,764.1,9.3,1...

  14. Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) (indexed site)

    82.4 77.1 68.9 62.6 71.6 92.3 89.9 82.6 72.7 - 78.2 See footnotes at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information...

  15. Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD...

    U.S. Energy Information Administration (EIA) (indexed site)

    71.6 92.3 78.2 101.8 83.6 87.5 74.7 See footnotes at end of table. A1. RefinerReseller Motor Gasoline Prices by Grade, PAD District, and State, 1984-Present 452 Energy Information...

  16. Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales...

    U.S. Energy Information Administration (EIA) (indexed site)

    61.5 67.3 89.8 89.5 82.2 69.4 71.1 74.9 See footnotes at end of table. 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type 12 Energy Information Administration ...

  17. Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) (indexed site)

    82.5 75.1 68.6 62.0 70.7 92.7 90.7 81.5 72.8 - 78.0 See footnotes at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information...

  18. Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales...

    U.S. Energy Information Administration (EIA) (indexed site)

    35.2 213.6 9.5 9.8 12.9 16.6 NA 29.5 See footnotes at end of table. 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type 14 Energy Information Administration ...

  19. Table 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by...

    U.S. Energy Information Administration (EIA) (indexed site)

    W 5.6 0.5 0.5 0.5 0.4 - 0.9 See footnotes at end of table. 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by Grade and Sales Type 22 Energy Information Administration ...

  20. Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales...

    U.S. Energy Information Administration (EIA) (indexed site)

    62.2 68.5 90.1 89.6 82.4 70.9 NA 75.9 See footnotes at end of table. 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type 12 Energy Information Administration ...

  1. Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales...

    U.S. Energy Information Administration (EIA) (indexed site)

    33.9 215.8 9.7 10.0 12.1 16.3 0.0 28.4 See footnotes at end of table. 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type 14 Energy Information Administration ...

  2. Table 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by...

    U.S. Energy Information Administration (EIA) (indexed site)

    - 4.9 0.4 0.4 0.3 0.4 - 0.7 See footnotes at end of table. 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by Grade and Sales Type 22 Energy Information Administration ...

  3. In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott; Prikhodko, Vitaly Y; Wagner, Robert M; Parks, II, James E; Cho, Kukwon; Sluder, Scott; Kokjohn, Sage; Reitz, Rolf

    2010-01-01

    In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

  4. Proton NMR analysis of octane number for motor gasoline: Part IV

    SciTech Connect (OSTI)

    Ichikawa, M.; Nonaka, N.; Amano, H.; Takada, I.; Ishimori, S.; Andoh, H.; Kumamoto, K.

    1992-08-01

    Software for predicting the octane number of motor gasoline by proton magnetic resonance (PMR) spectrometry has been formulated. At the same time, a method has been studied to predict the composition of gasoline (in terms of the contents of paraffin, olefin, and aromatic compounds). The formulated program was evaluated by using it to predict the octane numbers of 31 samples of marketed summer gasoline (including 16 regular and 15 premium products), whose octane numbers and compositions were identified according to the ASTM standards. Also, the relationship between the PMR spectrum and gasoline composition was subjected to linear regression analysis by using the 31 samples whose octane numbers were calculated, and the appropriateness of the resultant regression equations was assessed. This report concerns the results of the study in which the octane numbers of the 31 samples were satisfactorily predicted by the formulated program and useful linear regression equation were obtained for the prediction of the composition of gasoline. 9 refs., 9 figs., 3 tabs.

  5. Issues and Methods for Estimating the Percentage Share of Ethanol in Motor Gasoline

    U.S. Energy Information Administration (EIA) (indexed site)

    ___________________________________________________________________________________ Direct all questions to: Tony Radich, anthony.radich@eia.gov, (202) 586-0504 or Sean Hill, sean.hill@eia.gov (202) 586-4247 Disclaimer: Views not necessarily those of the U.S. Energy Information Administration 1 Issues and Methods for Estimating the Share of Ethanol in the Motor Gasoline Supply U.S. Energy Information Administration October 6, 2011 This paper is released to encourage discussion and critical

  6. Air pollution EPA'S efforts to control gasoline vapors from motor vehicles

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This report examines ozone, often called smog, which is a respiratory irritant, and long-term exposure may cause permanent lung damage. Attempts by EPA to reduce gasoline vapors, a major contributor to ozone, by requiring refiners to lower the volatility (evaporation rate) of gasoline sold during the summer months when most high ozone levels occur and auto manufacturers to install vapor recovery equipment (onboard controls) on motor vehicles. Beginning in 1989 (Phase I), the maximum volatility of gasoline sold during the summer would fall to 10.5 pounds per square inch and beginning in 1992 (Phase II), the maximum volatility would fall to 9.0 pounds per square inch. EPA has not yet acted on Phase II reductions because it disagrees with the Department of Transportation on the dangers of adding onboard controls to vehicles. DOT believes the onboard controls may pose an increased risk of fire during crashes. In this report's view, the Stage II controls are a practical and feasible way to control refueling vapors and that onboard controls may well surpass the effectiveness of Phase II controls and therefore should not be abandoned as a way to reduce gasoline vapors.

  7. High Efficiency Clean Combustion Engine Designs for Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program and Vehicle Technologies ...

  8. Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection

    Energy.gov [DOE]

    Supercritical dieseline could be used in diesel engines having efficient fuel systems and combustion chamber designs that decrease fuel consumption and mitigate emissions.

  9. Simulation: Gasoline Compression Ignition

    SciTech Connect (OSTI)

    2015-04-13

    The Mira supercomputer at the Argonne Leadership Computing Facility helped Argonne researchers model what happens inside an engine when you use gasoline in a diesel engine. Engineers are exploring this type of combustion as a sustainable transportation option because it may be more efficient than traditional gasoline combustion engines but produce less soot than diesel.

  10. Anti-air pollution & energy conservation system for automobiles using leaded or unleaded gasoline, diesel or alternate fuel

    DOE Patents [OSTI]

    Bose, Ranendra K.

    2002-06-04

    Exhaust gases from an internal combustion engine operating with leaded or unleaded gasoline or diesel or natural gas, are used for energizing a high-speed gas turbine. The convoluting gas discharge causes a first separation stage by stratifying of heavier and lighter exhaust gas components that exit from the turbine in opposite directions, the heavier components having a second stratifying separation in a vortex tube to separate combustible pollutants from non-combustible components. The non-combustible components exit a vortex tube open end to atmosphere. The lighter combustible, pollutants effected in the first separation are bubbled through a sodium hydroxide solution for dissolving the nitric oxide, formaldehyde impurities in this gas stream before being piped to the engine air intake for re-combustion, thereby reducing the engine's exhaust pollution and improving its fuel economy. The combustible, heavier pollutants from the second separation stage are piped to air filter assemblies. This gas stream convoluting at a high-speed through the top stator-vanes of the air filters, centrifugally separates the coalescent water, aldehydes, nitrogen dioxides, sulfates, sulfur, lead particles which collect at the bottom of the bowl, wherein it is periodically released to the roadway. Whereas, the heavier hydrocarbon, carbon particles are piped through the air filter's porous element to the engine air intake for re-combustion, further reducing the engine's exhaust pollution and improving its fuel economy.

  11. SULFUR REDUCTION IN GASOLINE AND DIESEL FUELS BY EXTRACTION/ADSORPTION OF REFRACTORY DIBENZOTHIOPHENES

    SciTech Connect (OSTI)

    Scott G. McKinley; Celedonio M. Alvarez

    2003-03-01

    The purpose of this study was to remove thiophene, benzothiophene and dibenzothiophene from a simulated gasoline feedstock. We found that Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} reacts with a variety of thiophenes (Th*), affording Ru(NH{sub 3}){sub 5}(Th*){sup 2+}. We used this reactivity to design a biphasic extraction process that removes more than 50% of the dibenzothiophene in the simulated feedstock. This extraction system consists of a hydrocarbon phase (simulated petroleum feedstock) and extractant Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} in an aqueous phase (70% dimethylformamide, 30% H{sub 2}O). The DBT is removed in situ from the newly formed Ru(NH{sub 3}){sub 5}(DBT){sup 2+} by either an oxidation process or addition of H{sub 2}O, to regenerate Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+}.

  12. Summary of Swedish Experiences on CNG and "Clean" Diesel Buses...

    Energy.gov (indexed) [DOE]

    Two Gasoline and Two Diesel Cars with Varying Emission Control Technologies Diesel Health Impacts & Recent Comparisons to Other Fuels Comparison of Clean Diesel Buses to CNG Buses

  13. Summer 2006 Motor Gasoline Prices (Released in the STEO July 2006)

    Reports and Publications

    2006-01-01

    This supplement to the July 2006 Short-Term Energy Outlook (STEO) examines the various factors that have contributed to this summer's high gasoline prices and discusses how they may continue to impact markets over the next several months.

  14. Combustion and Emissions Performance of Dual-Fuel Gasoline and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC on a Multi-Cylinder Light Duty Diesel Engine Combustion and Emissions Performance of Dual-Fuel Gasoline ...

  15. Diesel Fuel Price Pass-through

    Gasoline and Diesel Fuel Update

    1000 Independence Avenue, SW Washington, DC 20585 Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels |...

  16. Long-Term Changes in Gas- and Particle-Phase Emissions from On-Road Diesel and Gasoline Vehicles

    Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  17. U.S. Aviation Gasoline Refiner Sales Volumes

    Gasoline and Diesel Fuel Update

    Product: Aviation Gasoline Kerosene-Type Jet Fuel Propane (Consumer Grade) Kerosene No. 1 Distillate No. 2 Distillate No. 2 Diesel Fuel No. 2 Diesel, Ultra Low-Sulfur No. 2 Diesel, ...

  18. Lower gasoline prices ahead

    U.S. Energy Information Administration (EIA) (indexed site)

    Lower gasoline prices ahead U.S. retail gasoline prices are expected to continue falling through the end of 2016, even though gasoline demand is projected to remain strong. In its new monthly forecast, the U.S. Energy Information Administration said the average monthly price for regular-grade gasoline is expected to decline to $1.92 a gallon by December the lowest for the month in eight years. Lower motor fuel prices are expected in the coming months, despite gasoline demand this year that is on

  19. Fact #889: September 7, 2015 Average Diesel Price Lower than...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years Fact 889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First ...

  20. Short-Term Energy Outlook April 1999-Summer Gasoline Outlook

    Gasoline and Diesel Fuel Update

    pump price for regular gasoline. d Refinery output plus motor gasoline field production, including fuel ethanol ... The forecasts were generated by simulation of the Short-Term ...

  1. Fact #824: June 9, 2014 EPA Sulfur Standards for Gasoline | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4: June 9, 2014 EPA Sulfur Standards for Gasoline Fact 824: June 9, 2014 EPA Sulfur Standards for Gasoline Sulfur naturally occurs in gasoline and diesel fuel, contributing to ...

  2. diesel.vp

    Gasoline and Diesel Fuel Update

    Assessment of Summer 1997 Motor Gasoline Price Increase, (DOEEIA-0621, May 1998)). Using lessons learned from that experience, EIA has now focused the same type of analysis on...

  3. Caterpillar Light Truck Clean Diesel Program

    SciTech Connect (OSTI)

    Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

    1999-04-26

    In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

  4. Fact #861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Diesel Vehicles - Dataset | Department of Energy 1 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles - Dataset Fact #861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles - Dataset Excel file and dataset for Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles fotw#861_web.xlsx (17.63 KB) More Documents & Publications Fact #917: March 21, 2016 Work Truck Daily Idle Time by Industry - Dataset Fact #916: March 14,

  5. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update

    Counties included in New York City metro area The list below includes the counties in the EIA-878 definition for New York City Metro Area. Bergen County, NJ Bronx County, NY Essex County, NJ Fairfield County, CT Hudson County, NJ Hunterdon County, NJ Kings County, NY Litchfield County (partial), CT Middlesex County, NJ Monmouth County, NJ Morris County, NJ Nassau County, NY New Haven County (partial), CT New York County, NY Ocean County, NJ Orange County, NY Passaic County, NJ Putnam, NY Queens

  6. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update

    72 2.380 2.374 2.361 2.384 2.362 1993-2016 All Grades - Conventional Areas 2.385 2.395 2.385 2.370 2.373 2.349 1994-2016 All Grades - Reformulated Areas 2.349 2.354 2.356 2.347 2.403 2.385 1994-2016 Regular 2.229 2.237 2.232 2.219 2.240 2.217 1992-2016 Conventional Areas 2.241 2.251 2.243 2.227 2.228 2.201 1992-2016 Reformulated Areas 2.211 2.215 2.215 2.207 2.261 2.243 1994-2016 Midgrade 2.509 2.516 2.506 2.495 2.517 2.497 1994-2016 Conventional Areas 2.510 2.518 2.500 2.488 2.494 2.473

  7. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update

    Holiday Release Schedule The prices are published around 5:00 p.m. Monday (Eastern time), except on government holidays, when the data are released on Tuesday (but still represent Monday's price). Data for: Alternate Release Date Release Day Holiday October 12, 2015 October 13, 2015 Tuesday Columbus January 18, 2016 January 19, 2016 Tuesday Martin Luther King Jr. February 15, 2016 February 16, 2016 Tuesday President's May 30, 2016 May 31, 2016 Tuesday Memorial July 4, 2016 July 5, 2016 Tuesday

  8. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update

    of truck stops and retail stations selected for each CSU. ... http:www.eia.govpuboilgaspetroleumdatapublicationsweeklyonhighwaydieselpricescurrenthtml2cycasr.htm

  9. Engineering evaluation of the General Motors (GM) diesel rating and capabilities

    SciTech Connect (OSTI)

    Gross, R.E.

    1992-04-01

    K-Reactor's number one GM diesel (GM-lK) suffered recurrent, premature piston pin bushing failures between July 1990 and January 1991. These failures raised a concern that the engine's original design capabilities were being exceeded. Were we asking old engines to do too much by powering 1200 kw (continuous) rated electrical generators Was excessive wear of the piston pin bushings a result of having exceeded the engine's capabilities (overload), or were the recent failures a direct result of poor quality, poor design, or defective replacement parts Considering the engine's overall performance for the past 30 years, during which an engine failure of this nature had never occurred, and the fact that 1200 kw was approximately 50% of the engine's original tested capability, Reactor Engineering did not consider it likely that an overloaded engine caused bushing failures. What seemed more plausible was that the engine's failure to perform was caused by deficiencies in, or poor quality of, replacement parts.The following report documents: (1) the results of K-Reactor EDG failure analysis; (2) correlation of P- and C-Reactor GM diesel teardowns; (3) the engine rebuild to blueprint specification; (4) how the engine was determined ready for test; (5) testing parameters that were developed; (6) a summary of test results and test insights; (7) how WSRC determined engine operation was acceptable; (8) independent review of 1200 kw operational data; (9) approval of the engines' 12OOkw continuous rating.

  10. Engineering evaluation of the General Motors (GM) diesel rating and capabilities

    SciTech Connect (OSTI)

    Gross, R.E.

    1992-04-01

    K-Reactor`s number one GM diesel (GM-lK) suffered recurrent, premature piston pin bushing failures between July 1990 and January 1991. These failures raised a concern that the engine`s original design capabilities were being exceeded. Were we asking old engines to do too much by powering 1200 kw (continuous) rated electrical generators? Was excessive wear of the piston pin bushings a result of having exceeded the engine`s capabilities (overload), or were the recent failures a direct result of poor quality, poor design, or defective replacement parts? Considering the engine`s overall performance for the past 30 years, during which an engine failure of this nature had never occurred, and the fact that 1200 kw was approximately 50% of the engine`s original tested capability, Reactor Engineering did not consider it likely that an overloaded engine caused bushing failures. What seemed more plausible was that the engine`s failure to perform was caused by deficiencies in, or poor quality of, replacement parts.The following report documents: (1) the results of K-Reactor EDG failure analysis; (2) correlation of P- and C-Reactor GM diesel teardowns; (3) the engine rebuild to blueprint specification; (4) how the engine was determined ready for test; (5) testing parameters that were developed; (6) a summary of test results and test insights; (7) how WSRC determined engine operation was acceptable; (8) independent review of 1200 kw operational data; (9) approval of the engines` 12OOkw continuous rating.

  11. Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions

    SciTech Connect (OSTI)

    Marr, L.C.; Kirchstetter, T.W.; Harley, R.A.; Hammond, S.K.; Miguel, A.H.; Hering, S.V.

    1999-09-15

    Motor vehicles are a significant source of polycyclic aromatic hydrocarbon (PAH) emissions. Improved understanding of the relationship between fuel composition and PAH emissions is needed to determine whether fuel reformulation is a viable approach for reducing PAH emissions. PAH concentrations were quantified in gasoline and diesel fuel samples collected in summer 1997 in northern California. Naphthalene was the predominant PAH in both fuels, with concentrations of up to 2,600 mg L{sup {minus}1} in gasoline and 1,600 mg L{sup {minus}1} in diesel fuel. Particle-phase PAH size distributions and exhaust emission factors were measured in two bores of a roadway tunnel. Emission factors were determined separately for light-duty vehicles and for heavy-duty diesel trucks, based on measurements of PAHs, CO, and CO{sub 2}. Particle-phase emission factors, expressed per unit mass of fuel burned, ranged up to 21 {micro}g kg{sup {minus}1} for benzo[ghi]perylene for light-duty vehicles and up to {approximately} 1,000 {micro}g kg{sup {minus}1} for pyrene for heavy-duty diesel vehicles. Light-duty vehicles were found to be a significant source of heavier (four- and five-ring) PAHs, whereas heavy-duty diesel engines were the dominant source of three-ring PAHs, such as fluoranthene and pyrene. While no correlation between heavy-duty diesel truck PAH emission factors and PAH concentrations in diesel fuel was found, light-duty vehicle PAH emission factors were found to be correlated with PAH concentrations in gasoline, suggesting that gasoline reformulation may be effective in reducing PAH emissions from motor vehicles.

