National Library of Energy BETA

Sample records for model runs ecmwfdiag

  1. ARM - Instrument - ecmwfdiag

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentsecmwfdiag Documentation ECMWFDIAG : XDC documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : European Centre for Medium Range Weather Forecasts Diagnostic Analyses (ECMWFDIAG) Instrument Categories Derived Quantities and Models General Overview ARM receives two different types of ECMWF products. Diagnostic data derived from ECMWF model runs are especially generated for ARM

  2. ARM - Campaign Instrument - ecmwfdiag

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Send Campaign Instrument : European Centre for Medium Range Weather Forecasts Diagnostic Analyses (ECMWFDIAG) Instrument Categories Derived Quantities and Models Campaigns...

  3. Sandia Energy - Developing a Fast-Running Turbine Wake Model

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Developing a Fast-Running Turbine Wake Model Home Renewable Energy Energy Water Power News News & Events Developing a Fast-Running Turbine Wake Model Previous Next Developing a...

  4. Computer support to run models of the atmosphere. Final report

    SciTech Connect (OSTI)

    Fung, I.

    1996-08-30

    This research is focused on a better quantification of the variations in CO{sub 2} exchanges between the atmosphere and biosphere and the factors responsible for these exchangers. The principal approach is to infer the variations in the exchanges from variations in the atmospheric CO{sub 2} distribution. The principal tool involves using a global three-dimensional tracer transport model to advect and convect CO{sub 2} in the atmosphere. The tracer model the authors used was developed at the Goddard institute for Space Studies (GISS) and is derived from the GISS atmospheric general circulation model. A special run of the GCM is made to save high-frequency winds and mixing statistics for the tracer model.

  5. 2013 CEF RUN - PHASE 1 DATA ANALYSIS AND MODEL VALIDATION

    SciTech Connect (OSTI)

    Choi, A.

    2014-05-08

    Phase 1 of the 2013 Cold cap Evaluation Furnace (CEF) test was completed on June 3, 2013 after a 5-day round-the-clock feeding and pouring operation. The main goal of the test was to characterize the CEF off-gas produced from a nitric-formic acid flowsheet feed and confirm whether the CEF platform is capable of producing scalable off-gas data necessary for the revision of the DWPF melter off-gas flammability model; the revised model will be used to define new safety controls on the key operating parameters for the nitric-glycolic acid flowsheet feeds including total organic carbon (TOC). Whether the CEF off-gas data were scalable for the purpose of predicting the potential flammability of the DWPF melter exhaust was determined by comparing the predicted H{sub 2} and CO concentrations using the current DWPF melter off-gas flammability model to those measured during Phase 1; data were deemed scalable if the calculated fractional conversions of TOC-to-H{sub 2} and TOC-to-CO at varying melter vapor space temperatures were found to trend and further bound the respective measured data with some margin of safety. Being scalable thus means that for a given feed chemistry the instantaneous flow rates of H{sub 2} and CO in the DWPF melter exhaust can be estimated with some degree of conservatism by multiplying those of the respective gases from a pilot-scale melter by the feed rate ratio. This report documents the results of the Phase 1 data analysis and the necessary calculations performed to determine the scalability of the CEF off-gas data. A total of six steady state runs were made during Phase 1 under non-bubbled conditions by varying the CEF vapor space temperature from near 700 to below 300C, as measured in a thermowell (T{sub tw}). At each steady state temperature, the off-gas composition was monitored continuously for two hours using MS, GC, and FTIR in order to track mainly H{sub 2}, CO, CO{sub 2}, NO{sub x}, and organic gases such as CH{sub 4}. The standard

  6. How to run the Venus Community Atmosphere Model

    SciTech Connect (OSTI)

    Covey, C.

    2015-10-29

    This technical report provides a specific example of running VenusCAM at the Livermore Computing facility. General information about Livermore Computing may be found at http://computing.llnl.gov.

  7. Simple Dynamic Gasifier Model That Runs in Aspen Dynamics

    SciTech Connect (OSTI)

    Robinson, P.J.; Luyben, W.L.

    2008-10-15

    Gasification (or partial oxidation) is a vital component of 'clean coal' technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased, and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel for driving combustion turbines. Gasification units in a chemical plant generate gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The widely used process simulator Aspen Plus provides a library of models that can be used to develop an overall gasifier model that handles solids. So steady-state design and optimization studies of processes with gasifiers can be undertaken. This paper presents a simple approximate method for achieving the objective of having a gasifier model that can be exported into Aspen Dynamics. The basic idea is to use a high molecular weight hydrocarbon that is present in the Aspen library as a pseudofuel. This component should have the same 1:1 hydrogen-to-carbon ratio that is found in coal and biomass. For many plantwide dynamic studies, a rigorous high-fidelity dynamic model of the gasifier is not needed because its dynamics are very fast and the gasifier gas volume is a relatively small fraction of the total volume of the entire plant. The proposed approximate model captures the essential macroscale thermal, flow, composition, and pressure dynamics. This paper does not attempt to optimize the design or control of gasifiers but merely presents an idea of how to dynamically simulate coal gasification in an approximate way.

  8. Running jobs

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Running jobs Running jobs Overview and Basic Description Euclid is a single node system with 48 processors. It supports both multiprocessing (MPI) and multithreading programming models. Interactive Jobs All Euclid jobs are interactive. To launch an MPI job, type in this at the shell prompt: % mpirun -np numprocs executable_name where numprocs is the total number of MPI processes that will be executed. Interactive Usage Policy Due to the dynamic and unpredictable nature of visualization and data

  9. Running of the Yukawa Couplings in a Two Higgs Doublet Model

    SciTech Connect (OSTI)

    Montes de Oca Y, J. H.; Juarez W, S. R.; Kielanowski, P.

    2008-07-02

    We solve the one loop Renormalization Group Equations (RGE) for the Yukawa couplings in the Standard Model with two Higgs doublets. In the RGE we include the contributions of the up and down quarks. In this approximation we explore universality and unification assumptions to study the mass-hierarchy problem through the running of the vacuum expectation values.

  10. Running jobs

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Job Launch Overview Parallel applications can not run on the login nodes. They must be ... Interactive jobs may be run on Franklin by requesting resources from the batch system. ...

  11. Running Jobs

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Jobs Running Jobs Submitting Jobs How to submit your job to the UGE. Read More » Running with Java Solutions to some of the common problems users have with running on Genepool when the JVM is part of their workflow. Read More » Batch Script Examples Sample batch scripts for Genepool/Phoebe highlighting queue selection, setting the run time and requesting large amounts of memory. Read More » Interactive Jobs How to run your workflow on the interactive nodes. Read More » Job Arrays on Genepool

  12. Run Rules

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Run Rules Run Rules Crossroads/NERSC-9 Application Performance: Instructions and Run Rules Introduction Application performance is a key driver for the DOE's NNSA and Office of Science platform roadmaps. As such, application benchmarking and performance analysis will play a critical role in evaluation of the Offeror's proposal. The APEX application benchmarks have been carefully chosen to represent characteristics of the expected Crossroads and NERSC-9 workloads, both of which consist of solving

  13. Running Jobs

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Also pointers to more NERSC documentations on SLURM. Read More Interactive Jobs Learn how to run interactive jobs on Cori. Read More Batch Jobs SLURM keywords and...

  14. Dark Matter Benchmark Models for Early LHC Run-2 Searches. Report of the ATLAS/CMS Dark Matter Forum

    SciTech Connect (OSTI)

    Abercrombie, Daniel

    2015-07-06

    One of the guiding principles of this report is to channel the efforts of the ATLAS and CMS collaborations towards a minimal basis of dark matter models that should influence the design of the early Run-2 searches. At the same time, a thorough survey of realistic collider signals of Dark Matter is a crucial input to the overall design of the search program.

  15. Search for non-standard model signatures in the WZ/ZZ final state at CDF run II

    SciTech Connect (OSTI)

    Norman, Matthew; /UC, San Diego

    2009-01-01

    This thesis discusses a search for non-Standard Model physics in heavy diboson production in the dilepton-dijet final state, using 1.9 fb{sup -1} of data from the CDF Run II detector. New limits are set on the anomalous coupling parameters for ZZ and WZ production based on limiting the production cross-section at high {cflx s}. Additionally limits are set on the direct decay of new physics to ZZ andWZ diboson pairs. The nature and parameters of the CDF Run II detector are discussed, as are the influences that it has on the methods of our analysis.

  16. Running Scripts

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Running Scripts Running Scripts Introduction Run serial Python scripts on a login node, or on a compute node in an interactive session (started via salloc) or batch job (submitted via sbatch) as you normally would in any Unix-like environment. On login nodes, please be mindful of resource consumption since those nodes are shared by many users at the same time. Parallel Python scripts launched in an interactive (salloc) session or batch job (sbatch), such as those using MPI via the mpi4py module,

  17. Running jobs

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    jobs may be run on Edison by requesting resources from the batch system. "salloc -p debug -N " is the basic command to request interactive resources. Read More Batch Jobs...

  18. Running Jobs

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    login nodes. The second type of interactive job runs on one or more Carver compute nodes. Because the only way to gain access to the compute nodes is through the batch system, ...

  19. Running Jobs

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Queues and Policies Monitoring Jobs Using OpenMP with MPI Memory Considerations Runtime Tuning Options Running Large Scale Jobs Trouble Shooting and Error Messages Completed Jobs How Usage Is Charged File Storage and I/O Software and Tools Debugging and profiling Performance and Optimization Cray XE Documentation Cluster Compatibility Mode Hopper, Cray XE6 Carver Jesup Dirac Edison Phase I Euclid - Retired 01/31/2013 Franklin - Retired 04/30/12 Bassi Storage & File Systems Application

  20. Search for the Trilepton Signal of the Minimal Supergravity Model in D0 Run II

    SciTech Connect (OSTI)

    Binder, Meta; /Munich U.

    2005-06-01

    A search for associated chargino neutralino pair production is performed in the trilepton decay channel q{bar q} {yields} {tilde {chi}}{sub 1}{sup {+-}} {tilde {chi}}{sub 2}{sup 0} {yields} {ell}{sup {+-}} {nu} {tilde {chi}}{sub 1}{sup 0} {mu}{sup {+-}} {mu}{sup {-+}} {tilde {chi}}{sub 1}{sup 0}, using data collected with the D0 detector at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron Collider. The data sample corresponds to an integrated luminosity of {approx}300 pb{sup -1}. A dedicated event selection is applied to all samples including the data sample and the Monte Carlo simulated samples for the Standard Model background and the Supersymmetry signal. Events with two muons plus an additional isolated track, replacing the requirement of a third charged lepton in the event, are analyzed. Additionally, selected events must have a large amount of missing transverse energy due to the neutrino and the two {tilde {chi}}{sub 1}{sup 0}. After all selection cuts are applied, 2 data events are found, with an expected number of background events of 1.75 {+-} 0.34 (stat.) {+-} 0.46 (syst.). No evidence for Supersymmetry is found and limits on the production cross section times leptonic branching fraction are set. When the presented analysis is considered in combination with three other decay channels, no evidence for Supersymmetry is found. Limits on the production cross section times leptonic branching fraction are set. A lower chargino mass limit of 117 GeV at 95% CL is then derived for the mSUGRA model in a region of parameter space with enhanced leptonic branching fractions.

  1. Running jobs

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Euclid is a single node system with 48 processors. It supports both multiprocessing (MPI) and multithreading programming models. Interactive Jobs All Euclid jobs are...

  2. Limit on Saudi Arabia's oil pricing policy: a short-run econometric-simulation model

    SciTech Connect (OSTI)

    Bagour, O.S.M.

    1985-01-01

    Absence of a unified OPEC policy is largely attributed to frequent Saudi Arabian pricing/production decisions to influence oil price changes. Such demonstrated ability in the past prompted many to attribute oil price current downward rigidity to Saudi Arabian unwillingness to increase production. Empirically, this study presents a simultaneous equations oil market model in a simulation setting to test this hypothesis and to predict future oil prices under specific assumptions. Major conclusions are: (1) contrary to popular belief the international oil industry rarely, if ever, operated competitively; (2) the sole association of oil price increases to the embargo of 1973 is an outright distortion of facts; (3) the roots of the so-called energy crisis lie in: (a) post-World War II West European reconstruction, (b) US industrial adjustments from a war to a consumer-oriented economy, (c) the continuously dwindling oil reserves in major industrial countries, and (d) the comparative advantage of location and cost-per-unit of the Middle Eastern oil; (4) barring further market institutionalizations, a per barrel price below $15 by the end of 1990 (in constant 1984 prices) is not unlikely; and (5) future Saudi Arabian pricing/production policies to exert downward pressures on prices could lead to price increases, if perceived to be permanent by the OPEC group excluding Saudi Arabia.

  3. RHIC Au beam in Run 2014

    SciTech Connect (OSTI)

    Zhang, S. Y.

    2014-09-15

    Au beam at the RHIC ramp in run 2014 is reviewed together with the run 2011 and run 2012. Observed bunch length and longitudinal emittance are compared with the IBS simulations. The IBS growth rate of the longitudinal emittance in run 2014 is similar to run 2011, and both are larger than run 2012. This is explained by the large transverse emittance at high intensity observed in run 2012, but not in run 2014. The big improvement of the AGS ramping in run 2014 might be related to this change. The importance of the injector intensity improvement in run 2014 is emphasized, which gives rise to the initial luminosity improvement of 50% in run 2014, compared with the previous Au-Au run 2011. In addition, a modified IBS model, which is calibrated using the RHIC Au runs from 9.8 GeV/n to 100 GeV/n, is presented and used in the study.

  4. Running with Java

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Running with Java Running with Java Workflows that require the Java Virtual Machine will run into a couple of issues when running on Genepool. Java Software installed on Genepool...

  5. Running Jobs Efficiently

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Optimization Running Jobs Efficiently Running Jobs Efficiently Job Efficiency A job's efficiency is the ratio of its CPU time to the actual time it took to run, i.e., cputime ...

  6. Running on Carver

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Running on Carver Running on Carver STAR software has been copied from the usual ... An example of how to setup the STAR software on Carver is in projectprojectdirsstar...

  7. Department of Energy to Provide Supercomputing Time to Run NOAA...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy to Provide Supercomputing Time to Run NOAA's Climate Change Models Department of Energy to Provide Supercomputing Time to Run NOAA's Climate Change Models ...

  8. Running Parallel Discrete Event Simulators on Sierra

    SciTech Connect (OSTI)

    Barnes, P. D.; Jefferson, D. R.

    2015-12-03

    In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.

  9. Running Large Scale Jobs

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Running Large Scale Jobs Running Large Scale Jobs Users face various challenges with running and scaling large scale jobs on peta-scale production systems. For example, certain applications may not have enough memory per core, the default environment variables may need to be adjusted, or I/O dominates run time. This page lists some available programming and run time tuning options and tips users can try on their large scale applications on Hopper for better performance. Try different compilers

  10. Running Jobs by Group

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Running Jobs by Group Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 13:59:48...

  11. Running Jobs by Group

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Running Jobs by Group Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2016-04-29 11:34:43

  12. Running on Carver

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Running on Carver Running on Carver ATLAS software is obtained via cvmfs which is installed on PDSF nodes. There is presently no cvmfs installation available on Carver so it is not...

  13. Running on Carver

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Running on Carver Running on Carver The ALICE software is installed on project so no porting of code is necessary. Users can simply set up their environment as they do on PDSF and...

  14. Running on Carver

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Running on Carver Running on Carver The Daya Bay software is installed on PDSF on common so is therefore unavailable on Carver. At this point there has been no effort to port the...

  15. SSRL- Experimental Run Schedule

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    FY2008 Experimental Run Schedules 2008 Run Ends August 11, 2008. User Operations will resume November 2008. Operating Maintenance Beam Line Schedule FY2009 FY2008 X-ray (1-4,...

  16. General Running Jobs Recommendations

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    General Running Jobs Recommendations General Running Jobs Recommendations Introduction Process affinity (or CPU pinning) means to bind MPI process to a CPU or a range of CPUs on the node. It is important to spread MPI ranks evenly onto different NUMA nodes. Thread affinity forces each process or thread to run on a specific subset of processors, to take advantage of local process state. Correct process and thread affinity is the basis for getting optimal performance. Each Haswell node contains 2

  17. Another Look at the Relationship Between Accident- and Encroachment-Based Approaches to Run-Off-the-Road Accidents Modeling

    SciTech Connect (OSTI)

    Miaou, Shaw-Pin

    1997-08-01

    The purpose of this study was to look for ways to combine the strengths of both approaches in roadside safety research. The specific objectives were (1) to present the encroachment-based approach in a more systematic and coherent way so that its limitations and strengths can be better understood from both statistical and engineering standpoints, and (2) to apply the analytical and engineering strengths of the encroachment-based thinking to the formulation of mean functions in accident-based models.

  18. An experimental and modeling study investigating the ignition delay in a military diesel engine running hexadecane (cetane) fuel

    DOE PAGES-Beta [OSTI]

    Cowart, Jim S.; Fischer, Warren P.; Hamilton, Leonard J.; Caton, Patrick A.; Sarathy, S. Mani; Pitz, William J.

    2013-02-01

    In an effort aimed at predicting the combustion behavior of a new fuel in a conventional diesel engine, cetane (n-hexadecane) fuel was used in a military engine across the entire speed–load operating range. The ignition delay was characterized for this fuel at each operating condition. A chemical ignition delay was also predicted across the speed–load range using a detailed chemical kinetic mechanism with a constant pressure reactor model. At each operating condition, the measured in-cylinder pressure and predicted temperature at the start of injection were applied to the detailed n-hexadecane kinetic mechanism, and the chemical ignition delay was predicted withoutmore » any kinetic mechanism calibration. The modeling results show that fuel–air parcels developed from the diesel spray with an equivalence ratio of 4 are the first to ignite. The chemical ignition delay results also showed decreasing igntion delays with increasing engine load and speed, just as the experimental data revealed. At lower engine speeds and loads, the kinetic modeling results show the characteristic two-stage negative temperature coefficient behavior of hydrocarbon fuels. However, at high engine speeds and loads, the reactions do not display negative temperature coefficient behavior, as the reactions proceed directly into high-temperature pathways due to higher temperatures and pressure at injection. A moderate difference between the total and chemical ignition delays was then characterized as a phyical delay period that scales inversely with engine speed. This physical delay time is representative of the diesel spray development time and is seen to become a minority fraction of the total igntion delay at higher engine speeds. In addition, the approach used in this study suggests that the ignition delay and thus start of combustion may be predicted with reasonable accuracy using kinetic modeling to determine the chemical igntion delay. Then, in conjunction with the physical delay

  19. An experimental and modeling study investigating the ignition delay in a military diesel engine running hexadecane (cetane) fuel

    SciTech Connect (OSTI)

    Cowart, Jim S.; Fischer, Warren P.; Hamilton, Leonard J.; Caton, Patrick A.; Sarathy, S. Mani; Pitz, William J.

    2013-02-01

    In an effort aimed at predicting the combustion behavior of a new fuel in a conventional diesel engine, cetane (n-hexadecane) fuel was used in a military engine across the entire speed–load operating range. The ignition delay was characterized for this fuel at each operating condition. A chemical ignition delay was also predicted across the speed–load range using a detailed chemical kinetic mechanism with a constant pressure reactor model. At each operating condition, the measured in-cylinder pressure and predicted temperature at the start of injection were applied to the detailed n-hexadecane kinetic mechanism, and the chemical ignition delay was predicted without any kinetic mechanism calibration. The modeling results show that fuel–air parcels developed from the diesel spray with an equivalence ratio of 4 are the first to ignite. The chemical ignition delay results also showed decreasing igntion delays with increasing engine load and speed, just as the experimental data revealed. At lower engine speeds and loads, the kinetic modeling results show the characteristic two-stage negative temperature coefficient behavior of hydrocarbon fuels. However, at high engine speeds and loads, the reactions do not display negative temperature coefficient behavior, as the reactions proceed directly into high-temperature pathways due to higher temperatures and pressure at injection. A moderate difference between the total and chemical ignition delays was then characterized as a phyical delay period that scales inversely with engine speed. This physical delay time is representative of the diesel spray development time and is seen to become a minority fraction of the total igntion delay at higher engine speeds. In addition, the approach used in this study suggests that the ignition delay and thus start of combustion may be predicted with reasonable accuracy using kinetic modeling to determine the chemical igntion delay. Then, in conjunction with the physical delay time

  20. Running Jobs Intermittently Slow

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Running Jobs Intermittently Slow Running Jobs Intermittently Slow October 2, 2014 Symptom: User jobs are seeing intermittent slowness, jobs can run very slow in certain stages or appear hung. This could happen to jobs having input/output on global file systems (/project, /global/homes, /global/scratch2). It could also happen to aplications using shared libraries, or CCM jobs on any Hopper file systems. The slowness is identified to be related to DVS/GPFS issues, the cause of slownwss yet

  1. Running Jobs Efficiently

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Optimization » Running Jobs Efficiently Running Jobs Efficiently Job Efficiency A job's efficiency is the ratio of its CPU time to the actual time it took to run, i.e., cputime / walltime. A good efficiency at PDSF might be 70% or higher. Certainly an efficiency of less than 50% is indicative of some sort of problem with the job. The most common reason for low efficiency is slow IO reading data from disk but other factors, such as loading software, also can contribute. To see the efficiency for

  2. Running Grid Jobs

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Running Grid Jobs Running Grid Jobs How to submit a grid job to NERSC The following NERSC resources support job submission via Grid interfaces. Remote job submission is based on Globus GRAM. Jobs can be submitted either to the fork jobmanager (default) which will fork and execute the job immediately, or to the batch system jobmanager which interfaces with the underlying batch queue. Hostname Available Jobmanagers Software Configuration GRAM Resource Endpoints pdsfgrid.nersc.gov Fork, SGE OSG CE

  3. The QCD running coupling

    DOE PAGES-Beta [OSTI]

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-05-09

    Here, we review present knowledge onmore » $$\\alpha_{s}$$, the Quantum Chromodynamics (QCD) running coupling. The dependence of $$\\alpha_s(Q^2)$$ on momentum transfer $Q$ encodes the underlying dynamics of hadron physics --from color confinement in the infrared domain to asymptotic freedom at short distances. We will survey our present theoretical and empirical knowledge of $$\\alpha_s(Q^2)$$, including constraints at high $Q^2$ predicted by perturbative QCD, and constraints at small $Q^2$ based on models of nonperturbative dynamics. In the first, introductory, part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss $$\\alpha_s(Q^2)$$ in the high momentum transfer domain of QCD. We review how $$\\alpha_s$$ is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as `` Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization scale ambiguity. We also report recent important experimental measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the ``Principle of Maximum Conformality" which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of the gauge and renormalization scheme. In last part of the review, we discuss $$\\alpha_s(Q^2)$$ in the low momentum transfer domain, where there has been no consensus on how to define $$\\alpha_s(Q^2)$$ or its analytic behavior. We will discuss the various approaches used for low energy calculations. Among them, we will discuss the light-front holographic approach to QCD in the strongly coupled

  4. Running Interactive Batch Jobs

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Interactive Batch Jobs Running Interactive Batch Jobs You cannot login to the PDSF batch nodes directly but you can run an interactive session on a batch node using either qlogin or qsh. This can be useful if you are doing something that is potentially disruptive or if the interactive nodes are overloaded. qlogin will give you an interactive session in the same window as your original session on PDSF, however, you must have your ssh keys in place. You can do this locally on PDSF by following

  5. Running Jobs.ppt

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Running Jobs on the Cray XT5 Richard Gerber NERSC User Services RAGerber@lbl.gov Joint Cray XT5 Workshop UC-Berkeley February 1, 2010 February 1, 2010 Joint Cray XT5 Workshop, UC Berkeley February 1, 2010 Joint Cray XT5 Workshop, UC Berkeley Outline * XT5 Overview * Creating and Submitting a Batch Job * How a Job Is Launched * Monitoring Your Job * Queues and Policies Hopper in blue; Jaguar in Orange; Kraken in Green February 1, 2010 Joint Cray XT5 Workshop, UC Berkeley Cray XT5 Overview Compute

  6. Running.pptx

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    magine driving a 55,000-pound tractor- trailer that runs on corn! If you find it difficult to imagine, you can ask the truck drivers for Archer Daniels Midland (ADM) what it's like. For the past 4 years, they have been piloting four trucks powered by ethyl alcohol, or "ethanol," derived from corn. Several advantages to operating trucks on ethanol rather than on conventional petro- leum diesel fuel present themselves. Because ethanol can be produced domestically, unlike most of our

  7. PDU Run 10

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    PDU Run 10, a 46-day H-Coal syncrude mode operation using Wyodak coal, successfully met all targeted objectives, and was the longest PDU operation to date in this program. Targeted coal conversion of 90 W % was exceeded with a C/sub 4/-975/sup 0/F distillate yield of 43 to 48 W %. Amocat 1A catalyst was qualified for Pilot Plant operation based on improved operation and superior performance. PDU 10 achieved improved yields and lower hydrogen consumption compared to PDU 6, a similar operation. High hydroclone efficiency and high solids content in the vacuum still were maintained throughout the run. Steady operations at lower oil/solids ratios were demonstrated. Microautoclave testing was introduced as an operational aid. Four additional studies were successfully completed during PDU 10. These included a catalyst tracer study in conjunction with Sandia Laboratories; tests on letdown valve trims for Battelle; a fluid dynamics study with Amoco; and special high-pressure liquid sampling.

  8. Weighted Running Jobs by Group

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Weighted Running Jobs by Group Weighted Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2016-04-29 11:34:54

  9. PRELIMINARY Run Shutdown BL Commissioning

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    PRELIMINARY Run Shutdown BL Commissioning Maintenance AP SPEAR Down Injector Startup University Holidays Spear Down SPEAR Startup MA Sep Oct 2011 2012 MA Mar Apr May Jun Jul...

