National Library of Energy BETA

Sample records for modern horizontal-axis wind

  1. Yaw dynamics of horizontal axis wind turbines

    SciTech Connect

    Hansen, A.C. )

    1992-05-01

    Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw- controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they known they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

  2. Advanced horizontal axis wind turbines in windfarms

    SciTech Connect

    None, None

    2009-01-18

    The wind turbine section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  3. New airfoils for small horizontal axis wind turbines

    SciTech Connect

    Giguere, P.; Selig, M.S.

    1997-12-31

    In a continuing effort to enhance the performance of small energy systems, one root airfoil and three primary airfoils were specifically designed for small horizontal axis wind turbines. These airfoils are intended primarily for 1-10 kW variable-speed wind turbines for both conventional (tapered/twisted) or pultruded blades. The four airfoils were wind-tunnel tested at Reynolds numbers between 100,000 and 500,000. Tests with simulated leading-edge roughness were also conducted. The results indicate that small variable-speed wind turbines should benefit from the use of the new airfoils which provide enhanced lift-to-drag ratio performance as compared with previously existing airfoils.

  4. Lifting surface performance analysis for horizontal axis wind turbines

    SciTech Connect

    Kocurek, D.

    1987-06-01

    This report describes how numerical lifting-surface theory is applied to the calculation of a horizontal-axis wind turbine's aerodynamic characteristics and performance. The report also describes how such an application is implemented as a computer program. The method evolved from rotary-wing and helicopter applications and features a detailed, prescribed wake. The wake model extends from a hovering-rotor experimental generalization to include the effect of the windmill brake state on the radial and axial displacement rates of the trailing vortex system. Performance calculations are made by coupling the lifting-surface circulation solution to a blade-element analysis that incorporates two-dimensional airfoil characteristics as functions of angle of attack and Reynolds number. Several analytical stall models are also provided to extend the airfoil characteristics beyond the limits of available data. Although this work focuses on the steady-performance problem, the method includes ways to investigate the effects of wind-shear profile, tower shadow, and off-axis shaft alignment. Correlating the method to measured wind-turbine performance, and comparing it to blade-element momentum theory calculations, validate and highlight the extreme sensitivity of predictions to the quality of early post-stall airfoil behavior.

  5. Determination of Elastic Twist in Horizontal Axis Wind Turbines (HAWTs)

    SciTech Connect

    Stoddard, F.; Nelson, V.; Starcher, K.; Andrews, B.

    2006-06-01

    This report presents the results of a project at the Alternative Energy Institute (AEI) which measured and calculated the elastic twist of three representative composite horizontal-axis blades: Carter 300, Gougeon ESI 54, and UTRC 8 kW.

  6. Horizontal-Axis Wind Turbine Wake Sensitivity to Different Blade...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    U inflow angle at blade section relative to plane of rotation + , degrees angular velocity of rotor, rads SW iF T Scaled Wind Farm Technology x time average of...

  7. Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing

    SciTech Connect

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  8. Theoretical and experimental power from large horizontal-axis wind turbines

    SciTech Connect

    Viterna, L A; Janetzke, D C

    1982-09-01

    A method for calculating the output power from large horizontal-axis wind turbines is presented. Modifications to the airfoil characteristics and the momentum portion of classical blade element-momentum theory are given that improve correlation with measured data. Improvement is particularly evident at low tip speed ratios where aerodynamic stall can occur as the blade experiences high angles of attack. Output power calculated using the modified theory is compared with measured data for several large wind turbines. These wind turbines range in size from the DOE/NASA 100 kW Mod-O (38 m rotor diameter) to the 2000 kW Mod-1 (61 m rotor diameter). The calculated results are in good agreement with measured data from these machines.

  9. Development of passive-controlled HUB (teetered brake & damper mechanism) of horizontal axis wind turbine

    SciTech Connect

    Shimizu, Yukimaru; Kamada, Yasunari; Maeda, Takao

    1997-12-31

    For the purpose of the improvement of reliability of the Mega-Watt wind turbine, this paper indicates the development of an original mechanism for the passive-controlled hub, which has the effects of braking and damping on aerodynamic forces. This mechanism is useful for variable speed control of the large wind turbine. The passive-controlled hub is the combination of two mechanisms. One is the passive-teetered and damping mechanism, and the other is the passive-variable-pitch mechanism. These mechanism are carried out by the combination of the teetering and feathering motions. When the wind speed exceeds the rated wind speed, the blade is passively teetered in a downwind direction and, simultaneously, a feathering mechanism, which is linked to the teetering mechanism through a connecting rods, is activated. Testing of the model horizontal axis wind turbine in a wind tunnel showed that the passive-controlled hub mechanism can suppress the over-rotational speed of the rotor. By the application of the passive-controlled hub mechanism, the maximum rotor speed is reduced to about 60%.

  10. NASTRAN-based computer program for structural dynamic analysis of horizontal axis wind turbines

    SciTech Connect

    Lobitz, D.W.

    1984-01-01

    This paper describes a computer program developed for structural dynamic analysis of horizontal axis wind turbines (HAWTs). It is based on the finite element method through its reliance on NASTRAN for the development of mass, stiffness, and damping matrices of the tower and rotor, which are treated in NASTRAN as separate structures. The tower is modeled in a stationary frame and the rotor in one rotating at a constant angular velocity. The two structures are subsequently joined together (external to NASTRAN) using a time-dependent transformation consistent with the hub configuration. Aerodynamic loads are computed with an established flow model based on strip theory. Aeroelastic effects are included by incorporating the local velocity and twisting deformation of the blade in the load computation. The turbulent nature of the wind, both in space and time, is modeled by adding in stochastic wind increments. The resulting equations of motion are solved in the time domain using the implicit Newmark-Beta integrator. Preliminary comparisons with data from the Boeing/NASA MOD2 HAWT indicate that the code is capable of accurately and efficiently predicting the response of HAWTs driven by turbulent winds.

  11. A 3-D aerodynamic method for the analysis of isolated horizontal-axis wind turbines

    SciTech Connect

    Ammara, I.; Masson, C.; Paraschivoiu, I.

    1997-12-31

    In most existing performance-analysis methods, wind turbines are considered isolated so that interference effects caused by other rotors or by the site topography are neglected. The main objective of this paper is to propose a practical 3-D method suitable for the study of these effects, in order to optimize the arrangement and the positioning of Horizontal-Axis Wind Turbines (HAWTs) in a wind farm. In the proposed methodology, the flow field around isolated HAWTs is predicted by solving the 3-D, time-averaged, steady-state, incompressible, Navier-Stokes equations in which the turbines are represented by distributions of momentum sources. The resulting governing equations are solved using a Control-Volume Finite Element Method (CVFEM). The fundamental aspects related to the development of a practical 3-D method are discussed in this paper, with an emphasis on some of the challenges that arose during its implementation. The current implementation is limited to the analysis of isolated HAWTs. Preliminary results have indicated that, the proposed 3-D method reaches the same level of accuracy, in terms of performance predictions, that the previously developed 2-D axisymmetric model and the well-known momentum-strip theory, while still using reasonable computers resources. It can be considered as a useful tool for the design of HAWTs. Its main advantages, however, are its intrinsic capacity to predict the details of the flow in the wake, and its capabilities of modelling arbitrary wind-turbine arrangements and including ground effects.

  12. Preliminary analysis of the audible noise of constant-speed, horizontal-axis wind-turbine generators

    SciTech Connect

    Keast, D. N.; Potter, R. C.

    1980-07-01

    An analytical procedure has been developed for calculating certain aerodynamic sound levels produced by large, horizontal-axis wind-turbine generators (WTG's) such as the DOE/NASA Mods-0, -0A, -1, and -2. This preliminary procedure is based upon very limited field data from the Mod-0. It postulates a noise component due to the (constant) rotation of the blades of the WTG, plus a wake-noise component that increases with the square of the power produced by the WTG. Mechanical sound from machinery, and low-frequency impulsive sounds produced by blade interaction with the wake of the support tower are not considered.

  13. Prediction and analysis of infra and low-frequency noise of upwind horizontal axis wind turbine using statistical wind speed model

    SciTech Connect

    Lee, Gwang-Se; Cheong, Cheolung

    2014-12-15

    Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs), few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF) wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF) noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade of the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson’s acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson’s analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine.

  14. A study of pitch oscillation and roughness on airfoils used for horizontal axis wind turbines

    SciTech Connect

    Gregorek, G.M.; Hoffmann, M.J.; Ramsay, R.R.; Janiszewska, J.M. [Ohio State Univ., Columbus, OH (United States)

    1995-12-01

    Under subcontract XF-1-11009-3 the Ohio State University Aeronautical and Astronautical Research Laboratory (OSU/AARL) with the National Renewable Energy Laboratory (NREL) developed an extensive database of empirical aerodynamic data. These data will assist in the development of analytical models and in the design of new airfoils for wind turbines. To accomplish the main objective, airfoil models were designed, built and wind tunnel tested with and without model leading edge grit roughness (LEGR). LEGR simulates surface irregularities due to the accumulation of insect debris, ice, and/or the aging process. This report is a summary of project project activity for Phase III, which encompasses the time period from September 17, 1 993 to September 6, 1 994.

  15. An interactive version of PropID for the aerodynamic design of horizontal axis wind turbines

    SciTech Connect

    Ninham, C.P.; Selig, M.S.

    1997-12-31

    The original PROP code developed by AeroVironment, Inc. and its various versions have been in use for wind turbine performance predictions for over ten years. Due to its simplicity, rapid execution times and relatively accurate predictions, it has become an industry standard in the US. The Europeans have similar blade-element/momentum methods in use for design. Over the years, PROP has continued to be improved (in its accuracy and capability), e.g., PROPSH, PROPPC, PROP93, and PropID. The latter version incorporates a unique inverse design capability that allows the user to specify the desired aerodynamic characteristics from which the corresponding blade geometry is determined. Through this approach, tedious efforts related to manually adjusting the chord, twist, pitch and rpm to achieve desired aerodynamic/performance characteristics can be avoided, thereby making it possible to perform more extensive trade studies in an effort to optimize performance. Past versions of PropID did not have supporting graphics software. The more current version to be discussed includes a Matlab-based graphical user interface (GUI) and additional features that will be discussed in this paper.

  16. Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code: Preprint

    SciTech Connect

    Maniaci, D. C.; Li, Y.

    2012-04-01

    This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. It summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30 degrees of yaw.

  17. Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code

    SciTech Connect

    Maniaci, D. C.; Li, Y.

    2011-10-01

    This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. This paper summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30{sup o} of yaw.

  18. Validation of Simplified Load Equations through Loads Measurement and Modeling of a Small Horizontal-Axis Wind Turbine Tower; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Dana, S.; Damiani, R.; vanDam, J.

    2015-05-18

    As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, NREL tested a small horizontal axis wind turbine in the field at the National Wind Technology Center (NWTC). The test turbine was a 2.1-kW downwind machine mounted on an 18-meter multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the output of an aeroelastic model of the turbine. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads. In this project, we compared fatigue loads as measured in the field, as predicted by the aeroelastic model, and as calculated using the simplified design equations.

  19. MHK Technologies/Horizontal Axis Logarithmic Spiral Turbine ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Horizontal Axis Logarithmic Spiral Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Golden...

  20. Development of more efficient impellers for horizontal axis windmills. Final report, October 1, 1980-April 30, 1982

    SciTech Connect

    Fosdick, G.A. Jr.

    1982-01-01

    The purpose of the project reported has been the development of a wind turbine incorporating a new concept in horizontal-axis impellers. The impeller consists of six rows of radial blades arranged to extend in a spiral covering 55/sup 0/ of arc about a hollow support section. Each blade in the rows is contoured to receive both direct flow pressure as well as airfoil lift in order to provide maximum energy transfers from low velocity airflows such as those normally found in most localities throughout the country most of the time. A disclosure of the wind turbine configuration is attached. (LEW)

  1. Aerodynamic analysis of a 10 kW horizontal-axis windmill

    SciTech Connect

    Figard, R.L.

    1980-01-01

    An aerodynamic study of the performance and the flowfield in the vicinity of the rotor of a three bladed 10 kW, horizontal-axis windmill is presented. The windmill has a 6.38 m (20.92 ft) diameter rotor and is rated at 10 kW in a 13.41 m/s (44.0 fps) wind. Three basic approaches are utilized. First, field measurements of the performance and the axial velocity and turbulence behind the rotor were conducted. Second, wind tunnel tests of a 1:5 scale model were performed. Third, theoretical analyses of the windmill were made. This included performance predictions with a computerized, modified blade element (vortex theory) analysis and the development and utilization of a numerical procedure employing the full Navier-Stokes equations in axi-symmetric form to examine the wake development in detail. In that effort the rotor is modeled by an actuator disk in a uniform flow, a simple turbulence transport model based on an integrated TKE equation is applied, and the equations of motion are taken in terms of the stream function, one vorticity component, and the peripheral velocity. The results of each of the three approaches shows agreement within 10 to 15% with the other two approaches.

  2. Wind Integration National Dataset Toolkit | Grid Modernization...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Integration National Dataset Toolkit The Wind Integration National Dataset (WIND) Toolkit is an update and expansion of the Eastern Integration Data Set and Western Wind ...

  3. Wind Integration Data Sets | Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    competitive. *Wiser, R.; Bolinger, M. (2015). 2014 Wind Technologies Market Report. U.S. Department of Energy. Wind Energy Benefits Photo from DOE Flickr. 465 020 003 In 2014, the average levelized price of signed wind power purchase agreements was about 2.35 cents per kilowatt-hour. This price is cost competitive with new gas-fired power plants and projects compare favorably through 2040.* 2. Wind energy creates jobs. American Wind Energy Association. (2015). U.S. Wind Energy Annual Market

  4. Wind power 85

    SciTech Connect

    Not Available

    1985-01-01

    This book presents the papers given at a conference on wind turbines. Topics considered at the conference included resource assessment, wind tunnels, performance testing, aerodynamics, turbulence, fatigue, electric generators, wind loads, horizontal axis turbines, vertical axis turbines, Darrieus rotors, wind-powered pumps, economics, environmental impacts, national and international programs, field tests, flow models, feasibility studies, turbine blades, speed regulators, and airfoils.

  5. Wind power 85

    SciTech Connect

    Not Available

    1985-01-01

    This book presents the papers given at a conference on wind turbines. Topics considered at the conference included resource assessment, wind tunnel testing, vertical axis turbines, wind turbine generators, aerodynamics, airfoils, wind loads, Darrieus rotors, economics, legislation, regulations, environmental impacts, national and international programs, fatigue testing, and horizontal axis turbines.

  6. Comparison of Wind-Turbine Aeroelastic Codes Used for Certification: Preprint

    SciTech Connect

    Buhl, M. L., Jr.; Manjock, A.

    2006-01-01

    NREL created aeroelastic simulators for horizontal-axis wind turbines accepted by Germanischer Lloyd (GL) WindEnergie GmbH for manufacturers to use for on-shore wind turbine certification.

  7. Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine

    SciTech Connect

    Lawson, M. J.; Li, Y.; Sale, D. C.

    2011-10-01

    This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

  8. Land-Use Requirements of Modern Wind Power Plants in the United...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4 August 2009 Land-Use Requirements of Modern Wind Power Plants in the United States Paul Denholm, Maureen Hand, Maddalena Jackson, and Sean Ong National Renewable Energy...

  9. Western Wind Integration Data Set | Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Western Wind Integration Data Set The Western Wind Integration Data Set was designed to help energy professionals perform wind integration studies and estimate power production ...

  10. Eastern Wind Integration Data Set | Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Integration Data Set The Eastern Wind Integration Data Set was designed to help energy professionals perform wind integration studies and estimate power production from hypothetical wind power plants in the United States. Access the Eastern Wind Integration Data Set Resources ACCESS DATA SET DOWNLOAD REPORT Methodology The Eastern Wind Integration Data Set consists of 3 years (2004-2006) of 10-minute wind speed and plant output values for 1,326 simulated wind power plants as well as

  11. Western Wind and Solar Integration Study | Grid Modernization...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Can we integrate large amounts of wind and solar energy into the electric power system of the ... Development of Regional Wind Resource and Wind Plant Output Datasets Phase 2 Research ...

  12. Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine

    SciTech Connect

    Lawson, Mi. J.; Li, Y.; Sale, D. C.