  12. S. 790: This Act may be cited as the Motor Fuel Consumer Protection Act of 1991, introduced in the Senate of the United States, One Hundred Second Congress, First Session, April 9, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This bill would amend the antitrust laws in order to preserve and promote wholesale and retail competition in the retail gasoline market. The bill describes limits on the ownership and operation of service stations. The main provision is the it shall be unlawful for any producer or refiner to require any retail motor fuel dealer to purchase more than 70% of the monthly retail sales of motor fuel from such refiner or producer. Motor fuel refers to gasoline, diesel fuel, alcohol, or any mixture of these sold for use in automobiles and related vehicles.

  13. Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction 2003 DEER Conference Presentation: Ford Motor ...

  14. Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications

    Energy.gov [DOE]

    Specific designs and material properties have to be developed for gasoline particulate filters based on the different engine and exhaust gas characteristic of gasoline engines compared to diesel engines, e.g., generally lower levels of engine-out particulate emissions or higher GDI exhaust gas temperatures

  15. Motors

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    motor fails? When a motor fails, the user or owner faces three choices: to rewind to a lower efficiency; to rewind and maintain the original efficiency; or to replace it with a...

  16. Monthly gasoline price to dip below $2 this winter

    U.S. Energy Information Administration (EIA) (indexed site)

    Monthly gasoline price to dip below $2 this winter The nationwide average price for gasoline is expected to fall below $2 per gallon in January, as refiners have switched over to making the less expensive winter gasoline blend and because seasonal motor fuel consumption is typically lower than during the summer months. In its new forecast, the U.S. Energy Information Administration estimates that gasoline demand in September alone hit a record high for that month and highway travel reached

  17. Stocks of Total Motor Gasoline

    U.S. Energy Information Administration (EIA) (indexed site)

    240,111 238,619 239,629 237,004 237,631 238,998 1990-2016 PADD 1 68,276 67,636 68,378 69,664 68,624 72,465 1990-2016 New England 5,173 5,296 4,641 4,999 4,697 4,841 1990-2016 ...

  18. Imports of Total Motor Gasoline

    Gasoline and Diesel Fuel Update

    898 946 779 691 933 921 1982-2016 East Coast (PADD 1) 875 862 708 611 864 862 2004-2016 Midwest (PADD 2) 5 6 10 1 3 6 2004-2016 Gulf Coast (PADD 3) 0 57 35 69 38 37 2004-2016 Rocky ...

  19. Finished Motor Gasoline Net Production

    Gasoline and Diesel Fuel Update

    Adjustment Kerosene-Type Jet Fuel Kerosene-Type Jet, Commercial Kerosene-Type Jet, Military Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil ...

  20. MTBE, Oxygenates, and Motor Gasoline

    Gasoline and Diesel Fuel Update

    in water and does not biodegrade easily, there have been increasing detections of MTBE in ground waters and reservoirs. Because of the occurrence of MTBE in water supplies, ...

  1. Nanocatalysts for Diesel Engine Emissions Remediation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nanocatalysts for Diesel Engine Emissions Remediation Zeolite-Based Nanocatalysts Offer Enhanced Catalyst Performance and Durability Each year, the United States consumes a large volume of petroleum fuel, with more than half of crude oil imported from foreign sources. Diesel engines, which are approximately 30 percent more fuel effcient than gasoline engines, provide one pathway for reducing dependence on imported oil and improving overall energy effciency. The use of improved diesel engines can

  2. Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress

    SciTech Connect (OSTI)

    Curran, Scott; Hanson, Reed M; Wagner, Robert M

    2012-01-01

    This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.

  3. Beyond Diesel - Renewable Diesel

    SciTech Connect (OSTI)

    Not Available

    2002-07-01

    CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

  4. Boston Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    310 2.312 2.313 2.312 2.310 2.288 2003-2016 All Grades - Reformulated Areas 2.310 2.312 2.313 2.312 2.310 2.288 2003-2016 Regular 2.210 2.208 2.205 2.203 2.198 2.171 2003-2016 Reformulated Areas 2.210 2.208 2.205 2.203 2.198 2.171 2003-2016 Midgrade 2.424 2.434 2.452 2.450 2.451 2.440 2003-2016 Reformulated Areas 2.424 2.434 2.452 2.450 2.451 2.440 2003-2016 Premium 2.639 2.654 2.660 2.665 2.668 2.659 2003-2016 Reformulated Areas 2.639 2.654 2.660 2.665 2.668 2.659

  5. Chicago Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    43 2.416 2.399 2.298 2.372 2.267 2000-2016 All Grades - Reformulated Areas 2.543 2.416 2.399 2.298 2.372 2.267 2000-2016 Regular 2.420 2.291 2.274 2.172 2.246 2.140 2000-2016 Reformulated Areas 2.420 2.291 2.274 2.172 2.246 2.140 2000-2016 Midgrade 2.745 2.623 2.605 2.507 2.580 2.482 2000-2016 Reformulated Areas 2.745 2.623 2.605 2.507 2.580 2.482 2000-2016 Premium 3.074 2.958 2.946 2.848 2.924 2.820 2000-2016 Reformulated Areas 3.074 2.958 2.946 2.848 2.924 2.820 2000

  6. Cleveland Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    396 2.273 2.156 2.155 2.211 2.147 2003-2016 All Grades - Conventional Areas 2.396 2.273 2.156 2.155 2.211 2.147 2003-2016 Regular 2.265 2.144 2.023 2.019 2.074 2.015 2003-2016 Conventional Areas 2.265 2.144 2.023 2.019 2.074 2.015 2003-2016 Midgrade 2.564 2.427 2.329 2.336 2.391 2.323 2003-2016 Conventional Areas 2.564 2.427 2.329 2.336 2.391 2.323 2003-2016 Premium 2.875 2.754 2.641 2.647 2.711 2.623 2003-2016 Conventional Areas 2.875 2.754 2.641 2.647 2.711 2.623 2003

  7. Colorado Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    266 2.269 2.265 2.261 2.226 2.186 2000-2016 All Grades - Conventional Areas 2.266 2.269 2.265 2.261 2.226 2.186 2000-2016 Regular 2.160 2.164 2.160 2.155 2.119 2.079 2000-2016 Conventional Areas 2.160 2.164 2.160 2.155 2.119 2.079 2000-2016 Midgrade 2.427 2.429 2.425 2.422 2.387 2.348 2000-2016 Conventional Areas 2.427 2.429 2.425 2.422 2.387 2.348 2000-2016 Premium 2.688 2.686 2.683 2.684 2.652 2.611 2000-2016 Conventional Areas 2.688 2.686 2.683 2.684 2.652 2.611 2000

  8. Denver Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    247 2.254 2.254 2.249 2.220 2.182 2000-2016 All Grades - Conventional Areas 2.247 2.254 2.254 2.249 2.220 2.182 2000-2016 Regular 2.133 2.141 2.141 2.136 2.107 2.070 2000-2016 Conventional Areas 2.133 2.141 2.141 2.136 2.107 2.070 2000-2016 Midgrade 2.423 2.431 2.428 2.422 2.392 2.354 2000-2016 Conventional Areas 2.423 2.431 2.428 2.422 2.392 2.354 2000-2016 Premium 2.686 2.695 2.691 2.689 2.661 2.621 2000-2016 Conventional Areas 2.686 2.695 2.691 2.689 2.661 2.621 2000

  9. Houston Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    112 2.125 2.135 2.107 2.083 2.065 2000-2016 All Grades - Reformulated Areas 2.112 2.125 2.135 2.107 2.083 2.065 2000-2016 Regular 1.981 1.996 2.003 1.969 1.952 1.933 2000-2016 Reformulated Areas 1.981 1.996 2.003 1.969 1.952 1.933 2000-2016 Midgrade 2.276 2.285 2.298 2.301 2.242 2.224 2000-2016 Reformulated Areas 2.276 2.285 2.298 2.301 2.242 2.224 2000-2016 Premium 2.547 2.550 2.569 2.552 2.517 2.503 2000-2016 Reformulated Areas 2.547 2.550 2.569 2.552 2.517 2.503

  10. Los Angeles Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    901 2.916 2.898 2.968 2.949 2.894 2000-2016 All Grades - Reformulated Areas 2.901 2.916 2.898 2.968 2.949 2.894 2000-2016 Regular 2.847 2.862 2.845 2.914 2.895 2.839 2000-2016 Reformulated Areas 2.847 2.862 2.845 2.914 2.895 2.839 2000-2016 Midgrade 2.960 2.975 2.958 3.028 3.009 2.958 2000-2016 Reformulated Areas 2.960 2.975 2.958 3.028 3.009 2.958 2000-2016 Premium 3.071 3.086 3.067 3.137 3.119 3.067 2000-2016 Reformulated Areas 3.071 3.086 3.067 3.137 3.119 3.067

  11. Massachusetts Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    3 2.310 2.312 2.314 2.313 2.293 2003-2016 All Grades - Reformulated Areas 2.313 2.310 2.312 2.314 2.313 2.293 2003-2016 Regular 2.213 2.204 2.202 2.202 2.201 2.176 2003-2016 Reformulated Areas 2.213 2.204 2.202 2.202 2.201 2.176 2003-2016 Midgrade 2.420 2.429 2.447 2.444 2.446 2.437 2003-2016 Reformulated Areas 2.420 2.429 2.447 2.444 2.446 2.437 2003-2016 Premium 2.624 2.635 2.644 2.653 2.656 2.644 2003-2016 Reformulated Areas 2.624 2.635 2.644 2.653 2.656 2.644

  12. Miami Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    85 2.597 2.588 2.575 2.559 2.542 2003-2016 All Grades - Conventional Areas 2.585 2.597 2.588 2.575 2.559 2.542 2003-2016 Regular 2.423 2.439 2.429 2.414 2.397 2.382 2003-2016 Conventional Areas 2.423 2.439 2.429 2.414 2.397 2.382 2003-2016 Midgrade 2.710 2.717 2.712 2.705 2.691 2.677 2003-2016 Conventional Areas 2.710 2.717 2.712 2.705 2.691 2.677 2003-2016 Premium 3.020 3.020 3.015 3.004 2.987 2.967 2003-2016 Conventional Areas 3.020 3.020 3.015 3.004 2.987 2.967 2003

  13. Minnesota Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    238 2.218 2.187 2.151 2.112 2.053 2000-2016 All Grades - Conventional Areas 2.238 2.218 2.187 2.151 2.112 2.053 2000-2016 Regular 2.173 2.155 2.124 2.088 2.048 1.987 2000-2016 Conventional Areas 2.173 2.155 2.124 2.088 2.048 1.987 2000-2016 Midgrade 2.318 2.298 2.266 2.231 2.193 2.136 2000-2016 Conventional Areas 2.318 2.298 2.266 2.231 2.193 2.136 2000-2016 Premium 2.563 2.532 2.504 2.470 2.431 2.388 2000-2016 Conventional Areas 2.563 2.532 2.504 2.470 2.431 2.388

  14. New York Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    430 2.435 2.464 2.466 2.496 2.473 2000-2016 All Grades - Conventional Areas 2.386 2.391 2.415 2.422 2.455 2.420 2000-2016 All Grades - Reformulated Areas 2.467 2.474 2.506 2.503 2.531 2.518 2000-2016 Regular 2.297 2.302 2.332 2.334 2.365 2.338 2000-2016 Conventional Areas 2.276 2.279 2.303 2.310 2.347 2.304 2000-2016 Reformulated Areas 2.317 2.324 2.359 2.356 2.382 2.369 2000-2016 Midgrade 2.572 2.581 2.607 2.606 2.633 2.621 2000-2016 Conventional Areas 2.499 2.507 2.536 2.543 2.559 2.546

  15. Ohio Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    392 2.258 2.147 2.157 2.214 2.107 2003-2016 All Grades - Conventional Areas 2.392 2.258 2.147 2.157 2.214 2.107 2003-2016 Regular 2.275 2.140 2.029 2.037 2.095 1.986 2003-2016 Conventional Areas 2.275 2.140 2.029 2.037 2.095 1.986 2003-2016 Midgrade 2.543 2.404 2.297 2.307 2.365 2.265 2003-2016 Conventional Areas 2.543 2.404 2.297 2.307 2.365 2.265 2003-2016 Premium 2.822 2.690 2.581 2.595 2.651 2.547 2003-2016 Conventional Areas 2.822 2.690 2.581 2.595 2.651 2.547 2003

  16. PADD 5 Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    740 2.744 2.745 2.763 2.753 2.712 1993-2016 All Grades - Conventional Areas 2.594 2.599 2.618 2.623 2.619 2.598 1995-2016 All Grades - Reformulated Areas 2.799 2.804 2.797 2.820 2.808 2.758 1995-2016 Regular 2.675 2.679 2.680 2.697 2.686 2.645 1992-2016 Conventional Areas 2.529 2.534 2.552 2.557 2.553 2.531 1992-2016 Reformulated Areas 2.738 2.742 2.735 2.758 2.745 2.695 1994-2016 Midgrade 2.853 2.857 2.857 2.878 2.867 2.827 1994-2016 Conventional Areas 2.737 2.740 2.762 2.765 2.761 2.742

  17. San Francisco Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    885 2.877 2.877 2.861 2.845 2.780 2000-2016 All Grades - Reformulated Areas 2.885 2.877 2.877 2.861 2.845 2.780 2000-2016 Regular 2.823 2.815 2.815 2.798 2.782 2.719 2000-2016 Reformulated Areas 2.823 2.815 2.815 2.798 2.782 2.719 2000-2016 Midgrade 2.984 2.975 2.976 2.962 2.941 2.871 2000-2016 Reformulated Areas 2.984 2.975 2.976 2.962 2.941 2.871 2000-2016 Premium 3.085 3.077 3.078 3.065 3.049 2.981 2000-2016 Reformulated Areas 3.085 3.077 3.078 3.065 3.049 2.981

  18. Seattle Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    743 2.753 2.758 2.754 2.764 2.716 2003-2016 All Grades - Conventional Areas 2.743 2.753 2.758 2.754 2.764 2.716 2003-2016 Regular 2.686 2.698 2.704 2.699 2.708 2.661 2003-2016 Conventional Areas 2.686 2.698 2.704 2.699 2.708 2.661 2003-2016 Midgrade 2.859 2.867 2.870 2.870 2.880 2.836 2003-2016 Conventional Areas 2.859 2.867 2.870 2.870 2.880 2.836 2003-2016 Premium 2.975 2.978 2.983 2.984 2.995 2.942 2003-2016 Conventional Areas 2.975 2.978 2.983 2.984 2.995 2.942

  19. Texas Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    117 2.119 2.153 2.146 2.110 2.072 2000-2016 All Grades - Conventional Areas 2.136 2.140 2.148 2.131 2.099 2.062 2000-2016 All Grades - Reformulated Areas 2.090 2.088 2.161 2.170 2.125 2.088 2000-2016 Regular 2.010 2.015 2.050 2.043 2.006 1.969 2000-2016 Conventional Areas 2.034 2.040 2.050 2.032 2.000 1.964 2000-2016 Reformulated Areas 1.974 1.977 2.052 2.059 2.015 1.976 2000-2016 Midgrade 2.277 2.277 2.307 2.311 2.269 2.227 2000-2016 Conventional Areas 2.300 2.299 2.304 2.292 2.262 2.216

  20. Washington Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    735 2.733 2.762 2.760 2.749 2.711 2003-2016 All Grades - Conventional Areas 2.735 2.733 2.762 2.760 2.749 2.711 2003-2016 Regular 2.673 2.670 2.698 2.696 2.685 2.646 2003-2016 Conventional Areas 2.673 2.670 2.698 2.696 2.685 2.646 2003-2016 Midgrade 2.857 2.855 2.884 2.883 2.870 2.837 2003-2016 Conventional Areas 2.857 2.855 2.884 2.883 2.870 2.837 2003-2016 Premium 2.996 2.992 3.028 3.027 3.016 2.980 2003-2016 Conventional Areas 2.996 2.992 3.028 3.027 3.016 2.980 2003

  1. Florida Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    340 2.308 2.281 2.268 2.271 2.315 2003-2016 All Grades - Conventional Areas 2.340 2.308 2.281 2.268 2.271 2.315 2003-2016 Regular 2.189 2.156 2.124 2.111 2.115 2.160 2003-2016 ...

  2. DOE's Gasoline/Diesel PM Split Study

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Eric M. Fujita, Barbara Zielinska, William P. Arnott, David E. Campbell, John W. Walker, Hans Moosmller, Desert Research Institute, Reno, NV Jamie Schauer, Charles Christensen, ...

  3. ,"San Francisco Gasoline and Diesel Retail Prices"

    U.S. Energy Information Administration (EIA) (indexed site)

    ...132016" ,"Excel File Name:","petprignddcusy05sfw.xls" ,"Available from Web Page:","http:www.eia.govdnavpetpetprignddcusy05sfw.htm" ,"Source:","Energy Information ...

  4. ,"Los Angeles Gasoline and Diesel Retail Prices"

    U.S. Energy Information Administration (EIA) (indexed site)

    ...132016" ,"Excel File Name:","petprignddcusy05law.xls" ,"Available from Web Page:","http:www.eia.govdnavpetpetprignddcusy05law.htm" ,"Source:","Energy Information ...

  5. Diesel engine fuel systems

    SciTech Connect (OSTI)

    1994-12-31

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  6. Diesel engine fuel systems

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  7. Fact #906: January 4, 2016 VMT and the Price of Gasoline Typically...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fact 859 February 9, 2015 Excess Supply is the Most Recent Event to Affect Crude Oil Prices - Dataset Fact 889: September 7, 2015 Average Diesel Price Lower than Gasoline for ...

