National Library of Energy BETA

Sample records for modeling system nems

  1. National Energy Modeling System (NEMS)

    DOE Data Explorer

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. through 2030. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). NEMS can be used to analyze the effects of existing and proposed government laws and regulations related to energy production and use; the potential impact of new and advanced energy production, conversion, and consumption technologies; the impact and cost of greenhouse gas control; the impact of increased use of renewable energy sources; and the potential savings from increased efficiency of energy use; and the impact of regulations on the use of alternative or reformulated fuels. NEMS has also been used for a number of special analyses at the request of the Administration, U.S. Congress, other offices of DOE and other government agencies, who specify the scenarios and assumptions for the analysis. Modules allow analyses to be conducted in energy topic areas such as residential demand, industrial demand, electricity market, oil and gas supply, renewable fuels, etc.

  2. NEMS - National Energy Modeling System: An Overview

    Reports and Publications

    2009-01-01

    The National Energy Modeling System: An Overview 2009 a summary description of NEMS and each of its components. NEMS is a computer-based, energy-economy modeling system of energy markets for the midterm period through 2030. The NEMS is used to produce the Annual Energy Outlook.

  3. Availability of the National Energy Modeling System (NEMS) Archive

    Gasoline and Diesel Fuel Update

    Availability of the National Energy Modeling System (NEMS) Archive 1 May 2016 Availability of the National Energy Modeling System (NEMS) Archive NEMS has been developed primarily for use by the modelers at the Energy Information Administration (EIA) who understand its structure and programming. As a result, NEMS is only used by a few organizations outside of the EIA. Most people who have requested NEMS in the past have found out that it was too difficult or rigid to use. For example, it is not

  4. How to obtain the National Energy Modeling System (NEMS)

    Reports and Publications

    2013-01-01

    The National Energy Modeling System (NEMS) NEMS is used by the modelers at the U. S. Energy Information Administration (EIA) who understand its structure and programming. NEMS has only been used by a few organizations outside of the EIA, because most people that requested NEMS found out that it was too difficult or rigid to use. NEMS is not typically used for state-level analysis and is poorly suited for application to other countries. However, many do obtain the model simply to use the data in its input files or to examine the source code.

  5. National Energy Modeling System (NEMS) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Modeling System (NEMS) AgencyCompany Organization: Energy Information Administration Sector: Energy Focus Area: Economic Development Phase: Develop Goals Topics: Policies...

  6. National Energy Modeling System with Hydrogen Model (NEMS-H2...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Modeling System with Hydrogen Model (NEMS-H2) (OnLocation, Inc. 1 ) Objectives Estimate the energy, economic, and environmental impacts of alternative energy policies and different ...

  7. NEMS Modeling of Coal Plants

    Annual Energy Outlook

    NEMS Modeling of Coal Plants Office of Electricity, Coal, Nuclear, and Renewable Analysis ... oil and gas steam plants, and 23 for nuclear plants regardless of age - Beyond 30 ...

  8. NEMS Modeling of Coal Plants

    Energy Information Administration (EIA) (indexed site)

    NEMS Modeling of Coal Plants Office of Electricity, Coal, Nuclear, and Renewable Analysis Laura Martin June 14, 2016 Washington, DC 2 EMM Structure EFD ECP EFP ELD Laura Martin Washington, DC, June 14, 2016 Electricity Load and Demand Submodule Liquid Fuels Market Module Model inputs for coal plants 3 * Existing coal plants - plant specific inputs - Fixed and variable operating and maintenance costs, annual capital additions - Retrofit costs (capital and O&M) - FGD, DSI, SCR, SNCR, CCS, FF -

  9. Appendix A - GPRA06 benefits estimates: MARKAL and NEMS model baseline cases

    SciTech Connect

    None, None

    2009-01-18

    NEMS is an integrated energy model of the U.S. energy system developed by the Energy Information Administration (EIA) for forecasting and policy analysis purposes.

  10. Price Responsiveness in the AEO2003 NEMS Residential and Commercial Buildings Sector Models

    Reports and Publications

    2003-01-01

    This paper describes the demand responses to changes in energy prices in the Annual Energy Outlook 2003 versions of the Residential and Commercial Demand Modules of the National Energy Modeling System (NEMS). It updates a similar paper completed for the Annual Energy Outlook 1999 version of the NEMS.

  11. Integrating Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

  12. Transportation Sector Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.

  13. LOCA analysis evaluation model with TRAC-PF1/NEM

    SciTech Connect

    Orive Moreno, Raul; Gallego Cabezon, Ines; Garcia Sedano, Pablo

    2004-07-01

    Nowadays regulatory rules and code models development are progressing on the goal of using best-estimate approximations in applications of license. Inside this framework, IBERDROLA is developing a PWR LOCA Analysis Methodology with one double slope, by a side the development of an Evaluation Model (upper-bounding model) that covers with conservative form the different aspects from the PWR LOCA phenomenology and on the other hand, a proposal of CSAU (Code Scaling Applicability and Uncertainty) type evaluation, methodology that strictly covers the 95/95 criterion in the Peak Cladding Temperature. A structured method is established, that basically involves the following steps: 1. Selection of the Large Break LOCA like accident to analyze and of TRAC-PF1/MOD2 V99.1 NEM (PSU version) computer code like analysis tool. 2. Code Assessment, identifying the most remarkable phenomena (PIRT, Phenomena Identification and Ranking Tabulation) and estimation of a possible code deviation (bias) and uncertainties associated to the specific models that control these phenomena (critical flow mass, heat transfer, countercurrent flow, etc...). 3. Evaluation of an overall PCT uncertainty, taking into account code uncertainty, reactor initial conditions, and accident boundary conditions. Uncertainties quantification requires an excellent experiments selection that allows to define a complete evaluation matrix, and the comparison of the simulations results with the experiments measured data, as well as in the relative to the scaling of these phenomena. To simulate these experiments it was necessary to modify the original code, because it was not able to reproduce, in a qualitative way, the expected phenomenology. It can be concluded that there is a good agreement between the TRAC-PF1/NEM results and the experimental data. Once average error ({epsilon}) and standard deviation ({sigma}) for those correlations under study are obtained, these factors could be used to correct in a conservative

  14. Residential Demand Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  15. Industrial Demand Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

  16. Renewable Fuels Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the Annual Energy Outlook forecasts.

  17. Model developer`s appendix to the model documentation report: NEMS macroeconomic activity module

    SciTech Connect

    1994-07-15

    The NEMS Macroeconomic Activity Module (MAM) tested here was used to generate the Annual Energy Outlook 1994 (AEO94). MAM is a response surface model, not a structural model, composed of three submodules: the National Submodule, the Interindustry Submodule, and the Regional Submodule. Contents of this report are as follows: properties of the mathematical solution; NEMS MAM empirical basis; and scenario analysis. Scenario analysis covers: expectations for scenario analysis; historical world oil price scenario; AEO94 high world oil price scenario; AEO94 low world oil price scenario; and immediate increase world oil price scenario.

  18. Modeling Distributed Electricity Generation in the NEMS Buildings Models

    Reports and Publications

    2011-01-01

    This paper presents the modeling methodology, projected market penetration, and impact of distributed generation with respect to offsetting future electricity needs and carbon dioxide emissions in the residential and commercial buildings sector in the Annual Energy Outlook 2000 (AEO2000) reference case.

  19. Commercial Demand Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

  20. NEMS integrating module documentation report

    SciTech Connect

    Not Available

    1993-12-14

    The National Energy Modeling System (NEMS) is a computer modeling system that produces a general equilibrium solution for energy supply and demand in the US energy markets. The model achieves a supply and demand balance in the end-use demand regions, defined as the nine Census Divisions, by solving for the prices of each energy type such that the quantities producers are willing to supply equal the quantities consumers wish to consume. The system reflects market economics, industry structure, and energy policies and regulations that influence market behavior. The NEMS Integrating Module is the central integrating component of a complex modeling system. As such, a thorough understanding of its role in the modeling process can only be achieved by placing it in the proper context with respect to the other modules. To that end, this document provides an overview of the complete NEMS model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

  1. Macroeconomic Activity Module - NEMS Documentation

    Reports and Publications

    2016-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Macroeconomic Activity Module (MAM) used to develop the Annual Energy Outlook for 2016 (AEO2016). The report catalogues and describes the module assumptions, computations, methodology, parameter estimation techniques, and mainframe source code

  2. Coal Market Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System's (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 2014 (AEO2014). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM's two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS).

  3. Macroeconomic Activity Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Macroeconomic Activity Module (MAM) used to develop the Annual Energy Outlook for 2014 (AEO2014). The report catalogues and describes the module assumptions, computations, methodology, parameter estimation techniques, and mainframe source code

  4. NEMS International Energy Module

    Gasoline and Diesel Fuel Update

    EIA NEMS International Energy Module Model Documentation Report vii Mr. G. Daniel Butler U.S. Department of Energy EI-812 1000 Independence Ave., SW Washington, DC 20585 Tel:...

  5. International Energy Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Summarizes the overall structure of the International Energy Model and its interface with other NEMS modules, mathematical specifications of behavioral relationships, and data sources and estimation methods.

  6. nem_spread Ver. 5.10

    Energy Science and Technology Software Center

    2009-06-08

    Nem_spread reads it's input command file (default name nem_spread.inp), takes the named ExodusII geometry definition and spreads out the geometry (and optionally results) contained in that file out to a parallel disk system. The decomposition is taken from a scalar Nemesis load balance file generated by the companion utility nem_slice.

  7. Modeling of battery energy storage in the National Energy Modeling System

    SciTech Connect

    Swaminathan, S.; Flynn, W.T.; Sen, R.K.

    1997-12-01

    The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

  8. U.S. Regional Demand Forecasts Using NEMS and GIS

    SciTech Connect

    Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

    2005-07-01

    The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

  9. Large-area low-temperature ultrananocrystaline diamond (UNCD) films and integration with CMOS devices for monolithically integrated diamond MEMD/NEMS-CMOS systems.

    SciTech Connect

    Sumant, A.V.; Auciello, O.; Yuan, H.-C; Ma, Z.; Carpick, R. W.; Mancini, D. C.; Univ. of Wisconsin; Univ. of Pennsylvania

    2009-05-01

    Because of exceptional mechanical, chemical, and tribological properties, diamond has a great potential to be used as a material for the development of high-performance MEMS and NEMS such as resonators and switches compatible with harsh environments, which involve mechanical motion and intermittent contact. Integration of such MEMS/NEMS devices with complementary metal oxide semiconductor (CMOS) microelectronics will provide a unique platform for CMOS-driven commercial MEMS/NEMS. The main hurdle to achieve diamond-CMOS integration is the relatively high substrate temperatures (600-800 C) required for depositing conventional diamond thin films, which are well above the CMOS operating thermal budget (400 C). Additionally, a materials integration strategy has to be developed to enable diamond-CMOS integration. Ultrananocrystalline diamond (UNCD), a novel material developed in thin film form at Argonne, is currently the only microwave plasma chemical vapor deposition (MPCVD) grown diamond film that can be grown at 400 C, and still retain exceptional mechanical, chemical, and tribological properties comparable to that of single crystal diamond. We have developed a process based on MPCVD to synthesize UNCD films on up to 200 mm in diameter CMOS wafers, which will open new avenues for the fabrication of monolithically integrated CMOS-driven MEMS/NEMS based on UNCD. UNCD films were grown successfully on individual Si-based CMOS chips and on 200 mm CMOS wafers at 400 C in a MPCVD system, using Ar-rich/CH4 gas mixture. The CMOS devices on the wafers were characterized before and after UNCD deposition. All devices were performing to specifications with very small degradation after UNCD deposition and processing. A threshold voltage degradation in the range of 0.08-0.44V and transconductance degradation in the range of 1.5-9% were observed.

  10. The National Energy Modeling System: An overview

    SciTech Connect

    Not Available

    1994-05-01

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period of 1990 to 2010. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system. The second chapter describes the modeling structure. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. Additional background on the development of the system is provided in Appendix A of this report, which describes the EIA modeling systems that preceded NEMS. More detailed model documentation reports for all the NEMS modules are also available from EIA.

  11. Natural gas transmission and distribution model of the National Energy Modeling System

    SciTech Connect

    1997-02-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

  12. nem_slice ver. 3.34

    Energy Science and Technology Software Center

    2009-06-08

    Nem_slice reads in a finite element model description of the geometry of a problem from an ExodusII file and generates either a nodal or elemental graph of the problem. It then calls Chaco to load balance the graph and then outputs a NemesisI load-balance file.

  13. The National Energy Modeling System: An overview 1998

    SciTech Connect

    1998-02-01

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period through 2020. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors world energy markets, resource availability and costs, behavior and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system, followed by a chapter on the overall modeling structure and solution algorithm. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. 21 figs.

  14. Integrated NEMS and optoelectronics for sensor applications.

    SciTech Connect

    Czaplewski, David A.; Serkland, Darwin Keith; Olsson, Roy H., III; Bogart, Gregory R. (Symphony Acoustics, Rio Rancho, NM); Krishnamoorthy, Uma; Warren, Mial E.; Carr, Dustin Wade (Symphony Acoustics, Rio Rancho, NM); Okandan, Murat; Peterson, Kenneth Allen

    2008-01-01

    This work utilized advanced engineering in several fields to find solutions to the challenges presented by the integration of MEMS/NEMS with optoelectronics to realize a compact sensor system, comprised of a microfabricated sensor, VCSEL, and photodiode. By utilizing microfabrication techniques in the realization of the MEMS/NEMS component, the VCSEL and the photodiode, the system would be small in size and require less power than a macro-sized component. The work focused on two technologies, accelerometers and microphones, leveraged from other LDRD programs. The first technology was the nano-g accelerometer using a nanophotonic motion detection system (67023). This accelerometer had measured sensitivity of approximately 10 nano-g. The Integrated NEMS and optoelectronics LDRD supported the nano-g accelerometer LDRD by providing advanced designs for the accelerometers, packaging, and a detection scheme to encapsulate the accelerometer, furthering the testing capabilities beyond bench-top tests. A fully packaged and tested die was never realized, but significant packaging issues were addressed and many resolved. The second technology supported by this work was the ultrasensitive directional microphone arrays for military operations in urban terrain and future combat systems (93518). This application utilized a diffraction-based sensing technique with different optical component placement and a different detection scheme from the nano-g accelerometer. The Integrated NEMS LDRD supported the microphone array LDRD by providing custom designs, VCSELs, and measurement techniques to accelerometers that were fabricated from the same operational principles as the microphones, but contain proof masses for acceleration transduction. These devices were packaged at the end of the work.

  15. Model documentation report: Industrial sector demand module of the national energy modeling system

    SciTech Connect

    1998-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  16. Survey of Emissions Models for Distributed Combined Heat and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    In this 2007 document, Integrated Planning Model (IPM), Average Displaced Emissions Rate ... National Energy Modeling System (NEMS) models are addressed. surveyofemissionsmodels...

  17. Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1

    SciTech Connect

    1995-02-17

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A.

  18. NEMS Freight Transportation Module Improvement Study

    Energy Information Administration (EIA) (indexed site)

    NEMS Freight Transportation Module Improvement Study February 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | NEMS Freight Transportation Module Improvement Study i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other

  19. Model documentation, Coal Market Module of the National Energy Modeling System

    SciTech Connect

    1998-01-01

    This report documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System`s (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1998 (AEO98). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS). CMM provides annual forecasts of prices, production, and consumption of coal for NEMS. In general, the CDS integrates the supply inputs from the CPS to satisfy demands for coal from exogenous demand models. The international area of the CDS forecasts annual world coal trade flows from major supply to major demand regions and provides annual forecasts of US coal exports for input to NEMS. Specifically, the CDS receives minemouth prices produced by the CPS, demand and other exogenous inputs from other NEMS components, and provides delivered coal prices and quantities to the NEMS economic sectors and regions.

  20. Distributed generation capabilities of the national energy modeling system

    SciTech Connect

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01

    This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the

  1. Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    SciTech Connect

    1998-01-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. Subsequent chapters of this report provide: an overview of NGTDM; a description of the interface between the NEMS and NGTDM; an overview of the solution methodology of the NGTDM; the solution methodology for the Annual Flow Module; the solution methodology for the Distributor Tariff Module; the solution methodology for the Capacity Expansion Module; the solution methodology for the Pipeline Tariff Module; and a description of model assumptions, inputs, and outputs.

  2. A sensitivity analysis of the treatment of wind energy in the AEO99 version of NEMS

    SciTech Connect

    Osborn, Julie G; Wood, Frances; Richey, Cooper; Sanders, Sandy; Short, Walter; Koomey, Jonathan

    2001-01-01

    Each year, the U.S. Department of Energy's Energy Information Administration (EIA) publishes a forecast of the domestic energy economy in the Annual Energy Outlook (AEO). During the forecast period of the AEO (currently through 2020), renewable energy technologies have typically not achieved significant growth. The contribution of renewable technologies as electric generators becomes more important, however, in scenarios analyzing greenhouse gas emissions reductions or significant technological advancements. We examined the economic assumptions about wind power used for producing forecasts with the National Energy Modeling System (NEMS) to determine their influence on the projected capacity expansion of this technology. This analysis should help illustrate to policymakers what types of issues may affect wind development, and improve the general understanding of the NEMS model itself. Figure 1 illustrates the model structure and factors relevant to wind deployment. We found that NEMS uses various cost multipliers and constraints to represent potential physical and economic limitations to growth in wind capacity, such as resource depletion, costs associated with rapid manufacturing expansion, and grid stability with high levels of capacity from intermittent resources. The model's flexibility allows the user to make alternative assumptions about the magnitude of these factors. While these assumptions have little effect on the Reference Case forecast for the 1999 edition of the AEO, they can make a dramatic difference when wind is more attractive, such as under a carbon permit trading system. With $100/ton carbon permits, the wind capacity projection for 2020 ranges from 15 GW in the unaltered model (AEO99 Reference Case) to 168 GW in the extreme case when all the multipliers and constraints examined in this study are removed. Furthermore, if modifications are made to the model allowing inter-regional transmission of electricity, wind capacity is forecast to reach 214

  3. Model documentation Coal Market Module of the National Energy Modeling System

    SciTech Connect

    1996-04-30

    This report documents objectives and conceptual and methodological approach used in the development of the National Energy Modeling System (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1996 (AEO96). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s three submodules: Coal Production Submodule, Coal Export Submodule, and Coal Distribution Submodule.

  4. Appendix E: Other NEMS-MP results for the base case and scenarios.

    SciTech Connect

    Plotkin, S. E.; Singh, M. K.; Energy Systems

    2009-12-03

    The NEMS-MP model generates numerous results for each run of a scenario. (This model is the integrated National Energy Modeling System [NEMS] version used for the Multi-Path Transportation Futures Study [MP].) This appendix examines additional findings beyond the primary results reported in the Multi-Path Transportation Futures Study: Vehicle Characterization and Scenario Analyses (Reference 1). These additional results are provided in order to help further illuminate some of the primary results. Specifically discussed in this appendix are: (1) Energy use results for light vehicles (LVs), including details about the underlying total vehicle miles traveled (VMT), the average vehicle fuel economy, and the volumes of the different fuels used; (2) Resource fuels and their use in the production of ethanol, hydrogen (H{sub 2}), and electricity; (3) Ethanol use in the scenarios (i.e., the ethanol consumption in E85 vs. other blends, the percent of travel by flex fuel vehicles on E85, etc.); (4) Relative availability of E85 and H2 stations; (5) Fuel prices; (6) Vehicle prices; and (7) Consumer savings. These results are discussed as follows: (1) The three scenarios (Mixed, (P)HEV & Ethanol, and H2 Success) when assuming vehicle prices developed through literature review; (2) The three scenarios with vehicle prices that incorporate the achievement of the U.S. Department of Energy (DOE) program vehicle cost goals; (3) The three scenarios with 'literature review' vehicle prices, plus vehicle subsidies; and (4) The three scenarios with 'program goals' vehicle prices, plus vehicle subsidies. The four versions or cases of each scenario are referred to as: Literature Review No Subsidies, Program Goals No Subsidies, Literature Review with Subsidies, and Program Goals with Subsidies. Two additional points must be made here. First, none of the results presented for LVs in this section include Class 2B trucks. Results for this class are included occasionally in Reference 1. They

  5. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  6. Investigation of the effects of soluble boron tracking on coupled CTF / NEM, LWR simulations

    SciTech Connect

    Biery, M.; Avramova, M.; Ivanov, K.

    2013-07-01

    The primary objective of this study is to evaluate the effects of introducing a boron tracking capability to the COBRA-TF / NEM code coupling. The Pennsylvania State University (PSU) versions of COBRA-TF - CTF, and Nodal Expansion Method (NEM) codes are utilized. Previous implementations of the CTF / NEM coupled code had no capability to model soluble boron feedback effects due to boron transport. This study builds upon the validation and qualification efforts of the boron tracking model implementation in CTF by modeling the boron feedback calculated by the CTF boron tracking model in NEM. The core model chosen for this study is the Purdue MOX/UO{sub 2} core model used in the 2007 OECD/NRC code benchmark study. Following the implementation of an explicit online coupling scheme and accompanying k-search routine, the newly coupled CTF / NEM code version with boron tracking is compared to prior results of the non-boron tracking CTF / NEM code version at steady-state hot full power and hot zero power conditions. It was found that the boron tracking model exhibited little influence on the hot zero power result as expected due to a smaller heat flux, which does not significantly change the moderator density and boron concentration as the moderator travels up the axial core length. Meanwhile the boron tracking model had a much greater impact on the hot full power results, predicting the critical inlet boron concentration to be 9.9 ppm below the non-boron tracking result due to greater and more rapid changes in boron concentration corresponding to the reduction in moderator density from being more rapidly heated. (authors)

  7. Model documentation: Natural Gas Transmission and Distribution Model of the National Energy Modeling System; Volume 1

    SciTech Connect

    1994-02-24

    The Natural Gas Transmission and Distribution Model (NGTDM) is a component of the National Energy Modeling System (NEMS) used to represent the domestic natural gas transmission and distribution system. NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the Energy Information Administration (EIA) and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. This report documents the archived version of NGTDM that was used to produce the natural gas forecasts used in support of the Annual Energy Outlook 1994, DOE/EIA-0383(94). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. It is intended to fulfill the legal obligation of the EIA to provide adequate documentation in support of its models (Public Law 94-385, Section 57.b.2). This report represents Volume 1 of a two-volume set. (Volume 2 will report on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.) Subsequent chapters of this report provide: (1) an overview of the NGTDM (Chapter 2); (2) a description of the interface between the National Energy Modeling System (NEMS) and the NGTDM (Chapter 3); (3) an overview of the solution methodology of the NGTDM (Chapter 4); (4) the solution methodology for the Annual Flow Module (Chapter 5); (5) the solution methodology for the Distributor Tariff Module (Chapter 6); (6) the solution methodology for the Capacity Expansion Module (Chapter 7); (7) the solution methodology for the Pipeline Tariff Module (Chapter 8); and (8) a description of model assumptions, inputs, and outputs (Chapter 9).

  8. Model documentation report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System

    SciTech Connect

    Not Available

    1994-02-07

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Macroeconomic Activity Module (MAM) used to develop the Annual Energy Outlook for 1994 (AEO94). The report catalogues and describes the module assumptions, computations, methodology, parameter estimation techniques, and mainframe source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS MAM used for the AEO 1994 production runs for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models (Public Law 94-385, section 57.b.2). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  9. Residential Demand Module of the National Energy Modeling System: Model Documentation 2014

    Energy Information Administration (EIA) (indexed site)

    Residential Demand Module of the National Energy Modeling System: Model Documentation 2014 August 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | NEMS Residential Demand Module Documentation Report 2014 ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts

  10. Energy Information Administration NEMS Petroleum Market Model...

    Gasoline and Diesel Fuel Update

    lignite, and premium), sulfur content (compliancelow, medium, high), and mining type (deep, surface, above ground, underground). These curves are linked to 14 coal demand...

  11. Frequency Stabilization in Nonlinear MEMS and NEMS Oscillators...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Frequency Stabilization in Nonlinear MEMS and NEMS Oscillators Technology available for licensing: a method to create micro- and nanoscale mechanical oscillators with excellent...

  12. Appendix C: Map of NEMS Electricity Market Module Regions

    Gasoline and Diesel Fuel Update

    U.S. Energy Information Administration | Analysis of Impacts of a Clean Energy Standard as requested by Chairman Bingaman Appendix C: Map of NEMS Electricity Market Module Regions

  13. Model documentation report: Residential sector demand module of the national energy modeling system

    SciTech Connect

    1998-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This reference document provides a detailed description for energy analysts, other users, and the public. The NEMS Residential Sector Demand Module is currently used for mid-term forecasting purposes and energy policy analysis over the forecast horizon of 1993 through 2020. The model generates forecasts of energy demand for the residential sector by service, fuel, and Census Division. Policy impacts resulting from new technologies, market incentives, and regulatory changes can be estimated using the module. 26 refs., 6 figs., 5 tabs.

  14. Model documentation: Renewable Fuels Module of the National Energy Modeling System

    SciTech Connect

    Not Available

    1994-04-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it related to the production of the 1994 Annual Energy Outlook (AEO94) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves two purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. Of these six, four are documented in the following chapters: municipal solid waste, wind, solar and biofuels. Geothermal and wood are not currently working components of NEMS. The purpose of the RFM is to define the technological and cost characteristics of renewable energy technologies, and to pass these characteristics to other NEMS modules for the determination of mid-term forecasted renewable energy demand.

  15. Comprehensive Electricity Competition Act: A Comparison of Model Results, The

    Reports and Publications

    1999-01-01

    This report describes the Energy Information Administration's use of the National Energy Modeling System (NEMS) to evaluate the effects of the Administration's restructuring proposal using the parameter settings and assumptions from the Policy Office Electricity Modeling System (POEMS) analysis.

  16. Model documentation renewable fuels module of the National Energy Modeling System

    SciTech Connect

    1995-06-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1995 Annual Energy Outlook (AEO95) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. The RFM consists of six analytical submodules that represent each of the major renewable energy resources--wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. The RFM also reads in hydroelectric facility capacities and capacity factors from a data file for use by the NEMS Electricity Market Module (EMM). The purpose of the RFM is to define the technological, cost and resource size characteristics of renewable energy technologies. These characteristics are used to compute a levelized cost to be competed against other similarly derived costs from other energy sources and technologies. The competition of these energy sources over the NEMS time horizon determines the market penetration of these renewable energy technologies. The characteristics include available energy capacity, capital costs, fixed operating costs, variable operating costs, capacity factor, heat rate, construction lead time, and fuel product price.

  17. EIA Buildings Analysis of Consumer Behavior in NEMS

    Energy Information Administration (EIA) (indexed site)

    Buildings Analysis of Consumer Behavior in NEMS Behavioral Economics Experts Meeting July 17, 2013 | Washington, DC David Peterson Buildings Energy Consumption and Efficiency Analysis Overview Behavioral Economics Experts Meeting, Washington DC, July 17, 2013 2 * NEMS Structure * Housing/floorspace and service demand in Residential Demand Module (RDM) and Commercial Demand Module (CDM) * Market share calculation for equipment in RDM and CDM * Price responses / elasticities * Distributed

  18. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect

    Not Available

    1994-03-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  19. Transportation Sector Model of the National Energy Modeling System. Volume 1

    SciTech Connect

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  20. NEMS Buildings Sector Working Group Meeting

    Gasoline and Diesel Fuel Update

    interconnection limitations, etc.) - Photovoltaic cost path * Residential projects - ... TO CHANGE Distributed generation 20 * Photovoltaic system cost path - Updated 2010 system ...

  1. Liquid Fuels Market Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Defines the objectives of the Liquid Fuels Market Model (LFMM), describes its basic approach, and provides detail on how it works. This report is intended as a reference document for model analysts, users, and the public.

  2. Systems Modeling

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Simulations Model Barton Springs Urban Growth and Groundwater Sustainability Model ...

  3. Impacts of Modeled Recommendations of the National Commission on Energy Policy

    Reports and Publications

    2005-01-01

    This report provides the Energy Information Administration's analysis of those National Commission on Energy Policy (NCEP) energy policy recommendations that could be simulated using the National Energy Modeling System (NEMS).

  4. DOE/EIA-M062 Model Documentation Natural Gas Transmission and

    Gasoline and Diesel Fuel Update

    of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its...

  5. Model documentation report: Residential sector demand module of the National Energy Modeling System

    SciTech Connect

    1997-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document that provides a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  6. Transportation Systems Modeling

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling TRANSPORTATION SYSTEMS MODELING Overview of TSM Transportation systems modeling research at TRACC uses the TRANSIMS (Transportation Analysis SIMulation System) traffic micro simulation code developed by the U.S. Department of Transportation (USDOT). The TRANSIMS code represents the latest generation of traffic simulation codes developed jointly under multiyear programs by USDOT, the

  7. Modeling of geothermal systems

    SciTech Connect

    Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

    1985-03-01

    During the last decade the use of numerical modeling for geothermal resource evaluation has grown significantly, and new modeling approaches have been developed. In this paper we present a summary of the present status in numerical modeling of geothermal systems, emphasizing recent developments. Different modeling approaches are described and their applicability discussed. The various modeling tasks, including natural-state, exploitation, injection, multi-component and subsidence modeling, are illustrated with geothermal field examples. 99 refs., 14 figs.

  8. System Advisor Model

    Energy Science and Technology Software Center

    2010-03-01

    The System Advisor Model (SAM) is a performance and economic model designed to facilitate decision making for people involved in the renewable energy industry, ranging from project managers and engineers to incentive program designers, technology developers, and researchers.

  9. Directory of energy information administration models 1995

    SciTech Connect

    1995-07-13

    This updated directory has been published annually; after this issue, it will be published only biennially. The Disruption Impact Simulator Model in use by EIA is included. Model descriptions have been updated according to revised documentation approved during the past year. This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. Included are 37 EIA models active as of February 1, 1995. The first group is the National Energy Modeling System (NEMS) models. The second group is all other EIA models that are not part of NEMS. Appendix A identifies major EIA modeling systems and the models within these systems. Appendix B is a summary of the `Annual Energy Outlook` Forecasting System.

  10. A 2D/1D coupling neutron transport method based on the matrix MOC and NEM methods

    SciTech Connect

    Zhang, H.; Zheng, Y.; Wu, H.; Cao, L.

    2013-07-01

    A new 2D/1D coupling method based on the matrix MOC method (MMOC) and nodal expansion method (NEM) is proposed for solving the three-dimensional heterogeneous neutron transport problem. The MMOC method, used for radial two-dimensional calculation, constructs a response matrix between source and flux with only one sweep and then solves the linear system by using the restarted GMRES algorithm instead of the traditional trajectory sweeping process during within-group iteration for angular flux update. Long characteristics are generated by using the customization of commercial software AutoCAD. A one-dimensional diffusion calculation is carried out in the axial direction by employing the NEM method. The 2D and ID solutions are coupled through the transverse leakage items. The 3D CMFD method is used to ensure the global neutron balance and adjust the different convergence properties of the radial and axial solvers. A computational code is developed based on these theories. Two benchmarks are calculated to verify the coupling method and the code. It is observed that the corresponding numerical results agree well with references, which indicates that the new method is capable of solving the 3D heterogeneous neutron transport problem directly. (authors)

  11. Canister Model, Systems Analysis

    Energy Science and Technology Software Center

    1993-09-29

    This packges provides a computer simulation of a systems model for packaging nuclear waste and spent nuclear fuel in canisters. The canister model calculates overall programmatic cost, number of canisters, and fuel and waste inventories for the Idaho Chemical Processing Plant (other initial conditions can be entered).

  12. Critical Infrastructure Modeling System

    Energy Science and Technology Software Center

    2004-10-01

    The Critical Infrastructure Modeling System (CIMS) is a 3D modeling and simulation environment designed to assist users in the analysis of dependencies within individual infrastructure and also interdependencies between multiple infrastructures. Through visual cuing and textual displays, a use can evaluate the effect of system perturbation and identify the emergent patterns that evolve. These patterns include possible outage areas from a loss of power, denial of service or access, and disruption of operations. Method ofmore » Solution: CIMS allows the user to model a system, create an overlay of information, and create 3D representative images to illustrate key infrastructure elements. A geo-referenced scene, satellite, aerial images or technical drawings can be incorporated into the scene. Scenarios of events can be scripted, and the user can also interact during run time to alter system characteristics. CIMS operates as a discrete event simulation engine feeding a 3D visualization.« less

  13. Distributed generation systems model

    SciTech Connect

    Barklund, C.R.

    1994-12-31

    A slide presentation is given on a distributed generation systems model developed at the Idaho National Engineering Laboratory, and its application to a situation within the Idaho Power Company`s service territory. The objectives of the work were to develop a screening model for distributed generation alternatives, to develop a better understanding of distributed generation as a utility resource, and to further INEL`s understanding of utility concerns in implementing technological change.

  14. Modeling the earth system

    SciTech Connect

    Ojima, D.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  15. Natural Gas Transmission and Distribution Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Documents the archived version of the Natural Gas Transmission and Distribution Model that was used to produce the natural gas forecasts used in support of the Annual Energy Outlook 2014.

  16. Directory of Energy Information Administration Models 1993

    SciTech Connect

    Not Available

    1993-07-06

    This directory contains descriptions about each model, including the title, acronym, purpose, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. Included in this directory are 35 EIA models active as of May 1, 1993. Models that run on personal computers are identified by ``PC`` as part of the acronym. EIA is developing new models, a National Energy Modeling System (NEMS), and is making changes to existing models to include new technologies, environmental issues, conservation, and renewables, as well as extend forecast horizon. Other parts of the Department are involved in this modeling effort. A fully operational model is planned which will integrate completed segments of NEMS for its first official application--preparation of EIA`s Annual Energy Outlook 1994. Abstracts for the new models will be included in next year`s version of this directory.

  17. The Transportation Sector Model of the National Energy Modeling...

    Gasoline and Diesel Fuel Update

    Information Administration NEMS Transportation Demand Model Documentation Report 2005 25 manufacturing, and design advances. Manufacturing advances can generally be thought of as...

  18. System of systems modeling and analysis.

    SciTech Connect

    Campbell, James E.; Anderson, Dennis James; Longsine, Dennis E.; Shirah, Donald N.

    2005-01-01

    This report documents the results of an LDRD program entitled 'System of Systems Modeling and Analysis' that was conducted during FY 2003 and FY 2004. Systems that themselves consist of multiple systems (referred to here as System of Systems or SoS) introduce a level of complexity to systems performance analysis and optimization that is not readily addressable by existing capabilities. The objective of the 'System of Systems Modeling and Analysis' project was to develop an integrated modeling and simulation environment that addresses the complex SoS modeling and analysis needs. The approach to meeting this objective involved two key efforts. First, a static analysis approach, called state modeling, has been developed that is useful for analyzing the average performance of systems over defined use conditions. The state modeling capability supports analysis and optimization of multiple systems and multiple performance measures or measures of effectiveness. The second effort involves time simulation which represents every system in the simulation using an encapsulated state model (State Model Object or SMO). The time simulation can analyze any number of systems including cross-platform dependencies and a detailed treatment of the logistics required to support the systems in a defined mission.