  10. Coordinating the 2009 RHIC Run

    ScienceCinema (OSTI)

    Brookhaven Lab - Mei Bai

    2010-01-08

    Physicists working at the Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC) are exploring the puzzle of proton spin as they begin taking data during the 2009 RHIC run. For the first time, RHIC is running at a record energy of 500 giga-elect

  11. Benchmark Distribution & Run Rules

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Rules Benchmark Distribution & Run Rules Applications and micro-benchmarks for the Crossroads/NERSC-9 procurement. You can find more information by clicking on the header for each of the topics listed below. Change Log Change and update notes for the benchmark suite. Application Benchmarks The following applications will be used by the Sustained System Improvement metric in measuring the performance improvement of proposed systems relative to NERSC's Edison platform. General Run Rules

  12. Run

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Maintenance / AP Spear Down University Holidays Sep Oct S 1 1 Mar Apr May Jun Jul Aug 4/4/2013 SPEAR OPERATING SCHEDULE 2012-2013 2012 2013 Sep Oct Nov Dec Jan Feb S 2 1 1 M 3 1 2 2 2 MA 3 1 1 3 3 1 W 5 3 4 AP 2 2 4 1 T 4 2 1 4 2 1 5 3 3 5 2 5 3 F 7 5 6 4 1 4 2 6 3 T 6 4 3 2 6 4 3 7 5 1 1 5 2 7 4 7 5 S 9 7 8 6 3 2 6 4 8 5 2 S 8 6 5 9 7 3 3 7 4 9 6 10 7 4 M 10 8 5 4 8 6 AP T 11 9 6 9 7 AP AP MA MA MA 10 8 5 4 8 6 W 12 10 7 10 8 AP 11 9 AP 6 5 9 AP 7 11 AP 8 5 8 11 9 12 10 7 6 10 8 12 9 6 12 10 F

  13. Run

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    PAMM / AP Low alpha University Holidays AP/PAMM Spear Down Oct Nov S 1 Apr May Jun Jul Aug Sep 1/8/2015 SPEAR OPERATING SCHEDULE 2014-2015 2014 2015 Oct Nov Dec Jan Feb Mar S 2 1 1 TBD M 3 1 2 1 1 2 2 PAMM PAMM 3 1 2 2 3 W 1 5 AP 4 1 2 AP 3 3 T 4 4 2 4 3 1 5 4 1 3 4 1 5 F 3 7 2 6 3 2 4 1 5 5 T 2 6 6 4 2 Lock 6 5 3 7 6 3 1 5 2 6 low α 3 SP 7 S 5 9 4 8 5 4 2 6 3 7 low α 7 S 4 8 7 5 9 8 5 3 7 4 8 low α 5 9 9 M 6 10 8 6 4 8 7 11 9 5 9 AP PAMM PAMM PAMM PAMM 6 10 7 AP 6 4 8 W 8 12 10 6 10 TBD 7 11

  14. Streamflow effects on spawning, rearing, and outmigration of fall-run chinook salmon (Oncorhynchus tshawytscha) predicted by a spatial and individual-based model

    SciTech Connect (OSTI)

    Jager, H.I.; Sale, M.J.; Cardwell, H.E.; Deangelis, D.L.; Bevelhimer, M.J.; Coutant, C.C. )

    1994-06-01

    The thread posed to Pacific salmon by competing water demands is a great concern to regulators of the hydropower industry. Finding the balance between fish resource and economic objectives depends on our ability to quantify flow effects on salmon production. Because field experiments are impractical, simulation models are needed to predict the effects of minimum flows on chinook salmon during their freshwater residence. We have developed a model to simulate the survival and development of eggs and alevins in redds and the growth, survival, and movement of juvenile chinook in response to local stream conditions (flow, temperature, chinook and predator density). Model results suggest that smolt production during dry years can be increased by raising spring minimum flows.

  15. STAR-Running on Carver

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    STAR-Running on Carver STAR-Running on Carver STAR software has been copied from the usual installation on /common on PDSF to /project/projectdirs/star/common. At this point the installation is simply intended for testing and not all libraries are in place - for now SL10k, SL11b and SL11c are available with root/5.22.00 and a copy of $OPTSTAR and cernlib. An example of how to setup the STAR software on Carver is in /project/projectdirs/star/starenv. To use it simply source star_setup. This

  16. Access, Compiling and Running Jobs

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Access Compiling and Running Jobs Access, Compiling and Running Jobs Access Dirac Dirac can be accessed by logging into carver.nersc.gov. Compile To compile your code, you need to land on a dirac compute node 1st: qsub -q dirac_reg -l nodes=1 -l walltime=00:30:00 -I After you are inside the job, you can load the necessary module for compile: module unload pgi module unload openmpi module unload cuda module load gcc-sl6 module load openmpi-gcc-sl6 module load cuda Now you can compile your code.

  17. Combined Search for the Standard Model Higgs Boson Decaying to bb̄ Using the D0 Run II Data Set

    SciTech Connect (OSTI)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chevalier-Théry, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; García-González, J. A.; García-Guerra, G. A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Padilla, M.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Razumov, I.; Renkel, P.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Salcido, P.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shivpuri, R. K.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, K. J.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Takahashi, M.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tschann-Grimm, K.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verdier, P.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Wang, R.-J.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; White, A.; Wicke, D.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yang, W.-C.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.

    2012-09-20

    We present the results of the combination of searches for the standard model Higgs boson produced in association with a W or Z boson and decaying into bb̄ using the data sample collected with the D0 detector in pp̄ collisions at √s=1.96 TeV at the Fermilab Tevatron Collider. We derive 95% C.L. upper limits on the Higgs boson cross section relative to the standard model prediction in the mass range 100 GeV≤MH≤150 GeV, and we exclude Higgs bosons with masses smaller than 102 GeV at the 95% C.L. In the mass range 120 GeV≤MH≤145 GeV, the data exhibit an excess above the background prediction with a global significance of 1.5 standard deviations, consistent with the expectation in the presence of a standard model Higgs boson.

  18. Combined Search for the Standard Model Higgs Boson Decaying to bb̄ Using the D0 Run II Data Set

    DOE PAGES-Beta [OSTI]

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Askew, A.; et al

    2012-09-20

    We present the results of the combination of searches for the standard model Higgs boson produced in association with a W or Z boson and decaying into bb̄ using the data sample collected with the D0 detector in pp̄ collisions at √s=1.96 TeV at the Fermilab Tevatron Collider. We derive 95% C.L. upper limits on the Higgs boson cross section relative to the standard model prediction in the mass range 100 GeV≤MH≤150 GeV, and we exclude Higgs bosons with masses smaller than 102 GeV at the 95% C.L. In the mass range 120 GeV≤MH≤145 GeV, the data exhibit an excessmore » above the background prediction with a global significance of 1.5 standard deviations, consistent with the expectation in the presence of a standard model Higgs boson.« less

  19. A Study of The Standard Model Higgs, WW and ZZ Production in Dilepton Plus Missing Transverse Energy Final State at CDF Run II

    SciTech Connect (OSTI)

    Hsu, Shih-Chieh

    2008-01-01

    We report on a search for Standard Model (SM) production of Higgs to WW* in the two charged lepton (e, μ) and two neutrino final state in p$\\bar{p}$ collisions at a center of mass energy √s = 1.96 TeV. The data were collected with the CDF II detector at the Fermilab Tevatron and correspond to an integrated luminosity of 1.9fb-1. The Matrix Element method is developed to calculate the event probability and to construct a likelihood ratio discriminator. There are 522 candidates observed with an expectation of 513 ± 41 background events and 7.8 ± 0.6 signal events for Higgs mass 160GeV/c2 at next-to-next-to-leading logarithmic level calculation. The observed 95% C.L. upper limit is 0.8 pb which is 2.0 times the SM prediction while the median expected limit is 3.1$+1.3\\atop{-0.9}$ with systematics included. Results for 9 other Higgs mass hypotheses ranging from 110GeV/c2 to 200GeV/c2 are also presented. The same dilepton plus large transverse energy imbalance (ET) final state is used in the SM ZZ production search and the WW production study. The observed significance of ZZ → llvv channel is 1.2σ. It adds extra significance to the ZZ → 4l channel and leads to a strong evidence of ZZ production with 4.4 σ significance. The potential improvement of the anomalous triple gauge coupling measurement by using the Matrix Element method in WW production is also studied.

  20. Reducing EnergyPlus Run Time For Code Compliance Tools

    SciTech Connect (OSTI)

    Athalye, Rahul A.; Gowri, Krishnan; Schultz, Robert W.; Glazer, Jason

    2014-09-12

    Integration of the EnergyPlus ™ simulation engine into performance-based code compliance software raises a concern about simulation run time, which impacts timely feedback of compliance results to the user. EnergyPlus annual simulations for proposed and code baseline building models, and mechanical equipment sizing result in simulation run times beyond acceptable limits. This paper presents a study that compares the results of a shortened simulation time period using 4 weeks of hourly weather data (one per quarter), to an annual simulation using full 52 weeks of hourly weather data. Three representative building types based on DOE Prototype Building Models and three climate zones were used for determining the validity of using a shortened simulation run period. Further sensitivity analysis and run time comparisons were made to evaluate the robustness and run time savings of using this approach. The results of this analysis show that the shortened simulation run period provides compliance index calculations within 1% of those predicted using annual simulation results, and typically saves about 75% of simulation run time.

  1. Run on Sun | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Run on Sun Jump to: navigation, search Name: Run on Sun Address: 655 S Raymond AV Place: Pasadena, California Country: United States Zip: 91105 Region: Southern CA Area Sector:...

  2. Queueing & Running Jobs | Argonne Leadership Computing Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and Running on BGQ Systems Data Transfer Debugging & Profiling Performance Tools & APIs Software & Libraries IBM References Cooley Policies Documentation Feedback Please...

  3. SSRL Experimental Run Schedule | Stanford Synchrotron Radiation...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Experimental Run Schedule NOTICE TO SSRL USERS: We experienced a vacuum fault during SPEAR startup last week. Troubleshooting continues this week, which will delay the user...

  4. Mill Run Wind Power Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Run Wind Power Project Jump to: navigation, search Name Mill Run Wind Power Project Facility Mill Run Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind...

  5. Brent Run Generating Station Biomass Facility | Open Energy Informatio...

    Open Energy Information (Open El) [EERE & EIA]

    Brent Run Generating Station Biomass Facility Jump to: navigation, search Name Brent Run Generating Station Biomass Facility Facility Brent Run Generating Station Sector Biomass...

  6. Run II data analysis on the grid

    SciTech Connect (OSTI)

    Igor Mandrichenko, Igor Terekhov and Frank Wurthwein

    2002-12-02

    In this document, we begin the technical design for the distributed RunII computing for CDF and D0. The present paper defines the three components of the data handling area of Run II computing, namely the Data Handling System, the Storage System and the Application. We outline their functionality and interaction between them. We identify necessary and desirable elements of the interfaces.

  7. The PDF4LHC report on PDFs and LHC data: Results from Run I and preparation for Run II

    DOE PAGES-Beta [OSTI]

    Rojo, Juan; Accardi, Alberto; Ball, Richard D.; Cooper-Sarkar, Amanda; Roeck, Albert de; Farry, Stephen; Ferrando, James; Forte, Stefano; Gao, Jun; Harland-Lang, Lucian; et al

    2015-09-16

    The accurate determination of the Parton Distribution Functions (PDFs) of the proton is an essential ingredient of the Large Hadron Collider (LHC) program. PDF uncertainties impact a wide range of processes, from Higgs boson characterisation and precision Standard Model measurements to New Physics searches. A major recent development in modern PDF analyses has been to exploit the wealth of new information contained in precision measurements from the LHC Run I, as well as progress in tools and methods to include these data in PDF fits. In this report we summarise the information that PDF-sensitive measurements at the LHC have providedmore » so far, and review the prospects for further constraining PDFs with data from the recently started Run II. Lastly, this document aims to provide useful input to the LHC collaborations to prioritise their PDF-sensitive measurements at Run II, as well as a comprehensive reference for the PDF-fitting collaborations.« less

  8. The PDF4LHC report on PDFs and LHC data: Results from Run I and preparation for Run II

    DOE PAGES-Beta [OSTI]

    Rojo, Juan; Accardi, Alberto; Ball, Richard D.; Cooper-Sarkar, Amanda; de Roeck, Albert; Farry, Stephen; Ferrando, James; Forte, Stefano; Gao, Jun; Harland-Lang, Lucian; et al

    2015-09-16

    The accurate determination of Parton Distribution Functions (PDFs) of the proton is an essential ingredient of the Large Hadron Collider (LHC) program. PDF uncertainties impact a wide range of processes, from Higgs boson characterization and precision Standard Model measurements to New Physics searches. A major recent development in modern PDF analyses has been to exploit the wealth of new information contained in precision measurements from the LHC Run I, as well as progress in tools and methods to include these data in PDF fits. In this report we summarize the information that PDF-sensitive measurements at the LHC have provided somore » far, and review the prospects for further constraining PDFs with data from the recently started Run II. As a result, this document aims to provide useful input to the LHC collaborations to prioritize their PDF-sensitive measurements at Run II, as well as a comprehensive reference for the PDF-fitting collaborations.« less

  9. The PDF4LHC report on PDFs and LHC data: Results from Run I and preparation for Run II

    SciTech Connect (OSTI)

    Rojo, Juan; Accardi, Alberto; Ball, Richard D.; Cooper-Sarkar, Amanda; de Roeck, Albert; Farry, Stephen; Ferrando, James; Forte, Stefano; Gao, Jun; Harland-Lang, Lucian; Huston, Joey; Glazov, Alexander; Gouzevitch, Maxime; Gwenlan, Claire; Lipka, Katerina; Lisovyi, Mykhailo; Mangano, Michelangelo; Nadolsky, Pavel; Perrozzi, Luca; Plačakytė, Ringaile; Radescu, Voica; Salam, Gavin P.; Thorne, Robert

    2015-09-16

    The accurate determination of Parton Distribution Functions (PDFs) of the proton is an essential ingredient of the Large Hadron Collider (LHC) program. PDF uncertainties impact a wide range of processes, from Higgs boson characterization and precision Standard Model measurements to New Physics searches. A major recent development in modern PDF analyses has been to exploit the wealth of new information contained in precision measurements from the LHC Run I, as well as progress in tools and methods to include these data in PDF fits. In this report we summarize the information that PDF-sensitive measurements at the LHC have provided so far, and review the prospects for further constraining PDFs with data from the recently started Run II. As a result, this document aims to provide useful input to the LHC collaborations to prioritize their PDF-sensitive measurements at Run II, as well as a comprehensive reference for the PDF-fitting collaborations.

  10. FY2000 Run Schedule v6

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    31 Oct-99 Nov-99 Dec-99 Jan-00 Feb-00 Mar-00 Apr-00 May-00 Jun-00 Jul-00 Aug-00 Sep-00 Run MaintAP Weekends Shutdown Startup University Holidays Last Updated: 14 MAR 2000...

  11. RHIC Polarized proton performance in run-8

    SciTech Connect (OSTI)

    Montag,C.; Bai, M.; MacKay, W.W.; Roser, T.; Abreu, N.; Ahrens, L.; Barton, D.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Bunce, G.; Calaga, R.; Cameron, P.; Connolly, R.; D'Ottavio, T.; Drees, A.; Fedotov, A.V.; Fischer, W.; Ganetis, G.; Gardner, C.; Glenn, J.; Hayes, T.; Huang, H.; Ingrassia, P.; Kayran, D.A.; Kewisch, J.; Lee, R.C.; Lin, F.; Litvinenko, V.N.; Luccio, A.U.; Luo, Y.; Makdisi, Y.; Malitsky, N.; Marr, G.; Marusic, A.; Michnoff, R.; Morris, J.; Oerter, B.; Pilat, F.; Pile, P.; Robert-Demolaize, G.; Russo, T.; Satogata, T.; Schultheiss, C.; Sivertz, M.; Smith, K.; Tepikian, S.; D. Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2008-10-06

    During Run-8, the Relativistic Heavy Ion Collider (RHIC) provided collisions of spin-polarized proton beams at two interaction regions. Physics data were taken with vertical orientation of the beam polarization, which in the 'Yellow' RHIC ring was significantly lower than in previous years. We present recent developments and improvements as well as the luminosity and polarization performance achieved during Run-8, and we discuss possible causes of the not as high as previously achieved polarization performance of the 'Yellow' ring.

  12. Rotary running tool for rotary lock mandrel

    SciTech Connect (OSTI)

    Dollison, W.W.

    1992-07-28

    This patent describes a running tool for a rotary lock mandrel. It comprises: a housing having a connection on the end thereof; an anvil slidably mounted in the housing and extending from the other end of the housing; means in the housing for rotating the anvil relative to the housing including: a helical slot in the housing, a lug slidably mounted in the helical slot and attached to the anvil and a spring biasing the anvil to extend from the housing; and means on the extending anvil for rotatively and releasably connecting the running tool to a rotary lock mandrel.

  13. 07-08 Run R3.xls

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    -22-2007 Run Shutdown Maintenance AP Injector SPEAR Startup Spear Down University Holidays 23 MA AP AP 27 MA 24 22 24 22 26 20 22 22 24 25 21 18 17 21 15 23 18 3 4 15 14 13 6 8...

  14. Sandia Researchers Score MRS "Outstanding" Rating Two Years Running

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Score MRS "Outstanding" Rating Two Years Running - Sandia Energy Energy Search Icon Sandia ... Sandia Researchers Score MRS "Outstanding" Rating Two Years Running HomeAdvanced ...

  15. China Resources Wind Power Development Co Ltd Hua Run | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Resources Wind Power Development Co Ltd Hua Run Jump to: navigation, search Name: China Resources Wind Power Development Co Ltd (Hua Run) Place: Shantou, Guangdong Province, China...

  16. Mighty Microbes Where Rivers Run (Other) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Mighty Microbes Where Rivers Run Citation Details In-Document Search Title: Mighty Microbes Where Rivers Run Microbes and their influential role in Earth's climate take center ...

  17. Tracking at CDF: algorithms and experience from Run I and Run II

    SciTech Connect (OSTI)

    Snider, F.D.; /Fermilab

    2005-10-01

    The authors describe the tracking algorithms used during Run I and Run II by CDF at the Fermilab Tevatron Collider, covering the time from about 1992 through the present, and discuss the performance of the algorithms at high luminosity. By tracing the evolution of the detectors and algorithms, they reveal some of the successful strategies used by CDF to address the problems of tracking at high luminosities.

  18. SRS Recovery Act Completes Major Lower Three Runs Project Cleanup |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Recovery Act Completes Major Lower Three Runs Project Cleanup SRS Recovery Act Completes Major Lower Three Runs Project Cleanup American Recovery and Reinvestment Act can now claim that 85 percent of the Savannah River Site (SRS) has been cleaned up with the recent completion of the Lower Three Runs (stream) Project. Twenty miles long, Lower Three Runs leaves the main body of the 310-square mile site and runs through parts of Barnwell and Allendale Counties until it

  19. Running Line-Haul Trucks on Ethanol

    Alternative Fuels and Advanced Vehicles Data Center

    I magine driving a 55,000-pound tractor- trailer that runs on corn! If you find it difficult to imagine, you can ask the truck drivers for Archer Daniels Midland (ADM) what it's like. For the past 4 years, they have been piloting four trucks powered by ethyl alcohol, or "ethanol," derived from corn. Several advantages to operating trucks on ethanol rather than on conventional petro- leum diesel fuel present themselves. Because ethanol can be produced domestically, unlike most of our

  20. EERE Success Story-Washington: State Ferries Run Cleaner With...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    State Ferries Run Cleaner With Biodiesel EERE Success Story-Washington: State Ferries Run Cleaner With Biodiesel April 18, 2013 - 12:00am Addthis Washington State Ferries, owned ...

  1. Alternative Fuels Data Center: America's Largest Home Runs on...

    Alternative Fuels and Advanced Vehicles Data Center

    America's Largest Home Runs on Biodiesel in North Carolina to someone by E-mail Share Alternative Fuels Data Center: America's Largest Home Runs on Biodiesel in North Carolina on ...

  2. Illinois: Ozinga Concrete Runs on Natural Gas and Opens Private...

    Energy Savers

    Illinois: Ozinga Concrete Runs on Natural Gas and Opens Private Station Illinois: Ozinga Concrete Runs on Natural Gas and Opens Private Station November 6, 2013 - 12:00am Addthis ...

  3. New Jersey: Atlantic City Jitneys Running on Natural Gas | Department...

    Energy Savers

    New Jersey: Atlantic City Jitneys Running on Natural Gas New Jersey: Atlantic City Jitneys Running on Natural Gas November 6, 2013 - 12:00am Addthis In 2009, the New Jersey Clean ...

  4. Alternative Fuels Data Center: Pennsylvania School Buses Run...

    Alternative Fuels and Advanced Vehicles Data Center

    Pennsylvania School Buses Run on Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas on Facebook Tweet about ...

  5. EERE Success Story-New Jersey: Atlantic City Jitneys Running...

    Office of Environmental Management (EM)

    Atlantic City Jitneys Running on Natural Gas EERE Success Story-New Jersey: Atlantic City Jitneys Running on Natural Gas November 6, 2013 - 12:45pm Addthis In 2009, the New Jersey ...

  6. SSRL_2003_Run_Sched.xls

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    /26/02 Run Shutdown Weekends Maintenance / AP Injector Startup University Holidays PPS Certification Injector / SPEAR Startup SLAC Closed Edited - Robleto, Scott 10 11 12 AP 13 14 12 AP MA/AP 13 14 15 8 9 7 3 L A 11 12 8 9 I S N 30 11 O 12 13 14 18 A I T 31 29 2002 2003 1 2 3 13 4 2002 2003 1 2 3 4 25 26 29 30 28 30 5 6 5 6 8 9 22 16 17 15 16 N 23 24 25 5 17 18 19 Startup 23 24 23 22 21 1 2 3 MA/AP 10 4 5 AP 6 7 8 9 20 22 18 24 24 17 22 23 20 21 14 15 11 16 10 12 9 13 7 8 S T A 1 2 3 15 4 5 5 6

  7. The NUHM? after LHC Run 1

    DOE PAGES-Beta [OSTI]

    Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M. J.; Ellis, J. R.; Flcher, H.; Heinemeyer, S.; Malik, S.; Marrouche, J.; et al

    2014-12-17

    We make a frequentist analysis of the parameter space of the NUHM2, in which the soft supersymmetry (SUSY)-breaking contributions to the masses of the two Higgs multiplets, m2Hu,d, vary independently from the universal soft SUSY-breaking contributions m20 to the masses of squarks and sleptons. Our analysis uses the MultiNest sampling algorithm with over 4 10? points to sample the NUHM2 parameter space. It includes the ATLAS and CMS Higgs mass measurements as well as the ATLAS search for supersymmetric jets + /ET signals using the full LHC Run 1 data, the measurements of BR(Bs?????) by LHCb and CMS togethermorewith other B-physics observables, electroweak precision observables and the XENON100 and LUX searches for spin-independent dark-matter scattering. We find that the preferred regions of the NUHM2 parameter space have negative SUSY-breaking scalar masses squared at the GUT scale for squarks and sleptons, m20 2Hu 2Hd 2 = 32.5 with 21 degrees of freedom (dof) in the NUHM2, to be compared with ?2/dof = 35.0/23 in the CMSSM, and ?2/dof = 32.7/22 in the NUHM1. We find that the one-dimensional likelihood functions for sparticle masses and other observables are similar to those found previously in the CMSSM and NUHM1.less

  8. 2005_Run 1-21-05.xls

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    21-05 Run Shutdown Maintenance / AP Injector Startup Spear Down Injector / SPEAR Startup University Holidays AP 7 24 26 MA 13 10 11 9 25 29 30 30 27 28 28 29 31 3 4 3 7 8 2 1 1 1 5 1 4 5 7 6 9 10 11 8 3 1 12 3 AP 4 7 30 2 20 19 14 17 30 2 1 4 5 9 10 7 13 9 12 14 4 2 3 2 2 1 6 3 7 5 19 9 10 6 1 3 5 5 16 3 13 6 7 9 8 9 15 11 14 12 29 17 25 17 16 23 24 25 18 30 27 28 27 25 26 24 23 29 31 28 27 31 30 29 2004 2005 31 18 19 20 12 15 16 17 14 9 8 14 15 13 11 13 11 12 10 8 5 3 8 13 10 12 11 4 6 5 4 2 2

  9. 2005_Run 3-29-05.xls

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    SLAC Shutdown SSRL 2004-2005 SPEAR RUN SCHEDULE AP 7 14 13 10 11 9 30 27 26 28 24 23 25 30 27 28 26 28 29 31 29 2 1 3 4 3 7 1 8 2 1 1 1 4 1 2 4 6 9 10 11 8 3 12 3 AP 4 1 5 7 5 30 19 20 16 17 14 14 20 19 14 17 2 13 5 30 9 10 9 12 3 13 11 10 12 2 1 2 3 10 6 3 7 5 4 MA 10 11 11 9 7 18 12 15 6 1 3 5 5 4 9 8 9 7 3 13 6 7 15 11 14 12 29 User Conf. 17 25 17 16 23 24 30 27 28 26 29 29 29 31 30 8 2004 2005 31 9 15 13 25 22 11 13 11 12 8 5 3 6 MA 8 13 10 12 11 4 6 5 4 2 2 7 24 23 14 31 29 30 27 29 29 30

  10. APEX: A Prime EXperiment at Jefferson Lab - Test Run Results and Full Run Plans; Update

    SciTech Connect (OSTI)

    Beacham, James

    2015-06-01

    APEX is an experiment at Thomas Jefferson National Accelerator Facility (JLab) in Virginia, USA, that searches for a new gauge boson (A') with sub-GeV mass and coupling to ordinary matter of g' ~ (10-6 - 10⁻²)e. Electrons impinge upon a fixed target of high-Z material. An A' is produced via a process analogous to photon bremsstrahlung, decaying to an e⁺+e⁻ pair. A test run was held in July of 2010, covering mA' = 175 to 250 MeV and couplings g'/e > 10⁻³. A full run is approved and will cover mA' ~ 65 to 525 MeV and g'/e > 2.3 x 10⁻⁴, and is expected to occur sometime in 2016 or 2017.

  11. The NUHM2 after LHC Run 1

    DOE PAGES-Beta [OSTI]

    Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M. J.; Ellis, J. R.; Flächer, H.; Heinemeyer, S.; Malik, S.; Marrouche, J.; et al

    2014-12-17

    We make a frequentist analysis of the parameter space of the NUHM2, in which the soft supersymmetry (SUSY)-breaking contributions to the masses of the two Higgs multiplets, m2Hu,d, vary independently from the universal soft SUSY-breaking contributions m20 to the masses of squarks and sleptons. Our analysis uses the MultiNest sampling algorithm with over 4 × 10⁸ points to sample the NUHM2 parameter space. It includes the ATLAS and CMS Higgs mass measurements as well as the ATLAS search for supersymmetric jets + /ET signals using the full LHC Run 1 data, the measurements of BR(Bs→μ⁺μ⁻) by LHCb and CMS togethermore » with other B-physics observables, electroweak precision observables and the XENON100 and LUX searches for spin-independent dark-matter scattering. We find that the preferred regions of the NUHM2 parameter space have negative SUSY-breaking scalar masses squared at the GUT scale for squarks and sleptons, m20 < 0, as well as m2Hu < m2Hd < 0. The tension present in the CMSSM and NUHM1 between the supersymmetric interpretation of (g – 2)μ and the absence to date of SUSY at the LHC is not significantly alleviated in the NUHM2. We find that the minimum χ2 = 32.5 with 21 degrees of freedom (dof) in the NUHM2, to be compared with χ2/dof = 35.0/23 in the CMSSM, and χ2/dof = 32.7/22 in the NUHM1. We find that the one-dimensional likelihood functions for sparticle masses and other observables are similar to those found previously in the CMSSM and NUHM1.« less

  12. Higgs results from the Tevatron Run II

    SciTech Connect (OSTI)

    Tuchming, B.; /DAPNIA, Saclay

    2005-01-01

    The data taken at the Tevatron experiments have been analyzed to search for Higgs bosons. For the Standard Model Higgs searches, no excess is observed, the data are in good agreement with the expectations, so that limits are set on the production rates. For various theoretical models beyond the Standard Model, there is no excess either, which allows to derive constraints in their respective parameter spaces.

  13. Dynamic aperture evaluation for the RHIC 2009 polarized proton runs

    SciTech Connect (OSTI)

    Luo,Y.; Tepikain, S.; Bai, M.; Beebe-Wang, J.; Fischer, W.; Montag, c.; Robert-Demolaize, G.; Satogata, T.; Trbojevic, D.