  8. FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... DOE U.S. Department of Energy DPF Diesel particulate filter gHEV Gasoline hybrid electric vehicle GVWR Gross vehicle weight rating HP Horsepower HVAC Heating, ventilation and ...

  9. Lean Gasoline System Development for Fuel Efficient Small Car | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace063_smith_2011_o.pdf (1.81 MB) More Documents & Publications Lean Gasoline System Development for Fuel Efficient Small Car Lean Gasoline System Development for Fuel Efficient Small Car Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines, Self-Diagnosing

  10. Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development

    Energy.gov [DOE]

    Presentation given by Ford Motor Companyh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline...

  11. Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid Transit Buses

    SciTech Connect (OSTI)

    Lammert, M.

    2008-06-01

    This report focuses on a gasoline-electric hybrid transit bus propulsion system. The propulsion system is an alternative to standard diesel buses and allows for reductions in emissions (usually focused on reductions of particulate matter and oxides of nitrogen) and petroleum use. Gasoline propulsion is an alternative to diesel fuel and hybrid propulsion allows for increased fuel economy, which ultimately results in reduced petroleum use.

  12. Reformulated gasoline quality issues

    SciTech Connect (OSTI)

    Gonzalez, R.G.; Felch, D.E.; Edgar, M.D.

    1995-11-01

    One year ago, a panel of industry experts were interviewed in the November/December 1994 issue of Fuel Reformulation (Vol. 4, No. 6). With the focus then and now on refinery investments, the panelists were asked to forecast which refining processes would grow in importance. It is apparent from their response, and from other articles and discussions throughout the year, that hydroprocessing and catalytic conversion processes are synergistic in the overall refinery design, with flexibility and process objectives varying on a unit-by-unit case. To an extent, future refinery investments in downstream petrochemicals, such as for paraxylene production, are based on available catalytic reforming feedstock. Just a importantly, hydroprocessing units (hydrotreating, hydrocracking) needed for clean fuel production (gasoline, diesel, aviation fuel), are heavily dependent on hydrogen production from the catalytic reformer. Catalytic reforming`s significant influence in the refinery hydrogen balance, as well as its status as a significant naphtha conversion route to higher-quality fuels, make this unit a high-priority issue for engineers and planners striving for flexibility.

  13. Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration

    SciTech Connect (OSTI)

    Choi, Jae-Soon; Prikhodko, Vitaly Y; Partridge Jr, William P; Parks, II, James E; Norman, Kevin M; Huff, Shean P; Chambon, Paul H; Thomas, John F

    2010-01-01

    Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

  14. EcoMotors | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search Name: EcoMotors Place: California Zip: 94952 Product: EcoMotors is a family-controlled developer of green cars, Diesels and Hybrids. References: EcoMotors1 This...

  15. FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation: 12-Month Report

    SciTech Connect (OSTI)

    Barnitt, R.

    2011-01-01

    This report summarizes the data obtained in a 12-month comparison of three gasoline hybrid electric delivery vehicles with three comparable diesel vehicles. The data show that there was no statistical difference between operating cost per mile of the two groups of vehicles. As expected, tailpipe emissions were considerably lower across all drive cycles for the gHEV than for the diesel vehicle.

  16. Gasoline Biodesulfurization Fact Sheet

    Energy.gov [DOE]

    This petroleum industry fact sheet describes how biodesulfurization can yield lower sulfur gasoline at lower production costs.

  17. Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine

    SciTech Connect (OSTI)

    Dempsey, Adam B.; Curran, Scott; Reitz, Rolf D.

    2015-04-14

    The focus of the present paper was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over a variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition. The experiments were conducted on a modern four cylinder light-duty diesel engine that was modified with a port-fuel injection system while maintaining the stock direct injection fuel system. The pistons were modified for highly premixed operation and feature an open shallow bowl design. The results indicate that the authority to control the combustion phasing through the fuel delivery strategy (e.g., direct injection timing or premixed gasoline percentage) is not a strong function of the EHN concentration in the direct-injected fuel. It was also observed that NOx emissions are a strong function of the global EHN concentration in-cylinder and the combustion phasing. Finally, in general, NOx emissions are significantly elevated for gasoline/gasoline+EHN operation compared with gasoline/diesel RCCI operation at a given operating condition.

  18. Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine

    DOE PAGES-Beta [OSTI]

    Dempsey, Adam B.; Curran, Scott; Reitz, Rolf D.

    2015-04-14

    The focus of the present paper was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over amore » variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition. The experiments were conducted on a modern four cylinder light-duty diesel engine that was modified with a port-fuel injection system while maintaining the stock direct injection fuel system. The pistons were modified for highly premixed operation and feature an open shallow bowl design. The results indicate that the authority to control the combustion phasing through the fuel delivery strategy (e.g., direct injection timing or premixed gasoline percentage) is not a strong function of the EHN concentration in the direct-injected fuel. It was also observed that NOx emissions are a strong function of the global EHN concentration in-cylinder and the combustion phasing. Finally, in general, NOx emissions are significantly elevated for gasoline/gasoline+EHN operation compared with gasoline/diesel RCCI operation at a given operating condition.« less

  19. Future Potential of Hybrid and Diesel Powertrains in the U.S...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Market Future ... with HyTrans Fact 869: April 20, 2015 Gasoline Direct Injection Captures 38% Market ...

  20. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine

    Energy.gov [DOE]

    Discusses plan, baselining, and modeling, for new light truck 4-cylinder turbocharged diesel meeting Tier 2, Bin 2 emissions and 40 percent better fuel economy than the V-8 gasoline engine it will replace

  1. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine

    Energy.gov [DOE]

    Development of a new light truck, in-line 4-cylinder turbocharged diesel engine that will meet Tier 2, Bin 2 emissions and at least a 40% fuel economy benefit over the V-8 gasoline engine it could replace

  2. The potential for low petroleum gasoline

    SciTech Connect (OSTI)

    Hadder, G.R.; Webb, G.M.; Clauson, M.

    1996-06-01

    The Energy Policy Act requires the Secretary of Energy to determine the feasibility of producing sufficient replacement fuels to replace at least 30 percent of the projected consumption of motor fuels by light duty vehicles in the year 2010. The Act also requires the Secretary to determine the greenhouse gas implications of the use of replacement fuels. A replacement fuel is a non-petroleum portion of gasoline, including certain alcohols, ethers, and other components. The Oak Ridge National Laboratory Refinery Yield Model has been used to study the cost and refinery impacts for production of {open_quotes}low petroleum{close_quotes} gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and a major contributor to cost increase is investment in processes to produce and etherify light olefins. High oxygenation can also increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum components might be produced with cost increases of 23 to 37 cents per gallon of gasoline, and with greenhouse gas emissions changes between a 3 percent increase and a 16 percent decrease. Crude oil reduction, with decreased dependence on foreign sources, is a major objective of the low petroleum gasoline program. For year-round gasoline with near-30 percent non-petroleum components, crude oil use is reduced by 10 to 12 percent, at a cost $48 to $89 per barrel. Depending upon resolution of uncertainties about extrapolation of the Environmental Protection Agency Complex Model for pollutant emissions, availability of raw materials and other issues, costs could be lower or higher.

  3. Alternatives to conventional diesel fuel-some potential implications of California's TAC decision on diesel particulate.

    SciTech Connect (OSTI)

    Eberhardt, J. J.; Rote, D. M.; Saricks, C. L.; Stodolsky, F.

    1999-08-10

    Limitations on the use of petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to provisions of the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies. (1) Increased penetration of natural gas and greater gasoline use in the transportation fuels market, to the extent that some compression-ignition (CI) applications revert to spark-ignition (SI) engines. (2) New specifications requiring diesel fuel reformulation based on exhaust products of individual diesel fuel constituents. Each of these alternatives results in some degree of (conventional) diesel displacement. In the first case, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles, and gasoline demand in California increases by 32.2 million liters per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter equivalents per day, about 7 percent above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Economic implications of vehicle and engine replacement were not evaluated.

  4. Blender Net Production of Finished Motor Gasoline

    Gasoline and Diesel Fuel Update

    Residual Fuel Greater Than 1.00 Percent Sulfur Special Naphthas Lubricants Asphalt and Road Oil Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand ...

  5. Motor Gasoline Sales to End Users Prices

    Gasoline and Diesel Fuel Update

    316 - - - - - 1984-2015 East Coast (PADD 1) 2.298 - - - - - 1984-2015 New England (PADD 1A) 2.375 - - - - - 1984-2015 Connecticut 2.415 - - - - - 1984-2015 Maine 2.360 - - - - - ...

  6. Summer 2002 Motor Gasoline Outlook2.doc

    Gasoline and Diesel Fuel Update

    ,039,093 2,035,511 2,026,773 2,035,819 2,028,853 2,035,945

    (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Type Area Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History U.S. 1.43 1.39 1.43 1.47 1.43 1.44 1985-2016 PADD 1 0.83 0.88 0.90 0.86 0.89 1.10 1985-2016 East Coast 0.76 0.81 0.84 0.79 0.81 1.04 1985-2016 Appalachian No. 1 1.51 1.74 1.58

  7. ,"U.S. Motor Gasoline Prices"

    U.S. Energy Information Administration (EIA) (indexed site)

    ,"Excel File Name:","petpriallmgcnusepm0dpgalm.xls" ,"Available from Web Page:","http:www.eia.govdnavpetpetpriallmgcnusepm0dpgalm.htm" ,"Source:","Energy ...

  8. Motor Gasoline Sales Through Retail Outlets Prices

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) Montana Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 13 7 2010's 13 13 16 19 42 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production Montana Shale Gas Proved Reserves, Reserves Changes, and Production Shale

  9. Prime Supplier Sales Volumes of Motor Gasoline

    Gasoline and Diesel Fuel Update

    365,247.6 354,951.9 347,234.5 348,657.3 346,707.6 361,056.3 1983-2015 East Coast (PADD 1) 128,893.5 125,252.4 119,021.3 117,031.7 115,225.0 121,544.4 1983-2015 New England (PADD 1A) 17,270.6 17,000.4 16,279.8 16,067.1 14,580.0 17,023.4 1983-2015 Connecticut 4,425.7 4,305.0 3,921.4 3,902.6 3,216.1 4,357.3 1983-2015 Maine 1,888.9 1,881.7 1,852.8 2,015.0 1,841.3 1,951.0 1983-2015 Massachusetts 6,997.2 6,993.4 6,821.5 6,276.4 5,934.6 6,708.5 1983-2015 New Hampshire 1,610.0 1,417.5 1,448.0 1,639.4

  10. Motor Gasoline Sales to End Users Prices

    Gasoline and Diesel Fuel Update

    Connecticut - - - - - - 1983-2016 Maine - - - - - - 1983-2016 Massachusetts - - - - - - 1983-2016 New Hampshire - - - - - - 1983-2016 Rhode Island - - - - - - 1983-2016 Vermont - - ...

  11. Prime Supplier Sales Volumes of Motor Gasoline

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Maine 1,771.2 1,785.3 1,763.6 1,857.0 1,960.6 2,085.4 1983-2016 Massachusetts 6,563.6 6,678.8 6,871.9 7,083.4 7,011.9 7,487.9 1983-2016 New Hampshire 1,531.1 1,572.9 1,517.3 ...

  12. Stocks of Motor Gasoline Blending Components

    Gasoline and Diesel Fuel Update

    194,259 203,187 212,640 217,489 220,765 226,935 1983-2016 PADD 1 51,306 53,633 57,200 56,763 58,920 62,421 2004-2016 PADD 2 43,744 46,809 50,163 51,441 51,859 54,773 2004-2016 PADD...

  13. Northeast Gasoline Supply Reserve

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Northeast region of the U.S. is particularly vulnerable to gasoline disruptions as a result of hurricanes and other natural events. Hurricane Sandy in 2012 caused widespread issues related to...

  14. Light-Duty Diesel Vehicles: Market Issues and Potential Energy and Emissions Impacts

    Reports and Publications

    2009-01-01

    This report responds to a request from Senator Jeff Sessions for an analysis of the environmental and energy efficiency attributes of light-duty diesel vehicles. Specifically, the inquiry asked for a comparison of the characteristics of diesel-fueled vehicles with those of similar gasoline-fueled, E85-fueled, and hybrid vehicles, as well as a discussion of any technical, economic, regulatory, or other obstacles to increasing the use of diesel-fueled vehicles in the United States.

  15. Fact #906: January 4, 2016 VMT and the Price of Gasoline Typically Move in

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Opposition | Department of Energy 6: January 4, 2016 VMT and the Price of Gasoline Typically Move in Opposition Fact #906: January 4, 2016 VMT and the Price of Gasoline Typically Move in Opposition SUBSCRIBE to the Fact of the Week The prices of gasoline and diesel fuel affect the transportation sector in many ways. For example, fuel prices can impact the number of miles driven and affect the choices consumers make when purchasing vehicles. The graph below shows a three-month moving average

  16. Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5 DOE and Ford Motor Company Advanced CIDI Emission Control System Development Program ...

  17. Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Ford Motor Company 2004deerhammerle.pdf (444.2 KB) More Documents & Publications Urea SCR and DPF System for ...

  18. The contribution of lubricant to the formation of particulate matter with reactivity controlled compression ignition in light-duty diesel engines

    DOE PAGES-Beta [OSTI]

    Storey, John Morse; Curran, Scott; Dempsey, Adam B.; Lewis, Sr., Samuel Arthur; Reitz, Rolf; Walker, N. Ryan; Wright, Chris

    2014-12-25

    Reactivity controlled compression ignition (RCCI) has been shown in single- and multi-cylinder engine research to achieve high thermal efficiencies with ultra-low NOX and soot emissions. The nature of the particulate matter (PM) produced by RCCI operation has been shown in recent research to be different than that of conventional diesel combustion and even diesel low-temperature combustion. Previous research has shown that the PM from RCCI operation contains a large amount of organic material that is volatile and semi-volatile. However, it is unclear if the organic compounds are stemming from fuel or lubricant oil. The PM emissions from dual-fuel RCCI weremore » investigated in this study using two engine platforms, with an emphasis on the potential contribution of lubricant. Both engine platforms used the same base General Motors (GM) 1.9-L diesel engine geometry. The first study was conducted on a single-cylinder research engine with primary reference fuels (PRFs), n-heptane, and iso-octane. The second study was conducted on a four-cylinder GM 1.9-L ZDTH engine which was modified with a port fuel injection (PFI) system while maintaining the stock direct injection fuel system. Multi-cylinder RCCI experiments were run with PFI gasoline and direct injection of 2-ethylhexyl nitrate (EHN) mixed with gasoline at 5 % EHN by volume. In addition, comparison cases of conventional diesel combustion (CDC) were performed. Particulate size distributions were measured, and PM filter samples were collected for analysis of lube oil components. Triplicate PM filter samples (i.e., three individual filter samples) for both gas chromatography-mass spectroscopy (GC-MS; organic) analysis and X-ray fluorescence (XRF; metals) were obtained at each operating point and queued for analysis of both organic species and lubricant metals. Here, the results give a clear indication that lubricants do not contribute significantly to the formation of RCCI PM.« less

  19. The contribution of lubricant to the formation of particulate matter with reactivity controlled compression ignition in light-duty diesel engines

    SciTech Connect (OSTI)

    Storey, John Morse; Curran, Scott; Dempsey, Adam B.; Lewis, Sr., Samuel Arthur; Reitz, Rolf; Walker, N. Ryan; Wright, Chris

    2014-12-25

    Reactivity controlled compression ignition (RCCI) has been shown in single- and multi-cylinder engine research to achieve high thermal efficiencies with ultra-low NOX and soot emissions. The nature of the particulate matter (PM) produced by RCCI operation has been shown in recent research to be different than that of conventional diesel combustion and even diesel low-temperature combustion. Previous research has shown that the PM from RCCI operation contains a large amount of organic material that is volatile and semi-volatile. However, it is unclear if the organic compounds are stemming from fuel or lubricant oil. The PM emissions from dual-fuel RCCI were investigated in this study using two engine platforms, with an emphasis on the potential contribution of lubricant. Both engine platforms used the same base General Motors (GM) 1.9-L diesel engine geometry. The first study was conducted on a single-cylinder research engine with primary reference fuels (PRFs), n-heptane, and iso-octane. The second study was conducted on a four-cylinder GM 1.9-L ZDTH engine which was modified with a port fuel injection (PFI) system while maintaining the stock direct injection fuel system. Multi-cylinder RCCI experiments were run with PFI gasoline and direct injection of 2-ethylhexyl nitrate (EHN) mixed with gasoline at 5 % EHN by volume. In addition, comparison cases of conventional diesel combustion (CDC) were performed. Particulate size distributions were measured, and PM filter samples were collected for analysis of lube oil components. Triplicate PM filter samples (i.e., three individual filter samples) for both gas chromatography-mass spectroscopy (GC-MS; organic) analysis and X-ray fluorescence (XRF; metals) were obtained at each operating point and queued for analysis of both organic species and lubricant metals. Here, the results give a clear indication that lubricants do not contribute significantly to the formation of RCCI PM.

  20. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Advanced Gasoline Turbocharged Direct Injection (GTDI) ...