  19. Petroleum Market Model of the National Energy Modeling System

    Gasoline and Diesel Fuel Update

    Expansion) If it is a reporting iteration, the Short Term Energy Outlook (STEO) benchmarking switch is on, and it is NEMS year 13 (2002); then the PMM LP is solved using input...

  20. Frequency stabilization in nonlinear MEMS and NEMS oscillators

    DOEpatents

    Lopez, Omar Daniel; Antonio, Dario

    2014-09-16

    An illustrative system includes an amplifier operably connected to a phase shifter. The amplifier is configured to amplify a voltage from an oscillator. The phase shifter is operably connected to a driving amplitude control, wherein the phase shifter is configured to phase shift the amplified voltage and is configured to set an amplitude of the phase shifted voltage. The oscillator is operably connected to the driving amplitude control. The phase shifted voltage drives the oscillator. The oscillator is at an internal resonance condition, based at least on the amplitude of the phase shifted voltage, that stabilizes frequency oscillations in the oscillator.

  1. A Model of U.S. Commercial Distributed Generation Adoption

    SciTech Connect

    LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

    2006-01-10

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

  2. Macro-System Model Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Macro Macro - - System System - - Model Overview: Model Overview: DOE H2 Analysis Workshop DOE H2 Analysis Workshop Mark Ruth January 26, 2006 2 Outline * Need for the MSM * What the MSM will be * Initial issues the MSM will address * Status update 3 Need for a MSM framework Need for MSM: * Support Systems Analysis, to help guide R&D * Standardization of information transferred between element models * Reduce resources needed for multi-model analyses * Analyze interrelationships * Provide

  3. Nacelle Systems Engineering Model and Hub Systems Engineering Model

    Energy Science and Technology Software Center

    2012-09-30

    nacelleSE and hubSE are a set of models that size wind turbine hub system and drivetrain components based on key turbine design parameters and load inputs from a rotor model.

  4. Macro System Model (MSM)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Each model is left on its own platform, with Java being used to transfer information. The model is not planned to be widely disseminated to the public because of the expertise ...

  5. Modeling Fluid Flow in Natural Systems, Model Validation and...

    Energy Saver

    Modeling Fluid Flow in Natural Systems, Model Validation and Demonstration Modeling Fluid Flow in Natural Systems, Model Validation and Demonstration Clay and granitic units are ...

  6. System Dynamics Model | NISAC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Dynamics Model content top Chemical Supply Chain Analysis Posted by Admin on Mar 1, 2012 in | Comments 0 comments Chemical Supply Chain Analysis NISAC has developed a range of...

  7. A new approach for modeling the peak utility impacts from a proposed CUAC standard

    SciTech Connect

    LaCommare, Kristina Hamachi; Gumerman, Etan; Marnay, Chris; Chan, Peter; Coughlin, Katie

    2004-08-01

    This report describes a new Berkeley Lab approach for modeling the likely peak electricity load reductions from proposed energy efficiency programs in the National Energy Modeling System (NEMS). This method is presented in the context of the commercial unitary air conditioning (CUAC) energy efficiency standards. A previous report investigating the residential central air conditioning (RCAC) load shapes in NEMS revealed that the peak reduction results were lower than expected. This effect was believed to be due in part to the presence of the squelch, a program algorithm designed to ensure changes in the system load over time are consistent with the input historic trend. The squelch applies a system load-scaling factor that scales any differences between the end-use bottom-up and system loads to maintain consistency with historic trends. To obtain more accurate peak reduction estimates, a new approach for modeling the impact of peaky end uses in NEMS-BT has been developed. The new approach decrements the system load directly, reducing the impact of the squelch on the final results. This report also discusses a number of additional factors, in particular non-coincidence between end-use loads and system loads as represented within NEMS, and their impacts on the peak reductions calculated by NEMS. Using Berkeley Lab's new double-decrement approach reduces the conservation load factor (CLF) on an input load decrement from 25% down to 19% for a SEER 13 CUAC trial standard level, as seen in NEMS-BT output. About 4 GW more in peak capacity reduction results from this new approach as compared to Berkeley Lab's traditional end-use decrement approach, which relied solely on lowering end use energy consumption. The new method has been fully implemented and tested in the Annual Energy Outlook 2003 (AEO2003) version of NEMS and will routinely be applied to future versions. This capability is now available for use in future end-use efficiency or other policy analysis that requires

  8. Projected Benefits of EERE's Portfolio (by program and model)

    SciTech Connect

    none,

    2011-11-17

    This collection of charts shows the benefits metrics for renewable energy technologies in the EERE portfolio for 2010-2050 for both the NEMS and MARKAL models.

  9. System Cost Model

    Energy Science and Technology Software Center

    1996-03-27

    SCM is used for estimation of the life-cycle impacts (costs, health and safety risks) of waste management facilities for mixed low-level, low-level, and transuranic waste. SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing waste management facilities at Department of Energy (DOE) installations. SCM also provides transportation costs for intersite transfer of DOE wastes. SCM covers the entire DOE waste management complex tomore » allow system sensitivity analysis including: treatment, storage, and disposal configuration options; treatment technology selection; scheduling options; transportation options; waste stream and volume changes; and site specific conditions.« less

  10. MODELING THE DEMAND FOR E85 IN THE UNITED STATES

    SciTech Connect

    Liu, Changzheng; Greene, David L

    2013-10-01

    How demand for E85 might evolve in the future in response to changing economics and policies is an important subject to include in the National Energy Modeling System (NEMS). This report summarizes a study to develop an E85 choice model for NEMS. Using the most recent data from the states of Minnesota, North Dakota, and Iowa, this study estimates a logit model that represents E85 choice as a function of prices of E10 and E85, as well as fuel availability of E85 relative to gasoline. Using more recent data than previous studies allows a better estimation of non-fleet demand and indicates that the price elasticity of E85 choice appears to be higher than previously estimated. Based on the results of the econometric analysis, a model for projecting E85 demand at the regional level is specified. In testing, the model produced plausible predictions of US E85 demand to 2040.

  11. International Energy Module of the National Energy Modeling System...

    Gasoline and Diesel Fuel Update

    The NEMS International Energy Module (IEM) simulates the interaction between U.S. and global petroleum markets. It uses assumptions of economic growth and expectations of...

  12. Directory of Energy Information Administration Models 1994

    SciTech Connect

    Not Available

    1994-07-01

    This directory revises and updates the 1993 directory and includes 15 models of the National Energy Modeling System (NEMS). Three other new models in use by the Energy Information Administration (EIA) have also been included: the Motor Gasoline Market Model (MGMM), Distillate Market Model (DMM), and the Propane Market Model (PPMM). This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses and requirements. Sources for additional information are identified. Included in this directory are 37 EIA models active as of February 1, 1994.

  13. EPRI-Sandia PV Systems Symposium - PV Distribution Systems Modeling...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    EPRI-Sandia PV Systems Symposium - PV Distribution Systems Modeling Workshop Agenda (draft) PV Distribution System Modeling Workshop - Draft Agenda as of May 1 This one-day ...

  14. Sandia Energy - Tutorial on PV System Modeling

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Tutorial on PV System Modeling Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Modeling & Analysis Tutorial on PV System Modeling Tutorial on PV...

  15. Science and technology of piezoelectric/diamond heterostructures for monolithically integrated high performance MEMS/NEMS/CMOS devices.

    SciTech Connect

    Auciello, O.; Sumant, A. V.; Hiller, J.; Kabius, B.; Ma, Z.; Srinivasan, S.

    2008-12-01

    This paper describes the fundamental and applied science performed to integrate piezoelectric PbZr{sub x}Ti{sub 1-x}O{sub 3} and AlN films with a novel mechanically robust ultrananocrystalline diamond layer to enable a new generation of low voltage/high-performance piezoactuated hybrid piezoelectric/diamond MEMS/NEMS devices.

  16. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect

    1997-02-01

    Over the past year, several modifications have been made to the NEMS Transportation Model, incorporating greater levels of detail and analysis in modules previously represented in the aggregate or under a profusion of simplifying assumptions. This document is intended to amend those sections of the Model Documentation Report (MDR) which describe these superseded modules. Significant changes have been implemented in the LDV Fuel Economy Model, the Alternative Fuel Vehicle Model, the LDV Fleet Module, and the Highway Freight Model. The relevant sections of the MDR have been extracted from the original document, amended, and are presented in the following pages. A brief summary of the modifications follows: In the Fuel Economy Model, modifications have been made which permit the user to employ more optimistic assumptions about the commercial viability and impact of selected technological improvements. This model also explicitly calculates the fuel economy of an array of alternative fuel vehicles (AFV`s) which are subsequently used in the estimation of vehicle sales. In the Alternative Fuel Vehicle Model, the results of the Fuel Economy Model have been incorporated, and the program flows have been modified to reflect that fact. In the Light Duty Vehicle Fleet Module, the sales of vehicles to fleets of various size are endogenously calculated in order to provide a more detailed estimate of the impacts of EPACT legislation on the sales of AFV`s to fleets. In the Highway Freight Model, the previous aggregate estimation has been replaced by a detailed Freight Truck Stock Model, where travel patterns, efficiencies, and energy intensities are estimated by industrial grouping. Several appendices are provided at the end of this document, containing data tables and supplementary descriptions of the model development process which are not integral to an understanding of the overall model structure.

  17. Generalized Environment for Modeling Systems

    SciTech Connect

    2012-02-07

    -04) created at INL to work inside SharePoint. The GUI tool links slider bars and drop downs to specific inputs and output of the ModelCenter model that is executable from SharePoint. The modeler also creates in SAS, dashboards, graphs and tables that are exposed by links and SAS and ModelCenter Web Parts into the SharePoint system. The user can then log into SharePoint, move slider bars and select drop down lists to configure the model parameters, click to run the model, and then view the output results that are based on their particular input choices. The main point is that GEMS eliminates the need for a programmer to connect and create the web artifacts necessary to implement and deliver an executable model or decision aid to customers.

  18. Generalized Environment for Modeling Systems

    Energy Science and Technology Software Center

    2012-02-07

    Part (CW-12-04) created at INL to work inside SharePoint. The GUI tool links slider bars and drop downs to specific inputs and output of the ModelCenter model that is executable from SharePoint. The modeler also creates in SAS, dashboards, graphs and tables that are exposed by links and SAS and ModelCenter Web Parts into the SharePoint system. The user can then log into SharePoint, move slider bars and select drop down lists to configure the model parameters, click to run the model, and then view the output results that are based on their particular input choices. The main point is that GEMS eliminates the need for a programmer to connect and create the web artifacts necessary to implement and deliver an executable model or decision aid to customers.« less

  19. On the Path to SunShot. Utility Regulatory and Business Model...

    Office of Scientific and Technical Information (OSTI)

    Utility Regulatory and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities Net-energy metering (NEM) has helped drive the rapid growth of ...

  20. SciTech Connect: "earth system models"

    Office of Scientific and Technical Information (OSTI)

    earth system models" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "earth system models" Semantic Semantic Term Title: Full Text: Bibliographic...

  1. Graph modeling systems and methods

    SciTech Connect

    Neergaard, Mike

    2015-10-13

    An apparatus and a method for vulnerability and reliability modeling are provided. The method generally includes constructing a graph model of a physical network using a computer, the graph model including a plurality of terminating vertices to represent nodes in the physical network, a plurality of edges to represent transmission paths in the physical network, and a non-terminating vertex to represent a non-nodal vulnerability along a transmission path in the physical network. The method additionally includes evaluating the vulnerability and reliability of the physical network using the constructed graph model, wherein the vulnerability and reliability evaluation includes a determination of whether each terminating and non-terminating vertex represents a critical point of failure. The method can be utilized to evaluate wide variety of networks, including power grid infrastructures, communication network topologies, and fluid distribution systems.

  2. Appendix A: GPRA08 benefits estimates: NEMS and MARKAL Model Baseline Cases

    SciTech Connect

    None, None

    2009-01-18

    Document summarizes the results of the benefits analysis of EERE’s programs, as described in the FY 2008 Budget Request. EERE estimates benefits for its overall portfolio and nine Research, Development, Demonstration, and Deployment (RD3) programs.

  3. Steam System Modeler | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technical Assistance » Steam System Modeler Steam System Modeler April 17, 2014 - 11:34am Addthis There is often flexibility in the operational conditions and requirements of any steam system. In order to optimize performance, the impacts of potential adjustments need to be understood individually and collectively. The Steam System Modeler allows you to create up to a 3-pressure-header basic model of your current steam system. A second model can then be created by adjusting a series of

  4. Utility Regulation and Business Model Reforms for Advancing the Financial Impacts of Distributed Solar on Utilities

    Energy.gov [DOE]

    Implementing a range of alternative utility-rate reforms could minimize solar value losses at increasing levels of distributed PV penetration (see Barbose et al. 2016). In conjunction with the technical issues described above, the connections between distributed PV and electric distribution systems hinge on utility business models and regulations. As PV deployment has leapt forward and presaged a truly significant solar contribution, however, it has become clear that utilities’ traditional treatment of distributed PV cannot be taken for granted—nor can the future value and deployment of distributed PV. At the heart of this issue is net energy metering (NEM). Under NEM, PV owners can sell to a utility the electricity they generate but cannot consume on site, often at full retail rates. This widespread policy has helped drive the rapid growth of distributed PV, but the success has raised concerns about the potential for higher electricity rates and cost-shifting to non-solar customers, reduced utility shareholder profitability, reduced utility earnings opportunities, and inefficient resource allocation. The resulting reform efforts have revolved largely around changing NEM rules and retail rate structures. Most of the reforms to date address NEM concerns by reducing the benefits provided to distributed PV customers and thus constraining PV deployment. A new analysis estimates that eliminating NEM nationwide, by compensating exports of PV electricity at wholesale rather than retail rates would cut cumulative distributed PV deployment by 20% in 2050 compared with a continuation of current policies. This would slow the PV cost reductions that arise from larger scale and market certainty. It could also thwart achievement of the SunShot deployment goals even if the initiative’s cost targets are achieved. This undesirable prospect is stimulating the development of alternative reform strategies that address concerns about distributed PV compensation without

  5. Utility Regulation and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    Implementing a range of alternative utility-rate reforms could minimize solar value losses at increasing levels of distributed PV penetration (see Barbose et al. 2016). In conjunction with the technical issues described above, the connections between distributed PV and electric distribution systems hinge on utility business models and regulations. As PV deployment has leapt forward and presaged a truly significant solar contribution, however, it has become clear that utilities’ traditional treatment of distributed PV cannot be taken for granted—nor can the future value and deployment of distributed PV. At the heart of this issue is net energy metering (NEM). Under NEM, PV owners can sell to a utility the electricity they generate but cannot consume on site, often at full retail rates. This widespread policy has helped drive the rapid growth of distributed PV, but the success has raised concerns about the potential for higher electricity rates and cost-shifting to non-solar customers, reduced utility shareholder profitability, reduced utility earnings opportunities, and inefficient resource allocation. The resulting reform efforts have revolved largely around changing NEM rules and retail rate structures. Most of the reforms to date address NEM concerns by reducing the benefits provided to distributed PV customers and thus constraining PV deployment. A new analysis estimates that eliminating NEM nationwide, by compensating exports of PV electricity at wholesale rather than retail rates would cut cumulative distributed PV deployment by 20% in 2050 compared with a continuation of current policies. This would slow the PV cost reductions that arise from larger scale and market certainty. It could also thwart achievement of the SunShot deployment goals even if the initiative’s cost targets are achieved. This undesirable prospect is stimulating the development of alternative reform strategies that address concerns about distributed PV compensation without

  6. Documentation of the petroleum market model (PMM). Appendix: Model developer`s report

    SciTech Connect

    Not Available

    1994-12-28

    The Office of Integrated Analysis and Forecasting (OIAF) is required to provide complete model documentation to meet the EIA Model Acceptance Standards. The EIA Model Documentation: Petroleum Market Model of the National Energy Modeling System provides a complete description of the Petroleum Market Model`s (PMM) methodology, and relation to other modules in the National Energy Modeling System (NEMS). This Model Developer`s Report (MDR) serves as an appendix to the methodology documentation and provides an assessment of the sensitivity of PMM results to changes in input data. The MDR analysis for PMM is performed by varying several sets of input variables one-at-a-time and examining the effect on a set of selected output variables. The analysis is based on stand-alone, rather than integrated, National Energy Modeling System (NEMS) runs. This means that other NEMS modules are not responding to PMM outputs. The PMM models petroleum refining and marketing. The purpose of the PMM is to project petroleum product prices, refining activities, and movements of petroleum into the United States and among domestic regions. In addition, the PMM estimates capacity expansion and fuel consumption in, the refining industry. The PMM is also used to analyze a wide variety of petroleum-related issues and policies, in order to foster better understanding of the petroleum refining and marketing industry and the effects of certain policies and regulations. The PMM simulates the operation of petroleum refineries in the United States, including the supply and transportation of crude oil to refineries, the regional processing of these raw materials into petroleum products, and the distribution of petroleum products to meet regional demands. The essential outputs of this model are product prices, a petroleum supply/demand balance, demands for refinery fuel use, and capacity expansion.

  7. NUCLEAR ENERGY SYSTEM COST MODELING

    SciTech Connect

    Francesco Ganda; Brent Dixon

    2012-09-01

    The U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative “Island” approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this island’s used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability

  8. Summary Impacts of Modeled Provisions of the 2003 Conference Energy Bill

    Reports and Publications

    2004-01-01

    This service report was undertaken at the February 2, 2004, request of Senator John Sununu to perform an assessment of the Conference Energy Bill of 2003. This report summarizes the CEB provisions that can be analyzed using the National Energy Modeling System (NEMS) and have the potential to affect energy consumption, supply, and prices. The impacts are estimated by comparing the projections with the CEB provisions to the AEO2004 Reference Case.

  9. Geochemical Modeling Of Aqueous Systems

    Energy Science and Technology Software Center

    1995-09-07

    EQ3/6 is a software package for geochemical modeling of aqueous systems. This description pertains to version 7.2b. It addresses aqueous speciation, thermodynamic equilibrium, disequilibrium, and chemical kinetics. The major components of the package are EQ3NR, a speciation-solubility code, and EQ6 a reaction path code. EQ3NR is useful for analyzing groundwater chemistry data, calculating solubility limits, and determining whether certain reactions are in states of equilibrium or disequilibrium. It also initializes EQ6 calculations. EQ6 models themore » consequences of reacting an aqueous solution with a specified set of reactants (e.g., minerals or waste forms). It can also model fluid mixing and the effects of changes in temperature. Each of five supporting data files contain both standard state and activity coefficient-related data. Three support the use of the Davies or B-dot equations for the activity coefficients; the other two support the use of Pitzer''s equations. The temperature range of the thermodynamic data on the data files varies from 25 degrees C only to 0-300 degrees C.« less

  10. Integration of EBS Models with Generic Disposal System Models

    Energy.gov [DOE]

    This report summarizes research activities on engineered barrier system (EBS) model integration with the generic disposal system model (GDSM), and used fuel degradation and radionuclide mobilization (RM) in support of the EBS evaluation and tool development within the UFD campaign.

  11. Modeling the Earth System, volume 3

    SciTech Connect

    Ojima, D.

    1992-01-01

    The topics covered fall under the following headings: critical gaps in the Earth system conceptual framework; development needs for simplified models; and validating Earth system models and their subcomponents.

  12. Systems Advisor Model | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Systems Advisor Model Systems Advisor Model Systems Advisor Model (SAM) makes performance predictions and cost of energy estimates for grid-connected power projects based on installation and operating costs and system design parameters that you specify as inputs to the model. Projects can be on the customer side of the utility meter - buying and selling electricity at retail rates - or on the utility side of the meter, selling electricity at a price negotiated through a power purchase agreement.

  13. Modeling Power Systems as Complex Adaptive Systems

    SciTech Connect

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  14. Generic CSP Performance Model for NREL's System Advisor Model: Preprint

    SciTech Connect

    Wagner, M. J.; Zhu, G.

    2011-08-01

    The suite of concentrating solar power (CSP) modeling tools in NREL's System Advisor Model (SAM) includes technology performance models for parabolic troughs, power towers, and dish-Stirling systems. Each model provides the user with unique capabilities that are catered to typical design considerations seen in each technology. Since the scope of the various models is generally limited to common plant configurations, new CSP technologies, component geometries, and subsystem combinations can be difficult to model directly in the existing SAM technology models. To overcome the limitations imposed by representative CSP technology models, NREL has developed a 'Generic Solar System' (GSS) performance model for use in SAM. This paper discusses the formulation and performance considerations included in this model and verifies the model by comparing its results with more detailed models.

  15. Modeling Fluid Flow in Natural Systems, Model Validation and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Modeling Fluid Flow in Natural Systems, Model Validation and Demonstration Modeling Fluid Flow in Natural Systems, Model Validation and Demonstration Clay and granitic units are potential host media for future repositories for used nuclear fuel. The report addresses the representation and characterization of flow in these two media within numerical process models. In low permeability crystalline rock, flow is primarily in relatively sparse networks of fractures.

  16. Comparison of Photovoltaic Models in the System Advisor Model: Preprint

    SciTech Connect

    Blair, N. J.; Dobos, A. P.; Gilman, P.

    2013-08-01

    The System Advisor Model (SAM) is free software developed by the National Renewable Energy Laboratory (NREL) for predicting the performance of renewable energy systems and analyzing the financial feasibility of residential, commercial, and utility-scale grid-connected projects. SAM offers several options for predicting the performance of photovoltaic (PV) systems. The model requires that the analyst choose from three PV system models, and depending on that choice, possibly choose from three module and two inverter component models. To obtain meaningful results from SAM, the analyst must be aware of the differences between the model options and their applicability to different modeling scenarios. This paper presents an overview the different PV model options and presents a comparison of results for a 200-kW system using different model options.

  17. Coal Market Module of the National Energy Modeling System Model...

    Energy Information Administration (EIA) (indexed site)

    Coal Market Module of the National Energy Modeling System Model Documentation 2013 June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC ...

  18. World Energy Projection System Plus Model Documentation: Natural Gas Model

    Reports and Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Natural Gas Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  19. World Energy Projection System Plus Model Documentation: Transportation Model

    Reports and Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) International Transportation model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  20. World Energy Projection System Plus Model Documentation: World Electricity Model

    Reports and Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Electricity Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  1. World Energy Projection System Plus Model Documentation: Greenhouse Gases Model

    Reports and Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Greenhouse Gases Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  2. World Energy Projection System Plus Model Documentation: Industrial Model

    Reports and Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Industrial Model (WIM). It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  3. World Energy Projection System Plus Model Documentation: Residential Model

    Reports and Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Residential Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  4. World Energy Projection System Plus Model Documentation: Coal Model

    Reports and Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Coal Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  5. World Energy Projection System Plus Model Documentation: District Heat Model

    Reports and Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) District Heat Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  6. World Energy Projection System Plus Model Documentation: Commercial Model

    Reports and Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Commercial Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  7. World Energy Projection System Plus Model Documentation: Main Model

    Reports and Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Main Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  8. World Energy Projection System Plus Model Documentation: Refinery Model

    Reports and Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Refinery Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  9. World Energy Projection System Plus Model Documentation: Main Model

    Reports and Publications

    2016-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Main Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  10. World Energy Projection System Plus Model Documentation: Refinery Model

    Reports and Publications

    2016-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Refinery Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  11. Network and adaptive system of systems modeling and analysis.

    SciTech Connect

    Lawton, Craig R.; Campbell, James E. Dr.; Anderson, Dennis James; Eddy, John P.

    2007-05-01

    This report documents the results of an LDRD program entitled ''Network and Adaptive System of Systems Modeling and Analysis'' that was conducted during FY 2005 and FY 2006. The purpose of this study was to determine and implement ways to incorporate network communications modeling into existing System of Systems (SoS) modeling capabilities. Current SoS modeling, particularly for the Future Combat Systems (FCS) program, is conducted under the assumption that communication between the various systems is always possible and occurs instantaneously. A more realistic representation of these communications allows for better, more accurate simulation results. The current approach to meeting this objective has been to use existing capabilities to model network hardware reliability and adding capabilities to use that information to model the impact on the sustainment supply chain and operational availability.

  12. Turbine Cost Systems Engineering Model

    Energy Science and Technology Software Center

    2012-09-30

    turb_costSE is a set of models that link wind turbine component masses (and a few other key variables) to component costs.

  13. System Advisor Model Training | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    System Advisor Model Training System Advisor Model Training The Office of Indian Energy hosted a two-day training for Indian tribes on how to use the System Advisor Model (SAM) June 7-8, 2016, at Northern Arizona University in Flagstaff, Arizona. Developed by DOE's National Renewable Energy Laboratory, SAM is a free software tool that Indian tribes can use to analyze the feasibility of renewable energy projects. This training walked participants through the various technologies that can be

  14. World Energy Projection System Plus Model Documentation: Commercial Model

    Reports and Publications

    2016-01-01

    The Commercial Model of the World Energy Projection System Plus (WEPS ) is an energy demand modeling system of the world commercial end?use sector at a regional level. This report describes the version of the Commercial Model that was used to produce the commercial sector projections published in the International Energy Outlook 2016 (IEO2016). The Commercial Model is one of 13 components of the WEPS system. The WEPS is a modular system, consisting of a number of separate energy models that are communicate and work with each other through an integrated system model. The model components are each developed independently, but are designed with well?defined protocols for system communication and interactivity. The WEPS modeling system uses a shared database (the “restart” file) that allows all the models to communicate with each other when they are run in sequence over a number of iterations. The overall WEPS system uses an iterative solution technique that forces convergence of consumption and supply pressures to solve for an equilibrium price.

  15. Modular Ocean Instrumentation System (MOIS) CAD Models

    SciTech Connect

    Nelson, Eric

    2015-12-03

    SolidWorks models of the Modular Ocean Instrumentation System (MOIS) data acquisition system components in it's subsea enclosure. The zip file contains all the components necessary for the assembly.

  16. Very Large System Dynamics Models - Lessons Learned

    SciTech Connect

    Jacob J. Jacobson; Leonard Malczynski

    2008-10-01

    This paper provides lessons learned from developing several large system dynamics (SD) models. System dynamics modeling practice emphasize the need to keep models small so that they are manageable and understandable. This practice is generally reasonable and prudent; however, there are times that large SD models are necessary. This paper outlines two large SD projects that were done at two Department of Energy National Laboratories, the Idaho National Laboratory and Sandia National Laboratories. This paper summarizes the models and then discusses some of the valuable lessons learned during these two modeling efforts.

  17. System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report

    SciTech Connect

    Freeman, J.; Whitmore, J.; Kaffine, L.; Blair, N.; Dobos, A. P.

    2013-12-01

    The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.

  18. A model for international border management systems.

    SciTech Connect

    Duggan, Ruth Ann

    2008-09-01

    To effectively manage the security or control of its borders, a country must understand its border management activities as a system. Using its systems engineering and security foundations as a Department of Energy National Security Laboratory, Sandia National Laboratories has developed such an approach to modeling and analyzing border management systems. This paper describes the basic model and its elements developed under Laboratory Directed Research and Development project 08-684.

  19. transportation-system-modeling-webinar

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Webinar Announcement Webinar for the Intelligent Transportation Society of the Midwest (ITS Midwest) May 16, 2011 1:00 PM(CST) Hubert Ley Director, TRACC Argonne National Laboratory Argonne, Illinois High Performance Computing in Transportation Research - High Fidelity Transportation Models and More The Role of High-Performance Computing Because ITS relies on a very diverse collection of technologies, including communication and control technologies, advanced computing, information management

  20. transportation-systems-modeling-training

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Training Table of Contents Date Location Integrated Transportation Models Workshop at ITM 2012 April 29, 2012 Hyatt Regency Tampa, FL TRANSIMS Training Course April 14-15, 2011 James E. Clyburn University Transportation Center Orangeburg, SC TRANSIMS RTSTEP Guest Lecturer March 29, 2011 Argonne TRACC Argonne, IL TRANSIMS Training Course January 19-21 2011 Argonne TRACC Argonne, IL TRANSIMS Training Course September 7-8, 2010 Turner Fairbank Highway Research Center Washington D.C. Network

  1. Structural system identification: Structural dynamics model validation

    SciTech Connect

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  2. Models And Results Database System.

    Energy Science and Technology Software Center

    2001-03-27

    Version 00 MAR-D 4.16 is a program that is used primarily for Probabilistic Risk Assessment (PRA) data loading. This program defines a common relational database structure that is used by other PRA programs. This structure allows all of the software to access and manipulate data created by other software in the system without performing a lengthy conversion. The MAR-D program also provides the facilities for loading and unloading of PRA data from the relational databasemore » structure used to store the data to an ASCII format for interchange with other PRA software. The primary function of MAR-D is to create a data repository for NUREG-1150 and other permanent data by providing input, conversion, and output capabilities for data used by IRRAS, SARA, SETS and FRANTIC.« less

  3. Photovoltaic System Modeling. Uncertainty and Sensitivity Analyses

    SciTech Connect

    Hansen, Clifford W.; Martin, Curtis E.

    2015-08-01

    We report an uncertainty and sensitivity analysis for modeling AC energy from ph otovoltaic systems . Output from a PV system is predicted by a sequence of models. We quantify u ncertainty i n the output of each model using empirical distribution s of each model's residuals. We propagate uncertainty through the sequence of models by sampli ng these distributions to obtain a n empirical distribution of a PV system's output. We consider models that: (1) translate measured global horizontal, direct and global diffuse irradiance to plane - of - array irradiance; (2) estimate effective irradiance; (3) predict cell temperature; (4) estimate DC voltage, current and power ; (5) reduce DC power for losses due to inefficient maximum power point tracking or mismatch among modules; and (6) convert DC to AC power . O ur analysis consider s a notional PV system com prising an array of FirstSolar FS - 387 modules and a 250 kW AC inverter ; we use measured irradiance and weather at Albuquerque, NM. We found the uncertainty in PV syste m output to be relatively small, on the order of 1% for daily energy. We found that unce rtainty in the models for POA irradiance and effective irradiance to be the dominant contributors to uncertainty in predicted daily energy. Our analysis indicates that efforts to reduce the uncertainty in PV system output predictions may yield the greatest improvements by focusing on the POA and effective irradiance models.

  4. Neutrons used to study model vascular systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Neutrons used to study model vascular systems Neutrons used to study model vascular systems The study is the first to provide a direct measure of endothelial monolayer adhesion under physiologic shear stress conditions. January 22, 2014 Comparison of endothelial monolayers under static conditions (left panels) and laminar shear stress (right panels). Shear stress induces remodeling of endothelial proteins. Comparison of endothelial monolayers under static conditions (left panels) and laminar

  5. Neutrons used to study model vascular systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Neutrons used to study model vascular systems Neutrons used to study model vascular systems The study is the first to provide a direct measure of endothelial monolayer adhesion under physiologic shear stress conditions. January 22, 2014 Comparison of endothelial monolayers under static conditions (left panels) and laminar shear stress (right panels). Shear stress induces remodeling of endothelial proteins. Comparison of endothelial monolayers under static conditions (left panels) and laminar

  6. Hybrid Energy System Modeling in Modelica

    SciTech Connect

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  7. System model development for nuclear thermal propulsion

    SciTech Connect

    Walton, J.T.; Hannan, N.A.; Perkins, K.R.; Buksa, J.J.; Worley, B.A.; Dobranich, D.

    1992-10-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. Since October 1991, US (DOE), (DOD) and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review. The vision and strategy of the interagency team for developing NTP system models will be discussed in this paper. A review of the progress on the Level 1 interagency model is also presented.

  8. A multilingual programming model for coupled systems.

    SciTech Connect

    Ong, E. T.; Larson, J. W.; Norris, B.; Tobis, M.; Steder, M.; Jacob, R. L.; Mathematics and Computer Science; Univ. of Wisconsin; Univ. of Chicago; The Australian National Univ.

    2008-01-01

    Multiphysics and multiscale simulation systems share a common software requirement-infrastructure to implement data exchanges between their constituent parts-often called the coupling problem. On distributed-memory parallel platforms, the coupling problem is complicated by the need to describe, transfer, and transform distributed data, known as the parallel coupling problem. Parallel coupling is emerging as a new grand challenge in computational science as scientists attempt to build multiscale and multiphysics systems on parallel platforms. An additional coupling problem in these systems is language interoperability between their constituent codes. We have created a multilingual parallel coupling programming model based on a successful open-source parallel coupling library, the Model Coupling Toolkit (MCT). This programming model's capabilities reach beyond MCT's native Fortran implementation to include bindings for the C++ and Python programming languages. We describe the method used to generate the interlanguage bindings. This approach enables an object-based programming model for implementing parallel couplings in non-Fortran coupled systems and in systems with language heterogeneity. We describe the C++ and Python versions of the MCT programming model and provide short examples. We report preliminary performance results for the MCT interpolation benchmark. We describe a major Python application that uses the MCT Python bindings, a Python implementation of the control and coupling infrastructure for the community climate system model. We conclude with a discussion of the significance of this work to productivity computing in multidisciplinary computational science.

  9. A toolkit for building earth system models

    SciTech Connect

    Foster, I.

    1993-03-01

    An earth system model is a computer code designed to simulate the interrelated processes that determine the earth's weather and climate, such as atmospheric circulation, atmospheric physics, atmospheric chemistry, oceanic circulation, and biosphere. I propose a toolkit that would support a modular, or object-oriented, approach to the implementation of such models.

  10. A toolkit for building earth system models

    SciTech Connect

    Foster, I.

    1993-03-01

    An earth system model is a computer code designed to simulate the interrelated processes that determine the earth`s weather and climate, such as atmospheric circulation, atmospheric physics, atmospheric chemistry, oceanic circulation, and biosphere. I propose a toolkit that would support a modular, or object-oriented, approach to the implementation of such models.

  11. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel...

    Energy Saver

    Models and Tools: Systems Analysis of Hydrogen and Fuel Cells Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells The Fuel Cell Technologies Office's systems ...

  12. Human performance modeling for system of systems analytics :soldier fatigue.

    SciTech Connect

    Lawton, Craig R.; Campbell, James E.; Miller, Dwight Peter

    2005-10-01

    The military has identified Human Performance Modeling (HPM) as a significant requirement and challenge of future systems modeling and analysis initiatives as can be seen in the Department of Defense's (DoD) Defense Modeling and Simulation Office's (DMSO) Master Plan (DoD 5000.59-P 1995). To this goal, the military is currently spending millions of dollars on programs devoted to HPM in various military contexts. Examples include the Human Performance Modeling Integration (HPMI) program within the Air Force Research Laboratory, which focuses on integrating HPMs with constructive models of systems (e.g. cockpit simulations) and the Navy's Human Performance Center (HPC) established in September 2003. Nearly all of these initiatives focus on the interface between humans and a single system. This is insufficient in the era of highly complex network centric SoS. This report presents research and development in the area of HPM in a system-of-systems (SoS). Specifically, this report addresses modeling soldier fatigue and the potential impacts soldier fatigue can have on SoS performance.