    2009-05-04

    In this article we numerically evaluate the dynamic apertures of the proposed lattices for the coming Relativistic Heavy Ion Collider (RHIC) 2009 polarized proton (pp) 100 GeV and 250 GeV runs. One goal of this study is to find out the appropriate {beta}* for the coming 2009 pp runs. Another goal is to check the effect of second order chromaticity correction in the RHIC pp runs.

  14. Polarization simulations in the RHIC run 15 lattice

    SciTech Connect (OSTI)

    Meot, F.; Huang, H.; Luo, Y.; Ranjbar, V.; Robert-Demolaize, G.; White, S.

    2015-05-03

    RHIC polarized proton Run 15 uses a new acceleration ramp optics, compared to RHIC Run 13 and earlier runs, in relation with electron-lens beam-beam compensation developments. The new optics induces different strengths in the depolarizing snake resonance sequence, from injection to top energy. As a consequence, polarization transport along the new ramp has been investigated, based on spin tracking simulations. Sample results are reported and discussed.

  15. Radiation Detection Equipment Up and Running in Slovenia | National...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Radiation Detection Equipment Up and Running in Slovenia November 13, 2006 New Monitors ... Administration (NNSA) announced that radiation detection equipment to screen for ...

  16. LCLS-scheduling-run_6_Ver4.xlsx

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    LCLS shutdown LCLS Approved Experiments for Run 6, June-December 2012 Instrument Prop Proposal Title Spokesperson XPP L503 Ultrafast Resonant Inelastic X-ray Scattering...

  17. New Jersey: Atlantic City Jitneys Running on Natural Gas | Department...

    Energy.gov (indexed) [DOE]

    ... and diesel elsewhere. | Photo courtesy of Clean Energy In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety New Jersey: Atlantic City Jitneys Running on Natural ...

  18. Birch Run, Michigan: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Run, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.2508585, -83.7941309 Show Map Loading map... "minzoom":false,"mappingservice"...

  19. Pleasant Run, Ohio: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Run, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.2997791, -84.5635567 Show Map Loading map... "minzoom":false,"mappingservice":"go...

  20. Pleasant Run Farm, Ohio: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Run Farm, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.3031126, -84.5480009 Show Map Loading map... "minzoom":false,"mappingservice...

  1. Dry Run, Ohio: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Dry Run, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.1042277, -84.330494 Show Map Loading map... "minzoom":false,"mappingservice":...

  2. LCLS Experimental Run Schedules | Linac Coherent Light Source

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    LCLS Experimental Run Schedules Check-In | Computer Accounts | Data Collection & Analysis | Policies | Proposals | Shipping | User Portal LCLS generally operates November through...

  3. The Renormalization Group Running of the Higgs Quartic Coupling: Unification vs. Phenomenology

    SciTech Connect (OSTI)

    Montes de Oca Y, J. H.; Juarez W, S. R.; Kielanowski, P.

    2007-02-09

    Within the framework of the standard model (SM) of elementary particles, we obtained numerical solutions for the running Higgs mass, considering the renormalization group equations at the one and two loop approximation. Through the triviality condition (TC) and stability condition (SC) on the Higgs quartic coupling {lambda}H the bounds on the Higgs running mass have been fixed. The numerical results are presented for two special cases. One considering an unification of the three gauge couplings at the energy EU 1013 GeV and the other using the current experimental data for the gauge couplings.

  4. The CMSSM and NUHM1 after LHC Run 1

    DOE PAGES-Beta [OSTI]

    Buchmueller, O.; De Roeck, A.; Cavanaugh, R.; Dolan, M. J.; Ellis, J. R.; Flacher, H.; Heinemeyer, S.; Isidori, G.; Marrouche, J.; Martinez Santos, D.; et al

    2014-06-13

    We analyze the impact of data from the full Run 1 of the LHC at 7 and 8 TeV on the CMSSM with μ > 0 and < 0 and the NUHM1 with μ > 0, incorporating the constraints imposed by other experiments such as precision electroweak measurements, flavour measurements, the cosmological density of cold dark matter and the direct search for the scattering of dark matter particles in the LUX experiment. We use the following results from the LHC experiments: ATLAS searches for events with E/T accompanied by jets with the full 7 and 8 TeV data, the ATLASmore » and CMS measurements of the mass of the Higgs boson, the CMS searches for heavy neutral Higgs bosons and a combination of the LHCb and CMS measurements of BR(Bs → μ+μ–) and BR(Bd → μ+μ–). Our results are based on samplings of the parameter spaces of the CMSSM for both μ > 0 and μ < 0 and of the NUHM1 for μ > 0 with 6.8×106, 6.2×106 and 1.6×107 points, respectively, obtained using the MultiNest tool. The impact of the Higgs-mass constraint is assessed using FeynHiggs 2.10.0, which provides an improved prediction for the masses of the MSSM Higgs bosons in the region of heavy squark masses. It yields in general larger values of Mh than previous versions of FeynHiggs, reducing the pressure on the CMSSM and NUHM1. We find that the global χ2 functions for the supersymmetric models vary slowly over most of the parameter spaces allowed by the Higgs-mass and the E/T searches, with best-fit values that are comparable to the χ2/dof for the best Standard Model fit. As a result, we provide 95% CL lower limits on the masses of various sparticles and assess the prospects for observing them during Run 2 of the LHC.« less

  5. Run VMC 5K | Y-12 National Security Complex

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Run VMC 5K Run VMC 5K Posted: January 13, 2016 - 4:40pm Y-12's team for the Volunteer Ministry Center 5K. Run VMC is not a new rap group, but the 5K to benefit the Volunteer Ministry Center is a wrap. Y-12's team consisted of more than 20 employees and retirees. The race began and ended at Hardin Valley Elementary, and several team members received accolades. Travis Wilson from Mission Support/Infrastructure was the overall winner with a time of 16:48. Other team members who finished in the top

  6. Preparations for p-Au run in 2015

    SciTech Connect (OSTI)

    Liu, C.

    2014-12-31

    The p-Au particle collision is a unique category of collision runs. This is resulted from the different charge mass ratio of the proton and fully stripped Au ion (1 vs.79/197). The p-Au run requires a special acceleration ramp, and movement of a number of beam components as required by the beam trajectories. The DX magnets will be moved for the first time in the history of RHIC. In this note, the planning and preparations for p-Au run will be presented.

  7. Instrument Front-Ends at Fermilab During Run II

    SciTech Connect (OSTI)

    Meyer, Thomas; Slimmer, David; Voy, Duane; /Fermilab

    2011-07-13

    The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor.

  8. Changes to run on Cori Haswell after merge

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Changes to run on Cori Haswell after merge Changes to run on Cori Haswell after merge Introduction Process affinity (or CPU pinning) means to bind MPI process to a CPU or a range of CPUs on the node. It is important to spread MPI ranks evenly onto different NUMA nodes. Thread affinity forces each process or thread to run on a specific subset of processors, to take advantage of local process state. Correct process and thread affinity is the basis for getting optimal performance (Note: if you are

  9. Alternative Fuels Data Center: Airport Shuttles Run on Propane

    Alternative Fuels and Advanced Vehicles Data Center

    to share Alternative Fuels Data Center: Airport Shuttles Run on Propane on AddThis.com... ... The Louis Armstrong New Orleans International Airport in the Big Easy uses 27 ...

  10. SARA Cadets and Midshipmen Hit the Ground Running | National...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    SARA Cadets and Midshipmen Hit the Ground Running As the U.S. military grows in ... and midshipmen from the military academies at West Point, Annapolis, and Colorado Springs. ...

  11. TianRun UILK LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Minnesota Sector: Wind energy Product: Minnesota-based joint venture formed by TianRun USA, Horizon Wind, and Dakota Wind to develop the UILK wind farm project in Minnesota....

  12. New Carlsbad Field Office Manager Hits the Ground Running | Department...

    Office of Environmental Management (EM)

    Carlsbad Field Office Manager Hits the Ground Running New Carlsbad Field Office Manager ... In fact, his first weeks in his new job have looked like a sprint. Franco's last six years ...

  13. TianRun USA Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Minnesota Sector: Wind energy Product: Minnesota-based investment arm of Goldwind Science & Technology, Beijing Tianrun invested USD 3m to set up the TianRun USA subsidiary in...

  14. Experimental Run Schedules for Previous Years | Stanford Synchrotron...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Run Schedules for Previous Years SPEAR Operating Maintenance Beam Line Schedule Accelerator Physics FY2015 X-ray VUV, BL13 Macromolecular Crystallography FY2014 X-ray VUV, BL13...

  15. Office of Fossil Energy Continues Long-Running Minority Educational

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research Program | Department of Energy Continues Long-Running Minority Educational Research Program Office of Fossil Energy Continues Long-Running Minority Educational Research Program April 19, 2012 - 11:41am Addthis Annie Whatley Annie Whatley Deputy Director, Office of Minority Education and Community Development Editor's Note: This article is cross-posted from the Office of Fossil Energy. Four projects that will strengthen and promote U.S. energy security, scientific discovery and

  16. Mighty Microbes Where Rivers Run (Other) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Other: Mighty Microbes Where Rivers Run Citation Details In-Document Search Title: Mighty Microbes Where Rivers Run Microbes and their influential role in Earth's climate take center stage in the area where river water and groundwater mix - an area known as the hyporheic zone. PNNL ecologist James Stegen discusses his team's research in his "laboratory" - the zone along the Columbia, one of the nation's largest rivers. It's a squishy, porous lab, better known for soaking feet than

  17. Hitting a Home Run for Clean Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hitting a Home Run for Clean Energy Hitting a Home Run for Clean Energy March 12, 2012 - 11:39am Addthis John Chu John Chu Communications Specialist with the Office of Energy Efficiency and Renewable Energy Spring. With gentle breezes, blooming flowers, and warm sunshine, the season marks the beginning of fun outdoor activities-picnics, camping, hikes, and the classic American pastime-baseball. In the past five years, major league baseball teams have increasingly made strides in greening up

  18. Well casing hanger and packoff running and retrieval tool

    SciTech Connect (OSTI)

    Pollock, J.R.; Valka, W.A.

    1992-04-21

    This patent describes a well tool for running a casing hanger and a packoff into, and retrieving a packoff from, a subsea wellhead. It comprises a tubular body including means to releasably connect a packoff to the body for running the packoff into a subsea wellhead; means to releasably connect a packoff to the body for retrieving the packoff from a subsea wellhead; means to relocate the packoff running means and the packoff retrieving means between their functional and non-functional positions; means to releasably connect a casing hanger to the body for running the hanger into a subsea wellhead; a tubular mandrel surrounded by and rotatable with respect to the body; means surrounding the mandrel for moving the casing hanger connection means into functional position; first anti-rotation means preventing relative rotation between the body and the means for moving the casing hanger connection means; second anti-rotation means for preventing relative rotation between connection means; second anti-rotation means for preventing relative rotation between the body and a casing hanger connected thereto: and means for connecting the mandrel to a pipe string for running the tool into a subsea wellhead.

  19. SACO-1: a fast-running LMFBR accident-analysis code

    SciTech Connect (OSTI)

    Mueller, C.J.; Cahalan, J.E.; Vaurio, J.K.

    1980-01-01

    SACO is a fast-running computer code that simulates hypothetical accidents in liquid-metal fast breeder reactors to the point of permanent subcriticality or to the initiation of a prompt-critical excursion. In the tradition of the SAS codes, each subassembly is modeled by a representative fuel pin with three distinct axial regions to simulate the blanket and core regions. However, analytic and integral models are used wherever possible to cut down the computing time and storage requirements. The physical models and basic equations are described in detail. Comparisons of SACO results to analogous SAS3D results comprise the qualifications of SACO and are illustrated and discussed.

  20. Comments on Injector Proton Beam Study in Run 2014

    SciTech Connect (OSTI)

    Zhang, S. Y.

    2014-09-15

    During the entire period of injector proton study in run 2014, it seems that the beam transverse emittance out of Booster is larger than that in run 2013. The emittance measured at the BtA transfer line and also the transmission from Booster late to AGS late are presented for this argument. In addition to this problem, it seems that the multiturn Booster injection, which defines the transverse emittance, needs more attention. Moreover, for high intensity operations, the space charge effect may be already relevant in RHIC polarized proton runs. With the RHIC proton intensity improvement in the next several years, higher Booster input intensity is needed, therefore, the space charge effect at the Booster injection and early ramp may become a new limiting factor.

  1. Top quark mass measurement at CDF Run-II

    SciTech Connect (OSTI)

    T. Maruyama

    2004-05-11

    CDF has resumed the top quark mass measurement with upgraded detectors and Tevatron complex. High statistics should allow us to determine the top mass with an uncertainty of a few GeV/c{sup 2} by the end of Run II. The current measured value, using an integrated luminosity of {approx} 108 pb{sup -1}, is 177.5{sub -9.4}{sup +12.7} (stat.) {+-} 7.1(syst.) GeV/c{sup 2} (lepton + jets with one b-jet tagged mode: the current best mode), which is consistent with RunI measurements.

  2. Fast Bunch Integrators at Fermilab During Run II

    SciTech Connect (OSTI)

    Meyer, Thomas; Briegel, Charles; Fellenz, Brian; Vogel, Greg; /Fermilab

    2011-07-13

    The Fast Bunch Integrator is a bunch intensity monitor designed around the measurements made from Resistive Wall Current Monitors. During the Run II period these were used in both Tevatron and Main Injector for single and multiple bunch intensity measurements. This paper presents an overview of the design and use of these systems during this period. During the Run II era the Fast Bunch integrators have found a multitude of uses. From antiproton transfers to muti-bunch beam coalescing, Main Injector transfers to halo scraping and lifetime measurements, the Fast Bunch Integrators have proved invaluable in the creation and maintenance of Colliding Beams stores at Fermilab.

  3. Analysis of failed ramps during the RHIC FY09 run

    SciTech Connect (OSTI)

    Minty, M.

    2014-08-15

    The Relativistic Heavy Ion Collider (RHIC) is a versatile accelerator that supports operation with polarized protons of up to 250 GeV and ions with up to 100 GeV/nucleon. During any running period, various operating scenarios with different particle species, beam energies or accelerator optics are commissioned. In this report the beam commissioning periods for establishing full energy beams (ramp development periods) from the FY09 run are summarized and, for the purpose of motivating further developments, we analyze the reasons for all failed ramps.

  4. NNSA employees run to raise awareness about concussions | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) run to raise awareness about concussions Tuesday, June 3, 2014 - 11:44am Staff from across NNSA participated in the third annual Derek Sheely Lead the Way 4.0-Mile Run. The event raises funds to support concussion awareness on behalf of the Derek Sheely Foundation. On Aug. 22, 2011, Derek suffered a traumatic brain injury during football practice at Frostburg State University and died one week later. He had previously served as an NNSA intern and is the son

  5. CNS Running Crew conquers marathon | Y-12 National Security Complex

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Running Crew conquers ... CNS Running Crew conquers marathon Posted: April 16, 2015 - 1:27pm Marathon runner Barbara King with LiveWise Athletic Trainer Robert Eichin "It was amazing!" That is how Y-12 employee Barbara King described her first marathon. The 53-year-old Information, Solutions and Services worker, who joined the "Couch to 5K LiveWise program two years ago, accomplished her feat at the Covenant Health Knoxville Marathon on March 29. She was one of 26 Y-12 employees

  6. The Muon system of the run II D0 detector

    SciTech Connect (OSTI)

    Abazov, V.M.; Acharya, B.S.; Alexeev, G.D.; Alkhazov, G.; Anosov, V.A.; Baldin, B.; Banerjee, S.; Bardon, O.; Bartlett, J.F.; Baturitsky, M.A.; Beutel, D.; Bezzubov, V.A.; Bodyagin, V.; Butler, J.M.; Cease, H.; Chi, E.; Denisov, D.; Denisov, S.P.; Diehl, H.T.; Doulas, S.; Dugad, S.R.; /Beijing, Inst. High Energy Phys. /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco de Quito U. /Tata Inst. /Dubna, JINR /Moscow, ITEP /Moscow State U. /Serpukhov, IHEP /St. Petersburg, INP /Arizona U. /Florida State U. /Fermilab /Northern Illinois U. /Indiana U. /Boston U. /Northeastern U. /Brookhaven /Washington U., Seattle /Minsk, Inst. Nucl. Problems

    2005-03-01

    The authors describe the design, construction and performance of the upgraded D0 muon system for Run II of the Fermilab Tevatron collider. Significant improvements have been made to the major subsystems of the D0 muon detector: trigger scintillation counters, tracking detectors, and electronics. The Run II central muon detector has a new scintillation counter system inside the iron toroid and an improved scintillation counter system outside the iron toroid. In the forward region, new scintillation counter and tracking systems have been installed. Extensive shielding has been added in the forward region. A large fraction of the muon system electronics is also new.

  7. PDF4LHC recommendations for LHC Run II

    DOE PAGES-Beta [OSTI]

    Butterworth, Jon; Carrazza, Stefano; Cooper-Sarkar, Amanda; Roeck, Albert De; Feltesse, Joel; Forte, Stefano; Gao, Jun; Glazov, Sasha; Huston, Joey; Kassabov, Zahari; et al

    2016-01-06

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+αs uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. Lastly, we finally discuss tools which allow for themore » delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology.« less

  8. Top mass measurements at the Tevatron run II

    SciTech Connect (OSTI)

    Velev, Gueorgui V.; /Fermilab

    2005-10-01

    The latest top quark mass measurements by the CDF and D0 experiments are presented here. The mass has been determined in the dilepton (t{bar t} {yields} e{mu}, ee, {mu}{mu} + jets + E{sub T}) and lepton plus jets (t{bar t} {yields} e or {mu} + jets + E{sub T}) final states. The most accurate single result from lepton plus jets channel is 173.5{sub -3.6}{sup +3.7}(stat. + Jet Energy Scale Systematic) {+-} 1.3(syst.) GeV/c{sup 2}, which is better than the combined CDF and D0 Run I average. A preliminary and unofficial average of the best experimental Run II results gives M{sub top} = 172.7 {+-} 3.5 GeV/c{sup 2}.

  9. Results from Vernier scans during the RHIC 2008 PP Run

    SciTech Connect (OSTI)

    Drees,A.; D Ottavio, T.

    2009-05-04

    Using the vernier scan or Van der Meer scan technique, where one beam is swept stepwise across the other while measuring the collision rate as a function of beam displacement, the transverse beam profiles, the luminosity and the effective cross section of the detector in question can be measured. This report briefly recalls the vernier scan method and presents results from the 100 GeV 2008 RHIC polarized proton (pp) run.

  10. Prospects for antineutrino running at MiniBooNE

    SciTech Connect (OSTI)

    Wascko, M.O.; /Louisiana State U.

    2006-02-01

    MiniBooNE began running in antineutrino mode on 19 January, 2006. We describe the sensitivity of MiniBooNE to LSND-like {bar {nu}}{sub e} oscillations and outline a program of antineutrino cross-section measurements necessary for the next generation of neutrino oscillation experiments. We describe three independent methods of constraining wrong-sign (neutrino) backgrounds in an antineutrino beam, and their application to the MiniBooNE antineutrino analyses.

  11. NNSA's systems administrators keep the computers running | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) NNSA's systems administrators keep the computers running Friday, July 29, 2016 - 1:36pm For Systems Administrator (SysAdmin) Day, meet some of the men & women keeping NNSA going. Thanks for all you do! Technologist Michelle Swinkels has been proud to be a Lawrence Livermore team member since 1989. Michelle Swinkels, Senior Systems and Network Technologist at NNSA's Lawrence Livermore National Laboratory What excites you about your work for NNSA? I've

  12. SARA Cadets and Midshipmen Hit the Ground Running | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Military Academic Collaborations SARA Cadets and Midshipmen Hit the Ground Running As the U.S. military grows in technological sophistication, it is fitting that some of its future leaders are getting a four-to-six-week full-immersion experience at Los Alamos National Laboratory. This summer, through the Service Academies Research Associates (SARA) Program, the Laboratory hosted 17 cadets and midshipmen from the military academies at West Point, Annapolis,

  13. (The 1990 run of the WA80 experiment)

    SciTech Connect (OSTI)

    Young, G.R.

    1990-09-18

    The traveler spent six weeks at CERN participating in the 1990 run of the WA80 experiment. The traveler concentrated on trigger electronics for the first two weeks and on operation of the experiment for much of the next four. New electronics designed at ORNL for reading out the new BGO spectrometer were tested with the BGO in beam. Improvements were made, in collaboration with the ORNL engineers who designed the electronics. Plans were made for constructing the electronics in large quantities. Conversations were had with other members of WA80 about the analysis of results from this year's run and our plans for the 1991/1992 runs proposed for CERN. Lengthy conversations were had about the draft of a first paper concerning limits on direct photon production. Finally, the traveler attended an all-day session of the dilepton working group chartered to consider dilepton and photon experiments using heavy-ion beams in CERN's to-be-proposed Large Hadron Collider (LHC). At this meeting the traveler presented recent results from the group working on such a proposal for RHIC and updated his earlier presentation of June 1990 in this working group.

  14. SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3

    SciTech Connect (OSTI)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Ajith, P.; Anderson, S. B.; Arai, K.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Adams, C.; Affeldt, C.; Allen, B.; Agathos, M.; Agatsuma, K.; Ceron, E. Amador; Anderson, W. G.; Amariutei, D.; Arain, M. A.; Collaboration: LIGO Scientific Collaboration; Virgo Collaboration; and others

    2012-11-20

    We present the results of a search for gravitational waves associated with 154 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments in 2009-2010, during the sixth LIGO science run and the second and third Virgo science runs. We perform two distinct searches: a modeled search for coalescences of either two neutron stars or a neutron star and black hole, and a search for generic, unmodeled gravitational-wave bursts. We find no evidence for gravitational-wave counterparts, either with any individual GRB in this sample or with the population as a whole. For all GRBs we place lower bounds on the distance to the progenitor, under the optimistic assumption of a gravitational-wave emission energy of 10{sup -2} M {sub Sun} c {sup 2} at 150 Hz, with a median limit of 17 Mpc. For short-hard GRBs we place exclusion distances on binary neutron star and neutron-star-black-hole progenitors, using astrophysically motivated priors on the source parameters, with median values of 16 Mpc and 28 Mpc, respectively. These distance limits, while significantly larger than for a search that is not aided by GRB satellite observations, are not large enough to expect a coincidence with a GRB. However, projecting these exclusions to the sensitivities of Advanced LIGO and Virgo, which should begin operation in 2015, we find that the detection of gravitational waves associated with GRBs will become quite possible.

  15. The pMSSM10 after LHC run 1

    DOE PAGES-Beta [OSTI]

    de Vries, K. J.; Bagnaschi, E. A.; Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M. J.; Ellis, J. R.; Flächer, H.; Heinemeyer, S.; et al

    2015-09-01

    display the one-dimensional likelihood functions for sparticle masses, and we show that they may be significantly lighter in the pMSSM10 than in the other models, e.g., the gluino may be as light as ∼ 1250 GeV at the 68 % CL, and squarks, stops, electroweak gauginos and sleptons may be much lighter than in the CMSSM, NUHM1 and NUHM2. We discuss the discovery potential of future LHC runs, e+e- colliders and direct detection experiments.« less

  16. The pMSSM10 after LHC run 1

    SciTech Connect (OSTI)

    de Vries, K. J.; Bagnaschi, E. A.; Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M. J.; Ellis, J. R.; Flächer, H.; Heinemeyer, S.; Isidori, G.; Malik, S.; Marrouche, J.; Santos, D. Martínez; Olive, K. A.; Sakurai, K.; Weiglein, G.

    2015-09-01

    Higgs rates) that the minimum χ2=20.5 with 18 degrees of freedom (d.o.f.) in the pMSSM10, corresponding to a χ2 probability of 30.8 %, to be compared with χ2/d.o.f.=32.8/24(31.1/23)(30.3/22) in the CMSSM (NUHM1) (NUHM2). We display the one-dimensional likelihood functions for sparticle masses, and we show that they may be significantly lighter in the pMSSM10 than in the other models, e.g., the gluino may be as light as ∼ 1250 GeV at the 68 % CL, and squarks, stops, electroweak gauginos and sleptons may be much lighter than in the CMSSM, NUHM1 and NUHM2. We discuss the discovery potential of future LHC runs, e+e- colliders and direct detection experiments.

  17. Models Datasets

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    iteration by iteration. RevSim is an Excel 2010 based model. Much of the logic is VBA code (Visual Basic for Applications); the user does not need to know VBA to run the...

  18. CMS Data Processing Workflows during an Extended Cosmic Ray Run

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    The CMS Collaboration conducted a month-long data taking exercise, the Cosmic Run At Four Tesla, during October-November 2008, with the goal of commissioning the experiment for extended operation. With all installed detector systems participating, CMS recorded 270 million cosmic ray events with the solenoid at a magnetic field strength of 3.8 T. This paper describes the data flow from the detector through the various online and offline computing systems, as well as the workflows used for recording the data, for aligning and calibrating the detector, and for analysis of the data.

  19. WIMP-Search Results from the Second CDMSlite Run

    SciTech Connect (OSTI)

    Agnese, R.

    2015-09-08

    The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Our results are presented from the second CDMSlite run with an exposure of 70 kg days, which reached an energy threshold for electron recoils as low as 56 eV. Furthermore, a fiducialization cut reduces backgrounds below those previously reported by CDMSlite. New parameter space for the WIMP-nucleon spin-independent cross section is excluded forWIMP masses between 1.6 and 5.5 GeV/c2.

  20. Characterization of straight run and demetallized Arabian heavy atmospheric resid

    SciTech Connect (OSTI)

    Olbrich, H.C.; Hung, C.W.; Howell, R.L. )

    1987-04-01

    Graded catalyst systems have been used for resid processing for at least 20 years. They usually consist of demetallation (HDM) catalysts followed by more active catalysts for sulfur, Ramsbottom Carbon, and nitrogen removal. The purpose of the HDM catalysts is to render the metal concentration of the oil tolerable to the more active catalysts. The purpose of this study was to examine the individual performance of two different HDM catalysts at constant product quality and constant processing conditions. The straight run and HDM oils were characterized by elemental analyses and a chromatographic separation method.

  1. Tevatron End-of-Run Beam Physics Experiments

    SciTech Connect (OSTI)

    Valishev, A.; Gu, X.; Miyamoto, R.; White, S.; Schmidt, F.; Qiang, J.; /LBNL

    2012-05-01

    Before the Tevatron Collider Run II ended in September of 2011, a number of specialized beam study periods were dedicated to the experiments on various accelerator physics concepts and effects during the last year of the machine operation. The study topics included collimation with bent crystals and hollow electron beams, diffusion measurements and various aspects of beam-beam interactions. In this report we concentrate on the subject of beam-beam interactions, summarizing the results of beam experiments. The covered topics include offset collisions, coherent beam stability, effect of the bunch-length-to-beta-function ratio, and operation of AC dipole with colliding beams.

  2. DOE-2 sample run book: Version 2.1E

    SciTech Connect (OSTI)

    Winkelmann, F.C.; Birdsall, B.E.; Buhl, W.F.; Ellington, K.L.; Erdem, A.E.; Hirsch, J.J.; Gates, S.