  1. GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY

    SciTech Connect (OSTI)

    Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

    2003-08-24

    The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple

  2. Chemistry Impacts in Gasoline HCCI

    SciTech Connect (OSTI)

    Szybist, James P; Bunting, Bruce G

    2006-09-01

    The use of homogeneous charge compression ignition (HCCI) combustion in internal combustion engines is of interest because it has the potential to produce low oxides of nitrogen (NOx) and particulate matter (PM) emissions while providing diesel-like efficiency. In HCCI combustion, a premixed charge of fuel and air auto-ignites at multiple points in the cylinder near top dead center (TDC), resulting in rapid combustion with very little flame propagation. In order to prevent excessive knocking during HCCI combustion, it must take place in a dilute environment, resulting from either operating fuel lean or providing high levels of either internal or external exhaust gas recirculation (EGR). Operating the engine in a dilute environment can substantially reduce the pumping losses, thus providing the main efficiency advantage compared to spark-ignition (SI) engines. Low NOx and PM emissions have been reported by virtually all researchers for operation under HCCI conditions. The precise emissions can vary depending on how well mixed the intake charge is, the fuel used, and the phasing of the HCCI combustion event; but it is common for there to be no measurable PM emissions and NOx emissions <10 ppm. Much of the early HCCI work was done on 2-stroke engines, and in these studies the CO and hydrocarbon emissions were reported to decrease [1]. However, in modern 4-stroke engines, the CO and hydrocarbon emissions from HCCI usually represent a marked increase compared with conventional SI combustion. This literature review does not report on HCCI emissions because the trends mentioned above are well established in the literature. The main focus of this literature review is the auto-ignition performance of gasoline-type fuels. It follows that this discussion relies heavily on the extensive information available about gasoline auto-ignition from studying knock in SI engines. Section 2 discusses hydrocarbon auto-ignition, the octane number scale, the chemistry behind it, its

  3. Active Diesel Emission Control Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    2004 Diesel Engine Emissions Reduction (DEER) Conferencen Presentation: RYPOS Active Diesel Emission Control Systems

  4. Reformulated diesel fuel

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  5. Impact of California Phase 2 reformulated gasoline on atmospheric reactivity of exhaust and evaporative emissions

    SciTech Connect (OSTI)

    Kirchstetter, T.W.; Singer, B.C.; Harley, R.A.; Kendall, G.R.; Traverse, M.

    1997-12-31

    Phase 2 of California`s reformulated gasoline (RFG) program took effect statewide in the first half of 1996. Changes to gasoline composition required by Phase 2 specifications included: lower vapor pressure; lower olefin, aromatic, benzene, and sulfur content; lower T50 and T90; and a minimum oxygen content. In this paper, impacts of Phase 2 RFG on the atmospheric reactivity of motor vehicle exhaust and evaporative emissions are described. Volatile organic compounds in motor vehicle exhaust were measured at the Caldecott tunnel in summer 1995 and 1996. Aggregate emissions of greater than 8000 vehicles were measured each day. Regular and premium grade gasoline samples were collected from service stations in Berkeley concurrently with tunnel measurements both summers. Liquid gasoline samples and their headspace vapors were analyzed to determine detailed chemical composition. Normalized reactivity was calculated for exhaust and evaporative emissions by applying maximum incremental reactivity values to the detailed speciation profiles. Results indicate that the composition of gasoline in 1996 differed markedly from that of 1995. Changes in liquid gasoline composition led to corresponding changes in the speciation of vehicle exhaust and of gasoline headspace vapors. Benzene concentration in liquid gasoline decreased from 2.0 to 0.6 wt%, which contributed to a 70 and 37% reduction in benzene weight fraction in headspace vapors and vehicle exhaust, respectively. Addition of MTBE and reduction of olefins and aromatics in gasoline led to significant reductions in the atmospheric reactivity of unburned gasoline and gasoline headspace vapors. The normalized reactivity of liquid gasoline and headspace vapors decreased by 23 and 19%, respectively, between 1995 and 1996. The normalized reactivity of non-methane organic compounds in vehicle exhaust decreased by about 8%, but the uncertainty in this change was large.

  6. Household Vehicles Energy Use: Latest Data & Trends

    U.S. Energy Information Administration (EIA) (indexed site)

    fuel, diesel motor fuel, electric, and natural gas, excluding propane because NHTSA's CAFE program does not track these vehicles. See Gasoline, Gasohol, Unleaded Gasoline, Leaded...

  7. Fact #650: November 22, 2010 Diesel Fuel Prices hit a Two-Year High |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 50: November 22, 2010 Diesel Fuel Prices hit a Two-Year High Fact #650: November 22, 2010 Diesel Fuel Prices hit a Two-Year High According to the Energy Information Administration's weekly fuel price data, the price of highway diesel fuel on the week of November 17, 2010, reached a 2-year high of $3.18 per gallon. Back in 2008, the prices for gasoline and diesel fuel rose to record levels in mid-summer, but plummeted by about 50% before the end of the year. Though fuel

  8. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC Educating Consumers: New Content on Diesel ...

  9. Diesel Emission Control Review

    Energy.gov [DOE]

    Reviews regulatory requirements and technology approaches for diesel emission control for heavy and light duty applications

  10. California Gasoline Price Study, 2003

    Reports and Publications

    2003-01-01

    This is the final report to Congressman Ose describing the factors driving California's spring 2003 gasoline price spike and the subsequent price increases in June and August.

  11. Central Atlantic (PADD 1B) Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    95 2.402 2.413 2.410 2.473 2.458 1993-2016 All Grades - Conventional Areas 2.453 2.457 2.482 2.489 2.506 2.488 1994-2016 All Grades - Reformulated Areas 2.359 2.368 2.371 2.361 2.453 2.439 1994-2016 Regular 2.256 2.263 2.274 2.271 2.335 2.321 1993-2016 Conventional Areas 2.332 2.335 2.361 2.368 2.387 2.365 1993-2016 Reformulated Areas 2.208 2.217 2.219 2.209 2.302 2.293 1994-2016 Midgrade 2.540 2.547 2.556 2.553 2.609 2.596 1994-2016 Conventional Areas 2.559 2.563 2.590 2.597 2.606 2.598

  12. East Coast (PADD 1) Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    72 2.380 2.374 2.361 2.384 2.362 1993-2016 All Grades - Conventional Areas 2.385 2.395 2.385 2.370 2.373 2.349 1994-2016 All Grades - Reformulated Areas 2.349 2.354 2.356 2.347 2.403 2.385 1994-2016 Regular 2.229 2.237 2.232 2.219 2.240 2.217 1992-2016 Conventional Areas 2.241 2.251 2.243 2.227 2.228 2.201 1992-2016 Reformulated Areas 2.211 2.215 2.215 2.207 2.261 2.243 1994-2016 Midgrade 2.509 2.516 2.506 2.495 2.517 2.497 1994-2016 Conventional Areas 2.510 2.518 2.500 2.488 2.494 2.473

  13. Gulf Coast (PADD 3) Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    152 2.153 2.165 2.153 2.127 2.087 1993-2016 All Grades - Conventional Areas 2.170 2.173 2.166 2.148 2.127 2.087 1994-2016 All Grades - Reformulated Areas 2.090 2.088 2.161 2.170 2.125 2.088 1994-2016 Regular 2.038 2.043 2.056 2.042 2.015 1.975 1992-2016 Conventional Areas 2.057 2.063 2.057 2.038 2.015 1.975 1992-2016 Reformulated Areas 1.974 1.977 2.052 2.059 2.015 1.976 1994-2016 Midgrade 2.297 2.293 2.302 2.297 2.271 2.230 1994-2016 Conventional Areas 2.313 2.308 2.300 2.285 2.268 2.226

  14. Lower Atlantic (PADD 1C) Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    60 2.371 2.350 2.327 2.324 2.298 1993-2016 All Grades - Conventional Areas 2.365 2.377 2.355 2.331 2.330 2.304 1994-2016 All Grades - Reformulated Areas 2.310 2.310 2.296 2.277 2.260 2.238 1994-2016 Regular 2.204 2.216 2.196 2.172 2.165 2.138 1993-2016 Conventional Areas 2.210 2.223 2.203 2.178 2.172 2.144 1993-2016 Reformulated Areas 2.141 2.140 2.124 2.106 2.088 2.063 1994-2016 Midgrade 2.497 2.505 2.478 2.460 2.464 2.439 1994-2016 Conventional Areas 2.498 2.506 2.478 2.460 2.465 2.440

  15. Midwest (PADD 2) Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    13 2.247 2.198 2.166 2.174 2.087 1993-2016 All Grades - Conventional Areas 2.295 2.232 2.176 2.154 2.163 2.078 1994-2016 All Grades - Reformulated Areas 2.432 2.342 2.335 2.239 2.248 2.143 1994-2016 Regular 2.221 2.155 2.107 2.075 2.082 1.994 1992-2016 Conventional Areas 2.205 2.143 2.089 2.067 2.074 1.988 1992-2016 Reformulated Areas 2.325 2.235 2.227 2.130 2.137 2.030 1994-2016 Midgrade 2.479 2.409 2.360 2.327 2.339 2.252 1994-2016 Conventional Areas 2.456 2.390 2.333 2.310 2.321 2.236

  16. New England (PADD 1A) Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    49 2.349 2.353 2.353 2.361 2.336 1993-2016 All Grades - Conventional Areas 2.372 2.377 2.374 2.384 2.400 2.379 1994-2016 All Grades - Reformulated Areas 2.343 2.342 2.347 2.345 2.352 2.325 1994-2016 Regular 2.249 2.247 2.248 2.248 2.255 2.225 1993-2016 Conventional Areas 2.276 2.280 2.277 2.290 2.303 2.279 1993-2016 Reformulated Areas 2.242 2.238 2.241 2.237 2.243 2.211 1994-2016 Midgrade 2.479 2.485 2.495 2.495 2.503 2.490 1994-2016 Conventional Areas 2.510 2.527 2.517 2.521 2.531 2.523

  17. New York City Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    330 2.331 2.349 2.348 2.461 2.451 2000-2016 All Grades - Reformulated Areas 2.330 2.331 2.349 2.348 2.461 2.451 2000-2016 Regular 2.180 2.182 2.201 2.200 2.314 2.307 2000-2016 Reformulated Areas 2.180 2.182 2.201 2.200 2.314 2.307 2000-2016 Midgrade 2.512 2.508 2.519 2.521 2.628 2.609 2000-2016 Reformulated Areas 2.512 2.508 2.519 2.521 2.628 2.609 2000-2016 Premium 2.709 2.708 2.726 2.724 2.837 2.819 2000-2016 Reformulated Areas 2.709 2.708 2.726 2.724 2.837 2.819

  18. U.S. Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    81 2.367 2.353 2.341 2.345 2.298 1993-2016 All Grades - Conventional Areas 2.327 2.309 2.286 2.270 2.270 2.220 1994-2016 All Grades - Reformulated Areas 2.491 2.484 2.490 2.484 2.499 2.458 1994-2016 Regular 2.272 2.257 2.243 2.230 2.233 2.184 1990-2016 Conventional Areas 2.216 2.198 2.175 2.159 2.157 2.105 1990-2016 Reformulated Areas 2.389 2.381 2.386 2.379 2.392 2.349 1994-2016 Midgrade 2.529 2.516 2.502 2.493 2.498 2.455 1994-2016 Conventional Areas 2.469 2.452 2.429 2.415 2.416 2.370

  19. West Coast less California Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) (indexed site)

    528 2.529 2.545 2.546 2.544 2.525 1998-2016 All Grades - Conventional Areas 2.594 2.599 2.618 2.623 2.619 2.598 2000-2016 All Grades - Reformulated Areas 2.210 2.199 2.198 2.182 2.187 2.179 1998-2016 Regular 2.459 2.461 2.476 2.478 2.475 2.456 1998-2016 Conventional Areas 2.529 2.534 2.552 2.557 2.553 2.531 2000-2016 Reformulated Areas 2.121 2.109 2.109 2.093 2.098 2.090 1998-2016 Midgrade 2.668 2.668 2.686 2.686 2.683 2.666 1998-2016 Conventional Areas 2.737 2.740 2.762 2.765 2.761 2.742

  20. Volatility of Gasoline and Diesel Fuel Blends for Supercritical...

    Energy.gov (indexed) [DOE]

    More Documents & Publications Preparation, Injection and Combustion of Supercritical Fluids Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced ...

  1. Design Case Summary: Production of Gasoline and Diesel from Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermochemical Conversion: Gasification * Biomass is fed into a reactor at a high temperature and turned into a gas. * This synthesis gas (syngas) is primarily carbon monoxide and ...

  2. Gasoline and Diesel Fuel Update Data Revision Notice

    Annual Energy Outlook

    for some stations in the West Coast less California region. EIA has corrected this error and provides a revision to the affected areas for December 28, 2015 in this...

  3. An Experimental Investigation of Low Octane Gasoline in Diesel Engines

    Energy.gov [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  4. Design Case Summary: Production of Gasoline and Diesel from Biomass...

    Energy.gov (indexed) [DOE]

    Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast Pyrolysis Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and Hydroprocessing Bioenergy Technologies ...

  5. Effects of gasoline reactivity and ethanol content on boosted premixed and partially stratified low-temperature gasoline combustion (LTGC)

    SciTech Connect (OSTI)

    Dec, John E.; Yang, Yi; Ji, Chunsheng; Dernotte, Jeremie

    2015-04-14

    Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel ?- sensitive so that partial fuel stratification (PFS) can be applied for higher loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.

  6. Effects of gasoline reactivity and ethanol content on boosted premixed and partially stratified low-temperature gasoline combustion (LTGC)

    DOE PAGES-Beta [OSTI]

    Dec, John E.; Yang, Yi; Ji, Chunsheng; Dernotte, Jeremie

    2015-04-14

    Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel Φ- sensitive so that partial fuel stratification (PFS) can be applied for highermore » loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.« less

  7. Effects of gasoline reactivity and ethanol content on boosted premixed and partially stratified low-temperature gasoline combustion (LTGC)

    SciTech Connect (OSTI)

    Dec, John E.; Yang, Yi; Ji, Chunsheng; Dernotte, Jeremie

    2015-04-14

    Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel Φ- sensitive so that partial fuel stratification (PFS) can be applied for higher loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.

  8. Microsoft Word - Gasoline_2008 Supplement.doc

    Gasoline and Diesel Fuel Update

    ... on gasoline are fixed, the money saved by switching to regular grade gasoline would therefore be equivalent to a 0.14 percent per year increase in total gasoline consumption. ...

  9. The development of a prechamber diesel engine family

    SciTech Connect (OSTI)

    Filtri, G.; Morello, L.; Stroppiana, B.

    1989-01-01

    The development of a new family of prechamber diesel engines, based on a technological commonalty with the gasoline engines is reported. The range of diesel engines, all of them four-cylinder-in line, consist of 3 displacements: 1365cc - 1697cc - 1930cc either naturally aspirated or turbocharged. Mention is also made of their most significant technical innovations about their architecture and combustion chambers, and the main components such as block cylinder, head, crankshaft, connecting rods, pistons, timing gear and injection pump control, intake and exhaust manifolds.

  10. Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment Integration- Strategy and Experimental Results

    Energy.gov [DOE]

    The feasibility of diesel engines to meet the stringent emissions regulations of 2007 and beyond is an important consideration for light trucks and other personal transportation vehicles. Integrated engine and aftertreatment systems have been developed at Detroit Diesel Corporation for multiple engine and vehicle platforms. Tier 2 emissions technologies have been demonstrated with significant fuel economy advantage compared to the respective production gasoline engines while maintaining excellent drivability.

  11. Gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) (indexed site)

    Gasoline prices decrease (short version) The U.S. average retail price for regular gasoline fell to $3.68 a gallon on Monday. That's down 2.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  12. Gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) (indexed site)

    Gasoline prices decrease (short version) The U.S. average retail price for regular gasoline fell to $3.67 a gallon on Monday. That's down 3-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  13. Gasoline prices increase (short version)

    U.S. Energy Information Administration (EIA) (indexed site)

    gasoline prices increase (short version) The U.S. average retail price for regular gasoline rose to $3.69 a gallon on Monday. That's up 1.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  14. Topsoe integrated gasoline synthesis (TIGAS)

    SciTech Connect (OSTI)

    Hansen, H.K.; Joensen, F.

    1987-01-01

    Integration of Haldor Topsoe's oxygenate (MeOH, DME) synthesis and the MTG process into one single synthesis loop provides a new low investment route to gasoline from natural gas. The integrated process has been demonstrated in an industrial pilot with a capacity of 1 MTPD gasoline since 1984. The pilot has operated successfully for more than 10,000 hours.

  15. Recent Developments in BMW's Diesel Technology

    SciTech Connect (OSTI)

    Steinparzer, F

    2003-08-24

    The image of BMW is very strongly associated to high power, sports biased, luxury cars in the premium car segment, however, particularly in the United States and some parts of Asia, the combination of a car in this segment with a diesel engine was up until now almost unthinkable. I feel sure that many people in the USA are not even aware that BMW produces diesel-powered cars. In Europe there is a completely contrary situation which, driven by the relative high fuel price, and the noticeable difference between gasoline and diesel prices, there has been a continuous growth in the diesel market since the early eighties. During this time BMW has accumulated more then 20 years experience in developing and producing powerful diesel engines for sports and luxury cars. BMW started the production of its 1st generation diesel engine in 1983 with a 2,4 l, turbocharged IDI engine in the 5 series model range. With a specific power of 35 kW/l, this was the most powerful diesel engine on the market at this time. In 1991 BMW introduced the 2nd generation diesel engine, beginning with a 2,5 l inline six, followed in 1994 by a 1,7 l inline four. All engines of this 2nd BMW diesel engine family were turbocharged and utilized an indirect injection combustion system. With the availability of high-pressure injection systems such as the common rail system, BMW developed its 3rd diesel engine family which consists of four different engines. The first was the 4-cylinder for the 3 series car in the spring of 1998, followed by the 6-cylinder in the fall of 1998 and then in mid 1999 by the worlds first V8 passenger car diesel with direct injection. Beginning in the fall of 2001 with the 4-cylinder, BMW reworked this DI engine family fundamentally. Key elements are an improved core engine design, the use of the common rail system of the 2nd generation and a new engine control unit with even better performance. Step by step, these technological improvements were introduce d to production for

  16. Advanced Biomass to Gasoline Technology

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Temperature ( o C) Reaction Time (Sec) Enzymatic Reactions Exelus Biomass-to-Gasoline (BTG) Gasification Pyrolysis 0.1 Grant EE0002991 Exelus 16 Innovations 0.00001 0.0001 ...