    2011-01-01

    This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines (HATTs). First, an HATT blade was designed using the blade element momentum method in conjunction with a genetic optimization algorithm. Several unstructured computational grids were generated using this blade geometry and steady CFD simulations were used to perform a grid resolution study. Transient simulations were then performed to determine the effect of time-dependent flow phenomena and the size of the computational timestep on the numerical solution. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

  13. Eastern and Western Wind Integration Data Sets | Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Western Wind Integration Data Sets The Eastern Wind Integration Data Set and Western Wind Integration Data Set were designed to perform wind integration studies and estimate power production from hypothetical wind power plants in the United States. These data sets can help energy professionals such as transmission planners, utility planners, project developers, and university researchers: Perform spatial and temporal comparisons of sites, including: Geographic diversity Load correlation

  14. Western Wind and Solar Integration Study | Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Western Wind and Solar Integration Study Can we integrate large amounts of wind and solar energy into the electric power system of the West? That's the question explored by the Western Wind and Solar Integration Study, one of the largest such regional studies to date. Phase 1 Research During its first phase, the Western Wind and Solar Integration Study (WWSIS) investigated the benefits and challenges of integrating up to 35% wind and solar energy in the WestConnect subregion and, more broadly,

  15. Hawaii Solar and Wind Integration Studies | Grid Modernization...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... operate the island grids with interisland wind integration. A technical review committee of regional, national, and international technical experts with experience in electric ...

  16. New National Wind Potential Estimates for Modern and Near-Future Turbine Technologies (Poster)

    SciTech Connect

    Roberts, J. O.

    2014-01-01

    Recent advancements in utility-scale wind turbine technology and pricing have vastly increased the potential land area where turbines can be deployed in the United States. This presentation quantifies the new developable land potential (e.g., capacity curves), visually identifies new areas for possible development (e.g., new wind resource maps), and begins to address deployment barriers to wind in new areas for modern and future turbine technology.

  17. Automatic Identification of Closed-Loop Wind Turbine Dynamics via Genetic Programming

    SciTech Connect

    La Cava, William; Danai, Kourosh; Lackner, Matthew; Spector, Lee; Fleming, Paul; Wright, Alan

    2015-10-03

    Wind turbines are nonlinear systems that operate in turbulent environments. As such, their behavior is difficult to characterize accurately across a wide range of operating conditions by physically meaningful models. Customarily, data-based models of wind turbines are defined in 'black box' format, lacking in both conciseness and physical intelligibility. To address this deficiency, we identify models of a modern horizontal-axis wind turbine in symbolic form using a recently developed symbolic regression method. The method used relies on evolutionary multi-objective optimization to produce succinct dynamic models from operational data without 'a priori' knowledge of the system. We compare the produced models with models derived by other methods for their estimation capacity and evaluate the tradeoff between model intelligibility and accuracy. Several succinct models are found that predict wind turbine behavior as well as or better than more complex alternatives derived by other methods.

  18. FAST Simulation Tool Containing Methods for Predicting the Dynamic Response of Wind Turbines

    Energy Science and Technology Software Center

    2015-08-12

    FAST is a simulation tool (computer software) for modeling tlie dynamic response of horizontal-axis wind turbines. FAST employs a combined modal and multibody structural-dynamics formulation in the time domain.

  19. Locally fabricated Savonius rotor wind water pumps. Final report

    SciTech Connect

    Blake, S.

    1982-12-31

    A prototype Savonius rotor and supporting structure were designed and fabricated to power several configurations of water pumps. In addition, several commercially available horizontal axis water pumping windmills were purchased and installed adjacent to the Savonius rotor prototype such that simultaneous real-time data could be compared. The Savonius rotor was found to be materials intensive and difficult to govern at high wind speeds, and the horizontal axis machines were found to be more cost effective. (LEW)

  20. Gearbox and Drivetrain Models to Study Dynamic Effects of Modern Wind Turbines: Preprint

    SciTech Connect

    Girsang, I. P.; Dhupia, J. S.; Muljadi, E.; Singh, M.; Pao, L. Y.

    2013-10-01

    Wind turbine drivetrains consist of components that directly convert kinetic energy from the wind to electrical energy. Guaranteeing robust and reliable drivetrain designs is therefore important to minimize turbine downtime. Current drivetrain models often lack the ability to model both the impacts of electrical transients as well as wind turbulence and shear in one package. In this work, thecapability of the FAST wind turbine computer-aided engineering tool, developed by the National Renewable Energy Laboratory, is enhanced through integration of a dynamic model of the drivetrain. The dynamic drivetrain model is built using Simscape in the MATLAB/Simulink environment and incorporates detailed electrical generator models. This model can be used in the future to test advanced controlschemes to extend life of the gearbox.

  1. Vertical-axis wind turbines -- The current status of an old technology

    SciTech Connect

    Berg, D.E.

    1996-12-31

    Vertical-axis wind turbine technology is not well understood, even though the earliest wind machines rotated about a vertical axis. The operating environment of a vertical-axis wind turbine is quite complex, but detailed analysis capabilities have been developed and verified over the last 30 years. Although vertical-axis technology has not been widely commercialized, it exhibits both advantages and disadvantages compared to horizontal-axis technology, and in some applications, it appears to offer significant advantages.

  2. Energy 101: Wind Turbines

    ScienceCinema

    None

    2016-07-12

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  3. Energy 101: Wind Turbines

    SciTech Connect

    2011-01-01

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  4. Establishing a Comprehensive Wind Energy Program

    SciTech Connect

    Fleeter, Sanford

    2012-09-30

    This project was directed at establishing a comprehensive wind energy program in Indiana, including both educational and research components. A graduate/undergraduate course ME-514 - Fundamentals of Wind Energy has been established and offered and an interactive prediction of VAWT performance developed. Vertical axis wind turbines for education and research have been acquired, instrumented and installed on the roof top of a building on the Calumet campus and at West Lafayette (Kepner Lab). Computational Fluid Dynamics (CFD) calculations have been performed to simulate these urban wind environments. Also, modal dynamic testing of the West Lafayette VAWT has been performed and a novel horizontal axis design initiated. The 50-meter meteorological tower data obtained at the Purdue Beck Agricultural Research Center have been analyzed and the Purdue Reconfigurable Micro Wind Farm established and simulations directed at the investigation of wind farm configurations initiated. The virtual wind turbine and wind turbine farm simulation in the Visualization Lab has been initiated.

  5. Dynamic stall on wind turbine blades

    SciTech Connect

    Butterfield, C.P.; Simms, D.; Scott, G. ); Hansen, A.C. )

    1991-12-01

    Dynamic loads must be predicted accurately in order to estimate the fatigue life of wind turbines operating in turbulent environments. Dynamic stall contributes to increased dynamic loads during normal operation of all types of horizontal-axis wind turbine (HAWTs). This report illustrates how dynamic stall varies throughout the blade span of a 10 m HAWT during yawed and unyawed operating conditions. Lift, drag, and pitching moment coefficients during dynamics stall are discussed. Resulting dynamic loads are presented, and the effects of dynamic stall on yaw loads are demonstrated using a yaw loads dynamic analysis (YAWDYN). 12 refs., 22 figs., 1 tab.

  6. Wind energy conference, Boulder, Colo. , April 9-11, 1980, Technical papers

    SciTech Connect

    Not Available

    1980-01-01

    Papers are presented concerning the technology, and economics of wind energy conversion systems. Specific topics include the aerodynamic analysis of the Darrieus rotor, the numerical calculation of the flow near horizontal-axis wind turbine rotors, the calculation of dynamic wind turbine rotor loads, markets for wind energy systems, an oscillating-wing windmill, wind tunnel tests of wind rotors, wind turbine generator wakes, the application of a multi-speed electrical generator to wind turbines, the feasibility of wind-powered systems for dairy farms, and wind characteristics over uniform and complex terrain. Attention is also given to performance tests of the DOE/NASA MOD-1 2000-kW wind turbine generator, the assessment of utility-related test data, offshore wind energy conversion systems, and the optimization of wind energy utilization economics through load management.

  7. Rotationally sampled wind characteristics and correlations with MOD-OA wind turbine response

    SciTech Connect

    George, R.L.; Connell, J.R.

    1984-09-01

    This report presents results of a comprehensive wind and wind turbine measurement program: the Clayton, New Mexico, vertical plane array/MOD-OA project. In this experiment, the turbulent wind was measured for a large array of fixed anemometers located two blade diameters upwind of a 200-kW horizontal-axis wind turbine (HAWT). Simultaneously, key wind turbine response parameters were also measured. The first of two major objectives of this experiment was to determine the turbulent wind, rotationally sampled to emulate the motion of the wind turbine blade, for the range of different wind speeds and stability classes actually experienced by the wind turbine. The second major objective was to correlate this rotationally sampled wind with the wind turbine blade stress and power, in order to assess the usefulness of the wind measurements for wind turbine loads testing a prediction. Time series of rotationally sampled winds and wind turbine blade bending moments and power were converted to frequency spectra using Fourier transform techniques. These spectra were used as the basis for both qualitative and quantitative comparisons among the various cases. A quantitative comparison between the rotationally sampled wind input and blade bending response was made, using the Fourier spectra to estimate the blade transfer function. These transfer functions were then used to calculate an approximate damping coefficient for the MOD-OA fiberglass blade.

  8. Load attenuating passively adaptive wind turbine blade

    DOEpatents

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-01

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  9. Load attenuating passively adaptive wind turbine blade

    DOEpatents

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-07

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  10. Wind machine propellers - study of prototypes in steady state regime - non-steady state aspects (helices eoliennes - etude de prototypes en regime stationnaire - aspects instationnaires)

    SciTech Connect

    Leblanc, L.; de Saint Louvent, B.; Goethals, R.

    1981-11-01

    Presented is the theoretical examination of wind power machines and results of experiments undertaken at the Poitiers Aerodynamics Laboratory and the Studies and Research Establishment of the National Weather Service. The program included models exposed to steady flow and results were satisfactory for both horizontal axis and vertical axis wind machines. In addition, a study of the effects of variable flow upon wind energy was commenced. A prototype (Darrieus type) was tested both in situ and in the wind tunnel in order to initiate a preliminary evaluation of the effects of wind fluctuations, and compare them. First results are very promising so that more fully instrumented experimentation will be continued.

  11. Kaman 40-kW wind system. Phase II. Fabrication and tests. Volume II. Technical report

    SciTech Connect

    Howes, H; Perley, R

    1981-01-01

    A program is underway to design, fabricate and test a horizontal axis Wind Turbine Generator (WTG) capable of producing 40 kW electrical output power in a 20 mph wind. Results are presented of the program effort covering fabrication and testing of the Wing Turbine Generator designed earlier. A minimum of difficulties were experienced during fabrication and, after successful completion of Contractor tests through 20 mph winds, the WTG was shipped to Rocky Flats, assembled and operated there. The 40 kW WTG is presently undergoing extended tests at Rockwell's Rocky Flats test facility.

  12. Simulation of winds as seen by a rotating vertical axis wind turbine blade

    SciTech Connect

    George, R.L.

    1984-02-01

    The objective of this report is to provide turbulent wind analyses relevant to the design and testing of Vertical Axis Wind Turbines (VAWT). A technique was developed for utilizing high-speed turbulence wind data from a line of seven anemometers at a single level to simulate the wind seen by a rotating VAWT blade. Twelve data cases, representing a range of wind speeds and stability classes, were selected from the large volume of data available from the Clayton, New Mexico, Vertical Plane Array (VPA) project. Simulations were run of the rotationally sampled wind speed relative to the earth, as well as the tangential and radial wind speeds, which are relative to the rotating wind turbine blade. Spectral analysis is used to compare and assess wind simulations from the different wind regimes, as well as from alternate wind measurement techniques. The variance in the wind speed at frequencies at or above the blade rotation rate is computed for all cases, and is used to quantitatively compare the VAWT simulations with Horizontal Axis Wind Turbine (HAWT) simulations. Qualitative comparisons are also made with direct wind measurements from a VAWT blade.

  13. Next Generation Wind Turbine

    SciTech Connect

    Cheraghi, S. Hossein; Madden, Frank

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually benficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT'w mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  14. A method of calculation on the airloading of vertical axis wind turbine

    SciTech Connect

    Azuma, A.; Kimura, S.

    1983-08-01

    A new approach has been developed by using Local Circulation Method in order to analyze the aerodynamic characteristics of the Darrieus Type Vertical-Axis Wind Turbine. The validity of this method is assured in the aerodynamics of helicopter rotor and of horizontal-axis wind turbine. Results obtained by the present approach were compared with the test results conducted by Sandia National Laboratories and shown to be in good correlation with them. The azimuthwise variation of spanwise airloading, torque and longitudinal forces are well calculated for various operational conditions.

  15. Aerodynamic testing of a rotating wind turbine blade

    SciTech Connect

    Butterfield, C.P.; Nelsen, E.N.

    1990-01-01

    Aerodynamic, load, flow-visualization, and inflow measurements were taken on a downwind horizontal-axis wind turbine (HAWT). A video camera mounted on the rotor recorded video images of tufts attached to the low-pressure side of the blade. Strain gages, mounted every 10% of the blade's span, provided load and pressure measurements. Pressure taps at 32 chordwise positions recorded pressure distributions. Wind inflow was measured via a vertical-plane array of anemometers located 10 m upwind. The objectives of the test were to address whether airfoil pressure distributions measured on a rotating blade differed from those measured in the wind tunnel, if radial flow near or in the boundary layer of the airfoil affected pressure distributions, if dynamic stall could result in increased dynamic loads, and if the location of the separation boundary measured on the rotating blade agreed with that measured in two-dimensional flow in the wind tunnel. 6 refs., 9 figs., 1 tab.

  16. Quiet airfoils for small and large wind turbines

    DOEpatents

    Tangler, James L.; Somers, Dan L.

    2012-06-12

    Thick airfoil families with desirable aerodynamic performance with minimal airfoil induced noise. The airfoil families are suitable for a variety of wind turbine designs and are particularly well-suited for use with horizontal axis wind turbines (HAWTs) with constant or variable speed using pitch and/or stall control. In exemplary embodiments, a first family of three thick airfoils is provided for use with small wind turbines and second family of three thick airfoils is provided for use with very large machines, e.g., an airfoil defined for each of three blade radial stations or blade portions defined along the length of a blade. Each of the families is designed to provide a high maximum lift coefficient or high lift, to exhibit docile stalls, to be relatively insensitive to roughness, and to achieve a low profile drag.

  17. Full-scale wind turbine rotor aerodynamics research

    SciTech Connect

    Simms, D A; Butterfield, C P

    1994-11-01

    The United States Department of Energy and the National Renewable Energy Laboratory (NREL) are conducting research to improve wind turbine technology at the NREL National Wind Technology Center (NWTC). One program, the Combined Experiment, has focused on making measurements needed to understand aerodynamic and structural responses of horizontal-axis wind turbines (HAWT). A new phase of this program, the Unsteady Aerodynamics Experiment, will focus on quantifying unsteady aerodynamic phenomena prevalent in stall-controlled HAWTs. Optimally twisted blades and innovative instrumentation and data acquisition systems will be used in these tests. Data can now be acquired and viewed interactively during turbine operations. This paper describes the NREL Unsteady Aerodynamics Experiment and highlights planned future research activities.

  18. Energy from the wind

    SciTech Connect

    Not Available

    1987-07-01

    This document provides a brief description of the use of wind power. Windmills from the 18th century are described. Modern wind turbines and wind turbine arrays are discussed. Present and future applications of wind power in the US are explained. (JDH)

  19. A comparison of measured wind park load histories with the WISPER and WISPERX load spectra

    SciTech Connect

    Kelley, N.D.

    1995-01-01

    The blade-loading histories from two adjacent Micon 65/13 wind turbines are compared with the variable-amplitude test-loading histories known as the WISPER and WISPERX spectra. These standardized loading sequences were developed from blade flapwise load histories taken from nine different horizontal-axis wind turbines operating under a wide range of conditions in Europe. The subject turbines covered a broad spectrum of rotor diameters, materials, and operating environments. The final loading sequences were developed as a joint effort of thirteen different European organizations. The goal was to develop a meaningful loading standard for horizontal-axis wind turbine blades that represents common interaction effects seen in service. In 1990, NREL made extensive load measurements on two adjacent Micon 65/13 wind turbines in simultaneous operation in the very turbulent environment of a large wind park. Further, before and during the collection of the loads data, comprehensive measurements of the statistics of the turbulent environment were obtained at both the turbines under test and at two other locations within the park. The trend to larger but lighter wind turbine structures has made an understanding of the expected lifetime loading history of paramount importance. Experience in the US has shown that the turbulence-induced loads associated with multi-row wind parks in general are much more severe than for turbines operating individually or within widely spaced environments. Multi-row wind parks are much more common in the US than in Europe. In this paper we report on our results in applying the methodology utilized to develop the WISPER and WISPERX standardized loading sequences using the available data from the Micon turbines. While the intended purpose of the WISPER sequences were not to represent a specific operating environment, we believe the exercise is useful, especially when a turbine design is likely to be installed in a multi-row wind park.

  20. Atmospheric testing of wind turbine trailing edge aerodynamic brakes

    SciTech Connect

    Miller, L.S.; Migliore, P.G.; Quandt, G.A.