    1993-11-01

    The DOE-2 Sample Run Book shows inputs and outputs for a variety of building and system types. The samples start with a simple structure and continue to a high-rise office building, a medical building, three small office buildings, a bar/lounge, a single-family residence, a small office building with daylighting, a single family residence with an attached sunspace, a ``parameterized`` building using input macros, and a metric input/output example. All of the samples use Chicago TRY weather. The main purpose of the Sample Run Book is instructional. It shows the relationship of LOADS-SYSTEMS-PLANT-ECONOMICS inputs, displays various input styles, and illustrates many of the basic and advanced features of the program. Many of the sample runs are preceded by a sketch of the building showing its general appearance and the zoning used in the input. In some cases we also show a 3-D rendering of the building as produced by the program DrawBDL. Descriptive material has been added as comments in the input itself. We find that a number of users have loaded these samples onto their editing systems and use them as ``templates`` for creating new inputs. Another way of using them would be to store various portions as files that can be read into the input using the {number_sign}{number_sign} include command, which is part of the Input Macro feature introduced in version DOE-2.lD. Note that the energy rate structures here are the same as in the DOE-2.lD samples, but have been rewritten using the new DOE-2.lE commands and keywords for ECONOMICS. The samples contained in this report are the same as those found on the DOE-2 release files. However, the output numbers that appear here may differ slightly from those obtained from the release files. The output on the release files can be used as a check set to compare results on your computer.

  3. Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural...

    Alternative Fuels and Advanced Vehicles Data Center

    Santa Fe Metro Fleet Runs on Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas on Facebook Tweet about Alternative ...

  4. The PDF4LHC report on PDFs and LHC data: results from Run I and...

    Office of Scientific and Technical Information (OSTI)

    The PDF4LHC report on PDFs and LHC data: results from Run I and preparation for Run II Citation Details In-Document Search Title: The PDF4LHC report on PDFs and LHC data: results...

  5. Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs October 19, 2015 - 12:38pm Addthis ICM Inc. announced ...

  6. Improved dark matter search results from PICO-2L Run 2 (Journal...

    Office of Scientific and Technical Information (OSTI)

    Run 2 New data are reported from a second run of the 2-liter PICO-2L C3F8 bubble ... Country of Publication: United States Language: English Subject: 79 ASTRONOMY AND ASTROPHYSICS; ...

  7. Logging while tripping cuts time to run gamma ray

    SciTech Connect (OSTI)

    1996-06-10

    A new logging tool, sent down the drillstring before a pipe trip out of the hole, logs the well as the pipe is pulled from the hole, cutting the total time required for open hole logging on some wells. This logging while tripping (LWT) technology allows an operator to run a gamma ray and neutron log more quickly than with standard wire line equipment. The drill pipe conveys the logging tools up the well as the pipe is tripped out, and the logging data are stored in the tool`s memory. A transparent logging collar, which meets API 7 and RP7G requirements, holds the tools in the drillstring without interfering with the logging measurements.

  8. Impedances and collective instabilities of the Tevatron at Run II

    SciTech Connect (OSTI)

    Ng, King-Yuen, FERMI

    1998-09-01

    The longitudinal and transverse coupling impedances of the Tevatron vacuum chamber are estimated and summed up. The resistive-wall impedances of the beam pipe and the laminations in the Lambertson magnets dominate below {approximately} 50 MHz. Then come the inductive parts of the bellows and BPM`s. The longitudinal and transverse collective instabilities, for both single bunch and multi bunches, are studied using Run II parameters. As expected the transverse coupled-bunch instability driven by the resistive-wall impedance is the most severe collective instability. However, it can be damped by a transverse damper designed for the correction of injection offsets. The power of such a damper has been studied.

  9. LCLS-scheduling-run_V_Ver9c.xlsx

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Day Com Com Com Com Com L421 Coffee Night L477 Robinson Gruebel (L304, run 4) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Thur Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Day L498

  10. Department of Energy to Provide Supercomputing Time to Run NOAA...

    Energy.gov (indexed) [DOE]

    Advanced, high-resolution climate models from NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) will be prototyped and compared to other models like the NSF-DOE sponsored ...

  11. The cce/8.3.0 C++ compiler may run into a linking error on Edison

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The cce8.3.0 C++ compiler may run into a linking error on Edison The cce8.3.0 C++ compiler may run into a linking error on Edison July 1, 2014 You may run into the following...

  12. An overview of Booster and AGS polarized proton operation during Run 15

    SciTech Connect (OSTI)

    Zeno, K.

    2015-10-20

    This note is an overview of the Booster and AGS for the 2015 Polarized Proton RHIC run from an operations perspective. There are some notable differences between this and previous runs. In particular, the polarized source intensity was expected to be, and was, higher this year than in previous RHIC runs. The hope was to make use of this higher input intensity by allowing the beam to be scraped down more in the Booster to provide a brighter and smaller beam for the AGS and RHIC. The RHIC intensity requirements were also higher this run than in previous runs, which caused additional challenges because the AGS polarization and emittance are normally intensity dependent.

  13. Lower Three Runs Remediation Safety Preparation Strategy - 13318

    SciTech Connect (OSTI)

    Mackay, Alexander; Fryar, Scotty; Doane, Alan

    2013-07-01

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina that contains six primary stream/river systems. The Lower Three Runs Stream (LTR) is one of the primary streams within the site that is located in the southeast portion of the Savannah River Site. It is a large blackwater stream system that originates in the northeast portion of SRS and follows a southerly direction before it enters the Savannah River. During reactor operations, secondary reactor cooling water, storm sewer discharges, and miscellaneous wastewater was discharged and contaminated a 20 mile stretch of Lower Three Runs Stream that narrows and provides a limited buffer of US DOE property along the stream and flood-plain. Based on data collected during the years 2009 and 2010 under American Recovery and Re-investment Act funding, the stream was determined to be contaminated with cesium-137 at levels that exceeded acceptable risk based limits. In agreement with the Environmental Protection Agency and the South Carolina Department of Health and Environmental Control, three areas were identified for remediation [1] (SRNS April 2012). A comprehensive safety preparation strategy was developed for safe execution of the LTR remediation project. Contract incentives for safety encouraged the contractor to perform a complete evaluation of the work and develop an implementation plan to perform the work. The safety coverage was controlled to ensure all work was observed and assessed by one person per work area within the project. This was necessary due to the distances between the fence work and three transects being worked, approximately 20 miles. Contractor Management field observations were performed along with DOE assessments to ensure contractor focus on safe performance of the work. Dedicated ambulance coverage for remote worker work activities was provided. This effort was augmented with

  14. Hydrogen production at run-of-river hydro plants

    SciTech Connect (OSTI)

    Tarnay, D.S.

    1983-12-01

    Production of energy from non-renewable petroleum, natural gas and coal is declining due to depletion and high prices. Presently, the research concentrates on reduction of consumption and more efficient use of traditional fuels, and on development of renewable sources of energy and new energy technologies. Most of the new energy sources, however, are not available in a convenient form for consumer. The new energy must be renewable, economically feasible and transportable. Not all the available renewable energy sources have these qualities. Many scientists and engineers believe that hydrogen meets these criteria best. Hydrogen can be produced from various renewable sources such as solar, wind, geothermal, tidal and glacier energies, ocean thermal energy conversion (OTEC), and obviously from - waterpower. The production of hydrogen at run-of-river hydropower plants via electrolysis could be the front-runner in developing new hydrogen energy technologies, and open the way to a new hydrogen era, similarly as the polyphase system and the a-c current generator of N. Tesla used at the Niagara Falls Hydropower Plant, opened the door to a new electrical age in 1895.

  15. SSRL_2004_Run_Sched_3_22_04.xls

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    22/04 Run Shutdown Maintenance / AP Injector Startup SLAC Closed Injector / SPEAR Startup University Holidays 17 MA/AP 18 MA 5 1 1 1 AP 3 4 7 4 9 5 6 8 10 20 10 11 12 11 AP 9 1 4 1 2 8 12 20 24 21 22 21 26 5 5 2 3 6 7 16 MA O 9 12 I 15 10 S 8 9 13 11 11 12 13 6 2 MA MA/AP AP 3 2 4 2 1 1 AP 3 T 17 17 18 16 16 4 3 13 14 12 8 14 15 U 20 10 21 13 MA 15 12 11 9 MA 4 5 5 3 MA 6 1 9 MA 16 13 3 4 1 13 M 5 12 11 M S C 8 11 M M 14 14 15 A E B M 31 M 29 28 MA 18 19 17 4 10 11 7 18 22 17 19 21 20 23 26 25 A

  16. Recent program evaluations: Implications for long-run planning

    SciTech Connect (OSTI)

    Baxter, L.W.; Schultz, D.K.

    1994-06-08

    Demand-side management (DSM) remains the centerpiece of California`s energy policy. Over the coming decade, California plans to meet 30 percent of the state`s incremental electricity demand and 50 percent of its peak demand with (DSM) programs. The major investor-owned utilities in California recently completed the first round of program impact studies for energy efficiency programs implemented in 1990 and 1991. The central focus of this paper is to assess the resource planning and policy implications of Pacific Gas and Electric (PG&E) Company`s recent program evaluations. The paper has three goals. First, we identify and discuss major issues that surfaced from our attempt to apply evaluation results to forecasting and planning questions. Second, we review and summarize the evaluation results for PG&E`s primary energy efficiency programs. Third, we change long-run program assumptions, based on our assessment in the second task, and then examine the impacts of these changes on a recent PG&E demand-side management forecast and resource plan.

  17. WIPP Remote Handled Waste Facility: Performance Dry Run Operations

    SciTech Connect (OSTI)

    Burrington, T. P.; Britain, R. M.; Cassingham, S. T.

    2003-02-24

    The Remote Handled (RH) TRU Waste Handling Facility at the Waste Isolation Pilot Plant (WIPP) was recently upgraded and modified in preparation for handling and disposal of RH Transuranic (TRU) waste. This modification will allow processing of RH-TRU waste arriving at the WIPP site in two different types of shielded road casks, the RH-TRU 72B and the CNS 10-160B. Washington TRU Solutions (WTS), the WIPP Management and Operation Contractor (MOC), conducted a performance dry run (PDR), beginning August 19, 2002 and successfully completed it on August 24, 2002. The PDR demonstrated that the RHTRU waste handling system works as designed and demonstrated the handling process for each cask, including underground disposal. The purpose of the PDR was to develop and implement a plan that would define in general terms how the WIPP RH-TRU waste handling process would be conducted and evaluated. The PDR demonstrated WIPP operations and support activities required to dispose of RH-TRU waste in the WIPP underground.

  18. Direct Searches for Scalar Leptoquarks at the Run II Tevatron

    SciTech Connect (OSTI)

    Ryan, Daniel Edward

    2004-08-01

    This dissertation sets new limits on the mass of the scalar leptoquark from direct searches carried out at the Run II CDF detector using data from March 2001 to October 2003. The data analyzed has a total time-integrated measured luminosity of 198 pb-1 of p$\\bar{p}$ collisions with √s = 1.96 TeV. Leptoquarks are assumed to be pair-produced and to decay into a lepton and a quark of the same generation. They consider two possible leptoquark decays: (1) β = BR(LQ → μq) = 1.0, and (2) β = BR(LQ → μq) = 0.5. For the β = 1 channel, they focus on the signature represented by two isolated high-pT muons and two isolated high-pT jets. For the β = 1/2 channel, they focus on the signature represented by one isolated high-pT muon, large missing transverse energy, and two isolated high-pT jets. No leptoquark signal is experimentally detected for either signature. Using the next to leading order theoretical cross section for scalar leptoquark production in p$\\bar{p}$ collisions [1], they set new mass limits on second generation scalar leptoquarks. They exclude the existence of second generation scalar leptoquarks with masses below 221(175) GeV/c2 for the β = 1(1/2) channels.

  19. Search for the neutral MSSM Higgs bosons in the ditau decay channels at CDF Run II

    SciTech Connect (OSTI)

    Cuenca Almenar, Cristobal; /Valencia U., IFIC

    2008-04-01

    This thesis presents the results on a search for the neutral MSSM Higgs bosons decaying to tau pairs, with least one of these taus decays leptonically. The search was performed with a sample of 1.8 fb{sup -1} of proton-antiproton collisions at {radical}s = 1.96 TeV provided by the Tevatron and collected by CDF Run II. No significant excess over the Standard Model prediction was found and a 95% confidence level exclusion limit have been set on the cross section times branching ratio as a function of the Higgs boson mass. This limit has been translated into the MSSM Higgs sector parameter plane, tan{beta} vs. M{sub A}, for the four different benchmark scenarios.

  20. DEVELOPMENT AND APPLICATION OF A FAST-RUNNING TOOL TO CHARACTERIZE SHOCK DAMAGE WITHIN TUNNEL STRUCTURES

    SciTech Connect (OSTI)

    Glascoe, L; Morris, J; Glenn, L; Krnjajic, M

    2009-03-31

    Successful but time-intensive use of high-fidelity computational capabilities for shock loading events and resultant effects on and within enclosed structures, e.g., tunnels, has led to an interest in developing more expedient methods of analysis. While several tools are currently available for the general study of the failure of structures under dynamic shock loads at a distance, presented are a pair of statistics- and physics-based tools that can be used to differentiate different types of damage (e.g., breach versus yield) as well as quantify the amount of damage within tunnels for loads close-in and with standoff. Use of such faster running tools allows for scoping and planning of more detailed model and test analysis and provides a way to address parametric sensitivity over a large multivariate space.

  1. Method for compression of data using single pass LZSS and run-length encoding

    DOE Patents [OSTI]

    Berlin, G.J.

    1994-01-01

    A method used preferably with LZSS-based compression methods for compressing a stream of digital data. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer.

  2. Method for compression of data using single pass LZSS and run-length encoding

    DOE Patents [OSTI]

    Berlin, G.J.

    1997-12-23

    A method used preferably with LZSS-based compression methods for compressing a stream of digital data is disclosed. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer. 3 figs.

  3. Method for compression of data using single pass LZSS and run-length encoding

    DOE Patents [OSTI]

    Berlin, Gary J.

    1997-01-01

    A method used preferably with LZSS-based compression methods for compressing a stream of digital data. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer.

  4. Dynamic aperture evaluation of the proposed lattices for the RHIC 2009 polarized proton run

    SciTech Connect (OSTI)

    Luo,Y.; Bai, M.; Beebe-Wang, J.; Fischer, W.; Montag, C.; Robert-Demolaize, G.; Satogata, T.; Tepikian, S.; Trbojevic, D.

    2009-01-02

    In the article we evaluate the dynamic apertures of the proposed lattices for the coming Relativistic Heavy Ion Collider (RHIC) 2009 polarized proton (pp) 100 GeV and 250 GeV runs. One goal of this study is to find out the appropriate {beta}* for the coming 2009 pp runs. Another goal is to study the effect of second order chromaticity correction in the RHIC pp runs.

  5. CNS Running Crew tackles Covenant Health Knoxville Marathon | Y-12 National

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Security Complex CNS Running Crew tackles ... CNS Running Crew tackles Covenant Health Knoxville Marathon Posted: March 6, 2015 - 1:59pm Members of the CNS Running Crew show off their bling at Melton Hill Lake. Front row, Toni Roberts, Debbie Ledford, Jennifer Christmas, Jessica Chadwell, Marianne Griffith, Karen Lacey, Jeff Gates and Barbara King. Back row, Robert Eichin, Jeff Gates, Christopher Hammonds and Brian Paul. By Gene Patterson - When the gun sounds on the 2015 Covenant Health

  6. EERE Success Story—Washington: State Ferries Run Cleaner With Biodiesel

    Office of Energy Efficiency and Renewable Energy (EERE)

    Washington State Ferries now uses blended biodiesel to run its ferries, preventing the emission of more than 29,000 metric tons of carbon dioxide per year.

  7. Pushing HTCondor and glideinWMS to 200K+ Jobs in a Global Pool for CMS before Run 2

    SciTech Connect (OSTI)

    Balcas, J.; Belforte, S.; Bockelman, B.; Gutsche, O.; Khan, F.; Larson, K.; Letts, J.; Mascheroni, M.; Mason, D.; McCrea, A.; Saiz-Santos, M.; Sfiligoi, I.

    2015-12-23

    The CMS experiment at the LHC relies on HTCondor and glideinWMS as its primary batch and pilot-based Grid provisioning system. So far we have been running several independent resource pools, but we are working on unifying them all to reduce the operational load and more effectively share resources between various activities in CMS. The major challenge of this unification activity is scale. The combined pool size is expected to reach 200K job slots, which is significantly bigger than any other multi-user HTCondor based system currently in production. To get there we have studied scaling limitations in our existing pools, the biggest of which tops out at about 70K slots, providing valuable feedback to the development communities, who have responded by delivering improvements which have helped us reach higher and higher scales with more stability. We have also worked on improving the organization and support model for this critical service during Run 2 of the LHC. This contribution will present the results of the scale testing and experiences from the first months of running the Global Pool.

  8. AGR-1 Irradiation Test Final As-Run Report

    SciTech Connect (OSTI)

    Blaise P. Collin

    2012-06-01

    This document presents the as-run analysis of the AGR-1 irradiation experiment. AGR-1 is the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the US Department of Energy (DOE) as part of the Next-Generation Nuclear Plant (NGNP) project. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment was irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) for a total duration of 620 effective full power days of irradiation. Irradiation began on December 24, 2006 and ended on November 6, 2009 spanning 13 ATR cycles and approximately three calendar years. The test contained six independently controlled and monitored capsules. Each capsule contained 12 compacts of a single type, or variant, of the AGR coated fuel. No fuel particles failed during the AGR-1 irradiation. Final burnup values on a per compact basis ranged from 11.5 to 19.6 %FIMA, while fast fluence values ranged from 2.21 to 4.39 ?1025 n/m2 (E >0.18 MeV). Well say something here about temperatures once thermal recalc is done. Thermocouples performed well, failing at a lower rate than expected. At the end of the irradiation, nine of the originally-planned 19 TCs were considered functional. Fission product release-to-birth (R/B) ratios were quite low. In most capsules, R/B values at the end of the irradiation were at or below 10-7 with only one

  9. AGR-2 IRRADIATION TEST FINAL AS-RUN REPORT

    SciTech Connect (OSTI)

    Blaise, Collin

    2014-07-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test

  10. FY:15 Transport Properties of Run-of-Mine Salt Backfill ? Unconsolidated to Consolidated.

    SciTech Connect (OSTI)

    Dewers, Thomas; Heath, Jason E.; Leigh, Christi D.

    2015-09-28

    The nature of geologic disposal of nuclear waste in salt formations requires validated and verified two-phase flow models of transport of brine and gas through intact, damaged, and consolidating crushed salt. Such models exist in other realms of subsurface engineering for other lithologic classes (oil and gas, carbon sequestration etc. for clastics and carbonates) but have never been experimentally validated and parameterized for salt repository scenarios or performance assessment. Models for waste release scenarios in salt back-fill require phenomenological expressions for capillary pressure and relative permeability that are expected to change with degree of consolidation, and require experimental measurement to parameterize and validate. This report describes a preliminary assessment of the influence of consolidation (i.e. volume strain or porosity) on capillary entry pressure in two phase systems using mercury injection capillary pressure (MICP). This is to both determine the potential usefulness of the mercury intrusion porosimetry method, but also to enable a better experimental design for these tests. Salt consolidation experiments are performed using novel titanium oedometers, or uniaxial compression cells often used in soil mechanics, using sieved run-of-mine salt from the Waste Isolation Pilot Plant (WIPP) as starting material. Twelve tests are performed with various starting amounts of brine pore saturation, with axial stresses up to 6.2 MPa (~900 psi) and temperatures to 90°C. This corresponds to UFD Work Package 15SN08180211 milestone “FY:15 Transport Properties of Run-of-Mine Salt Backfill – Unconsolidated to Consolidated”. Samples exposed to uniaxial compression undergo time-dependent consolidation, or creep, to various degrees. Creep volume strain-time relations obey simple log-time behavior through the range of porosities (~50 to 2% as measured); creep strain rate increases with temperature and applied stress as expected. Mercury porosimetry

  11. Off-momentum dynamic aperture for lattices in the RHIC heavy ion runs

    SciTech Connect (OSTI)

    Luo Y.; Bai, M.; Blaskiewicz, M.; Gu, X.; Fischer, W.; Marusic, A.; Roser, T.; Tepikian, S.; Zhang, S.

    2012-05-20

    To reduce transverse emittance growth rates from intrabeam scattering in the RHIC heavy ion runs, a lattice with an increased phase advance in the arc FODO cells was adopted in 2008-2011. During these runs, a large beam loss due to limited off-momentum dynamic aperture was observed during longitudinal RF re-bucketing and with transverse cooling. Based on the beam loss observations in the previous ion runs and the calculated off-momentum apertures, we decided to adopt the lattice used before 2008 for the 2012 U-U and Cu-Au runs. The observed beam decay and the measured momentum aperture in the 2012 U-U run are presented.

  12. Integrated starting and running amalgam assembly for an electrodeless fluorescent lamp

    DOE Patents [OSTI]

    Borowiec, Joseph Christopher; Cocoma, John Paul; Roberts, Victor David

    1998-01-01

    An integrated starting and running amalgam assembly for an electrodeless SEF fluorescent lamp includes a wire mesh amalgam support constructed to jointly optimize positions of a starting amalgam and a running amalgam in the lamp, thereby optimizing mercury vapor pressure in the lamp during both starting and steady-state operation in order to rapidly achieve and maintain high light output. The wire mesh amalgam support is constructed to support the starting amalgam toward one end thereof and the running amalgam toward the other end thereof, and the wire mesh is rolled for friction-fitting within the exhaust tube of the lamp. The positions of the starting and running amalgams on the wire mesh are jointly optimized such that high light output is achieved quickly and maintained, while avoiding any significant reduction in light output between starting and running operation.

  13. RHIC performance for FY2011 Au+Au heavy ion run

    SciTech Connect (OSTI)

    Marr, G.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blackler, I.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Butler, J.; Carlson, C.; Connolly, R.; D'Ottavio, T.; Drees, K.A.; Fedotov, A.V.; Fischer, W.; Fu, W.; Gardner, C.J.; Gassner, D.M.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Huang, H.; Ingrassia, P.F.; Jamilkowski, J.P.; Kling, N.; Lafky, M.; Laster, J.S.; Liu, C.; Luo, Y.; Mapes, M.; Marusic, A.; Mernick, K.; Michnoff, R.J.; Minty, M.G.; Montag, C.; Morris, J.; Naylor, C.; Nemesure, S.; Polizzo, S.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Sampson, P.; Sandberg, J.; Schoefer, V.; Schultheiss, C.; Severino, F.; Shrey, T.; Smith, K.; Steski, D.; Tepikian, S.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.E.; VanKuik, B.; Wang, G.; Wilinski, M.; Zaltsman, A.; Zeno, K.; Zhang, S.Y.

    2011-09-04

    Following the Fiscal Year (FY) 2010 (Run-10) Relativistic Heavy Ion Collider (RHIC) Au+Au run, RHIC experiment upgrades sought to improve detector capabilities. In turn, accelerator improvements were made to improve the luminosity available to the experiments for this run (Run-11). These improvements included: a redesign of the stochastic cooling systems for improved reliability; a relocation of 'common' RF cavities to alleviate intensity limits due to beam loading; and an improved usage of feedback systems to control orbit, tune and coupling during energy ramps as well as while colliding at top energy. We present an overview of changes to the Collider and review the performance of the collider with respect to instantaneous and integrated luminosity goals. At the conclusion of the FY 2011 polarized proton run, preparations for heavy ion run proceeded on April 18, with Au+Au collisions continuing through June 28. Our standard operations at 100 GeV/nucleon beam energy was bracketed by two shorter periods of collisions at lower energies (9.8 and 13.5 GeV/nucleon), continuing a previously established program of low and medium energy runs. Table 1 summarizes our history of heavy ion operations at RHIC.

  14. Di-J/psi Studies, Level 3 Tracking and the D0 Run IIb Upgrade

    SciTech Connect (OSTI)

    Vint, Philip John; /Imperial Coll., London

    2009-10-01

    The D0 detector underwent an upgrade to its silicon vertex detector and triggering systems during the transition from Run IIa to Run IIb to maximize its ability to fully exploit Run II at the Fermilab Tevatron. This thesis describes improvements made to the tracking and vertexing algorithms used by the high level trigger in both Run IIa and Run IIb, as well as a search for resonant di-J/{psi} states using both Run IIa and Run IIb data. Improvements made to the tracking and vertexing algorithms during Run IIa included the optimization of the existing tracking software to reduce overall processing time and the certification and testing of a new software release. Upgrades made to the high level trigger for Run IIb included the development of a new tracking algorithm and the inclusion of the new Layer 0 silicon detector into the existing software. The integration of Layer 0 into the high level trigger has led to an improvement in the overall impact parameter resolution for tracks of {approx}50%. The development of a new parameterization method for finding the error associated to the impact parameter of tracks returned by the high level tracking algorithm, in association with the inclusion of Layer 0, has led to improvements in vertex resolution of {approx}4.5 {micro}m. A previous search in the di-J/{psi} channel revealed a unpredicted resonance at {approx}13.7 GeV/c{sup 2}. A confirmation analysis is presented using 2.8 fb{sup -1} of data and two different approaches to cuts. No significant excess is seen in the di-J/{psi} mass spectrum.

  15. Modeling

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    WVMinputs-outputs Permalink Gallery Sandia Labs releases wavelet variability model (WVM) Modeling, News, Photovoltaic, Solar Sandia Labs releases wavelet variability model (WVM) ...

  16. Mathematical Models Shed New Light on Cancer Mutations

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mathematical Models Shed New Light on Cancer Mutations Mathematical Models Shed New Light on Cancer Mutations Calculations Run at NERSC Pinpoint Rare Mutants More Quickly November ...

  17. Search for techniparticles at D0 Run II

    SciTech Connect (OSTI)

    Feligioni, Lorenzo; /Boston U.

    2006-01-01

    Technicolor theory (TC) accomplishes the necessary electroweak symmetry breaking responsible for the mass of the elementary particles. TC postulates the existence of a new SU(N{sub TC}) gauge theory. Like QCD the exchange of gauge bosons causes the existence of a non-vanishing chiral condensate which dynamically breaks the SU(N{sub TC}){sub L} x SU(N{sub TC}){sub R} symmetry. This gives rise to N{sub TC}{sup 2}-1 Nambu-Goldstone Bosons. Three of these Goldstone Bosons become the longitudinal components of the W{sup {+-}} and Z which therefore acquire mass; the remaining ones are new particles (technihadrons) that can be produced at the high energy colliders and detected. The Technicolor Straw Man Model (TCSM) is a version of the dynamical symmetry breaking with a large number of technifermions and a relative low value of their masses. One of the processes predicted by the TCSM is q{bar q} {yields} V{sub T} {yields} W{pi}{sub T}, where V{sub T} is the Technicolor equivalent of the QCD vector meson and {pi}{sub T} is the equivalent of the pion. W is the electroweak gauge boson of the Standard Model. This dissertation describes the search for W{pi}{sub T} with the D0 detector, a multi-purpose particle detector located at one of the collision points of the Tevatron accelerator situated in Batavia, IL. The final state considered for this thesis is a W boson that decays to electron and neutrino plus a {pi}{sub T} that decays into b{bar c} or b{bar b}, depending on the charge of the initial technivector meson produced. In the D0 detector this process will appear as a narrow cluster of energy deposits in the electromagnetic calorimeter with an associated track reconstructed in the tracking detector. The undetected neutrino from the decay of the W boson will be seen as missing momentum. The fragmentation of the quarks from the decay of the {pi}{sub T} will produce two jets of collimated particles. Events where a b-quark is produced are selected by requesting at least one

  18. AGR 3/4 Irradiation Test Final As Run Report

    SciTech Connect (OSTI)

    Collin, Blaise P.