  13. Survey of Emissions Models for Distributed Combined Heat and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... CHP data is aggregated by Census region, industry, and fuel type for input to the model. EIA uses an internally developed database for NEMS. The data is available on a plant basis ...

  14. Summary of photovoltaic system performance models

    SciTech Connect

    Smith, J. H.; Reiter, L. J.

    1984-01-15

    The purpose of this study is to provide a detailed overview of photovoltaics (PV) performance modeling capabilities that have been developed during recent years for analyzing PV system and component design and policy issues. A set of 10 performance models have been selected which span a representative range of capabilities from generalized first-order calculations to highly specialized electrical network simulations. A set of performance modeling topics and characteristics is defined and used to examine some of the major issues associated with photovoltaic performance modeling. Next, each of the models is described in the context of these topics and characteristics to assess its purpose, approach, and level of detail. Then each of the issues is discussed in terms of the range of model capabilities available and summarized in tabular form for quick reference. Finally, the models are grouped into categories to illustrate their purposes and perspectives.

  15. Hot Water Distribution System Model Enhancements

    SciTech Connect

    Hoeschele, M.; Weitzel, E.

    2012-11-01

    This project involves enhancement of the HWSIM distribution system model to more accurately model pipe heat transfer. Recent laboratory testing efforts have indicated that the modeling of radiant heat transfer effects is needed to accurately characterize piping heat loss. An analytical methodology for integrating radiant heat transfer was implemented with HWSIM. Laboratory test data collected in another project was then used to validate the model for a variety of uninsulated and insulated pipe cases (copper, PEX, and CPVC). Results appear favorable, with typical deviations from lab results less than 8%.

  16. Intrinsic Uncertainties in Modeling Complex Systems.

    SciTech Connect

    Cooper, Curtis S; Bramson, Aaron L.; Ames, Arlo L.

    2014-09-01

    Models are built to understand and predict the behaviors of both natural and artificial systems. Because it is always necessary to abstract away aspects of any non-trivial system being modeled, we know models can potentially leave out important, even critical elements. This reality of the modeling enterprise forces us to consider the prospective impacts of those effects completely left out of a model - either intentionally or unconsidered. Insensitivity to new structure is an indication of diminishing returns. In this work, we represent a hypothetical unknown effect on a validated model as a finite perturba- tion whose amplitude is constrained within a control region. We find robustly that without further constraints, no meaningful bounds can be placed on the amplitude of a perturbation outside of the control region. Thus, forecasting into unsampled regions is a very risky proposition. We also present inherent difficulties with proper time discretization of models and representing in- herently discrete quantities. We point out potentially worrisome uncertainties, arising from math- ematical formulation alone, which modelers can inadvertently introduce into models of complex systems. Acknowledgements This work has been funded under early-career LDRD project %23170979, entitled %22Quantify- ing Confidence in Complex Systems Models Having Structural Uncertainties%22, which ran from 04/2013 to 09/2014. We wish to express our gratitude to the many researchers at Sandia who con- tributed ideas to this work, as well as feedback on the manuscript. In particular, we would like to mention George Barr, Alexander Outkin, Walt Beyeler, Eric Vugrin, and Laura Swiler for provid- ing invaluable advice and guidance through the course of the project. We would also like to thank Steven Kleban, Amanda Gonzales, Trevor Manzanares, and Sarah Burwell for their assistance in managing project tasks and resources.

  17. APT Blanket System Model Based on Initial Conceptual Design - Integrated 1D TRAC System Model

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    This report documents the approaches taken in establishing a 1-dimensional integrated blanket system model using the TRAC code, developed by Los Alamos National Laboratory.

  18. Wind Technology Modeling Within the System Advisor Model (SAM) (Poster)

    SciTech Connect

    Blair, N.; Dobos, A.; Ferguson, T.; Freeman, J.; Gilman, P.; Whitmore, J.

    2014-05-01

    This poster provides detail for implementation and the underlying methodology for modeling wind power generation performance in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). SAM's wind power model allows users to assess projects involving one or more large or small wind turbines with any of the detailed options for residential, commercial, or utility financing. The model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs, and provides analysis to compare the absolute or relative impact of these inputs. SAM is a system performance and economic model designed to facilitate analysis and decision-making for project developers, financers, policymakers, and energy researchers. The user pairs a generation technology with a financing option (residential, commercial, or utility) to calculate the cost of energy over the multi-year project period. Specifically, SAM calculates the value of projects which buy and sell power at retail rates for residential and commercial systems, and also for larger-scale projects which operate through a power purchase agreement (PPA) with a utility. The financial model captures complex financing and rate structures, taxes, and incentives.

  19. Model documentation natural gas transmission and distribution model (NGTDM) of the national energy modeling system. Volume II: Model developer`s report

    SciTech Connect

    Not Available

    1995-01-03

    To partially fulfill the requirements for {open_quotes}Model Acceptance{close_quotes} as stipulated in EIA Standard 91-01-01 (effective February 3, 1991), the Office of Integrated Analysis and Forecasting has conducted tests of the Natural Gas Transmission and Distribution Model (NGTDM) for the specific purpose of validating the forecasting model. This volume of the model documentation presents the results of {open_quotes}one-at-a-time{close_quotes} sensitivity tests conducted in support of this validation effort. The test results are presented in the following forms: (1) Tables of important model outputs for the years 2000 and 2010 are presented with respect to change in each input from the reference case; (2) Tables of percent changes from base case results for the years 2000 and 2010 are presented for important model outputs; (3) Tables of conditional sensitivities (percent change in output/percent change in input) for the years 2000 and 2010 are presented for important model outputs; (4) Finally, graphs presenting the percent change from base case results for each year of the forecast period are presented for selected key outputs. To conduct the sensitivity tests, two main assumptions are made in order to test the performance characteristics of the model itself and facilitate the understanding of the effects of the changes in the key input variables to the model on the selected key output variables: (1) responses to the amount demanded do not occur since there are no feedbacks of inputs from other NEMS models in the stand-alone NGTDM run. (2) All the export and import quantities from and to Canada and Mexico, and liquefied natural gas (LNG) imports and exports are held fixed (i.e., there are no changes in imports and exports between the reference case and the sensitivity cases) throughout the forecast period.

  20. Combustion modeling in advanced gas turbine systems

    SciTech Connect

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.

    1995-10-01

    The goal of the U.S. Department of Energy`s Advanced Turbine Systems (ATS) program is to help develop and commercialize ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. Combustion modeling, including emission characteristics, has been identified as a needed, high-priority technology by key professionals in the gas turbine industry.

  1. Code System to Model Aqueous Geochemical Equilibria.

    Energy Science and Technology Software Center

    2001-08-23

    Version: 00 MINTEQ is a geochemical program to model aqueous solutions and the interactions of aqueous solutions with hypothesized assemblages of solid phases. It was developed for the Environmental Protection Agency to perform the calculations necessary to simulate the contact of waste solutions with heterogeneous sediments or the interaction of ground water with solidified wastes. MINTEQ can calculate ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution ofsolid phases. MINTEQ can accept a finite massmore » for any solid considered for dissolution and will dissolve the specified solid phase only until its initial mass is exhausted. This ability enables MINTEQ to model flow-through systems. In these systems the masses of solid phases that precipitate at earlier pore volumes can be dissolved at later pore volumes according to thermodynamic constraints imposed by the solution composition and solid phases present. The ability to model these systems permits evaluation of the geochemistry of dissolved traced metals, such as low-level waste in shallow land burial sites. MINTEQ was designed to solve geochemical equilibria for systems composed of one kilogram of water, various amounts of material dissolved in solution, and any solid materials that are present. Systems modeled using MINTEQ can exchange energy and material (open systems) or just energy (closed systems) with the surrounding environment. Each system is composed of a number of phases. Every phase is a region with distinct composition and physically definable boundaries. All of the material in the aqueous solution forms one phase. The gas phase is composed of any gaseous material present, and each compositionally and structurally distinct solid forms a separate phase.« less

  2. An advanced power distribution automation model system

    SciTech Connect

    Niwa, Shigeharu; Kanoi, Minoru; Nishijima, Kazuo; Hayami, Mitsuo

    1995-12-31

    An advanced power distribution automation (APDA) model system has been developed on the present basis of the automated distribution systems in Japan, which have been used for remote switching operations and for urgent supply restorations during faults. The increased use of electronic apparatuses sensitive to supply interruption requires very high supply reliability, and the final developed system is expected to be useful for this purpose. The developed model system adopts pole circuit breakers and remote termination units connected through 64kbps optical fibers to the computer of the automated system in the control center. Immediate switching operations for supply restorations during faults are possible through the restoration procedures, prepared beforehand, by the computer and by fast telecommunications using optical fibers. So, protection by the feeder circuit breaker in the substation can be avoided, which would otherwise cause the blackout of the whole distribution line. The test results show the effectiveness of model the system: successful fault locations and reconfiguration for supply restoration including separation of the fault sections (without blackout for the ground faults and with a short period (within 1 s) of blackout for the short-circuit faults).

  3. OSTIblog Articles in the earth systems modeling Topic | OSTI...

    Office of Scientific and Technical Information (OSTI)

    earth systems modeling Topic ACME - Perfecting Earth System Models by Kathy Chambers 29 Oct, 2014 in Earth system modeling as we know it and how it benefits climate change research ...

  4. Gas Centrifuge Enrichment Plant Safeguards System Modeling

    SciTech Connect

    Elayat, H A; O'Connell, W J; Boyer, B D

    2006-06-05

    The U.S. Department of Energy (DOE) is interested in developing tools and methods for potential U.S. use in designing and evaluating safeguards systems used in enrichment facilities. This research focuses on analyzing the effectiveness of the safeguards in protecting against the range of safeguards concerns for enrichment plants, including diversion of attractive material and unauthorized modes of use. We developed an Extend simulation model for a generic medium-sized centrifuge enrichment plant. We modeled the material flow in normal operation, plant operational upset modes, and selected diversion scenarios, for selected safeguards systems. Simulation modeling is used to analyze both authorized and unauthorized use of a plant and the flow of safeguards information. Simulation tracks the movement of materials and isotopes, identifies the signatures of unauthorized use, tracks the flow and compilation of safeguards data, and evaluates the effectiveness of the safeguards system in detecting misuse signatures. The simulation model developed could be of use to the International Atomic Energy Agency IAEA, enabling the IAEA to observe and draw conclusions that uranium enrichment facilities are being used only within authorized limits for peaceful uses of nuclear energy. It will evaluate improved approaches to nonproliferation concerns, facilitating deployment of enhanced and cost-effective safeguards systems for an important part of the nuclear power fuel cycle.

  5. System Advisor Model Training for Tribes

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) Office of Indian Energy is hosting a two-day training for tribes on how to use the System Advisor Model, or SAM. The training will take place June 7–8, 2016, at...

  6. Wind Farm Power System Model Development: Preprint

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.

    2004-07-01

    In some areas, wind power has reached a level where it begins to impact grid operation and the stability of local utilities. In this paper, the model development for a large wind farm will be presented. Wind farm dynamic behavior and contribution to stability during transmission system faults will be examined.

  7. Fire and materials modeling for transportation systems

    SciTech Connect

    Skocypec, R.D.; Gritzo, L.A.; Moya, J.L.; Nicolette, V.F.; Tieszen, S.R.; Thomas, R.

    1994-10-01

    Fire is an important threat to the safety of transportation systems. Therefore, understanding the effects of fire (and its interaction with materials) on transportation systems is crucial to quantifying and mitigating the impact of fire on the safety of those systems. Research and development directed toward improving the fire safety of transportation systems must address a broad range of phenomena and technologies, including: crash dynamics, fuel dispersion, fire environment characterization, material characterization, and system/cargo thermal response modeling. In addition, if the goal of the work is an assessment and/or reduction of risk due to fires, probabilistic risk assessment technology is also required. The research currently underway at Sandia National Laboratories in each of these areas is summarized in this paper.

  8. Physical Modeling of Scaled Water Distribution System Networks...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Physical Modeling of Scaled Water Distribution System Networks. Citation Details In-Document Search Title: Physical Modeling of Scaled Water Distribution System ...

  9. A Scalable and Extensible Earth System Model for Climate Change...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: A Scalable and Extensible Earth System Model for Climate Change Science Citation Details In-Document Search Title: A Scalable and Extensible Earth System Model ...

  10. Economic Systems Modeling for Laser IFE and the Potential advantages...

    Office of Scientific and Technical Information (OSTI)

    Conference: Economic Systems Modeling for Laser IFE and the Potential advantages of Fast Ignition Citation Details In-Document Search Title: Economic Systems Modeling for Laser IFE ...

  11. Reference Model for Control and Automation Systems in Electrical...

    Office of Environmental Management (EM)

    Model for Control and Automation Systems in Electrical Power (October 2005) Reference Model for Control and Automation Systems in Electrical Power (October 2005) Modern ...

  12. A predictive standard model for heavy electron systems (Conference...

    Office of Scientific and Technical Information (OSTI)

    A predictive standard model for heavy electron systems Citation Details In-Document Search Title: A predictive standard model for heavy electron systems You are accessing a ...

  13. Comparison of a Recurrent Neural Network PV System Model with...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Neural Network PV System Model with a Traditional Component-Based PV System Model Daniel Riley, Sandia National Laboratories, Albuquerque, New Mexico, USA | Ganesh K....

  14. FAO-Modelling System for Agricultural Impacts of Climate Change...

    OpenEI (Open Energy Information) [EERE & EIA]

    Modelling System for Agricultural Impacts of Climate Change (MOSAICC) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: FAO-Modelling System for Agricultural Impacts of...

  15. Energy Policy and Systems Analysis Presentation: Energy Modeling...

    Office of Environmental Management (EM)

    Policy and Systems Analysis Presentation: Energy Modeling 101 Energy Policy and Systems Analysis Presentation: Energy Modeling 101 This presentation covers the basics of power ...

  16. Numerical Modelling of Geothermal Systems a Short Introduction...

    OpenEI (Open Energy Information) [EERE & EIA]

    Modelling of Geothermal Systems a Short Introduction Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Numerical Modelling of Geothermal Systems a Short...

  17. Advanced LD Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    LD Engine Systems and Emissions Control Modeling and Analysis Advanced LD Engine Systems and Emissions Control Modeling and Analysis 2012 DOE Hydrogen and Fuel Cells Program and ...

  18. Advanced PHEV Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PHEV Engine Systems and Emissions Control Modeling and Analysis Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis 2011 DOE Hydrogen and Fuel Cells Program, ...

  19. Advanced Technology System Scheduling Governance Model

    SciTech Connect

    Ang, Jim; Carnes, Brian; Hoang, Thuc; Vigil, Manuel

    2015-06-11

    In the fall of 2005, the Advanced Simulation and Computing (ASC) Program appointed a team to formulate a governance model for allocating resources and scheduling the stockpile stewardship workload on ASC capability systems. This update to the original document takes into account the new technical challenges and roles for advanced technology (AT) systems and the new ASC Program workload categories that must be supported. The goal of this updated model is to effectively allocate and schedule AT computing resources among all three National Nuclear Security Administration (NNSA) laboratories for weapons deliverables that merit priority on this class of resource. The process outlined below describes how proposed work can be evaluated and approved for resource allocations while preserving high effective utilization of the systems. This approach will provide the broadest possible benefit to the Stockpile Stewardship Program (SSP).

  20. Modeling Power System Operation with Intermittent Resources

    SciTech Connect

    Marinovici, Maria C.; Kirkham, Harold; Glass, Kevin A.; Carlsen, Leif C.

    2013-02-27

    Electricity generating companies and power system operators face the need to minimize total fuel cost or maximize total profit over a given time period. These issues become optimization problems subject to a large number of constraints that must be satisfied simultaneously. The grid updates due to smart-grid technologies plus the penetration of intermittent re- sources in electrical grid introduce additional complexity to the optimization problem. The Renewable Integration Model (RIM) is a computer model of interconnected power system. It is intended to provide insight and advice on complex power systems management, as well as answers to integration of renewable energy questions. This paper describes RIM basic design concept, solution method, and the initial suite of modules that it supports.

  1. Modeling of Lean Exhaust Emissions Control Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lean Exhaust Emissions Control Systems Modeling of Lean Exhaust Emissions Control Systems 2002 DEER Conference Presentation: National Renewable Energy Laboratory ...

  2. Model reduction of systems with localized nonlinearities.

    SciTech Connect

    Segalman, Daniel Joseph

    2006-03-01

    An LDRD funded approach to development of reduced order models for systems with local nonlinearities is presented. This method is particularly useful for problems of structural dynamics, but has potential application in other fields. The key elements of this approach are (1) employment of eigen modes of a reference linear system, (2) incorporation of basis functions with an appropriate discontinuity at the location of the nonlinearity. Galerkin solution using the above combination of basis functions appears to capture the dynamics of the system with a small basis set. For problems involving small amplitude dynamics, the addition of discontinuous (joint) modes appears to capture the nonlinear mechanics correctly while preserving the modal form of the predictions. For problems involving large amplitude dynamics of realistic joint models (macro-slip), the use of appropriate joint modes along with sufficient basis eigen modes to capture the frequencies of the system greatly enhances convergence, though the modal nature the result is lost. Also observed is that when joint modes are used in conjunction with a small number of elastic eigen modes in problems of macro-slip of realistic joint models, the resulting predictions are very similar to those of the full solution when seen through a low pass filter. This has significance both in terms of greatly reducing the number of degrees of freedom of the problem and in terms of facilitating the use of much larger time steps.

  3. Thermal model of solar absorption HVAC systems

    SciTech Connect

    Bergquam, J.B.; Brezner, J.M.

    1995-11-01

    This paper presents a thermal model that describes the performance of solar absorption HVAC systems. The model considers the collector array, the building cooling and heating loads, the absorption chiller and the high temperature storage. Heat losses from the storage tank and piping are included in the model. All of the results presented in the paper are for an array of flat plate solar collectors with black chrome (selective surface) absorber plates. The collector efficiency equation is used to calculate the useful heat output from the array. The storage is modeled as a non-stratified tank with polyurethane foam insulation. The system is assumed to operate continuously providing air conditioning during the cooling season, space heating during the winter and hot water throughout the year. The amount of heat required to drive the chiller is determined from the coefficient of performance of the absorption cycle. Results are presented for a typical COP of 0.7. The cooling capacity of the chiller is a function of storage (generator) temperature. The nominal value is 190 F (88 C) and the range of values considered is 180 F (82 C) to 210 F (99 C). Typical building cooling and heating loads are determined as a function of ambient conditions. Performance results are presented for Sacramento, CA and Washington, D.C. The model described in the paper makes use of National Solar Radiation Data Base (NSRDB) data and results are presented for these two locations. The uncertainties in the NSRDB are estimated to be in a range of 6% to 9%. This is a significant improvement over previously available data. The model makes it possible to predict the performance of solar HVAC systems and calculate quantities such as solar fraction, storage temperature, heat losses and parasitic power for every hour of the period for which data are available.

  4. Modelling Complex Fenestration Systems using physical and virtual models

    SciTech Connect

    Thanachareonkit, Anothai; Scartezzini, Jean-Louis

    2010-04-15

    Physical or virtual models are commonly used to visualize the conceptual ideas of architects, lighting designers and researchers; they are also employed to assess the daylighting performance of buildings, particularly in cases where Complex Fenestration Systems (CFS) are considered. Recent studies have however revealed a general tendency of physical models to over-estimate this performance, compared to those of real buildings; these discrepancies can be attributed to several reasons. In order to identify the main error sources, a series of comparisons in-between a real building (a single office room within a test module) and the corresponding physical and virtual models was undertaken. The physical model was placed in outdoor conditions, which were strictly identical to those of the real building, as well as underneath a scanning sky simulator. The virtual model simulations were carried out by way of the Radiance program using the GenSky function; an alternative evaluation method, named Partial Daylight Factor method (PDF method), was also employed with the physical model together with sky luminance distributions acquired by a digital sky scanner during the monitoring of the real building. The overall daylighting performance of physical and virtual models were assessed and compared. The causes of discrepancies between the daylighting performance of the real building and the models were analysed. The main identified sources of errors are the reproduction of building details, the CFS modelling and the mocking-up of the geometrical and photometrical properties. To study the impact of these errors on daylighting performance assessment, computer simulation models created using the Radiance program were also used to carry out a sensitivity analysis of modelling errors. The study of the models showed that large discrepancies can occur in daylighting performance assessment. In case of improper mocking-up of the glazing for instance, relative divergences of 25-40% can be

  5. Power electronics system modeling and simulation (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Title: Power electronics system modeling and simulation This paper introduces control system design based softwares, SIMNON and MATLABSIMULINK, for power electronics system ...

  6. Modeling needs for very large systems.

    SciTech Connect

    Stein, Joshua S.

    2010-10-01

    Most system performance models assume a point measurement for irradiance and that, except for the impact of shading from nearby obstacles, incident irradiance is uniform across the array. Module temperature is also assumed to be uniform across the array. For small arrays and hourly-averaged simulations, this may be a reasonable assumption. Stein is conducting research to characterize variability in large systems and to develop models that can better accommodate large system factors. In large, multi-MW arrays, passing clouds may block sunlight from a portion of the array but never affect another portion. Figure 22 shows that two irradiance measurements at opposite ends of a multi-MW PV plant appear to have similar irradiance (left), but in fact the irradiance is not always the same (right). Module temperature may also vary across the array, with modules on the edges being cooler because they have greater wind exposure. Large arrays will also have long wire runs and will be subject to associated losses. Soiling patterns may also vary, with modules closer to the source of soiling, such as an agricultural field, receiving more dust load. One of the primary concerns associated with this effort is how to work with integrators to gain access to better and more comprehensive data for model development and validation.

  7. Adaptive model training system and method

    DOEpatents

    Bickford, Randall L; Palnitkar, Rahul M

    2014-11-18

    An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.

  8. Adaptive model training system and method

    SciTech Connect

    Bickford, Randall L; Palnitkar, Rahul M; Lee, Vo

    2014-04-15

    An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.

  9. World Energy Projection System model documentation

    SciTech Connect

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.

  10. Performance model assessment for multi-junction concentrating photovoltaic systems.

    SciTech Connect

    Riley, Daniel M.; McConnell, Robert.; Sahm, Aaron; Crawford, Clark; King, David L.; Cameron, Christopher P.; Foresi, James S.

    2010-03-01

    Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement.

  11. Application of Generic Disposal System Models | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Application of Generic Disposal System Models Application of Generic Disposal System Models Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling; these are directly addressed in the Generic Disposal Systems Analysis (GDSA) work. This report describes specific GDSA activities during fiscal year 2015 toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA

  12. Internal Dosimetry Code System Using Biokinetics Models

    Energy Science and Technology Software Center

    2003-11-12

    Version 00 InDose is an internal dosimetry code to calculate dose estimations using biokinetic models (presented in ICRP-56 to ICRP71) as well as older ones. The code uses the ICRP-66 respiratory tract model and the ICRP-30 gastrointestinal tract model as well as the new and old biokinetic models. The code was written in such a way that the user can change any parameters of any one of the models without recompiling the code. All parametersmore » are given in well annotated parameters files that the user may change. As default, these files contain the values listed in ICRP publications. The full InDose code was planned to have three parts: 1) the main part includes the uptake and systemic models and is used to calculate the activities in the body tissues and excretion as a function of time for a given intake. 2) An optimization module for automatic estimation of the intake for a specific exposure case. 3) A module to calculate the dose due to the estimated intake. Currently, the code is able to perform only it`s main task (part 1) while the other two have to be done externally using other tools. In the future, developers would like to add these modules in order to provide a complete solution. The code was tested extensively to verify accuracy of its results. The verification procedure was divided into three parts: 1) verification of the implementation of each model, 2) verification of the integrity of the whole code, and 3) usability test. The first two parts consisted of comparing results obtained with InDose to published results for the same cases. For example ICRP-78 monitoring data. The last part consisted of participating in the 3rd EIE-IDA and assessing some of the scenarios provided in this exercise. These tests where presented in a few publications. Good agreement was found between the results of InDose and published data.« less

  13. Development of a model colloidal system for rheology simulation...

    Office of Scientific and Technical Information (OSTI)

    This chapter describes the choice of the model particle system, methods for synthesis and ... SIMULATION; SOLVENTS; SYNTHESIS Colloids-Mathematical models.; Rheology-Measurement. ...

  14. 2012 Community Earth System Model (CESM) Tutorial - Proposal...

    Office of Scientific and Technical Information (OSTI)

    The Community Earth System Model (CESM) is a fully-coupled, global climate model that ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 54 ...

  15. The Community Earth System Model: A Framework for Collaborative...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: Community Earth System Model; global coupled model; atmosperic chemistry Word Cloud More Like ...

  16. Modeling of Diesel Exhaust Systems: A methodology to better simulate...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Modeling of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Discussed ...

  17. Surficial Extent And Conceptual Model Of Hydrothermal System...

    OpenEI (Open Energy Information) [EERE & EIA]

    And Conceptual Model Of Hydrothermal System At Mount Rainier, Washington Abstract A once massive hydrothermal system was disgorged from the summit of Mount Rainier in a highly...

  18. A Model-Based Approach to Scintillator/Photomultiplier System...

    Office of Scientific and Technical Information (OSTI)

    System Characterization Citation Details In-Document Search Title: A Model-Based Approach to ScintillatorPhotomultiplier System Characterization You are accessing ...

  19. Panel 2, Modeling the Financial and System Benefits of Energy...

    Energy.gov [DOE] (indexed site)

    Modeling the Financial and System Benefits of Energy Storage Applications in Distribution Systems Patrick Balducci, Senior Economist, Pacific NW National Laboratory Hydrogen Energy ...

  20. 2013 Community Earth System Model (CESM) Tutorial-Proposal to...

    Office of Scientific and Technical Information (OSTI)

    3 Community Earth System Model (CESM) Tutorial-Proposal to DOE Citation Details In-Document Search Title: 2013 Community Earth System Model (CESM) Tutorial-Proposal to DOE THE SAME ...

  1. Proposal Title: Community Earth System Model (CESM) Tutorial

    Office of Scientific and Technical Information (OSTI)

    Proposal Title: Community Earth System Model (CESM) Tutorial PI: James W. Hurrell In fiscal year 2011, the Community Earth System Model (CESM) tutorial was taught at NCAR from 1-5 ...

  2. The integrated Earth System Model Version 1: formulation and...

    Office of Scientific and Technical Information (OSTI)

    Title: The integrated Earth System Model Version 1: formulation and functionality The integrated Earth System Model (iESM) has been developed as a new tool for pro- jecting the ...

  3. Application of Generic Disposal System Models

    SciTech Connect

    Mariner, Paul; Hammond, Glenn Edward; Sevougian, S. David; Stein, Emily

    2015-11-01

    This report describes specific GDSA activities in fiscal year 2015 (FY2015) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code (Hammond et al., 2011) and the Dakota uncertainty sampling and propagation code (Adams et al., 2013). Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through the engineered barriers and natural geologic barriers to a well location in an overlying or underlying aquifer. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.

  4. Hybrid Power System Simulation Model | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    URI: cleanenergysolutions.orgcontenthybrid-power-system-simulation-model, Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This...

  5. Numerical Modeling Of Basin And Range Geothermal Systems | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    for extensional geothermal systems that include structure, heat input, and permeability distribution have been established using numerical models. Extensional geothermal...

  6. Energy Policy and Systems Analysis Presentation: Energy Modeling 101 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Policy and Systems Analysis Presentation: Energy Modeling 101 Energy Policy and Systems Analysis Presentation: Energy Modeling 101 This presentation covers the basics of power sector capacity expansion modeling, and briefly touches on other types of modeling and analytical tools available to provide data on the electric power system, including energy efficiency. Energy Modeling 101 (963.35 KB) More Documents & Publications THE VALUE OF ECONOMIC DISPATCH A REPORT TO

  7. Model documentation: Electricity market module, electricity finance and pricing submodule

    SciTech Connect

    Not Available

    1994-04-07

    The purpose of this report is to define the objectives of the model, describe its basic approach, and provide detail on how it works. The EFP is a regulatory accounting model that projects electricity prices. The model first solves for revenue requirements by building up a rate base, calculating a return on rate base, and adding the allowed expenses. Average revenues (prices) are calculated based on assumptions regarding regulator lag and customer cost allocation methods. The model then solves for the internal cash flow and analyzes the need for external financing to meet necessary capital expenditures. Finally, the EFP builds up the financial statements. The EFP is used in conjunction with the National Energy Modeling System (NEMS). Inputs to the EFP include the forecast generating capacity expansion plans, operating costs, regulator environment, and financial data. The outputs include forecasts of income statements, balance sheets, revenue requirements, and electricity prices.

  8. Model documentation Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    SciTech Connect

    1996-02-26

    The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of a two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.

  9. 201202 Reservoir System Modeling Technologies Conference

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Modeling Applied To The Columbia River - PSR Adjoint Modeling Framework for Real-Time Control of Water - Deltares Reservoir Operations Analysis in the Willamette Water 2100...

  10. Modeling Reactor Coolant Systems Thermal-Hydraulic Transients

    Energy Science and Technology Software Center

    1999-10-05

    RELAP5/MOD3.2* is used to model reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents and operational transients such as anticipated transients without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits simulating a variety of thermal-hydraulic systems. Control system and secondary system components are included to allow modeling of themore » plant controls, turbines, condensers, and secondary feedwater systems.« less

  11. Modeling Reactor Coolant Systems Thermal-Hydraulic Transients

    SciTech Connect

    Johnson, Gary W.

    1999-10-05

    RELAP5/MOD3.2* is used to model reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents and operational transients such as anticipated transients without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits simulating a variety of thermal-hydraulic systems. Control system and secondary system components are included to allow modeling of the plant controls, turbines, condensers, and secondary feedwater systems.

  12. Conceptual Models of Geothermal Systems - Introduction | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    of any type of geothermal system is a clear definition and understanding of the nature and characteristics of the system in question. This is best achieved through the...

  13. Automated Office Systems Support (AOSS) Quality Assurance Model |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Automated Office Systems Support (AOSS) Quality Assurance Model Automated Office Systems Support (AOSS) Quality Assurance Model A quality assurance model, including checklists, for activity relative to network and desktop computer support. Automated Office Systems Support (AOSS) Quality Assurance Model (91.16 KB) More Documents & Publications Audit Report: CR-B-97-04 CITSS Project Plan Quality Assurance Checklist

  14. Enhancements to Generic Disposal System Modeling Capabilities Rev2 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Enhancements to Generic Disposal System Modeling Capabilities Rev2 Enhancements to Generic Disposal System Modeling Capabilities Rev2 Contributions are described for the development of an enhanced generic disposal system modeling and analysis capability that takes advantage of high-performance computing (HPC) environments to simulate the important multi-physics phenomena and couplings associated with a geologic repository for UNF and HLW. The enhanced disposal system

  15. Battery Thermal Management System Design Modeling (Presentation)

    SciTech Connect

    Kim, G-H.; Pesaran, A.

    2006-10-01

    Presents the objectives and motivations for a battery thermal management vehicle system design study.

  16. UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA

    SciTech Connect

    Davis, S.C.

    2000-11-16

    The Energy Information Administration's (EIA's) National Energy Modeling System (NEMS) Freight Truck Stock Adjustment Model (FTSAM) was created in 1995 relying heavily on input data from the 1992 Economic Census, Truck Inventory and Use Survey (TIUS). The FTSAM is part of the NEMS Transportation Sector Model, which provides baseline energy projections and analyzes the impacts of various technology scenarios on consumption, efficiency, and carbon emissions. The base data for the FTSAM can be updated every five years as new Economic Census information is released. Because of expertise in using the TIUS database, Oak Ridge National Laboratory (ORNL) was asked to assist the EIA when the new Economic Census data were available. ORNL provided the necessary base data from the 1997 Vehicle Inventory and Use Survey (VIUS) and other sources to update the FTSAM. The next Economic Census will be in the year 2002. When those data become available, the EIA will again want to update the FTSAM using the VIUS. This report, which details the methodology of estimating and extracting data from the 1997 VIUS Microdata File, should be used as a guide for generating the data from the next VIUS so that the new data will be as compatible as possible with the data in the model.

  17. Optimization of large-scale heterogeneous system-of-systems models.

    SciTech Connect

    Parekh, Ojas; Watson, Jean-Paul; Phillips, Cynthia Ann; Siirola, John; Swiler, Laura Painton; Hough, Patricia Diane; Lee, Herbert K. H.; Hart, William Eugene; Gray, Genetha Anne; Woodruff, David L.

    2012-01-01

    Decision makers increasingly rely on large-scale computational models to simulate and analyze complex man-made systems. For example, computational models of national infrastructures are being used to inform government policy, assess economic and national security risks, evaluate infrastructure interdependencies, and plan for the growth and evolution of infrastructure capabilities. A major challenge for decision makers is the analysis of national-scale models that are composed of interacting systems: effective integration of system models is difficult, there are many parameters to analyze in these systems, and fundamental modeling uncertainties complicate analysis. This project is developing optimization methods to effectively represent and analyze large-scale heterogeneous system of systems (HSoS) models, which have emerged as a promising approach for describing such complex man-made systems. These optimization methods enable decision makers to predict future system behavior, manage system risk, assess tradeoffs between system criteria, and identify critical modeling uncertainties.

  18. NDA SYSTEM RESPONSE MODELING AND ITS APPLICATION

    SciTech Connect

    Vinson, D.

    2010-03-01

    is of the form of uranyl fluoride that will become hydrated on exposure to moisture in air when the systems are no longer buffered. The deposit geometry and thickness is uncertain and variable. However, a reasonable assessment of the level of material holdup in this equipment is necessary to support decommissioning efforts. The assessment of nuclear material holdup in process equipment is a complex process that requires integration of process knowledge, nondestructive assay (NDA) measurements, and computer modeling to maximize capabilities and minimize uncertainty. The current report is focused on the use of computer modeling and simulation of NDA measurements.

  19. Analysis Model for Domestic Hot Water Distribution Systems: Preprint

    SciTech Connect

    Maguire, J.; Krarti, M.; Fang, X.

    2011-11-01

    A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

  20. Residential Vertical Geothermal Heat Pump System Models: Calibration to Data:

    SciTech Connect

    Thornton, Jeff W.; McDowell, T. P.; Shonder, John A; Hughes, Patrick; Pahud, D.; Hellstrom, G.

    1997-06-01

    A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was 'tuned' to better match the measured data from the site. These tuned models were then interconnect to form the system model. The system model was then exercised in order to demonatrate its capabilities.

  1. Residential vertical geothermal heat pump system models: Calibration to data

    SciTech Connect

    Thornton, J.W.; McDowell, T.P.; Shonder, J.A.; Hughes, P.J.; Pahud, D.; Hellstroem, G.A.J.