    1997-12-31

    An experimental investigation was conducted using an instrumented horizontal-axis wind turbine that incorporated variable span trailing-edge aerodynamic brakes. A primary goal was to directly compare study results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were utilized to define effective changes in the aerodynamic coefficients, as a function of angle of attack and control deflection, for three device spans and configurations. Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (<70%) for 15% or larger span devices. Interestingly, aerodynamic controls with characteristic vents or openings appear most affected by span reductions and three-dimensional flow.

  1. Wind, pumps, and desalination

    SciTech Connect

    Theyse, F.H.

    1980-12-01

    Worldwide there exists an increasing need for waterpumping. Functions to be served include control of waterlevel, irrigation, reclamation of soil, control of a watertable in general. Specifically in the developing countries with their still underdeveloped infrastructure this need increases rapidly. For this pumping energy is needed, energy of high exergy to drive the pumps. With the increasing costs of fossil fuels and electricity, there is ample reason to investigate the potential of wind anew. A two-bladed fixed-rotor WECS, driving screwpumps via an automotive geartrain proves to offer a very reliable, fail-safe and self-optimizing solution for up to about 200 kW power, providing water at a cost of 4 to 6 dollarcents per kWh of water pumped. This is very favorable, compared to other means. Using the same concept to drive an adapted water-brake, it proves that desalination via the multiple-flash evaporisation route also becomes a self-optimizing, fail-safe, cheap and reliable operation, providing fresh water at less than 3 dollars per m/sup 3/, under the worst conditions. This is not only of importance to the developing countries with their sparse water supply, but even more for the industrialised countries, where lack of adequate water is an increasing problem. Costs can get substantially below the level indicated. It proves, that for this type of operations at acceptable costs, vertical axis windmills are basically unsuited. Although the horizontal axis machines need provisions to follow the wind, such provisions prove far cheaper in their effect on energy costs, then the controls and/or loss in power coefficient of vertical axis machines.

  2. Wind turbine performance under icing conditions

    SciTech Connect

    Jasinski, W.J.; Noe, S.C.; Selig, M.S.; Bragg, M.B.

    1998-02-01

    The effects of rime ice on horizontal axis wind turbine performance were estimated. For typical supercooled fog conditions found in cold northern regions, four rime ice accretions on the S809 wind turbine airfoil were predicted using the NASA LEWICE code. The resulting airfoil/ice profile combinations were wind tunnel tested to obtain the lift, drag, and pitching moment characteristics over the Reynolds number range 1--2 {times} 10{sup 6}. These data were used in the PROPID wind turbine performance prediction code to predict the effects of rime ice on a 450-kW rated-power, 28.7-m diameter turbine operated under both stall-regulated and variable-speed/variable-pitch modes. Performance losses on the order of 20% were observed for the variable-speed/variable-pitch rotor. For the stall-regulated rotor, however, a relatively small rime ice profile yielded significantly larger performance losses. For a larger 0.08c-long rime ice protrusion, however, the rated peak power was exceeded by 16% because at high angles the rime ice shape acted like a leading edge flap, thereby increasing the airfoil C{sub l,max} and delaying stall.

  3. Terrain and Ambient Wind Effects on the Warming Footprint of a Wind Machine

    SciTech Connect

    Mcmeeking, Gavin R.; Whiteman, Charles D.; Powell, Stuart G.; Clements, Craig B.

    2002-05-20

    An experiment in a vineyard in south-central Washington is described in which a vineyard wind machine used for frost protection was turned on and off while monitoring the air temperature in the vineyard. The wind machine fan, with a hub height of 12 m, rotated around a quasi-horizontal axis that was tilted downward into the vineyard at an angle of 6 degrees. The fan also rotated around a vertical axis once every 4 minutes to protect a roughly circular area surrounding the wind machine tower. A temperature inversion of about 3.5 C occurred above the vineyard between the 3-m and hub-height levels during the experiments. The 300-m diameter warming footprint of the fan was displaced down the south-facing 1-2{sup o} slope of the vineyard when the ambient wind speed was low, showing the effect of the weak and shallow nighttime drainage flow that often occurred in the vineyard. When the ambient wind speed increased, the footprint was displaced downwind and downslope of the tower. The mean warming footprint magnitude when the fan was switched on was about 1-2 C, and the temperature excess in the footprint relative to the surroundings dissipated quickly when the fan was switched off.

  4. An analytical investigation of the performance of wind-turbines with gyrocopter-like rotors

    SciTech Connect

    Kentfield, J.A.C.; Brophy, D.C.

    1997-12-31

    The performance was predicted of a wind-turbine, intended for electrical power generation, the rotor of which is similar in configuration to the rotor of an autogyro or gyrocopter as originated by Cierva. Hence the rotor axis of spin is tilted downwind, for maximum power production, by an angle of 40{degrees} to 50{degrees} relative to the vertical with power regulation by modulation of the tilt angle. Because the rotor of a Cierva turbine generates lift the simple, non-twisted, fixed-pitch blades {open_quotes}fly{close_quotes} and are self supporting thereby eliminating flap-wise bending moments when the blades are hinged at their roots. It was found from the analysis that it is possible to reduce tower bending moments substantially relative to a conventional horizontal axis turbine of equal power output and also, for equal maximum hub heights and blade tip altitudes, a Cierva turbine is capable, at a prescribed wind speed, of a greater power output than a conventional horizontal axis machine.

  5. Ice accretion modeling for wind turbine rotor blades

    SciTech Connect

    Chocron, D.; Brahimi, T.; Paraschivoiu, I.; Bombardier, J.A.

    1997-12-31

    The increasing application of wind energy in northern climates implies operation of wind turbines under severe atmospheric icing conditions. Such conditions are well known in the Scandinavian countries, Canada and most of Eastern European countries. An extensive study to develop a procedure for the prediction of ice accretion on wind turbines rotor blades appears to be essential for the safe and economic operation of wind turbines in these cold regions. The objective of the present paper is to develop a computer code capable of simulating the shape and amount of ice which may accumulate on horizontal axis wind turbine blades when operating in icing conditions. The resulting code is capable to predict and simulate the formation of ice in rime and glaze conditions, calculate the flow field and particle trajectories and to perform thermodynamic analysis. It also gives the possibility of studying the effect of different parameters that influence ice formation such as temperature, liquid water content, droplet diameter and accretion time. The analysis has been conducted on different typical airfoils as well as on NASA/DOE Mod-0 wind turbine. Results showed that ice accretion on wind turbines may reduce the power output by more than 20%.

  6. Probabilistic fatigue methodology and wind turbine reliability

    SciTech Connect

    Lange, C.H.

    1996-05-01

    Wind turbines subjected to highly irregular loadings due to wind, gravity, and gyroscopic effects are especially vulnerable to fatigue damage. The objective of this study is to develop and illustrate methods for the probabilistic analysis and design of fatigue-sensitive wind turbine components. A computer program (CYCLES) that estimates fatigue reliability of structural and mechanical components has been developed. A FORM/SORM analysis is used to compute failure probabilities and importance factors of the random variables. The limit state equation includes uncertainty in environmental loading, gross structural response, and local fatigue properties. Several techniques are shown to better study fatigue loads data. Common one-parameter models, such as the Rayleigh and exponential models are shown to produce dramatically different estimates of load distributions and fatigue damage. Improved fits may be achieved with the two-parameter Weibull model. High b values require better modeling of relatively large stress ranges; this is effectively done by matching at least two moments (Weibull) and better by matching still higher moments. For this purpose, a new, four-moment {open_quotes}generalized Weibull{close_quotes} model is introduced. Load and resistance factor design (LRFD) methodology for design against fatigue is proposed and demonstrated using data from two horizontal-axis wind turbines. To estimate fatigue damage, wind turbine blade loads have been represented by their first three statistical moments across a range of wind conditions. Based on the moments {mu}{sub 1}{hor_ellipsis}{mu}{sub 3}, new {open_quotes}quadratic Weibull{close_quotes} load distribution models are introduced. The fatigue reliability is found to be notably affected by the choice of load distribution model.

  7. Wind Energy Basics | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Energy Basics We have been harnessing the wind's energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmill's modern equivalent-a wind turbine-can use the wind's energy to generate electricity. Text Version Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and less turbulent

  8. Technology assessment of wind energy conversion systems

    SciTech Connect

    Meier, B. W.; Merson, T. J.

    1980-09-01

    Environmental data for wind energy conversion systems (WECSs) have been generated in support of the Technology Assessment of Solar Energy (TASE) program. Two candidates have been chosen to characterize the WECS that might be deployed if this technology makes a significant contribution to the national energy requirements. One WECS is a large machine of 1.5-MW-rated capacity that can be used by utilities. The other WECS is a small machine that is characteristic of units that might be used to meet residential or small business energy requirements. Energy storage systems are discussed for each machine to address the intermittent nature of wind power. Many types of WECSs are being studied and a brief review of the technology is included to give background for choosing horizontal axis designs for this study. Cost estimates have been made for both large and small systems as required for input to the Strategic Environmental Assessment Simulation (SEAS) computer program. Material requirements, based on current generation WECSs, are discussed and a general discussion of environmental impacts associated with WECS deployment is presented.

  9. In-field use of laser Doppler vibrometer on a wind turbine blade

    SciTech Connect

    Rumsey, M.; Hurtado, J.; Hansche, B.

    1998-12-31

    One of our primary goals was to determine how well a laser Doppler vibrometer (LDV) could measure the structural dynamic response of a wind turbine that was parked in the field. We performed a series of preliminary tests in the lab to determine the basic limitations of the LDV for this application. We then instrumented an installed parked horizontal axis wind turbine with accelerometers to determine the natural frequencies, damping, and mode shapes of the wind turbine and rotor as a baseline for the LDV and our other tests. We also wanted to determine if LDV modal information could be obtained from a naturally (wind) excited wind turbine. We compared concurrently obtained accelerometer and LDV data in an attempt to assess the quality of the LDV data. Our test results indicate the LDV can be successfully used in the field environment of an installed wind turbine, but with a few restrictions. We were successful in obtaining modal information from a naturally (wind) excited wind turbine in the field, but the data analysis requires a large number of averaged data sets to obtain reasonable results. An ultimate goal of this continuing project is to develop a technique that will monitor the health of a structure, detect damage, and hopefully predict an impending component failure.

  10. Grid Modernization

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management ...

  11. West Winds Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Winds Wind Farm Jump to: navigation, search Name West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  12. Wind turbine trailing-edge aerodynamic brake design

    SciTech Connect

    Quandt, G.

    1996-01-01

    This report describes the design of a centrifugally actuated aerodynamic-overspeed device for a horizontal-axis wind turbine. The device will meet the following criteria; (1) It will be effective for airfoil angles of attack 0{degrees} to 45{degrees}. (2) It will be stowed inside the blade profile prior to deployment. (3) It will be capable of offsetting the positive torque produced by the overall blade. (4) Hinge moments will be minimized to lower actuator loads and cost. (5) It will be evaluated as a potential power modulating active rotor-control system. A literature review of aerodynamic braking devices was conducted. Information from the literature review was used to conceptualize the most effective devices for subsequent testing and design. Wind-tunnel test data for several braking devices are presented in this report. Using the data for the most promising configuration, a preliminary design was developed for a MICON 65/13 wind turbine with Phoenix 7.9-m rotor blades.

  13. Rotationally-sampled flow-field measurements for vertical-axis wind turbines

    SciTech Connect

    Akins, R.E.

    1983-01-01

    This effects a wind-turbine blade moving through a turbulent flow field have on the feequency content of the relative velocity seen by the blade are an important aspect of the aerodynamically induced loads and may also contribute to the fatigue loads. Recent work has emphasized these effects in large horizontal-axis turbines. Measurements of a rotationally-sampled flow field using the DOE/Sandia 17-m research turbine have been completed. These measurements show increased energy content at integer multiples of rotation rate and indicate why rotational sampling may be an important concept in rotor design. These measurements are the first to have been conducted on an operational turbine in a field environment.

  14. Measurement in a wind tunnel of the modification of mean wind and turbulence characteristics due to induction effects near wind turbine rotors

    SciTech Connect

    Neff, D.E.; Meroney, R.N.

    1987-08-01

    It is the purpose of this report to provide experimental data on the wind field surrounding a single model wind turbine rotor disk. These data should provide an improved physical insight into the induction effects of the air flow as it approaches the wind turbine. This insight should in turn improve an analytical model's predictive capabilities. A scaled model of a horizontal-axis wind turbine (a two-bladed rotor of diameter 53 cm) was placed into the Meteorological Wind Tunnel (MWT) facility at Colorado State University (cross-section width of 183 cm). Four different approach flow conditions were studied: low and moderate turbulence levels (0.1% and 1.5% intensity) at both 6 and 7.6 m/s freestream air velocities. For each of these flow conditions the rotor power coefficient versus tip speed ratio was obtained, and the 3-dimensional velocity field from 3 rotor diameters upwind to 0.5 diameter downwind was tabulated. The power output of the rotor was obtained via a simple prony brake friction device that imparts a torque (measured by the deflection of a spring) to the spinning shaft of the wind turbine. The rotor speed, measured by a strobe light, was observed to vary with load from 900 rpm up to 2100 rpm for the flow conditions described above. The 3-dimensional velocity field was measured via a three-hot-film probe. Details of the measurement techniques are provided. The test program and data results are also given. A short discussion of the implications of this data set is included. 12 refs., 19 figs., 11 tabs.

  15. Energy 101: Wind Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 101: Wind Turbines Energy 101: Wind Turbines Addthis Description See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine. Duration 2:16 Topic Tax Credits, Rebates, Savings Wind Energy Economy Credit Energy Department Video MR. : We've all seen those creaky old windmills on farms, and although they may seem about as low-tech as you can get, those old windmills are the predecessors for new modern

  16. The de-correlation of westerly winds and westerly-wind stress...

    Office of Scientific and Technical Information (OSTI)

    simulates this condition has most credible simulation of modern SWW and Antarctic sea ice. ... Country of Publication: United States Language: English Subject: southern westerly winds; ...

  17. Wind Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Generation - ScheduledActual Balancing Reserves - Deployed Near Real-time Wind Animation Wind Projects under Review Growth Forecast Fact Sheets Working together to address...

  18. Aerodynamic pressure and flow-visualization measurement from a rotating wind turbine blade

    SciTech Connect

    Butterfield, C.P.

    1988-11-01

    Aerodynamic, load, flow-visualization, and inflow measurements have been made on a 10-m, three-bladed, downwind, horizontal-axis wind turbine (HAWT). A video camera mounted on the rotor was used to record nighttime and daytime video images of tufts attached to the low-pressure side of a constant-chord, zero-twist blade. Load measurements were made using strain gages mounted at every 10% of the blade's span. Pressure measurements were made at 80% of the blade's span. Pressure taps were located at 32 chordwise positions, revealing pressure distributions comparable with wind tunnel data. Inflow was measured using a vertical-plane array of eight propvane and five triaxial (U-V-W) prop-type anemometers located 10 m upwind in the predominant wind direction. One objective of this comprehensive research program was to study the effects of blade rotation on aerodynamic behavior below, near, and beyond stall. To this end, flow patterns are presented here that reveal the dynamic and steady behavior of flow conditions on the blade. Pressure distributions are compared to flow patterns and two-dimensional wind tunnel data. Separation boundary locations are shown that change as a function of spanwise location, pitch angle, and wind speed. 6 refs., 23 figs., 1 tab.

  19. Prairie Winds Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  20. Cyberspace modernization :

    SciTech Connect

    Keliiaa, Curtis M.; McLane, Victor N.

    2014-07-01

    A common challenge across the communications and information technology (IT) sectors is Internet + modernization + complexity + risk + cost. Cyberspace modernization and cyber security risks, issues, and concerns impact service providers, their customers, and the industry at large. Public and private sectors are struggling to solve the problem. New service opportunities lie in mobile voice, video, and data, and machine-to-machine (M2M) information and communication technologies that are migrating not only to predominant Internet Protocol (IP) communications, but also concurrently integrating IP, version 4 (IPv4) and IP, version 6 (IPv6). With reference to the Second Internet and the Internet of Things, next generation information services portend business survivability in the changing global market. The planning, architecture, and design information herein is intended to increase infrastructure preparedness, security, interoperability, resilience, and trust in the midst of such unprecedented change and opportunity. This document is a product of Sandia National Laboratories Tribal Cyber and IPv6 project work. It is a Cyberspace Modernization objective advisory in support of bridging the digital divide through strategic partnership and an informed path forward.

  1. Microsoft Word - Sandia CREW 2012 Wind Plant Reliability Benchmark...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of the large, modern U.S. wind turbines. The scope of the CREW database includes wind turbines that are at or above 1 megawatt (MW) in size, from plants with at least 10 turbines....