    2015-06-01

    Several fuel and material irradiation experiments have been planned for the Idaho National Laboratory Advanced Reactor Technologies Technology Development Office Advanced Gas Reactor Fuel Development and Qualification Program (referred to as the INL ART TDO/AGR fuel program hereafter), which supports the development and qualification of tristructural-isotropic (TRISO) coated particle fuel for use in HTGRs. The goals of these experiments are to provide irradiation performance data to support fuel process development, qualify fuel for normal operating conditions, support development and validation of fuel performance and fission product transport models and codes, and provide irradiated fuel and materials for post irradiation examination and safety testing (INL 05/2015). AGR-3/4 combined the third and fourth in this series of planned experiments to test TRISO coated low enriched uranium (LEU) oxycarbide fuel. This combined experiment was intended to support the refinement of fission product transport models and to assess the effects of sweep gas impurities on fuel performance and fission product transport by irradiating designed-to-fail fuel particles and by measuring subsequent fission metal transport in fuel-compact matrix material and fuel-element graphite. The AGR 3/4 fuel test was successful in irradiating the fuel compacts to the burnup and fast fluence target ranges, considering the experiment was terminated short of its initial 400 EFPD target (Collin 2015). Out of the 48 AGR-3/4 compacts, 42 achieved the specified burnup of at least 6% fissions per initial heavy-metal atom (FIMA). Three capsules had a maximum fuel compact average burnup < 10% FIMA, one more than originally specified, and the maximum fuel compact average burnup was <19% FIMA for the remaining capsules, as specified. Fast neutron fluence fell in the expected range of 1.0 to 5.5×1025 n/m2 (E >0.18 MeV) for all compacts. In addition, the AGR-3/4 experiment was globally successful in keeping the

  19. Long-run growth rate in a random multiplicative model (Journal...

    Office of Scientific and Technical Information (OSTI)

    exponent limsub n1n log(xsub n), at fixed 12 tsub nn, and show that it is given by the equation of state of the lattice gas in thermodynamical equilibrium. ...

  20. Department of Energy to Provide Supercomputing Time to Run NOAA's Climate Change Models

    Energy.gov [DOE]

    WASHINGTON, DC -   The U.S. Department of Energy's (DOE) Office of Science will make available more than 10 million hours of computing time for the U.S. Commerce Department's  National Oceanic and...

  1. ARE PULSING SOLITARY WAVES RUNNING INSIDE THE SUN?

    SciTech Connect (OSTI)

    Wolff, Charles L.

    2012-09-10

    A precise sequence of frequencies-detected four independent ways-is interpreted as a system of solitary waves below the Sun's convective envelope. Six future observational or theoretical tests of this idea are suggested. Wave properties (rotation rates, radial energy distribution, nuclear excitation strength) follow from conventional dynamics of global oscillation modes after assuming a localized nuclear term strong enough to perturb and hold mode longitudes into alignments that form 'families'. To facilitate future tests, more details are derived for a system of two dozen solitary waves 2 {<=} l {<=} 25. Wave excitation by {sup 3}He and {sup 14}C burning is complex. It spikes by factors M{sub 1} {<=} 10{sup 3} when many waves overlap in longitude but its long-time average is M{sub 2} {<=} 10. Including mixing can raise overall excitation to {approx}50 times that in a standard solar model. These spikes cause tiny phase shifts that tend to pull wave rotation rates toward their ideal values {proportional_to}[l(l + 1)]{sup -1}. A system like this would generate some extra nuclear energy in two spots at low latitude on opposite sides of the Sun. Each covers about 20 Degree-Sign of longitude. Above a certain wave amplitude, the system starts giving distinctly more nuclear excitation to some waves (e.g., l = 9, 14, and 20) than to neighboring l values. The prominence of l = 20 has already been reported. This transition begins at temperature amplitudes {Delta}T/T = 0.03 in the solar core for a typical family of modes, which corresponds to {delta}T/T {approx} 0.001 for one of its many component oscillation modes.

  2. LCLS-schedul_run-II_10_05_6-detail.xls

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Run II Detailed Schedule, May 6-September 13, 2010 Thurs Fri Sat Sun Mon Tues Wed BL Prop Spokesperson PI Planned ActivityExperiment Title POC AD Program Deputy Week 1 6-May...

  3. As-Run Physics Analysis for the UCSB-1 Experiment in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Nielsen, Joseph Wayne

    2015-09-01

    The University of California Santa Barbara (UCSB) -1 experiment was irradiated in the A-10 position of the ATR. The experiment was irradiated during cycles 145A, 145B, 146A, and 146B. Capsule 6A was removed from the test train following Cycle 145A and replaced with Capsule 6B. This report documents the as-run physics analysis in support of Post-Irradiation Examination (PIE) of the test. This report documents the as-run fluence and displacements per atom (DPA) for each capsule of the experiment based on as-run operating history of the ATR. Average as-run heating rates for each capsule are also presented in this report to support the thermal analysis.

  4. Princeton and PPPL projects selected to run on super-powerful...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Princeton and PPPL projects selected to run on super-powerful computer to be delivered to Oak Ridge Leadership Computing Facility By John Greenwald June 1, 2015 Tweet Widget Google...

  5. Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs

    Energy.gov [DOE]

    ICM Inc. announced successful completion of two 1,000-hour performance runs of its patent-pending Generation 2.0 Co-Located Cellulosic Ethanol process at its cellulosic ethanol pilot plant in St....

  6. Students Share Experiences from First Run of BioenergizeME Virtual Science Fair

    Energy.gov [DOE]

    Last week concluded the beta run of the Bioenergy Technologies Office (BETO) sponsored BioenergizeME Virtual Science Fair—a high school competition that has students create and share infographics about bioenergy concepts.

  7. Models and Datasets

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    iteration by iteration. RevSim is an Excel 2010 based model. Much of the logic is VBA code (Visual Basic for Applications); the user does not need to know VBA to run the...

  8. RHIC Performance as a 100 GeV Polarized Proton Collider in Run-9

    SciTech Connect (OSTI)

    Montag, C.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; DOttavio, T.; Drees, A.; Fedotov, A.V.; Fischer, W.; Ganetis, G.; Gardner, C.; Glenn, J.; Hahn, H.; Harvey, M.; Hayes, T.; Huang, H.; Ingrassia, P.; Jamilkowski, J.; Kayran, D.; Kewisch, J.; Lee, R.C.; Luccio, A.U.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Malitsky, N.; Marr, G.; Marusic, A.; Menga, P.M.; Michnoff, R.; Minty, M.; Morris, J.; Oerter, B.; Pilat, F.; Pile, P.; Pozdeyev, E.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Russo, T.; Satogata, T.; Schoefer, V.; Schultheiss, C.; Severino, F.; Sivertz, M.; Smith, K.; Tepikian, S.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2010-05-23

    During the second half of Run-9, the Relativisitc Heavy Ion Collider (RHIC) provided polarized proton collisions at two interaction points. The spin orientation of both beams at these collision points was controlled by helical spin rotators, and physics data were taken with different orientations of the beam polarization. Recent developments and improvements will be presented, as well as luminosity and polarization performance achieved during Run-9.

  9. Modeling

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Modelers at the CRF are developing high-fidelity simulation tools for engine combustion and detailed micro-kinetic, surface chemistry modeling tools for catalyst-based exhaust ...

  10. SLUDGE BATCH SUPPLEMENTAL SRAT RUNS EFFECTS OF YIELD STRESS AND CYCLE TIME INCREASE

    SciTech Connect (OSTI)

    Fernandez, A.

    2010-08-10

    The Defense Waste Processing Facility (DWPF) has transitioned from Sludge Batch 5 (SB5) processing to Sludge Batch 6 (SB6) processing. Phase III-Tank 40 Chemical Process Cell (CPC) flowsheet simulations have been completed to determine the initial processing conditions for the DWPF transition. The impact of higher yield stress (SB-25) and cycle time extension (SB6-26) on the physical and chemical effects of SB6 processing during the SRAT (Sludge Receipt and Adjustment Tank) cycle were evaluated. No significant impacts on the SRAT chemistry were noted during the higher yield stress run. In particular, no impact on mercury stripping was noted, indicating that settling of elemental mercury was not the primary factor in the low mercury recovery noted in the flowsheet testing. The SRAT product from this run retained the higher yield stress of the starting sludge. The run indicated that ultrasonication is an effective tool to increase the yield stress of simulants to targeted values and the chemistry of downstream processing is not impacted. Significant differences were noted in the cycle time extension test compared to the Phase III flowsheet baseline runs. Large decreases in the ammonia and hydrogen generation rates were noted along with reduced mercury stripping efficiency. The latter effect is similar to that of operating under a high acid stoichiometry. It is conceivable that, under the distinctly different conditions of high formic acid concentration (high acid run) or slow formic acid addition (extended run), that mercury could form amalgams with noble metals, possibly rendering both inert. Thus, the removal of free mercury and noble metals could decrease the rate of catalytic formic acid reactions which would decrease generation of ammonium and hydrogen. The potential underlying reasons for the behavior noted during this run would require additional testing.

  11. Antineutrino Running

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Window of opportunity for a near detector in the Booster Neutrino Beam: * SciBar detector * http://home.fnal.gov/~wascko/scibar.pdf Outline 0 0.25 0.5 0.75 1 0 0.5 1 1.5 2 2.5 3 E! (GeV) Flux (a.u.) T2K SciBar BooNE K2K Booster Neutrino Beam Comparison of ν µ fluxes MiniBooNE Overview 8 GeV KE protons from Fermilab Booster Accelerator 1.7 ! beryllium target (HARP results coming soon!) horn focusses + sign mesons " and K Can reverse polarity (anti-# beam) 50 m decay region >99% pure #

  12. Antineutrino Running

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Timescale Outline Images of the MiniBooNE horn MiniBooNE Overview 8 GeV KE protons from Fermilab Booster Accelerator 1.7 ! beryllium target (HARP results coming soon!) horn focusses + sign mesons " and K Can reverse polarity (anti-# beam) 50 m decay region >99% pure # µ flavor beam 490 m dirt berm 800 ton CH 2 detector 1520 PMTs 1280 + 240 in veto NuFact05, 22 June 2005 Jocelyn Monroe, Columbia University MiniBooNE Overview 8 GeV KE protons from Fermilab Booster Accelerator 1.7 !

  13. Have We Run Out of Oil Yet? Oil Peaking Analysis from an Optimist's Perspective

    SciTech Connect (OSTI)

    Greene, David L; Hopson, Dr Janet L; Li, Jia

    2005-01-01

    This study addresses several questions concerning the peaking of conventional oil production from an optimist's perspective. Is the oil peak imminent? What is the range of uncertainty? What are the key determining factors? Will a transition to unconventional oil undermine or strengthen OPEC's influence over world oil markets? These issues are explored using a model combining alternative world energy scenarios with an accounting of resource depletion and a market-based simulation of transition to unconventional oil resources. No political or environmental constraints are allowed to hinder oil production, geological constraints on the rates at which oil can be produced are not represented, and when USGS resource estimates are used, more than the mean estimate of ultimately recoverable resources is assumed to exist. The issue is framed not as a question of "running out" of conventional oil, but in terms of the timing and rate of transition from conventional to unconventional oil resources. Unconventional oil is chosen because production from Venezuela's heavy-oil fields and Canada's Athabascan oil sands is already underway on a significant scale and unconventional oil is most consistent with the existing infrastructure for producing, refining, distributing and consuming petroleum. However, natural gas or even coal might also prove to be economical sources of liquid hydrocarbon fuels. These results indicate a high probability that production of conventional oil from outside of the Middle East region will peak, or that the rate of increase of production will become highly constrained before 2025. If world consumption of hydrocarbon fuels is to continue growing, massive development of unconventional resources will be required. While there are grounds for pessimism and optimism, it is certainly not too soon for extensive, detailed analysis of transitions to alternative energy sources.

  14. Electroweak production of the top quark in the Run II of the D0 experiment

    SciTech Connect (OSTI)

    Clement, Benoit

    2006-04-28

    The work exposed in this thesis deals with the search for electroweak production of top quark (single top) in proton-antiproton collisions at √s = 1.96 TeV. This production mode has not been observed yet. Analyzed data have been collected during the Run II of the D0 experiment at the Fermilab Tevatron collider. These data correspond to an integrated luminosity of 370 pb-1. In the Standard Model, the decay of a top quark always produce a high momentum bottom quark. Therefore bottom quark jets identification plays a major role in this analysis. The large lifetime of b hadrons and the subsequent large impact parameters relative to the interaction vertex of charged particle tracks are used to tag bottom quark jets. Impact parameters of tracks attached to a jet are converted into the probability for the jet to originate from the primary vertex. This algorithm has a 45% tagging efficiency for a 0.5% mistag rate. Two processes (s and t channels) dominate single top production with slightly different final states. The searched signature consists in 2 to 4 jets with at least one bottom quark jet, one charged lepton (electron or muon) and missing energy accounting for a neutrino. This final state is background dominated and multivariate techniques are needed to separate the signal from the two main backgrounds: associated production of a W boson and jets and top quarks pair production. The achieved sensitivity is not enough to reach observation and we computed upper limits at the 95% confidence level at 5 pb (s-channel) and 4.3 pb (t-channel) on single top production cross-sections.

  15. RHIC PERFORMANCE DURING THE FY10 200 GeV Au+Au HEAVY ION RUN

    SciTech Connect (OSTI)

    Brown, K.A.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J.; Bruno, D.; Carlson, C.; Connolly, R.; de Maria, R.; DOttavio, T.; Drees, A.; Fischer, W.; Fu, W.; Gardner, C.; Gassner, D.; Glenn, J.W.; Hao, Y.; Harvey, M.; Hayes, T.; Hoff, L.; Huang, H.; Laster, J.; Lee, R.; Litvinenko, V.; Luo, Y.; MacKay, W.; Marr, G.; Marusic, A.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Oerter, B.; Pilat, F.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Russo, T.; Sampson, P.; Sandberg, J.; Satogata, T.; Severino, F.; Schoefer, V.; Schultheiss, C.; Smith, K.; Steski, D.; Tepikian, S.; Theisen, C.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Wilinski, M.; Zaltsman, A.; Zeno, K.; Zhang, S.Y.

    2010-05-23

    Since the last successful RHIC Au+Au run in 2007 (Run-7), the RHIC experiments have made numerous detector improvements and upgrades. In order to benefit from the enhanced detector capabilities and to increase the yield of rare events in the acquired heavy ion data a significant increase in luminosity is essential. In Run-7 RHIC achieved an average store luminosity of = 12 x 10{sup 26} cm{sup -2} s{sup -1} by operating with 103 bunches (out of 111 possible), and by squeezing to {beta}* = 0.85 m. This year, Run-10, we achieved = 20 x 10{sup 26} cm{sup -2} s{sup -1}, which put us an order of magnitude above the RHIC design luminosity. To reach these luminosity levels we decreased {beta}* to 0.75 m, operated with 111 bunches per ring, and reduced longitudinal and transverse emittances by means of bunched-beam stochastic cooling. In addition we introduced a lattice to suppress intra-beam scattering (IBS) in both RHIC rings, upgraded the RF control system, and separated transition crossing times in the two rings. We present an overview of the changes and the results of Run-10 performance.

  16. Builds in U.S. natural gas storage running above five-year average

    U.S. Energy Information Administration (EIA) (indexed site)

    Builds in U.S. natural gas storage running above five-year average The amount of natural gas put into underground storage since the beginning of the so-called "injection season" in April has been above the five-year average by a wide margin. In its new forecast, the U.S. Energy Information Administration said natural gas inventories, which are running more than 50% above year ago levels, are on track to reach almost 4 trillion cubic feet by the end of October which marks the start of

  17. Longitudinal emittance measurements in the Booster and AGS during the 2014 RHIC gold run

    SciTech Connect (OSTI)

    Zeno, K.

    2014-08-18

    This note describes longitudinal emittance measurements that were made in the Booster and AGS during the 2014 RHIC Gold run. It also contains an overview of the longitudinal aspects of their setup during this run. Each bunch intended for RHIC is composed of beam from 4 Booster cycles, and there are two of them per AGS cycle. For each of the 8 Booster cycles required to produce the 2 bunches in the AGS, a beam pulse from EVIS is injected into the Booster and captured in four h=4 buckets. Then those bunches are accelerated to a porch where they are merged into 2 bunches and then into 1 bunch.

  18. SEE HOW WE RUN...At WIPP, We Really Mean Business

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    SEE HOW WE RUN At WIPP, We Really Mean Business CARLSBAD, N.M., December 10, 2001 - Early this year, Dr. Inés Triay, manager of the U.S. Department of Energy's (DOE) Carlsbad Field Office, challenged Waste Isolation Pilot Plant (WIPP) employees to operate the nation's first nuclear waste repository like a business. So, what do we mean when we say we run WIPP "like a business?" Is it the organizational charts? Production schedules? It's more about the innovators who are WIPP employees.

  19. GridRun: A lightweight packaging and execution environment forcompact, multi-architecture binaries

    SciTech Connect (OSTI)

    Shalf, John; Goodale, Tom

    2004-02-01

    GridRun offers a very simple set of tools for creating and executing multi-platform binary executables. These ''fat-binaries'' archive native machine code into compact packages that are typically a fraction the size of the original binary images they store, enabling efficient staging of executables for heterogeneous parallel jobs. GridRun interoperates with existing distributed job launchers/managers like Condor and the Globus GRAM to greatly simplify the logic required launching native binary applications in distributed heterogeneous environments.

  20. Low-energy run of Fermilab Electron Cooler's beam generation system

    SciTech Connect (OSTI)

    Prost, Lionel; Shemyakin, Alexander; Fedotov, Alexei; Kewisch, Jorg; /Brookhaven

    2010-08-01

    As a part of a feasibility study of using the Fermilab Electron Cooler for a low-energy Relativistic Heavy Ion Collider (RHIC) run at Brookhaven National Laboratory (BNL), the cooler operation at 1.6 MeV electron beam energy was tested in a short beam line configuration. The main result of the study is that the cooler beam generation system is suitable for BNL needs. In a striking difference with running 4.3 MeV beam, no unprovoked beam recirculation interruptions were observed.

  1. RHIC POWER SUPPLIES-FAILURE STATISTICS FOR RUNS 4, 5, AND 6

    SciTech Connect (OSTI)

    BRUNO,D.; GANETIS, G.; SANDBERG, J.; LOUIE, W.; HEPPNER, G.; SCHULTHEISS, C.

    2007-06-25

    The two rings in the Relativistic Heavy Ion Collider (RFIIC) require a total of 933 power supplies to supply current to highly inductive superconducting magnets. Failure statistics for the RHIC power supplies will be failure associated with the CEPS group's responsibilities. presented for the last three RHIC runs. The failures of the power supplies will be analyzed. The statistics associated with the power supply failures will be presented. Comparisons of the failure statistics for the last three RHIC runs will be shown. Improvements that have increased power supply availability will be discussed.

  2. Tips for Running an Air Conditioner Without Breaking the Bank | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Tips for Running an Air Conditioner Without Breaking the Bank Tips for Running an Air Conditioner Without Breaking the Bank July 22, 2014 - 3:15pm Addthis Cooling your home doesn't have to break the bank, with these tips you can save money and stay comfortable.| Photo courtesy of ©iStockphoto.com/galinast Cooling your home doesn't have to break the bank, with these tips you can save money and stay comfortable.| Photo courtesy of ©iStockphoto.com/galinast Elizabeth Spencer

  3. Impact-GMI Model

    Energy Science and Technology Software Center (OSTI)

    2007-03-22

    IMPACT-GMI is an atmospheric chemical transport model designed to run on massively parallel computers. It is designed to model trace pollutants in the atmosphere. It includes models for emission, chemistry and deposition of pollutants. It can be used to assess air quality and its impact on future climate change.

  4. Negative running of the spectral index, hemispherical asymmetry and the consistency of Planck with large r

    SciTech Connect (OSTI)

    McDonald, John

    2014-11-01

    Planck favours a negative running of the spectral index, with the likelihood being dominated by low multipoles l?<50 and no preference for running at higher l. A negative spectral index is also necessary for the 2- Planck upper bound on the tensor-to-scalar ratio r to be consistent with values significantly larger than 0.1. Planck has also observed a hemispherical asymmetry of the CMB power spectrum, again mostly at low multipoles. Here we consider whether the physics responsible for the hemispherical asymmetry could also account for the negative running of the spectral index and the consistency of Planck with a large value of r. A negative running of the spectral index can be generated if the hemispherical asymmetry is due to a scale- and space-dependent modulation which suppresses the CMB power spectrum at low multipoles. We show that the observed hemispherical asymmetry at low l can be generated while satisfying constraints on the asymmetry at higher l and generating a negative spectral index of the right magnitude to account for the Planck observation and to allow Planck to be consistent with a large value of r.

  5. DOE Funding Crunch Threatens Future of Only U.S. Collider Still Running

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (Science) | Jefferson Lab DOE Funding Crunch Threatens Future of Only U.S. Collider Still Running (Science) External Link: http://www.sciencemag.org/content/335/6067/392.summary By jlab_admin on Fri, 2012-01-27 00

  6. A Simplified Method for Implementing Run-Time Polymorphism in Fortran95

    DOE PAGES-Beta [OSTI]

    Decyk, Viktor K.; Norton, Charles D.

    2004-01-01

    This paper discusses a simplified technique for software emulation of inheritance and run-time polymorphism in Fortran95. This technique involves retaining the same type throughout an inheritance hierarchy, so that only functions which are modified in a derived class need to be implemented.

  7. Operation of the DC current transformer intensity monitors at FNAL during run II

    SciTech Connect (OSTI)

    Crisp, J.; Fellenz, B.; Heikkinen, D.; Ibrahim, M.A.; Meyer, T.; Vogel, G.; /Fermilab

    2012-01-01

    Circulating beam intensity measurements at FNAL are provided by five DC current transformers (DCCT), one per machine. With the exception of the DCCT in the Recycler, all DCCT systems were designed and built at FNAL. This paper presents an overview of both DCCT systems, including the sensor, the electronics, and the front-end instrumentation software, as well as their performance during Run II.

  8. Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs

    Energy.gov [DOE]

    ICM Inc. announced successful completion of two 1,000-hour performance runs of its patent-pending Generation 2.0 Co-Located Cellulosic Ethanol process at its cellulosic ethanol pilot plant in St. Joseph, Missouri. This is an important step toward the commercialization of cellulosic ethanol from switchgrass and energy sorghum.

  9. Modeling

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Monte Carlo modeling it was found that for noisy signals with a significant background component, accuracy is improved by fitting the total emission data which includes the...

  10. Modeling

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Renewable Energy, Research & Capabilities, Wind Energy, Wind News|0 Comments Read More ... Energy, Research & Capabilities, Water Power Sandia Modifies Delft3D Turbine Model ...

  11. Modeling

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Science and Actuarial Practice" Read More Permalink New Project Is the ACME of Computer Science to Address Climate Change Analysis, Climate, Global Climate & Energy, Modeling, ...

  12. Modeling

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Though adequate for modeling mean transport, this approach does not address ... Microphysics such as diffusive transport and chemical kinetics are represented by ...

  13. Modeling

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    PVLibMatlab Permalink Gallery Sandia Labs Releases New Version of PVLib Toolbox Modeling, News, Photovoltaic, Solar Sandia Labs Releases New Version of PVLib Toolbox Sandia has ...

  14. In the OSTI Collections: Earth System Models | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    specification of greenhouse gas emissions rather than ... greenhouse gases, natural and anthropogenic ... The new model has been run with greenhouse-gas emissions ...

  15. Smart Grid Technology Interactive Model | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Smart Grid Technology Interactive Model Share Description As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid...

  16. Access Models | U.S. DOE Office of Science (SC)

    Office of Science (SC) [DOE]

    Getting Started User Safety Access Models User Agreements Data Management Resources ... facilities that run a large experiment from which many scientists share the same data. ...

  17. Modeling

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... is unique in its ability to model hot radiating plasmas and cold frag- menting solids. ... equation of state eects and heavy ion fusion beam-to-target energy coupling e ciency. ...

  18. Modeling

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    with application in modeling NDCX-II experiments Wangyi Liu 1 , John Barnard 2 , Alex Friedman 2 , Nathan Masters 2 , Aaron Fisher 2 , Alice Koniges 2 , David Eder 2 1 LBNL, USA, 2...

  19. Modeling

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    NASA Earth at Night Video EC, Energy, Energy Efficiency, Global, Modeling, News & Events, Solid-State Lighting, Videos NASA Earth at Night Video Have you ever wondered what the ...

  20. Sandia Material Model Driver

    Energy Science and Technology Software Center (OSTI)

    2005-09-28

    The Sandia Material Model Driver (MMD) software package allows users to run material models from a variety of different Finite Element Model (FEM) codes in a standalone fashion, independent of the host codes. The MMD software is designed to be run on a variety of different operating system platforms as a console application. Initial development efforts have resulted in a package that has been shown to be fast, convenient, and easy to use, with substantialmore » growth potential.« less

  1. The CMS Tier0 goes cloud and grid for LHC Run 2

    SciTech Connect (OSTI)

    Hufnagel, Dirk

    2015-12-23

    In 2015, CMS will embark on a new era of collecting LHC collisions at unprecedented rates and complexity. This will put a tremendous stress on our computing systems. Prompt Processing of the raw data by the Tier-0 infrastructure will no longer be constrained to CERN alone due to the significantly increased resource requirements. In LHC Run 2, we will need to operate it as a distributed system utilizing both the CERN Cloud-based Agile Infrastructure and a significant fraction of the CMS Tier-1 Grid resources. In another big change for LHC Run 2, we will process all data using the multi-threaded framework to deal with the increased event complexity and to ensure efficient use of the resources. Furthermore, this contribution will cover the evolution of the Tier-0 infrastructure and present scale testing results and experiences from the first data taking in 2015.

  2. The CMS Tier0 goes cloud and grid for LHC Run 2

    DOE PAGES-Beta [OSTI]

    Hufnagel, Dirk

    2015-12-23

    In 2015, CMS will embark on a new era of collecting LHC collisions at unprecedented rates and complexity. This will put a tremendous stress on our computing systems. Prompt Processing of the raw data by the Tier-0 infrastructure will no longer be constrained to CERN alone due to the significantly increased resource requirements. In LHC Run 2, we will need to operate it as a distributed system utilizing both the CERN Cloud-based Agile Infrastructure and a significant fraction of the CMS Tier-1 Grid resources. In another big change for LHC Run 2, we will process all data using the multi-threadedmore » framework to deal with the increased event complexity and to ensure efficient use of the resources. Furthermore, this contribution will cover the evolution of the Tier-0 infrastructure and present scale testing results and experiences from the first data taking in 2015.« less

  3. Running coupling constant from lattice studies of gluon and ghost propagators

    SciTech Connect (OSTI)

    Cucchieri, A.; Mendes, T.