    1997-12-31

    A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was tuned to better match the measured data from the site. These tuned models were then interconnected to form the system model. The system model was then exercised in order to demonstrate its capabilities.

  2. Petroleum Market Model of the National Energy Modeling System

    SciTech Connect

    1997-01-01

    The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions. The production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level. This report is organized as follows: Chapter 2, Model Purpose; Chapter 3, Model Overview and Rationale; Chapter 4, Model Structure; Appendix A, Inventory of Input Data, Parameter Estimates, and Model Outputs; Appendix B, Detailed Mathematical Description of the Model; Appendix C, Bibliography; Appendix D, Model Abstract; Appendix E, Data Quality; Appendix F, Estimation methodologies; Appendix G, Matrix Generator documentation; Appendix H, Historical Data Processing; and Appendix I, Biofuels Supply Submodule.

  3. Engineered Barrier System: Physical and Chemical Environment Model

    SciTech Connect

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  4. Simulation Model of Mobile Detection Systems

    SciTech Connect

    Edmunds, T; Faissol, D; Yao, Y

    2009-01-27

    In this paper, we consider a mobile source that we attempt to detect with man-portable, vehicle-mounted or boat-mounted radiation detectors. The source is assumed to transit an area populated with these mobile detectors, and the objective is to detect the source before it reaches a perimeter. We describe a simulation model developed to estimate the probability that one of the mobile detectors will come in to close proximity of the moving source and detect it. We illustrate with a maritime simulation example. Our simulation takes place in a 10 km by 5 km rectangular bay patrolled by boats equipped with 2-inch x 4-inch x 16-inch NaI detectors. Boats to be inspected enter the bay and randomly proceed to one of seven harbors on the shore. A source-bearing boat enters the mouth of the bay and proceeds to a pier on the opposite side. We wish to determine the probability that the source is detected and its range from target when detected. Patrol boats select the nearest in-bound boat for inspection and initiate an intercept course. Once within an operational range for the detection system, a detection algorithm is started. If the patrol boat confirms the source is not present, it selects the next nearest boat for inspection. Each run of the simulation ends either when a patrol successfully detects a source or when the source reaches its target. Several statistical detection algorithms have been implemented in the simulation model. First, a simple k-sigma algorithm, which alarms with the counts in a time window exceeds the mean background plus k times the standard deviation of background, is available to the user. The time window used is optimized with respect to the signal-to-background ratio for that range and relative speed. Second, a sequential probability ratio test [Wald 1947] is available, and configured in this simulation with a target false positive probability of 0.001 and false negative probability of 0.1. This test is utilized when the mobile detector maintains

  5. Performance model assessment for multi-junction concentrating photovoltaic systems.

    SciTech Connect

    Stein, Joshua S.; Riley, Daniel M.; McConnell, Robert.; Sahm, Aaron; Crawford, Clark; King, David L.; Cameron, Christopher P.; Foresi, James S.

    2010-03-01

    Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement. Large photovoltaic systems are typically developed as projects which supply electricity to a utility and are owned by independent power producers. Obtaining financing at favorable rates and attracting investors requires confidence in the projected energy yield from the plant. In this paper, various performance models for projecting annual energy yield from Concentrating Photovoltaic (CPV) systems are assessed by comparing measured system output to model predictions based on measured weather and irradiance data. The results are statistically analyzed to identify systematic error sources.

  6. RELAP5 MODEL OF THE DIVERTOR PRIMARY HEAT TRANSFER SYSTEM

    SciTech Connect

    Popov, Emilian L; Yoder Jr, Graydon L; Kim, Seokho H

    2010-08-01

    This report describes the RELAP5 model that has been developed for the divertor primary heat transfer system (PHTS). The model is intended to be used to examine the transient performance of the divertor PHTS and evaluate control schemes necessary to maintain parameters within acceptable limits during transients. Some preliminary results are presented to show the maturity of the model and examine general divertor PHTS transient behavior. The model can be used as a starting point for developing transient modeling capability, including control system modeling, safety evaluations, etc., and is not intended to represent the final divertor PHTS design. Preliminary calculations using the models indicate that during normal pulsed operation, present pressurizer controls may not be sufficient to keep system pressures within their desired range. Additional divertor PHTS and control system design efforts may be required to ensure system pressure fluctuation during normal operation remains within specified limits.

  7. Modeling Electrocatalytic Reaction Systems from First Principles...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Related Information: Device and Materials Modeling in PEM Fuel Cells: Topics in Applied Physics, 113:551-574 Publisher: SJ Paddison and KS Promislow; Springer, ...

  8. Atmosphere Component in Community Earth System Model

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Increasing the speed, scalability, and resolution of global climate models is a key step toward improving the ability to simulate regional details of climate change and improving ...

  9. Modeling and Analysis of CSP Systems (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities in the area of modeling and analysis of CSP systems: assessing the solar resource, predicting performance and cost, studying environmental impact, and developing modeling software packages.

  10. External Technical Review for Evaluation of System Level Modeling and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Simulation Tools in Support of Hanford Site Liquid Waste Process | Department of Energy for Evaluation of System Level Modeling and Simulation Tools in Support of Hanford Site Liquid Waste Process External Technical Review for Evaluation of System Level Modeling and Simulation Tools in Support of Hanford Site Liquid Waste Process Full Document and Summary Versions are available for download External Technical Review for Evaluation of System Level Modeling and Simulation Tools in Support of

  11. Models used to assess the performance of photovoltaic systems.

    SciTech Connect

    Stein, Joshua S.; Klise, Geoffrey T.

    2009-12-01

    This report documents the various photovoltaic (PV) performance models and software developed and utilized by researchers at Sandia National Laboratories (SNL) in support of the Photovoltaics and Grid Integration Department. In addition to PV performance models, hybrid system and battery storage models are discussed. A hybrid system using other distributed sources and energy storage can help reduce the variability inherent in PV generation, and due to the complexity of combining multiple generation sources and system loads, these models are invaluable for system design and optimization. Energy storage plays an important role in reducing PV intermittency and battery storage models are used to understand the best configurations and technologies to store PV generated electricity. Other researcher's models used by SNL are discussed including some widely known models that incorporate algorithms developed at SNL. There are other models included in the discussion that are not used by or were not adopted from SNL research but may provide some benefit to researchers working on PV array performance, hybrid system models and energy storage. The paper is organized into three sections to describe the different software models as applied to photovoltaic performance, hybrid systems, and battery storage. For each model, there is a description which includes where to find the model, whether it is currently maintained and any references that may be available. Modeling improvements underway at SNL include quantifying the uncertainty of individual system components, the overall uncertainty in modeled vs. measured results and modeling large PV systems. SNL is also conducting research into the overall reliability of PV systems.

  12. Detailed Performance Model for Photovoltaic Systems: Preprint

    SciTech Connect

    Tian, H.; Mancilla-David, F.; Ellis, K.; Muljadi, E.; Jenkins, P.

    2012-07-01

    This paper presents a modified current-voltage relationship for the single diode model. The single-diode model has been derived from the well-known equivalent circuit for a single photovoltaic cell. The modification presented in this paper accounts for both parallel and series connections in an array.

  13. Commercial Demand Module of the National Energy Modeling System...

    Gasoline and Diesel Fuel Update

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  14. National Energy Modeling System (United States) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    URI: cleanenergysolutions.orgcontentnational-energy-modeling-system-unite Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible...

  15. DOE Science Showcase - Earth System Models | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    Earth System Models U.S. DOE Office of Science: Getting Forest Carbon Right in Climate ... agencies, particularly the National Science Foundation, the National Oceanic and ...

  16. DOE Science Showcase - Earth System Models | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    on advancing coupled climate and earth system models for climate change projections at global-to-regional spatial scales and temporal scales spanning decadal to centennial. ...

  17. Experimental Studies for DPF and SCR Model, Control System, and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Using Diesel and Biodiesel Fuels Experimental Studies for DPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels Measuring PM ...

  18. Experimental Studies for DPF and SCR Model, Control System, and...

    Energy.gov [DOE] (indexed site)

    Using Diesel and Biodiesel Fuels Experimental Studies for DPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels Advanced Engine...

  19. Reference Model for Control and Automation Systems in Electrical...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reference Model for Control and Automation Systems in Electrical Power Version 1.2 October ... all automation elements for the electrical infrastructure: EMS, protective ...

  20. Concentrating Solar Deployment System (CSDS) -- A New Model for...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Concentrating Solar Deployment System (CSDS) - A New Model for Estimating U.S. Concentrating Solar Power (CSP) Market Potential Preprint N. Blair, M. Mehos, W. Short, and D....

  1. Models Used to Assess the Performance of Photovoltaic Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report documents the various photovoltaic (PV) performance models and software developed and utilized by researchers at Sandia National Laboratories (SNL) in support of the Photovoltaics and Grid Integration Department. In addition to PV performance models, hybrid system and battery storage models are discussed. A hybrid system using other distributed sources and energy storage can help reduce the variability inherent in PV generation, and due to the complexity of combining multiple generation sources and system loads, these models are invaluable for system design and optimization.

  2. Experimental Studies for DPF and SCR Model, Control System, and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Using Diesel and Biodiesel Fuels Experimental Studies for DPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels Combination and ...

  3. Massively Parallel Models of the Human Circulatory System (Conference...

    Office of Scientific and Technical Information (OSTI)

    Massively Parallel Models of the Human Circulatory System Citation Details In-Document ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 59 ...

  4. A Model-Based Approach to Scintillator/Photomultiplier System...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: A Model-Based Approach to ScintillatorPhotomultiplier System ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 46 ...

  5. System level modeling of thermoelectric generators for automotive...

    Energy.gov [DOE] (indexed site)

    Uses a model to predict and analyze the system-level performance of a thermoelectric ... More Documents & Publications Thermoelectric Waste Heat Recovery Program for Passenger ...

  6. Development of a Systems Engineering Model of the Chemical Separations...

    Office of Scientific and Technical Information (OSTI)

    to develop a general-purpose systems engineering model for the AAA separation process. ... EQUIPMENT INTERFACES; INFORMATION; SEPARATION PROCESSES; SPECIFICATIONS Word Cloud ...

  7. Policy Analysis Modeling System (PAMS) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    TOOL Name: Policy Analysis Modeling System AgencyCompany Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Buildings, Energy Efficiency Topics:...

  8. Integrated Global System Modeling Framework | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    System Modeling Framework AgencyCompany Organization: MIT Joint Program on the Science and Policy of Global Change Sector: Climate, Energy Focus Area: Renewable Energy...

  9. A Scalable and Extensible Earth System Model for Climate Change...

    Office of Scientific and Technical Information (OSTI)

    Scalable and Extensible Earth System Model for Climate Change Science Gent, Peter; Lamarque, Jean-Francois; Conley, Andrew; Vertenstein, Mariana; Craig, Anthony 54 ENVIRONMENTAL...

  10. Martin Karplus and Computer Modeling for Chemical Systems

    Office of Scientific and Technical Information (OSTI)

    Information Additional information about Martin Karplus, computer modeling, and chemical systems is available in electronic documents and on the Web. Documents: Comparison of 3D...

  11. System Advisor Model (SAM) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    total electricity production in kilowatt-hours for the first year based on hourly weather data for a particular location, and physical specifications of the power system...

  12. Neutrons used to study model vascular systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    systems under dynamic conditions, Los Alamos researchers and collaborators mimicked blood flow by engineering a layer of human endothelial cells (the cells that cover the inner...

  13. Modeling of polymer electrolyte fuel cell systems

    SciTech Connect

    Kumar, R.; Ahluwalia, R.; Geyer, H.K.; Krumpelt, M.

    1993-09-01

    Propulsion systems based on the polymer electrolyte fuel cell (PEFC) are being developed. This paper reports an analysis undertaken to design improved PEFC systems. A reference system design with some variants were set up for a methanol-fueled PEFC propulsion system. Efficiency improves from 38.4 to 44.1% as cell current density goes from 0.75 to 0.45 A/cm{sup 2}, while fuel cell efficiency increases from 52.6 to 60.0%; to get a net power output of 80 kWe, the active fuel cell area must increase from 18.8 to 27.3 m{sup 2}. Three parametric studies were conducted on the off-design performance of the reference system.

  14. Generic solar photovoltaic system dynamic simulation model specification.

    SciTech Connect

    Ellis, Abraham; Behnke, Michael Robert; Elliott, Ryan Thomas

    2013-10-01

    This document is intended to serve as a specification for generic solar photovoltaic (PV) system positive-sequence dynamic models to be implemented by software developers and approved by the WECC MVWG for use in bulk system dynamic simulations in accordance with NERC MOD standards. Two specific dynamic models are included in the scope of this document. The first, a Central Station PV System model, is intended to capture the most important dynamic characteristics of large scale (> 10 MW) PV systems with a central Point of Interconnection (POI) at the transmission level. The second, a Distributed PV System model, is intended to represent an aggregation of smaller, distribution-connected systems that comprise a portion of a composite load that might be modeled at a transmission load bus.

  15. System Advisor Model (SAM) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    graphs, which can be exported for use in reports or for further analysis in other models. History SAM was first developed in 2006 by the National Renewable Energy Laboratory...

  16. A View on Future Building System Modeling and Simulation

    SciTech Connect

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  17. TWRS systems engineering process and information model report

    SciTech Connect

    Gneiting, B.C., Westinghouse Hanford

    1996-05-22

    The TWRS System Engineering (SE) process and information flows are described using a process modeling methodology. The results of this activity, and the next phase of developing a normalized data model, will be used in training and implemented in SE information systems and support tools.

  18. Modeling the Changing Earth System: Prospects and Challenges

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bill Collins Modeling the Changing Earth System: Prospects and Challenges February 4, 2014 Bill Collins, Berkeley Lab Downloads CollinSNERSCUG020514.pdf | Adobe Acrobat PDF file Modeling the Changing Earth System: Prospects and Challenges - William Collins, Berkeley Lab Last edited: 2016-04-29 11:35:09

  19. System-of-Systems Approach for Integrated Energy Systems Modeling and Simulation: Preprint

    SciTech Connect

    Mittal, Saurabh; Ruth, Mark; Pratt, Annabelle; Lunacek, Monte; Krishnamurthy, Dheepak; Jones, Wesley

    2015-08-21

    Today’s electricity grid is the most complex system ever built—and the future grid is likely to be even more complex because it will incorporate distributed energy resources (DERs) such as wind, solar, and various other sources of generation and energy storage. The complexity is further augmented by the possible evolution to new retail market structures that provide incentives to owners of DERs to support the grid. To understand and test new retail market structures and technologies such as DERs, demand-response equipment, and energy management systems while providing reliable electricity to all customers, an Integrated Energy System Model (IESM) is being developed at NREL. The IESM is composed of a power flow simulator (GridLAB-D), home energy management systems implemented using GAMS/Pyomo, a market layer, and hardware-in-the-loop simulation (testing appliances such as HVAC, dishwasher, etc.). The IESM is a system-of-systems (SoS) simulator wherein the constituent systems are brought together in a virtual testbed. We will describe an SoS approach for developing a distributed simulation environment. We will elaborate on the methodology and the control mechanisms used in the co-simulation illustrated by a case study.

  20. Mathematical modeling and computer simulation of processes in energy systems

    SciTech Connect

    Hanjalic, K.C. )

    1990-01-01

    This book is divided into the following chapters. Modeling techniques and tools (fundamental concepts of modeling); 2. Fluid flow, heat and mass transfer, chemical reactions, and combustion; 3. Processes in energy equipment and plant components (boilers, steam and gas turbines, IC engines, heat exchangers, pumps and compressors, nuclear reactors, steam generators and separators, energy transport equipment, energy convertors, etc.); 4. New thermal energy conversion technologies (MHD, coal gasification and liquefaction fluidized-bed combustion, pulse-combustors, multistage combustion, etc.); 5. Combined cycles and plants, cogeneration; 6. Dynamics of energy systems and their components; 7. Integrated approach to energy systems modeling, and 8. Application of modeling in energy expert systems.

  1. Development of a GIS Based Dust Dispersion Modeling System.

    SciTech Connect

    Rutz, Frederick C.; Hoopes, Bonnie L.; Crandall, Duard W.; Allwine, K Jerry

    2004-08-12

    With residential areas moving closer to military training sites, the effects upon the environment and neighboring civilians due to dust generated by training exercises has become a growing concern. Under a project supported by the Strategic Environmental Research and Development Program (SERDP) of the Department of Defense, a custom application named DUSTRAN is currently under development that integrates a system of EPA atmospheric dispersion models with the ArcGIS application environment in order to simulate the dust dispersion generated by a planned training maneuver. This integration between modeling system and GIS application allows for the use of real world geospatial data such as terrain, land-use, and domain size as input by the modeling system. Output generated by the modeling system, such as concentration and deposition plumes, can then be displayed upon accurate maps representing the training site. This paper discusses the development of this integration between modeling system and Arc GIS application.

  2. Approximate Bisimulation-Based Reduction of Power System Dynamic Models

    SciTech Connect

    Stankovic, AM; Dukic, SD; Saric, AT

    2015-05-01

    In this paper we propose approximate bisimulation relations and functions for reduction of power system dynamic models in differential- algebraic (descriptor) form. The full-size dynamic model is obtained by linearization of the nonlinear transient stability model. We generalize theoretical results on approximate bisimulation relations and bisimulation functions, originally derived for a class of constrained linear systems, to linear systems in descriptor form. An algorithm for transient stability assessment is proposed and used to determine whether the power system is able to maintain the synchronism after a large disturbance. Two benchmark power systems are used to illustrate the proposed algorithm and to evaluate the applicability of approximate bisimulation relations and bisimulation functions for reduction of the power system dynamic models.

  3. Systems and methods for modeling and analyzing networks

    DOEpatents

    Hill, Colin C; Church, Bruce W; McDonagh, Paul D; Khalil, Iya G; Neyarapally, Thomas A; Pitluk, Zachary W

    2013-10-29

    The systems and methods described herein utilize a probabilistic modeling framework for reverse engineering an ensemble of causal models, from data and then forward simulating the ensemble of models to analyze and predict the behavior of the network. In certain embodiments, the systems and methods described herein include data-driven techniques for developing causal models for biological networks. Causal network models include computational representations of the causal relationships between independent variables such as a compound of interest and dependent variables such as measured DNA alterations, changes in mRNA, protein, and metabolites to phenotypic readouts of efficacy and toxicity.

  4. Uncertainty and sensitivity analysis for photovoltaic system modeling.

    SciTech Connect

    Hansen, Clifford W.; Pohl, Andrew Phillip; Jordan, Dirk

    2013-12-01

    We report an uncertainty and sensitivity analysis for modeling DC energy from photovoltaic systems. We consider two systems, each comprised of a single module using either crystalline silicon or CdTe cells, and located either at Albuquerque, NM, or Golden, CO. Output from a PV system is predicted by a sequence of models. Uncertainty in the output of each model is quantified by empirical distributions of each model's residuals. We sample these distributions to propagate uncertainty through the sequence of models to obtain an empirical distribution for each PV system's output. We considered models that: (1) translate measured global horizontal, direct and global diffuse irradiance to plane-of-array irradiance; (2) estimate effective irradiance from plane-of-array irradiance; (3) predict cell temperature; and (4) estimate DC voltage, current and power. We found that the uncertainty in PV system output to be relatively small, on the order of 1% for daily energy. Four alternative models were considered for the POA irradiance modeling step; we did not find the choice of one of these models to be of great significance. However, we observed that the POA irradiance model introduced a bias of upwards of 5% of daily energy which translates directly to a systematic difference in predicted energy. Sensitivity analyses relate uncertainty in the PV system output to uncertainty arising from each model. We found that the residuals arising from the POA irradiance and the effective irradiance models to be the dominant contributors to residuals for daily energy, for either technology or location considered. This analysis indicates that efforts to reduce the uncertainty in PV system output should focus on improvements to the POA and effective irradiance models.

  5. Integrated dynamic modeling and management system mission analysis

    SciTech Connect

    Lee, A.K.

    1994-12-28

    This document summarizes the mission analysis performed on the Integrated Dynamic Modeling and Management System (IDMMS). The IDMMS will be developed to provide the modeling and analysis capability required to understand the TWRS system behavior in terms of the identified TWRS performance measures. The IDMMS will be used to demonstrate in a verified and validated manner the satisfactory performance of the TWRS system configuration and assurance that the requirements have been satisfied.

  6. Modeling for System Integration Studies (Presentation)

    SciTech Connect

    Orwig, K. D.

    2012-05-01

    This presentation describes some the data requirements needed for grid integration modeling and provides real-world examples of such data and its format. Renewable energy integration studies evaluate the operational impacts of variable generation. Transmission planning studies investigate where new transmission is needed to transfer energy from generation sources to load centers. Both use time-synchronized wind and solar energy production and load as inputs. Both examine high renewable energy penetration scenarios in the future.

  7. Modeling mesoscopic phenomena in extended dynamical systems

    SciTech Connect

    Bishop, A.; Lomdahl, P.; Jensen, N.G.; Cai, D.S. [Los Alamos National Lab., NM (United States); Mertenz, F. [Bayreuth Univ. (Germany); Konno, Hidetoshi [Tsukuba Univ., Ibaraki (Japan); Salkola, M. [Stanford Univ., CA (United States)

    1997-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development project at the Los Alamos National Laboratory (LANL). We have obtained classes of nonlinear solutions on curved geometries that demonstrate a novel interplay between topology and geometric frustration relevant for nanoscale systems. We have analyzed the nature and stability of localized oscillatory nonlinear excitations (multi-phonon bound states) on discrete nonlinear chains, including demonstrations of successful perturbation theories, existence of quasiperiodic excitations, response to external statistical time-dependent fields and point impurities, robustness in the presence of quantum fluctuations, and effects of boundary conditions. We have demonstrated multi-timescale effects for nonlinear Schroedinger descriptions and shown the success of memory function approaches for going beyond these approximations. In addition we have developed a generalized rate-equation framework that allows analysis of the important creation/annihilation processes in driven nonlinear, nonequilibiium systems.

  8. Design theoretic analysis of three system modeling frameworks.

    SciTech Connect

    McDonald, Michael James

    2007-05-01

    This paper analyzes three simulation architectures from the context of modeling scalability to address System of System (SoS) and Complex System problems. The paper first provides an overview of the SoS problem domain and reviews past work in analyzing model and general system complexity issues. It then identifies and explores the issues of vertical and horizontal integration as well as coupling and hierarchical decomposition as the system characteristics and metrics against which the tools are evaluated. In addition, it applies Nam Suh's Axiomatic Design theory as a construct for understanding coupling and its relationship to system feasibility. Next it describes the application of MATLAB, Swarm, and Umbra (three modeling and simulation approaches) to modeling swarms of Unmanned Flying Vehicle (UAV) agents in relation to the chosen characteristics and metrics. Finally, it draws general conclusions for analyzing model architectures that go beyond those analyzed. In particular, it identifies decomposition along phenomena of interaction and modular system composition as enabling features for modeling large heterogeneous complex systems.

  9. Renewable Fuels Module of the National Energy Modeling System: Model Documentation 2014

    Energy Information Administration (EIA) (indexed site)

    Renewable Fuels Module of the National Energy Modeling System: Model Documentation 2014 August 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Renewable Fuels Module of the National Energy Modeling System: Model Documentation 2014 ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's

  10. The Electricity Market Module of the National Energy Modeling System: Model Documentation 2014

    Energy Information Administration (EIA) (indexed site)

    The Electricity Market Module of the National Energy Modeling System: Model Documentation 2014 August 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Electricity Market Module of the National Energy Modeling System: Model Documentation 2014 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law,

  11. Pumping Optimization Model for Pump and Treat Systems - 15091

    SciTech Connect

    Baker, S.; Ivarson, Kristine A.; Karanovic, M.; Miller, Charles W.; Tonkin, M.

    2015-01-15

    Pump and Treat systems are being utilized to remediate contaminated groundwater in the Hanford 100 Areas adjacent to the Columbia River in Eastern Washington. Design of the systems was supported by a three-dimensional (3D) fate and transport model. This model provided sophisticated simulation capabilities but requires many hours to calculate results for each simulation considered. Many simulations are required to optimize system performance, so a two-dimensional (2D) model was created to reduce run time. The 2D model was developed as a equivalent-property version of the 3D model that derives boundary conditions and aquifer properties from the 3D model. It produces predictions that are very close to the 3D model predictions, allowing it to be used for comparative remedy analyses. Any potential system modifications identified by using the 2D version are verified for use by running the 3D model to confirm performance. The 2D model was incorporated into a comprehensive analysis system (the Pumping Optimization Model, POM) to simplify analysis of multiple simulations. It allows rapid turnaround by utilizing a graphical user interface that: 1 allows operators to create hypothetical scenarios for system operation, 2 feeds the input to the 2D fate and transport model, and 3 displays the scenario results to evaluate performance improvement. All of the above is accomplished within the user interface. Complex analyses can be completed within a few hours and multiple simulations can be compared side-by-side. The POM utilizes standard office computing equipment and established groundwater modeling software.

  12. Modeling of geosynthetic reinforced capping systems

    SciTech Connect

    Viswanadham, B.V.S.; Koenig, D.; Jessberger, H.L.

    1997-12-31

    The investigation deals with the influence of a geosynthetic reinforcement on the deformation behavior and sealing efficiency of the reinforced mineral sealing layer at the onset of non-uniform settlements. The research program is mainly concentrated in studying the influence of reinforcement inclusion in restraining cracks and crack propagation due to soil-geosynthetic bond efficiency. Centrifuge model tests are conducted in the 500 gt capacity balanced beam Bochum geotechnical Centrifuge (Z1) simulating a differential deformation of a mineral sealing layer of a landfill with the help of trap-door arrangement. By comparing the performance of the deformed mineral sealing layer with and without geogrid, the reinforcement ability of the geogrid in controlling the crack propagation and permeability of the mineral swing layer is evaluated.

  13. THYME: Toolkit for Hybrid Modeling of Electric Power Systems

    Energy Science and Technology Software Center

    2011-01-01

    THYME is an object oriented library for building models of wide area control and communications in electric power systems. This software is designed as a module to be used with existing open source simulators for discrete event systems in general and communication systems in particular. THYME consists of a typical model for simulating electro-mechanical transients (e.g., as are used in dynamic stability studies), data handling objects to work with CDF and PTI formatted power flowmore » data, and sample models of discrete sensors and controllers.« less

  14. Modeling and simulation of laser systems III. SPIE Volume 2117

    SciTech Connect

    Schnurr, A.D.

    1994-12-31

    This conference marks a milestone in the progress of laser and optical system modeling as a key to carefully focused, cost-effective hardware development and theoretical understanding of new laser and optical systems. The conference was divided into the following three sessions: photonic band structure phenomena; high power laser systems; and advanced laser systems. Separate abstracts were prepared for 15 papers in this conference.

  15. Integrated Baseline System (IBS) Version 2.0: Models guide

    SciTech Connect

    Not Available

    1994-03-01

    The Integrated Baseline System (IBS) is an emergency management planning and analysis tool being developed under the direction of the US Army Nuclear and Chemical Agency. This Models Guide summarizes the IBS use of several computer models for predicting the results of emergency situations. These include models for predicting dispersion/doses of airborne contaminants, traffic evacuation, explosion effects, heat radiation from a fire, and siren sound transmission. The guide references additional technical documentation on the models when such documentation is available from other sources. The audience for this manual is chiefly emergency management planners and analysts, but also data managers and system managers.

  16. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  17. A New Model to Simulate Energy Performance of VRF Systems

    SciTech Connect

    Hong, Tianzhen; Pang, Xiufeng; Schetrit, Oren; Wang, Liping; Kasahara, Shinichi; Yura, Yoshinori; Hinokuma, Ryohei

    2014-03-30

    This paper presents a new model to simulate energy performance of variable refrigerant flow (VRF) systems in heat pump operation mode (either cooling or heating is provided but not simultaneously). The main improvement of the new model is the introduction of the evaporating and condensing temperature in the indoor and outdoor unit capacity modifier functions. The independent variables in the capacity modifier functions of the existing VRF model in EnergyPlus are mainly room wet-bulb temperature and outdoor dry-bulb temperature in cooling mode and room dry-bulb temperature and outdoor wet-bulb temperature in heating mode. The new approach allows compliance with different specifications of each indoor unit so that the modeling accuracy is improved. The new VRF model was implemented in a custom version of EnergyPlus 7.2. This paper first describes the algorithm for the new VRF model, which is then used to simulate the energy performance of a VRF system in a Prototype House in California that complies with the requirements of Title 24 ? the California Building Energy Efficiency Standards. The VRF system performance is then compared with three other types of HVAC systems: the Title 24-2005 Baseline system, the traditional High Efficiency system, and the EnergyStar Heat Pump system in three typical California climates: Sunnyvale, Pasadena and Fresno. Calculated energy savings from the VRF systems are significant. The HVAC site energy savings range from 51 to 85percent, while the TDV (Time Dependent Valuation) energy savings range from 31 to 66percent compared to the Title 24 Baseline Systems across the three climates. The largest energy savings are in Fresno climate followed by Sunnyvale and Pasadena. The paper discusses various characteristics of the VRF systems contributing to the energy savings. It should be noted that these savings are calculated using the Title 24 prototype House D under standard operating conditions. Actual performance of the VRF systems for real

  18. Collaborative Project. Mode and Intermediate Waters in Earth System Models

    SciTech Connect

    Sarmiento, Jorge L.; Dufour, Carolina; Rodgers, Keith B.

    2015-12-16

    The focus of this grant was on diagnosing the physical mechanisms controlling upper ocean water mass formation and carbon distribution in Earth System Models (ESMs), with the goal of improving the physics that controls their formation.

  19. Predictive Materials Modeling for Li-Air Battery Systems | Argonne...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Predictive Materials Modeling for Li-Air Battery Systems PI Name: Larry Curtiss PI Email: ... A rechargeable lithium-air (Li-air) battery can potentially store five to ten times the ...

  20. Predictive Materials Modeling for Li-Air Battery Systems | Argonne...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Predictive Materials Modeling for Li-Air Battery Systems PI Name: Larry Curtiss PI Email: ... A rechargeable LithiumAir battery can potentially store five to ten times the energy of a ...

  1. Model Specification for Networked Outdoor Lighting Control Systems

    Energy.gov [DOE]

    The DOE Municipal Solid-State Street Lighting Consortium's Model Specification for Networked Outdoor Lighting Control Systems is a tool designed to help cities, utilities, and other local agencies...

  2. Linear Fresnel Technology added to System Advisor Model's Capabilities -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    News Releases | NREL Linear Fresnel Technology added to System Advisor Model's Capabilities Now utilities can get detailed information on siting, performance and finances February 8, 2012 A promising Concentrating Solar Power (CSP) technology that uses a stationary receiver tube and an array of mirrors mounted near the ground can now be accessed within the System Advisor Model (SAM), which predicts annual energy production, hourly performance and return on investment. The U.S. Department of

  3. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    SciTech Connect

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  4. Stochastic Robust Mathematical Programming Model for Power System Optimization

    SciTech Connect

    Liu, Cong; Changhyeok, Lee; Haoyong, Chen; Mehrotra, Sanjay

    2016-01-01

    This paper presents a stochastic robust framework for two-stage power system optimization problems with uncertainty. The model optimizes the probabilistic expectation of different worst-case scenarios with ifferent uncertainty sets. A case study of unit commitment shows the effectiveness of the proposed model and algorithms.

  5. A model for radionuclide transport in the Cooling Water System

    SciTech Connect

    Kahook, S.D.

    1992-08-01

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA.

  6. System level modeling of thermoelectric generators for automotive applications

    Energy.gov [DOE]

    Uses a model to predict and analyze the system-level performance of a thermoelectric generator in terms of the power output and the power density … at the element, module and system-level and for a wide range of operating conditions.

  7. Harmonic and interharmonic distortion modeling in multiconverter systems

    SciTech Connect

    Carbone, R.; Morrison, R.E.; Testa, A.; Menniti, D.

    1995-07-01

    The problem of modeling multiconverter systems in presence of harmonic and interharmonic distortion is considered. Specifically, current source rectifiers are considered as distortion sources some supply d.c. motors and the remaining supplying inverters feeding a.c. machines. The classical analogue, frequency domain and time domain models proposed in the literature to study harmonic distortion in a multiconverter system are considered and for each model suitable extension to include the interharmonic distortion are presented and critically analyzed. The results of several experiments are reported to show the usefulness and to compare the accuracy of the different extensions considered.

  8. Panel 2, Modeling the Financial and System Benefits of Energy Storage Applications in Distribution Systems

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Modeling the Financial and System Benefits of Energy Storage Applications in Distribution Systems Patrick Balducci, Senior Economist, Pacific NW National Laboratory Hydrogen Energy Storage for Grid and Transportation Services Workshop Sacramento, California May 14, 2014 Valuation challenges 2 Source: Lamontagne, C. 2014. Survey of Models and Tools for the Stationary Energy Storage Industry. Presentation at Infocast Storage Week. Santa Clara, CA. Transmission and Distribution planning Models lack

  9. White paper on VU for Modeling Nuclear Energy Systems

    SciTech Connect

    Klein, R; Turinsky, P

    2009-05-07

    The purpose of this whitepaper is to provide a framework for understanding the role that Verification and Validation (V&V), Uncertainty Quantification (UQ) and Risk Quantification, collectively referred to as VU, is expected to play in modeling nuclear energy systems. We first provide background for the modeling of nuclear energy based systems. We then provide a brief discussion that emphasizes the critical elements of V&V as applied to nuclear energy systems but is general enough to cover a broad spectrum of scientific and engineering disciplines that include but are not limited to astrophysics, chemistry, physics, geology, hydrology, chemical engineering, mechanical engineering, civil engineering, electrical engineering, nu nuclear engineering material clear science science, etc. Finally, we discuss the critical issues and challenges that must be faced in the development of a viable and sustainable VU program in support of modeling nuclear energy systems.

  10. EMTP modeling of CIGRE benchmark based HVDC transmission system operating with weak AC systems

    SciTech Connect

    Sood, V.K.; Khatri, V.; Jin, H.

    1995-12-31

    An EMTP based study of a CIGRE benchmark based HVDC system operating with weak ac systems is carried out. The modeled system provides a starting point for (a) educators teaching HVDC transmission courses and (b) for utility planners to develop their own low-cost dedicated digital simulators for training purposes. In this paper, modeling details of the ac-dc system, dc converters and control are presented. To validate the control schemes presented, the HVDC system is tested under ac-dc fault conditions. Results obtained from an EMTP-based study under these fault conditions are also presented in this paper.

  11. The integrated Earth system model version 1: formulation and functionality

    DOE PAGES [OSTI]

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; Di Vittorio, A. V.; Jones, A. D.; Bond-Lamberty, B.; Calvin, K. V.; Edmonds, J. A.; Kim, S. H.; Thomson, A. M.; et al

    2015-07-23

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  12. The integrated Earth System Model Version 1: formulation and functionality

    SciTech Connect

    Collins, William D.; Craig, Anthony P.; Truesdale, John E.; Di Vittorio, Alan; Jones, Andrew D.; Bond-Lamberty, Benjamin; Calvin, Katherine V.; Edmonds, James A.; Kim, Son H.; Thomson, Allison M.; Patel, Pralit L.; Zhou, Yuyu; Mao, Jiafu; Shi, Xiaoying; Thornton, Peter E.; Chini, Louise M.; Hurtt, George C.