  2. Wind Turbine Testing | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Turbine Testing Photo of a large wind turbine blade sticking out of the structural testing laboratory; it is perpendicular to a building at the National Wind Technology Center. A multimegawatt wind turbine blade extends outside of the structural testing facility at the NWTC. PIX #19010 Testing capabilities at the National Wind Technology Center (NWTC) support the installation and testing of wind turbines that range in size from 400 watts to 5.0 megawatts. Engineers provide wind industry

  3. Collegiate Wind Competition Wind Tunnel Specifications | Department...

    Energy Saver

    Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Teams competing in the U.S. Department of ...

  4. Wind Simulation

    Energy Science and Technology Software Center

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  5. Wind Turbine Blade Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Turbine Blade Design Wind Turbine Blade Design Below is information about the student activity/lesson plan from your search. Grades 5-8, 9-12 Subject Wind Energy Summary Blade engineering and design is one of the most complicated and important aspects of modern wind turbine technology. Engineers strive to design blades that extract as much energy from the wind as possible throughout a range of wind speeds and gusts, yet are still durable, quiet and cheap. A variety of ideas for building

  6. Engineering innovation to reduce wind power COE

    SciTech Connect

    Ammerman, Curtt Nelson

    2011-01-10

    There are enough wind resources in the US to provide 10 times the electric power we currently use, however wind power only accounts for 2% of our total electricity production. One of the main limitations to wind use is cost. Wind power currently costs 5-to-8 cents per kilowatt-hour, which is more than twice the cost of electricity generated by burning coal. Our Intelligent Wind Turbine LDRD Project is applying LANL's leading-edge engineering expertise in modeling and simulation, experimental validation, and advanced sensing technologies to challenges faced in the design and operation of modern wind turbines.

  7. Energy 101: Wind Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Turbines Energy 101: Wind Turbines Addthis Description See how wind turbines generate clean electricity from the power of the wind. This video highlights the various parts and mechanisms of a modern wind turbine. Text Version Below is the text version for the Energy 101: Wind Turbines video. The video opens with "Energy 101: Wind Turbines." This is followed by wooden windmills on farms. We've all seen those creaky, old windmills on farms. And although they may seem about as low-tech as

  8. Wind Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... First Power for SWiFT Turbine Achieved during Recommissioning Facilities, News, Renewable Energy, SWIFT, Wind Energy, Wind News First Power for SWiFT Turbine Achieved during ...

  9. Wind News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Laboratory PV Regional Test Centers Scaled Wind Farm Technology Facility Climate & Earth ...

  10. wind energy

    National Nuclear Security Administration (NNSA)

    5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

  11. Wind News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Wind-turbine blade growth continues to have the largest impact on energy capture and ...

  12. Wind-turbine-performance assessment. Technology status report No. 4

    SciTech Connect

    Vachon, W.A.

    1982-06-01

    An updated summary of recent test data and experiences is reported from both federally and privately funded large wind turbine (WT) development and test programs, as well as from key WT programs in Europe. The data presented are current as of late spring 1981. Detailed summaries of test results are presented for the four US Department of Energy (DOE) 200-kW MOD-0A horizontal-axis WT's interconnected with electric utilities at various locations around the United States. A description of progress and experiences on both the cluster of three MOD-2 2.5-MW WT's, the MOD-1 2-MW WT, and other planned, federally funded WT installations is also presented. A brief description of test data and plans on the DOE vertical-axis program is also presented. An examination of recent test experiences and plans from approximately five privately funded large WT programs in the United States indicates that, during machine checkout and startup, a number of technical problems have been identified, which will require and startup, a number of technical problems have been identified, which will require design changes and create program delays. These changes, which are to be expected on prototype equipment, should not seriously affect private WT developments in the future.

  13. Wind Resource Assessment | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and ...

  14. Distributed Wind Research | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    an introduction to distributed wind projects and a brief overview of topics to consider when developing a distributed wind energy ordinance. Distributed Wind Ordinances Photo from Byers and Renier Construction, NREL 18820 Distributed Wind Ordinances The U.S. Department of Energy defines distributed wind projects as: (a) The use of wind turbines, on- or off-grid, at homes, farms and ranches, businesses, public and industrial facilities, or other sites to offset all or a portion of the local

  15. Offshore Wind Research | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A photo of several rows of wind turbines standing in the ocean with the sun overhead. Capabilities NREL's offshore wind turbine research capabilities focus on critical areas that ...

  16. Sandia Energy - Grid Modernization Consortium

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Modernization Consortium Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Renewable Energy Integration Grid Modernization...

  17. Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Wind The U.S. wind energy industry continued its strong growth in 2015, adding new generating capacity faster than any other source of electricity generation. Get the latest update on the state of the industry in our 2015 Wind Market Reports. The U.S. wind energy industry continued its strong growth in 2015, adding new generating capacity faster than any other source of electricity generation. Get the latest update on the state of the industry in our 2015 Wind Market Reports. The United

  18. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade

    SciTech Connect

    Bir, G. S.; Lawson, M. J.; Li, Y.

    2011-10-01

    This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

  19. Cisco Wind Energy Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cisco Wind Energy Wind Farm Jump to: navigation, search Name Cisco Wind Energy Wind Farm Facility Cisco Wind Energy Sector Wind energy Facility Type Commercial Scale Wind Facility...

  20. New guidelines for wind turbine gearboxes

    SciTech Connect

    McNiff, B.; Errichello, R.

    1997-12-31

    The American Gear Manufacturers Association in cooperation with the American Wind Energy Association will soon be publishing AGMA/AWEA 921-A97 {open_quotes}Recommended Practices for Design and Specification of Gearboxes for Wind Turbine Generator Systems.{close_quotes} Much has been learned about the unique operation and loading of gearboxes in wind turbine applications since the burgeoning of the modern wind turbine industry in the early 1980`s. AGMA/AWEA 921-A97 documents this experience in a manner that provides valuable information to assist gear manufacturers and wind turbine designers, operators, and manufacturers in developing reliable wind turbine gearboxes. The document provides information on procurement specification development, wind turbine architecture, environmental considerations, and gearbox load determination, as well as the design, manufacturing, quality assurance, lubrication, operation and maintenance of wind turbine gearboxes. This paper presents the salient parts of the practices recommended in AGMA/AWEA 921-A97.

  1. Wind Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe ...

  2. Wind Farm

    Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  3. Wind Easements

    Energy.gov [DOE]

    The statutes authorizing the creation of wind easements include several provisions to protect property owners. For example, a wind easement may not make the property owner liable for any property...

  4. Grid Modernization Research | Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Modernization Research NREL addresses the challenges of modernizing the electric grid through high-impact research and development in power systems engineering and resource assessment. The future electric grid must deliver reliable, affordable, and clean electricity to consumers where they want it, when they want it, and how they want it. As part of NREL's energy systems integration activities, grid modernization researchers work with the electricity industry, academia, and other research

  5. Natural Gas Modernization Clearinghouse

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Natural Gas Modernization Clearinghouse provides information about the implications of natural gas infrastructure modernization, including strategies and technologies that increase public safety, improve environmental performance and enhance natural gas deliverability.

  6. On the Fatigue Analysis of Wind Turbines

    SciTech Connect

    Sutherland, Herbert J.

    1999-06-01

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

  7. Wind Energy Projects | Department of Energy

    Energy.gov [DOE] (indexed site)

    Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy ...

  8. Wind Power Forecasting Data

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  9. NREL: Wind Research - Wind Career Map Shows Wind Industry Career...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Career Map Shows Wind Industry Career Opportunities, Paths A screenshot of the wind career map showing the various points on a chart that show different careers in the wind...

  10. Wind News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  11. Offshore Wind

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  12. wind turbines

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  13. Wind Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  14. Wind Workshop

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Workshop - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  15. Wind Power Partners '94 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    4 Wind Farm Jump to: navigation, search Name Wind Power Partners '94 Wind Farm Facility Wind Power Partners '94 Sector Wind energy Facility Type Commercial Scale Wind Facility...

  16. Wethersfield Wind Power Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wethersfield Wind Power Wind Farm Jump to: navigation, search Name Wethersfield Wind Power Wind Farm Facility Wethersfield Wind Power Sector Wind energy Facility Type Commercial...

  17. State Fair Wind Energy Education Center Wind Farm | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fair Wind Energy Education Center Wind Farm Jump to: navigation, search Name State Fair Wind Energy Education Center Wind Farm Facility Wind Energy Education Center Sector Wind...

  18. Portsmouth Abbey School Wind Turbine Wind Farm | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Abbey School Wind Turbine Wind Farm Jump to: navigation, search Name Portsmouth Abbey School Wind Turbine Wind Farm Facility Portsmouth Abbey School Wind Turbine Sector Wind energy...

  19. Harbec Plastic Wind Turbine Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Harbec Plastic Wind Turbine Wind Farm Jump to: navigation, search Name Harbec Plastic Wind Turbine Wind Farm Facility Harbec Plastic Wind Turbine Sector Wind energy Facility Type...

  20. Stetson Wind Expansion Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale...

  1. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    SciTech Connect

    Baring-Gould, E. I.

    2013-08-01

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  2. NREL: Wind Research - Offshore Wind Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL's Offshore Wind Testing Capabilities 35 years of wind turbine testing experience ... Testing Applying 35 years of wind turbine testing expertise, NREL has developed ...

  3. NREL: Wind Research - Offshore Wind Turbine Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Offshore Wind Turbine Research Photo of a European offshore wind farm. Photo by Siemens ... NREL's offshore wind turbine research capabilities focus on critical areas that reflect ...

  4. NREL: Wind Research - Offshore Wind Resource Characterization

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m ...

  5. NREL: Wind Research - Wind Resource Assessment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special ... to anticipate wind generation levels and adjust the ...

  6. Danielson Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Danielson Wind Facility Danielson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind...

  7. Kawailoa Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Kawailoa Wind Facility Kawailoa Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  8. Palouse Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Palouse Wind Facility Palouse Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  9. Harbor Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Harbor Wind Facility Harbor Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Harbor Wind LLC...

  10. Kahuku Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kahuku Wind Jump to: navigation, search Name Kahuku Wind Facility Kahuku Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  11. Wiota Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wiota Wind Jump to: navigation, search Name Wiota Wind Facility Wiota Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Wiota Wind Energy LLC...

  12. Bravo Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bravo Wind Jump to: navigation, search Name Bravo Wind Facility Bravo Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Bravo Wind LLC...

  13. Auwahi Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Auwahi Wind Jump to: navigation, search Name Auwahi Wind Facility Auwahi Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy...

  14. Traer Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Traer Wind Jump to: navigation, search Name Traer Wind Facility Traer Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Norsemen Wind Energy LLC...

  15. Sheffield Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Sheffield Wind Facility Sheffield Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  16. Rollins Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Rollins Wind Facility Rollins Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  17. Natural Gas Modernization Clearinghouse Stakeholders | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Initiatives Natural Gas Modernization Clearinghouse Natural Gas Modernization Clearinghouse Stakeholders Natural Gas Modernization Clearinghouse Stakeholders Regulators ...

  18. Wyoming Wind Power Project (generation/wind)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

  19. Offshore Wind Power USA

    Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  20. Nuclear weapons modernizations

    SciTech Connect

    Kristensen, Hans M.

    2014-05-09

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  1. WINDExchange: Selling Wind Power

    WindExchange

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Selling Wind Power Owners of wind turbines interconnected directly to the transmission or distribution grid, or that produce more power than the host consumes, can sell wind power as well as other generation attributes. Wind-Generated Electricity Electricity generated by wind turbines can be used to cover on-site energy needs

  2. Carbon Design Studies for Large ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    creates and evaluates innovative large blade concepts for horizontal axis wind turbines to promote designs that are more efficient aerodynamically, structurally, and economically. ...

  3. AWEA WINDPOWER 2012 Conference and Exhibition; Scientific Track...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    creates and evaluates innovative large blade concepts for horizontal axis wind turbines to promote designs that are more efficient aerodynamically, structurally, and economically. ...

  4. SANDIA REPORT SAND2011-3779 Unlimited Release

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... creates and evaluates innovative large blade concepts for horizontal axis wind turbines to promote designs that are more efficient aerodynamically, structurally, and economically. ...

  5. Proceedings Template - WORD

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    where the three-bladed horizontal axis wind turbine has become the predominant design, there are many different WEC technologies being actively pursued. These WEC...

  6. U.S. Department of Energy Reference Model Program RM1: Experimental...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    (DOE) Wind and Water Power Technologies Program within ... scale dual-rotor axial flow horizontal axis device with ... Optimal performance occurred at approximately 5.1 with ...

  7. Grid Integration of Offshore Wind | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Integration of Offshore Wind Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource. Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Integration and Transmission One comprehensive grid integration study is the Eastern Wind Integration and Transmission Study (EWITS), in

  8. Wind Measurement Buoy Advances Offshore Wind Energy | Department...

    Energy Saver

    Measurement Buoy Advances Offshore Wind Energy Wind Measurement Buoy Advances Offshore Wind Energy December 7, 2015 - 1:52pm Addthis Wind Measurement Buoy Advances Offshore Wind ...

  9. Milford Wind Corridor Phase I (Clipper) Wind Farm | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Clipper) Wind Farm Jump to: navigation, search Name Milford Wind Corridor Phase I (Clipper) Wind Farm Facility Milford Wind Corridor Phase I (Clipper) Sector Wind energy Facility...

  10. Michigan Wind II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name Michigan Wind II Wind Farm Facility Michigan Wind II Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  11. Metro Wind LLC Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind LLC Wind Farm Jump to: navigation, search Name Metro Wind LLC Wind Farm Facility Metro Wind LLC Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  12. JD Wind 6 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    JD Wind 6 Wind Farm Jump to: navigation, search Name JD Wind 6 Wind Farm Facility JD Wind 6 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  13. JD Wind 7 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    JD Wind 7 Wind Farm Jump to: navigation, search Name JD Wind 7 Wind Farm Facility JD Wind 7 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  14. Garnet Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Garnet Wind Facility Garnet Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Azusa Light & Water...

  15. Lime Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Lime Wind Facility Lime Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Joseph Millworks Inc...

  16. Fairhaven Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Fairhaven Wind Facility Fairhaven Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy Palmer...

  17. Scituate Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Scituate Wind Facility Scituate Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy ...

  18. Pacific Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Pacific Wind Facility Pacific Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner enXco Developer...

  19. Galactic Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Galactic Wind Facility Galactic Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Epic Systems...

  20. Rockland Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Rockland Wind Facility Rockland Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Ridgeline...

  1. Greenfield Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Greenfield Wind Facility Greenfield Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Greenfield Wind Power...

  2. Willmar Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Willmar Wind Facility Willmar Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Willmar...

  3. Wind Program News

    SciTech Connect

    2012-01-06

    Stay current on the news about the wind side of the Wind and Water Power Program and important wind energy events around the U.S.

  4. Wind turbine

    DOEpatents

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  5. Facility Modernization Report

    SciTech Connect

    Robinson, D; Ackley, R

    2007-05-10

    Modern and technologically up-to-date facilities and systems infrastructure are necessary to accommodate today's research environment. In response, Lawrence Livermore National Laboratory (LLNL) has a continuing commitment to develop and apply effective management models and processes to maintain, modernize, and upgrade its facilities to meet the science and technology mission. The Facility Modernization Pilot Study identifies major subsystems of facilities that are either technically or functionally obsolete, lack adequate capacity and/or capability, or need to be modernized or upgraded to sustain current operations and program mission. This study highlights areas that need improvement, system interdependencies, and how these systems/subsystems operate and function as a total productive unit. Although buildings are 'grandfathered' in and are not required to meet current codes unless there are major upgrades, this study also evaluates compliance with 'current' building, electrical, and other codes. This study also provides an evaluation of the condition and overall general appearance of the structure.

  6. Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Photo of an engineer working with grid hardware in a laboratory NREL conducts high-impact research and development of technologies and strategies to modernize the nation's electrical infrastructure, making it more flexible, resilient, and sustainable. The 21st century needs a 21st-century grid. As part of the U.S. Department of Energy's Grid Modernization Initiative, NREL researchers work with industry, government, and academia to solve the challenges of integrating renewable power sources and

  7. Wind Turbine Control Systems | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL is researching new control methodologies for both land-based wind turbines and offshore wind turbines. A photo of a wind turbine against blue sky with white blades on their ...

  8. NREL: Wind Research - Site Wind Resource Characteristics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. ...

  9. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Science & Innovation Energy Sources Renewable Energy Wind Wind Wind The United States is home to one of the largest and fastest growing wind markets in the world. To stay ...

  10. Offshore Wind Resource Characterization | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Resource Characterization NREL scientists and engineers are leading efforts in ... and development, and forecasting that are essential for the development of offshore wind. ...

  11. Wind Integration National Dataset (WIND) Toolkit

    Office of Energy Efficiency and Renewable Energy (EERE)

    For utility companies, grid operators and other stakeholders interested in wind energy integration, collecting large quantities of high quality data on wind energy resources is vitally important....