    2004-12-02

    We present a numerical study of the running coupling constant in four-dimensional pure-SU(2) lattice gauge theory. The running coupling is evaluated by fitting data for the gluon and ghost propagators in minimal Landau gauge. Following Refs. [1, 2], the fitting formulae are obtained by a simultaneous integration of the {beta} function and of a function coinciding with the anomalous dimension of the propagator in the momentum subtraction scheme. We consider these formulae at three and four loops. The fitting method works well, especially for the ghost case, for which statistical error and hyper-cubic effects are very small. Our present result for {lambda}MS is 200{sub -40}{sup +60} MeV, where the error is purely systematic. We are currently extending this analysis to five loops in order to reduce this systematic error.

  4. The Performance and Long Term Stability of the D0 Run II Forward Muon Scintillation Counters

    SciTech Connect (OSTI)

    Bezzubov, V.; Denisov, D.; Evdokimov, V.; Lipaev, V.; Shchukin, A.; Vasilyev, I.

    2014-07-21

    The performance of the D0 experiment forward muon scintillation counters system during Run II of the Tevatron from 2001 to 2011 is described. The system consists of 4214 scintillation counters in six layers. The long term stability of the counters amplitude response determined using LED calibration system and muons produced in proton-antiproton collisions is presented. The average signal amplitude for counters of all layers has gradually decreased over ten years by 11%. The reference timing, determined using LED calibration, was stable within 0.26 ns. Average value of muon timing peak position was used for periodic D0 clock signal adjustments to compensate seasonal drift caused by temperature variations. Counters occupancy for different triggers in physics data collection runs and for minimum bias triggers are presented. The single muon yields versus time and the luminosity dependence of yields were stable for the forward muon system within 1% over 10 years.

  5. The CMS TierO goes Cloud and Grid for LHC Run 2

    DOE PAGES-Beta [OSTI]

    Hufnagel, Dirk

    2015-12-23

    In 2015, CMS will embark on a new era of collecting LHC collisions at unprecedented rates and complexity. This will put a tremendous stress on our computing systems. Prompt Processing of the raw data by the Tier-0 infrastructure will no longer be constrained to CERN alone due to the significantly increased resource requirements. In LHC Run 2, we will need to operate it as a distributed system utilizing both the CERN Cloud-based Agile Infrastructure and a significant fraction of the CMS Tier-1 Grid resources. In another big change for LHC Run 2, we will process all data using the multi-threadedmore » framework to deal with the increased event complexity and to ensure efficient use of the resources. This contribution will cover the evolution of the Tier-0 infrastructure and present scale testing results and experiences from the first data taking in 2015.« less

  6. Operation of the intensity monitors in beam transport lines at Fermilab during Run II¹

    DOE PAGES-Beta [OSTI]

    Crisp, J.; Fellenz, B.; Fitzgerald, J.; Heikkinen, D.; Ibrahim, M. A.

    2011-10-06

    The intensity of charged particle beams at Fermilab must be kept within pre-determined safety and operational envelopes in part by assuring all beam within a few percent has been transported from any source to destination. Beam instensity monitors with toroidial pickups provide such beam intensity measurements in the transport lines between accelerators at FNAL. With Run II, much effort was made to continually improve the resolution and accuracy of the system.

  7. Apex Gold discussion fosters international cooperation in run-up to 2016

    National Nuclear Security Administration (NNSA)

    Nuclear Security Summit | National Nuclear Security Administration | (NNSA) Apex Gold discussion fosters international cooperation in run-up to 2016 Nuclear Security Summit Monday, February 1, 2016 - 1:16pm NNSA Blog Participants in Apex Gold at Lawrence Livermore National Laboratory. What would national leaders do in the face of a transnational nuclear terrorism threat? Last week, ministers and other senior delegates from 37 nations, along with representatives from the International Atomic

  8. Accelerating Innovation: PowerAmerica Is Up and Running | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 2, 2015 - 2:00pm Addthis Accelerating Innovation: PowerAmerica Is Up and Running -Rob Ivester, Deputy Director, Advanced Manufacturing Office The excitement and drive to deliver was evident to me last week when I joined nearly 100 PowerAmerica members for their kick-off meeting at NC State University in Raleigh, North Carolina. PowerAmerica, also called the Next Generation Power Electronics Manufacturing Innovation Institute, will develop advanced manufacturing processes and work to

  9. Princeton and PPPL projects selected to run on super-powerful computer to

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    be delivered to Oak Ridge Leadership Computing Facility | Princeton Plasma Physics Lab Princeton and PPPL projects selected to run on super-powerful computer to be delivered to Oak Ridge Leadership Computing Facility By John Greenwald June 1, 2015 Tweet Widget Google Plus One Share on Facebook Computer simulation and visualization of edge turbulence in a fusion plasma. (Simulation: Seung-Hoe Ku/PPPL. Visualization: David Pugmire/ORNL) Computer simulation and visualization of edge turbulence

  10. Princeton and PPPL projects selected to run on super-powerful computer to

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    be delivered to Oak Ridge Leadership Computing Facility | Princeton Plasma Physics Lab Princeton and PPPL projects selected to run on super-powerful computer to be delivered to Oak Ridge Leadership Computing Facility By John Greenwald June 1, 2015 Tweet Widget Google Plus One Share on Facebook Computer simulation and visualization of edge turbulence in a fusion plasma. (Simulation: Seung-Hoe Ku/PPPL. Visualization: David Pugmire/ORNL) Computer simulation and visualization of edge turbulence

  11. Experimental "Wind to Hydrogen" System Up and Running - News Releases |

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    NREL Experimental "Wind to Hydrogen" System Up and Running December 14, 2006 Xcel Energy (NYSE:XEL) and the U.S. Department of Energy's National Renewable Energy Laboratory today unveiled a unique facility that uses electricity from wind turbines to produce and store pure hydrogen, offering what may become an important new template for future energy production. Several dozen journalists, environmental leaders, government officials and Xcel Energy managers today toured the joint

  12. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway

    SciTech Connect (OSTI)

    Ji, Jian-feng; Ji, Sheng-jun; Sun, Rui; Li, Kun; Zhang, Yuan; Zhang, Li-yuan; Tian, Ye

    2014-01-10

    Highlights: •Forced exercise can ameliorate WBI induced cognitive impairment in our rat model. •Mature BDNF plays an important role in the effects of forced exercise. •Exercise may be a possible treatment of the radiation-induced cognitive impairment. -- Abstract: Cranial radiotherapy induces progressive and debilitating cognitive deficits, particularly in long-term cancer survivors, which may in part be caused by the reduction of hippocampal neurogenesis. Previous studies suggested that voluntary exercise can reduce the cognitive impairment caused by radiation therapy. However, there is no study on the effect of forced wheel exercise and little is known about the molecular mechanisms mediating the effect of exercise. In the present study, we investigated whether the forced running exercise after irradiation had the protective effects of the radiation-induced cognitive impairment. Sixty-four Male Sprague–Dawley rats received a single dose of 20 Gy or sham whole-brain irradiation (WBI), behavioral test was evaluated using open field test and Morris water maze at 2 months after irradiation. Half of the rats accepted a 3-week forced running exercise before the behavior detection. Immunofluorescence was used to evaluate the changes in hippocampal neurogenesis and Western blotting was used to assess changes in the levels of mature brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine receptor kinase B (TrkB) receptor, protein kinase B (Akt), extracellular signal-regulated kinase (ERK), calcium-calmodulin dependent kinase (CaMKII), cAMP-calcium response element binding protein (CREB) in the BDNF–pCREB signaling. We found forced running exercise significantly prevented radiation-induced cognitive deficits, ameliorated the impairment of hippocampal neurogenesis and attenuated the down-regulation of these proteins. Moreover, exercise also increased behavioral performance, hippocampal neurogenesis and elevated BDNF–pCREB signaling in non

  13. Design, performance and control of the CDF Run II Data Acquisition System

    SciTech Connect (OSTI)

    Badgett, William F., Jr.; /Fermilab

    2005-05-01

    The Run II Data Acquisition (DAQ) system of the CDF Detector at Fermilab's Tevatron accelerator has been operational since July 2001. CDF DAQ has collected over 350 inverse picobarns of proton-antiproton collision data with high efficiency. An overview of the design of the pipelined, deadtime-less trigger and data acquisition system will be presented. CDF can receive and process a maximum crossing rate of once per 132 ns, with the rate reduced in three stages to the final output of approximately 1 to 2 terabytes per day. The DAQ system is controlled and monitored via a suite of Java based control software, with connections to front end VME crate processors running VxWorks/C and back end Oracle databases. Included are a flexible and easy to use Run Control java application and associated system monitoring applications, both stand-alone and web based. The performance and operational experience of three years will be presented, including data taking efficiencies and through-put, and the role of intelligent software in tagging and solving problems. We also review future upgrades designed to increase data collection rates to cope with increased Tevatron luminosity.

  14. GO, an exec for running the programs: CELL, COLLIDER, MAGIC, PATRICIA, PETROS, TRANSPORT, and TURTLE

    SciTech Connect (OSTI)

    Shoaee, H.

    1982-05-01

    An exec has been written and placed on the PEP group's public disk to facilitate the use of several PEP related computer programs available on VM. The exec's program list currently includes: CELL, COLLIDER, MAGIC, PATRICIA, PETROS, TRANSPORT, and TURTLE. In addition, provisions have been made to allow addition of new programs to this list as they become available. The GO exec is directly callable from inside the Wylbur editor (in fact, currently this is the only way to use the GO exec.). It provides the option of running any of the above programs in either interactive or batch mode. In the batch mode, the GO exec sends the data in the Wylbur active file along with the information required to run the job to the batch monitor (BMON, a virtual machine that schedules and controls execution of batch jobs). This enables the user to proceed with other VM activities at his/her terminal while the job executes, thus making it of particular interest to the users with jobs requiring much CPU time to execute and/or those wishing to run multiple jobs independently. In the interactive mode, useful for small jobs requiring less CPU time, the job is executed by the user's own Virtual Machine using the data in the active file as input. At the termination of an interactive job, the GO exec facilitates examination of the output by placing it in the Wylbur active file.

  15. GO, an exec for running the programs: CELL, COLLIDER, MAGIC, PATRICIA, PETROS, TRANSPORT and TURTLE

    SciTech Connect (OSTI)

    Shoaee, H.

    1982-05-01

    An exec has been written and placed on the PEP group's public disk (PUBRL 192) to facilitate the use of several PEP related computer programs available on VM. The exec's program list currently includes: CELL, COLLIDER, MAGIC, PATRICIA, PETROS, TRANSPORT, and TURTLE. In addition, provisions have been made to allow addition of new programs to this list as they become available. The GO exec is directly callable from inside the Wylbur editor (in fact, currently this is the only way to use the GO exec.) It provides the option of running any of the above programs in either interactive or batch mode. In the batch mode, the GO exec sends the data in the Wylbur active file along with the information required to run the job to the batch monitor (BMON, a virtual machine that schedules and controls execution of batch jobs). This enables the user to proceed with other VM activities at his/her terminal while the job executes, thus making it of particular interest to the users with jobs requiring much CPU time to execute and/or those wishing to run multiple jobs independently. In the interactive mode, useful for small jobs requiring less CPU time, the job is executed by the user's own Virtual Machine using the data in the active file as input. At the termination of an interactive job, the GO exec facilitates examination of the output by placing it in the Wylbur active file.

  16. Making the most of the relic density for dark matter searches at the LHC 14 TeV Run

    SciTech Connect (OSTI)

    Busoni, Giorgio; Simone, Andrea De; Jacques, Thomas; Morgante, Enrico; Riotto, Antonio

    2015-03-12

    As the LHC continues to search for new weakly interacting particles, it is important to remember that the search is strongly motivated by the existence of dark matter. In view of a possible positive signal, it is essential to ask whether the newly discovered weakly interacting particle can be be assigned the label “dark matter”. Within a given set of simplified models and modest working assumptions, we reinterpret the relic abundance bound as a relic abundance range, and compare the parameter space yielding the correct relic abundance with projections of the Run II exclusion regions. Assuming that dark matter is within the reach of the LHC, we also make the comparison with the potential 5σ discovery regions. Reversing the logic, relic density calculations can be used to optimize dark matter searches by motivating choices of parameters where the LHC can probe most deeply into the dark matter parameter space. In the event that DM is seen outside of the region giving the correct relic abundance, we will learn that either thermal relic DM is ruled out in that model, or the DM-quark coupling is suppressed relative to the DM coupling strength to other SM particles.

  17. Modeling

    SciTech Connect (OSTI)

    Loth, E.; Tryggvason, G.; Tsuji, Y.; Elghobashi, S. E.; Crowe, Clayton T.; Berlemont, A.; Reeks, M.; Simonin, O.; Frank, Th; Onishi, Yasuo; Van Wachem, B.

    2005-09-01

    Slurry flows occur in many circumstances, including chemical manufacturing processes, pipeline transfer of coal, sand, and minerals; mud flows; and disposal of dredged materials. In this section we discuss slurry flow applications related to radioactive waste management. The Hanford tank waste solids and interstitial liquids will be mixed to form a slurry so it can be pumped out for retrieval and treatment. The waste is very complex chemically and physically. The ARIEL code is used to model the chemical interactions and fluid dynamics of the waste.

  18. Direct liquefaction proof-of-concept program: Bench Run 05 (227-97). Final report

    SciTech Connect (OSTI)

    Comolli, A.G.; Pradhan, V.R.; Lee, T.L.K.; Karolkiewicz, W.F.; Popper, G.

    1997-04-01

    This report presents the results Bench Run PB-05, conducted under the DOE Proof of Concept - Bench Option Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey. Bench Run PB-05 was the fifth of the nine runs planned in the POC Bench Option Contract between the U.S. DOE and included the evaluation of the effect of using dispersed slurry catalyst in direct liquefaction of a high volatile bituminous Illinois No. 6 coal and in combined coprocessing of coal with organic wastes, such as heavy petroleum resid, MSW plastics, and auto-shredder residue. PB-05 employed a two-stage, back-mixed, slurry reactor system with an interstage V/L separator and an in-line fixed-bed hydrotreater. Coprocessing of waste plastics with Illinois No. 6 coal did not result in the improvement observed earlier with a subbituminous coal. In particular, decreases in light gas yield and hydrogen consumption were not observed with Illinois No. 6 coal as they were with Black Thunder Mine coal. The higher thermal severity during PB-05 is a possible reason for this discrepancy, plastics being more sensitive to temperatures (cracking) than either coal or heavy resid. The ASR material was poorer than MSW plastics in terms of increasing conversions and yields. HTI`s new dispersed catalyst formulation, containing phosphorus-promoted iron gel, was highly effective for the direct liquefaction of Illinois No. 6 coal under the reaction conditions employed; over 95% coal conversion was obtained, along with over 85% residuum conversion and over 73% distillate yields.

  19. Intern helped get robotic arm on PPPL's PTOLEMY experiment up and running

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    | Princeton Plasma Physics Lab Intern helped get robotic arm on PPPL's PTOLEMY experiment up and running By Jeanne Jackson DeVoe September 22, 2016 Tweet Widget Google Plus One Share on Facebook PPPL intern Mark Thom with a device containing a robotic arm that will be used with PPPL's PTOLEMY experiment, behind him. (Photo by Elle Starkman/PPPL Office of Communications) PPPL intern Mark Thom with a device containing a robotic arm that will be used with PPPL's PTOLEMY experiment, behind him.

  20. THE RHIC INJECTOR ACCELERATORS CONFIGURATIONS, AND PERFORMANCE FOR THE RHIC 2003 AU - D PHYSICS RUN.

    SciTech Connect (OSTI)

    Ahrens, L; Benjamin, J; Blaskiewicz, M; Brennan, J M; Brown, K A; Carlson, K A; Delong, J; D' Ottavio, T; Frak, B; Gardner, C J; Glenn, J W; Harvey, M; Hayes, T; Hseuh, H- C; Ingrassia, P; Lowenstein, D; Mackay, W; Marr, G; Morris, J; Roser, T; Satogata, T; Smith, G; Smith, K S; Steski, D; Tsoupas, N; Thieberger, P; Zeno, K

    2003-05-12

    The RHIC 2003 Physics Run [1] required collisions between gold ions and deuterons. The injector necessarily had to deliver adequate quality (transverse and longitudinal emittance) and quantity of both species. For gold this was a continuing evolution from past work [2]. For deuterons it was new territory. For the filling of the RHIC the injector not only had to deliver quality beams but also had to switch between these species quickly. This paper details the collider requirements and our success in meeting these. Some details of the configurations employed are given.

  1. Queuing and Running on BG/Q Systems FAQ | Argonne Leadership Computing

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Facility Queuing and Running on BG/Q Systems FAQ Contents Is there a limit on stack size? My job had empty stdout, and the stderr looks like it died immediately after it started. What happened? Where can I find the details of a job submission? Back to top Is there a limit on stack size? There is no strict limit on the stack size. The stack and heap grow towards each other until a collision occurs. If your job terminates with an error like this: ***FAULT Encountered unhandled signal

  2. Liquid-phase detection instrument to record and annunciate procedural deviations in sintering runs

    SciTech Connect (OSTI)

    Mee, D. K.; Darby, D. M.; Sims, Jr., T. M.

    1981-04-15

    A liquid-phase detection instrument (LPDI) has been developed to aid in making consistently accurate alloy sintering runs. The LPDI displays the furnace temperature, detects the alloy's liquid-phase arrest temperature, calculates the necessary hold temperature from the arrest temperature (i.e., calibrates the system), and provides a digital record for quality assurance purposes. In field tests, the instrument's detected arrest temperature was within +1/sup 0/ to -0/sup 0/C of an operator's assessment of the actual arrest temperature.

  3. Intern helped get robotic arm on PPPL's PTOLEMY experiment up and running

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    | Princeton Plasma Physics Lab Intern helped get robotic arm on PPPL's PTOLEMY experiment up and running By Jeanne Jackson DeVoe September 22, 2016 Tweet Widget Google Plus One Share on Facebook PPPL intern Mark Thom with a device containing a robotic arm that will be used with PPPL's PTOLEMY experiment, behind him. (Photo by Photo by Elle Starkman/PPPL Office of Communications) PPPL intern Mark Thom with a device containing a robotic arm that will be used with PPPL's PTOLEMY experiment,

  4. LCLS-schedul_run-II_10_05_6-detail.xls

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    User-Assisted Commissioning Run II Detailed Schedule, May 6-September 13, 2010 Thurs Fri Sat Sun Mon Tues Wed BL Prop# Spokesperson/ PI Planned Activity/Experiment Title POC AD Program Deputy Week 1 6-May 7-May 8-May 9-May 10-May 11-May 12-May Day SXR com SXR com SXR com SXR com SXR com MD MD SXR L805 Bill Schlotter SXR Commissioning Schlotter H-D. Nuhn Night Küpper Küpper Küpper Küpper Küpper MD ROD AMO L011 Jochen Küpper Diffractive Imaging of Oriented Molecules in the Gas Phase Bostedt

  5. Diffraction and forward physics results of the ATLAS experiment from the Run I

    SciTech Connect (OSTI)

    Taevsk, Marek

    2015-04-10

    Various aspects of forward physics have been studied by the ATLAS collaboration using data from Run I at the LHC. In this text, main results of four published analyses are summarized, all based on data from proton-proton collisions at ?(s)=7 TeV collected in 2010 or 2011. Two analyses deal with the diffractive signature, one based on single-sided events, the other on large rapidity gaps in soft events. In addition, a recent measurement of the total pp cross section using the ALFA subdetector and a recent study of higher-order QCD effects using a jet veto are discussed.

  6. First measurement of the W boson mass in run II of the Tevatron

    SciTech Connect (OSTI)

    Aaltonen, T.; Abulencia, A.; Adelman, J.; Affolder, Anthony Allen; Akimoto, T.; Albrow, Michael G.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Anikeev, K.; Annovi, A.; /Fermilab /Frascati /Comenius U.

    2007-07-01

    We present a measurement of the W boson mass using 200 pb{sup -1} of data collected in p{bar p} collisions at {radical}s = 1.96 TeV by the CDF II detector at Run II of the Fermilab Tevatron. With a sample of 63964 W {yields} ev candidates and 51128 W W {yields} {mu}v candidates, we measure M{sub W} = (80413 {+-} 34{sub stat} {+-}34{sub syst} = 80413 {+-} 48) MeV/c{sup 2}. This is the most precise single measurement of the W boson mass to date.

  7. Experimental Results of NWCF Run H4 Calcine Dissolution Studies Performed in FY-98 and -99

    SciTech Connect (OSTI)

    Garn, Troy Gerry; Herbst, Ronald Scott; Batcheller, Thomas Aquinas; Sierra, Tracy Laureena

    2001-08-01

    Dissolution experiments were performed on actual samples of NWCF Run H-4 radioactive calcine in fiscal years 1998 and 1999. Run H-4 is an aluminum/sodium blend calcine. Typical dissolution data indicates that between 90-95 wt% of H-4 calcine can be dissolved using 1gram of calcine per 10 mLs of 5-8M nitric acid at boiling temperature. Two liquid raffinate solutions composed of a WM-188/aluminum nitrate blend and a WM-185/aluminum nitrate blend were converted into calcine at the NWCF. Calcine made from each blend was collected and transferred to RAL for dissolution studies. The WM-188/aluminum nitrate blend calcine was dissolved with resultant solutions used as feed material for separation treatment experimentation. The WM-185/aluminum nitrate blend calcine dissolution testing was performed to determine compositional analyses of the dissolved solution and generate UDS for solid/liquid separation experiments. Analytical fusion techniques were then used to determine compositions of the solid calcine and UDS from dissolution. The results from each of these analyses were used to calculate elemental material balances around the dissolution process, validating the experimental data. This report contains all experimental data from dissolution experiments performed using both calcine blends.

  8. Ambiguity in running spectral index with an extra light field during inflation

    SciTech Connect (OSTI)

    Kohri, Kazunori; Matsuda, Tomohiro E-mail: matsuda@sit.ac.jp

    2015-02-01

    At the beginning of inflation there could be extra dynamical scalar fields that will soon disappear (become static) before the end of inflation. In the light of multi-field inflation, those extra degrees of freedom may alter the time-dependence of the original spectrum of the curvature perturbation. It is possible to remove such fields introducing extra number of e-foldings prior to 0N{sub e}∼ 6, however such extra e-foldings may make the trans-Planckian problem worse due to the Lyth bound. We show that such extra scalar fields can change the running of the spectral index to give correction of ± 0.01 without adding significant contribution to the spectral index. The corrections to the spectral index (and the amplitude) could be important in considering global behavior of the corrected spectrum, although they can be neglected in the estimation of the spectrum and its spectral index at the pivot scale. The ambiguity in the running of the spectral index, which could be due to such fields, can be used to nullify tension between BICEP2 and Planck experiments.

  9. RHIC polarized proton-proton operation at 100 GeV in Run 15

    SciTech Connect (OSTI)

    Schoefer, V.; Aschenauer, E. C.; Atoian, G.; Blaskiewicz, M.; Brown, K. A.; Bruno, D.; Connolly, R.; D Ottavio, T.; Drees, K. A.; Dutheil, Y.; Fischer, W.; Gardner, C.; Gu, X.; Hayes, T.; Huang, H.; Laster, J.; Liu, C.; Luo, Y.; Makdisi, Y.; Marr, G.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R.; Marusic, A.; Minty, M.; Montag, C.; Morris, J.; Narayan, G.; Nemesure, S.; Pile, P.; Poblaguev, A.; Ranjbar, V.; Robert-Demolaize, G.; Roser, T.; Schmidke, W. B.; Severino, F.; Shrey, T.; Smith, K.; Steski, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; White, S.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S. Y.

    2015-05-03

    The first part of RHIC Run 15 consisted of ten weeks of polarized proton on proton collisions at a beam energy of 100 GeV at two interaction points. In this paper we discuss several of the upgrades to the collider complex that allowed for improved performance. The largest effort consisted in commissioning of the electron lenses, one in each ring, which are designed to compensate one of the two beam-beam interactions experienced by the proton bunches. The e-lenses raise the per bunch intensity at which luminosity becomes beam-beam limited. A new lattice was designed to create the phase advances necessary for a beam-beam compensation with the e-lens, which also has an improved off-momentum dynamic aperture relative to previous runs. In order to take advantage of the new, higher intensity limit without suffering intensity driven emittance deterioration, other features were commissioned including a continuous transverse bunch-by-bunch damper in RHIC and a double harmonic RF cature scheme in the Booster. Other high intensity protections include improvements to the abort system and the installation of masks to intercept beam lost due to abort kicker pre-fires.

  10. Regions in Energy Market Models

    SciTech Connect (OSTI)

    Short, W.

    2007-02-01

    This report explores the different options for spatial resolution of an energy market model--and the advantages and disadvantages of models with fine spatial resolution. It examines different options for capturing spatial variations, considers the tradeoffs between them, and presents a few examples from one particular model that has been run at different levels of spatial resolution.

  11. Regions in Energy Market Models

    SciTech Connect (OSTI)

    2009-01-18

    This report explores the different options for spatial resolution of an energy market model and the advantages and disadvantages of models with fine spatial resolution. It examines different options for capturing spatial variations, considers the tradeoffs between them, and presents a few examples from one particular model that has been run at different levels of spatial resolution.

  12. Modeling particle loss in ventilation ducts

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2003-04-01

    Empirical equations were developed and applied to predict losses of 0.01-100 {micro}m airborne particles making a single pass through 120 different ventilation duct runs typical of those found in mid-sized office buildings. For all duct runs, losses were negligible for submicron particles and nearly complete for particles larger than 50 {micro}m. The 50th percentile cut-point diameters were 15 {micro}m in supply runs and 25 {micro}m in return runs. Losses in supply duct runs were higher than in return duct runs, mostly because internal insulation was present in portions of supply duct runs, but absent from return duct runs. Single-pass equations for particle loss in duct runs were combined with models for predicting ventilation system filtration efficiency and particle deposition to indoor surfaces to evaluate the fates of particles of indoor and outdoor origin in an archetypal mechanically ventilated building. Results suggest that duct losses are a minor influence for determining indoor concentrations for most particle sizes. Losses in ducts were of a comparable magnitude to indoor surface losses for most particle sizes. For outdoor air drawn into an unfiltered ventilation system, most particles smaller than 1 {micro}m are exhausted from the building. Large particles deposit within the building, mostly in supply ducts or on indoor surfaces. When filters are present, most particles are either filtered or exhausted. The fates of particles generated indoors follow similar trends as outdoor particles drawn into the building.