    2015-07-23

    The integrated Earth System Model (iESM) has been developed as a new tool for pro- jecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling in- frastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species, land use and land cover change, and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. The iESM project integrates the economic and human dimension modeling of an IAM and a fully coupled ESM within a sin- gle simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore- omitted feedbacks between natural and societal drivers, we can improve scientific under- standing of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper de- scribes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.

  13. Available Measurement

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Availability of the National Energy Modeling System (NEMS) Archive 1 May 2016 Availability of the National Energy Modeling System (NEMS) Archive NEMS has been developed primarily for use by the modelers at the Energy Information Administration (EIA) who understand its structure and programming. As a result, NEMS is only used by a few organizations outside of the EIA. Most people who have requested NEMS in the past have found out that it was too difficult or rigid to use. For example, it is not

  14. Performance Models for Split-execution Computing Systems

    SciTech Connect

    Humble, Travis S; McCaskey, Alex; Schrock, Jonathan; Seddiqi, Hadayat; Britt, Keith A; Imam, Neena

    2016-01-01

    Split-execution computing leverages the capabilities of multiple computational models to solve problems, but splitting program execution across different computational models incurs costs associated with the translation between domains. We analyze the performance of a split-execution computing system developed from conventional and quantum processing units (QPUs) by using behavioral models that track resource usage. We focus on asymmetric processing models built using conventional CPUs and a family of special-purpose QPUs that employ quantum computing principles. Our performance models account for the translation of a classical optimization problem into the physical representation required by the quantum processor while also accounting for hardware limitations and conventional processor speed and memory. We conclude that the bottleneck in this split-execution computing system lies at the quantum-classical interface and that the primary time cost is independent of quantum processor behavior.

  15. System level permeability modeling of porous hydrogen storage materials.

    SciTech Connect

    Kanouff, Michael P.; Dedrick, Daniel E.; Voskuilen, Tyler

    2010-01-01

    A permeability model for hydrogen transport in a porous material is successfully applied to both laboratory-scale and vehicle-scale sodium alanate hydrogen storage systems. The use of a Knudsen number dependent relationship for permeability of the material in conjunction with a constant area fraction channeling model is shown to accurately predict hydrogen flow through the reactors. Generally applicable model parameters were obtained by numerically fitting experimental measurements from reactors of different sizes and aspect ratios. The degree of channeling was experimentally determined from the measurements and found to be 2.08% of total cross-sectional area. Use of this constant area channeling model and the Knudsen dependent Young & Todd permeability model allows for accurate prediction of the hydrogen uptake performance of full-scale sodium alanate and similar metal hydride systems.

  16. A Petri Net model for distributed energy system

    SciTech Connect

    Konopko, Joanna

    2015-12-31

    Electrical networks need to evolve to become more intelligent, more flexible and less costly. The smart grid is the next generation power energy, uses two-way flows of electricity and information to create a distributed automated energy delivery network. Building a comprehensive smart grid is a challenge for system protection, optimization and energy efficient. Proper modeling and analysis is needed to build an extensive distributed energy system and intelligent electricity infrastructure. In this paper, the whole model of smart grid have been proposed using Generalized Stochastic Petri Nets (GSPN). The simulation of created model is also explored. The simulation of the model has allowed the analysis of how close the behavior of the model is to the usage of the real smart grid.

  17. HIERARCHICAL METHODOLOGY FOR MODELING HYDROGEN STORAGE SYSTEMS PART II: DETAILED MODELS

    SciTech Connect

    Hardy, B; Donald L. Anton, D

    2008-12-22

    There is significant interest in hydrogen storage systems that employ a media which either adsorbs, absorbs or reacts with hydrogen in a nearly reversible manner. In any media based storage system the rate of hydrogen uptake and the system capacity is governed by a number of complex, coupled physical processes. To design and evaluate such storage systems, a comprehensive methodology was developed, consisting of a hierarchical sequence of models that range from scoping calculations to numerical models that couple reaction kinetics with heat and mass transfer for both the hydrogen charging and discharging phases. The scoping models were presented in Part I [1] of this two part series of papers. This paper describes a detailed numerical model that integrates the phenomena occurring when hydrogen is charged and discharged. A specific application of the methodology is made to a system using NaAlH{sub 4} as the storage media.

  18. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    SciTech Connect

    1998-01-01

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  19. Parallel Computation of the Regional Ocean Modeling System (ROMS)

    SciTech Connect

    Wang, P; Song, Y T; Chao, Y; Zhang, H

    2005-04-05

    The Regional Ocean Modeling System (ROMS) is a regional ocean general circulation modeling system solving the free surface, hydrostatic, primitive equations over varying topography. It is free software distributed world-wide for studying both complex coastal ocean problems and the basin-to-global scale ocean circulation. The original ROMS code could only be run on shared-memory systems. With the increasing need to simulate larger model domains with finer resolutions and on a variety of computer platforms, there is a need in the ocean-modeling community to have a ROMS code that can be run on any parallel computer ranging from 10 to hundreds of processors. Recently, we have explored parallelization for ROMS using the MPI programming model. In this paper, an efficient parallelization strategy for such a large-scale scientific software package, based on an existing shared-memory computing model, is presented. In addition, scientific applications and data-performance issues on a couple of SGI systems, including Columbia, the world's third-fastest supercomputer, are discussed.

  20. Development of a gas systems analysis model (GSAM)

    SciTech Connect

    Godec, M.L.

    1995-04-01

    The objectives of developing a Gas Systems Analysis Model (GSAM) are to create a comprehensive, non-proprietary, PC based model of domestic gas industry activity. The system is capable of assessing the impacts of various changes in the natural gas system within North America. The individual and collective impacts due to changes in technology and economic conditions are explicitly modeled in GSAM. Major gas resources are all modeled, including conventional, tight, Devonian Shale, coalbed methane, and low-quality gas sources. The modeling system asseses all key components of the gas industry, including available resources, exploration, drilling, completion, production, and processing practices, both for now and in the future. The model similarly assesses the distribution, storage, and utilization of natural gas in a dynamic market-based analytical structure. GSAM is designed to provide METC managers with a tool to project the impacts of future research, development, and demonstration (RD&D) benefits in order to determine priorities in a rapidly changing, market-driven gas industry.

  1. Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance

    SciTech Connect

    Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

    2010-09-01

    Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus® conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus® conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

  2. Improving Power System Modeling. A Tool to Link Capacity Expansion and Production Cost Models

    SciTech Connect

    Diakov, Victor; Cole, Wesley; Sullivan, Patrick; Brinkman, Gregory; Margolis, Robert

    2015-11-01

    Capacity expansion models (CEM) provide a high-level long-term view at the prospects of the evolving power system. In simulating the possibilities of long-term capacity expansion, it is important to maintain the viability of power system operation in the short-term (daily, hourly and sub-hourly) scales. Production-cost models (PCM) simulate routine power system operation on these shorter time scales using detailed load, transmission and generation fleet data by minimizing production costs and following reliability requirements. When based on CEM 'predictions' about generating unit retirements and buildup, PCM provide more detailed simulation for the short-term system operation and, consequently, may confirm the validity of capacity expansion predictions. Further, production cost model simulations of a system that is based on capacity expansion model solution are 'evolutionary' sound: the generator mix is the result of logical sequence of unit retirement and buildup resulting from policy and incentives. The above has motivated us to bridge CEM with PCM by building a capacity expansion - to - production cost model Linking Tool (CEPCoLT). The Linking Tool is built to onset capacity expansion model prescriptions onto production cost model inputs. NREL's ReEDS and Energy Examplar's PLEXOS are the capacity expansion and the production cost models, respectively. Via the Linking Tool, PLEXOS provides details of operation for the regionally-defined ReEDS scenarios.

  3. Development of a system model for advanced small modular reactors.

    SciTech Connect

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandias concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  4. Hybrid2 - The hybrid power system simulation model

    SciTech Connect

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van; Manwell, J.F.

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  5. Wind energy conversion system analysis model (WECSAM) computer program documentation

    SciTech Connect

    Downey, W T; Hendrick, P L

    1982-07-01

    Described is a computer-based wind energy conversion system analysis model (WECSAM) developed to predict the technical and economic performance of wind energy conversion systems (WECS). The model is written in CDC FORTRAN V. The version described accesses a data base containing wind resource data, application loads, WECS performance characteristics, utility rates, state taxes, and state subsidies for a six state region (Minnesota, Michigan, Wisconsin, Illinois, Ohio, and Indiana). The model is designed for analysis at the county level. The computer model includes a technical performance module and an economic evaluation module. The modules can be run separately or together. The model can be run for any single user-selected county within the region or looped automatically through all counties within the region. In addition, the model has a restart capability that allows the user to modify any data-base value written to a scratch file prior to the technical or economic evaluation. Thus, any user-supplied data for WECS performance, application load, utility rates, or wind resource may be entered into the scratch file to override the default data-base value. After the model and the inputs required from the user and derived from the data base are described, the model output and the various output options that can be exercised by the user are detailed. The general operation is set forth and suggestions are made for efficient modes of operation. Sample listings of various input, output, and data-base files are appended. (LEW)

  6. Physical Modeling of Scaled Water Distribution System Networks.

    SciTech Connect

    O'Hern, Timothy J.; Hammond, Glenn Edward; Orear, Leslie ,; van Bloemen Waanders, Bart G.; Paul Molina; Ross Johnson

    2005-10-01

    Threats to water distribution systems include release of contaminants and Denial of Service (DoS) attacks. A better understanding, and validated computational models, of the flow in water distribution systems would enable determination of sensor placement in real water distribution networks, allow source identification, and guide mitigation/minimization efforts. Validation data are needed to evaluate numerical models of network operations. Some data can be acquired in real-world tests, but these are limited by 1) unknown demand, 2) lack of repeatability, 3) too many sources of uncertainty (demand, friction factors, etc.), and 4) expense. In addition, real-world tests have limited numbers of network access points. A scale-model water distribution system was fabricated, and validation data were acquired over a range of flow (demand) conditions. Standard operating variables included system layout, demand at various nodes in the system, and pressure drop across various pipe sections. In addition, the location of contaminant (salt or dye) introduction was varied. Measurements of pressure, flowrate, and concentration at a large number of points, and overall visualization of dye transport through the flow network were completed. Scale-up issues that that were incorporated in the experiment design include Reynolds number, pressure drop across nodes, and pipe friction and roughness. The scale was chosen to be 20:1, so the 10 inch main was modeled with a 0.5 inch pipe in the physical model. Controlled validation tracer tests were run to provide validation to flow and transport models, especially of the degree of mixing at pipe junctions. Results of the pipe mixing experiments showed large deviations from predicted behavior and these have a large impact on standard network operations models.3

  7. The Brief History and Future Development of Earth System Models:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Brief History and Future Development of Earth System Models: Resolution and Complexity Warren M. Washington National Center for Atmospheric Research NERSC Lecture Series at Berkeley Lab May, 2014 Overview * Brief history of climate modeling * Brief discussion of computational methods * Environmental Justice connected to climate change * Behind the scenes White House origin of the U. S. Global Change Research Program (USGCRP) * The future of the USGCRP and National Climate Assessment The next two

  8. Macro System Model (MSM) User Guide, Version 1.3

    SciTech Connect

    Ruth, M.; Diakov, V.; Sa, T.; Goldsby, M.

    2011-09-01

    This user guide describes the macro system model (MSM). The MSM has been designed to allow users to analyze the financial, environmental, transitional, geographical, and R&D issues associated with the transition to a hydrogen economy. Basic end users can use the MSM to answer cross-cutting questions that were previously difficult to answer in a consistent and timely manner due to various assumptions and methodologies among different models.

  9. Reliability modeling and evaluation of HVDC power transmission systems

    SciTech Connect

    Dialynas, E.N.; Koskolos, N.C. . Dept. of Electrical and Computer Engineering)

    1994-04-01

    The objective of this paper is to present an improved computational method for evaluating the reliability indices of HVdc transmission systems. The developed models and computational techniques are described. These can be used to simulate the operational practices and characteristics of a system under study efficiently and realistically. This method is based on the failure modes and effects analysis and uses the event tree method and the minimal cut set approach to represent the system's operational behavior and deduce the appropriate system's failure modes. A set of five reliability indices is evaluated for each output node being analyzed together with the probability and frequency of encountering particular regions of system performance levels. The analysis of an assumed HVdc bipolar transmission system is also included.

  10. System Advisor Model, SAM 2011.12.2: General Description

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    System Advisor Model, SAM 2011.12.2: General Description Paul Gilman and Aron Dobos Technical Report NREL/TP-6A20-53437 February 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 System Advisor Model, SAM 2011.12.2: General Description

  11. PROJECT PROFILE: System Advisor Model (SuNLaMP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This project focuses on the System Advisor Model (SAM) software created by the National Renewable Energy Laboratory (NREL). SAM is a performance and finance model designed to facilitate decision making for people involved in the renewable energy industry. SAM makes performance predictions and cost of energy estimates for grid-connected power projects based on installation, operating costs, and system design parameters that users enter into the tool. This project will improve and maintain many features of the tool that has been instrumental in advancing the solar industry. Basic maintenance for the PVWatts Calculator tool will also be completed.

  12. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    SciTech Connect

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

  13. Further Developments on the Geothermal System Scoping Model: Preprint

    SciTech Connect

    Antkowiak, M.; Sargent, R.; Geiger, J. W.

    2010-07-01

    This paper discusses further developments and refinements for the uses of the Geothermal System Scoping Model in an effort to provide a means for performing a variety of trade-off analyses of surface and subsurface parameters, sensitivity analyses, and other systems engineering studies in order to better inform R&D direction and investment for the development of geothermal power into a major contributor to the U.S. energy supply.

  14. Direct-Steam Linear Fresnel Performance Model for NREL's System Advisor Model

    SciTech Connect

    Wagner, M. J.; Zhu, G.

    2012-09-01

    This paper presents the technical formulation and demonstrated model performance results of a new direct-steam-generation (DSG) model in NREL's System Advisor Model (SAM). The model predicts the annual electricity production of a wide range of system configurations within the DSG Linear Fresnel technology by modeling hourly performance of the plant in detail. The quasi-steady-state formulation allows users to investigate energy and mass flows, operating temperatures, and pressure drops for geometries and solar field configurations of interest. The model includes tools for heat loss calculation using either empirical polynomial heat loss curves as a function of steam temperature, ambient temperature, and wind velocity, or a detailed evacuated tube receiver heat loss model. Thermal losses are evaluated using a computationally efficient nodal approach, where the solar field and headers are discretized into multiple nodes where heat losses, thermal inertia, steam conditions (including pressure, temperature, enthalpy, etc.) are individually evaluated during each time step of the simulation. This paper discusses the mathematical formulation for the solar field model and describes how the solar field is integrated with the other subsystem models, including the power cycle and optional auxiliary fossil system. Model results are also presented to demonstrate plant behavior in the various operating modes.

  15. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    SciTech Connect

    Shumilov, V. N. Syryamkin, V. I. Syryamkin, M. V.

    2015-11-17

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of

  16. Macro-System Model for Hydrogen Energy Systems Analysis in Transportation: Preprint

    SciTech Connect

    Diakov, V.; Ruth, M.; Sa, T. J.; Goldsby, M. E.

    2012-06-01

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  17. Projected Benefits of Federal Energy Efficiency and Renewable Energy Programs - FY 2004 FY2020

    SciTech Connect

    None, None

    2004-04-01

    This report features results and data based on the National Energy Modeling System (NEMS) model, as well as EERE's benefits and Government Performance and Results Act (GPRA) guidance.

  18. Modeling of RTF Glove-Box and Stripper System

    SciTech Connect

    Hsu, R.H.

    2001-03-28

    The glove box-stripper system for the Replacement Tritium Facility (RTF) has been modeled to determine its steady-state performance. To permit comparison, simulations of modified cases were compared with a standard or base case. This paper discusses tests conducted, results obtained and makes recommendations.

  19. Computer model for characterizing, screening, and optimizing electrolyte systems

    SciTech Connect

    Gering, Kevin L.

    2015-06-15

    Electrolyte systems in contemporary batteries are tasked with operating under increasing performance requirements. All battery operation is in some way tied to the electrolyte and how it interacts with various regions within the cell environment. Seeing the electrolyte plays a crucial role in battery performance and longevity, it is imperative that accurate, physics-based models be developed that will characterize key electrolyte properties while keeping pace with the increasing complexity of these liquid systems. Advanced models are needed since laboratory measurements require significant resources to carry out for even a modest experimental matrix. The Advanced Electrolyte Model (AEM) developed at the INL is a proven capability designed to explore molecular-to-macroscale level aspects of electrolyte behavior, and can be used to drastically reduce the time required to characterize and optimize electrolytes. Although it is applied most frequently to lithium-ion battery systems, it is general in its theory and can be used toward numerous other targets and intended applications. This capability is unique, powerful, relevant to present and future electrolyte development, and without peer. It redefines electrolyte modeling for highly-complex contemporary systems, wherein significant steps have been taken to capture the reality of electrolyte behavior in the electrochemical cell environment. This capability can have a very positive impact on accelerating domestic battery development to support aggressive vehicle and energy goals in the 21st century.

  20. Macro-System Model Project #AN011 (Presentation)

    SciTech Connect

    Ruth, M. F.; Diakov, V.; Sa, T. J.; Goldsby, M.

    2010-06-08

    A review of the Macro-System Model for hydrogen production pathways analysis, including objectives, accomplishments, collaborations, and future work. Presented at the 2010 U.S. Department of Energy Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010, in Washington, DC.

  1. Product Lifecycle Management Architecture: A Model Based Systems Engineering Analysis.

    SciTech Connect

    Noonan, Nicholas James

    2015-07-01

    This report is an analysis of the Product Lifecycle Management (PLM) program. The analysis is centered on a need statement generated by a Nuclear Weapons (NW) customer. The need statement captured in this report creates an opportunity for the PLM to provide a robust service as a solution. Lifecycles for both the NW and PLM are analyzed using Model Based System Engineering (MBSE).

  2. Simulation models of subsea umbilicals, flowlines and fire pump systems

    SciTech Connect

    Bratland, O.

    1995-12-01

    This paper discusses mathematical models suited for simulating transient and stationary flow in umbilicals, flowlines and fire pump systems. Most emphasis is put on subsea systems. Measurements are compared with simulations and good agreement has been achieved. The results show that the dynamics and response time in a hydraulic subsea control system can be influenced by parameters like umbilical elastic properties, umbilical visco-elastic properties, transition between laminar and turbulent flow, and some frequency-dependant propagation mechanisms. The paper discusses typical problems in different flow systems. It is also shown how the relevant umbilical properties can be determined by simple measurements on a short test section of the umbilical. In fire pump systems, cavitation is typically the main transient problem. In long oil and gas pipelines, the friction dominates and an accurate representation of the friction is the best contribution to relevant simulation results.

  3. Model of the midcontinent rift system in northeastern Kansas

    SciTech Connect

    Woelk, T.S.; Hinze, W.J. (Purdue Univ., West Lafayette, IN (USA))

    1991-03-01

    Recent drilling of the midcontinent rift system in northeastern Kansas reveals a transposed Keweenawan stratigraphy of mafic volcanic rocks overlying thick clastic sedimentary rocks. A reprocessed version of COCORP Kansas Line 1 indicates that the drillhole penetrated a series of west-dipping reflectors associated with a reverse fault bounding the east side of the rift basin. Reanalysis of the original COCORP line also reveals a west-bounding reverse fault and evidence of crustal thickening. This information is integrated with gravity and magnetic data to define a model of the rift in northeastern Kansas. The model, consisting of an asymmetric basin bounded by reverse faults with thickened crust beaneath the rift, is similar to models proposed for northern segments of the rift system, and argues for homogeneity in the structural style and tectonic evolution along the length of the rift.

  4. CAPE-OPEN compliant stochastic modeling and reduced-order model computation capability for APECS system

    SciTech Connect

    Diwekar, Urmila; Shastri, Yogendra (Vishwamitra Research Institute Clarendon Hills, IL); Subrmanyan, Karthik; Zitney, S.E.

    2007-11-04

    APECS (Advanced Process Engineering Co-Simulator) is an integrated software suite that combines the power of process simulation with high-fidelity, computational fluid dynamics (CFD) for improved design, analysis, and optimization of process engineering systems. The APECS system uses commercial process simulation (e.g., Aspen Plus) and CFD (e.g., FLUENT) software integrated with the process-industry standard CAPE-OPEN (CO) interfaces. This breakthrough capability allows engineers to better understand and optimize the fluid mechanics that drive overall power plant performance and efficiency. The focus of this paper is the CAPE-OPEN complaint stochastic modeling and reduced order model computational capability around the APECS system. The usefulness of capabilities is illustrated with coal fired, gasification based, FutureGen power plant simulation. These capabilities are used to generate efficient reduced order models and optimizing model complexities.

  5. Modeling Supermarket Refrigeration Systems with EnergyPlus

    SciTech Connect

    Stovall, Therese K; Baxter, Van D

    2010-01-01

    Supermarket refrigeration capabilities were first added to EnergyPlus in 2004. At that time, it was possible to model a direct expansion (DX) rack system with multiple refrigerated cases. The basic simulation software handles all the building energy uses, typically on a 5 to 10 minute time step throughout the period of interest. The original refrigeration module included the ability to model the sensible and latent interactions between the refrigerated cases and the building HVAC system, along with some basic heat recovery capabilities. Over the last few years, the refrigeration module has been expanded to handle more complex systems, such as secondary loops, shared condensers, cascade condensers, subcoolers, and walk-in coolers exchanging energy with multiple conditioned zones.

  6. High Flux Isotope Reactor system RELAP5 input model

    SciTech Connect

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model.

  7. Improving the representation of hydrologic processes in Earth System Models

    SciTech Connect

    Clark, Martyn P.; Fan, Ying; Lawrence, David M.; Adam, J. C.; Bolster, Diogo; Gochis, David; Hooper, Richard P.; Kumar, Mukesh; Leung, Lai-Yung R.; Mackay, D. Scott; Maxwell, Reed M.; Shen, Chaopeng; Swenson, Sean C.; Zeng, Xubin

    2015-08-21

    Many of the scientific and societal challenges in understanding and preparing for global environmental change rest upon our ability to understand and predict the water cycle change at large river basin, continent, and global scales. However, current large-scale models, such as the land components of Earth System Models (ESMs), do not yet represent the terrestrial water cycle in a fully integrated manner or resolve the finer-scale processes that can dominate large-scale water budgets. This paper reviews the current representation of hydrologic processes in ESMs and identifies the key opportunities for improvement. This review suggests that (1) the development of ESMs has not kept pace with modeling advances in hydrology, both through neglecting key processes (e.g., groundwater) and neglecting key aspects of spatial variability and hydrologic connectivity; and (2) many modeling advances in hydrology can readily be incorporated into ESMs and substantially improve predictions of the water cycle. Accelerating modeling advances in ESMs requires comprehensive hydrologic benchmarking activities, in order to systematically evaluate competing modeling alternatives, understand model weaknesses, and prioritize model development needs. This demands stronger collaboration, both through greater engagement of hydrologists in ESM development and through more detailed evaluation of ESM processes in research watersheds. Advances in the representation of hydrologic process in ESMs can substantially improve energy, carbon and nutrient cycle prediction capabilities through the fundamental role the water cycle plays in regulating these cycles.

  8. Reference Manual for the System Advisor Model's Wind Power Performance Model

    SciTech Connect

    Freeman, J.; Jorgenson, J.; Gilman, P.; Ferguson, T.

    2014-08-01

    This manual describes the National Renewable Energy Laboratory's System Advisor Model (SAM) wind power performance model. The model calculates the hourly electrical output of a single wind turbine or of a wind farm. The wind power performance model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs. In SAM, the performance model can be coupled to one of the financial models to calculate economic metrics for residential, commercial, or utility-scale wind projects. This manual describes the algorithms used by the wind power performance model, which is available in the SAM user interface and as part of the SAM Simulation Core (SSC) library, and is intended to supplement the user documentation that comes with the software.

  9. Mathematical modeling of the nickel/metal hydride battery system

    SciTech Connect

    Paxton, B K

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  10. EIA model documentation: Petroleum Market Model of the National Energy Modeling System

    SciTech Connect

    1994-02-24

    The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models (Public Law 94-385, section 57.b.2.) The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level. The report is organized as follows: Chapter 2, Model Purpose; Chapter 3, Model Overview and Rationale; Chapter 4, Model Structure; Appendix A, Inventory of Input Data, Parameter Estimates, and Model Outputs; Appendix B, Detailed Mathematical Description of the Model; Appendix C, Bibliography; Appendix D, Model Abstract; and Appendix E, Data Quality; and Appendix F, Estimation Methodologies.

  11. Computer model for characterizing, screening, and optimizing electrolyte systems

    Energy Science and Technology Software Center

    2015-06-15

    Electrolyte systems in contemporary batteries are tasked with operating under increasing performance requirements. All battery operation is in some way tied to the electrolyte and how it interacts with various regions within the cell environment. Seeing the electrolyte plays a crucial role in battery performance and longevity, it is imperative that accurate, physics-based models be developed that will characterize key electrolyte properties while keeping pace with the increasing complexity of these liquid systems. Advanced modelsmore » are needed since laboratory measurements require significant resources to carry out for even a modest experimental matrix. The Advanced Electrolyte Model (AEM) developed at the INL is a proven capability designed to explore molecular-to-macroscale level aspects of electrolyte behavior, and can be used to drastically reduce the time required to characterize and optimize electrolytes. Although it is applied most frequently to lithium-ion battery systems, it is general in its theory and can be used toward numerous other targets and intended applications. This capability is unique, powerful, relevant to present and future electrolyte development, and without peer. It redefines electrolyte modeling for highly-complex contemporary systems, wherein significant steps have been taken to capture the reality of electrolyte behavior in the electrochemical cell environment. This capability can have a very positive impact on accelerating domestic battery development to support aggressive vehicle and energy goals in the 21st century.« less

  12. Projections of leaf area index in earth system models

    DOE PAGES [OSTI]

    Mahowald, Natalie; Lo, Fiona; Zheng, Yun; Harrison, Laura; Funk, Chris; Lombardozzi, Danica; Goodale, Christine

    2016-03-09

    The area of leaves in the plant canopy, measured as leaf area index (LAI), modulates key land–atmosphere interactions, including the exchange of energy, moisture, carbon dioxide (CO2), and other trace gases and aerosols, and is therefore an essential variable in predicting terrestrial carbon, water, and energy fluxes. Here our goal is to characterize the LAI projections from the latest generation of earth system models (ESMs) for the Representative Concentration Pathway (RCP) 8.5 and RCP4.5 scenarios. On average, the models project increases in LAI in both RCP8.5 and RCP4.5 over most of the globe, but also show decreases in some partsmore » of the tropics. Because of projected increases in variability, there are also more frequent periods of low LAI across broad regions of the tropics. Projections of LAI changes varied greatly among models: some models project very modest changes, while others project large changes, usually increases. Modeled LAI typically increases with modeled warming in the high latitudes, but often decreases with increasing local warming in the tropics. The models with the most skill in simulating current LAI in the tropics relative to satellite observations tend to project smaller increases in LAI in the tropics in the future compared to the average of all the models. Using LAI projections to identify regions that may be vulnerable to climate change presents a slightly different picture than using precipitation projections, suggesting LAI may be an additional useful tool for understanding climate change impacts. Going forward, users of LAI projections from the CMIP5 ESMs evaluated here should be aware that model outputs do not exhibit clear-cut relationships to vegetation carbon and precipitation. Lastly, our findings underscore the need for more attention to LAI projections, in terms of understanding the drivers of projected changes and improvements to model skill.« less

  13. Computational Human Performance Modeling For Alarm System Design

    SciTech Connect

    Jacques Hugo

    2012-07-01

    The introduction of new technologies like adaptive automation systems and advanced alarms processing and presentation techniques in nuclear power plants is already having an impact on the safety and effectiveness of plant operations and also the role of the control room operator. This impact is expected to escalate dramatically as more and more nuclear power utilities embark on upgrade projects in order to extend the lifetime of their plants. One of the most visible impacts in control rooms will be the need to replace aging alarm systems. Because most of these alarm systems use obsolete technologies, the methods, techniques and tools that were used to design the previous generation of alarm system designs are no longer effective and need to be updated. The same applies to the need to analyze and redefine operators alarm handling tasks. In the past, methods for analyzing human tasks and workload have relied on crude, paper-based methods that often lacked traceability. New approaches are needed to allow analysts to model and represent the new concepts of alarm operation and human-system interaction. State-of-the-art task simulation tools are now available that offer a cost-effective and efficient method for examining the effect of operator performance in different conditions and operational scenarios. A discrete event simulation system was used by human factors researchers at the Idaho National Laboratory to develop a generic alarm handling model to examine the effect of operator performance with simulated modern alarm system. It allowed analysts to evaluate alarm generation patterns as well as critical task times and human workload predicted by the system.

  14. Modeling stream temperature in the Anthropocene: An earth system modeling approach

    DOE PAGES [OSTI]

    Li, Hong -Yi; Leung, L. Ruby; Tesfa, Teklu; Voisin, Nathalie; Hejazi, Mohamad; Liu, Lu; Liu, Ying; Rice, Jennie; Wu, Huan; Yang, Xiaofan

    2015-10-29

    A new large-scale stream temperature model has been developed within the Community Earth System Model (CESM) framework. The model is coupled with the Model for Scale Adaptive River Transport (MOSART) that represents river routing and a water management model (WM) that represents the effects of reservoir operations and water withdrawals on flow regulation. The coupled models allow the impacts of reservoir operations and withdrawals on stream temperature to be explicitly represented in a physically based and consistent way. The models have been applied to the Contiguous United States driven by observed meteorological forcing. It is shown that the model ismore » capable of reproducing stream temperature spatiotemporal variation satisfactorily by comparison against the observed streamflow from over 320 USGS stations. Including water management in the models improves the agreement between the simulated and observed streamflow at a large number of stream gauge stations. Both climate and water management are found to have important influence on the spatiotemporal patterns of stream temperature. More interestingly, it is quantitatively estimated that reservoir operation could cool down stream temperature in the summer low-flow season (August – October) by as much as 1~2oC over many places, as water management generally mitigates low flow, which has important implications to aquatic ecosystems. In conclusion, sensitivity of the simulated stream temperature to input data and reservoir operation rules used in the WM model motivates future directions to address some limitations in the current modeling framework.« less

  15. Modeling stream temperature in the Anthropocene: An earth system modeling approach

    SciTech Connect

    Li, Hong -Yi; Leung, L. Ruby; Tesfa, Teklu; Voisin, Nathalie; Hejazi, Mohamad; Liu, Lu; Liu, Ying; Rice, Jennie; Wu, Huan; Yang, Xiaofan

    2015-10-29

    A new large-scale stream temperature model has been developed within the Community Earth System Model (CESM) framework. The model is coupled with the Model for Scale Adaptive River Transport (MOSART) that represents river routing and a water management model (WM) that represents the effects of reservoir operations and water withdrawals on flow regulation. The coupled models allow the impacts of reservoir operations and withdrawals on stream temperature to be explicitly represented in a physically based and consistent way. The models have been applied to the Contiguous United States driven by observed meteorological forcing. It is shown that the model is capable of reproducing stream temperature spatiotemporal variation satisfactorily by comparison against the observed streamflow from over 320 USGS stations. Including water management in the models improves the agreement between the simulated and observed streamflow at a large number of stream gauge stations. Both climate and water management are found to have important influence on the spatiotemporal patterns of stream temperature. More interestingly, it is quantitatively estimated that reservoir operation could cool down stream temperature in the summer low-flow season (August – October) by as much as 1~2oC over many places, as water management generally mitigates low flow, which has important implications to aquatic ecosystems. In conclusion, sensitivity of the simulated stream temperature to input data and reservoir operation rules used in the WM model motivates future directions to address some limitations in the current modeling framework.

  16. Model Predictive Control for the Operation of Building Cooling Systems

    SciTech Connect

    Ma, Yudong; Borrelli, Francesco; Hencey, Brandon; Coffey, Brian; Bengea, Sorin; Haves, Philip

    2010-06-29

    A model-based predictive control (MPC) is designed for optimal thermal energy storage in building cooling systems. We focus on buildings equipped with a water tank used for actively storing cold water produced by a series of chillers. Typically the chillers are operated at night to recharge the storage tank in order to meet the building demands on the following day. In this paper, we build on our previous work, improve the building load model, and present experimental results. The experiments show that MPC can achieve reduction in the central plant electricity cost and improvement of its efficiency.

  17. EIA model documentation: Petroleum Market Model of the National Energy Modeling System

    SciTech Connect

    1994-12-30

    The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models (Public Law 94-385, section 57.b.2). The PMM models petroleum refining activities, the marketing of products, the production of natural gas liquids and domestic methanol, projects petroleum provides and sources of supplies for meeting demand. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption.

  18. The Case for A Hierarchal System Model for Linux Clusters

    SciTech Connect

    Seager, M; Gorda, B

    2009-06-05

    The computer industry today is no longer driven, as it was in the 40s, 50s and 60s, by High-performance computing requirements. Rather, HPC systems, especially Leadership class systems, sit on top of a pyramid investment mode. Figure 1 shows a representative pyramid investment model for systems hardware. At the base of the pyramid is the huge investment (order 10s of Billions of US Dollars per year) in semiconductor fabrication and process technologies. These costs, which are approximately doubling with every generation, are funded from investments multiple markets: enterprise, desktops, games, embedded and specialized devices. Over and above these base technology investments are investments for critical technology elements such as microprocessor, chipsets and memory ASIC components. Investments for these components are spread across the same markets as the base semiconductor processes investments. These second tier investments are approximately half the size of the lower level of the pyramid. The next technology investment layer up, tier 3, is more focused on scalable computing systems such as those needed for HPC and other markets. These tier 3 technology elements include networking (SAN, WAN and LAN), interconnects and large scalable SMP designs. Above these is tier 4 are relatively small investments necessary to build very large, scalable systems high-end or Leadership class systems. Primary among these are the specialized network designs of vertically integrated systems, etc.

  19. Integrated Air Pollution Control System (IAPCS), Executable Model (Version 4. 0) (for microcomputers). Model-Simulation

    SciTech Connect

    Not Available

    1990-10-29

    The Integrated Air Pollution Control System (IAPCS) Cost Model is an IBM PC cost model that can be used to estimate the cost of installing SO2, NOx, and particulate matter control systems at coal-fired utility electric generating facilities. The model integrates various combinations of the following technologies: physical coal cleaning, coal switching, overfire air/low NOx burners, natural gas reburning, LIMB, ADVACATE, electrostatic precipitator, fabric filter, gas conditioning, wet lime or limestone FGD, lime spray drying/duct spray drying, dry sorbent injection, pressurized fluidized bed combustion, integrated gasification combined cycle, and pulverized coal burning boiler. The model generates capital, annualized, and unitized pollutant removal costs in either constant or current dollars for any year.