  12. NREL: Wind Research - Wind Energy Videos

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Energy Videos The National Wind Technology Center (NWTC) is pleased to offer video presentations of its world-class capabilities, facilities, research areas, and personnel. As ...

  13. NREL: Wind Research - Small Wind Turbine Development

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in ... Testing included power performance, safety and function, noise, and partial loads tests. ...

  14. JD Wind 1 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name JD Wind 1 Wind Farm Facility JD Wind 1 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner DWSJohn...

  15. North Dakota Wind II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name North Dakota Wind II Wind Farm Facility North Dakota Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  16. Venture Wind II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name Venture Wind II Wind Farm Facility Venture Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  17. MinWind I & II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    I & II Wind Farm Jump to: navigation, search Name MinWind I & II Wind Farm Facility MinWind I & II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  18. Cow Branch Wind Energy Center Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cow Branch Wind Energy Center Wind Farm Jump to: navigation, search Name Cow Branch Wind Energy Center Wind Farm Facility Cow Branch Wind Energy Center Sector Wind energy Facility...

  19. JD Wind 5 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    5 Wind Farm Jump to: navigation, search Name JD Wind 5 Wind Farm Facility JD Wind 5 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  20. JD Wind 4 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    4 Wind Farm Jump to: navigation, search Name JD Wind 4 Wind Farm Facility JD Wind 4 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  1. Sycamore Canyon Modernization

    Building Catalog

    Santee, CA The Sycamore Canyon Elementary School is one of five schools in the Santee district that has completed a modernization program. This first round of projects has helped inform the district's ongoing effort to modernize all of their facilities. The total energy use at Sycamore Canyon was successfully reduced by more than one-third, as compared to the pre-retrofit consumption. The school is currently operating with an energy use intensity of only 23 kBtu/SqFt, placing it in the top 99% of schools (per the EnergyStar rating system). 05/15/2015 - 10:55

  2. Hawaii Solar and Wind Integration Studies | Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Citygate 22.94 31.58 32.39 28.45 26.94 18.11 1984-2015 Residential 44.50 55.28 52.86 49.13 47.51 40.08 1980-2015 Commercial 36.55 45.58 47.03 41.92 40.42 31.17 1980-2015 Industrial 24.10 29.80 30.89 27.56 26.75 19.03 1997-2015 Electric Power -- -- -- -- -- -- 2001-2015 Consumption (Million Cubic Feet) Total Consumption 2,627 2,619 2,689 2,855 2,916 2,922 1997-2015 Pipeline & Distribution Use 2 2 3 1 1 * 2004-2015 Delivered to Consumers 2,625 2,616 2,687 2,853 2,915 2,922 1997-2015

  3. Grid Integration of Wind Energy | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Integration of Wind Energy Researchers study grid integration of wind energy to better understand how variable generation resources such as wind energy impact the grid and how to increase the percentage of wind generation in the United States' energy portfolio. A photo of three wind turbines with transmission lines in the background. Capabilities NREL's grid integration analysts work with the U.S. Department of Energy, university researchers, independent system operators, and regional

  4. Wind Data and Tools | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Data and Tools Learn more about wind energy through these NREL data and tools. A photo of two men silhouetted against a computer-generated simulation with white and blue rows illustrating wind plant aerodynamics. NWTC Information Portal This open-source library houses NREL's wind and water power simulation and modeling software and data, including computer-aided engineering tools and integrated system design and analysis tools. All software is available for download. Wind-Wildlife Impacts

  5. GL Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GL Wind Jump to: navigation, search Name GL Wind Facility GL Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner GL Wind Developer Juhl...

  6. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  7. Wind energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind energy (Redirected from Wind power) Jump to: navigation, search Wind energy is a form of solar energy.1 Wind energy (or wind power) describes the process by which wind is...

  8. WINDExchange: Potential Wind Capacity

    WindExchange

    Potential Wind Capacity Potential wind capacity maps are provided for a 2014 industry standard wind turbine installed on a 110-m tower, which represents plausible current technology options, and a wind turbine on a 140-m tower, which represents near-future technology options. For more detailed information regarding the assumptions and calculations behind the wind potential capacity maps, see the Energy Department's Enabling Wind Power Nationwide report. Enlarge image This map shows the wind

  9. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Office of Environmental Management (EM)

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  10. Brazos Wind Ranch Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Shell Wind EnergyMitsui Developer Cielo Wind PowerOrion Energy Energy Purchaser Green...

  11. Wind tunnel performance data for the Darrieus wind turbine with...

    Office of Scientific and Technical Information (OSTI)

    Wind tunnel performance data for the Darrieus wind turbine with NACA 0012 blades Citation Details In-Document Search Title: Wind tunnel performance data for the Darrieus wind ...

  12. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in ...

  13. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Energy Saver

    2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its challenges, ...

  14. First Wind (Formerly UPC Wind) (Oregon) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    First Wind (Formerly UPC Wind) Address: 1001 S.W. Fifth Avenue Place: Portland, Oregon Zip: 97204 Region: Pacific Northwest Area Sector: Wind energy Product: Wind power developer...

  15. National Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name: National Wind Place: Minneapolis, Minnesota Zip: 55402 Sector: Wind energy Product: Wind project developer in the upper Midwest and Plains...

  16. Solar Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name: Solar Wind Place: Krasnodar, Romania Zip: 350000 Sector: Solar, Wind energy Product: Russia-based PV product manufacturer. Solar Wind...

  17. Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Energy Wind Energy Below are resources for Tribes on wind energy technologies. 2012 Market Report on Wind Technologies in Distributed Applications Includes a breakdown of ...

  18. Horn Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name: Horn Wind Place: Windthorst, Texas Zip: 76389 Sector: Wind energy Product: Texas-based company that develops community-based industrial wind...

  19. Royal Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Royal Wind Place: Denver, Colorado Sector: Wind energy Product: Vertical Wind Turbines Year Founded: 2008 Website: www.RoyalWindTurbines.com Coordinates: 39.7391536,...

  20. Coriolis Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Logo: Coriolis Wind Name: Coriolis Wind Place: Great Falls, Virginia Zip: 22066 Product: Mid-Scale Wind Turbine Year Founded: 2007 Website:...

  1. Jasper Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name: Jasper Wind Place: Athens, Greece Sector: Solar, Wind energy Product: Athens-based wind and solar project developer. Coordinates: 37.97615,...

  2. WINDExchange: Siting Wind Turbines

    WindExchange

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers Economic Development Siting Resources & Tools Siting Wind Turbines This page provides resources about wind turbine siting. American Wind Wildlife Institute The American Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by a unique collaboration of environmentalists, conservationists,

  3. NREL Combined Experimental Final Report--Phase II

    SciTech Connect

    Butterfield, C. P.; Musial, W. P.; Scott, G. N.; Simms, D. A.

    1992-08-01

    Predicting peak power and loads on a fixed-pitch wind turbine. How does the performance of the airfoil in the wind tunnel differ from the performance of an operating horizontal-axis wind turbine (HAWT)?

  4. NREL Research Proves Wind Can Provide Ancillary Grid Fault Response | Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Modernization | NREL Research Proves Wind Can Provide Ancillary Grid Fault Response April 1, 2016 Interior of the controllable grid interface test facility, showing a long hallway and shelves full of electronic equipment. The controllable grid interface test facility at the National Wind Technology Center makes it possible to research the effectiveness of wind energy in providing ancillary grid services such as frequency control. Photo by Dennis Schroeder/NREL 27442 Image of a single wind

  5. An Exploration of Wind Energy & Wind Turbines

    Education - Teach & Learn

    This unit, which includes both a pre and post test on wind power engages students by allowing them to explore connections between wind energy and other forms of energy. Students learn about and examine the overall design of a wind turbine and then move forward with an assessment of the energy output as factors involving wind speed, direction and blade design are altered. Students are directed to work in teams to design, test and analyze components of a wind turbine such as blade length, blade shape, height of turbine, etc Student worksheets are included to facilitate the design and analysis process. Learning Goals: Below are the learning targets for the wind energy unit.

  6. Crow Lake Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Crow Lake Wind Facility Crow Lake Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Prairie Winds...

  7. Wildcat Ridge Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wildcat Ridge Wind Farm Facility Wildcat Ridge Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Midwest Wind Energy Developer Midwest Wind...

  8. Radial Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name Radial Wind Farm Facility Radial Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Radial Wind Developer Radial Wind Location...

  9. Applied Modern Physics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ADEPS » Physics » P-21 Applied Modern Physics From the first bionic eye to airport scanners that detect liquid explosives, our expertise in developing advanced diagnostics results in real-world innovations. Contact Us Group Leader (acting) John George Email Deputy Group Leader Larry Schultz Email Group Office (505) 665-2545 Email QkarD Quantum key distribution technology could ensure truly secure commerce, banking, communications and data transfer. Read more... A history of excellence in the

  10. 2014 News | Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    available technologies, the Western Interconnection can withstand the crucial first ... New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities The ...

  11. NREL: Wind Research - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Technology Center at NREL provides a number of wind news sources to help you stay up-to-date with its activities, research, and new developments. NREL Wind News See...

  12. Wind Power Today

    SciTech Connect

    Not Available

    2006-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  13. Wind Power Today

    SciTech Connect

    Not Available

    2007-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  14. Model Wind Ordinance

    Office of Energy Efficiency and Renewable Energy (EERE)

    In July, 2008 the North Carolina Wind Working Group, a coalition of state government, non-profit and wind industry organizations, published a model wind ordinance to provide guidance for...

  15. Solar and Wind Easements

    Energy.gov [DOE]

    In April 2011, the provisions related to wind easements were repealed by House Bill 295 (2011) and replaced with more extensive wind easements provisions.  This legislation defines wind energy ri...

  16. Impacts | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Impacts Read about NREL's impacts on innovations in wind energy research. Photo of four men in hard hats standing on top of a large wind turbine overlooking several other wind turbines in the distance. Fact Sheets Wind Energy Benefits thumbnail Wind Energy Benefits Screenshot of the cover of the national wind technology brochure. 35 Years of Innovation: Leading the Way to a Clean Energy Future JEDI: Jobs and Economic Development Impact Model thumbnail JEDI: Jobs and Economic Development Impact

  17. Distributed Wind Ordinances: Slides

    WindExchange

    an introduction to distributed wind projects and a brief overview of topics to consider when developing a distributed wind energy ordinance. Distributed Wind Ordinances Photo from Byers and Renier Construction, NREL 18820 Distributed Wind Ordinances The U.S. Department of Energy defines distributed wind projects as: (a) The use of wind turbines, on- or off-grid, at homes, farms and ranches, businesses, public and industrial facilities, or other sites to offset all or a portion of the local

  18. Wind Energy Integration: Slides

    WindExchange

    information about integrating wind energy into the electricity grid. Wind Energy Integration Photo by Dennis Schroeder, NREL 25907 Wind energy currently contributes significant power to energy portfolios around the world. *U.S. Department of Energy. (August 2015). 2014 Wind Technologies Market Report. Wind Energy Integration In 2014, Denmark led the way with wind power supplying roughly 39% of the country's electricity demand. Ireland, Portugal, and Spain provided more than 20% of their

  19. 2009 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    9 News Below are news stories related to Wind. RSS Learn about RSS. September 14, 2009 IEA Wind Energy 2008 Annual Report Now Available for Free Download The IEA Annual Report for 2008 provides the latest information on wind industries in 20 International Energy Agency (IEA) Wind member countries. August 26, 2009 NWTC Installs Multimegawatt Research Turbines NREL's National Wind Technology Center installed the first of two multimegawatt wind turbines last week to be used for research to advance

  20. Wind Power Reliability Research | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Power Reliability Research The U.S. wind power industry is well established, with nearly 75 gigawatts of installed capacity across the United States. Given this large base of ...

  1. Wind Energy Modeling and Simulation | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Energy Modeling and Simulation Wind turbines are unique devices that are typically anchored to the ground but operate in the atmosphere, which subjects them to a variety of ...

  2. Wind Vision Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Status In Service Owner Wind Vision Developer Wind Vision Location St. Ansgar IA Coordinates 43.348224, -92.888816 Show Map Loading map... "minzoom":false,"mappings...

  3. Alaska Wind Update

    Energy Saver

    Alaska Wind Update BIA Providers Conference Dec. 2, 2015 Unalakleet wind farm Energy Efficiency First Make homes, workplaces and communities energy efficient thru ...

  4. @NWTC Newsletter | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    from the Energy Department's National Wind Technology Center (NWTC) at the National ... an essential partner for the technical development and deployment of wind and water power. ...

  5. Scaled Wind Farm Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scaled Wind Farm Technology - Sandia Energy Energy Search Icon Sandia Home Locations ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  6. vertical axis wind turbine

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    vertical axis wind turbine - Sandia Energy Energy Search Icon Sandia Home Locations ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  7. Enabling Wind Power Nationwide

    Energy.gov [DOE] (indexed site)

    Enabling Wind Power Nationwide May 2015 This report is being disseminated by the U.S. ... ordering: ntis.govordering.htm Enabling Wind Power Nationwide Primary Authors Jose ...

  8. Articles about Wind Siting

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    energy.gov Model Examines Cumulative Impacts of Wind Energy Development on the Greater Sage-Grouse http:energy.goveerewindarticlesmodel-examines-cumulative-impacts-wind-ener...

  9. Wind Program: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resources Publications Advanced Search Browse by Topic Mail Requests Help Energy Basics Wind Energy FAQs Small Wind Systems FAQs Multimedia Related Links Feature featured...

  10. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Wind EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative ...

  11. Market Acceleration | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL's team also offers energy and economic analysis, maps, forecasting, workforce development, and education. An aerial photo of three wind turbines at the National Wind ...

  12. Wind Turbine Tribology Seminar

    Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  13. NREL: Wind Research - Publications

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Publications The NREL wind research program develops publications about its R&D projects, accomplishments, and goals in wind energy technologies. Here you will find links to some ...

  14. Sandia Energy Wind News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sandia Wake-Imaging System Successfully Deployed at Scaled Wind Farm Technology Facility http:energy.sandia.govsandia-wake-imaging-system-successfully-deployed-at-scaled-wind-fa...

  15. Scale Models & Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Turbines * Readings about Cape Wind and other offshore and onshore siting debates for wind farms * Student Worksheet * A number of scale model items: Ken, Barbie or other dolls...

  16. Small Wind Conference 2015

    Energy.gov [DOE]

    The Small Wind Conference brings together small wind installers, site assessors, manufacturers, dealers and distributors, supply chain stakeholders, educators, public benefits program managers, and...

  17. Wind for Schools (Poster)

    SciTech Connect

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  18. Wind energy bibliography

    SciTech Connect

    1995-05-01

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  19. Requirements for Wind Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2015 Oklahoma amended the Oklahoma Wind Energy Development Act. The amendments added new financial security requirements, setback requirements, and notification requirements for wind energy...

  20. WINDExchange: Distributed Wind

    WindExchange

    Distributed Wind Photo of a small wind turbine next to a farm house with a colorful sunset in the background. The distributed wind market includes wind turbines and projects of many sizes, from small wind turbines less than 1 kilowatt (kW) to multi-megawatt wind farms. The term "distributed wind" describes off-grid or grid-connected wind turbines at homes, farms and ranches, businesses, public and industrial facilities, and other sites. The turbines can provide all of the power used at

  1. Cherokee Wind

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cherokee Wind Presenter: Carol Wyatt Cherokee Nation Businesses, Inc. DOE Tribal Energy Program October 26, 2010 KA W PA W N EE TO NK AW A PO NC A OT OE -M IS S OU RI CH E RO KE E Acr es: 2,633 .348 CH E RO KE E Acr es: 1,641 .687 CHEROKEE NATION Kay County Chilocco Property DATA SOU RC ES: US Census Bureau (T iger Files ) D OQQ's , USGS D RG's, USGS Cherokee Nation Realty D epartment C herokee N ation GeoD ata C enter Date: 12/19/01 e:\project\land\c hilocc o N E W S Tribal Land Chilocco

  2. Chaninik Wind Group: Harnessing Wind, Building Capacity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chaninik Wind Group: Harnessing Wind, Building Capacity Installation of Village Energy Information System Smart Grid Controller, Thermal Stoves and Meters to Enhance the Efficiency of Wind- Diesel Hybrid Power Generation in Tribal Regions of Alaska Department of Energy Tribal Energy Program Review November 16-20, 2009 The Chananik Wind Group Our goal is to become the "heartbeat of our region." Department of Energy Tribal Energy Program Review November 16-20, 2009 Department of Energy

  3. ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in...

    Office of Scientific and Technical Information (OSTI)

    915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode Title: ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode 915-MHz Radar Wind ...

  4. Hull Wind II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name Hull Wind II Wind Farm Facility Hull II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Hull...

  5. Wind Vision: Continuing the Success of Wind Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Vision: Continuing the Success of Wind Energy Wind Vision: Continuing the Success of Wind Energy April 2, 2015 - 10:35am Addthis The Wind Vision Report describes potential ...