  13. "Thought experiments" as dry-runs for "tough experiments": novel

    Office of Scientific and Technical Information (OSTI)

    approaches to the hydration behavior of oxyanions (Journal Article) | DOE PAGES "Thought experiments" as dry-runs for "tough experiments": novel approaches to the hydration behavior of oxyanions Title: "Thought experiments" as dry-runs for "tough experiments": novel approaches to the hydration behavior of oxyanions We explore the deconvolution of correlations for the interpretation of the microstructural behavior of aqueous electrolytes according to

  14. THE MATRYOSHKA RUN. II. TIME-DEPENDENT TURBULENCE STATISTICS, STOCHASTIC PARTICLE ACCELERATION, AND MICROPHYSICS IMPACT IN A MASSIVE GALAXY CLUSTER

    SciTech Connect (OSTI)

    Miniati, Francesco

    2015-02-10

    We use the Matryoshka run to study the time-dependent statistics of structure-formation-driven turbulence in the intracluster medium of a 10{sup 15} M {sub ?} galaxy cluster. We investigate the turbulent cascade in the inner megaparsec for both compressional and incompressible velocity components. The flow maintains approximate conditions of fully developed turbulence, with departures thereof settling in about an eddy-turnover time. Turbulent velocity dispersion remains above 700kms{sup 1} even at low mass accretion rate, with the fraction of compressional energy between 10% and 40%. The normalization and the slope of the compressional turbulence are susceptible to large variations on short timescales, unlike the incompressible counterpart. A major merger occurs around redshift z ? 0 and is accompanied by a long period of enhanced turbulence, ascribed to temporal clustering of mass accretion related to spatial clustering of matter. We test models of stochastic acceleration by compressional modes for the origin of diffuse radio emission in galaxy clusters. The turbulence simulation model constrains an important unknown of this complex problem and brings forth its dependence on the elusive microphysics of the intracluster plasma. In particular, the specifics of the plasma collisionality and the dissipation physics of weak shocks affect the cascade of compressional modes with strong impact on the acceleration rates. In this context radio halos emerge as complex phenomena in which a hierarchy of processes acting on progressively smaller scales are at work. Stochastic acceleration by compressional modes implies statistical correlation of radio power and spectral index with merging cores distance, both testable in principle with radio surveys.

  15. Emissions of Volatile Particulate Components from Turboshaft Engines running JP-8 and Fischer-Tropsch Fuels

    SciTech Connect (OSTI)

    Cheng, Mengdawn; Corporan, E.; DeWitt, M.; Landgraf, Bradley J

    2009-01-01

    Rotating-wing aircraft or helicopters are heavily used by the US military and also a wide range of commercial applications around the world, but emissions data for this class of engines are limited. In this study, we focus on emissions from T700-GE-700 and T700-GE-701C engines; T700 engine was run with military JP-8 and T701C run with both JP-8 and Fischer-Tropsch (FT) fuels. Each engine was run at three engine power settings from the idle to maximum power in sequence. Exhaust particles measured at the engine exhaust plane (EEP) have a peak mobility diameter less than 50nm in all engine power settings. At a 4-m downstream location, sulfate/sulfur measurements indicate all particulate sulfur exists practically as sulfate, and the particulate sulfur and sulfate contents increased as the engine power increased. The conversion of sulfur to sulfate was found not to be dependent on engine power setting. Analysis also showed that conversion of sulfur to sulfate was not by the adsorption of sulfur dioxide gas on the soot particles and then subsequently oxidized to form sulfate, but by gas-phase conversion of SO2 via OH or O then subsequently forming H2SO4 and condensing on soot particles. Without the sulfur and aromatic components, use of the FT fuel led to significant reduction of soot emissions as compared to that of the JP-8 fuel producing less number of particles than that of the JP-8 fuel; however, the FT fuel produced much higher number concentrations of particles smaller than 7nm than that of JP-8 in all engine power settings. This indicates non-aromatics components in the FT fuel could have contributed to the enhancement of emissions of particles smaller than 7nm. These small particles are volatile, not observed at the EEP, and may be important in playing a role for the formation of secondary particles in the atmosphere or serving as a site for effective cloud nuclei condensation to occur.

  16. B-physics at CDF and prospects for the next run

    SciTech Connect (OSTI)

    Wenzel, H. )

    1991-09-01

    Current CDF b-physics results are presented. The analysis is based on data corresponding to an integrated luminosity of 4.4 pb{sup {minus}1} recorded with the CDF detector in 88--89 at the Fermilab Tevatron p{bar p} collider ({radical}{bar s} = 1.8 TeV). Preliminary results include the differential cross section {sub dPt}/{sup d{sigma}(b)}, some reconstructed exclusive B-decays, a limit for the rare decay B{sup 0} {yields} {mu}{sup +} {mu}{sup {minus}} and a measurement of B{bar B}-mixing parameters. Finally we will discuss the prospects concerning b-physics for the next data run which will start in February 1992. 12 refs., 8 figs.

  17. Radionuclide inventories for short run-time space nuclear reactor systems

    SciTech Connect (OSTI)

    Coats, R.L.

    1992-10-22

    Space Nuclear Reactor Systems, especially those used for propulsion, often have expected operation run times much shorter than those for land-based nuclear power plants. This produces substantially different radionuclide inventories to be considered in the safety analyses of space nuclear systems. This presentation describes an analysis utilizing ORIGEN2 and DKPOWER to provide comparisons among representative land-based and space systems. These comparisons enable early, conceptual considerations of safety issues and features in the preliminary design phases of operational systems, test facilities, and operations by identifying differences between the requirements for space systems and the established practice for land-based power systems. Early indications are that separation distance is much more effective as a safety measure for space nuclear systems than for power reactors because greater decay of the radionuclide activity occurs during the time to transport the inventory a given distance. In addition, the inventories of long-lived actinides are very low for space reactor systems.

  18. The Manuel Lujan, Jr. Neutron Scattering Center, LANSCE experiment reports: 1990 Run Cycle

    SciTech Connect (OSTI)

    DiStravolo, M.A.

    1991-10-01

    This year was the third in which LANSCE ran a formal user program. A call for proposals was issued before the scheduled run cycles, and experiment proposals were submitted by scientists from universities, industry, and other research facilities around the world. An external program advisory committee, which LANSCE shares with the Intense Pulsed Neutron Source (IPNS), Argonne National Laboratory examined the proposals and made recommendations. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and an associated Proton Storage Ring (PSR), which can alter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each six-month LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. One hundred thirty-four proposals were submitted for unclassified research and twelve proposals for research of a programmatic nature to the Laboratory. Our definition of beam availability is when the proton current from the PSR exceeds 50% of the planned value. The PSR ran at 65{mu}A current (average) at 20 Hz for most of 1990. All of the scheduled experiments were performed and experiments in support of the LANSCE research program were accomplished during the discretionary periods.

  19. The Manuel Lujan, Jr. Neutron Scattering Center (LANSCE) experiment reports 1992 run cycle. Progress report

    SciTech Connect (OSTI)

    DiStravolo, M.A.

    1993-09-01

    This year was the fifth in which LANSCE ran a formal user program. A call for proposals was issued before the scheduled run cycles, and experiment proposals were submitted by scientists from universities, industry, and other research facilities around the world. An external program advisory committee, which LANSCE shares with the Intense Pulsed Neutron Source (IPNS), Argonne National Laboratory, examined the proposals and made recommendations. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and an associated Proton Storage Ring (PSR), which can alter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research (WNR) facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each annual LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. One hundred sixty-seven proposals were submitted for unclassified research and twelve proposals for research of a programmatic interest to the Laboratory; six experiments in support of the LANSCE research program were accomplished during the discretionary periods. Oversubscription for instrument beam time by a factor of three was evident with 839 total days requested and only 371 available for allocation.

  20. A search for particle dark matter using cryogenic germanium and silicon detectors in the one- and two- tower runs of CDMS-II at Soudan

    SciTech Connect (OSTI)

    Reuben Walter Ogburn, IV

    2008-06-01

    Images of the Bullet Cluster of galaxies in visible light, X-rays, and through gravitational lensing confirm that most of the matter in the universe is not composed of any known form of matter. The combined evidence from the dynamics of galaxies and clusters of galaxies, the cosmic microwave background, big bang nucleosynthesis, and other observations indicates that 80% of the universe's matter is dark, nearly collisionless, and cold. The identify of the dar, matter remains unknown, but weakly interacting massive particles (WIMPs) are a very good candidate. They are a natural part of many supersymmetric extensions to the standard model, and could be produced as a nonrelativistic, thermal relic in the early universe with about the right density to account for the missing mass. The dark matter of a galaxy should exist as a spherical or ellipsoidal cloud, called a 'halo' because it extends well past the edge of the visible galaxy. The Cryogenic Dark Matter Search (CDMS) seeks to directly detect interactions between WIMPs in the Milky Way's galactic dark matter halo using crystals of germanium and silicon. Our Z-sensitive ionization and phonon ('ZIP') detectors simultaneously measure both phonons and ionization produced by particle interactions. In order to find very rare, low-energy WIMP interactions, they must identify and reject background events caused by environmental radioactivity, radioactive contaminants on the detector,s and cosmic rays. In particular, sophisticated analysis of the timing of phonon signals is needed to eliminate signals caused by beta decays at the detector surfaces. This thesis presents the firs two dark matter data sets from the deep underground experimental site at the Soudan Underground Laboratory in Minnesota. These are known as 'Run 118', with six detectors (1 kg Ge, 65.2 live days before cuts) and 'Run 119', with twelve detectors (1.5 kg Ge, 74.5 live days before cuts). They have analyzed all data from the two runs together in a single

  1. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 261 with Illinois No. 6 Burning Star Mine coal

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R & D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

  2. Surface Structure of Hydrogenated Diamond-like Carbon: Origin of Run-In Behavior Prior to Superlubricious Interfacial Shear

    SciTech Connect (OSTI)

    Al-Azizi, Ala A; Eryilmaz, Osman; Erdemir, Ali; Kim, Seong H.

    2015-01-01

    The oxidized layers at the surface of hydrogenated diamond-like carbon (H-DLC) were studied with X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure, and Raman spectroscopy. The structure of these layers was correlated with the friction and wear behavior observed on H-DLC. H-DLC is well-known for its ultralow friction in inert environments, but the steady superlubricious state is always preceded by a run-in period with a high friction. It was hypothesized that the run-in period is related to the surface oxide layer formed naturally upon exposure of the sample to air. To test this hypothesis, thermal oxide layers were grown, and their structures were analyzed and compared with the native oxide layer on a pristine sample. It was found that the Raman spectra of the surface oxide layers of H-DLC have higher D/G band ratio than the bulk, indicating a larger amount of aromatic clusters compared to the bulk film. Thick oxide layers grown at 300 °C showed a run-in friction behavior that resembled the friction of graphite. The run-in periods were found to become longer when the thickness of the oxide layers increased, indicating that the run-in behavior of H-DLC is attributed to the removal of the surface oxide layers.

  3. Effects of the running of the QCD coupling on the energy loss in the quark-gluon plasma

    SciTech Connect (OSTI)

    Braun, Jens; Pirner, Hans-Juergen

    2007-03-01

    Finite temperature modifies the running of the QCD coupling {alpha}{sub s}(k,T) with resolution k. After calculating the thermal quark and gluon masses self-consistently, we determine the quark-quark and quark-gluon cross sections in the plasma based on the running coupling. We find that the running coupling enhances these cross sections by factors of two to four depending on the temperature. We also compute the energy loss (dE/dx) of a high-energy quark in the plasma as a function of temperature. Our study suggests that, beside t-channel processes, inverse Compton scattering is a relevant process for a quantitative understanding of the energy loss of an incident quark in a hot plasma.

  4. Liquid phase fluid dynamic (methanol) run in the LaPorte alternative fuels development unit

    SciTech Connect (OSTI)

    Bharat L. Bhatt

    1997-05-01

    A fluid dynamic study was successfully completed in a bubble column at DOE's Alternative Fuels Development Unit (AFDU) in LaPorte, Texas. Significant fluid dynamic information was gathered at pilot scale during three weeks of Liquid Phase Methanol (LPMEOJP) operations in June 1995. In addition to the usual nuclear density and temperature measurements, unique differential pressure data were collected using Sandia's high-speed data acquisition system to gain insight on flow regime characteristics and bubble size distribution. Statistical analysis of the fluctuations in the pressure data suggests that the column was being operated in the churn turbulent regime at most of the velocities considered. Dynamic gas disengagement experiments showed a different behavior than seen in low-pressure, cold-flow work. Operation with a superficial gas velocity of 1.2 ft/sec was achieved during this run, with stable fluid dynamics and catalyst performance. Improvements included for catalyst activation in the design of the Clean Coal III LPMEOH{trademark} plant at Kingsport, Tennessee, were also confirmed. In addition, an alternate catalyst was demonstrated for LPMEOH{trademark}.

  5. A Run-Time Verification Framework for Smart Grid Applications Implemented on Simulation Frameworks

    SciTech Connect (OSTI)

    Ciraci, Selim; Sozer, Hasan; Tekinerdogan, Bedir

    2013-05-18

    Smart grid applications are implemented and tested with simulation frameworks as the developers usually do not have access to large sensor networks to be used as a test bed. The developers are forced to map the implementation onto these frameworks which results in a deviation between the architecture and the code. On its turn this deviation makes it hard to verify behavioral constraints that are de- scribed at the architectural level. We have developed the ConArch toolset to support the automated verification of architecture-level behavioral constraints. A key feature of ConArch is programmable mapping for architecture to the implementation. Here, developers implement queries to identify the points in the target program that correspond to architectural interactions. ConArch generates run- time observers that monitor the flow of execution between these points and verifies whether this flow conforms to the behavioral constraints. We illustrate how the programmable mappings can be exploited for verifying behavioral constraints of a smart grid appli- cation that is implemented with two simulation frameworks.

  6. The Manuel Lujan Jr. Neutron Scattering Center (LANSCE) experiment reports 1993 run cycle. Progress report

    SciTech Connect (OSTI)

    Farrer, R.; Longshore, A.

    1995-06-01

    This year the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) ran an informal user program because the US Department of Energy planned to close LANSCE in FY1994. As a result, an advisory committee recommended that LANSCE scientists and their collaborators complete work in progress. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and a associated Proton Storage Ring (PSR), which can Iter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research (WNR) facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each annual LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory (LANL) may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. This year, a total of 127 proposals were submitted. The proposed experiments involved 229 scientists, 57 of whom visited LANSCE to participate in measurements. In addition, 3 (nuclear physics) participating research teams, comprising 44 scientists, carried out experiments at LANSCE. Instrument beam time was again oversubscribed, with 552 total days requested an 473 available for allocation.

  7. Short run effects of a price on carbon dioxide emissions from U.S. electric generators

    SciTech Connect (OSTI)

    Adam Newcomer; Seth A. Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan [Carnegie Mellon University, Pittsburgh, PA (United States). Carnegie Mellon Electricity Industry Center

    2008-05-01

    The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO{sub 2} emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO{sub 2} emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO{sub 2} emissions would lead to a 10% reduction in CO{sub 2} emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO{sub 2} emissions that has been shown in earlier work to stimulate investment in new generation technology also provides significant CO{sub 2} reductions before new technology is deployed at large scale. 39 refs., 4 figs., 2 tabs.

  8. Trial Run of a Junction-Box Attachment Test for Use in Photovoltaic Module Qualification (Presentation)

    SciTech Connect (OSTI)

    Miller, D.; Deibert, S.; Wohlgemuth, J.

    2014-06-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development and manufacturing process control. There are historical incidences of adverse effects (e.g., fires), caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp-heat', 'thermal-cycle', or 'creep' tests within the IEC qualification protocol is proposed to verify the basic robustness of the adhesion system. The details of the proposed test are described, in addition to a trial run of the test procedure. The described experiments examine 4 moisture-cured silicones, 4 foam tapes, and a hot-melt adhesive used in conjunction with glass, KPE, THV, and TPE substrates. For the purpose of validating the experiment, j-boxes were adhered to a substrate, loaded with a prescribed weight, and then subjected to aging. The replicate mock-modules were aged in an environmental chamber (at 85 deg C/85% relative humidity for 1000 hours; then 100 degrees C/<10% relative humidity for 200 hours) or fielded in Golden, Miami, and Phoenix for 1 year. Attachment strength tests, including pluck and shear test geometries, were also performed on smaller component specimens.

  9. Communication library for run-time visualization of distributed, asynchronous data

    SciTech Connect (OSTI)

    Rowlan, J.; Wightman, B.T.

    1994-04-01

    In this paper we present a method for collecting and visualizing data generated by a parallel computational simulation during run time. Data distributed across multiple processes is sent across parallel communication lines to a remote workstation, which sorts and queues the data for visualization. We have implemented our method in a set of tools called PORTAL (for Parallel aRchitecture data-TrAnsfer Library). The tools comprise generic routines for sending data from a parallel program (callable from either C or FORTRAN), a semi-parallel communication scheme currently built upon Unix Sockets, and a real-time connection to the scientific visualization program AVS. Our method is most valuable when used to examine large datasets that can be efficiently generated and do not need to be stored on disk. The PORTAL source libraries, detailed documentation, and a working example can be obtained by anonymous ftp from info.mcs.anl.gov from the file portal.tar.Z from the directory pub/portal.

  10. A study on D0 Run2b stave structural performance

    SciTech Connect (OSTI)

    Lanfranco, Giobatta; /Fermilab

    2002-04-01

    Two different structural solutions have been proposed and studied for the D0 Run2b stave. The way the stave structural stiffness is achieved in both designs is essentially the same: the structural material is displaced as far as possible from the neutral axis in order to increase the bending moment of the stave. The agreement of the measured data with what has been theoretically predicted is excellent. The C channel stave with dog-bones glued on top of the sensor (stave No.2) has outperformed the other mockups with a predicted sag of 51{micro}m for a distributed load of 2.28 N/m [0.013 lbf/in] and a consequent natural frequency of 89.2Hz. The other three C channel staves with the dog-bones not glued on the sensor have a bending stiffness that is -19.0%, -10.8%, +4.0% of that of stave No.2, being 11.0%, 7.8%, 15.1% lighter respectively. An optimized stave structural proposal with 130.5% of the design stiffness within the mass budget is presented at the end of this paper.

  11. A study on D0 Run2b stave structural performance

    SciTech Connect (OSTI)

    Lanfranco, Giobatta; /Fermilab

    2002-04-01

    Two different structural solutions have been proposed and studied for the D0 Run2b stave (Figure 1 and Figure 3). The way the stave structural stiffness is achieved in both designs is essentially the same: the structural material is displaced as far as possible from the neutral axis in order to increase the bending moment of the stave. The agreement of the measured data with what has been theoretically predicted is excellent. The C channel stave with dog-bones glued on top of the sensor (stave No.2) has outperformed the other mockups with a predicted sag of 51 {micro}m for a distributed load of 2.28 N/m [0.013 lbf/in] and a consequent natural frequency of 89.2Hz. The other three C channel staves with the dog-bones not glued on the sensor have a bending stiffness that is -19.0%, -10.8%, +4.0% of that of stave No.2, being 11.0%, 7.8%, 15.1% lighter respectively. An optimized stave structural proposal with 130.5% of the design stiffness within the mass budget is presented at the end of this paper.

  12. Improved NLDAS-2 Noah-simulated Hydrometeorological Products with an Interim Run

    SciTech Connect (OSTI)

    Xia, Youlong; Peter-Lidard, Christa; Huang, Maoyi; Wei, Helin; Ek, Michael

    2015-02-28

    In NLDAS-2 Noah simulation, the NLDAS team introduced an intermediate fix suggested by Slater et al. (2007) and Livneh et al. (2010) to reduce large sublimation. The fix is used to constraint surface exchange coefficient (CH) using CH =CHoriginal x max (1.0-RiB/0.5, 0.05) when atmospheric boundary layer is stable. RiB is Richardson number. In NLDAS-2 Noah version, this fix was used for all stable cases including snow-free grid cells. In this study, we simply applied this fix to the grid cells in which both stable atmospheric boundary layer and snow exist simultaneously excluding the snow-free grid cells as we recognize that the fix constraint in NLDAS-2 is too strong. We make a 31-year (1979-2009) Noah NLDAS-2 interim (NoahI) run. We use observed streamflow, evapotranspiration, land surface temperature, soil temperature, and ground heat flux to evaluate the results simulated from NoahI and make the reasonable comparison with those simulated from NLDAS-2 Noah (Xia et al., 2012). The results show that NoahI has the same performance as Noah does for snow water equivalent simulation. However, NoahI significantly improved the other hydrometeorological products simulation as described above when compared to Noah and the observations. This simple modification is being installed to the next Noah version. The hydrometeorological products simulated from NoahI will be staged on NCEP public server for the public in future.

  13. Searching for R-parity violation at run-II of the tevatron.

    SciTech Connect (OSTI)

    Allanach, B.; Banerjee, S.; Berger, E. L.; Chertok, M.; Diaz, M. A.; Dreiner, H.; Eboli, O. J. P.; Harris, B. W.; Hewett, J.; Magro, M. B.; Mondal, N. K.; Narasimham, V. S.; Navarro, L.; Parua, N.; Porod, W.; Restrepo, D. A.; Richardson, P.; Rizzo, T.; Seymour, M. H.; Sullivan, Z.; Valle, J. W. F.; de Campos, F.

    1999-06-22

    The authors present an outlook for possible discovery of supersymmetry with broken R-parity at Run II of the Tevatron. They first present a review of the literature and an update of the experimental bounds. In turn they then discuss the following processes: (1) resonant slepton production followed by R{sub P} decay, (a) via LQD{sup c} and (b) via LLE{sup c}; (2) how to distinguish resonant slepton production from Z{prime} or W{prime} production; (3) resonant slepton production followed by the decay to neutralino LSP, which decays via LQD{sup c}; (4) resonant stop production followed by the decay to a chargino, which cascades to the neutralino LSP; (5) gluino pair production followed by the cascade decay to charm squarks which decay directly via L{sub 1}Q{sub 2}D{sub 1}{sup c}; (6) squark pair production followed by the cascade decay to the neutralino LSP which decays via L{sub 1}Q{sub 2}D{sub 1}{sup c}; (7) MSSM pair production followed by the cascade decay to the LSP which decays (a) via LLE{sup c}, (b) via LQD{sup c}, and (c) via U{sup c}D{sup c}D{sup c}, respectively; and (8) top quark and top squark decays in spontaneous R{sub P}.

  14. Physical and chemical characteristics of fluorinel/sodium calcine generated during 30 cm Pilot-Plant Run 17

    SciTech Connect (OSTI)

    Brewer, K.N.; Kessinger, G.F.; Littleton, L.L.; Olson, A.L.

    1993-07-01

    The 30 centimeter (cm) pilot plant calciner Run 17, of March 9, 1987, was performed to study the calcination of fluroinel-sodium blended waste blended at the ratio 3.5:1 fluorinel to sodium, respectively. The product of the run was analyzed by a variety of analytical techniques that included X-ray powder diffraction (XRD), inductively coupled plasma spectroscopy (ICP), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) to deduce physical and chemical characteristics. The analytical data, as well as data analyses and conclusions drawn from the data, are presented.

  15. Effect of CNG start - gasoline run on emissions from a 3/4 ton pick-up truck

    SciTech Connect (OSTI)

    Springer, K.J.; Smith, L.R.; Dickinson, A.G.

    1994-10-01

    This paper describes experiments to determine the effect on exhaust emissions of starting on compressed natural gas (CNG) and then switching to gasoline once the catalyst reaches operating temperature. Carbon monoxide, oxides of nitrogen, and detailed exhaust hydrocarbon speciation data were obtained for dedicated CNG, then unleaded gasoline, and finally CNG start - gasoline run using the Federal Test Procedure at 24{degree}C and at -7{degree}C. The results was a reductiopn in emissions from the gasoline baseline, especially at -7{degree}C. It was estimated that CNG start - gasoline run resulted in a 71 percent reduction in potential ozone formation per mile. 3 refs., 6 figs., 11 tabs.

  16. Methods, media and systems for managing a distributed application running in a plurality of digital processing devices

    DOE Patents [OSTI]

    Laadan, Oren; Nieh, Jason; Phung, Dan

    2012-10-02

    Methods, media and systems for managing a distributed application running in a plurality of digital processing devices are provided. In some embodiments, a method includes running one or more processes associated with the distributed application in virtualized operating system environments on a plurality of digital processing devices, suspending the one or more processes, and saving network state information relating to network connections among the one or more processes. The method further include storing process information relating to the one or more processes, recreating the network connections using the saved network state information, and restarting the one or more processes using the stored process information.

  17. Study of the rare decays of $B^0_s$ and $B^0$ into muon pairs from data collected during the LHC Run 1 with the ATLAS detector

    DOE PAGES-Beta [OSTI]

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; et al

    2016-09-21

    Here, a study of the decays B0s → μ+μ– and B0 → μ+μ– has been performed using data corresponding to an integrated luminosity of 25 fb–1 of 7 and 8 TeV proton–proton collisions collected with the ATLAS detector during the LHC Run 1. For the B0 dimuon decay, an upper limit on the branching fraction is set at B(B0 → μ+μ–) < 4.2 × 10–10 at 95 % confidence level. For B0s, the branching fraction B(B0s → μ+μ–) = (0.9+1.1–0.8) × 10–9 is measured. The results are consistent with the Standard Model expectation with a p value of 4.8 %,more » corresponding to 2.0 standard deviations.« less

  18. A falsely fat curvaton with an observable running of the spectral...

    Office of Scientific and Technical Information (OSTI)

    At the price of a single tuning between the mass term and the rate of change of the ... COSMOLOGICAL INFLATION; COSMOLOGICAL MODELS; SCALE INVARIANCE; SIMULATION; TUNING ...

  19. Simple ocean carbon cycle models

    SciTech Connect (OSTI)

    Caldeira, K.; Hoffert, M.I.; Siegenthaler, U.

    1994-02-01

    Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

  20. Non-Kyoto Radiative Forcing in Long-Run Greenhouse Gas Emissions and Climate Change Scenarios

    SciTech Connect (OSTI)

    Rose, Steven K.; Richels, Richard G.; Smith, Steven J.; Riahi, Keywan; Stefler, Jessica; Van Vuuren, Detlef

    2014-04-27

    Climate policies designed to achieve climate change objectives must consider radiative forcing from the Kyoto greenhouse gas, as well as other forcing constituents, such as aerosols and tropospheric ozone. Net positive forcing leads to global average temperature increases. Modeling of non-Kyoto forcing is a relatively new component of climate management scenarios. Five of the nineteen models in the EMF-27 Study model both Kyoto and non-Kyoto forcing. This paper describes and assesses current non-Kyoto radiative forcing modeling within these integrated assessment models. The study finds negative forcing from aerosols masking significant positive forcing in reference non-climate policy projections. There are however large differences across models in projected non-Kyoto emissions and forcing, with differences stemming from differences in relationships between Kyoto and non-Kyoto emissions and fundamental differences in modeling structure and assumptions. Air pollution and non-Kyoto forcing decline in the climate policy scenarios. However, non-Kyoto forcing appears to be influencing mitigation results, including allowable carbon dioxide emissions, and further evaluation is merited. Overall, there is substantial uncertainty related to non-Kyoto forcing that must be considered.