  20. Detailed End Use Load Modeling for Distribution System Analysis

    SciTech Connect

    Schneider, Kevin P.; Fuller, Jason C.

    2010-04-09

    The field of distribution system analysis has made significant advances in the past ten years. It is now standard practice when performing a power flow simulation to use an algorithm that is capable of unbalanced per-phase analysis. Recent work has also focused on examining the need for time-series simulations instead of examining a single time period, i.e., peak loading. One area that still requires a significant amount of work is the proper modeling of end use loads. Currently it is common practice to use a simple load model consisting of a combination of constant power, constant impedance, and constant current elements. While this simple form of end use load modeling is sufficient for a single point in time, the exact model values are difficult to determine and it is inadequate for some time-series simulations. This paper will examine how to improve simple time invariant load models as well as develop multi-state time variant models.

  1. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    SciTech Connect

    Zeng, Xubin; Troch, Peter; Pelletier, Jon; Niu, Guo-Yue; Gochis, David

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM).

  2. Systems, Methods and Computer Readable Media for Modeling Cell Performance

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fade, Kinetic Performance, Capacity Loss, of Rechargeable Electrochemical Devices - Energy Innovation Portal Energy Storage Energy Storage Find More Like This Return to Search Systems, Methods and Computer Readable Media for Modeling Cell Performance Fade, Kinetic Performance, Capacity Loss, of Rechargeable Electrochemical Devices Idaho National Laboratory Contact INL About This Technology Publications: PDF Document Publication CellSage Fact Sheet (3,409 KB) CellSage battery metrics

  3. FORTRAN M as a language for building earth system models

    SciTech Connect

    Foster, I.

    1992-01-01

    FORTRAN M is a small set of extensions to FORTRAN 77 that supports a modular or object-oriented approach to the development of parallel programs. In this paper, I discuss the use of FORTRAN M as a tool for building earth system models on massively parallel computers. I hypothesize that the use of FORTRAN M has software engineering advantages and outline experiments that we are conducting to investigate this hypothesis.

  4. FORTRAN M as a language for building earth system models

    SciTech Connect

    Foster, I.

    1992-12-31

    FORTRAN M is a small set of extensions to FORTRAN 77 that supports a modular or object-oriented approach to the development of parallel programs. In this paper, I discuss the use of FORTRAN M as a tool for building earth system models on massively parallel computers. I hypothesize that the use of FORTRAN M has software engineering advantages and outline experiments that we are conducting to investigate this hypothesis.

  5. Offshore Wind Balance-of-System Cost Modeling

    SciTech Connect

    Maness, Michael; Stehly, Tyler; Maples, Ben; Mone, Christopher

    2015-09-29

    Offshore wind balance-of-system (BOS) costs contribute up to 70% of installed capital costs. Thus, it is imperative to understand the impact of these costs on project economics as well as potential cost trends for new offshore wind technology developments. As a result, the National Renewable Energy Laboratory (NREL) developed and recently updated a BOS techno-economic model using project cost estimates created from wind energy industry sources.

  6. Mode and Intermediate Waters in Earth System Models

    SciTech Connect

    Gnanadesikan, Anand; Sarmiento, Jorge L.

    2015-12-22

    This report describes work done as part of a joint Princeton-Johns Hopkins project to look at the impact of mode and intermediate waters in Earth System Models. The Johns Hopkins portion of this work focussed on the role of lateral mixing in ventilating such waters, with important implications for hypoxia, the uptake of anthropogenic carbon, the dynamics of El Nino and carbon pumps. The Johns Hopkins group also collaborated with the Princeton Group to help develop a watermass diagnostics framework.

  7. NREL's System Advisor Model Simplifies Complex Energy Analysis (Fact Sheet)

    SciTech Connect

    Not Available

    2015-01-01

    NREL has developed a tool -- the System Advisor Model (SAM) -- that can help decision makers analyze cost, performance, and financing of any size grid-connected solar, wind, or geothermal power project. Manufacturers, engineering and consulting firms, research and development firms, utilities, developers, venture capital firms, and international organizations use SAM for end-to-end analysis that helps determine whether and how to make investments in renewable energy projects.

  8. Toward an Earth System Modeling Approach to Simulate Irrigation Effects |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    U.S. DOE Office of Science (SC) Toward an Earth System Modeling Approach to Simulate Irrigation Effects Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000

  9. Economic and Power System Modeling and Analysis | Water Power | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Economic and Power System Modeling and Analysis NREL has a long history of successful research to understand and improve the cost of renewable energy technologies, their possible deployment scenarios, and the economic impacts of this deployment. As a research laboratory, NREL is a neutral third party and can provide an unbiased perspective of methodologies and approaches used to estimate direct and indirect economic impacts of offshore renewable energy projects. Deployment and Economic Impact

  10. Alveolocapillary model system to study alveolar re-epithelialization

    SciTech Connect

    Willems, Coen H.M.P.; Zimmermann, Luc J.I.; Sanders, Patricia J.L.T.; Wagendorp, Margot; Kloosterboer, Nico; Cohen Tervaert, Jan Willem; Duimel, Hans J.Q.; Verheyen, Fons K.C.P.; Iwaarden, J. Freek van

    2013-01-01

    In the present study an in vitro bilayer model system of the pulmonary alveolocapillary barrier was established to investigate the role of the microvascular endothelium on re-epithelialization. The model system, confluent monolayer cultures on opposing sides of a porous membrane, consisted of a human microvascular endothelial cell line (HPMEC-ST1.6R) and an alveolar type II like cell line (A549), stably expressing EGFP and mCherry, respectively. These fluorescent proteins allowed the real time assessment of the integrity of the monolayers and the automated analysis of the wound healing process after a scratch injury. The HPMECs significantly attenuated the speed of re-epithelialization, which was associated with the proximity to the A549 layer. Examination of cross-sectional transmission electron micrographs of the model system revealed protrusions through the membrane pores and close contact between the A549 cells and the HPMECs. Immunohistochemical analysis showed that these close contacts consisted of heterocellular gap-, tight- and adherens-junctions. Additional analysis, using a fluorescent probe to assess gap-junctional communication, revealed that the HPMECs and A549 cells were able to exchange the fluorophore, which could be abrogated by disrupting the gap junctions using connexin mimetic peptides. These data suggest that the pulmonary microvascular endothelium may impact the re-epithelialization process. -- Highlights: ? Model system for vital imaging and high throughput screening. ? Microvascular endothelium influences re-epithelialization. ? A549 cells form protrusions through membrane to contact HPMEC. ? A549 cells and HPMECs form heterocellular tight-, gap- and adherens-junctions.

  11. Understanding Self-assembly and Functional Materials in Model Systems |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stanford Synchrotron Radiation Lightsource Understanding Self-assembly and Functional Materials in Model Systems Wednesday, November 9, 2016 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker:Hans-Georg Steinrück, SSRL Program Description One open question in basic science of self-assembled monolayers concerns their internal structure and its correlation with the underlying substrate. I will present results from surface x-ray scattering, comprising several novel structural motives

  12. Reference Model for Control and Automation Systems in Electrical Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reference Model for Control and Automation Systems in Electrical Power Version 1.2 October 12, 2005 Prepared by: Sandia National Laboratories' Center for SCADA Security Jason Stamp, Technical Lead Michael Berg, Co-Technical Lead Michael Baca, Project Lead This work was conducted for the DOE Office of Electricity Delivery and Energy Reliability under Contract M64SCADSNL Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department

  13. System Advisor Model, SAM 2014.1.14: General Description

    SciTech Connect

    Blair, N.; Dobos, A. P.; Freeman, J.; Neises, T.; Wagner, M.; Ferguson, T.; Gilman, P.; Janzou, S.

    2014-02-01

    This document describes the capabilities of the U.S. Department of Energy and National Renewable Energy Laboratory's System Advisor Model (SAM), Version 2013.9.20, released on September 9, 2013. SAM is a computer model that calculates performance and financial metrics of renewable energy systems. Project developers, policy makers, equipment manufacturers, and researchers use graphs and tables of SAM results in the process of evaluating financial, technology, and incentive options for renewable energy projects. SAM simulates the performance of photovoltaic, concentrating solar power, solar water heating, wind, geothermal, biomass, and conventional power systems. The financial model can represent financial structures for projects that either buy and sell electricity at retail rates (residential and commercial) or sell electricity at a price determined in a power purchase agreement (utility). SAM's advanced simulation options facilitate parametric and sensitivity analyses, and statistical analysis capabilities are available for Monte Carlo simulation and weather variability (P50/P90) studies. SAM can also read input variables from Microsoft Excel worksheets. For software developers, the SAM software development kit (SDK) makes it possible to use SAM simulation modules in their applications written in C/C++, C#, Java, Python, and MATLAB. NREL provides both SAM and the SDK as free downloads at http://sam.nrel.gov. Technical support and more information about the software are available on the website.

  14. Multi-State Load Models for Distribution System Analysis

    SciTech Connect

    Schneider, Kevin P.; Fuller, Jason C.; Chassin, David P.

    2011-11-01

    Recent work in the field of distribution system analysis has shown that the traditional method of peak load analysis is not adequate for the analysis of emerging distribution system technologies. Voltage optimization, demand response, electric vehicle charging, and energy storage are examples of technologies with characteristics having daily, seasonal, and/or annual variations. In addition to the seasonal variations, emerging technologies such as demand response and plug in electric vehicle charging have the potential to send control signals to the end use loads which will affect how they consume energy. In order to support time-series analysis over different time frames and to incorporate potential control signal inputs it is necessary to develop detailed end use load models which accurately represent the load under various conditions, and not just during the peak load period. This paper will build on previous work on detail end use load modeling in order to outline the method of general multi-state load models for distribution system analysis.

  15. System Advisor Model, SAM 2011.12.2: General Description

    SciTech Connect

    Gilman, P.; Dobos, A.

    2012-02-01

    This document describes the capabilities of the U.S. Department of Energy and National Renewable Energy Laboratory's System Advisor Model (SAM), Version 2011.12.2, released on December 2, 2011. SAM is software that models the cost and performance of renewable energy systems. Project developers, policy makers, equipment manufacturers, and researchers use graphs and tables of SAM results in the process of evaluating financial, technology, and incentive options for renewable energy projects. SAM simulates the performance of solar, wind, geothermal, biomass, and conventional power systems. The financial model can represent financing structures for projects that either buy and sell electricity at retail rates (residential and commercial) or sell electricity at a price determined in a power purchase agreement (utility). Advanced analysis options facilitate parametric, sensitivity, and statistical analyses, and allow for interfacing SAM with Microsoft Excel or with other computer programs. SAM is available as a free download at http://sam.nrel.gov. Technical support and more information about the software are available on the website.

  16. System Design Description and Requirements for Modeling the Off-Gas Systems for Fuel Recycling Facilities

    SciTech Connect

    Daryl R. Haefner; Jack D. Law; Troy J. Tranter

    2010-08-01

    This document provides descriptions of the off-gases evolved during spent nuclear fuel processing and the systems used to capture the gases of concern. Two reprocessing techniques are discussed, namely aqueous separations and electrochemical (pyrochemical) processing. The unit operations associated with each process are described in enough detail so that computer models to mimic their behavior can be developed. The document also lists the general requirements for the desired computer models.

  17. A biokinetic model for systemic technetium in adult humans

    DOE PAGES [OSTI]

    Leggett, Richard Wayne; Giussani, Augusto

    2015-04-10

    The International Commission on Radiological Protection (ICRP) currently is updating its biokinetic and dosimetric models for internally deposited radionuclides. Technetium (Tc), the lightest element that exists only in radioactive form, has two important isotopes from the standpoint of potential risk to humans: the long-lived isotope 99Tm(T1/2=2.1x105 y) is present in high concentration in nuclear waste, and the short-lived isotope 99mTc (T1/2=6.02 h) is the most commonly used radionuclide in diagnostic nuclear medicine. This paper reviews data on the biological behavior of technetium and proposes a biokinetic model for systemic technetium in the adult human body for use in radiation protection.more » Compared with the ICRP s current occupational model for systemic technetium, the proposed model provides a more realistic description of the paths of movement of technetium in the body; provides greater consistency with experimental and medical data; and, for most radiosensitive organs, yields substantially different estimates of cumulative activity (total radioactive decays within the organ) following uptake of 99Tm or 99mTc to blood.« less

  18. A biokinetic model for systemic technetium in adult humans

    SciTech Connect

    Leggett, Richard Wayne; Giussani, Augusto

    2015-04-10

    The International Commission on Radiological Protection (ICRP) currently is updating its biokinetic and dosimetric models for internally deposited radionuclides. Technetium (Tc), the lightest element that exists only in radioactive form, has two important isotopes from the standpoint of potential risk to humans: the long-lived isotope 99Tm(T1/2=2.1x105 y) is present in high concentration in nuclear waste, and the short-lived isotope 99mTc (T1/2=6.02 h) is the most commonly used radionuclide in diagnostic nuclear medicine. This paper reviews data on the biological behavior of technetium and proposes a biokinetic model for systemic technetium in the adult human body for use in radiation protection. Compared with the ICRP s current occupational model for systemic technetium, the proposed model provides a more realistic description of the paths of movement of technetium in the body; provides greater consistency with experimental and medical data; and, for most radiosensitive organs, yields substantially different estimates of cumulative activity (total radioactive decays within the organ) following uptake of 99Tm or 99mTc to blood.

  19. A biokinetic model for systemic technetium in adult humans

    SciTech Connect

    Leggett, Richard Wayne; Giussani, Augusto

    2015-01-01

    The International Commission on Radiological Protection (ICRP) currently is updating its biokinetic and dosimetric models for internally deposited radionuclides. Technetium (Tc), the lightest element that exists only in radioactive form, has two important isotopes from the standpoint of potential risk to humans: the long-lived isotope 99Tm (T1/2=2.1x105 y) is present in high concentration in nuclear waste, and the short-lived isotope 99mTc (T1/2=6.02 h) is the most commonly used radionuclide in diagnostic nuclear medicine. This paper reviews data on the biological behavior of technetium and proposes a biokinetic model for systemic technetium in the adult human body for use in radiation protection. Compared with the ICRP s current occupational model for systemic technetium, the proposed model provides a more realistic description of the paths of movement of technetium in the body; provides greater consistency with experimental and medical data; and, for most radiosensitive organs, yields substantially different estimates of cumulative activity (total radioactive decays within the organ) following uptake of 99Tm or 99mTc to blood.

  20. Community Climate System Model (CCSM) Experiments and Output Data

    DOE Data Explorer

    The National Center for Atmospheric Research (NCAR) created the first version of the Community Climate Model (CCM) in 1983 as a global atmosphere model. It was improved in 1994 when NCAR, with support from the National Science Foundation (NSF), developed and incorporated a Climate System Model (CSM) that included atmosphere, land surface, ocean, and sea ice. As the capabilities of the model grew, so did interest in its applications and changes in how it would be managed. A workshop in 1996 set the future management structure, marked the beginning of the second phase of the model, a phase that included full participation of the scientific community, and also saw additional financial support, including support from the Department of Energy. In recognition of these changes, the model was renamed to the Community Climate System Model (CCSM). It began to function as a model with the interactions of land, sea, and air fully coupled, providing computer simulations of Earth's past climate, its present climate, and its possible future climate. The CCSM website at http://www2.cesm.ucar.edu/ describes some of the research that has been done since then: A 300-year run has been performed using the CSM, and results from this experiment have appeared in a special issue of theJournal of Climate, 11, June, 1998. A 125-year experiment has been carried out in which carbon dioxide was described to increase at 1% per year from its present concentration to approximately three times its present concentration. More recently, the Climate of the 20th Century experiment was run, with carbon dioxide and other greenhouse gases and sulfate aerosols prescribed to evolve according to our best knowledge from 1870 to the present. Three scenarios for the 21st century were developed: a "business as usual" experiment, in which greenhouse gases are assumed to increase with no economic constraints; an experiment using the Intergovernmental Panel on Climate Change (IPCC) Scenario A1; and a "policy

  1. Integrated Air Pollution Control System (IAPCS), Executable Model and Source Model (version 4. 0) (for microcomputers). Model-Simulation

    SciTech Connect

    Not Available

    1990-10-29

    The Integrated Air Pollution Control System (IAPCS) Cost Model is an IBM PC cost model that can be used to estimate the cost of installing SO2, NOx, and particulate matter control systems at coal-fired utility electric generating facilities. The model integrates various combinations of the following technologies: physical coal cleaning, coal switching, overfire air/low NOx burners, natural gas reburning, LIMB, ADVACATE, electrostatic precipitator, fabric filter, gas conditioning, wet lime or limestone FGD, lime spray drying/duct spray drying, dry sorbent injection, pressurized fluidized bed combustion, integrated gasification combined cycle, and pulverized coal burning boiler. The model generates capital, annualized, and unitized pollutant removal costs in either constant or current dollars for any year.

  2. EIA model documentation: Petroleum market model of the national energy modeling system

    SciTech Connect

    1995-12-28

    The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions, the production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level.

  3. RECONFIGURING POWER SYSTEMS TO MINIMIZE CASCADING FAILURES: MODELS AND ALGORITHMS

    SciTech Connect

    Bienstock, Daniel

    2014-04-11

    the main goal of this project was to develop new scientific tools, based on optimization techniques, with the purpose of controlling and modeling cascading failures of electrical power transmission systems. We have developed a high-quality tool for simulating cascading failures. The problem of how to control a cascade was addressed, with the aim of stopping the cascade with a minimum of load lost. Yet another aspect of cascade is the investigation of which events would trigger a cascade, or more appropriately the computation of the most harmful initiating event given some constraint on the severity of the event. One common feature of the cascade models described (indeed, of several of the cascade models found in the literature) is that we study thermally-induced line tripping. We have produced a study that accounts for exogenous randomness (e.g. wind and ambient temperature) that could affect the thermal behavior of a line, with a focus on controlling the power flow of the line while maintaining safe probability of line overload. This was done by means of a rigorous analysis of a stochastic version of the heat equation. we incorporated a model of randomness in the behavior of wind power output; again modeling an OPF-like problem that uses chance-constraints to maintain low probability of line overloads; this work has been continued so as to account for generator dynamics as well.

  4. A System-of-Systems Approach for Integrated Energy Systems Modeling...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... The IESM can be used to understand and test the impact of new retail market structures and technologies such as DERs, demand-response equipment, and energy management systems on ...

  5. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    SciTech Connect

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  6. Stability of Ensemble Models Predicts Productivity of Enzymatic Systems

    DOE PAGES [OSTI]

    Theisen, Matthew K.; Lafontaine Rivera, Jimmy G.; Liao, James C.

    2016-03-10

    Stability in a metabolic system may not be obtained if incorrect amounts of enzymes are used. Without stability, some metabolites may accumulate or deplete leading to the irreversible loss of the desired operating point. Even if initial enzyme amounts achieve a stable steady state, changes in enzyme amount due to stochastic variations or environmental changes may move the system to the unstable region and lose the steady-state or quasi-steady-state flux. This situation is distinct from the phenomenon characterized by typical sensitivity analysis, which focuses on the smooth change before loss of stability. Here we show that metabolic networks differ significantlymore » in their intrinsic ability to attain stability due to the network structure and kinetic forms, and that after achieving stability, some enzymes are prone to cause instability upon changes in enzyme amounts. We use Ensemble Modelling for Robustness Analysis (EMRA) to analyze stability in four cell-free enzymatic systems when enzyme amounts are changed. Loss of stability in continuous systems can lead to lower production even when the system is tested experimentally in batch experiments. The predictions of instability by EMRA are supported by the lower productivity in batch experimental tests. Finally, the EMRA method incorporates properties of network structure, including stoichiometry and kinetic form, but does not require specific parameter values of the enzymes.« less

  7. Nuisance Source Population Modeling for Radiation Detection System Analysis

    SciTech Connect

    Sokkappa, P; Lange, D; Nelson, K; Wheeler, R

    2009-10-05

    A major challenge facing the prospective deployment of radiation detection systems for homeland security applications is the discrimination of radiological or nuclear 'threat sources' from radioactive, but benign, 'nuisance sources'. Common examples of such nuisance sources include naturally occurring radioactive material (NORM), medical patients who have received radioactive drugs for either diagnostics or treatment, and industrial sources. A sensitive detector that cannot distinguish between 'threat' and 'benign' classes will generate false positives which, if sufficiently frequent, will preclude it from being operationally deployed. In this report, we describe a first-principles physics-based modeling approach that is used to approximate the physical properties and corresponding gamma ray spectral signatures of real nuisance sources. Specific models are proposed for the three nuisance source classes - NORM, medical and industrial. The models can be validated against measured data - that is, energy spectra generated with the model can be compared to actual nuisance source data. We show by example how this is done for NORM and medical sources, using data sets obtained from spectroscopic detector deployments for cargo container screening and urban area traffic screening, respectively. In addition to capturing the range of radioactive signatures of individual nuisance sources, a nuisance source population model must generate sources with a frequency of occurrence consistent with that found in actual movement of goods and people. Measured radiation detection data can indicate these frequencies, but, at present, such data are available only for a very limited set of locations and time periods. In this report, we make more general estimates of frequencies for NORM and medical sources using a range of data sources such as shipping manifests and medical treatment statistics. We also identify potential data sources for industrial source frequencies, but leave the task of

  8. Assumptions to the Annual Energy Outlook 2015

    Energy Information Administration (EIA) (indexed site)

    Introduction This report presents the major assumptions of the National Energy Modeling System (NEMS) used to generate the projections in the Annual Energy Outlook 2015 1 ...

  9. Analysis of Heat Rate Improvement Potential at Coal-Fired Power...

    Annual Energy Outlook

    The projections in the AEO2015 are produced by the National Energy Modeling System (NEMS), ... three primary functions - capacity planning, fuel dispatching, and finance and pricing. ...

  10. U.S. Energy Information Administration (EIA) - Pub

    Annual Energy Outlook

    Appendix E NEMS overview and brief description of cases The National Energy Modeling System Projections in the Annual Energy Outlook 2016 (AEO2016) are generated using the National ...

  11. Modeling self-propagating exothermic reactions in multilayer systems

    SciTech Connect

    Jayaraman, S.; Mann, A.B.; Knio, O.M.; Van Heerden, D.; Bao, G.; Weihs, T.P.

    1998-12-31

    Self-propagating reactions in free-standing multilayer foils provide a unique opportunity to study very rapid, diffusion-based transformations in non-equilibrium material systems. To fully understand the coupling between mass and thermal diffusion controlling these reactions and to optimize the commercial use of reactive foils, the authors have undertaken analytical and numerical modeling. Their analytical model predicts an increase in the reaction velocities with decreasing bilayer thickness down to a critical bilayer thickness and a reversal in this trend below the critical thickness. Predicting reaction characteristics such as the flame thermal width, the reaction zone width and the effect of variations in material properties with temperature has proven analytically intractable. To overcome these limitations, the authors have also used numerical methods to determine the composition and temperature profiles ahead of the reaction front for different multilayer periods and premixing. The results are compared with experimental values where possible.

  12. Modeling moving systems with RELAP5-3D

    SciTech Connect

    Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; Kyle, Matt R.

    2015-12-04

    RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the accelerating frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.

  13. Modeling moving systems with RELAP5-3D

    DOE PAGES [OSTI]

    Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; Kyle, Matt R.

    2015-12-04

    RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the acceleratingmore » frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.« less

  14. Climate Model Datasets on Earth System Grid II (ESG II)

    DOE Data Explorer

    Earth System Grid (ESG) is a project that combines the power and capacity of supercomputers, sophisticated analysis servers, and datasets on the scale of petabytes. The goal is to provide a seamless distributed environment that allows scientists in many locations to work with large-scale data, perform climate change modeling and simulation,and share results in innovative ways. Though ESG is more about the computing environment than the data, still there are several catalogs of data available at the web site that can be browsed or search. Most of the datasets are restricted to registered users, but several are open to any access.

  15. Mathematical modeling of the behavior of geothermal systems under exploitation

    SciTech Connect

    Bodvarsson, G.S.

    1982-01-01

    Analytical and numerical methods have been used in this investigation to model the behavior of geothermal systems under exploitation. The work is divided into three parts: (1) development of a numerical code, (2) theoretical studies of geothermal systems, and (3) field applications. A new single-phase three-dimensional simulator, capable of solving heat and mass flow problems in a saturated, heterogeneous porous or fractured medium has been developed. The simulator uses the integrated finite difference method for formulating the governing equations and an efficient sparse solver for the solution of the linearized equations. In the theoretical studies, various reservoir engineering problems have been examined. These include (a) well-test analysis, (b) exploitation strategies, (c) injection into fractured rocks, and (d) fault-charged geothermal reservoirs.

  16. Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)

    SciTech Connect

    Turchi, C. S.; Heath, G. A.

    2013-02-01

    This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The reference plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.

  17. Performance Models for the Spike Banded Linear System Solver

    DOE PAGES [OSTI]

    Manguoglu, Murat; Saied, Faisal; Sameh, Ahmed; Grama, Ananth

    2011-01-01

    With availability of large-scale parallel platforms comprised of tens-of-thousands of processors and beyond, there is significant impetus for the development of scalable parallel sparse linear system solvers and preconditioners. An integral part of this design process is the development of performance models capable of predicting performance and providing accurate cost models for the solvers and preconditioners. There has been some work in the past on characterizing performance of the iterative solvers themselves. In this paper, we investigate the problem of characterizing performance and scalability of banded preconditioners. Recent work has demonstrated the superior convergence properties and robustness of banded preconditioners,more » compared to state-of-the-art ILU family of preconditioners as well as algebraic multigrid preconditioners. Furthermore, when used in conjunction with efficient banded solvers, banded preconditioners are capable of significantly faster time-to-solution. Our banded solver, the Truncated Spike algorithm is specifically designed for parallel performance and tolerance to deep memory hierarchies. Its regular structure is also highly amenable to accurate performance characterization. Using these characteristics, we derive the following results in this paper: (i) we develop parallel formulations of the Truncated Spike solver, (ii) we develop a highly accurate pseudo-analytical parallel performance model for our solver, (iii) we show excellent predication capabilities of our model – based on which we argue the high scalability of our solver. Our pseudo-analytical performance model is based on analytical performance characterization of each phase of our solver. These analytical models are then parameterized using actual runtime information on target platforms. An important consequence of our performance models is that they reveal underlying performance bottlenecks in both serial and parallel formulations. All of our results are validated

  18. Earth System Modeling (ESM) Program | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    Earth System Modeling (ESM) Program Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Climate Model Development and Validation (CMDV) Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional &

  19. OSTIblog Articles in the earth systems modeling Topic | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information earth systems modeling Topic ACME - Perfecting Earth System Models by Kathy Chambers 29 Oct, 2014 in Earth system modeling as we know it and how it benefits climate change research is about to transform with the newly launched Accelerated Climate Modeling for Energy (ACME) project sponsored by the Earth System Modeling program within the Department of Energy's (DOE) Office of Biological and Environmental Research. ACME is an unprecedented

  20. Chemically Functionalized Arrays Comprising Micro and Nano-Electro-Mechanizal Systems for Reliable and Selective Characterization of Tank Waste

    SciTech Connect

    Michael J. Sepaniak

    2008-10-08

    Innovative technology of sensory and selective chemical monitoring of hazardous wastes present in storage tanks are of continued importance to the environment. This multifaceted research program exploits the unique characteristics of micro and nano-fabricated cantilever-based, micro-electro-mechanical systems (MEMES) and nano-electro-mechanical systems (NEMS) in chemical sensing.

  1. Description of waste pretreatment and interfacing systems dynamic simulation model

    SciTech Connect

    Garbrick, D.J.; Zimmerman, B.D.

    1995-05-01

    The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggested average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage.

  2. Modeling interfacial area transport in multi-fluid systems

    SciTech Connect

    Yarbro, S.L.

    1996-11-01

    Many typical chemical engineering operations are multi-fluid systems. They are carried out in distillation columns (vapor/liquid), liquid-liquid contactors (liquid/liquid) and other similar devices. An important parameter is interfacial area concentration, which determines the rate of interfluid heat, mass and momentum transfer and ultimately, the overall performance of the equipment. In many cases, the models for determining interfacial area concentration are empirical and can only describe the cases for which there is experimental data. In an effort to understand multiphase reactors and the mixing process better, a multi-fluid model has been developed as part of a research effort to calculate interfacial area transport in several different types of in-line static mixers. For this work, the ensemble-averaged property conservation equations have been derived for each fluid and for the mixture. These equations were then combined to derive a transport equation for the interfacial area concentration. The final, one-dimensional model was compared to interfacial area concentration data from two sizes of Kenics in-line mixer, two sizes of concurrent jet and a Tee mixer. In all cases, the calculated and experimental data compared well with the highest scatter being with the Tee mixer comparison.

  3. Advanced wavefront measurement and analysis of laser system modeling

    SciTech Connect

    Wolfe, C.R.; Auerback, J.M.

    1994-11-15

    High spatial resolution measurements of the reflected or transmitted wavefronts of large aperture optical components used in high peak power laser systems is now possible. These measurements are produced by phase shifting interferometry. The wavefront data is in the form of 3-D phase maps that reconstruct the wavefront shape. The emphasis of this work is on the characterization of wavefront features in the mid-spatial wavelength range (from 0.1 to 10.0 mm) and has been accomplished for the first time. Wavefront structure from optical components with spatial wavelengths in this range are of concern because their effects in high peak power laser systems. At high peak power, this phase modulation can convert to large magnitude intensity modulation by non-linear processes. This can lead to optical damage. We have developed software to input the measured phase map data into beam propagation codes in order to model this conversion process. We are analyzing this data to: (1) Characterize the wavefront structure produced by current optical components, (2) Refine our understanding of laser system performance, (3) Develop a database from which future optical component specifications can be derived.

  4. Climate Sensitivity of the Community Climate System Model, Version 4

    SciTech Connect

    Bitz, Cecilia M.; Shell, K. M.; Gent, P. R.; Bailey, D. A.; Danabasoglu, G.; Armour, K. C.; Holland, M. M.; Kiehl, J. T.

    2012-05-01

    Equilibrium climate sensitivity of the Community Climate System Model Version 4 (CCSM4) is 3.20°C for 1° horizontal resolution in each component. This is about a half degree Celsius higher than in the previous version (CCSM3). The transient climate sensitivity of CCSM4 at 1° resolution is 1.72°C, which is about 0.2°C higher than in CCSM3. These higher climate sensitivities in CCSM4 cannot be explained by the change to a preindustrial baseline climate. We use the radiative kernel technique to show that from CCSM3 to CCSM4, the global mean lapse-rate feedback declines in magnitude, and the shortwave cloud feedback increases. These two warming effects are partially canceled by cooling due to slight decreases in the global mean water-vapor feedback and longwave cloud feedback from CCSM3 to CCSM4. A new formulation of the mixed-layer, slab ocean model in CCSM4 attempts to reproduce the SST and sea ice climatology from an integration with a full-depth ocean, and it is integrated with a dynamic sea ice model. These new features allow an isolation of the influence of ocean dynamical changes on the climate response when comparing integrations with the slab ocean and full-depth ocean. The transient climate response of the full-depth ocean version is 0.54 of the equilibrium climate sensitivity when estimated with the new slab ocean model version for both CCSM3 and CCSM4. We argue the ratio is the same in both versions because they have about the same zonal mean pattern of change in ocean surface heat flux, which broadly resembles the zonal mean pattern of net feedback strength.

  5. Climate Sensitivity of the Community Climate System Model, Version 4

    DOE PAGES [OSTI]

    Bitz, Cecilia M.; Shell, K. M.; Gent, P. R.; Bailey, D. A.; Danabasoglu, G.; Armour, K. C.; Holland, M. M.; Kiehl, J. T.

    2012-05-01

    Equilibrium climate sensitivity of the Community Climate System Model Version 4 (CCSM4) is 3.20°C for 1° horizontal resolution in each component. This is about a half degree Celsius higher than in the previous version (CCSM3). The transient climate sensitivity of CCSM4 at 1° resolution is 1.72°C, which is about 0.2°C higher than in CCSM3. These higher climate sensitivities in CCSM4 cannot be explained by the change to a preindustrial baseline climate. We use the radiative kernel technique to show that from CCSM3 to CCSM4, the global mean lapse-rate feedback declines in magnitude, and the shortwave cloud feedback increases. These twomore » warming effects are partially canceled by cooling due to slight decreases in the global mean water-vapor feedback and longwave cloud feedback from CCSM3 to CCSM4. A new formulation of the mixed-layer, slab ocean model in CCSM4 attempts to reproduce the SST and sea ice climatology from an integration with a full-depth ocean, and it is integrated with a dynamic sea ice model. These new features allow an isolation of the influence of ocean dynamical changes on the climate response when comparing integrations with the slab ocean and full-depth ocean. The transient climate response of the full-depth ocean version is 0.54 of the equilibrium climate sensitivity when estimated with the new slab ocean model version for both CCSM3 and CCSM4. We argue the ratio is the same in both versions because they have about the same zonal mean pattern of change in ocean surface heat flux, which broadly resembles the zonal mean pattern of net feedback strength.« less

  6. Human performance modeling for system of systems analytics: combat performance-shaping factors.

    SciTech Connect

    Lawton, Craig R.; Miller, Dwight Peter

    2006-01-01

    The US military has identified Human Performance Modeling (HPM) as a significant requirement and challenge of future systems modeling and analysis initiatives. To support this goal, Sandia National Laboratories (SNL) has undertaken a program of HPM as an integral augmentation to its system-of-system (SoS) analytics capabilities. The previous effort, reported in SAND2005-6569, evaluated the effects of soldier cognitive fatigue on SoS performance. The current effort began with a very broad survey of any performance-shaping factors (PSFs) that also might affect soldiers performance in combat situations. The work included consideration of three different approaches to cognition modeling and how appropriate they would be for application to SoS analytics. This bulk of this report categorizes 47 PSFs into three groups (internal, external, and task-related) and provides brief descriptions of how each affects combat performance, according to the literature. The PSFs were then assembled into a matrix with 22 representative military tasks and assigned one of four levels of estimated negative impact on task performance, based on the literature. Blank versions of the matrix were then sent to two ex-military subject-matter experts to be filled out based on their personal experiences. Data analysis was performed to identify the consensus most influential PSFs. Results indicate that combat-related injury, cognitive fatigue, inadequate training, physical fatigue, thirst, stress, poor perceptual processing, and presence of chemical agents are among the PSFs with the most negative impact on combat performance.