  6. Wind Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Vision Introduction U.S. Wind Power Impacts Roadmap Download Wind Vision: A New Era ... Back to top Chapter 4: The Wind Vision Roadmap The Wind Vision includes a detailed roadmap ...

  7. History of Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    History of Wind Energy History of Wind Energy

  8. History of Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    History of Wind Energy History of Wind Energy

  9. Wind power manufacturing and supply chain summit USA.

    SciTech Connect

    Hill, Roger Ray

    2010-12-01

    The area of wind turbine component manufacturing represents a business opportunity in the wind energy industry. Modern wind turbines can provide large amounts of electricity, cleanly and reliably, at prices competitive with any other new electricity source. Over the next twenty years, the US market for wind power is expected to continue to grow, as is the domestic content of installed turbines, driving demand for American-made components. Between 2005 and 2009, components manufactured domestically grew eight-fold to reach 50 percent of the value of new wind turbines installed in the U.S. in 2009. While that growth is impressive, the industry expects domestic content to continue to grow, creating new opportunities for suppliers. In addition, ever-growing wind power markets around the world provide opportunities for new export markets.

  10. NREL: Innovation Impact - Wind

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Energy Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Wind turbines must withstand powerful aerodynamic forces unlike any other propeller-drive machines. Close NREL's work with industry has improved the efficiency and durability of turbine blades and gearboxes. Innovations include: Specialized airfoils Variable-speed turbines

  11. Your wind driven generator

    SciTech Connect

    Wolff, B.

    1984-01-01

    Wind energy pioneer Benjamin Lee Wolff offers practical guidance on all aspects of setting up and operating a wind machine. Potential builders will learn how to: determine if wind energy is suitable for a specific application; choose an appropriate machine; assess the financial costs and benefits of wind energy; obtain necessary permits; sell power to local utilities; and interpret a generator's specifications. Coverage includes legislation, regulations, siting, and operation. While describing wind energy characteristics, Wolff explores the relationships among wind speed, rotor diameter, and electrical power capacity. He shows how the power of wind energy can be tapped at the lowest cost.

  12. Wind Energy Benefits: Slides

    WindExchange

    1. Wind energy is cost competitive. *Wiser, R.; Bolinger, M. (2015). 2014 Wind Technologies Market Report. U.S. Department of Energy. Wind Energy Benefits Photo from DOE Flickr. 465 020 003 In 2014, the average levelized price of signed wind power purchase agreements was about 2.35 cents per kilowatt-hour. This price is cost competitive with new gas-fired power plants and projects compare favorably through 2040.* 2. Wind energy creates jobs. American Wind Energy Association. (2015). U.S. Wind

  13. ARM - Wind Chill Calculations

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    CalculatorsWind Chill Calculations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Wind Chill Calculations Wind Chill is the apparent temperature felt on the exposed human body owing to the combination of temperature and wind speed. From 1945 to 2001, Wind Chill was calculated by the Siple

  14. Wind Power Outlook 2004

    SciTech Connect

    anon.

    2004-01-01

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  15. WINDExchange: Collegiate Wind Competition

    WindExchange

    Education Printable Version Bookmark and Share Workforce Development Collegiate Wind Competition Wind for Schools Project School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Collegiate Wind Competition The U.S. Department of Energy (DOE) Collegiate Wind Competition challenges interdisciplinary teams of undergraduate students from a variety of programs to offer a unique solution to a complex wind energy project. The Competition provides students

  16. WINDExchange: Wind Energy Ordinances

    WindExchange

    Wind Energy Ordinances Federal, state, and local regulations govern many aspects of wind energy development. The nature of the project and its location will largely drive the levels of regulation required. Wind energy ordinances adopted by counties, towns, and other types of municipalities are one of the best ways for local governments to identify conditions and priorities for all types of wind development. These ordinances regulate aspects of wind projects such as their location, permitting

  17. 2006 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    6 News Below are news stories related to Wind. RSS Learn about RSS. December 14, 2006 NREL and Xcel Energy Dedicate Wind-Powered Hydrogen Generator DOE's National Renewable Energy Laboratory (NREL) and Xcel Energy dedicated a new system to convert wind power into hydrogen on December 14th. The system, located at NREL's National Wind Technology Center, links two wind turbines to devices called electrolyzers, which pass the electricity through water to split the liquid into hydrogen and oxygen.

  18. NREL Supercomputing Model Provides Insights from Higher Wind and Solar

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Generation in the Eastern Power Grid | Grid Modernization | NREL Supercomputing Model Provides Insights from Higher Wind and Solar Generation in the Eastern Power Grid NREL opens data to help planners and regulators understand implications of higher wind and solar generation August 31, 2016 A new study from the United States Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) used high-performance computing capabilities and innovative visualization tools to model, in

  19. Breazeale Reactor Modernization Program

    SciTech Connect

    Davison, C. C.

    2003-04-16

    The Penn State Breazeale Nuclear Reactor is the longest operating licensed research reactor in the nation. The facility has played a key role in educating scientists, engineers and in providing facilities and services to researchers in many different disciplines. In order to remain a viable and effective research and educational institution, a multi-phase modernization project was proposed. Phase I was the replacement of the 25-year old reactor control and safety system along with associated wiring and hardware. This phase was fully funded by non-federal funds. Tasks identified in Phases II-V expand upon and complement the work done in Phase I to strategically implement state-of-the-art technologies focusing on identified national needs and priorities of the future.

  20. WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential

    WindExchange

    Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California

  1. National Wind Assessments formerly Romuld Wind Consulting | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Assessments formerly Romuld Wind Consulting Jump to: navigation, search Name: National Wind Assessments (formerly Romuld Wind Consulting) Place: Minneapolis, Minnesota Zip: 55416...

  2. Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    (SWIFT) Facility Wind Turbine Controller Ground Testing - Sandia Energy Energy Search Icon ... Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller Ground Testing Home...

  3. NREL: Wind Research - Small and Distributed Wind Turbine Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Small and Distributed Wind Turbine Research A distributed wind farm in Wisconsin at ... Standards: The suite of tests conducted on small wind turbines includes acoustic noise ...

  4. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    OpenEI (Open Energy Information) [EERE & EIA]

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  5. Distributed Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Distributed Wind Distributed Wind The Wind Program's activities in wind technologies in distributed applications-or distributed wind-address the performance and reliability challenges associated with smaller turbines by focusing on technology development, testing, certification, and manufacturing. What is Distributed Wind? Photo of a turbine behind a school. The Wind Program defines distributed wind in terms of technology application, based on a wind plant's location relative to end-use and

  6. 2014 Modern Power Grid Video

    SciTech Connect

    2014-06-02

    A video from NETL that describes the details of a modern power grid and how it can help our nation save on energy costs.

  7. 2014 Modern Power Grid Video

    ScienceCinema

    None

    2016-07-12

    A video from NETL that describes the details of a modern power grid and how it can help our nation save on energy costs.

  8. Chaninik Wind Group Wind Heat Smart Grid

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chaninik Wind Group Wind Heat Smart Grid Our Presentation * William Igkurak, President Chaninik Wind Group * the harness renewables to lower energy costs, * create economic opportunities * build human capacity * Dennis Meiners * Principal Intelligent Energy Systems, Anchorage Ak. * How it all works Program Highlights ²Award Tribal Energy funding 2009, Village Smart Grid ²Received funds November 2010 ²Project to be complete June 2011 ²Theme: "communities working together we can become

  9. Star Point Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Point Wind Farm Jump to: navigation, search Name Star Point Wind Farm Facility Star Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  10. Gulf Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name Gulf Wind Farm Facility Gulf Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Pattern Energy...

  11. Stetson Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Farm Jump to: navigation, search Name Stetson Wind Farm Facility Stetson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  12. Zirbel Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name Zirbel Wind Farm Facility Zirbel Wind Farm (Glenmore Wind Energy Facility) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  13. Beebe Community Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Name Beebe Community Wind Facility Beebe Community Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind...

  14. Woodstock Municipal Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name Woodstock Municipal Wind Facility Woodstock Municipal Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind...

  15. Winona County Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name Winona County Wind Facility Winona County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Juhl Wind...

  16. Story City Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Story City Wind Facility Story City Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Hamilton Wind Energy...

  17. Palmetto Wind Research Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Research Project Jump to: navigation, search Name Palmetto Wind Research Project Facility Palmetto Wind Research Project Sector Wind energy Facility Type Offshore Wind...

  18. Tillamook Offshore Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tillamook Offshore Wind Farm Jump to: navigation, search Name Tillamook Offshore Wind Farm Facility Tillamook Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  19. Deepwater Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Deepwater Wind Farm Facility Deepwater Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner PSEG Renewable Generation Deepwater Wind...

  20. Galveston Offshore Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Galveston Offshore Wind Farm Jump to: navigation, search Name Galveston Offshore Wind Farm Facility Galveston Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  1. Montfort Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montfort Wind Farm Jump to: navigation, search Name Montfort Wind Farm Facility Montfort Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  2. Wildcat 1 Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wildcat 1 Wind Project Jump to: navigation, search Name Wildcat 1 Wind Project Facility Wildcat 1 Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  3. Springview II Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Springview II Wind Project Jump to: navigation, search Name Springview II Wind Project Facility Springview II Wind Project Sector Wind energy Facility Type Commercial Scale Wind...

  4. Shiloh Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Shiloh Wind Power Project Facility Shiloh Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  5. Fenton Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Fenton Wind Power Project Facility Fenton Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  6. Madison Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Madison Wind Power Project Facility Madison Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  7. Somerset Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Somerset Wind Power Project Facility Somerset Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  8. Desert Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Jump to: navigation, search Name Desert Wind Power Facility Desert Wind Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer...

  9. Moraine Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Moraine Wind Power Project Facility Moraine Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  10. Adams Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Project Jump to: navigation, search Name Adams Wind Project Facility Adams Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  11. Blue Creek Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Creek Wind Farm Jump to: navigation, search Name Blue Creek Wind Farm Facility Blue Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  12. Tuana Springs Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Springs Wind Farm Jump to: navigation, search Name Tuana Springs Wind Farm Facility Tuana Springs Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  13. Thousand Springs Wind Park | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Springs Wind Park Jump to: navigation, search Name Thousand Springs Wind Park Facility Thousand Springs Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility...

  14. First State Marine Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    State Marine Wind Jump to: navigation, search Name First State Marine Wind Facility First State Marine Wind Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  15. Minco Wind Energy Center | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy Center Jump to: navigation, search Name Minco Wind Energy Center Facility Minco Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  16. Dunlap Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Dunlap Wind Energy Project Jump to: navigation, search Name Dunlap Wind Energy Project Facility Dunlap Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind...

  17. Baseline Wind Energy Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy Facility Jump to: navigation, search Name Baseline Wind Energy Facility Facility Baseline Wind Energy Facility Sector Wind energy Facility Type Commercial Scale Wind...

  18. Howard Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy Project Jump to: navigation, search Name Howard Wind Energy Project Facility Howard Wind Energy Project Sector Wind energy Facility Type Community Wind Facility Status...

  19. Cape Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Project Jump to: navigation, search Name Cape Wind Project Facility Cape Wind Sector Wind energy Facility Type Offshore wind Facility Status Proposed Owner Cape Wind Developer Cape...

  20. Wales Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wales Wind Energy Project Jump to: navigation, search Name Wales Wind Energy Project Facility Wales Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility...

  1. Wyoming Wind Energy Center | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy Center Jump to: navigation, search Name Wyoming Wind Energy Center Facility Wyoming Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  2. Vantage Wind Energy Center | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy Center Jump to: navigation, search Name Vantage Wind Energy Center Facility Vantage Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  3. Bayonne Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bayonne Wind Energy Project Jump to: navigation, search Name Bayonne Wind Energy Project Facility Bayonne Wind Energy Project Sector Wind energy Facility Type Community Wind...

  4. Gary Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gary Wind Energy Project Jump to: navigation, search Name Gary Wind Energy Project Facility Gary Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility...

  5. Havoco Wind Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Havoco Wind Energy LLC Jump to: navigation, search Name: Havoco Wind Energy LLC Place: Dallas, Texas Zip: 75206 Sector: Wind energy Product: Wind developer of Altamont Pass wind...

  6. Oliver Wind Energy Center | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy Center Jump to: navigation, search Name Oliver Wind Energy Center Facility Oliver Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  7. Flat Water Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Wind Farm Jump to: navigation, search Name Flat Water Wind Farm Facility Flat Water Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  8. Gray County Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gray County Wind Farm Jump to: navigation, search Name Gray County Wind Farm Facility Gray County Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  9. Hopkins Ridge Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name Hopkins Ridge Wind Farm Facility Hopkins Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  10. Luther College Wind Turbine | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Luther College Wind Turbine Jump to: navigation, search Name Luther College Wind Turbine Facility Luther College Wind Turbine Sector Wind energy Facility Type Community Wind...

  11. Williams Stone Wind Turbine | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Stone Wind Turbine Jump to: navigation, search Name Williams Stone Wind Turbine Facility Williams Stone Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status...

  12. Portsmouth Wind Turbine | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Turbine Jump to: navigation, search Name Portsmouth Wind Turbine Facility Portsmouth Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service...

  13. Charlestown Wind Turbine | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Charlestown Wind Turbine Jump to: navigation, search Name Charlestown Wind Turbine Facility Charlestown Wind Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility...

  14. Fenner Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Fenner Wind Power Project Facility Fenner Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  15. Shane Cowell Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Shane Cowell Wind Farm Jump to: navigation, search Name Shane Cowell Wind Farm Facility Shane Cowell Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  16. Antelope Ridge Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Antelope Ridge Wind Farm Jump to: navigation, search Name Antelope Ridge Wind Farm Facility Antelope Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  17. Locust Ridge Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Locust Ridge Wind Farm Jump to: navigation, search Name Locust Ridge Wind Farm Facility Locust Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  18. Rosiere Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Rosiere Wind Farm Jump to: navigation, search Name Rosiere Wind Farm Facility Rosiere Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  19. Paynes Ferry Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Paynes Ferry Wind Farm Jump to: navigation, search Name Paynes Ferry Wind Farm Facility Paynes Ferry Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  20. Marengo Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Marengo Wind Farm Jump to: navigation, search Name Marengo Wind Farm Facility Marengo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  1. Stoney Corners Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Stoney Corners Wind Farm Jump to: navigation, search Name Stoney Corners Wind Farm Facility Stoney Corners Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  2. Marshall Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Marshall Wind Farm Jump to: navigation, search Name Marshall Wind Farm Facility Marshall Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  3. Laredo Ridge Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Laredo Ridge Wind Farm Jump to: navigation, search Name Laredo Ridge Wind Farm Facility Laredo Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  4. Nine Canyon Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Nine Canyon Wind Farm Jump to: navigation, search Name Nine Canyon Wind Farm Facility Nine Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  5. Casper Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Casper Wind Farm Jump to: navigation, search Name Casper Wind Farm Facility Casper Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  6. Wallys Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wallys Wind Farm Jump to: navigation, search Name Wallys Wind Farm Facility Wallys Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  7. Cassia Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cassia Wind Farm Jump to: navigation, search Name Cassia Wind Farm Facility Cassia Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  8. Hatchet Ridge Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hatchet Ridge Wind Farm Jump to: navigation, search Name Hatchet Ridge Wind Farm Facility Hatchet Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  9. Cedar Point Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cedar Point Wind Farm Jump to: navigation, search Name Cedar Point Wind Farm Facility Cedar Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  10. Allegheny Ridge Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Allegheny Ridge Wind Farm Jump to: navigation, search Name Allegheny Ridge Wind Farm Facility Allegheny Ridge wind farm Sector Wind energy Facility Type Commercial Scale Wind...

  11. Greensburg Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Greensburg Wind Farm Jump to: navigation, search Name Greensburg Wind Farm Facility Greensburg Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  12. Wheatfield Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wheatfield Wind Farm Jump to: navigation, search Name Wheatfield Wind Farm Facility Wheatfield Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  13. Ewington Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ewington Wind Farm Jump to: navigation, search Name Ewington Wind Farm Facility Ewington Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  14. Uilk Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Uilk Wind Farm Jump to: navigation, search Name Uilk Wind Farm Facility Uilk Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer...