  17. Gasoline Price Pass-through

    Annual Energy Outlook

    differences, whereas stationary series can be estimated in level form. The unit root test could not reject the hypothesis that the retail and spot gasoline price series have a...

  18. Projections of motor vehicle growth, fuel consumption and CO{sub 2} emissions for the next thirty years in China.

    SciTech Connect (OSTI)

    He, D.; Wang, M.

    2000-12-12

    Since the early 1990s, China's motor vehicles have entered a period of fast growth resultant from the rapid economic expansion. As the largest developing country, the fast growth of China's motor vehicles will have tremendous effects on the world's automotive and fuel market and on global CO{sub 2} emissions. In this study, we projected Chinese vehicle stocks for different vehicle types on the provincial level. First, we reviewed the historical data of China's vehicle growth in the past 10 years and the correlations between vehicle growth and economic growth in China. Second, we investigated historical vehicle growth trends in selected developed countries over the past 50 or so years. Third, we established a vehicle growth scenario based on the historical trends in several developed nations. Fourth, we estimated fuel economy, annual mileage and other vehicle usage parameters for Chinese vehicles. Finally, we projected vehicle stocks and estimated motor fuel use and CO{sub 2} emissions in each Chinese province from 2000 to 2030. Our results show that China will continue the rapid vehicle growth, increase gasoline and diesel consumption and increased CO{sub 2} emissions in the next 30 years. We estimated that by year 2030, Chinese motor vehicle fuel consumption and CO{sub 2} emissions could reach the current US levels.

  19. Chemical Kinetic Models for HCCI and Diesel Combustion

    SciTech Connect (OSTI)

    Pitz, W J; Westbook, C K; Mehl, M

    2008-10-30

    Hydrocarbon fuels for advanced combustion engines consist of complex mixtures of hundreds or even thousands of different components. These components can be grouped into a number of chemically distinct classes, consisting of n-paraffins, branched paraffins, cyclic paraffins, olefins, oxygenates, and aromatics. Biodiesel contains its own unique chemical class called methyl esters. The fractional amounts of these chemical classes are quite different in gasoline, diesel fuel, oil-sand derived fuels and bio-derived fuels, which contributes to the very different combustion characteristics of each of these types of combustion systems. The objectives of this project are: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

  20. The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion

    Energy.gov [DOE]

    Almost 2 dozen gasoline fuels, blending components, and surrogates were evaluated in a single-cylinder HCCI gasoline engine for combustion, emissions, and efficiency performance.

  1. This Week In Petroleum Gasoline Section

    Gasoline and Diesel Fuel Update

    Regular gasoline retail prices (dollars per gallon) U.S. Average Conventional Reformulated U.S. retail regular gasoline prices graph Retail average regular gasoline prices graph Retail conventional regular gasoline prices graph Retail reformulated regular gasoline prices graph Retail average regular gasoline prices (dollars per gallon) more price data › Year ago Most recent 11/16/15 11/14/16 11/07/16 10/31/16 10/24/16 10/17/16 10/10/16 10/03/16 U.S. 2.178 2.184 2.233 2.230 2.243 2.257 2.272

  2. Emissions and fuel economy of a Comprex pressure wave supercharged diesel. Report EPA-AA-TEB-81-1

    SciTech Connect (OSTI)

    Barth, E.A.; Burgenson, R.N.

    1980-10-01

    In order to increase public interest in vehicles equipped with diesel engines, methods of improving diesel-fueled engine performance, as compared to current gasoline-fueled counterparts, are being investigated. One method to increase performance is to supercharge or turbocharge the engine. This report details an EPA assessment of a supercharging technique previously evaluated, however, since that evaluation, specific areas of operation have been refined.

  3. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

    1998-05-05

    A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  4. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, Alicia L.; Griffith, William L.; Dorsey, George F.; West, Brian H.

    1998-01-01

    A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  5. Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Motor Company 2004deerhoard.pdf (114.79 KB) More Documents & Publications Laboratory and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR Diesel NOx Emission Control ...

  6. Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Diesel Sport Utility Vehicle Meeting Tier II Bin 5 DOE and Ford Motor Company Advanced CIDI Emission Control System Development Program (DE-FC26-01NT41103) Urea SCR and DPF ...

  7. Comparing the Performance of SunDiesel and Conventional Diesel...

    Energy.gov (indexed) [DOE]

    Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results Fuel Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission Control Variable ...

  8. EIA lowers forecast for summer gasoline prices

    U.S. Energy Information Administration (EIA) (indexed site)

    EIA lowers forecast for summer gasoline prices U.S. gasoline prices are expected to be ... according to the new monthly forecast from the U.S. Energy Information Administration. ...

  9. Price Changes in the Gasoline Market - Are Midwestern Gasoline Prices Downward Sticky?

    Reports and Publications

    1999-01-01

    The report concentrates on regional gasoline prices in the Midwest from October 1992 through June 1998.

  10. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) (indexed site)

    Gasoline prices decrease (long version) The U.S. average retail price for regular gasoline fell to $3.70 a gallon on Monday. That's down 1.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 4.01 a gallon, down 4.2 cents from a week ago. Prices were lowest in the Rocky Mountain States at 3.47 a gallon, remaining unchanged from last week

  11. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) (indexed site)

    5, 2014 Gasoline prices decrease (long version) The U.S. average retail price for regular gasoline fell to $3.68 a gallon on Monday. That's down 2.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 4.06 a gallon, down 1.8 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.47 a gallon, down 2.6 cents.This is Amerine Woodyard, with EIA, in Washington.

  12. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Turbocharged Direct Injection (GTDI) Engine Development Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine ...

  13. Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott; Hanson, Reed M; Wagner, Robert M

    2012-01-01

    Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

  14. Word Pro - S9

    U.S. Energy Information Administration (EIA) (indexed site)

    6 U.S. Energy Information Administration / Monthly Energy Review October 2016 Table 9.4 Retail Motor Gasoline and On-Highway Diesel Fuel Prices (Dollars a per Gallon, Including Taxes) Platt's / Bureau of Labor Statistics Data U.S. Energy Information Administration Data Motor Gasoline by Grade Regular Motor Gasoline by Area Type On-Highway Diesel Fuel Leaded Regular Unleaded Regular Unleaded Premium b All Grades c Conventional Gasoline Areas d Reformulated Gasoline Areas e All Areas 1950 Average

  15. Gasoline prices expected to fall below $2 per gallon in January on lower oil prices and lower seasonal demand

    U.S. Energy Information Administration (EIA) (indexed site)

    Gasoline prices expected to fall below $2 per gallon in January on lower oil prices and lower seasonal demand Falling crude oil prices along with refiners making less expensive winter-blend gasoline and the normal seasonal decline in motor fuel demand are expected to push the average pump price for gasoline below $2 per gallon in January. In its new monthly forecast, the U.S. Energy Information Administration said drivers are expected to pay an average of $1.97 per gallon to fill up at the

  16. Business Case for Light-Duty Diesels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Diesels Business Case for Light-Duty Diesels 2005 Diesel Engine Emissions Reduction (DEER) ... Clean Diesel: The Progress, The Message, The Opportunity Light-Duty Diesel Market ...

  17. Gasoline prices - January 7, 2013

    U.S. Energy Information Administration (EIA) (indexed site)

    short version) The U.S. average retail price for regular gasoline showed little movement from last week. Prices remained flat at $3.30 a gallon on Monday, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington. For more information, contact Amerine Woodyard on

  18. Gasoline prices decrease (Short version)

    U.S. Energy Information Administration (EIA) (indexed site)

    Short version) The U.S. average retail price for regular gasoline fell to $3.65 a gallon on Monday. That's down 2.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration

  19. Gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) (indexed site)

    short version) The U.S. average retail price for regular gasoline fell to $3.63 a gallon on Monday. That's down 2.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration

  20. The chemical origin of octane sensitivity in gasoline fuels containing nitroalkanes

    SciTech Connect (OSTI)

    Cracknell, R.F.; McAllister, L.J.; Norton, M.; Walmsley, H.L.; Andrae, J.C.G.

    2009-05-15

    Experimental octane measurements are presented for a standard gasoline to which has been added various quantities of nitromethane, nitroethane and 1-nitropropane. The addition of nitroalkanes was found to suppress the Motor Octane Number to a much greater extent than the Research Octane Number. In other words addition of nitroalkanes increases the octane sensitivity of gasoline. Density Functional Theory was used to model the equilibrium thermodynamics and the barrier heights for reactions leading to the break-up of nitroethane. These results were used to develop a chemical kinetic scheme for nitroalkanes combined with a surrogate gasoline (for which a mechanism has been developed previously). Finally the chemical kinetic simulations were combined with a quasi-dimensional engine model in order to predict autoignition in octane rating tests. Our results suggest that the chemical origin of octane sensitivity in gasoline/nitroalkane blends cannot be fully explained on the conventional basis of the extent to which NTC behaviour is absent. Instead we have shown that the contribution of the two pathways leading to autoignition in gasoline containing nitroalkanes becomes much more significant under the more severe conditions of the Motor Octane method than the Research Octane method. (author)

  1. Microsoft Word - General Motors Pre-final EA 4-20-2010.doc

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    8 1 April 2008 Short-Term Energy Outlook Supplement: Motor Gasoline Consumption 2008 A Historical Perspective and Short-Term Projections 1 Highlights * Income growth rates have less of an impact on recent trends in gasoline consumption than in the past, but short-run effects are still significant. * High gasoline prices are once again motivating drivers to conserve by driving less and purchasing more fuel-efficient transportation. * The increasing share of lower-Btu-content ethanol has

  2. Experimental and numerical assessment of on-road diesel and biodiesel emissions

    SciTech Connect (OSTI)

    West, B.H.; Storey, J.M.; Lewis, S.A.; Devault, G.L.; Green, J.B.; Sluder, C.S.; Hodgson, J.W.; Moore, B.L.

    1997-12-31

    The Federal Highway Administration`s TRAF-series of models use modal data to estimate fuel consumption and emissions for different traffic scenarios. A process for producing data-based modal models from road and dynamometer measurements has been developed and applied to a number of light-duty gasoline vehicles for the FHWA. The resulting models, or lookup tables, provide emissions and fuel consumption as functions of vehicle speed and acceleration. Surface plots of the data provide a valuable visual benchmark of the emissions characteristics of the vehicles. Due to the potential fuel savings in the light-duty sector via introduction of diesels, and the concomitant growing interest in diesel engine emissions, the measurement methodology has been extended under DOE sponsorship to include a diesel pickup truck running a variety of fuels, including number 2 diesel fuel, biodiesel, Fischer-Tropsch, and blends.

  3. Alternative Fuels Data Center: How Do Gasoline Cars Work?

    Alternative Fuels and Advanced Vehicles Data Center

    Gasoline Cars Work? to someone by E-mail Share Alternative Fuels Data Center: How Do Gasoline Cars Work? on Facebook Tweet about Alternative Fuels Data Center: How Do Gasoline Cars Work? on Twitter Bookmark Alternative Fuels Data Center: How Do Gasoline Cars Work? on Google Bookmark Alternative Fuels Data Center: How Do Gasoline Cars Work? on Delicious Rank Alternative Fuels Data Center: How Do Gasoline Cars Work? on Digg Find More places to share Alternative Fuels Data Center: How Do Gasoline

  4. Pleated Ceramic Fiber Diesel Particulate Filter | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pleated Ceramic Fiber Diesel Particulate Filter Pleated Ceramic Fiber Diesel Particulate Filter 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters ...

  5. Catalytic Filter for Diesel Exhaust Purification | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Catalytic Filter for Diesel Exhaust Purification Catalytic Filter for Diesel Exhaust Purification This project is developing a precious metal-free passive diesel particulate ...

  6. Diesel Engines: Environmental Impact and Control | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Environmental Impact and Control Diesel Engines: Environmental Impact and Control 2002 ... More Documents & Publications Cleaning Up Diesel Engines DIesel Emission Control ...

  7. Cleaning Up Diesel Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Diesel Engines Cleaning Up Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005deerwitherspoon.pdf More Documents & ...

  8. DIesel Emission Control Technology Developments | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DIesel Emission Control Technology Developments DIesel Emission Control Technology Developments 2005deerandreoni.pdf (249.21 KB) More Documents & Publications Cleaning Up Diesel ...

  9. Diesel prices decrease

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to $4.05 a gallon on Monday. That's down 4.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.20 a gallon, down 3.9 cents from a week ago. Prices were lowest in the Rocky Mountain States at 3.97 a gallon, down 3.9 cents

  10. Diesel prices decrease

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to $3.88 a gallon on Monday. That's down a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.99 a gallon, remaining unchanged from a week ago. Prices were lowest in the Gulf Coast region at 3.78 a gallon, also unchanged from a week ago.

  11. Diesel prices decrease

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to $3.85 a gallon on Monday. That's down 2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.98 a gallon, down 6-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.75 a gallon, down 2.2 cents.

  12. Diesel prices decrease

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to $3.82 a gallon on Monday. That's down 2.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.97 a gallon, down 1.3 cents from a week ago. Prices were lowest in the Lower Atlantic and the Gulf Coast regions at 3.73 a gallon

  13. Diesel prices decrease

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to $3.87 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 4.04 a gallon, down 1.3 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.78 a gallon, down 1

  14. Diesel prices decrease

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to $3.88 a gallon on Monday. That's down 0.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.07 a gallon, up 2.6 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.77 a gallon, down 0.7 cents. This is Marlana Anderson, with EIA, in Washington. For more information, contact Marlana

  15. Diesel prices decrease slightly

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices decrease slightly The U.S. average retail price for on-highway diesel fuel fell slightly to $3.84 a gallon on Monday. That's down 3-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.98 a gallon, up 4-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.74 a gallon, down a tenth of a penny.

  16. Diesel prices flat

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices flat The U.S. average retail price for on-highway diesel fuel saw no movement from last week. Prices remained flat at $3.89 a gallon on Monday, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 4.05 a gallon, up 2-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.80 a gallon, up 3-tenths of a penny

  17. Diesel prices flat nationally

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices flat nationally The U.S. average retail price for on-highway diesel fuel remained the same from a week ago at $3.98 a gallon on Monday, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 4.14 a gallon, up 1.4 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.90 a gallon, up a tenth of a penny.

  18. Diesel prices increase

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices increase The U.S. average retail price for on-highway diesel fuel rose to $3.84 a gallon on Monday. That's up 2.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at $4.00 a gallon, up 2.2 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.75 a gallon, up 8-tenths of a penny. This is Marlana Anderson, with EIA, in Washington. For more information, contact

  19. Diesel prices increase

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices increase The U.S. average retail price for on-highway diesel fuel rose to $3.90 a gallon on Monday. That's up 3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.11 a gallon, up 4.2 cents from a week ago. Prices were lowest in the Gulf Coast states at 3.79 a gallon, up 1.7 cents.

  20. Diesel prices increase nationally

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices increase nationally The U.S. average retail price for on-highway diesel fuel rose to $3.91 a gallon on Monday. That's up 1.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 4.07 a gallon, up 1 1/2 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.83 a gallon, up 7-tenths of a penny.

  1. Diesel prices rise slightly

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices rise slightly The U.S. average retail price for on-highway diesel fuel rose slightly to $4.16 a gallon on Monday. That's up 2-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.34 a gallon, up a penny from a week ago. Prices were lowest in the Rocky Mountain States at 4.06 a gallon, up 2 1/

  2. Diesel prices slightly decrease

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices slightly decrease The U.S. average retail price for on-highway diesel fuel fell to $3.87 a gallon on Monday. That's down 1.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.98 a gallon, down 7-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.77 a gallon, down half a penny. This is Amerine Woodyard, with EIA, in

  3. Diesel prices slightly decrease

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices slightly decrease The U.S. average retail price for on-highway diesel fuel fell slightly to $3.84 a gallon on Monday. That's down 8-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.98 a gallon, up 2-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.74 a gallon, down 7-tenths of a penny.

  4. Diesel prices slightly increase

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices slightly increase The U.S. average retail price for on-highway diesel fuel rose slightly to $3.87 a gallon on Monday. That's up 2-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.07 a gallon, up half a penny from a week ago. Prices were lowest in the Gulf Coast states at 3.77 a gallon, up 6-tenths of a penny.

  5. Diesel fuel component contribution to engine emissions and performance. Final report

    SciTech Connect (OSTI)

    Erwin, J.; Ryan, T.W. III; Moulton, D.S.