  7. Modeling Photovoltaic Module-Level Power Electronics in the System Advisor Model; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-07-01

    Module-level power electronics, such as DC power optimizers, microinverters, and those found in AC modules, are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software. This paper extends the work completed at NREL that provided recommendations to model the performance of distributed power electronics in NREL’s popular PVWatts calculator [1], to provide similar guidelines for modeling these technologies in NREL's more complex System Advisor Model (SAM). Module-level power electronics - such as DC power optimizers, microinverters, and those found in AC modules-- are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software.

  8. Evaluation of System Level Modeling and Simulation Tools in Support of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Savannah River Site Liquid Waste Process | Department of Energy System Level Modeling and Simulation Tools in Support of Savannah River Site Liquid Waste Process Evaluation of System Level Modeling and Simulation Tools in Support of Savannah River Site Liquid Waste Process Full Document and Summary Versions are available for download Evaluation of System Level Modeling and Simulation Tools in Support of Savannah River Site Liquid Waste Process (1.11 MB) Summary - System Level Modeling and

  9. Spreader-Bar Radiation Detection System Enhancements: A Modeling and Simulation Study

    SciTech Connect

    Ely, James H.; Ashbaker, Eric D.; Batdorf, Michael T.; Baciak, James E.; Hensley, Walter K.; Jarman, Kenneth D.; Robinson, Sean M.; Sandness, Gerald A.; Schweppe, John E.

    2012-11-13

    This report provides the modeling and simulation results of the investigation of enhanced spreader bar radiation detection systems.

  10. Improving efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices

    Office of Energy Efficiency and Renewable Energy (EERE)

    Discusses progress on thermal comfort modeling and detailed design, fabrication, and component/system-level testing of TE architecture

  11. A Scalable and Extensible Earth System Model for Climate Change Science

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect A Scalable and Extensible Earth System Model for Climate Change Science Citation Details In-Document Search Title: A Scalable and Extensible Earth System Model for Climate Change Science The objective of this award was to build a scalable and extensible Earth System Model that can be used to study climate change science. That objective has been achieved with the public release of the Community Earth System Model, version 1 (CESM1). In particular, the

  12. Best practices for system dynamics model design and construction with powersim studio.

    SciTech Connect

    Malczynski, Leonard A.

    2011-06-01

    This guide addresses software quality in the construction of Powersim{reg_sign} Studio 8 system dynamics simulation models. It is the result of almost ten years of experience with the Powersim suite of system dynamics modeling tools (Constructor and earlier Studio versions). It is a guide that proposes a common look and feel for the construction of Powersim Studio system dynamics models.

  13. Response of Simple, Model Systems to Extreme Conditions

    SciTech Connect

    Ewing, Rodney C.; Lang, Maik

    2015-07-30

    The focus of the research was on the application of high-pressure/high-temperature techniques, together with intense energetic ion beams, to the study of the behavior of simple oxide systems (e.g., SiO2, GeO2, CeO2, TiO2, HfO2, SnO2, ZnO and ZrO2) under extreme conditions. These simple stoichiometries provide unique model systems for the analysis of structural responses to pressure up to and above 1 Mbar, temperatures of up to several thousands of kelvin, and the extreme energy density generated by energetic heavy ions (tens of keV/atom). The investigations included systematic studies of radiation- and pressure-induced amorphization of high P-T polymorphs. By studying the response of simple stoichiometries that have multiple structural “outcomes”, we have established the basic knowledge required for the prediction of the response of more complex structures to extreme conditions. We especially focused on the amorphous state and characterized the different non-crystalline structure-types that result from the interplay of radiation and pressure. For such experiments, we made use of recent technological developments, such as the perforated diamond-anvil cell and in situ investigation using synchrotron x-ray sources. We have been particularly interested in using extreme pressures to alter the electronic structure of a solid prior to irradiation. We expected that the effects of modified band structure would be evident in the track structure and morphology, information which is much needed to describe theoretically the fundamental physics of track-formation. Finally, we investigated the behavior of different simple-oxide, composite nanomaterials (e.g., uncoated nanoparticles vs. core/shell systems) under coupled, extreme conditions. This provided insight into surface and boundary effects on phase stability under extreme conditions.

  14. Emulating a System Dynamics Model with Agent-Based Models: A Methodological Case Study in Simulation of Diabetes Progression

    DOE PAGES [OSTI]

    Schryver, Jack; Nutaro, James; Shankar, Mallikarjun

    2015-10-30

    An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less

  15. Emulating a System Dynamics Model with Agent-Based Models: A Methodological Case Study in Simulation of Diabetes Progression

    SciTech Connect

    Schryver, Jack; Nutaro, James; Shankar, Mallikarjun

    2015-10-30

    An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease states in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.

  16. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    SciTech Connect

    Zeng, Xubin; Troch, Peter; Pelletier, Jon; Niu, Guo-Yue; Gochis, David

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM). We have made substantial progress in model development and evaluation, computational efficiencies and software engineering, and data development and evaluation, as discussed in Sections 2-4. Section 5 presents our success in data dissemination, while Section 6 discusses the scientific impacts of our work. Section 7 discusses education and mentoring success of our project, while Section 8 lists our relevant DOE services. All peer-reviewed papers that acknowledged this project are listed in Section 9. Highlights of our achievements include: • We have finished 20 papers (most published already) on model development and evaluation, computational efficiencies and software engineering, and data development and evaluation • The global datasets developed under this project have been permanently archived and publicly available • Some of our research results have already been implemented in WRF and CLM • Patrick Broxton and Michael Brunke have received their Ph.D. • PI Zeng has served on DOE proposal review panels and DOE lab scientific focus area (SFA) review panels

  17. P50/P90 Analysis for Solar Energy Systems Using the System Advisor Model: Preprint

    SciTech Connect

    Dobos, A. P.; Gilman, P.; Kasberg, M.

    2012-06-01

    To secure competitive financing for a solar energy generation project, the economic risk associated with interannual solar resource variability must be quantified. One way to quantify this risk is to calculate exceedance probabilities representing the amount of energy expected to be produced by a plant. Many years of solar radiation and metereological data are required to determine these values, often called P50 or P90 values for the level of certainty they represent. This paper describes the two methods implemented in the National Renewable Energy Laboratory's System Advisor Model (SAM) to calculate P50 and P90 exceedance probabilities for solar energy projects. The methodology and supporting data sets are applicable to photovoltaic, solar water heating, and concentrating solar power (CSP) systems.

  18. Integrated dynamic landscape analysis and modeling system (IDLAMS) : installation manual.

    SciTech Connect

    Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.

    1999-02-24

    The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.

  19. optimal initial conditions for coupling ice sheet models to earth system

    Office of Scientific and Technical Information (OSTI)

    models (Conference) | SciTech Connect Conference: optimal initial conditions for coupling ice sheet models to earth system models Citation Details In-Document Search Title: optimal initial conditions for coupling ice sheet models to earth system models Authors: Perego, Mauro [1] ; Price, Stephen F. Dr [2] ; Stadler, Georg [3] + Show Author Affiliations Sandia National Laboratories Los Alamos National Laboratory Institute for Computational Engineering and Sciences, Univ. of Texas at Austin

  20. Runtime Tracing of The Community Earth System Model: Feasibility and Benefits

    SciTech Connect

    Wang, Dali; Domke, Jens

    2011-01-01

    Community Earth System Models (CESM) is one of US's leading earth system modeling systems, which has over decades of development history and embraced by large, active user communities. In this paper, we first review the history of CESM software development and layout the general objectives of performance analysis. Then we present an offline global community land model simulation within the CESM framework to demonstrate the procedure of runtime tracing of CESM using the Vampir toolset. Finally, we explain the benefits of runtime tracing to the general earth system modeling community. We hope those considerations can also be beneficial to many other modeling research programs involving legacy high-performance computing applications.

  1. Model for Energy Supply System Alternatives and their General...

    OpenEI (Open Energy Information) [EERE & EIA]

    Resource Type: Softwaremodeling tools Website: www-tc.iaea.orgtcwebabouttcstrategyThematicpdfpresentationsener References: Overview of IAEA PESS Models 1 "MESSAGE...

  2. Hydrothermal model of the Momotombo geothermal system, Nicaragua

    SciTech Connect

    Verma, M.P.; Martinez, E.; Sanchez, M.; Miranda, K.; Gerardo, J.Y.; Araguas, L.

    1996-01-24

    The Momotombo geotherinal field is situated on the northern shore of Lake Managua at the foot of the active Momotombo volcano. The field has been producing electricity since 1983 and has an installed capacity of 70 MWe. The results of geological, geochemical and geophysical studies have been reported in various internal reports. The isotopic studies were funded by the International Atomic Energy Agency (IAEA), Vienna to develop a hydrothermal model of the geothermal system. The chemical and stable isotopic data (δ18O and δD) of the geothermal fluid suggest that the seasonal variation in the production characteristics of the wells is related to the rapid infiltration of local precipitation into the reservoir. The annual average composition of Na+, K+ and Mg2+ plotted on the Na- K-Mg triangular diagram presented by Giggenbach (1988) to identify the state of rock-water interaction in geothermal reservoirs, shows that the fluids of almost every well are shifting towards chemically immature water due to resenroir exploitation. This effect is prominent in wells Mt-2. Mt-12, Mt-22 and Mt-27. The local groundwaters including surface water from Lake Managua have much lower tritium concentrations than sonic of the geothermal well fluids, which have about 6 T.U. The high-tritium wells are located along a fault inferred froin a thermal anomaly. The tritium concentration is also higher in fluids from wells close to the lake. This could indicate that older local precipitation waters are stored in a deep layer within the lake and that they are infiltrating into the geothermal reservoir.

  3. Policy Analysis Modeling System (PAMS) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    System AgencyCompany Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Buildings, Energy Efficiency Topics: Policiesdeployment programs...

  4. A Proposed Implementation of Tarjan's Algorithm for Scheduling the Solution Sequence of Systems of Federated Models

    SciTech Connect

    McNunn, Gabriel S; Bryden, Kenneth M

    2013-01-01

    Tarjan's algorithm schedules the solution of systems of equations by noting the coupling and grouping between the equations. Simulating complex systems, e.g., advanced power plants, aerodynamic systems, or the multi-scale design of components, requires the linkage of large groups of coupled models. Currently, this is handled manually in systems modeling packages. That is, the analyst explicitly defines both the method and solution sequence necessary to couple the models. In small systems of models and equations this works well. However, as additional detail is needed across systems and across scales, the number of models grows rapidly. This precludes the manual assembly of large systems of federated models, particularly in systems composed of high fidelity models. This paper examines extending Tarjan's algorithm from sets of equations to sets of models. The proposed implementation of the algorithm is demonstrated using a small one-dimensional system of federated models representing the heat transfer and thermal stress in a gas turbine blade with thermal barrier coating. Enabling the rapid assembly and substitution of different models permits the rapid turnaround needed to support the what-if kinds of questions that arise in engineering design.

  5. Tank waste remediation system simulation analysis retrieval model

    SciTech Connect

    Fordham, R.A.

    1996-09-30

    The goal of simulation was to test tll(., consequences of assumptions. For the TWRS SIMAN Retrieval Model, l@lie specific assumptions are primarily defined with respect to waste processing arid transfer timing. The model tracks 73 chem1913ical constituents from underground waste tanks to glass; yet, the detailed (@hemistrv and complete set of unit operations of the TWRS process flow sheet are represented only at the level necessary to define the waste processing and transfer logic and to estimate the feed composition for the treatment facilities. Tlierefor(,, the model should net be regarded as a substitute for the TWRS process flow sheet. Pra(!ticallv the model functions as a dyrt(imic extension of the flow sheet model. I I The following sections present the description, assunipt@ions, architecture, arid evalua- tion of the TWRS SIMAN Retrieval Model. Section 2 describes the model in terms of an overview of the processes represented. Section 3 presents the assumptions for the simulation model. Specific assumptions 9.tt(l parameter values used in the model are provided for waste retrieval, pretreatment, low-level waste (LLNN7) immobilization, and high-level waste (HLW) immobilization functions. Section 4 describes the model in terms of its functional architec- rare to d(@fine a basis for a systematic evaluation of the model. Finally, Section 5 documents an independent test and evaluation of the niodel`s performance (i.e., the verification and validation). Additionally, Appendix A gives a complete listing of the tank inventory used. Appendix B documents the verification and validation plan that was used for the (Section 5) evaluation work. A description and listing of all the model variables is given in Appendix C along with a complete source listing.

  6. NREL: Water Power Research - Economic and Power System Modeling...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The model represents the initial capital investment of offshore projects, considering project size, water depth, distance from shore, and turbine technology. NREL also develops ...

  7. In the OSTI Collections: Earth System Models | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    specification of greenhouse gas emissions rather than ... greenhouse gases, natural and anthropogenic ... The new model has been run with greenhouse-gas emissions ...

  8. RTI International Develops Ssl Luminaire System Reliability Model

    Office of Energy Efficiency and Renewable Energy (EERE)

    With the help of DOE funding, RTI International is developing and validating accelerated life testing (ALT) methodologies and reliability models for predicting the lifetime of integrated solid...

  9. Model Ordinance for Siting of Wind-Energy Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    With respect to small wind turbines, the model ordinance addresses setbacks, access, lighting, noise, appearance, code compliance, utility notification, abandonment, and the permitting process....

  10. Power System Generation and Inter-Connection Planning Model ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Generation and Inter-Connection Planning Model (SUPER) AgencyCompany Organization: Latin American Energy Organization Sector: Energy Focus Area: Renewable Energy, Hydro...

  11. Geochemical Modeling of the Near-Surface Hydrothermal System...

    OpenEI (Open Energy Information) [EERE & EIA]

    with non-thermal groundwater. Our conceptual model is based on hypotheses in the literature and published geochemical and petrologic data. Mixing of thermal and non-thermal...

  12. Update on Small Modular Reactors Dynamic System Modeling Tool: Web Application

    SciTech Connect

    Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.; Batteh, John J; Tiller, Michael M.

    2015-01-01

    Previous reports focused on the development of component and system models as well as end-to-end system models using Modelica and Dymola for two advanced reactor architectures: (1) Advanced Liquid Metal Reactor and (2) fluoride high-temperature reactor (FHR). The focus of this report is the release of the first beta version of the web-based application for model use and collaboration, as well as an update on the FHR model. The web-based application allows novice users to configure end-to-end system models from preconfigured choices to investigate the instrumentation and controls implications of these designs and allows for the collaborative development of individual component models that can be benchmarked against test systems for potential inclusion in the model library. A description of this application is provided along with examples of its use and a listing and discussion of all the models that currently exist in the library.

  13. Oil and Gas Supply Module of the National Energy Modeling System...

    Energy Information Administration (EIA) (indexed site)

    Oil and Gas Supply Module of the National Energy Modeling System: Model Documentation 2014 July 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy ...

  14. 2011 Community Earth System Model (CESM) Tutorial, August 1-5...

    Office of Scientific and Technical Information (OSTI)

    Model (CESM) Tutorial, August 1-5, 2011 Citation Details In-Document Search Title: 2011 Community Earth System Model (CESM) Tutorial, August 1-5, 2011 In fiscal year 2011, the ...

  15. Performance Modeling and Testing of Distributed Electronics in PV Systems; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Deline, C.

    2015-03-18

    Computer modeling is able to predict the performance of distributed power electronics (microinverters, power optimizers) in PV systems. However, details about partial shade and other mismatch must be known in order to give the model accurate information to go on. This talk will describe recent updates in NREL’s System Advisor Model program to model partial shading losses with and without distributed power electronics, along with experimental validation results. Computer modeling is able to predict the performance of distributed power electronics (microinverters, power optimizers) in PV systems. However, details about partial shade and other mismatch must be known in order to give the model accurate information to go on. This talk will describe recent updates in NREL’s System Advisor Model program to model partial shading losses.

  16. Modelling and real-time simulation of continuous-discrete systems in mechatronics

    SciTech Connect

    Lindow, H.

    1996-12-31

    This work presents a methodology for simulation and modelling of systems with continuous - discrete dynamics. It derives hybrid discrete event models from Lagrange`s equations of motion. This method combines continuous mechanical, electrical and thermodynamical submodels on one hand with discrete event models an the other hand into a hybrid discrete event model. This straight forward software development avoids numeric overhead.

  17. Fuel Cell Power Model for CHHP System Economics and Performance Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Model for CHHP System Economics and Performance Analysis Fuel Cell Power Model for CHHP System Economics and Performance Analysis Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA renewable_hydrogen_workshop_nov16_steward.pdf (818.96 KB) More Documents & Publications Biogas Opportunities Roadmap Progress Report Fuel Cell Tri-Generation System Case Study using the H2A Stationary Model Project Reports for Tulalip Tribes - 2003 Project

  18. NREL: Energy Analysis - Regional Energy Deployment System (ReEDS) Model

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Regional Energy Deployment System (ReEDS) Model Energy Analysis The Regional Energy Deployment System (ReEDS) helps the U.S. Department of Energy, utilities, public utility commissions, state/local regulators and others optimize and visualize the build-out of U.S. electricity generation and transmission systems. Learn more about ReEDS: Model Description Unique Value Documentation Publications Transformation of the Electric Sector (Compare to Baseline Projections) Printable Version Model

  19. Final Report for proposal "The Interface between Earth System Models and

    Office of Scientific and Technical Information (OSTI)

    Impacts on Society Workshop, Spring 2011 (Technical Report) | SciTech Connect Technical Report: Final Report for proposal "The Interface between Earth System Models and Impacts on Society Workshop, Spring 2011 Citation Details In-Document Search Title: Final Report for proposal "The Interface between Earth System Models and Impacts on Society Workshop, Spring 2011 The creation of a new Community Earth System Model (CESM) working group, combining science-driven research with

  20. Ultrafast Structural Dynamics in Combustion Relevant Model Systems

    SciTech Connect

    Weber, Peter M.

    2014-03-31

    The research project explored the time resolved structural dynamics of important model reaction system using an array of novel methods that were developed specifically for this purpose. They include time resolved electron diffraction, time resolved relativistic electron diffraction, and time resolved Rydberg fingerprint spectroscopy. Toward the end of the funding period, we also developed time-resolved x-ray diffraction, which uses ultrafast x-ray pulses at LCLS. Those experiments are just now blossoming, as the funding period expired. In the following, the time resolved Rydberg Fingerprint Spectroscopy is discussed in some detail, as it has been a very productive method. The binding energy of an electron in a Rydberg state, that is, the energy difference between the Rydberg level and the ground state of the molecular ion, has been found to be a uniquely powerful tool to characterize the molecular structure. To rationalize the structure sensitivity we invoke a picture from electron diffraction: when it passes the molecular ion core, the Rydberg electron experiences a phase shift compared to an electron in a hydrogen atom. This phase shift requires an adjustment of the binding energy of the electron, which is measurable. As in electron diffraction, the phase shift depends on the molecular, geometrical structure, so that a measurement of the electron binding energy can be interpreted as a measurement of the molecules structure. Building on this insight, we have developed a structurally sensitive spectroscopy: the molecule is first elevated to the Rydberg state, and the binding energy is then measured using photoelectron spectroscopy. The molecules structure is read out as the binding energy spectrum. Since the photoionization can be done with ultrafast laser pulses, the technique is inherently capable of a time resolution in the femtosecond regime. For the purpose of identifying the structures of molecules during chemical reactions, and for the analysis of

  1. Survey of Emissions Models for Distributed Combined Heat and Power Systems,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2007 | Department of Energy Survey of Emissions Models for Distributed Combined Heat and Power Systems, 2007 Survey of Emissions Models for Distributed Combined Heat and Power Systems, 2007 The models surveyed in this study vary in design, scope, and detail, but they all seek to capture the functions of an energy economy and use knowledge of economic interactions to simulate the effects of economic and policy changes. In this 2007 document, Integrated Planning Model (IPM), Average Displaced

  2. Fuel Cell Power Model for CHHP System Economics and Performance Analysis (Presentation)

    SciTech Connect

    Steward, D.

    2009-11-16

    Presentation about Fuel Cell Power (FCPower) Model used to analyze the economics and performance of combined heat, hydrogen, and power (CHHP) systems.

  3. Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems

    Energy.gov [DOE]

    Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  4. Systems Modeling for a Laser-Driven IFE Power Plant using Direct...

    Office of Scientific and Technical Information (OSTI)

    IFE Power Plant using Direct Conversion Citation Details In-Document Search Title: Systems Modeling for a Laser-Driven IFE Power Plant using Direct Conversion You ...

  5. Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model Citation Details In-Document Search Title: Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9(tm) software package. Three phases of an insitu retort were consider; a construction

  6. Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)

    SciTech Connect

    Tabares Velasco, P. C.

    2011-04-01

    This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

  7. NREL Wind Integrated System Design and Engineering Model

    Energy Science and Technology Software Center

    2013-09-30

    NREL_WISDEM is an integrated model for wind turbines and plants developed In python based on the open source software OpenMDAO. NREL_WISDEM is a set of wrappers for various wind turbine and models that integrate pre-existing models together into OpenMDAO. It is organized into groups each with their own repositories including Plant_CostSE. Plant_EnergySE, Turbine_CostSE and TurbineSE. The wrappers are designed for licensed and non-licensed models though in both cases, one has to have access to andmore » install the individual models themselves before using them in the overall software platform.« less

  8. Computer modeling of properties of complex molecular systems

    SciTech Connect

    Kulkova, E.Yu.; Khrenova, M.G.; Polyakov, I.V.

    2015-03-10

    Large molecular aggregates present important examples of strongly nonhomogeneous systems. We apply combined quantum mechanics / molecular mechanics approaches that assume treatment of a part of the system by quantum-based methods and the rest of the system with conventional force fields. Herein we illustrate these computational approaches by two different examples: (1) large-scale molecular systems mimicking natural photosynthetic centers, and (2) components of prospective solar cells containing titan dioxide and organic dye molecules. We demonstrate that modern computational tools are capable to predict structures and spectra of such complex molecular aggregates.

  9. Code System to Model LWR Meltdown Accident Response.

    Energy Science and Technology Software Center

    2001-04-25

    MARCH2 describes the response of water cooled reactors to severe accidents, including consideration of the primary coolant system as well as the containment.

  10. Collective operations in a file system based execution model

    DOEpatents

    Shinde, Pravin; Van Hensbergen, Eric

    2013-02-19

    A mechanism is provided for group communications using a MULTI-PIPE synthetic file system. A master application creates a multi-pipe synthetic file in the MULTI-PIPE synthetic file system, the master application indicating a multi-pipe operation to be performed. The master application then writes a header-control block of the multi-pipe synthetic file specifying at least one of a multi-pipe synthetic file system name, a message type, a message size, a specific destination, or a specification of the multi-pipe operation. Any other application participating in the group communications then opens the same multi-pipe synthetic file. A MULTI-PIPE file system module then implements the multi-pipe operation as identified by the master application. The master application and the other applications then either read or write operation messages to the multi-pipe synthetic file and the MULTI-PIPE synthetic file system module performs appropriate actions.

  11. Collective operations in a file system based execution model

    DOEpatents

    Shinde, Pravin; Van Hensbergen, Eric

    2013-02-12

    A mechanism is provided for group communications using a MULTI-PIPE synthetic file system. A master application creates a multi-pipe synthetic file in the MULTI-PIPE synthetic file system, the master application indicating a multi-pipe operation to be performed. The master application then writes a header-control block of the multi-pipe synthetic file specifying at least one of a multi-pipe synthetic file system name, a message type, a message size, a specific destination, or a specification of the multi-pipe operation. Any other application participating in the group communications then opens the same multi-pipe synthetic file. A MULTI-PIPE file system module then implements the multi-pipe operation as identified by the master application. The master application and the other applications then either read or write operation messages to the multi-pipe synthetic file and the MULTI-PIPE synthetic file system module performs appropriate actions.

  12. PROJECT PROFILE: Improving PV performance Estimates in the System Advisor Model with Component and System Reliability Metrics

    Office of Energy Efficiency and Renewable Energy (EERE)

    This project will improve the forecasting of lifetime PV system performance as well as operations and maintenance costs by incorporating the Photovoltaic Reliability and Performance Model (PV-RPM) developed by Sandia into the widely-used Solar Advisor Model (SAM) software platform.

  13. Renewable Fuels Module of the National Energy Modeling System

    Gasoline and Diesel Fuel Update

    sites is calculated by constructing a model of a representative 100-acre by 50-feet deep landfill site and by applying methane emission factors for high, low, and very low...

  14. A Flexible Power System Operations Simulation Model for Assessing...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... The algorithms also allow for HVDC lines and phase shifting transformers to be part of the ... PTDF and LODF. It includes modeling of HVDC lines and phase-shifting transformers as well. ...

  15. Community Climate System Model (CCSM) Experiments and Output Data

    DOE Data Explorer

    The CCSM web makes the source code of various versions of the model freely available and provides access to experiments that have been run and the resulting output data.

  16. A system analysis computer model for the High Flux Isotope Reactor (HFIRSYS Version 1)

    SciTech Connect

    Sozer, M.C.

    1992-04-01

    A system transient analysis computer model (HFIRSYS) has been developed for analysis of small break loss of coolant accidents (LOCA) and operational transients. The computer model is based on the Advanced Continuous Simulation Language (ACSL) that produces the FORTRAN code automatically and that provides integration routines such as the Gear`s stiff algorithm as well as enabling users with numerous practical tools for generating Eigen values, and providing debug outputs and graphics capabilities, etc. The HFIRSYS computer code is structured in the form of the Modular Modeling System (MMS) code. Component modules from MMS and in-house developed modules were both used to configure HFIRSYS. A description of the High Flux Isotope Reactor, theoretical bases for the modeled components of the system, and the verification and validation efforts are reported. The computer model performs satisfactorily including cases in which effects of structural elasticity on the system pressure is significant; however, its capabilities are limited to single phase flow. Because of the modular structure, the new component models from the Modular Modeling System can easily be added to HFIRSYS for analyzing their effects on system`s behavior. The computer model is a versatile tool for studying various system transients. The intent of this report is not to be a users manual, but to provide theoretical bases and basic information about the computer model and the reactor.

  17. EIA model documentation: Documentation of the Oil and Gas Supply Module (OGSM)

    SciTech Connect

    1997-01-01

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian shale and coalbeds. Crude oil and natural gas projects are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted drilling expenditures and average drilling costs to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region.

  18. On linking an Earth system model to the equilibrium carbon representation of an economically optimizing land use model

    SciTech Connect

    Bond-Lamberty, Benjamin; Calvin, Katherine V.; Jones, Andrew D.; Mao, Jiafu; Patel, Pralit L.; Shi, Xiaoying; Thomson, Allison M.; Thornton, Peter E.; Zhou, Yuyu

    2014-01-01

    Human activities are significantly altering biogeochemical cycles at the global scale, posing a significant problem for earth system models (ESMs), which may incorporate static land-use change inputs but do not actively simulate policy or economic forces. One option to address this problem is a to couple an ESM with an economically oriented integrated assessment model. Here we have implemented and tested a coupling mechanism between the carbon cycles of an ESM (CLM) and an integrated assessment (GCAM) model, examining the best proxy variables to share between the models, and quantifying our ability to distinguish climate- and land-use-driven flux changes. CLMs net primary production and heterotrophic respiration outputs were found to be the most robust proxy variables by which to manipulate GCAMs assumptions of long-term ecosystem steady state carbon, with short-term forest production strongly correlated with long-term biomass changes in climate-change model runs. By leveraging the fact that carbon-cycle effects of anthropogenic land-use change are short-term and spatially limited relative to widely distributed climate effects, we were able to distinguish these effects successfully in the model coupling, passing only the latter to GCAM. By allowing climate effects from a full earth system model to dynamically modulate the economic and policy decisions of an integrated assessment model, this work provides a foundation for linking these models in a robust and flexible framework capable of examining two-way interactions between human and earth system processes.

  19. U.S. Energy Information Administration (EIA) - Source

    Gasoline and Diesel Fuel Update

    AEO2016 Early Release: Summary of Two Cases Release Date: May 17, 2016 | Full Report Release Date: July 7, 2016 | Report Number: DOE/EIA-0383ER(2016) Availability of the National Energy Modeling System (NEMS) Archive print version NEMS has been developed primarily for use by the modelers at the Energy Information Administration (EIA) who understand its structure and programming. As a result, NEMS is only used by a few organizations outside of the EIA. Most people who have requested NEMS in the

  20. Advanced High-Temperature Reactor Dynamic System Model Development: April 2012 Status

    SciTech Connect

    Qualls, A L; Cetiner, M S; Wilson, Jr, T L

    2012-04-30

    The Advanced High-Temperature Reactor (AHTR) is a large-output fluoride-salt-cooled high-temperature reactor (FHR). An early-phase preconceptual design of a 1500 MW(e) power plant was developed in 2011 [Refs. 1 and 2]. An updated version of this plant is shown as Fig. 1. FHRs feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR is designed to be a “walk away” reactor that requires no action to prevent large off-site releases following even severe reactor accidents. This report describes the development of dynamic system models used to further the AHTR design toward that goal. These models predict system response during warmup, startup, normal operation, and limited off-normal operating conditions. Severe accidents that include a loss-of-fluid inventory are not currently modeled. The scope of the models is limited to the plant power system, including the reactor, the primary and intermediate heat transport systems, the power conversion system, and safety-related or auxiliary heat removal systems. The primary coolant system, the intermediate heat transport system and the reactor building structure surrounding them are shown in Fig. 2. These systems are modeled in the most detail because the passive interaction of the primary system with the surrounding structure and heat removal systems, and ultimately the environment, protects the reactor fuel and the vessel from damage during severe reactor transients. The reactor silo also plays an important role during system warmup. The dynamic system modeling tools predict system performance and response. The goal is to accurately predict temperatures and pressures within the primary, intermediate, and power conversion systems and to study the impacts of design changes on those responses. The models are design tools and are not intended to be used in reactor qualification. The important details to capture in the primary

  1. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    SciTech Connect

    Dykes, K.; Graf, P.; Scott, G.; Ning, A.; King, R.; Guo, Y.; Parsons, T.; Damiani, R.; Felker, F.; Veers, P.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.

  2. Groundwater Modeling System Linkage with the Framework for Risk Analysis in Multimedia Environmental Systems

    SciTech Connect

    Whelan, Gene; Castleton, Karl J.

    2006-02-13

    The information in this document summarizes the approach that is used to link FRAMES-2 with GMS. This linkage will provide the user with the ability to (1) send information to a specific model in GMS, thereby modifying the models input information, as allowed by the model developer, (2) run the executable of the numerical model contained in GMS, and (3) extract, from the appropriate GMS output, information required for consumption by downstream models, which are also linked with FRAMES-2.

  3. Advanced HD Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Meeting PDF icon vss089daw2012p.pdf More Documents & Publications Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System Simulations Vehicle Technologies ...

  4. Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint

    SciTech Connect

    Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

    2006-03-01

    This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts

  5. Status and modeling improvements of hybrid wind/PV/diesel power systems for Brazilian applications

    SciTech Connect

    McGowan, J.G.; Manwell, J.F.; Avelar, C.; Taylor, R.

    1997-12-31

    This paper present a summary of the ongoing work on the modeling and system design of hybrid wind/PV/diesel systems for two different sites in the Amazonia region of Brazil. The work incorporates the latest resource data and is based on the use of the Hybrid2 simulation code developed by the University of Massachusetts and NREL. Details of the baseline operating hybrid systems are reviewed, and the results of the latest detailed hybrid system evaluation for each site are summarized. Based on the system modeling results, separate recommendations for system modification and improvements are made.

  6. Viscoelastic Model for Lung Parenchyma for Multi-Scale Modeling of Respiratory System, Phase II: Dodecahedral Micro-Model

    SciTech Connect

    Freed, Alan D.; Einstein, Daniel R.; Carson, James P.; Jacob, Rick E.

    2012-03-01

    In the first year of this contractual effort a hypo-elastic constitutive model was developed and shown to have great potential in modeling the elastic response of parenchyma. This model resides at the macroscopic level of the continuum. In this, the second year of our support, an isotropic dodecahedron is employed as an alveolar model. This is a microscopic model for parenchyma. A hopeful outcome is that the linkage between these two scales of modeling will be a source of insight and inspiration that will aid us in the final year's activity: creating a viscoelastic model for parenchyma.

  7. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Fuel Cell Technologies Office's systems analysis program uses a consistent set of models and data for transparent analytical evaluations. The following fact sheets provide an overview and individual summaries of the models and tools used for systems analysis of hydrogen and fuel cells.

  8. 3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations

    SciTech Connect

    Howard Barker; Jason Cole

    2012-05-17

    Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

  9. Comparison of the Accuracy and Speed of Transient Mobile A/C System Simulation Models: Preprint

    SciTech Connect

    Kiss, T.; Lustbader, J.

    2014-03-01

    The operation of air conditioning (A/C) systems is a significant contributor to the total amount of fuel used by light- and heavy-duty vehicles. Therefore, continued improvement of the efficiency of these mobile A/C systems is important. Numerical simulation has been used to reduce the system development time and to improve the electronic controls, but numerical models that include highly detailed physics run slower than desired for carrying out vehicle-focused drive cycle-based system optimization. Therefore, faster models are needed even if some accuracy is sacrificed. In this study, a validated model with highly detailed physics, the 'Fully-Detailed' model, and two models with different levels of simplification, the 'Quasi-Transient' and the 'Mapped- Component' models, are compared. The Quasi-Transient model applies some simplifications compared to the Fully-Detailed model to allow faster model execution speeds. The Mapped-Component model is similar to the Quasi-Transient model except instead of detailed flow and heat transfer calculations in the heat exchangers, it uses lookup tables created with the Quasi-Transient model. All three models are set up to represent the same physical A/C system and the same electronic controls. Speed and results of the three model versions are compared for steady state and transient operation. Steady state simulated data are also compared to measured data. The results show that the Quasi-Transient and Mapped-Component models ran much faster than the Fully-Detailed model, on the order of 10- and 100-fold, respectively. They also adequately approach the results of the Fully-Detailed model for steady-state operation, and for drive cycle-based efficiency predictions

  10. US and EU Hold Workshop on Integrated Water and Power Systems Modeling |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy US and EU Hold Workshop on Integrated Water and Power Systems Modeling US and EU Hold Workshop on Integrated Water and Power Systems Modeling US and EU Hold Workshop on Integrated Water and Power Systems Modeling Advancing Modelling to Address the Water-Energy Nexus On 28-29 September 2016, the US Department of Energy and the European Commission's science and knowledge service, the Joint Research Centre (JRC), in cooperation with the Directorate-General for Research and

  11. HyPEP FY-07 Report: System Integration Model Development

    SciTech Connect

    C. H. Oh; E. S. Kim; S. R. Sherman; R. Vilim

    2007-04-01

    The integrated system of a Very High Temperature Gas-Cooled Reactor (VHTR) and a High Temperature Steam Electrolysis (HTSE) process is one of systems being investigated by the U.S. Department of Energy and Idaho National Laboratory. This system will produce hydrogen by utilizing a highly efficient VHTR with an outlet temperature of 900 °C and supplying necessary energy and electricity to the HTSE process for electrolysis of high temperature steam. This report includes a description of five configurations including an indirect parallel cycle, an indirect serial cycle, a direct serial cycle, a steam combined cycle, and a reheat cycle. HYSYS simulations were performed for each of these configurations coupled to a HTSE process. Final results are presented along with parametric studies and process optimization.