  15. Octotillo Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Octotillo Wind Farm Jump to: navigation, search Name Octotillo Wind Farm Facility Octotillo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  16. Don Sneve Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sneve Wind Project Jump to: navigation, search Name Don Sneve Wind Project Facility Don Sneve Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  17. Spring Canyon Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Spring Canyon Wind Farm Jump to: navigation, search Name Spring Canyon Wind Farm Facility Spring Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  18. Green Mountain Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name Green Mountain Wind Farm Facility Green Mountain Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  19. Red Canyon Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Canyon Wind Farm Jump to: navigation, search Name Red Canyon Wind Farm Facility Red Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  20. Kansas/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Kansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  1. Idaho/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Idaho Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  2. Nevada/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Nevada Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  3. Iowa/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Iowa Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  4. Small Wind Guidebook | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Home >> Wind >> Small Wind Guidebook WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  5. Maine/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Maine Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  6. Hawaii/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Hawaii Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  7. Oregon/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Oregon Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  8. Alaska/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Alaska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  9. Olsen Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Olsen Wind Farm Jump to: navigation, search Name Olsen Wind Farm Facility Olsen Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  10. Sigel Wind Park | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sigel Wind Park Jump to: navigation, search Name Sigel Wind Park Facility Sigel Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  11. Minden Wind Park | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Minden Wind Park Jump to: navigation, search Name Minden Wind Park Facility Minden Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  12. Fossil Gulch Wind Park | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gulch Wind Park Jump to: navigation, search Name Fossil Gulch Wind Park Facility Fossil Gulch Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  13. Criterion Wind Park | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Criterion Wind Park Jump to: navigation, search Name Criterion Wind Park Facility Criterion Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  14. Golden Valley Wind Park | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Park Jump to: navigation, search Name Golden Valley Wind Park Facility Golden Valley Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  15. Condon Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Condon Wind Project Jump to: navigation, search Name Condon Wind Project Facility Condon Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  16. Turkey Track Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Track Wind Farm Jump to: navigation, search Name Turkey Track Wind Farm Facility Turkey Track Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  17. Spanish Fork Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fork Wind Farm Jump to: navigation, search Name Spanish Fork Wind Farm Facility Spanish Fork Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  18. Wind Power (pbl/generation)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wind Power (Updated June 16, 2014) Project Descriptions Foote Creek I Wind Project (Carbon...

  19. AWEA Wind Energy Fall Symposium

    Energy.gov [DOE]

    The AWEA Wind Energy Fall Symposium gathers wind energy professionals for informal yet productive interactions with industry peers. Jose Zayas, Director, Wind & Water Power Technologies Office,...

  20. Modular Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Signal Hill, California Sector: Wind energy Product: California-based wind turbine blade designer in stealth mode. References: Modular Wind1 This article is a stub. You can...

  1. Wind 7 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Wind 7 Place: Eckernfoerde, Schleswig-Holstein, Germany Zip: 24340 Sector: Wind energy Product: Eckernfoerde-based company that develops & operates wind power projects in...

  2. New Energy Systems Integration Facility (ESIF) to Help Modernize the Grid |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Systems Integration Facility (ESIF) to Help Modernize the Grid New Energy Systems Integration Facility (ESIF) to Help Modernize the Grid September 11, 2013 - 11:09am Addthis The new Energy Systems Integration Facility is the nation's first facility to help both public and private sector researchers scale-up promising clean energy technologies -- from solar modules and wind turbines to electric vehicles and efficient, interactive home appliances -- and test how they

  3. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Wind The U.S. wind energy industry continued its strong growth in 2015, adding new generating capacity faster than any other source of electricity generation. Get the latest update on the state of the industry in our 2015 Wind Market Reports. The U.S. wind energy industry continued its strong growth in 2015, adding new generating capacity faster than any other source of electricity generation. Get the latest update on the state of the industry in our 2015 Wind Market Reports. The United

  4. Wind Power Career Chat

    SciTech Connect

    L. Flowers

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  5. Research | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research During the past 35 years of wind research and development, NREL has pioneered many of the components and systems that have taken wind energy technologies to new heights. Through its expertise and one-of-a-kind assets, the research performed at NREL has become a guiding force, advancing wind technologies from initial concepts to deployment. A photo of six megawatt-scale wind turbines at various heights on a flat field. Land-Based Wind A photo of a singular wind turbine on a yellow

  6. See the Wind

    Education - Teach & Learn

    The goal of this activity is to help students see the difference in the speed and smoothness of the wind at different altitudes above the earth. This is important for wind engineers as they seek to place their wind turbines in the fastest and smoothest winds possible. It is also a major reason that wind turbines are getting larger and higher in the sky, and is why we are starting to see wind turbines in the plains and out in the ocean near the coast. Teacher background and assessment sheets are provided.

  7. Wind ripple analysis

    SciTech Connect

    Akins, R.E.

    1981-01-01

    Efficient and economical utilization of wind power will require the ability to measure and ultimately predict the effects fluctuations in the incident wind will have on a wind turbine. In order to quantitatively assess these effects, experimental techniques have been developed which allow analysis of full-scale performance of wind turbines with particular emphasis on the effects caused by turbulence in the incident wind. Examples of these techniques are presented using data from the DOE/Sandia Vertical Axis Wind Turbine (VAWT) program.

  8. Wind energy information guide

    SciTech Connect

    1996-04-01

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  9. Kansas State University | Department of Energy

    Energy.gov [DOE] (indexed site)

    built a small wind turbine for the U.S. Department of Energy Collegiate Wind Competition. ... On top of this, they concentrated on turbine marketability. For instance, horizontal axis ...

  10. Wind Vision: A New Era for Wind Power

    Energy.gov [DOE] (indexed site)

    Highlights Wind Vision: A New Era for Wind Power in the United States Wind Vision Objectives The U.S. Department of Energy's (DOE's) Wind and Water Power Technologies Office has ...

  11. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Energy Saver

    % Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply ...

  12. EERE 2014 Wind Technologies Market Report Finds Wind Power at...

    Energy Saver

    2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices EERE 2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices August 10, 2015 - 11:00am ...

  13. Ion-driven instabilities in the solar wind: Wind observations...

    Office of Scientific and Technical Information (OSTI)

    Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005 Citation Details In-Document Search Title: Ion-driven instabilities in the solar wind: Wind ...

  14. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect

    Not Available

    2009-01-01

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  15. Community Wind Handbook/Conduct a Wind Resource Estimate | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    "Windustry. Wind Resource Assessment" "AWS Scientific for the National Renewable Energy Laboratory. Wind Resource Assessment Handbook" Retrieved from "http:...

  16. Collegiate Wind Competition Wind Tunnel Specifications | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Teams competing in the U.S. Department of Energy Collegiate Wind Competition must design a prototype wind turbine that fits inside the wind tunnel created to test the performance of each team's project. The tunnel has a "draw down" configuration, introduced by the fan, that sucks air through the box. There are two debris filters, one at

  17. 2016 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2016 News Below are news stories related to Wind. RSS Learn about RSS. September 13, 2016 Survey Reveals Projections for Lower Wind Energy Costs The cost of producing electricity ...

  18. ARM - Measurement - Horizontal wind

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    wind ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Horizontal wind The horizontal ...

  19. 2012 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2 News Below are news stories related to Wind. RSS Learn about RSS. September 25, 2012 Wind Energy Research Institutes Join Forces at the Inaugural Meeting of the North American ...

  20. 2010 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    0 News Below are news stories related to Wind. RSS Learn about RSS. October 27, 2010 Offshore Wind Energy Poised to Play a Vital Role in Future U.S. Energy Markets A new report ...

  1. DOE Wind Program Update

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Program Update March 2007 P.J. Dougherty Wind and Hydropower Technologies Program Since the 1970's, DOE has spent just over 1B in developing a market, which will reach over ...

  2. 2011 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1 News Below are news stories related to Wind. RSS Learn about RSS. December 9, 2011 Saving Farmland One Wind Energy Project at a Time Rich VanderVeen, president of Mackinaw Power, ...

  3. WINDExchange: Learn About Wind

    WindExchange

    wind turbines in a row at sunset. The sky is varying hues of orange and the sun is halfway past the horizon. Wind power comes in many sizes. Here, several...

  4. WindWaveFloat

    SciTech Connect

    Weinstein, Alla

    2011-11-01

    Presentation from the 2011 Water Peer Review includes in which principal investigator Alla Weinstein discusses project progress in development of a floating offshore wind structure - the WindFloat - and incorporation therin of a Spherical Wave Energy Device.

  5. Articles about Offshore Wind

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    unprecedented information on offshore wind patterns, making it possible to harness wind power in entirely new locations.

    Mon, 07 Dec 2015 18:52:00 +0000...

  6. Renaissance for wind power

    SciTech Connect

    Flavin, C.

    1981-10-01

    Wind research and development during the 1970s and recent studies showing wind to be a feasible source of both electrical and mechanical power are behind the rapid expansion of wind energy. Improved technology should make wind energy economical in most countries having sufficient wind and appropriate needs. A form of solar energy, winds form a large pattern of global air circulation because the earth's rotation causes differences in pressure and oceans cause differences in temperature. New development in the ancient art of windmill making date to the 1973 oil embargo, but wind availability must be determined at local sites to determine feasibility. Whether design features of the new technology and the concept of large wind farms will be incorporated in national energy policies will depend on changing attitudes, acceptance by utilities, and the speed with which new information is developed and disseminated. 44 references, 6 figures. (DCK)

  7. Research Facilities | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Photo of five wind turbines of varying sizes in the background and an office building in the foreground. Field Test Sites A photo of two people wearing hard hats in front of a wind ...

  8. Wind Energy Basics | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... How Wind Turbines Work U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. Photo of a girl and a boy standing beneath a large wind turbine. Students can ...

  9. Distributed Wind 2015

    Energy.gov [DOE]

    Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...

  10. NREL: Wind Research - Events

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Events Below are upcoming events related to wind energy technology. December 2015 Wind and Water Power Small Business Voucher Open House December 2, 2015, 9:00 - 1:00 MST Boulder,...

  11. See the Wind

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Engineers are also concerned about wind shear and turbulence as this can cause a great deal of stress on their gearbox and bearings in their turbines. Characterizing Shear and Wind ...

  12. Distributed Wind Energy Workshop

    Energy.gov [DOE]

    Join instructor Brent Summerville for a fun and interactive workshop at Appalachian State University's Small Wind Research and Demonstration Site. Learn about a variety of distributed wind energy...

  13. Wind Vision | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A New Era for Wind Power in the United States The Wind Vision report updates the Department of Energy's 2008 20% Wind Energy by 2030 through analysis of scenarios of wind power ...

  14. WIND ENERGY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WIND ENERGY WIND ENERGY WIND ENERGY POSTER (3.22 MB) More Documents & Publications WIND ENERGY Download LPO's Illustrated Poster Series LPO Financial Performance Report DOE-LPO_Email-Update_001_Through_1

  15. Land-Based Wind Potential Changes in the Southeastern United States (Presentation)

    SciTech Connect

    Roberts, J. O.

    2013-09-01

    Recent advancements in utility-scale wind turbine technology and pricing have vastly increased the potential land area where turbines can be deployed in the United States. This presentation quantifies the new developable land potential (e.g., capacity curves), visually identifies new areas for possible development (e.g., new wind resource maps), and begins to address deployment barriers to wind in new areas for modern and future turbine technology.

  16. 2007 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    7 News Below are news stories related to Wind. RSS Learn about RSS. June 27, 2007 U.S., Danish laboratories to cooperate on wind energy research NREL and Denmark's Risø National Laboratory, Technical University of Denmark (DTU), have signed an agreement to cooperate closely on improving wind energy technologies. June 25, 2007 Large Wind Turbine Blade Test Facilities to be in Mass., Texas NREL will work with consortiums from Texas and Massachusetts to design, build and operate new facilities to

  17. Wind Energy Markets, 2. edition

    SciTech Connect

    2007-11-15

    The report provides an overview of the global market for wind energy, including a concise look at wind energy development in key markets including installations, government incentives, and market trends. Topics covered include: an overview of wind energy including the history of wind energy production and the current market for wind energy; key business drivers of the wind energy market; barriers to the growth of wind energy; key wind energy trends and recent developments; the economics of wind energy, including cost, revenue, and government subsidy components; regional and national analyses of major wind energy markets; and, profiles of key wind turbine manufacturers.

  18. Wind farm electrical system

    DOEpatents

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  19. Wind power outlook 2006

    SciTech Connect

    anon.

    2006-04-15

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  20. Wind Economic Development (Postcard)

    SciTech Connect

    Not Available

    2011-08-01

    The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

  1. Wind power soars

    SciTech Connect

    Flavin, C.

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. Some data for global wind power generating capacity are provided. European and other markets are discussed individually. Estimated potential for wind power is given for a number of countries. 3 figs.

  2. Wind Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information Resources » Wind Vision Wind Vision Wind Vision About In support of the President's strategy to diversify our nation's clean energy mix, an elite team of researchers, academics, scientists, engineers, and wind industry experts revisited the findings of the Energy Department's 2008 20% Wind by 2030 report and built upon its findings to conceptualize a new vision for wind energy through 2050. The Wind Vision Report takes America's current installed wind power capacity across all

  3. Wind for Schools Curriculum Brief

    SciTech Connect

    2010-08-01

    This fact sheet provides an overview of wind energy curricula as it relates to the Wind for Schools project.

  4. WINDExchange: Wind Maps and Data

    WindExchange

    Wind Maps and Data WINDExchange provides wind maps and anemometer data to help homeowners, communities, states, and regions learn more about their available wind resources and plan wind energy projects. WINDExchange also maintains more than a decade of installed capacity maps showing how wind energy has progressed across the United States over time as advances in wind technology and materials make wind resources more available. A map illustration of the United States showing the various wind

  5. NREL: Wind Research - Winds of Change Blowing for Wind Farm Research...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Winds of Change Blowing for Wind Farm Research with NREL's SOWFA Tool Simulation from SOWFA that shows a number of wind turbines and how the wind is flowing between them, with the ...

  6. Wind energy applications guide

    SciTech Connect

    anon.

    2001-01-01

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  7. Arkansas/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Distributed Wind Energy Association Arkansas Wind Resources Arkansas Energy Office: Wind AWEA State Wind Energy Statistics: Arkansas Southeastern Wind Coalition...

  8. Wind tower service lift

    DOEpatents

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  9. Wind energy conversion system

    DOEpatents

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  10. Kansas Wind Energy Consortium

    SciTech Connect

    Gruenbacher, Don

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  11. School Facility Program- Modernization Grants

    Energy.gov [DOE]

    The School Facility Program (SFP) provides funding assistance to school districts for the modernization of school facilities. The assistance is in the form of grants approved by the State...

  12. Wind Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Vision Wind Vision Wind Vision Introduction U.S. Wind Power Impacts Roadmap Download Wind Vision: A New Era for Wind Power in the United States The Wind Vision report updates the Department of Energy's 2008 20% Wind Energy by 2030 through analysis of scenarios of wind power supplying 10% of national end-use electricity demand by 2020, 20% by 2030, and 35% by 2050. With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated with

  13. WINDExchange: Where Is Wind Power?

    WindExchange

    Where Is Wind Power? WINDExchange offers maps to help you visualize the wind resource at a local level and to show how much wind power has been installed in the United States. How much wind power is on my land? Go to the wind resource maps. Go to the wind resource maps. Go to the wind resource maps. If you want to know how much wind power is in a particular area, these wind resource maps can give you a visual indication of the average wind speeds to a local level such as a neighborhood. These

  14. Eastern Renewable Generation Integration Study | Grid Modernization...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    wind and PV futures and associated operational impacts in the Eastern Interconnection. ... addition to wind in the U.S. Eastern Interconnection Increases the temporal resolution to ...

  15. Institutional Support | Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Institutional Support NREL delivers high-quality technical assistance and objective information to policy makers, regulatory agencies, and regional planning organizations to address the challenges posed by grid modernization. Photo of two people standing in front of a display showing results from a grid study. The demand for objective technical assistance and information on grid modernization is high. State policy makers, regulators, and regional planners must address the complex issues related

  16. 2014 WIND POWER PROGRAM PEER REVIEW-DISTRIBUTED WIND

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Distributed Wind March 24-27, 2014 Wind Energy Technologies PR-5000-62152 2 Contents Distributed Wind Annual Market Report on Wind Technologies in Distributed Applications & Distributed Wind Policy Comparison Tool-Alice Orrell, Pacific Northwest National Laboratory Government, Industry, International Partnerships-Karin Sinclair, National Renewable Energy Laboratory Certifying Distributed Wind Turbines-Brent Summerville, Small Wind Certification Council Loads Analysis and Standards

  17. Chaninik Wind Group: Wind Heat Smart Grids

    Office of Environmental Management (EM)

    Wind Heat System Components * ETS heat output at high is equivalent to a Toyostove Laser 56 * .10 per kwh is equivalent to buying diesel at 2.90 per gallon * Current diesel ...

  18. Small Wind Guidebook/Is Wind Energy Practical for Me | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind GuidebookIs Wind Energy Practical for Me < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook...

  19. Natural Gas Modernization Clearinghouse Resources | Department...

    Energy Saver

    Natural Gas Modernization Clearinghouse Resources Natural Gas Modernization Clearinghouse Resources << back to clearinghouse home NOTE: The resources provided here are intended for ...

  20. Sensing and Measurement Architecture for Grid Modernization ...

    Office of Scientific and Technical Information (OSTI)

    Sensing and Measurement Architecture for Grid Modernization Citation Details In-Document Search Title: Sensing and Measurement Architecture for Grid Modernization You are ...

  1. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Energy Reliability Steve Pullins, Modern Grid Strategy Team Utility Field Services 2009 29 April 2009 Office of Electricity Delivery and Energy Reliability MODERN GRID S T ...