    1994-11-01

    Contemporary diesel fuel is a blend of several refinery streams chosen to meet specifications. The need to increase yield of transportation fuel from crude oil has resulted in converting increased proportions of residual oil to lighter products. This conversion is accomplished by thermal, catalytic, and hydrocracking of high molecular weight materials rich in aromatic compounds. The current efforts to reformulate California diesel fuel for reduced emissions from existing engines is an example of another driving force affecting refining practice: regulations designed to reduce exhaust emissions. Although derived from petroleum crude oil, reformulated diesel fuel is an alternative to current specification-grade diesel fuel, and this alternative presents opportunities and questions to be resolved by fuel and engine research. Various concerned parties have argued that regulations for fuel reformulation have not been based on an adequate data base. Despite numerous studies, much ambiguity remains about the relationship of exhaust parameters to fuel composition, particularly for diesel fuel. In an effort to gather pertinent data, the automobile industry and the oil refiners have joined forces in the Air Quality Improvement Research Program (AUTO/OIL) to address this question for gasoline. The objective of that work is to define the relationship between gasoline composition and the magnitude and composition of the exhaust emissions. The results of the AUTO/OEL program will also be used, along with other data bases, to define the EPA {open_quotes}complex model{close_quotes} for reformulated gasolines. Valuable insights have been gained for compression ignition engines in the Coordinating Research Council`s VE-1 program, but no program similar to AUTO/OIL has been started for diesel fuel reformulation. A more detailed understanding of the fuel/performance relationship is a readily apparent need.

  6. Understanding diesel engine lubrication at low temperature

    SciTech Connect (OSTI)

    Smith, M.F. Jr.

    1990-01-01

    This paper reports on oil pumpability in passenger car gasoline engines that was well-characterized by an ASTM program and by individual researchers in the 1970's and early 1980's. oil pumpability in diesel engines however, was not investigated to any significant extent until the mid-1980's. This study was initiated to define the performance of several commercial viscosity modifiers in different formulations containing 3 detergent-inhibitor (DI) additive packages and 4 basestock types. The test oils were run at {minus}18{degrees} C (0{degrees} F) in a Cummins NTC-400 diesel engine. The results, when statistically analyzed, indicated that a new, second generation olefin copolymer (OCP) viscosity modifier has better performance that a first generation OCP and, furthermore, had performance equal to a polymethacrylate (PMA) viscosity modifier. The analysis also showed that one DI/base stock combination had a significant effect on performance. The apparent shear rate of the oil in the pump inlet tube was calculated from the oil pump flow rate measured at idle speed at low temperature and the pump inlet tube diameter. The shear rate and oil viscosity were used to estimate the shear stress in the pump inlet tube. The shear stress level of the engine is 56% higher than the Mini-Rotary Viscometer (MRV). Hence, the current MRV procedure is rheologically unsuitable to predict pumpability in a large diesel engine. A new device was developed for measuring the oil film thickness in the turbocharge bearing and noting the time when a full oil film is formed. Results indicate that a full oil film occurs almost immediately, well before any oil pressure is observed at the turbocharge inlet. Residual oil remaining in the bearing after shutdown may account of this observation. The oil film maintained its thickness both before, and after the first indication of oil pressure. More work is needed to study this effect.

  7. Areas Participating in the Reformulated Gasoline Program

    Gasoline and Diesel Fuel Update

    Reformulated Gasoline Program Contents * Introduction * Mandated RFG Program Areas o Table 1. Mandated RFG Program Areas * RFG Program Opt-In Areas o Table 2. RFG Program Opt-In Areas * RFG Program Opt-Out Procedures and Areas o Table 3. History of EPA Rulemaking on Opt-Out Procedures o Table 4. RFG Program Opt-Out Areas * State Programs o Table 5. State Reformulated Gasoline Programs * Endnotes Spreadsheets Referenced in this Article * Reformulated Gasoline Control Area Populations Related EIA

  8. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update

    65.7 65.5 58.6 50.5 - 53.7 April ... 68.1 68.0 64.2 56.7 47.2 56.2 76.5 76.2 69.8 60.5 - 63.9 May ... 68.9...

  9. Motor Gasoline Sales to End Users, Total Refiner Sales Volumes

    Gasoline and Diesel Fuel Update

    29,725.8 24,722.5 21,633.6 25,454.1 1983-2015 East Coast (PADD 1) 14,548.8 12,347.0 9,304.0 6,838.8 3,815.2 8,406.0 1994-2015 New England (PADD 1A) 1,424.3 1,070.8 W W W W ...

  10. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    U.S. Energy Information Administration (EIA) (indexed site)

    ... 671.7 W W 4,806.5 W 10,260.9 671.7 739.0 4,560.6 5,564.5 1,030.1 11,155.1 June ... 679.4 W W 4,847.6 W 10,444.5 679.4...

  11. Refinery Net Input of Motor Gasoline Blending Components (Net...

    U.S. Energy Information Administration (EIA) (indexed site)

    -207,199 -222,768 -224,415 -196,460 -205,085 -201,403 2005-2016 PADD 1 -16,716 -17,346 -17,942 -14,705 -15,325 -15,088 2005-2016 East Coast -16,708 -17,396 -17,889 -14,746 -15,326 ...

  12. Microsoft Word - Summer 2004 Motor Gasoline Outlook.doc

    Annual Energy Outlook

    ... Publication P300-02-002V4. (Sacramento, CA, February 2004, and earlier issues.) http:www.energy.ca.govmtbedocuments. 50 75 100 125 150 175 200 225 Jan 4, 1999 May 24, 1999 ...

  13. U.S. Motor Gasoline Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) (indexed site)

    49,797.6 44,697.0 39,002.1 29,725.8 24,722.5 21,633.6 1983-2014 Through Retail Outlets 47,969.1 43,083.2 37,534.7 28,037.9 23,021.9 19,926.2 1983-2014 Sales for Resale, Total NA NA...

  14. Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...

    Gasoline and Diesel Fuel Update

    - - - - - - - 1997 Average ... - - - - - - - - - - - - Subdistrict IA January ... - - - - - - - - - - - - February...

  15. Prices of Refiner Motor Gasoline Sales to End Users

    U.S. Energy Information Administration (EIA) (indexed site)

    552 1.725 1.869 1.961 1.804 1.754 1983

  16. Refiner and Blender Net Production of Finished Motor Gasoline

    Gasoline and Diesel Fuel Update

    935 9,498 9,837 9,824 10,456 10,152 1982

  17. ,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural...

    U.S. Energy Information Administration (EIA) (indexed site)

    ...487,730,4564,1869,687,1409,1277,,8913,3453,1947,5678,576,894,50,2490,156,26993,3139,4002,1...85,1209,2818,1208,924,309,449,3876,1520,99,1947,1239,24339,1386,511,5564,1893,402,14583,31...

  18. Refinery & Blender Net Production of Finished Motor Gasoline

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History U.S. 3,306,400 3,306,028 3,267,022 3,370,460 3,493,224 3,560,117 1945-2015 PADD 1 993,681 1,055,660 1,044,853 1,062,487 1,087,368 1,135,268 1981-2015 East Coast 944,510 975,883 961,041 975,979 1,000,003 1,044,102 1993-2015 Appalachian No. 1 49,171 79,777 83,812 86,508 87,365 91,166 1995-2015 PADD 2 797,994 815,684 815,432 846,815 904,415 938,000 1981-2015 Ind., Ill. and Ky. 516,676 522,057 511,824 522,198 561,703 613,374 1993-2015 Minn., Wis., N. Dak.,

  19. Finished Motor Gasoline Refinery, Bulk Terminal, and Natural...

    Annual Energy Outlook

    Georgia 374 251 220 269 235 220 1993-2015 Maine 130 152 254 1993-2013 Maryland 1993-2008 Massachusetts 2 4 3 6 5 5 1993-2015 New Hampshire 1993-2005 New Jersey 667 275 795 489 102 ...

  20. Motor Gasoline Sales to End Users, Total Refiner Sales Volumes

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    W W W W W W 1993-2016 Maine - - - - - - 1993-2016 Massachusetts W W W W W W 1993-2016 New Hampshire W W W W W W 1993-2016 Rhode Island W W W W W W 1993-2016 Vermont - - - - - - ...

  1. Finished Motor Gasoline Refinery, Bulk Terminal, and Natural...

    Gasoline and Diesel Fuel Update

    Georgia 175 221 158 163 190 268 1993-2016 Maine 1993-2014 Maryland 1993-2009 Massachusetts 4 4 4 4 6 8 1993-2016 New Hampshire 1993-2006 New Jersey 534 804 23 60 98 16 1993-2016 ...

  2. U.S. Motor Gasoline Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) (indexed site)

    25,220.5 25,860.0 25,967.6 26,711.1 26,333.6 26,532.9 1983-2016 Through Retail Outlets 24,951.7 25,586.3 25,715.3 26,432.4 26,101.4 26,248.0 1983-2016 Sales for Resale, Total NA NA NA NA NA NA 1983-2016 DTW 23,415.5 23,708.7 23,650.1 23,557.3 23,349.9 23,924.9 1994-2016 Rack 254,975.6 259,805.5 260,438.5 268,329.3 267,255.4 267,091.5 1994-2016 Bulk 25,412.9 18,978.1 21,663.3 23,018.6 25,337.8 23,676.2

  3. STEO January 2013 - average gasoline prices

    U.S. Energy Information Administration (EIA) (indexed site)

    drivers to see lower average gasoline prices in 2013 and 2014 U.S. retail gasoline prices are expected to decline over the next two years. The average pump price for regular unleaded gasoline was $3.63 a gallon during 2012. That is expected to fall to $3.44 this year and then drop to $3.34 in 2014, according to the new forecast from the U.S. Energy Information Administration. Expected lower crude oil prices.....which accounted for about two-thirds of the price of gasoline in 2012....will

  4. Eliminating MTBE in Gasoline in 2006

    Gasoline and Diesel Fuel Update

    in 2006. Companies' decisions to eliminate MTBE have been driven by State bans due to water contamination concerns, continuing liability exposure from adding MTBE to gasoline,...

  5. California Gasoline Price Study, 2003 Preliminary Findings

    Reports and Publications

    2003-01-01

    This is the preliminary report to Congressman Ose describing the factors driving California's spring 2003 gasoline price spike and the subsequent price increases in June and August.

  6. Optimization of Advanced Diesel Engine Combustion Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Computational Fluid Dynamics ...

  7. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    SciTech Connect (OSTI)

    Curran, Scott; Briggs, Thomas E; Cho, Kukwon; Wagner, Robert M

    2011-01-01

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

  8. FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report

    SciTech Connect (OSTI)

    Barnitt, R.

    2010-05-01

    This interim report presents partial (six months) results for a technology evaluation of gasoline hybrid electric parcel delivery trucks operated by FedEx in and around Los Angeles, CA. A 12 month in-use technology evaluation comparing in-use fuel economy and maintenance costs of GHEVs and comparative diesel parcel delivery trucks was started in April 2009. Comparison data was collected and analyzed for in-use fuel economy and fuel costs, maintenance costs, total operating costs, and vehicle uptime. In addition, this interim report presents results of parcel delivery drive cycle collection and analysis activities as well as emissions and fuel economy results of chassis dynamometer testing of a gHEV and a comparative diesel truck at the National Renewable Energy Laboratory's (NREL) ReFUEL laboratory. A final report will be issued when 12 months of in-use data have been collected and analyzed.

  9. Diesel Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search Name: Diesel Energy Place: Spain Product: Joint venture set up to invest in biodiesel plants. References: Diesel Energy1 This article is a stub. You can help OpenEI...

  10. Gasoline prices - January 7, 2013

    U.S. Energy Information Administration (EIA) (indexed site)

    long version) The U.S. average retail price for regular gasoline showed little movement from last week. Prices remained flat at $3.30 a gallon on Monday, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the New England and Central Atlantic regions, at 3.52 a gallon, up around 2 cents in both regions from a week ago. For the second week in a row, prices were lowest in the Rocky Mountain States at 2.94 a gallon, down 8.1 cents. This is

  11. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) (indexed site)

    long version) The U.S. average retail price for regular gasoline fell to $3.65 a gallon on Monday. That's down 2.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.93 a gallon, down 1.9 cents from a week ago. Prices were lowest in the Gulf Coast States at 3.37 a gallon, down 2.6 cents

  12. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) (indexed site)

    long version) The U.S. average retail price for regular gasoline fell to $3.63 a gallon on Monday. That's down 2.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.89 a gallon, up a penny from a week ago. Prices were lowest in the Gulf Coast States at 3.38 a gallon, down 3.9 cents

  13. ,"Aviation Gasoline Sales to End Users Refiner Sales Volumes...

    U.S. Energy Information Administration (EIA) (indexed site)

    Aviation Gasoline Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab ... Data for" ,"Data 1","Aviation Gasoline Sales to End Users Refiner ...

  14. Lean Gasoline System Development for Fuel Efficient Small Car...

    Energy.gov (indexed) [DOE]

    Lean Gasoline System Development for Fuel Efficient Small Car Lean Gasoline System Development for Fuel Efficient Small Car Vehicle Technologies Office Merit Review 2015: ...

  15. Impact of Ethanol Blending on U.S. Gasoline Prices

    SciTech Connect (OSTI)

    Not Available

    2008-11-01

    This study assesses the impact of ethanol blending on gasoline prices in the US today and the potential impact of ethanol on gasoline prices at higher blending concentrations.

  16. Characterization of Pre-Commercial Gasoline Engine Particulates...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pre-Commercial Gasoline Engine Particulates Through Advanced Aerosol Methods Characterization of Pre-Commercial Gasoline Engine Particulates Through Advanced Aerosol Methods ...

  17. Oxidation characteristics of gasoline direct-injection (GDI)...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    characteristics of gasoline direct-injection (GDI) engine soot: Catalytic effects of ash and modified kinetic correlation Title Oxidation characteristics of gasoline...

  18. Fact #890: September 14, 2015 Gasoline Prices Are Affected by...

    Energy.gov (indexed) [DOE]

    Gasoline Prices Are Affected by Changes in Refinery Output File fotw890web.xlsx More Documents & Publications Fact 858 February 2, 2015 Retail Gasoline Prices in 2014 ...

  19. Diesel lubrication and cooling systems

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The film describes the parts of diesel lubricating and cooling systems and how they work in relation to each other.

  20. Diesel lubrication and cooling systems

    SciTech Connect (OSTI)

    1994-12-31

    The film describes the parts of diesel lubricating and cooling systems and how they work in relation to each other.

  1. The potential for alcohols and related ethers to displace conventional gasoline components

    SciTech Connect (OSTI)

    Hadder, G.R.; McNutt, B.D.

    1996-02-01

    The United States Department of Energy is required by law to determine the feasibility of producing sufficient replacement fuels to replace 30 percent of the projected United States consumption of motor fuels by light duty vehicles in the year 2010. A replacement fuel is a non-petroleum portion of gasoline, including alcohols, natural gas and certain other components. A linear program has been used to study refinery impacts for production of ``low petroleum`` gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and major contributors to cost increase can include investment in processes to produce olefins for etherification with alcohols. High oxygenation can increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum might be produced with cost increases of 23 to 37 cents per gallon, with substantial decreases in greenhouse gas emissions in some cases. Cost estimates are sensitive to assumptions about extrapolation of a national model for pollutant emissions, availability of raw materials and other issues. Reduction in crude oil use, a major objective of the low petroleum gasoline program, is 10 to 17 percent in the analysis.

  2. Gasoline prices continue to decrease (short version)

    U.S. Energy Information Administration (EIA) (indexed site)

    Gasoline prices continue to decrease (short version) The U.S. average retail price for regular gasoline fell to $3.29 a gallon on Monday. That's down 3-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  3. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) (indexed site)

    Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.44 a gallon on Monday. That's up 6.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  4. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) (indexed site)

    Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.48 a gallon on Monday. That's up 3 ½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  5. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) (indexed site)

    Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.51 a gallon on Monday. That's up 3.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  6. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) (indexed site)

    Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.55 a gallon on Monday. That's up 3½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  7. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) (indexed site)

    4, 2014 Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.65 a gallon on Monday. That's up 5½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington.

  8. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) (indexed site)

    1, 2014 Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.68 a gallon on Monday. That's up 3.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington.

  9. Gasoline prices continue to rise (Short version)

    U.S. Energy Information Administration (EIA) (indexed site)

    Gasoline prices continue to rise (short version) The U.S. average retail price for regular gasoline rose to $3.67 a gallon on Monday. That's up 7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  10. Word Pro - S3

    Gasoline and Diesel Fuel Update

    Jet Fuel c Residual Fuel Oil a Beginning in 1993, includes fuel ethanol blended into motor gasoline. b Beginning in 2009, includes renewable diesel fuel (including biodiesel) ...

  11. Word Pro - S3

    Annual Energy Outlook

    Includes fuel ethanol blended into motor gasoline. d Includes renewable diesel fuel (including biodiesel) blended into distillate fuel oil. e Includes kerosene-type jet fuel only. ...

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas Tax Compressed natural gas (CNG) and liquefied natural gas (LNG) used as motor fuel must be sold in gasoline gallon equivalents (GGE) or diesel gallon equivalents ...

  13. Effects of Removing Restrictions on U.S. Crude Oil Exports

    U.S. Energy Information Administration (EIA) (indexed site)

    crude oil exports for the price of domestic and global ... EIA's August 2015 Short-Term Energy Outlook forecasts ... motor gasoline and diesel fuel, which are freely traded, ...

  14. Alternatives to Diesel Fuel in California - Fuel Cycle Energy and Emission Effects of Possible Replacements Due to the TAC Diesel Particulate Decision

    SciTech Connect (OSTI)

    Christopher L. Saraicks; Donald M. Rote; Frank Stodolsky; James J. Eberhardt

    2000-05-01

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression ignition by spark ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7 percent above projected (total) consumption level. In the second case, ressionignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOx emissions, though all scenarios bring about PM10 reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  15. Alternatives to diesel fuel in California - fuel cycle energy and emission effects of possible replacements due to the TAC diesel particulate decision.

    SciTech Connect (OSTI)

    Saricks, C. L.; Rote, D. M.; Stodolsky, F.; Eberhardt, J. J.