  12. Dynamic modelling of a double-pendulum gantry crane system incorporating payload

    SciTech Connect

    Ismail, R. M. T. Raja; Ahmad, M. A.; Ramli, M. S.; Ishak, R.; Zawawi, M. A.

    2011-06-20

    The natural sway of crane payloads is detrimental to safe and efficient operation. Under certain conditions, the problem is complicated when the payloads create a double pendulum effect. This paper presents dynamic modelling of a double-pendulum gantry crane system based on closed-form equations of motion. The Lagrangian method is used to derive the dynamic model of the system. A dynamic model of the system incorporating payload is developed and the effects of payload on the response of the system are discussed. Extensive results that validate the theoretical derivation are presented in the time and frequency domains.

  13. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 2

    SciTech Connect

    1998-01-01

    The attachments contained within this appendix provide additional details about the model development and estimation process which do not easily lend themselves to incorporation in the main body of the model documentation report. The information provided in these attachments is not integral to the understanding of the model`s operation, but provides the reader with opportunity to gain a deeper understanding of some of the model`s underlying assumptions. There will be a slight degree of replication of materials found elsewhere in the documentation, made unavoidable by the dictates of internal consistency. Each attachment is associated with a specific component of the transportation model; the presentation follows the same sequence of modules employed in Volume 1. The following attachments are contained in Appendix F: Fuel Economy Model (FEM)--provides a discussion of the FEM vehicle demand and performance by size class models; Alternative Fuel Vehicle (AFV) Model--describes data input sources and extrapolation methodologies; Light-Duty Vehicle (LDV) Stock Model--discusses the fuel economy gap estimation methodology; Light Duty Vehicle Fleet Model--presents the data development for business, utility, and government fleet vehicles; Light Commercial Truck Model--describes the stratification methodology and data sources employed in estimating the stock and performance of LCT`s; Air Travel Demand Model--presents the derivation of the demographic index, used to modify estimates of personal travel demand; and Airborne Emissions Model--describes the derivation of emissions factors used to associate transportation measures to levels of airborne emissions of several pollutants.

  14. RELAP5/MOD3 code manual: Code structure, system models, and solution methods. Volume 1

    SciTech Connect

    1995-08-01

    The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling, approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I provides modeling theory and associated numerical schemes.

  15. Techno-Economic Modeling - Building New Battery Systems on the Computer -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Joint Center for Energy Storage Research October 22, 2015, Accomplishments Techno-Economic Modeling - Building New Battery Systems on the Computer JCESR is applying techno-economic models to project the performance and cost of a wide array of promising new battery systems before they are prototyped. The results from techno-economic modeling establish performance "floors" for discovery science teams looking for new anodes, cathodes, and electrolytes for a beyond lithium-ion battery,

  16. Multiphase flow modeling based on the hyperbolic thermodynamically compatible systems theory

    SciTech Connect

    Romenski, E.

    2015-03-10

    An application of the theory of thermodynamically compatible hyperbolic systems to design a multiphase compressible flow models is discussed. With the use of such approach the governing equations are derived from the first principles, formulated in a divergent form and can be transformed to a symmetric hyperbolic system in the sense of Friedrichs. A usage of the proposed approach is described for the development of multiphase compressible fluid models, including two-phase flow models.

  17. Final Report for Enhancing the MPI Programming Model for PetaScale Systems

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Final Report for Enhancing the MPI Programming Model for PetaScale Systems Citation Details In-Document Search Title: Final Report for Enhancing the MPI Programming Model for PetaScale Systems This project performed research into enhancing the MPI programming model in two ways: developing improved algorithms and implementation strategies, tested and realized in the MPICH implementation, and exploring extensions to the MPI standard to better support

  18. A Physically Based Runoff Routing Model for Land Surface and Earth System Models

    SciTech Connect

    Li, Hongyi; Wigmosta, Mark S.; Wu, Huan; Huang, Maoyi; Ke, Yinghai; Coleman, Andre M.; Leung, Lai-Yung R.

    2013-06-13

    A new physically based runoff routing model, called the Model for Scale Adaptive River Transport (MOSART), has been developed to be applicable across local, regional, and global scales. Within each spatial unit, surface runoff is first routed across hillslopes and then discharged along with subsurface runoff into a tributary subnetwork before entering the main channel. The spatial units are thus linked via routing through the main channel network, which is constructed in a scale-consistent way across different spatial resolutions. All model parameters are physically based, and only a small subset requires calibration.MOSART has been applied to the Columbia River basin at 1/ 168, 1/ 88, 1/ 48, and 1/ 28 spatial resolutions and was evaluated using naturalized or observed streamflow at a number of gauge stations. MOSART is compared to two other routing models widely used with land surface models, the River Transport Model (RTM) in the Community Land Model (CLM) and the Lohmann routing model, included as a postprocessor in the Variable Infiltration Capacity (VIC) model package, yielding consistent performance at multiple resolutions. MOSART is further evaluated using the channel velocities derived from field measurements or a hydraulic model at various locations and is shown to be capable of producing the seasonal variation and magnitude of channel velocities reasonably well at different resolutions. Moreover, the impacts of spatial resolution on model simulations are systematically examined at local and regional scales. Finally, the limitations ofMOSART and future directions for improvements are discussed.

  19. Modeling of RHIC insulating vacuum for system pumpdown characteristics

    SciTech Connect

    Todd, R.J.; Pate, D.J.; Welch, K.M.

    1993-06-01

    This paper presents a model for predicting the pumpdown characteristics of a 480 m RHIC (Relativistic Heavy Ion Collider) vacuum cryostat. The longitudinal and transverse conductances of a typical cryostat were calculated. A voltage analogue of these conductances was constructed for room temperature conditions. The total longitudinal conductance of a room temperature cryostat was thereby achieved. This conductance was then used to calculate the diameter of an equivalent long outgassing tube, having more convenient analytical expressions for pressure profiles when pumped. The equivalent of a unit outgassing rate for this tube was obtained using previously published MLI (multi-layer insulation) outgassing data. With this model one is then able to predict a cryostat pumpdown rate as a function of the location and size of roughing pumps.

  20. System Reliability Model for Solid-State Lighting Luminaires | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Lead Performer: RTI International - Research Triangle Park, NC Partner: Auburn University - Auburn, AL DOE Total Funding: $2,848,942 Cost Share: $712,234 Project Term: September 16, 2011 - September 30, 2016 Funding Opportunity: Solid State Lighting Core Technology Funding Opportunity Announcement (DE-FOA- 0000329) Project Objective The primary objectives of the proposed work will be to develop and validate a reliability model and accelerated life testing (ALT) methodologies for

  1. Conceptual modular description of the high-level waste management system for system studies model development

    SciTech Connect

    McKee, R.W.; Young, J.R.; Konzek, G.J.

    1992-08-01

    This document presents modular descriptions of possible alternative components of the federal high-level radioactive waste management system and the procedures for combining these modules to obtain descriptions for alternative configurations of that system. The 20 separate system component modules presented here can be combined to obtain a description of any of the 17 alternative system configurations (i.e., scenarios) that were evaluated in the MRS Systems Studies program (DOE 1989a). First-approximation descriptions of other yet-undefined system configurations could also be developed for system study purposes from this database. The descriptions include, in a modular format, both functional descriptions of the processes in the waste management system, plus physical descriptions of the equipment and facilities necessary for performance of those functions.

  2. Fast Simulating High Order Models Application to Micro Electro-Mechanical Systems (MEMS)

    SciTech Connect

    Yacine, Z.; Benfdila, A.; Djennoune, S.

    2009-03-05

    The approximation of high order systems by low order models is one of the important problems in system theory. The use of a reduced order model makes it easier to implement analysis, simulations and control system designs. Numerous methods are available in the literature for order reduction of linear continuous systems in time domain as well as in frequency domain. But, this is not the case for non linear systems. The well known Trajectory Piece-Wise Linear approach (TPWL) elaborated to nonlinear model order reduction guarantees a simplification and an accurate representation of the behaviour of strongly non linear systems handling local and global approximation. The present attempt is towards evolving an improvement for the TPWL order reduction technique, which ensures a good quality of approximation combining the advantages of the Krylov subspaces method and the local linearization. We illustrate the technique on a MEMS circuit (Micro Electro-Mechanical System)

  3. NREL: Regional Energy Deployment System (ReEDS) Model - Webmaster

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version ReEDS Home Model Description Unique Value Documentation Publications Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how

  4. A three-phase converter model for harmonic analysis of HVDC systems

    SciTech Connect

    Xu, W.; Drakos, J.E.; Mansour, Y.; Chang, A. )

    1994-07-01

    An equivalent circuit model is presented to model bridge converters for three-phase HVDC harmonic power flow analysis. The validity and accuracy of the model are verified by comparing simulation results against field test results. The model is interfaced with a multiphase harmonic load flow program to investigate the generation of non-characteristic harmonics from HVDC links and the flow of HVDC harmonics in a real system.

  5. Summary - System Level Modeling and Simulation Tools for Hanford

    Office of Environmental Management (EM)

    The ob curren plannin Dispos yield re to mod plannin to imp (4) det actual * Th th Th co no in pl * In fo op sy as di re de co an * Th en m ha ev sc The pu techni projec Site: H roject: H Report Date: S ited States valuation in Su Why DOE bjective of the r nt Process Simu ng basis for OR sition System P easonable esti del facilities cur ng or operation rove the rate o termine if addit execution of in What th he current Syst hat are limited t hese tools curr omposition, res ot meeting was itial

  6. Summary - System Level Modeling and Simulation Tools for SRS

    Office of Environmental Management (EM)

    Workflo The ob Proces Savann Dispos assess evaluat design evaluat predict to guid * Th so in w es sy * Th is m * Th fle m de fu The pu techni projec Site: S roject: S Report Date: J ited States valuation i Why DOE ow Diagram bjective of the rev ss Simulation To nah River Site (S sition System Pla s whether the too te methods used , construction, p te methods to im ions; and (4) det e actual executio What th he current Syst oftware tools to formation, and aste. These to stimates, but th ystem

  7. A Combinatorial Geometry Code System with Model Testing Routines.

    Energy Science and Technology Software Center

    1982-10-08

    GIFT, Geometric Information For Targets code system, is used to mathematically describe the geometry of a three-dimensional vehicle such as a tank, truck, or helicopter. The geometric data generated is merged in vulnerability computer codes with the energy effects data of a selected @munition to simulate the probabilities of malfunction or destruction of components when it is attacked by the selected munition. GIFT options include those which graphically display the vehicle, those which check themore » correctness of the geometry data, those which compute physical characteristics of the vehicle, and those which generate the geometry data used by vulnerability codes.« less

  8. Modeling of thermal storage systems in MILP distributed energy resource models

    SciTech Connect

    Steen, David; Stadler, Michael; Cardoso, Gonçalo; Groissböck, Markus; DeForest, Nicholas; Marnay, Chris

    2014-08-04

    Thermal energy storage (TES) and distributed generation technologies, such as combined heat and power (CHP) or photovoltaics (PV), can be used to reduce energy costs and decrease CO2 emissions from buildings by shifting energy consumption to times with less emissions and/or lower energy prices. To determine the feasibility of investing in TES in combination with other distributed energy resources (DER), mixed integer linear programming (MILP) can be used. Such a MILP model is the well-established Distributed Energy Resources Customer Adoption Model (DER-CAM); however, it currently uses only a simplified TES model to guarantee linearity and short run-times. Loss calculations are based only on the energy contained in the storage. This paper presents a new DER-CAM TES model that allows improved tracking of losses based on ambient and storage temperatures, and compares results with the previous version. A multi-layer TES model is introduced that retains linearity and avoids creating an endogenous optimization problem. The improved model increases the accuracy of the estimated storage losses and enables use of heat pumps for low temperature storage charging. Ultimately,results indicate that the previous model overestimates the attractiveness of TES investments for cases without possibility to invest in heat pumps and underestimates it for some locations when heat pumps are allowed. Despite a variation in optimal technology selection between the two models, the objective function value stays quite stable, illustrating the complexity of optimal DER sizing problems in buildings and microgrids.

  9. Conceptual Model of Offshore Wind Environmental Risk Evaluation System

    SciTech Connect

    Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.; Unwin, Stephen D.; Hamilton, Erin L.

    2010-06-01

    In this report we describe the development of the Environmental Risk Evaluation System (ERES), a risk-informed analytical process for estimating the environmental risks associated with the construction and operation of offshore wind energy generation projects. The development of ERES for offshore wind is closely allied to a concurrent process undertaken to examine environmental effects of marine and hydrokinetic (MHK) energy generation, although specific risk-relevant attributes will differ between the MHK and offshore wind domains. During FY10, a conceptual design of ERES for offshore wind will be developed. The offshore wind ERES mockup described in this report will provide a preview of the functionality of a fully developed risk evaluation system that will use risk assessment techniques to determine priority stressors on aquatic organisms and environments from specific technology aspects, identify key uncertainties underlying high-risk issues, compile a wide-range of data types in an innovative and flexible data organizing scheme, and inform planning and decision processes with a transparent and technically robust decision-support tool. A fully functional version of ERES for offshore wind will be developed in a subsequent phase of the project.

  10. Stochastic Energy Deployment System (SEDS) World Oil Model (WOM)

    SciTech Connect

    2009-08-07

    The function of the World Oil Market Model (WOMM) is to calculate a world oil price. SEDS will set start and end dates for the forecast period, and a time increment (assumed to be 1 year in the initial version). The WOMM will then randomly select an Annual Energy Outlook (AEO) oil price case and calibrate itself to that case. As it steps through each year, the WOMM will generate a stochastic supply shock to OPEC output and accept a new estimate of U.S. petroleum demand from SEDS. The WOMM will then calculate a new oil market equilibrium for the current year. The world oil price at the new equilibrium will be sent back to SEDS. When the end year is reached, the process will begin again with the selection of a new AEO forecast. Iterations over forecasts will continue until SEDS has completed all its simulation runs.

  11. Stochastic Energy Deployment System (SEDS) World Oil Model (WOM)

    Energy Science and Technology Software Center

    2009-08-07

    The function of the World Oil Market Model (WOMM) is to calculate a world oil price. SEDS will set start and end dates for the forecast period, and a time increment (assumed to be 1 year in the initial version). The WOMM will then randomly select an Annual Energy Outlook (AEO) oil price case and calibrate itself to that case. As it steps through each year, the WOMM will generate a stochastic supply shock tomore » OPEC output and accept a new estimate of U.S. petroleum demand from SEDS. The WOMM will then calculate a new oil market equilibrium for the current year. The world oil price at the new equilibrium will be sent back to SEDS. When the end year is reached, the process will begin again with the selection of a new AEO forecast. Iterations over forecasts will continue until SEDS has completed all its simulation runs.« less

  12. 2011 Community Earth System Model (CESM) Tutorial, August 1-5, 2011

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: 2011 Community Earth System Model (CESM) Tutorial, August 1-5, 2011 Citation Details In-Document Search Title: 2011 Community Earth System Model (CESM) Tutorial, August 1-5, 2011 In fiscal year 2011, the Community Earth System Model (CESM) tutorial was taught at NCAR from 1-5 August 2011. This project hosted 79 full participants (1 accepted participant from China couldn't get a visa) selected from 180 applications. The tutorial was advertised

  13. CAPE-OPEN compliant stochastic modeling and reduced-order model coputation capaability for APECS system. ORIGINAL TITLE: CAPE-OPEN compliant stochastic modeling capability

    SciTech Connect

    Diwekar, U.; Shastri, Y.; Subramanayan, K.; Zitney, S.

    2007-01-01

    APECS (Advanced Process Engineering Co-Simulator) is an integrated software suite that combines the power of process simulation with high-fidelity, computational fluid dynamics (CFD) for improved design, analysis, and optimization of process engineering systems. The APECS system uses commercial process simulation (e.g., Aspen Plus) and CFD (e.g., FLUENT) software integrated with the process-industry standard CAPE-OPEN (CO) interfaces. This breakthrough capability allows engineers to better understand and optimize the fluid mechanics that drive overall power plant performance and efficiency. The focus of this paper is the CAPE-OPEN complaint stochastic modeling and reduced order model computational capability around the APECS system. The usefulness of capabilities is illustrated with coal fired, gasification based, FutureGen power plant simulation. These capabilities are used to generate efficient reduced order models and optimizing model complexities.

  14. Resource Planning Model: An Integrated Resource Planning and Dispatch Tool for Regional Electric Systems

    SciTech Connect

    Mai, T.; Drury, E.; Eurek, K.; Bodington, N.; Lopez, A.; Perry, A.

    2013-01-01

    This report introduces a new capacity expansion model, the Resource Planning Model (RPM), with high spatial and temporal resolution that can be used for mid- and long-term scenario planning of regional power systems. Although RPM can be adapted to any geographic region, the report describes an initial version of the model adapted for the power system in Colorado. It presents examples of scenario results from the first version of the model, including an example of a 30%-by-2020 renewable electricity penetration scenario.

  15. NGNP Data Management and Analysis System Modeling Capabilities

    SciTech Connect

    Cynthia D. Gentillon

    2009-09-01

    Projects for the very-high-temperature reactor (VHTR) program provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. In addition, thermal-hydraulic experiments are conducted to validate codes used to assess reactor safety. The VHTR Program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the third NDMAS objective. It describes capabilities for displaying the data in meaningful ways and identifying relationships among the measured quantities that contribute to their understanding.

  16. Embedded Sensors and Controls to Improve Component Performance and Reliability - System Dynamics Modeling and Control System Design

    SciTech Connect

    Melin, Alexander M.; Kisner, Roger A.; Fugate, David L.

    2013-10-01

    This report documents the current status of the modeling, control design, and embedded control research for the magnetic bearing canned rotor pump being used as a demonstration platform for deeply integrating instrumentation and controls (I{\\&}C) into nuclear power plant components. This pump is a highly inter-connected thermo/electro/mechanical system that requires an active control system to operate. Magnetic bearings are inherently unstable system and without active, moment by moment control, the rotor would contact fixed surfaces in the pump causing physical damage. This report details the modeling of the pump rotordynamics, fluid forces, electromagnetic properties of the protective cans, active magnetic bearings, power electronics, and interactions between different dynamical models. The system stability of the unforced and controlled rotor are investigated analytically. Additionally, controllers are designed using proportional derivative (PD) control, proportional integral derivative (PID) control, voltage control, and linear quadratic regulator (LQR) control. Finally, a design optimization problem that joins the electrical, mechanical, magnetic, and control system design into one problem to balance the opposing needs of various design criteria using the embedded system approach is presented.

  17. RELAP5 Model of the Vacuum Vessel Primary Heat Transfer System

    SciTech Connect

    Carbajo, Juan J; Yoder Jr, Graydon L; Kim, Seokho H

    2010-07-01

    This report describes the RELAP5 models that have been developed for the Vacuum Vessel (VV) Primary Heat Transfer System (PHTS). The models are intended to be used to examine the transient performance of the VV PHTS, and evaluate control schemes necessary to maintain parameters within acceptable limits during transients. Some preliminary results are presented to show the maturity of the models and to examine general VV PHTS transient behavior. The models can be used as a starting point to develop transient modeling capability in several directions including control system modeling, safety evaluations, etc, and are not intended to represent the final VV PHTS design. Preliminary calculations using the models indicate that during normal pulsed operation, heat exchanger control may not be necessary, and that temperatures within the vacuum vessel during decay heat operation remain low.

  18. Earth System Modeling -- Director`s initiative. LDRD Program final report

    SciTech Connect

    MacCracken, M.; Penner, J. [Lawrence Livermore National Lab., CA (United States). Atmospheric Science Div.

    1996-06-01

    The objective of the Earth System Modeling Director`s Initiative is to develop and test a framework for interactively coupling subsystem models that represent the physical, chemical, and biological processes which determine the state of the atmosphere, ocean, land surface and vegetation. Most studies of the potential for human perturbations of the climate system made previously have treated only limited components of the Earth system. The purpose of this project was to demonstrate the capability of coupling all relevant components in a flexible framework that will permit a wide variety of tests to be conducted to assure realistic interactions. A representation of the Earth system is shown and its important interactions.

  19. Modeling of thermal storage systems in MILP distributed energy resource models

    DOE PAGES [OSTI]

    Steen, David; Stadler, Michael; Cardoso, Gonçalo; Groissböck, Markus; DeForest, Nicholas; Marnay, Chris

    2014-08-04

    Thermal energy storage (TES) and distributed generation technologies, such as combined heat and power (CHP) or photovoltaics (PV), can be used to reduce energy costs and decrease CO2 emissions from buildings by shifting energy consumption to times with less emissions and/or lower energy prices. To determine the feasibility of investing in TES in combination with other distributed energy resources (DER), mixed integer linear programming (MILP) can be used. Such a MILP model is the well-established Distributed Energy Resources Customer Adoption Model (DER-CAM); however, it currently uses only a simplified TES model to guarantee linearity and short run-times. Loss calculations aremore » based only on the energy contained in the storage. This paper presents a new DER-CAM TES model that allows improved tracking of losses based on ambient and storage temperatures, and compares results with the previous version. A multi-layer TES model is introduced that retains linearity and avoids creating an endogenous optimization problem. The improved model increases the accuracy of the estimated storage losses and enables use of heat pumps for low temperature storage charging. Ultimately,results indicate that the previous model overestimates the attractiveness of TES investments for cases without possibility to invest in heat pumps and underestimates it for some locations when heat pumps are allowed. Despite a variation in optimal technology selection between the two models, the objective function value stays quite stable, illustrating the complexity of optimal DER sizing problems in buildings and microgrids.« less

  20. Systems, methods and computer-readable media for modeling cell performance fade of rechargeable electrochemical devices

    DOEpatents

    Gering, Kevin L

    2013-08-27

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.

  1. Power System Modeling of 20% Wind-Generated Electricity by 2030: Preprint

    SciTech Connect

    Hand, M.; Blair, N.; Bolinger, M.; Wiser, R.; O'Connell, R.; Hern, T.; Miller, B.

    2008-06-01

    This paper shows the results of the Wind Energy Deployment System model used to estimate the costs and benefits associated with producing 20% of the nation's electricity from wind technology by 2030.

  2. Distribution system model calibration with big data from AMI and PV inverters

    DOE PAGES [OSTI]

    Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.; Grijalva, Santiago

    2016-03-03

    Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less

  3. Misfit layer compounds and ferecrystals: Model systems for thermoelectric nanocomposites

    SciTech Connect

    Merrill, Devin R.; Moore, Daniel B.; Bauers, Sage R.; Falmbigl, Matthias; Johnson, David C.

    2015-04-22

    A basic summary of thermoelectric principles is presented in a historical context, following the evolution of the field from initial discovery to modern day high-zT materials. A specific focus is placed on nanocomposite materials as a means to solve the challenges presented by the contradictory material requirements necessary for efficient thermal energy harvest. Misfit layer compounds are highlighted as an example of a highly ordered anisotropic nanocomposite system. Their layered structure provides the opportunity to use multiple constituents for improved thermoelectric performance, through both enhanced phonon scattering at interfaces and through electronic interactions between the constituents. Recently, a class of metastable, turbostratically-disordered misfit layer compounds has been synthesized using a kinetically controlled approach with low reaction temperatures. The kinetically stabilized structures can be prepared with a variety of constituent ratios and layering schemes, providing an avenue to systematically understand structure-function relationships not possible in the thermodynamic compounds. We summarize the work that has been done to date on these materials. The observed turbostratic disorder has been shown to result in extremely low cross plane thermal conductivity and in plane thermal conductivities that are also very small, suggesting the structural motif could be attractive as thermoelectric materials if the power factor could be improved. The first 10 compounds in the [(PbSe)1+δ]m(TiSe₂)n family (m, n ≤ 3) are reported as a case study. As n increases, the magnitude of the Seebeck coefficient is significantly increased without a simultaneous decrease in the in-plane electrical conductivity, resulting in an improved thermoelectric power factor.

  4. Misfit layer compounds and ferecrystals: Model systems for thermoelectric nanocomposites

    DOE PAGES [OSTI]

    Merrill, Devin R.; Moore, Daniel B.; Bauers, Sage R.; Falmbigl, Matthias; Johnson, David C.

    2015-04-22

    A basic summary of thermoelectric principles is presented in a historical context, following the evolution of the field from initial discovery to modern day high-zT materials. A specific focus is placed on nanocomposite materials as a means to solve the challenges presented by the contradictory material requirements necessary for efficient thermal energy harvest. Misfit layer compounds are highlighted as an example of a highly ordered anisotropic nanocomposite system. Their layered structure provides the opportunity to use multiple constituents for improved thermoelectric performance, through both enhanced phonon scattering at interfaces and through electronic interactions between the constituents. Recently, a class ofmore » metastable, turbostratically-disordered misfit layer compounds has been synthesized using a kinetically controlled approach with low reaction temperatures. The kinetically stabilized structures can be prepared with a variety of constituent ratios and layering schemes, providing an avenue to systematically understand structure-function relationships not possible in the thermodynamic compounds. We summarize the work that has been done to date on these materials. The observed turbostratic disorder has been shown to result in extremely low cross plane thermal conductivity and in plane thermal conductivities that are also very small, suggesting the structural motif could be attractive as thermoelectric materials if the power factor could be improved. The first 10 compounds in the [(PbSe)1+δ]m(TiSe₂)n family (m, n ≤ 3) are reported as a case study. As n increases, the magnitude of the Seebeck coefficient is significantly increased without a simultaneous decrease in the in-plane electrical conductivity, resulting in an improved thermoelectric power factor.« less

  5. Energy Information Administration NEMS Macroeconomic Activity...

    Gasoline and Diesel Fuel Update

    of employment by industry is industrial output. Both current and lagged output values enter in the employment specification, reflecting the tendency of firms to hire employees in...

  6. NEMS Freight Transportation Module Improvement Study - Energy...

    Gasoline and Diesel Fuel Update

    EIA is now using the Freight Analysis Framework in place of the Commodity Flow Survey in the determination of historical census division and commodity ton-mile data, including the ...

  7. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Page1 Hierarchy of Various Models Used for Hydrogen and Fuel Cell Analyses Analysis Models and Tools Systems Analysis of Hydrogen & Fuel Cells With a multitude of end-uses-such as distributed power for back-up, primary, and combined heat-and- power systems; automobiles, buses, forklifts and other specialty vehicles; and auxiliary power units and portable electronics-fuel cell applications hold potential to dramatically impact the 21st century clean energy economy. Fuel cells can efficiently

  8. Petroleum Market Model of the National Energy Modeling System. Part 1

    SciTech Connect

    1997-12-18

    The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions, the production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level.

  9. A Geographic Information System approach to modeling nutrient and sediment transport

    SciTech Connect

    Levine, D.A.; Hunsaker, C.T.; Beauchamp, J.J.; Timmins, S.P.

    1993-02-01

    The objective of this study was to develop a water quality model to quantify nonpoint-source (NPS) pollution that uses a geographic information system (GIS) to link statistical modeling of nutrient and sediment delivery with the spatial arrangement of the parameters that drive the model. The model predicts annual nutrient and sediment loading and was developed, calibrated, and tested on 12 watersheds within the Lake Ray Roberts drainage basin in north Texas. Three physiographic regions are represented by these watersheds, and model success, as measured by the accuracy of load estimates, was compared within and across these regions.

  10. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 3

    SciTech Connect

    1998-01-01

    This Appendix consists of two unpublished reports produced by Energy and Environmental Analysis, Inc., under contract to Oak Ridge National Laboratory. These two reports formed the basis for the subsequent development of the Fuel Economy Model described in Volume 1. They are included in order to document more completely the efforts undertaken to construct a comprehensive model of automobile fuel economy. The supplemental reports are as follows: Supplement 1--Documentation Attributes of Technologies to Improve Automotive Fuel Economy; Supplement 2--Analysis of the Fuel Economy Boundary for 2010 and Comparison to Prototypes.

  11. Petroleum Market Model of the National Energy Modeling System. Part 2

    SciTech Connect

    1997-12-18

    This report contains the following: Bibliography; Petroleum Market Model abstract; Data quality; Estimation methodologies (includes refinery investment recovery thresholds, gas plant models, chemical industry demand for methanol, estimation of refinery fixed costs, estimation of distribution costs, estimation of taxes gasoline specifications, estimation of gasoline market shares, estimation of low-sulfur diesel market shares, low-sulfur diesel specifications, estimation of regional conversion coefficients, estimation of SO{sub 2} allowance equations, unfinished oil imports methodology, product pipeline capacities and tariffs, cogeneration methodology, natural gas plant fuel consumption, and Alaskan crude oil exports); Matrix generator documentation; Historical data processing; and Biofuels supply submodule.

  12. Collaborative Project. A Flexible Atmospheric Modeling Framework for the Community Earth System Model (CESM)

    SciTech Connect

    Gettelman, Andrew

    2015-10-01

    In this project we have been upgrading the Multiscale Modeling Framework (MMF) in the Community Atmosphere Model (CAM), also known as Super-Parameterized CAM (SP-CAM). This has included a major effort to update the coding standards and interface with CAM so that it can be placed on the main development trunk. It has also included development of a new software structure for CAM to be able to handle sub-grid column information. These efforts have formed the major thrust of the work.

  13. SUMO, System performance assessment for a high-level nuclear waste repository: Mathematical models

    SciTech Connect

    Eslinger, P.W.; Miley, T.B.; Engel, D.W.; Chamberlain, P.J. II

    1992-09-01

    Following completion of the preliminary risk assessment of the potential Yucca Mountain Site by Pacific Northwest Laboratory (PNL) in 1988, the Office of Civilian Radioactive Waste Management (OCRWM) of the US Department of Energy (DOE) requested the Performance Assessment Scientific Support (PASS) Program at PNL to develop an integrated system model and computer code that provides performance and risk assessment analysis capabilities for a potential high-level nuclear waste repository. The system model that has been developed addresses the cumulative radionuclide release criteria established by the US Environmental Protection Agency (EPA) and estimates population risks in terms of dose to humans. The system model embodied in the SUMO (System Unsaturated Model) code will also allow benchmarking of other models being developed for the Yucca Mountain Project. The system model has three natural divisions: (1) source term, (2) far-field transport, and (3) dose to humans. This document gives a detailed description of the mathematics of each of these three divisions. Each of the governing equations employed is based on modeling assumptions that are widely accepted within the scientific community.

  14. Analytical Modelling of Wireless Power Transfer (WPT) Systems for Electric Vehicle Application

    SciTech Connect

    Chinthavali, Madhu Sudhan; Campbell, Steven L

    2016-01-01

    This paper presents an analytical model for wireless power transfer system used in electric vehicle application. The equivalent circuit model for each major component of the system is described, including the input voltage source, resonant network, transformer, nonlinear diode rectifier load, etc. Based on the circuit model, the primary side compensation capacitance, equivalent input impedance, active / reactive power are calculated, which provides a guideline for parameter selection. Moreover, the voltage gain curve from dc output to dc input is derived as well. A hardware prototype with series-parallel resonant stage is built to verify the developed model. The experimental results from the hardware are compared with the model predicted results to show the validity of the model.

  15. Hydrogen Macro System Model User Guide, Version 1.2.1

    SciTech Connect

    Ruth, M.; Diakov, V.; Sa, T.; Goldsby, M.; Genung, K.; Hoseley, R.; Smith, A.; Yuzugullu, E.

    2009-07-01

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  16. Model-Based Design and Integration of Large Li-ion Battery Systems

    SciTech Connect

    Smith, Kandler; Kim, Gi-Heon; Santhanagopalan, Shriram; Shi, Ying; Pesaran, Ahmad; Mukherjee, Partha; Barai, Pallab; Maute, Kurt; Behrou, Reza; Patil, Chinmaya

    2015-11-17

    This presentation introduces physics-based models of batteries and software toolsets, including those developed by the U.S. Department of Energy's (DOE) Computer-Aided Engineering for Electric-Drive Vehicle Batteries Program (CAEBAT). The presentation highlights achievements and gaps in model-based tools for materials-to-systems design, lifetime prediction and control.

  17. Model documentation coal market module of the National Energy Modeling System

    SciTech Connect

    1997-02-01

    This report documents the objectives and the conceptual and methodological approach used in the development of the Coal Production Submodule (CPS). It provides a description of the CPS for model analysts and the public. The Coal Market Module provides annual forecasts of prices, production, and consumption of coal.

  18. Strategy and gaps for modeling, simulation, and control of hybrid systems

    SciTech Connect

    Rabiti, Cristian; Garcia, Humberto E.; Hovsapian, Rob; Kinoshita, Robert; Mesina, George L.; Bragg-Sitton, Shannon M.; Boardman, Richard D.

    2015-04-01

    The purpose of this report is to establish a strategy for modeling and simulation of candidate hybrid energy systems. Modeling and simulation is necessary to design, evaluate, and optimize the system technical and economic performance. Accordingly, this report first establishes the simulation requirements to analysis candidate hybrid systems. Simulation fidelity levels are established based on the temporal scale, real and synthetic data availability or needs, solution accuracy, and output parameters needed to evaluate case-specific figures of merit. Accordingly, the associated computational and co-simulation resources needed are established; including physical models when needed, code assembly and integrated solutions platforms, mathematical solvers, and data processing. This report first attempts to describe the figures of merit, systems requirements, and constraints that are necessary and sufficient to characterize the grid and hybrid systems behavior and market interactions. Loss of Load Probability (LOLP) and effective cost of Effective Cost of Energy (ECE), as opposed to the standard Levelized Cost of Electricty (LCOE), are introduced as technical and economical indices for integrated energy system evaluations. Financial assessment methods are subsequently introduced for evaluation of non-traditional, hybrid energy systems. Algorithms for coupled and iterative evaluation of the technical and economic performance are subsequently discussed. This report further defines modeling objectives, computational tools, solution approaches, and real-time data collection and processing (in some cases using real test units) that will be required to model, co-simulate, and optimize; (a) an energy system components (e.g., power generation unit, chemical process, electricity management unit), (b) system domains (e.g., thermal, electrical or chemical energy generation, conversion, and transport), and (c) systems control modules. Co-simulation of complex, tightly coupled

  19. Case Studies Comparing System Advisor Model (SAM) Results to Real Performance Data: Preprint

    SciTech Connect

    Blair, N.; Dobos, A.; Sather, N.

    2012-06-01

    NREL has completed a series of detailed case studies comparing the simulations of the System Advisor Model (SAM) and measured performance data or published performance expectations. These case studies compare PV measured performance data with simulated performance data using appropriate weather data. The measured data sets were primarily taken from NREL onsite PV systems and weather monitoring stations.

  20. Leveraging AMI data for distribution system model calibration and situational awareness

    DOE PAGES [OSTI]

    Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini; Grijalva, Santiago; Harley, Ronald G.

    2015-01-15

    The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation andmore » regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.« less