  2. Modern Electric Water Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Modern Electric Water Company Jump to: navigation, search Name: Modern Electric Water Company Address: 904 North Pines Road Place: Spokane Valley, WA Zip: 99206 Phone Number: (509)...

  3. Heating System Modernization, Management of Peripheral Scope...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    System Modernization, Management of Peripheral Scope Lessons Learned Report, NNSA, Dec 2010 Heating System Modernization, Management of Peripheral Scope Lessons Learned Report,...

  4. WINDExchange: Wind Energy Market Sectors

    WindExchange

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind Energy Market Sectors U.S. power plants generate electricity for homes, factories, and businesses from a variety of resources, including coal, hydro, natural gas, nuclear, petroleum, and (non-hydro) renewable resources such as wind and solar energy. This power generation mix varies significantly across the country depending on

  5. The WEI6K, a 6-kW 7-m Small Wind Turbine: Final Technical Report

    SciTech Connect

    Wetzel, Kyle K.; McCleer, Patrick J.; Hahlbeck, Edwin C.; DOE Project Office - Keith Bennett

    2006-07-21

    This project was selected by the U.S. Department of Energy under a DOE solicitation “Low Wind Speed Technology for Small Turbine Development.” The objective of this project has been to design a new small wind turbine with improved cost, reliability and performance in grid-connected residential and small business applications, in order to achieve the overall DOE goal of cost effectiveness in Class 3 wind resources that can now be achieved in Class 5 resources. The scope of work for this project has been to complete the preliminary design of an improved small wind turbine, including preliminary loads and strength analyses; analysis and design of all major components; systems integration and structural dynamic analysis; estimation of life-cycle cost of energy; and design documentation and review. The project did not entail hardware fabrication or testing. The WEI6K Turbine resulting from this project is an upwind horizontal-axis wind turbine rated at 6 kW. It features a 3-blade 7-m diameter rotor. The generator is a direct-drive permanent magnet synchronous machine generating 3-phase power at 240 VAC. The turbine is maintained oriented in to the wind via active yaw control using electromechanical servos. Power is regulated with active blade pitch control. The turbine is presently designed to be placed on a 100-foot (30m) tower. The turbine is predicted to generate electricity at a levelized cost of energy (COE) between 7.3 and 8.9 ¢/kWh at an IEC Class II site, with an average wind speed of 8.5 m/s at hub height, depending upon whether the customer uses a guyed truss tower (the lower figure) or a monopole tower. For the NREL Reference Site, with a mean wind speed of 5.35 m/s at 10 m height, the turbine would generate at a levelized cost of energy of between 9.7 and 11.9 ¢/kWh. The lowest of these numbers is presently competitive with retail electricity rates in most of the country. The 8.9 ¢/kWh is still competitive with retail rates in many regions of the

  6. SERI Wind Energy Program

    SciTech Connect

    Noun, R. J.

    1983-06-01

    The SERI Wind Energy Program manages the areas or innovative research, wind systems analysis, and environmental compatibility for the U.S. Department of Energy. Since 1978, SERI wind program staff have conducted in-house aerodynamic and engineering analyses of novel concepts for wind energy conversion and have managed over 20 subcontracts to determine technical feasibility; the most promising of these concepts is the passive blade cyclic pitch control project. In the area of systems analysis, the SERI program has analyzed the impact of intermittent generation on the reliability of electric utility systems using standard utility planning models. SERI has also conducted methodology assessments. Environmental issues related to television interference and acoustic noise from large wind turbines have been addressed. SERI has identified the causes, effects, and potential control of acoustic noise emissions from large wind turbines.

  7. ARM - Lesson Plans: Winds

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Winds Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Winds Objective The objective of this activity is to investigate how pressure differences create wind. Materials Each student or group of students will need the following: Balloon (long balloons or round ones) Bicycle pump

  8. Enabling Wind Power Nationwide

    SciTech Connect

    Jose, Zayas; Michael, Derby; Patrick, Gilman; Ananthan, Shreyas; Lantz, Eric; Cotrell, Jason; Beck, Fredic; Tusing, Richard

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  9. Vertical Axis Wind Turbine

    Energy Science and Technology Software Center

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  10. Research Staff | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Staff Learn more about the expertise and technical skills of the wind energy research team and staff at NREL by reading their biographical information. Photo of Daniel Laird Daniel Laird Center Director Dr. Daniel Laird is director of the National Wind Technology Center (NWTC). Laird also serves as an executive committee member of the U.S. Department of Energy's (DOE's) Atmosphere to Electrons Wind Plant Optimization Initiative and provides leadership in the focus areas of high-fidelity

  11. 2014 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4 News Below are news stories related to Wind. RSS Learn about RSS. November 12, 2014 NREL Research Facilitates Several Multi-Party Collaborations in Advanced Controls NREL's two Advanced Controls Research Turbines are providing the basis for several collaborative research projects involving multiple partners to advance the state-of-the-art wind turbine controls. November 6, 2014 NREL Analyzes Floating Offshore Wind Technology for Statoil NREL engineers traveled to Oslo, Norway, to meet with

  12. Energy in the Wind

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Provi and BP Energy in the Wind - Exploring Basic Electrical Concepts by Modeling Wind Turbines Curriculum: Wind Power (simple machines, aerodynamics, weather/climatology, leverage, mechanics, atmospheric pressure, and energy resources/transformations) Grade Level: High School Small groups: 2 students Time: Introductory packet will take 2-3 periods. Scientific investigation will take 2-3 periods. (45-50 minute periods) Summary: Students explore basic electrical concepts. Students are introduced

  13. WINDExchange: Buying Wind Power

    WindExchange

    Buying Wind Power Individuals, communities, businesses, and government entities may decide that buying wind power to supply their energy needs is the right fit. There are several ways to purchase wind power. Green Power Marketing Green power marketing refers to green power being offered by multiple suppliers in a competitive marketplace. In states that have established retail competition, customers may be able to purchase green power from a competitive supplier. Learn more about green power

  14. Wind Energy Impacts: Slides

    WindExchange

    help to alleviate common misconceptions about wind energy. Wind Energy Impacts Photo from Invenergy LLC, NREL 14371 Wildlife impacts vary by location,* and new developments have helped to reduce these effects. Photo from LuRay Parker, NREL 17429 Wind Energy Impacts Pre- and post-development studies, educated siting, and curtailment during high-activity periods have decreased wildlife impacts.** Additional strategies are being researched to better understand and further decrease impacts.

  15. Silver Star Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Star Wind Farm Jump to: navigation, search Name Silver Star Wind Farm Facility Silver Star Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  16. University of Delaware Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name University of Delaware Wind Facility University of Delaware Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner University of...

  17. West Stevens Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name West Stevens Wind Facility West Stevens Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction Developer...

  18. Brown County Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Brown County Wind Facility Brown County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Adams Electric...

  19. Kingdom Community Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name Kingdom Community Wind Facility Kingdom Community Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Green Mountain...

  20. Wing River Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name Wing River Wind Farm Facility Wing River Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wing River...

  1. Osage Municipal Utilities Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Osage Municipal Utilities Wind Facility Osage Municipal Utilities Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Osage...

  2. Wessington Springs Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name Wessington Springs Wind Farm Facility Wessington Springs Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  3. Junction Hilltop Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Name Junction Hilltop Wind Facility Junction Hilltop Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Community Owned...

  4. Franklin County Wind LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name Franklin County Wind LLC Facility Franklin County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Franklin...

  5. MWRA Deer Island Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Name MWRA Deer Island Wind Facility MWRA Deer Island Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MWRA Deer...

  6. Barton Chapel Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Name Barton Chapel Wind Farm Facility Barton Chapel Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola...

  7. Wolverine Creek Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Wolverine Creek Wind Farm Facility Wolverine Creek Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  8. Wapsipinicon Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Name Wapsipinicon Wind Project Facility Wapsipinicon Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco...

  9. Silver Sage Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sage Wind Farm Jump to: navigation, search Name Silver Sage Wind Farm Facility Silver Sage Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  10. Ashtabula II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name Ashtabula II Wind Farm Facility Ashtabula II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  11. Marengo II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name Marengo II Wind Farm Facility Marengo II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  12. Klondike II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Klondike II Wind Farm Jump to: navigation, search Name Klondike II Wind Farm Facility Klondike II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  13. Harvest Wind Farm II | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Jump to: navigation, search Name Harvest Wind Farm II Facility Harvest Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  14. Kotzebue Wind Project II | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Jump to: navigation, search Name Kotzebue Wind Project II Facility Kotzebue Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  15. Tatanka Wind Project II | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Jump to: navigation, search Name Tatanka Wind Project II Facility Tatanka Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  16. Crownbutte Wind Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Crownbutte Wind Power LLC Jump to: navigation, search Name: Crownbutte Wind Power LLC Place: Mandan, North Dakota Zip: 58554 Sector: Wind energy Product: North Dakota wind power...

  17. Northwestern Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Jump to: navigation, search Name: Northwestern Wind Power Place: Wasco, Oregon Zip: OR 97065 Sector: Wind energy Product: US-based wind project developer. Coordinates:...

  18. Daqing Longjiang Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Longjiang Wind Power Jump to: navigation, search Name: Daqing Longjiang Wind Power Place: Daqing, Heilongjiang Province, China Zip: 163316 Sector: Wind energy Product: Local wind...

  19. Laizhou Luneng Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Laizhou Luneng Wind Power Jump to: navigation, search Name: Laizhou Luneng Wind Power Place: Laizhou, Shandong Province, China Sector: Wind energy Product: A wind project...

  20. Clear Wind Renewable Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Renewable Power Jump to: navigation, search Name: Clear Wind Renewable Power Place: Minneapolis, Minnesota Zip: 55416 Sector: Wind energy Product: Clear Wind focuses its...

  1. Padoma Wind Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Padoma Wind Power LLC Jump to: navigation, search Name: Padoma Wind Power LLC Place: La Jolla, California Zip: 92037 Sector: Wind energy Product: A wind energy consulting and...

  2. Evergreen Wind Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power LLC Jump to: navigation, search Name: Evergreen Wind Power LLC Place: Bangor, Maine Zip: 4401 Sector: Wind energy Product: Formed to develop wind projects in Maine....

  3. Hardscrabble Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hardscrabble Wind Power Project Jump to: navigation, search Name Hardscrabble Wind Power Project Facility Hardscrabble Wind Power Project Sector Wind energy Facility Type...

  4. Heilongjiang Lishu Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lishu Wind Power Jump to: navigation, search Name: Heilongjiang Lishu Wind Power Place: Heilongjiang Province, China Sector: Wind energy Product: China-based wind project developer...

  5. TS Wind Power Developers | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    TS Wind Power Developers Jump to: navigation, search Name: TS Wind Power Developers Place: Satara, Maharashtra, India Sector: Wind energy Product: Setting up 30MW wind farm in...

  6. Bluewater Wind Rhode Island | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Island Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner NRG Bluewater Wind Developer NRG Bluewater Wind Location Atlantic Ocean RI Coordinates...

  7. Campbell Hill Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hill Wind Farm Jump to: navigation, search Name Campbell Hill Wind Farm Facility Campbell Hill Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  8. Articles about Distributed Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Articles about Distributed Wind Articles about Distributed Wind Below are stories about distributed wind featured by the U.S. Department of Energy (DOE) Wind Program. October 1,...

  9. Camp Springs Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name Camp Springs Wind Farm Facility Camp Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  10. Hot Springs Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name Hot Springs Wind Farm Facility Hot Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Idaho...

  11. Pebble Springs Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Springs Wind Farm Jump to: navigation, search Name Pebble Springs Wind Farm Facility Pebble Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  12. Midwest Wind Finance LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Midwest Wind Finance LLC Place: Minnesota Sector: Wind energy Product: Wind project equity finance provider. References: Midwest Wind Finance...

  13. Idaho Wind Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy Jump to: navigation, search Name: Idaho Wind Energy Place: Tetonia, Idaho Zip: 83452 Sector: Geothermal energy, Wind energy Product: A geothermal and wind project...

  14. Spearville Wind Energy Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy Facility Jump to: navigation, search Name Spearville Wind Energy Facility Facility Spearville Wind Energy Facility Sector Wind energy Facility Type Commercial Scale...

  15. Texas/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    TexasWind Resources < Texas Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook OpenEI Home >> Wind >> Small...

  16. Illinois Wind Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy Jump to: navigation, search Name: Illinois Wind Energy Place: Chicago, Illinois Zip: IL 60606 Sector: Wind energy Product: Developer of wind power generating facilities...

  17. Weatherford Wind Energy Center | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Weatherford Wind Energy Center Jump to: navigation, search Name Weatherford Wind Energy Center Facility Weatherford Wind Energy Center Sector Wind energy Facility Type Commercial...

  18. Ainsworth Wind Energy Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ainsworth Wind Energy Facility Jump to: navigation, search Name Ainsworth Wind Energy Facility Facility Ainsworth Wind Energy Facility Sector Wind energy Facility Type Commercial...

  19. Han Wind Energy Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy Corporation Jump to: navigation, search Name: Han Wind Energy Corporation Place: Beijing, Beijing Municipality, China Zip: 100027 Sector: Wind energy Product: Han Wind...

  20. Mountaineer Wind Energy Center | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Mountaineer Wind Energy Center Jump to: navigation, search Name Mountaineer Wind Energy Center Facility Mountaineer Wind Energy Center Sector Wind energy Facility Type Commercial...

  1. Highmore Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Highmore Wind Energy Project Jump to: navigation, search Name Highmore Wind Energy Project Facility Highmore Wind Energy Project Sector Wind energy Facility Type Commercial Scale...

  2. German Wind Energy Association | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    German Wind Energy Association Place: Osnabrck, Germany Zip: 49074 Sector: Wind energy Product: Assocation for the promotion of wind energy in Germany. References: German Wind...

  3. Stateline Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Project Jump to: navigation, search Name Stateline Wind Energy Project Facility Stateline Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  4. Searsburg Wind Energy Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Searsburg Wind Energy Facility Jump to: navigation, search Name Searsburg Wind Energy Facility Facility Searsburg Wind Energy Facility Sector Wind energy Facility Type Commercial...

  5. CAES Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Project Jump to: navigation, search Name CAES Wind Project Facility CAES Sector Wind energy Facility Type Community Wind Location ID Coordinates 43.522243, -112.053963...

  6. Prairie Wind Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy LLC Jump to: navigation, search Name: Prairie Wind Energy LLC Place: Lamar, Colorado Zip: 81052 Sector: Wind energy Product: Developer and owner of Prairie wind farm....

  7. Geronimo Wind Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geronimo Wind Energy Jump to: navigation, search Name: Geronimo Wind Energy Place: Edina, Minnesota Zip: 55436 Sector: Wind energy Product: Based in Minnesota, this wind energy...

  8. Utah/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    UtahWind Resources < Utah Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook OpenEI Home >> Wind >>...

  9. Navajo Wind Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Navajo Wind Energy Jump to: navigation, search Name: Navajo Wind Energy Place: Atlanta, Georgia Zip: 30318 Sector: Wind energy Product: Atalanta-based but China-focused wind...

  10. Freedom Wind Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy LLC Jump to: navigation, search Name: Freedom Wind Energy LLC Place: Tampa, Florida Zip: 33623 Sector: Wind energy Product: Develops and manages wind farms in north...

  11. Tholen & Petersen Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tholen & Petersen Wind Farm Jump to: navigation, search Name Tholen & Petersen Wind Farm Facility Tholen & Petersen Sector Wind energy Facility Type Commercial Scale Wind Facility...

  12. Highland Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Highland Wind Project Facility Highland Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  13. Chamberlain Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name Chamberlain Wind Project Facility Chamberlain Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  14. Stateline Expansion Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Stateline Expansion Wind Farm Jump to: navigation, search Name Stateline Expansion Wind Farm Facility Stateline Expansion Sector Wind energy Facility Type Commercial Scale Wind...

  15. Enron Wind Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Enron Wind Corporation Jump to: navigation, search Name: Enron Wind Corporation Place: Houston, Texas Zip: 77251-1188 Sector: Wind energy Product: Former Enron Wind, which still...

  16. Murray Various Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Various Wind Farm Jump to: navigation, search Name Murray Various Wind Farm Facility Murray Various Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  17. Noble Bellmont Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Noble Bellmont Wind Farm Jump to: navigation, search Name Noble Bellmont Wind Farm Facility Noble Bellmont Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  18. Applied Materials Wind Turbine | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Turbine Jump to: navigation, search Name Applied Materials Wind Turbine Facility Applied Materials Sector Wind energy Facility Type Community Wind Facility Status In Service...

  19. Sweetwater 5 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    5 Wind Farm Jump to: navigation, search Name Sweetwater 5 Wind Farm Facility Sweetwater 5 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  20. Juhl Wind Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Juhl Wind Inc. Place: Woodstock, Minnesota Zip: 57186 Sector: Wind energy Product: Juhl Wind is a company that develops community wind projects and was formed via...