    1999-12-03

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible mid-course strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression-ignition by spark-ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21% above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7% above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case the authors estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOX emissions, though all scenarios bring about PM{sub 10} reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  16. Final Report of a CRADA Between Pacific Northwest National Laboratory and the General Motors Company (CRADA No. PNNL/271): “Degradation Mechanisms of Urea Selective Catalytic Reduction Technology”

    SciTech Connect (OSTI)

    Kim, Do Heui; Lee, Jong H.; Peden, Charles HF; Howden, Ken; Kim, Chang H.; Oh, Se H.; Schmieg, Steven J.; Wiebenga, Michelle H.

    2011-12-13

    Diesel engines can offer substantially higher fuel efficiency, good driving performance characteristics, and reduced carbon dioxide (CO2) emission compared to stoichiometric gasoline engines. Despite the increasing public demand for higher fuel economy and reduced dependency on imported oil, however, meeting the stringent emission standards with affordable methods has been a major challenge for the wide application of these fuel-efficient engines in the US market. The selective catalytic reduction of NOx by urea (urea-SCR) is one of the most promising technologies for NOx emission control for diesel engine exhausts. To ensure successful NOx emission control in the urea-SCR technology, both a diesel oxidation catalyst (DOC) and a urea-SCR catalyst with high activity and durability are critical for the emission control system. Because the use of this technology for light-duty diesel vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy the durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions, which is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations. In addition, it is imperative to develop a good understanding of deactivation mechanisms to help develop improved catalyst materials. In this CRADA program, General Motors Company and PNNL have investigated fresh, laboratory- and vehicle-aged DOC and SCR catalysts. The studies have led to a better understanding of various aging factors that impact the long-term performance of catalysts used in the urea-SCR technology, and have improved the correlation between laboratory and vehicle aging for reduced development time and cost. This Final Report briefly highlights many of the technical accomplishments and documents the productivity of the program in terms of peer-reviewed scientific publications

  17. Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Parks, II, James E; Wagner, Robert M

    2013-01-01

    Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

  18. Gasoline Vehicle Exhuast Particle Sampling Study | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Particle Measurement Methodology: Comparison of On-road and Lab Diesel Particle Size Distributions Evaluation of the European PMP Methodologies Using Chassis Dynamometer and ...

  19. Chemical kinetic modeling of component mixtures relevant to gasoline

    SciTech Connect (OSTI)

    Mehl, M; Curran, H J; Pitz, W J; Dooley, S; Westbrook, C K

    2008-05-29

    Detailed kinetic models of pyrolysis and combustion of hydrocarbon fuels are nowadays widely used in the design of internal combustion engines and these models are effectively applied to help meet the increasingly stringent environmental and energetic standards. In previous studies by the combustion community, such models not only contributed to the understanding of pure component combustion, but also provided a deeper insight into the combustion behavior of complex mixtures. One of the major challenges in this field is now the definition and the development of appropriate surrogate models able to mimic the actual features of real fuels. Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. Their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. Aside the most commonly used surrogates containing iso-octane and n-heptane only, the so called Primary Reference Fuels (PRF), new mixtures have recently been suggested to extend the reference components in surrogate mixtures to also include alkenes and aromatics. It is generally agreed that, including representative species for all the main classes of hydrocarbons which can be found in real fuels, it is possible to reproduce very effectively in a wide range of operating conditions not just the auto-ignition propensity of gasoline or Diesel fuels, but also their physical properties and their combustion residuals [1]. In this work, the combustion behavior of several components relevant to gasoline surrogate formulation is computationally examined. The attention is focused on the autoignition of iso-octane, hexene and their mixtures. Some important issues relevant to the experimental and modeling investigation of such fuels are discussed with the help of rapid compression machine data and calculations. Following the model validation, the behavior of mixtures is discussed on the

  20. DIESEL FUEL LUBRICATION

    SciTech Connect (OSTI)

    Qu, Jun

    2012-01-01

    The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

  1. Diesel Engine Idling Test

    SciTech Connect (OSTI)

    Larry Zirker; James Francfort; Jordon Fielding

    2006-02-01

    In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

  2. Advanced Gasoline Turbocharged Direction Injection (GTDI) Engine Development

    SciTech Connect (OSTI)

    Wagner, Terrance

    2015-12-31

    This program was undertaken in response to US Department of Energy Solicitation DE-FOA-0000079, resulting in a cooperative agreement with Ford and MTU to demonstrate improvement of fuel efficiency in a vehicle equipped with an advanced GTDI engine. Ford Motor Company has invested significantly in GTDI engine technology as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost technology. Ford envisions additional fuel economy improvement in the medium and long term by further advancing EcoBoost technology. The approach for the project was to engineer a comprehensive suite of gasoline engine systems technologies to achieve the project objectives, and to progressively demonstrate the objectives via concept analysis / computer modeling, single-cylinder and multi-cylinder engine testing on engine dynamometer, and vehicle level testing on chassis rolls.

  3. Insights into Spring 2008 Gasoline Prices

    Reports and Publications

    2008-01-01

    Gasoline prices rose rapidly in spring 2007 due a variety of factors, including refinery outages and lower than expected imports. This report explores those factors and looks at the implications for 2008.

  4. Inquiry into August 2003 Gasoline Price Spike

    Reports and Publications

    2003-01-01

    U.S. Secretary of Energy Spencer Abraham requested that the Energy Information Administration conduct an inquiry into the causes of the price increases of gasoline in July and August of 2003.

  5. Reformulated Gasoline Market Affected Refiners Differently, 1995

    Reports and Publications

    1996-01-01

    This article focuses on the costs of producing reformulated gasoline (RFG) as experienced by different types of refiners and on how these refiners fared this past summer, given the prices for RFG at the refinery gate.

  6. Gasoline prices show sharp increase (short version)

    U.S. Energy Information Administration (EIA) (indexed site)

    short version) The U.S. average retail price for regular gasoline saw its sharpest increase this year at 3.54 a gallon on Monday. That's up 18.1 cents from a week ago, based on ...

  7. Gasoline prices show sharp increase (long version)

    U.S. Energy Information Administration (EIA) (indexed site)

    long version) The U.S. average retail price for regular gasoline saw its sharpest increase this year at 3.54 a gallon on Monday. That's up 18.1 cents from a week ago, based on the ...

  8. The diesel engine for cars -- Is there a future?

    SciTech Connect (OSTI)

    Pischinger, F.F.

    1998-07-01

    The diesel engine is known as the most fuel efficient combustion engine. Its acceptance for use in passenger cars, however, varies geographically. Today, the diesel car plays an important role in Europe; in France, for instance, it is achieving a remarkable market share of about 42%, while in the US its market penetration can be neglected. Many questions are expressed concerning the future of diesel powered cars. The question affecting market acceptance is as follows: can the significantly better fuel efficiency of a diesel car outweigh perceived detrimental characteristics? Such unfavorable properties are thought to be low specific power, objectionable noise, higher exhaust emissions (including smoke), and higher vehicle price. These features are closely influenced by the state of passenger car diesel engine technology. This technology state and its potential must be evaluated with respect to current and future demands, for instance, tighter exhaust emission regulations. In addition, the commercial value and consumer acceptance of high fuel economy must be evaluated. It is clear that the ultimate result of weighing the pros and cons will depend not only on technological factors, but also on political factors such as fuel taxation. Regarding the state of technology, the diesel car is very promising. First, by employing a direct injection combustion system, the fuel efficiency can be improved by about 15% over current swirl chamber engines. Furthermore, the specific power (hp/ltr) can be increased by efficient supercharging to achieve values of today`s gasoline engines. By tuning the combustion system, low noise engine design features and incorporation of careful noise reduction measures on the vehicle, the noise behavior of a spark ignited vehicle can be reached. Exhaust emissions can currently be reduced to a level to satisfy today`s European and US Tier 1 emission limits. However, significant development effort remains. More stringent emission levels (California

  9. U.S. average gasoline prices falling to near $2 in December

    U.S. Energy Information Administration (EIA) (indexed site)

    In its new forecast, the U.S. Energy Information Administration said high gasoline production, cheaper winter-grade gasoline, and lower gasoline demand following this summer's peak ...

  10. Filter-based control of particulate matter from a lean gasoline direct injection engine

    SciTech Connect (OSTI)

    Parks, II, James E; Lewis Sr, Samuel Arthur; DeBusk, Melanie Moses; Prikhodko, Vitaly Y; Storey, John Morse

    2016-01-01

    New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDI PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal. In addition, lean GDI engine exhaust temperatures are generally higher than diesel engines which results in more continuous regeneration of the GPF and less presence of the soot cake layer common to diesel particulate filters. Since the soot layer improves filtration efficiency, this distinction is important to consider. Research on the emission control of PM from a lean GDI engine with a GPF was conducted on an engine dynamometer. PM, after dilution, was characterized with membrane filters, organic vs. elemental carbon characterization, and size distribution techniques at various steady state engine speed and load points. The engine was operated in three primary combustion modes: stoichiometric, lean homogeneous, and lean stratified. In addition, rich combustion was utilized to simulate PM from engine operation during active regeneration of lean NOx control technologies. High (>95%) PM filtration efficiencies were observed over a wide range of conditions; however, some PM was observed to slip through the GPF at high speed and load conditions. The

  11. Renewable Diesel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Diesel Fuels: Status of Technology and R&D Needs Biodiesel Progress: ASTM Specifications and 2nd Generation Biodiesel Recent Research to Address Technical Barriers to ...

  12. Clean Diesel Technologies | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Clean Diesel Technologies Retrieved from "http:en.openei.orgwindex.php?titleCleanDieselTechnologies&oldid768455" Categories: Organizations Energy Efficiency...

  13. EPA Diesel Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EPA Diesel Update 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deercharmley.pdf (562.55 KB) More Documents & Publications EPA Mobile ...

  14. Efficiency Considerations of Diesel Premixed Charge Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biodiesel's Enabling Characteristics in Attaining Low Temperature Diesel Combustion System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine Fuel-Induced System ...

  15. Southeast BioDiesel | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    BioDiesel Jump to: navigation, search Name: Southeast BioDiesel Place: Charleston, South Carolina Product: Biodiesel producer based in South Carolina References: Southeast...

  16. Diesel Desulfurization Filter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Desulfurization Filter Diesel Desulfurization Filter 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005deerrohrbach.pdf More ...

  17. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Electrically-Assisted Diesel Particulate Filter Regeneration Durability of ...

  18. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Electrically-Assisted Diesel Particulate Filter Regeneration Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Biofuels Impact ...

  19. Advanced Diesel Engine and Aftertreatment Technology Development...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003 DEER Conference Presentation: Detroit Diesel Corporation PDF icon 2003deerbolton1.pdf ...

  20. Optimization of Advanced Diesel Engine Combustion Strategies...

    Energy.gov (indexed) [DOE]

    Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Use of Low Cetane Fuel to Enable Low Temperature ...

  1. Diesel Particulate Filters: Market Introducution in Europe |...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications A New Active DPF System for "Stop and Go" Duty-Cycle Vehicles French perspective on diesel engines & emissions Diesel Particulate Filter: A Success ...

  2. Caterpillar Diesel Racing: Yesterday & Today | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    a 2-Cycle Marine Engine Adaptive Control to Improve Low Temperature Diesel Engine Combustion Emissions and Durability of Underground Mining Diesel Particulate Filter Applications

  3. American Agri diesel LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    American Agri diesel LLC Jump to: navigation, search Name: American Agri-diesel LLC Place: Colorado Springs, Colorado Product: Biodiesel producer in Colorado. References: American...

  4. Further improvement of conventional diesel NOx aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Further improvement of conventional diesel NOx aftertreatment concepts as pathway for SULEV Further improvement of conventional diesel NOx aftertreatment concepts as pathway for ...

  5. NOx reduction in diesel fuel flames by additions of water and CO{sub 2}

    SciTech Connect (OSTI)

    Li, S.C.

    1997-12-31

    Natural gas has the highest heating value per unit mass (50.1 MJ/kg, LHV) of any of the hydrocarbon fuels (e.g., butane, liquid diesel fuel, gasoline, etc.). Since it has the lowest carbon content per unit mass, combustion of natural gas produces much less carbon dioxide, soot particles, and oxide of nitrogen than combustion of liquid diesel fuel. In view of anticipated strengthening of regulations on pollutant emissions from diesel engines, alternative fuels, such as compressed natural gas (CNG) and liquefied natural gas (LNG) have been experimentally introduced to replace the traditional diesel fuels in heavy-duty trucks, transit buses, off-road vehicles, locomotives, and stationary engines. To help in applying natural gas in Diesel engines and increasing combustion efficiency, the emphasis of the present paper is placed on the detailed flame chemistry of methane-air combustion. The present work is the continued effort in finding better methods to reduce NO{sub x}. The goal is to identify a reliable chemical reaction mechanism for natural gas in both premixed and diffusion flames and to establish a systematic reduced mechanism which may be useful for large-scale numerical modeling of combustion behavior in natural gas engines.

  6. Detailed Chemical Kinetic Reaction Mechanisms for Primary Reference Fuels for Diesel Cetane Number and Spark-Ignition Octane Number

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Mehl, M; Curran, H J

    2010-03-03

    For the first time, a detailed chemical kinetic reaction mechanism is developed for primary reference fuel mixtures of n-hexadecane and 2,2,4,4,6,8,8-heptamethyl nonane for diesel cetane ratings. The mechanisms are constructed using existing rules for reaction pathways and rate expressions developed previously for the primary reference fuels for gasoline octane ratings, n-heptane and iso-octane. These reaction mechanisms are validated by comparisons between computed and experimental results for shock tube ignition and for oxidation under jet-stirred reactor conditions. The combined kinetic reaction mechanism contains the submechanisms for the primary reference fuels for diesel cetane ratings and submechanisms for the primary reference fuels for gasoline octane ratings, all in one integrated large kinetic reaction mechanism. Representative applications of this mechanism to two test problems are presented, one describing fuel/air autoignition variations with changes in fuel cetane numbers, and the other describing fuel combustion in a jet-stirred reactor environment with the fuel varying from pure 2,2,4,4,6,8,8-heptamethyl nonane (Cetane number of 15) to pure n-hexadecane (Cetane number of 100). The final reaction mechanism for the primary reference fuels for diesel fuel and gasoline is available on the web.

  7. Reformulated diesel fuel and method

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-08-22

    A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

  8. Ethanol Demand in United States Gasoline Production

    SciTech Connect (OSTI)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  9. Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II

    Energy.gov (indexed) [DOE]

    Bin 5 DOE and Ford Motor Company Advanced CIDI Emission Control System Development Program (DE-FC26-01NT41103) | Department of Energy 4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Ford Motor Company 2004_deer_hammerle.pdf (444.2 KB) More Documents & Publications Urea SCR and DPF System for Deisel Sport Utility Vehicle Meeting Tier II Bin 5

  10. Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies

    SciTech Connect (OSTI)

    Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A.

    2011-01-01

    This report documents the National Renewable Energy Laboratory's (NREL's) assessment of the feasibility of making gasoline via the methanol-to-gasoline route using syngas from a 2,000 dry metric tonne/day (2,205 U.S. ton/day) biomass-fed facility. A new technoeconomic model was developed in Aspen Plus for this study, based on the model developed for NREL's thermochemical ethanol design report (Phillips et al. 2007). The necessary process changes were incorporated into a biomass-to-gasoline model using a methanol synthesis operation followed by conversion, upgrading, and finishing to gasoline. Using a methodology similar to that used in previous NREL design reports and a feedstock cost of $50.70/dry ton ($55.89/dry metric tonne), the estimated plant gate price is $16.60/MMBtu ($15.73/GJ) (U.S. $2007) for gasoline and liquefied petroleum gas (LPG) produced from biomass via gasification of wood, methanol synthesis, and the methanol-to-gasoline process. The corresponding unit prices for gasoline and LPG are $1.95/gallon ($0.52/liter) and $1.53/gallon ($0.40/liter) with yields of 55.1 and 9.3 gallons per U.S. ton of dry biomass (229.9 and 38.8 liters per metric tonne of dry biomass), respectively.

  11. Fact #835: August 25, 2014 Average Annual Gasoline Pump Price...

    Energy.gov (indexed) [DOE]

    35: Average Annual Gasoline Pump Price, 1929-2013 fotw835web.xlsx (21.31 KB) More Documents & Publications Fact 915: March 7, 2016 Average Historical Annual Gasoline Pump Price, ...

  12. U.S. gasoline price falls under $3 (long version)

    U.S. Energy Information Administration (EIA) (indexed site)

    November 3, 2014 U.S. gasoline price falls under 3 (long version) The U.S. average retail price for regular gasoline fell to its lowest level since December 2010 at 2.99 a gallon ...

  13. U.S. gasoline price falls under $3 (short version)

    U.S. Energy Information Administration (EIA) (indexed site)

    2014 U.S. gasoline price falls under 3 (short version) The U.S. average retail price for regular gasoline fell to its lowest level since December 2010 at 2.99 a gallon on Monday. ...

  14. EPA Clean Diesel Funding Assistance Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Environmental Protection Agency (EPA) is accepting applications for the Clean Diesel Funding Assistance Program for projects to achieve significant reductions in diesel emissions in terms of tons of pollution produced by diesel engines and diesel emissions exposure, particularly from fleets operating at or servicing goods movement facilities located in areas designated as having poor air quality.

  15. EPA Tribal Clean Diesel Funding Assistance Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Environmental Protection Agency (EPA) is accepting applications for the Tribal Clean Diesel Funding Assistance Program for tribal projects to achieve significant reductions in diesel emissions in terms of tons of pollution produced by diesel engines and diesel emissions exposure. Eligible entities include tribal governments.

  16. Particle Sensor for Diesel Combustion Monitoring

    Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: University of Minnesota and Honeywell International

  17. Diesel fuel from biomass

    SciTech Connect (OSTI)

    Kuester, J.L.

    1984-01-01

    A project to convert various biomass materials to diesel type transportation fuel compatible with current engine designs and the existing distribution system is described. A continuous thermochemical indirect liquefaction approach is used. The system consists of a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide followed by a catalytic liquefaction step to convert the synthesis gas to liquid hydrocarbon fuel. The major emphasis on the project at the present time is to maximize product yield. A level of 60 gals of diesel type fuel per ton of feedstock (dry, ash free basis) is expected. Numerous materials have been processed through the conversion system without any significant change in product quality (essentially C/sub 7/-C/sub 17/ paraffinic hydrocarbons with cetane indicies of 50+). Other tasks in progress include factor studies, process simplification, process control and scale-up to a 10 ton/day Engineering Test Facility. 18 references, 4 figures, 9 tables.

  18. Note on the structural stability of gasoline demand and the welfare economics of gasoline taxation

    SciTech Connect (OSTI)

    Kwast, M.L.

    1980-04-01

    A partial adjustment model is used to investigate how the 1973 to 1974 oil embargo affected the structural stability of gasoline demand and to compute the welfare effects of higher gasoline taxes. A variety of statistical tests are used to demonstrate the structural stability of gasoline demand in spite of higher prices. A case study demonstrates only modest price elasticity in response to increased taxes. Higher excise taxes are felt to be justified, however, as an efficient source of revenue even though their effect on demand is limited. 17 references, 4 tables. (DCK)

  19. Gasoline prices continue to decrease (long version)

    U.S. Energy Information Administration (EIA) (indexed site)

    3, 2014 Gasoline prices continue to decrease (long version) The U.S. average retail price for regular gasoline fell to $3.29 a gallon on Monday. That's down 3-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.49 a gallon, up 6-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.08 a gallon, down 9-tenths of a penny. This is Amerine Woodyard, with

  20. Gasoline prices continue to decrease (long version)

    U.S. Energy Information Administration (EIA) (indexed site)

    19, 2014 Gasoline prices continue to decrease (long version) The U.S. average retail price for regular gasoline fell to $3.67 a gallon on Monday. That's down 3-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 4.02 a gallon, down 7-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.44 a gallon, up 2-tenths of a penny.

  1. Gasoline prices continue to fall (long version)

    U.S. Energy Information Administration (EIA) (indexed site)

    Gasoline prices continue to fall (long version) The U.S. average retail price for regular gasoline decreased for the second week in a row to $3.71 a gallon on Monday. That's down 4.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 4.05 a gallon, down 2 cents from a week ago. Prices were lowest in the Rocky Mountain States at 3.47 a gallon, down 7-tenths of a penny

  2. Gasoline prices continue to fall (long version)

    U.S. Energy Information Administration (EIA) (indexed site)

    Gasoline prices continue to fall (long version) The U.S. average retail price for regular gasoline fell to $3.61 a gallon on Monday. That's down 3.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.93 a gallon, down 1.7 cents from a week ago. Prices were lowest in the Gulf Coast States at 3.43 a gallon, down 4.6

  3. Gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) (indexed site)

    , 2014 Gasoline prices continue to increase (long version) The U.S. average retail price for regular gasoline rose to $3.48 a gallon on Monday. That's up 3 ½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.71 a gallon, up 5.6 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.23 a gallon, up 1.8 cents. This is Marcela Rourk, with EIA, in Washington.

  4. Gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) (indexed site)

    March 10, 2014 Gasoline prices continue to increase (long version) The U.S. average retail price for regular gasoline rose to $3.51 a gallon on Monday. That's up 3.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.76 a gallon, up 4.7 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.25 a gallon, up 2 ½ cents.

  5. Gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) (indexed site)

    7, 2014 Gasoline prices continue to increase (long version) The U.S. average retail price for regular gasoline rose to $3.55 a gallon on Monday. That's up 3½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.81 a gallon, up 5½ cents from a week ago. Prices were lowest in the Gulf Coast region at 3.28 a gallon, up 3.1 cents. This is Marcela Rourk, with EIA, in Washington.

  6. Gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) (indexed site)

    14, 2014 Gasoline prices continue to increase (long version) The U.S. average retail price for regular gasoline rose to $3.65 a gallon on Monday. That's up 5½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.98 a gallon, up 9.7 cents from a week ago. Prices were lowest in the Rocky Mountain states at 3.44 a gallon, down 8-tenths of a penny

  7. Gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) (indexed site)

    21, 2014 Gasoline prices continue to increase (long version) The U.S. average retail price for regular gasoline rose to $3.68 a gallon on Monday. That's up 3.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 4.03 a gallon, up a nickel from a week ago. Prices were lowest in the Rocky Mountain states at 3.45 a gallon, up 8-tenths of a penny

  8. Gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) (indexed site)

    24, 2014 Gasoline prices continue to increase (long version) The U.S. average retail price for regular gasoline rose to $3.44 a gallon on Monday. That's up 6.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.65 a gallon, up 8 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.21 a gallon, up

  9. Gasoline prices continue to rise (long version)

    U.S. Energy Information Administration (EIA) (indexed site)

    Gasoline prices continue to rise (long version) The U.S. average retail price for regular gasoline rose to $3.67 a gallon on Monday. That's up 7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.95 a gallon, up 1.4 cents from a week ago. Prices were lowest in the Gulf Coast States at 3.39 a gallon, up 2.8 cents. The Midwest region boasted the highest weekly increase at 18.8 cents with

  10. Gasoline prices inch down (long version)

    U.S. Energy Information Administration (EIA) (indexed site)

    Gasoline prices inch down (long version) The U.S. average retail price for regular gasoline fell to $3.68 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.96 a gallon, down 4.2 cents from a week ago and marking the first dip below the 4 dollar mark since mid-February. Prices were lowest in the Rocky Mountain States at 3.47 a gallon, remaining unchanged

  11. NAFTA and gasoline: Canada, U. S. , Mexico

    SciTech Connect (OSTI)

    Not Available

    1993-03-31

    The North American Free Trade Agreement has become a hotly debated topic all over the world, but especially in the countries involved: Mexico, United States, and Canada. Comments made by high ranking officials imply there are differences to reconcile before the agreement is passed. Toward seeing these countries in trio, this issue compares gasoline markets and some energy perspectives. The purpose of this article is to contribute to understanding of the three countries through their petroleum industry structure. Gasoline consumption and retail delivery infrastructure are compared and contrasted to illustrate the differences among the NAFTA countries.

  12. What Drives U.S. Gasoline Prices?

    U.S. Energy Information Administration (EIA) (indexed site)

    What Drives U.S. Gasoline Prices? October 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | What Drives U.S. Gasoline Prices? i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States

  13. Lean Gasoline System Development for Fuel Efficient Small Car | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Lean Gasoline System Development for Fuel Efficient Small Car Lean Gasoline System Development for Fuel Efficient Small Car 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace063_smith_2012_o.pdf (1.91 MB) More Documents & Publications Lean Gasoline System Development for Fuel Efficient Small Car Lean Gasoline System Development for Fuel Efficient Small Car PHEV Engine and Aftertreatment Model Development

  14. Fact #565: April 6, 2009 Household Gasoline Expenditures by Income |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 5: April 6, 2009 Household Gasoline Expenditures by Income Fact #565: April 6, 2009 Household Gasoline Expenditures by Income In the annual Consumer Expenditure Survey, household incomes are grouped into five equal parts called quintiles (each quintile is 20%). Households in the second and third quintiles consistently have a higher share of spending on gasoline each year than households in the other quintiles. Household Gasoline Expenditures by Income Quintile Bar graph

  15. DOE Gasoline Price Watch Website and Hotline | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gasoline Price Watch Website and Hotline DOE Gasoline Price Watch Website and Hotline April 20, 2006 - 12:26pm Addthis WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today is reminding consumers about the Department of Energy's (DOE) gasoline price reporting system. Consumers can report activity at local gasoline filling stations that they believe may constitute "gouging" or "price fixing" by visiting gaswatch.energy.gov/. "There are many legitimate factors

  16. Improving Ethanol-Gasoline Blends by Addition of Higher Alcohols |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Ethanol-Gasoline Blends by Addition of Higher Alcohols Improving Ethanol-Gasoline Blends by Addition of Higher Alcohols Mixtures of ethanol, gasoline, and higher alcohols were evaluated to determine if they offer superior performance to ethanol/gasoline blends in meeting the Renewal Fuels Standard II. deer12_ickes.pdf (1.45 MB) More Documents & Publications Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Impact of ethanol and butanol as oxygenates on

  17. National Survey of E85 and Gasoline Prices

    SciTech Connect (OSTI)

    Bergeron, P.

    2008-10-01

    Study compares the prices of E85 and regular gasoline nationally and regionally over time for one year.

  18. Electric Motors

    Energy.gov [DOE]

    Section 313 of the Energy Independence and Security Act (EISA) of 2007 raised Federal minimum efficiency standards for general-purpose, single-speed, polyphase induction motors of 1 to 500 horsepower (hp). This new standard took effect in December 2010. The new minimum efficiency levels match FEMP's performance requirement for these motors.

  19. Impact of Biodiesel on Modern Diesel Engine Emissions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Modern Diesel Engine Emissions Impact of Biodiesel on Modern Diesel Engine Emissions 2011 ... Emission Performance of Modern Diesel Engines Fueled with Biodiesel DPF Performance with ...

  20. CNG and Diesel Transite Bus Emissions in Review | Department...

    Energy.gov (indexed) [DOE]

    More Documents & Publications ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses Comparison of Clean Diesel Buses to CNG Buses Diesel Health Impacts & Recent ...

  1. Predicting Thermal Stress in Diesel Particulate Filters | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermal Stress in Diesel Particulate Filters Predicting Thermal Stress in Diesel Particulate Filters 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Corning ...

  2. Lubricant Formulation and Consumption Effects on Diesel Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: 2005 Diesel Engine ...

  3. 2007 Diesel Particulate Measurement Research (E-66 Project) ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Diesel Particulate Measurement Research (E-66 Project) 2007 Diesel Particulate Measurement Research (E-66 Project) 2004 Diesel Engine Emissions Reduction (DEER) Conference: ...

  4. Retrofit Diesel Emissions Control System Providing 50% NOxControl...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER) Conference ...

  5. Future Diesel Engine Thermal Efficiency Improvement andn Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology 2005 Diesel ...

  6. Cummins Light Truck Clean Diesel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Light Truck Clean Diesel Cummins Light Truck Clean Diesel 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation PDF icon 2004deerstang2.pdf More Documents & ...

  7. Neutron Imaging of Diesel Particulate Filters | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Diesel Particulate Filters Neutron Imaging of Diesel Particulate Filters Neutron computed tomography shows soot and ash loading in a cordierite diesel particulate filter PDF icon ...

  8. Requirements-Driven Diesel Catalyzed Particulate Trap Design...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization 2005 Diesel Engine ...

  9. Perspectives Regarding Diesel Engine Emissions Reduction in the...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast 2004 Diesel Engine Emissions ...

  10. Dumping Dirty Diesels: The View From the Bridge | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dumping Dirty Diesels: The View From the Bridge Dumping Dirty Diesels: The View From the Bridge 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters ...

  11. Light Duty Diesels in the United States - Some Perspectives ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    KB) More Documents & Publications Update on Diesel Exhaust Emission Control Technology and Regulations Review of Diesel Emission Control Technology Diesel Emission Control Review

  12. Update on Diesel Exhaust Emission Control Technology and Regulations...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Control Technology and Regulations Update on Diesel Exhaust Emission Control Technology ... Light Duty Diesels in the United States - Some Perspectives Review of Diesel Emission ...

  13. An Improvement of Diesel PM and NOx Reduction System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Development on simultaneous reduction system of NOx and PM from a diesel engine An Improvement of Diesel PM and NOx Reduction System New Diesel ...

  14. Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines 2005 Diesel Engine Emissions ...

  15. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications ...

  16. Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine ...

  17. Technical Challenges and Opportunities Light-Duty Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine ...

  18. North American Market Challenges for Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    North American Market Challenges for Diesel Engines North American Market Challenges for Diesel Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Gale ...

  19. Assessment of well-to-wheel energy use and greenhouse gas emissions of Fischer-Tropsch diesel.

    SciTech Connect (OSTI)

    Wang, M.

    2001-12-13

    The middle distillate fuel produced from natural gas (NG) via the Fischer-Tropsch (FT) process has been proposed as a motor fuel for compression-ignition (CI) engine vehicles. FT diesel could help reduce U.S. dependence on imported oil. The U.S. Department of Energy (DOE) is evaluating the designation of FT diesel as an alternative motor fuel under the 1992 Energy Policy Act (EPACT). As part of this evaluation, DOE has asked the Center for Transportation Research at Argonne National Laboratory to conduct an assessment of well-to-wheels (WTW) energy use and greenhouse gas (GHG) emissions of FT diesel compared with conventional motor fuels (i.e., petroleum diesel). For this assessment, we applied Argonne's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model to conduct WTW analysis of FT diesel and petroleum diesel. This report documents Argonne's assessment. The results are presented in Section 2. Appendix A describes the methodologies and assumptions used in the assessment.

  20. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $4.01 a gallon on Monday. That's down 4.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.17 a gallon, down 3.3 cents from a week ago. Prices were lowest in the Gulf Coast region and the Rocky Mountain States at 3.94 a gallon, down 5.4 cents and down 3.6 cents, respectively

  1. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.98 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.13 a gallon, down 1.4 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.89 a gallon, down 2.7

  2. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.94 a gallon on Monday. That's down 3 1/2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.11 a gallon, down 2.9 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.85 a gallon, down 3.6 cents. This is Amerine Woodyard, with EIA, in Washington.

  3. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.89 a gallon on Monday. That's down 5 1/2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.03 a gallon, down 7.8 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.80 a gallon, down a nickel. This is Amerine Woodyard, with EIA, in Washington.

  4. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.92 a gallon on Monday. That's down 7-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England and Central Atlantic regions at 4.12 a gallon, down 6-tenths of a penny and 1.1 cents, respectively, from a week ago. Prices were lowest in the Gulf Coast region at 3.78 a gallon.

  5. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.90 a gallon on Monday. That's down 1.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region and West Coast states at 4.05 a gallon. Prices were lowest in the Gulf Coast region at 3.82 a gallon, down 1.7 cents from a week ago.

  6. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.92 a gallon on Monday. That's down 3 cents from a week ago based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 4.08 a gallon, down 3.6 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.83 a gallon, down 3.1 cents.

  7. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.89 a gallon on Monday. That's down 1.1 cents from a week ago based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 4.05 a gallon, down 5-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.80 a gallon, down 8-tenths of a penny.

  8. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.86 a gallon on Monday. That's down 1.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 4.02 a gallon, down 2.1 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.77 a gallon, down 1.4 cents. This is Marlana Anderson, with EIA, in Washington. For more information,

  9. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.83 a gallon on Monday. That's down 2 ½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.99 a gallon, down 1.7 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.75 a gallon, down 1.7 cents. This is Amerine Woodyard, with EIA, in Washington. For more information,

  10. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.82 a gallon on Monday. That's down a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.98 a gallon, down a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.75 a gallon, down 7-tenths of a penny. This is Amerine Woodyard, with EIA, in Washington. For more

  11. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.87 a gallon on Monday. That's down 8-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.06 a gallon, down 2-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast states at 3.77 a gallon, down 7-tenths of a penny

  12. Diesel prices continue to fall

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices continue to fall The U.S. average retail price for on-highway diesel fuel fell to $4.09 a gallon on Monday. That's down 4.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.24 a gallon, down 5.5 cents from a week ago. Prices were lowest in the Rocky Mountain States at 4.01 a gallon, down 3.7 cents

  13. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $3.91 a gallon on Monday. That's up 7-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.12 a gallon, up 4-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast states at 3.80 a gallon, up 1.3 cents.

  14. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices continue to increase The U.S. retail price for on-highway diesel fuel rose to its highest average since September at $3.95 a gallon. That's up 4.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.31 a gallon, up 13.4 cents from a week ago and marking the highest average this region has seen since last February. Prices were lowest in the Gulf Coast states at 3.78 a gallon,

  15. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $3.98 a gallon. That's up 2.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.37 a gallon, up 6.4 cents from a week ago and marking the highest average this region has seen since August 2008. Prices were lowest in the Gulf Coast states at 3.79 a gallon, up 1.3 cents.

  16. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $3.89 a gallon on Monday. That's up 2.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. For the first time this year, the West Coast surpassed New England for the highest regional diesel prices at 4.01 a gallon, up 3.9 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.78 a gallon, up 3.6 cents

  17. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $3.87 a gallon on Monday. That's up 3.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.01 a gallon, up 4 cents from a week ago, followed by the West Coast region at 4.00 a gallon, up 4.6 cents. Prices were lowest in the Gulf Coast region and Lower Atlantic States at 3.80 a gallon.

  18. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $3.90 a gallon on Monday. That's up 3.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.05 a gallon, up 4.2 cents from a week ago, followed closely by the West Coast region at 4.04 a gallon, up 4.4 cents. Prices were lowest in the Gulf Coast region at 3.84 a gallon, up 4.3 cents.

  19. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $3.92 a gallon on Monday. That's up 1.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Regionally, diesel prices were highest in New England at 4.06 a gallon, up 1.4 cents from a week ago, followed closely by the West Coast states at 4.05 a gallon, up 1.1 cents. Prices were lowest in the Gulf Coast region at 3.85 a gallon, up 4-tenths of a

  20. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) (indexed site)

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $3.98 a gallon on Labor Day Monday. That's up 6.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 4.13 a gallon, up 5.6 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.90 a gallon, up 6.8 cents.