  1. A pseudoscalar decaying to photon pairs in the early LHC Run 2 data

    DOE PAGES-Beta [OSTI]

    Low, Matthew; Tesi, Andrea; Wang, Lian -Tao

    2016-03-16

    In this paper we explore the possibility of a pseudoscalar resonance to account for the 750 GeV diphoton excess observed both at ATLAS and at CMS. We analyze the ingredients needed from the low energy perspective to obtain a sufficiently large diphoton rate to explain the signal while avoiding constraints from other channels. Additionally, we point out composite Higgs models in which one can naturally obtain a pseudoscalar at the 750 GeV mass scale and we estimate the pseudoscalar couplings to standard model particles that one would have in such models. A generic feature of models that can explain themore » excess is the presence of new particles in addition to the 750 GeV state. In conclusion, we note that due to the origin of the coupling of the resonance to photons, one expects to see comparable signals in the Zγ, ZZ, and W W channels.« less

  2. Princeton and PPPL projects selected to run on super-powerful...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Simulating fusion plasmas from hot core to cold wall. Physicists led by C.S. Chang of PPPL will use Summit to model the dazzlingly complex conditions at the edge of the plasma that ...

  3. Top and bottom squark searches in run II of the Fermilab Tevatron...

    Office of Scientific and Technical Information (OSTI)

    We find an impressive reach in several of the possible discovery channels. We also study some new channels which may arise in nonconventional supersymmetry models. In each case we ...

  4. Model Analysis ToolKit

    Energy Science and Technology Software Center (OSTI)

    2015-05-15

    MATK provides basic functionality to facilitate model analysis within the Python computational environment. Model analysis setup within MATK includes: - define parameters - define observations - define model (python function) - define samplesets (sets of parameter combinations) Currently supported functionality includes: - forward model runs - Latin-Hypercube sampling of parameters - multi-dimensional parameter studies - parallel execution of parameter samples - model calibration using internal Levenberg-Marquardt algorithm - model calibration using lmfit package - modelmore » calibration using levmar package - Markov Chain Monte Carlo using pymc package MATK facilitates model analysis using: - scipy - calibration (scipy.optimize) - rpy2 - Python interface to R« less

  5. Effect of CNG start-gasoline run on emissions from a 3/4 ton pick-up truck

    SciTech Connect (OSTI)

    Springer, K.J.; Smith, L.R.; Dickinson, A.G.

    1994-10-01

    This paper describes experiments to determine the effect on exhaust emissions of starting on compressed natural gas (CNG) and then switching to gasoline once the catalyst reaches operating temperature. Carbon monoxide, oxides of nitrogen, and detailed exhaust hydrocarbon speciation data were obtained for dedicated CNG, then unleaded gasoline, and finally CNG start-gasoline run using the Federal Test Procedure at 24{degree}C and at -7{degree}C. The result was a reduction in emissions from the gasoline baseline, especially at -7{degree}C. It was estimated that CNG start - gasoline run resulted in a 71 percent reduction in potential ozone formation per mile. 3 refs., 6 figs., 11 tabs.

  6. AGR-2 irradiation test final as-run report, Rev. 1

    SciTech Connect (OSTI)

    Collin, Blaise

    2014-08-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities; (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing; and, (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test

  7. AGR-2 Irradiation Test Final As-Run Report, Rev 2

    SciTech Connect (OSTI)

    Blaise Collin

    2014-08-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test

  8. AGR-1 Irradiation Test Final As-Run Report, Rev. 3

    SciTech Connect (OSTI)

    Collin, Blaise P.

    2015-01-01

    This document presents the as-run analysis of the AGR-1 irradiation experiment. AGR-1 is the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the US Department of Energy (DOE) as part of the Next-Generation Nuclear Plant (NGNP) project. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment was irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) for a total duration of 620 effective full power days of irradiation. Irradiation began on December 24, 2006 and ended on November 6, 2009 spanning 13 ATR cycles and approximately three calendar years. The test contained six independently controlled and monitored capsules. Each capsule contained 12 compacts of a single type, or variant, of the AGR coated fuel. No fuel particles failed during the AGR-1 irradiation. Final burnup values on a per compact basis ranged from 11.5 to 19.6 %FIMA, while fast fluence values ranged from 2.21 to 4.39 x 1025 n/m2 (E >0.18 MeV). Well say something here about temperatures once thermal recalc is done. Thermocouples performed well, failing at a lower rate than expected. At the end of the irradiation, nine of the originally-planned 19 TCs were considered functional. Fission product release-to-birth (R/B) ratios were quite low. In most capsules, R/B values at the end of the irradiation were at or below

  9. Search for chargino and neutralino at Run II of the Tevatron Collider

    SciTech Connect (OSTI)

    Canepa, Anadi

    2006-08-01

    In this dissertation we present a search for the associated production of charginos and neutralinos, the supersymmetric partners of the Standard Model bosons. We analyze a data sample representing 745 pb-1 of integrated luminosity collected by the CDF experiment at the p$\\bar{p}$ Tevatron collider. We compare the Standard Model predictions with the observed data selecting events with three leptons and missing transverse energy. Finding no excess, we combine the results of our search with similar analyses carried out at CDF and set an upper limit on the chargino mass in SUSY scenarios.

  10. Search for Supersymmetry in the Dilepton Final State with Taus at CDF Run II

    SciTech Connect (OSTI)

    Forrest, Robert David

    2011-01-01

    This thesis presents the results a search for chargino and neutralino supersymmetric particles yielding same signed dilepton final states including one hadronically decaying tau lepton using 6.0 fb-1 of data collected by the the CDF II detector. This signature is important in SUSY models where, at high tan β, the branching ratio of charginos and neutralinos to tau leptons becomes dominant. We study event acceptance, lepton identification cuts, and efficiencies. We set limits on the production cross section as a function of SUSY particle mass for certain generic models.

  11. Community Climate System Model (CCSM) Experiments and Output Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The CCSM web makes the source code of various versions of the model freely available and provides access to experiments that have been run and the resulting output data.

  12. Molecular model generator toolkit

    SciTech Connect (OSTI)

    Schneider, R.D.

    1994-07-01

    This report is a user manual for an ASCII file of Fortran source code which must be compiled before use. The software will assist in creating plastic models of molecules whose specifications are described in the Brookhaven Protein Databank. Other data files can be used if they are in the same format as the files in the databank. The output file is a program for a 3-D Systems Stereolithography Apparatus and the program is run on a SGI Indigo workstation.

  13. Draft Test Plan for Brine Migration Experimental Studies in Run-of-Mine Salt Backfill

    SciTech Connect (OSTI)

    Jordan, Amy B.; Stauffer, Philip H.; Reed, Donald T.; Boukhalfa, Hakim; Caporuscio, Florie Andre; Robinson, Bruce Alan

    2015-02-02

    The primary objective of the experimental effort described here is to aid in understanding the complex nature of liquid, vapor, and solid transport occurring around heated nuclear waste in bedded salt. In order to gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that (a) hydrological and physiochemical parameters and (b) processes are correctly simulated. The experiments proposed here are designed to study aspects of the system that have not been satisfactorily quantified in prior work. In addition to exploring the complex coupled physical processes in support of numerical model validation, lessons learned from these experiments will facilitate preparations for larger-scale experiments that may utilize similar instrumentation techniques.

  14. A Flexible Atmospheric Modeling Framework for the CESM

    SciTech Connect (OSTI)

    Randall, David; Heikes, Ross; Konor, Celal

    2014-11-12

    We have created two global dynamical cores based on the unified system of equations and Z-grid staggering on an icosahedral grid, which are collectively called UZIM (Unified Z-grid Icosahedral Model). The z-coordinate version (UZIM-height) can be run in hydrostatic and nonhydrostatic modes. The sigma-coordinate version (UZIM-sigma) runs in only hydrostatic mode. The super-parameterization has been included as a physics option in both models. The UZIM versions with the super-parameterization are called SUZI. With SUZI-height, we have completed aquaplanet runs. With SUZI-sigma, we are making aquaplanet runs and realistic climate simulations. SUZI-sigma includes realistic topography and a SiB3 model to parameterize the land-surface processes.

  15. A Precision Measurement of the W Boson Mass with 1 Inverse Femtobarn of DZero Run IIa Data

    SciTech Connect (OSTI)

    Osta, Jyotsna; /Notre Dame U.

    2009-10-01

    This thesis is a detailed presentation of a precision measurement of the mass of the W boson. It has been obtained by analyzing W {yields} e{nu} decays. The data used for this analysis was collected from 2002 to 2006 with the D0 detector, during Run IIa of the Fermilab Tevatron collider. It corresponds to a total integrated luminosity of 1 fb{sup -1}. With a sample of 499,830 W {yields} e{nu} candidate events, we obtain a mass measurement of M{sub W} = 80.401 {+-} 0.043 GeV. This is the most precise measurement from a single experiment to date.

  16. Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050

    SciTech Connect (OSTI)

    Greene, D.L.

    2003-11-14

    This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at

  17. The fate of long-lived superparticles with hadronic decays after LHC Run 1

    DOE PAGES-Beta [OSTI]

    Liu, Zhen; Tweedie, Brock

    2015-06-08

    Supersymmetry searches at the LHC are both highly varied and highly constraining, but the vast majority are focused on cases where the final-stage visible decays are prompt. Scenarios featuring superparticles with detector-scale lifetimes have therefore remained a tantalizing possibility for sub-TeV SUSY, since explicit limits are relatively sparse. Nonetheless, the extremely low backgrounds of the few existing searches for collider-stable and displaced new particles facilitates recastings into powerful long-lived superparticle searches, even for models for which those searches are highly non-optimized. In this paper, we assess the status of such models in the context of baryonic R-parity violation, gauge mediation,moreand mini-split SUSY. We explore a number of common simplified spectra where hadronic decays can be important, employing recasts of LHC searches that utilize different detector systems and final-state objects. The LSP/NLSP possibilities considered here include generic colored superparticles such as the gluino and light-flavor squarks, as well as the lighter stop and the quasi-degenerate Higgsino multiplet motivated by naturalness. We find that complementary coverage over large swaths of mass and lifetime is achievable by superimposing limits, particularly from CMSs tracker-based displaced dijet search and heavy stable charged particle searches. Adding in prompt searches, we find many cases where a range of sparticle masses is now excluded from zero lifetime to infinite lifetime with no gaps. In other cases, the displaced searches furnish the only extant limits at any lifetime.less

  18. The fate of long-lived superparticles with hadronic decays after LHC Run 1

    DOE PAGES-Beta [OSTI]

    Liu, Zhen; Tweedie, Brock

    2015-06-08

    Supersymmetry searches at the LHC are both highly varied and highly constraining, but the vast majority are focused on cases where the final-stage visible decays are prompt. Scenarios featuring superparticles with detector-scale lifetimes have therefore remained a tantalizing possibility for sub-TeV SUSY, since explicit limits are relatively sparse. Nonetheless, the extremely low backgrounds of the few existing searches for collider-stable and displaced new particles facilitates recastings into powerful long-lived superparticle searches, even for models for which those searches are highly non-optimized. In this paper, we assess the status of such models in the context of baryonic R-parity violation, gauge mediation,more » and mini-split SUSY. We then explore a number of common simplified spectra where hadronic decays can be important, employing recasts of LHC searches that utilize different detector systems and final-state objects. The LSP/NLSP possibilities considered here include generic colored superparticles such as the gluino and light-flavor squarks, as well as the lighter stop and the quasi-degenerate Higgsino multiplet motivated by naturalness. We find that complementary coverage over large swaths of mass and lifetime is achievable by superimposing limits, particularly from CMS’s tracker-based displaced dijet search and heavy stable charged particle searches. By adding in prompt searches, we find many cases where a range of sparticle masses is now excluded from zero lifetime to infinite lifetime with no gaps. In other cases, the displaced searches furnish the only extant limits at any lifetime.« less

  19. The fate of long-lived superparticles with hadronic decays after LHC Run 1

    SciTech Connect (OSTI)

    Liu, Zhen; Tweedie, Brock

    2015-06-08

    Supersymmetry searches at the LHC are both highly varied and highly constraining, but the vast majority are focused on cases where the final-stage visible decays are prompt. Scenarios featuring superparticles with detector-scale lifetimes have therefore remained a tantalizing possibility for sub-TeV SUSY, since explicit limits are relatively sparse. Nonetheless, the extremely low backgrounds of the few existing searches for collider-stable and displaced new particles facilitates recastings into powerful long-lived superparticle searches, even for models for which those searches are highly non-optimized. In this paper, we assess the status of such models in the context of baryonic R-parity violation, gauge mediation, and mini-split SUSY. We explore a number of common simplified spectra where hadronic decays can be important, employing recasts of LHC searches that utilize different detector systems and final-state objects. The LSP/NLSP possibilities considered here include generic colored superparticles such as the gluino and light-flavor squarks, as well as the lighter stop and the quasi-degenerate Higgsino multiplet motivated by naturalness. We find that complementary coverage over large swaths of mass and lifetime is achievable by superimposing limits, particularly from CMSs tracker-based displaced dijet search and heavy stable charged particle searches. Adding in prompt searches, we find many cases where a range of sparticle masses is now excluded from zero lifetime to infinite lifetime with no gaps. In other cases, the displaced searches furnish the only extant limits at any lifetime.

  20. Measurement of the t$\\bar{t}$ cross section at the Run II Tevatron using Support Vector Machines

    SciTech Connect (OSTI)

    Whitehouse, Benjamin Eric

    2010-08-01

    This dissertation measures the t$\\bar{t}$ production cross section at the Run II CDF detector using data from early 2001 through March 2007. The Tevatron at Fermilab is a p$\\bar{p}$ collider with center of mass energy √s = 1.96 TeV. This data composes a sample with a time-integrated luminosity measured at 2.2 ± 0.1 fb-1. A system of learning machines is developed to recognize t$\\bar{t}$ events in the 'lepton plus jets' decay channel. Support Vector Machines are described, and their ability to cope with a multi-class discrimination problem is provided. The t$\\bar{t}$ production cross section is then measured in this framework, and found to be σt$\\bar{t}$ = 7.14 ± 0.25 (stat)-0.86+0.61(sys) pb.

  1. Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency

    SciTech Connect (OSTI)

    Korzh, B. Walenta, N.; Lunghi, T.; Gisin, N.; Zbinden, H.

    2014-02-24

    We present a free-running single photon detector for telecom wavelengths based on a negative feedback avalanche photodiode (NFAD). A dark count rate as low as 1?cps was obtained at a detection efficiency of 10%, with an afterpulse probability of 2.2% for 20??s of deadtime. This was achieved by using an active hold-off circuit and cooling the NFAD with a free-piston stirling cooler down to temperatures of ?110?C. We integrated two detectors into a practical, 625?MHz clocked quantum key distribution system. Stable, real-time key distribution in the presence of 30?dB channel loss was possible, yielding a secret key rate of 350?bps.

  2. A Measurement of the Lifetime of the Lambda_b Baryon with the CDF Detector at the Tevatron Run II

    SciTech Connect (OSTI)

    Unverhau, Tatjana Alberta Hanna; /Glasgow U.

    2004-12-01

    In March 2001 the Tevatron accelerator entered its Run II phase, providing colliding proton and anti-proton beams with an unprecedented center-of-mass energy of 1.96 TeV. The Tevatron is currently the only accelerator to produce {Lambda}{sub b} baryons, which provides a unique opportunity to measure the properties of these particles. This thesis presents a measurement of the mean lifetime of the {Lambda}{sub b} baryon in the semileptonic channel {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +} {mu}{sup -} {bar {nu}}{sub {mu}}. In total 186 pb{sup -1} of data were used for this analysis, collected with the CDF detector between February 2002 and September 2003. To select the long-lived events from b-decays, the secondary vertex trigger was utilized. This significant addition to the trigger for Run II allows, for the first time, the selection of events with tracks displaced from the primary interaction vertex at the second trigger level. After the application of selection cuts this trigger sample contains approximately 991 {Lambda}{sub b} candidates. To extract the mean lifetime of {Lambda}{sub b} baryons from this sample, they transverse decay length of the candidates is fitted with an unbinned maximum likelihood fit under the consideration of the missing neutrino momentum and the bias introduced by the secondary vertex trigger. The mean lifetime of the {Lambda}{sub b} is measured to be {tau} = 1.29 {+-} 0.11(stat.) {+-} 0.07(syst.) ps equivalent to a mean decay length of c{tau} = 387 {+-} 33(stat.) {+-} 21 (syst.) {micro}m.

  3. Spring Running | Jefferson Lab

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The operations group systematically reset the machine so that the parameters matched the pre-holidays sweet spot. From that point on, the accelerator performance was impeccable. ...

  4. Running Large Scale Jobs

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    try on their large scale applications on Hopper for better performance. Try different compilers and compiler options The available compilers on Hopper are PGI, Cray, Intel, GNU,...

  5. Hitting the ground running

    SciTech Connect (OSTI)

    KEENEN,MARTHA JANE; NUSBAUM,ANNA W.

    2000-05-18

    Very few of us get to start clean: getting a new organization, new space, and hiring new people for a new information management program. In over 20 years in some aspect of this profession, the author has never faced that particular challenge. By far the majority of information management opportunities involve taking over from someone else. Sometimes, a predecessor has gone on to better things on his/her initiative; that is not always the case. Sometimes the group is one you were a part of yesterday. If the function functions, time moves on and changes may be needed to accommodate new technology, additional and/or changed tasks, and alterations in corporate missions. If the function does not, it is a good bet that you were hired or promoted as an agent of change. Each of these situations poses challenges. This presentation is about that first few months and first year in a new assignment. In other words, you have the job, now what?

  6. Wiley Coyotes Santa Run

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... NSTec Employees Build on Holiday Cheer at Magical Forest NNSS Calendar of Events Dec. ... These replica rifles may look and sound like a real gun, but do not have the capacity to ...

  7. Running Jobs Intermittently Slow

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    happen to jobs having inputoutput on global file systems (project, globalhomes, globalscratch2). It could also happen to aplications using shared libraries, or CCM jobs...

  8. Running Large Scale Jobs

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    peta-scale production systems. For example, certain applications may not have enough memory per core, the default environment variables may need to be adjusted, or IO dominates...

  9. Running Jobs with Shifter

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    squashed on shifter images, so the software should be installed in a way that is executable to someone with user-level permissions. Currently, shifter images can only be accessed ...

  10. Fall Run | Jefferson Lab

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    In particular, a substantial fraction of the accelerator and end station electrical distribution system has been upgraded and a new substation added. In addition, some ...

  11. Running Interactive Batch Jobs

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    You will be prompted to enter a passphrase. This is a text string, similar to a password, that you will use for passphrase authentication. Do not make it the same as your password. ...

  12. A precise measurement of the top quark mass in dilepton final states using 9.7 fb$^{-1}$ of D{Ø} Run II data

    SciTech Connect (OSTI)

    Liu, Huanzhao

    2015-05-16

    The top quark is a very special fundamental particle in the Standard Model (SM) mainly due to its heavy mass. The top quark has extremely short lifetime and decays before hadronization. This reduces the complexity for the measurement of its mass. The top quark couples very strongly to the Higgs boson since the fermion-Higgs Yukawa coupling linearly depends on the fermion’s mass. Therefore, the top quark is also heavily involved in Higgs production and related study. A precise measurement of the top quark mass is very important, as it allows for self-consistency check of the SM, and also gives a insight about the stability of our universe in the SM context. This dissertation presents my work on the measurement of the top quark mass in dilepton final states of t$\\bar{t}$ events in p$\\bar{p}$ collisions at √s = 1.96 TeV, using the full DØ Run II data corresponding to an integrated luminosity of 9.7 fb-1 at the Fermilab Tevatron. I extracted the top quark mass by reconstructing event kinematics, and integrating over expected neutrino rapidity distributions to obtain solutions over a scanned range of top quark mass hypotheses. The analysis features a comprehensive optimization that I made to minimize the expected statistical uncertainty. I also improve the calibration of jets in dilepton events by using the calibration determined in t$\\bar{t}$ → lepton+jets events, which reduces the otherwise limiting systematic uncertainty from the jet energy scale. The measured mass is 173.11 ± 1.34(stat)+0.83 -0.72(sys) GeV .

  13. Measurement of the forward-backward asymmetry of top-quark and antiquark pairs using the full CDF Run II data set

    DOE PAGES-Beta [OSTI]

    Aaltonen, Timo Antero

    2016-06-03

    In this study, we measure the forward--backward asymmetry of the production of top quark and antiquark pairs in proton-antiproton collisions at center-of-mass energymore » $$\\sqrt{s} = 1.96~\\mathrm{TeV}$$ using the full data set collected by the Collider Detector at Fermilab (CDF) in Tevatron Run II corresponding to an integrated luminosity of $$9.1~\\rm{fb}^{-1}$$. The asymmetry is characterized by the rapidity difference between top quarks and antiquarks ($$\\Delta y$$), and measured in the final state with two charged leptons (electrons and muons). The inclusive asymmetry, corrected to the entire phase space at parton level, is measured to be $$A_{\\text{FB}}^{t\\bar{t}} = 0.12 \\pm 0.13$$, consistent with the expectations from the standard-model (SM) and previous CDF results in the final state with a single charged lepton. The combination of the CDF measurements of the inclusive $$A_{\\text{FB}}^{t\\bar{t}}$$ in both final states yields $$A_{\\text{FB}}^{t\\bar{t}}=0.160\\pm0.045$$, which is consistent with the SM predictions. We also measure the differential asymmetry as a function of $$\\Delta y$$. A linear fit to $$A_{\\text{FB}}^{t\\bar{t}}(|\\Delta y|)$$, assuming zero asymmetry at $$\\Delta y=0$$, yields a slope of $$\\alpha=0.14\\pm0.15$$, consistent with the SM prediction and the previous CDF determination in the final state with a single charged lepton. The combined slope of $$A_{\\text{FB}}^{t\\bar{t}}(|\\Delta y|)$$ in the two final states is $$\\alpha=0.227\\pm0.057$$, which is $$2.0\\sigma$$ larger than the SM prediction.« less

  14. An Extensible Reduced Order Model Builder for Simulation and Modeling

    Energy Science and Technology Software Center (OSTI)

    2012-09-28

    REVEAL is a software framework for building reduced order models (surrogate models) for high fidelity complex scientific simulations. REVEAL is designed to do reduced order modeling and sensitivity analysis for scientific simulations. REVEAL incorporates a range of sampling and regression methods. It provides complete user environment and is adaptable to new simulators, runs jobs on any computing platform of choice, automatically post processes simulation results and provides a range of data analysis tools. The softwaremore » is generic and can easily be extended to incorporate new methods, simulators.« less

  15. Cosmic microwave background observables of small field models of inflation

    SciTech Connect (OSTI)

    Ben-Dayan, Ido; Brustein, Ram E-mail: ramyb@bgu.ac.il

    2010-09-01

    We construct a class of single small field models of inflation that can predict, contrary to popular wisdom, an observable gravitational wave signal in the cosmic microwave background anisotropies. The spectral index, its running, the tensor to scalar ratio and the number of e-folds can cover all the parameter space currently allowed by cosmological observations. A unique feature of models in this class is their ability to predict a negative spectral index running in accordance with recent cosmic microwave background observations. We discuss the new class of models from an effective field theory perspective and show that if the dimensionless trilinear coupling is small, as required for consistency, then the observed spectral index running implies a high scale of inflation and hence an observable gravitational wave signal. All the models share a distinct prediction of higher power at smaller scales, making them easy targets for detection.

  16. Measuring long-run automobile fuel demand: Separate estimations of vehicle stock, mean intensity and distance driven per car per year

    SciTech Connect (OSTI)

    Johansson, O.; Schipper, L.

    1995-12-31

    We estimate long-run car fuel demand by separately estimating vehicle stock, mean fuel intensity, and distance driven (per car) as functions of income, fuel price, and other variables, on the basis of a new data set from 9 OECD countries. The major part of the estimated long-run price elasticity of fuel use seem to arise from changes in mean car intensity (fuel consumption per kilometer driven), while the biggest part of the estimated long-run income elasticity seem to arise from changes through the size of the vehicle stock. A taxation variable that reflects all taxes on car ownership and use, except fuel tax, is also found to be significant However, the effects of this variable, in the form of reduced fuel consumption per total amount of tax paid, are found to be much smaller compared to the effects of a fuel tax on fuel use.

  17. Trial-Run of a Junction-Box Attachment Test for Use in Photovoltaic Module Qualification: Preprint

    SciTech Connect (OSTI)

    Miller, D. C.; Deibert, S. L.; Wohlgemuth, J. H.

    2014-06-01

    Engineering robust adhesion of the junction box (j-box) is a hurdle typically encountered by photovoltaic module manufacturers during product development and manufacturing process control. There are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp-heat,' 'thermal-cycle,' or 'creep' tests within the IEC qualification protocol is proposed to verify the basic robustness of the adhesion system. The details of the proposed test are described, in addition to a trial-run of the test procedure. The described experiments examine four moisture-cured silicones, four foam tapes, and a hot-melt adhesive used in conjunction with glass, KPE, THV, and TPE substrates. For the purpose of validating the experiment, j-boxes were adhered to a substrate, loaded with a prescribed weight, and then subjected to aging. The replicate mock-modules were aged in an environmental chamber (at 85 degrees C/85% relative humidity for 1000 hours; then 100 degrees C/<10% relative humidity for 200 hours) or fielded in Golden (CO), Miami (FL), and Phoenix (AZ) for one year. Attachment strength tests, including pluck and shear test geometries, were also performed on smaller component specimens.

  18. Critical Infrastructure Modeling System

    Energy Science and Technology Software Center (OSTI)

    2004-10-01

    The Critical Infrastructure Modeling System (CIMS) is a 3D modeling and simulation environment designed to assist users in the analysis of dependencies within individual infrastructure and also interdependencies between multiple infrastructures. Through visual cuing and textual displays, a use can evaluate the effect of system perturbation and identify the emergent patterns that evolve. These patterns include possible outage areas from a loss of power, denial of service or access, and disruption of operations. Method ofmore » Solution: CIMS allows the user to model a system, create an overlay of information, and create 3D representative images to illustrate key infrastructure elements. A geo-referenced scene, satellite, aerial images or technical drawings can be incorporated into the scene. Scenarios of events can be scripted, and the user can also interact during run time to alter system characteristics. CIMS operates as a discrete event simulation engine feeding a 3D visualization.« less

  19. FOAM: Expanding the horizons of climate modeling

    SciTech Connect (OSTI)

    Tobis, M.; Foster, I.T.; Schafer, C.M.

    1997-10-01

    We report here on a project that expands the applicability of dynamic climate modeling to very long time scales. The Fast Ocean Atmosphere Model (FOAM) is a coupled ocean atmosphere model that incorporates physics of interest in understanding decade to century time scale variability. It addresses the high computational cost of this endeavor with a combination of improved ocean model formulation, low atmosphere resolution, and efficient coupling. It also uses message passing parallel processing techniques, allowing for the use of cost effective distributed memory platforms. The resulting model runs over 6000 times faster than real time with good fidelity, and has yielded significant results.

  20. Modeling & Analysis

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Facilities, Modeling, Modeling, Modeling & Analysis, Modeling & Analysis, Renewable Energy, Research & Capabilities, Wind Energy, Wind News Virtual LIDAR Model Helps Researchers ...

  1. Data Plots of Run I - III Results from SLAC E-158: A precision Measurement of the Weak Mixing Angle in Moller Scattering

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Three physics runs were made in 2002 and 2003 by E-158. As a result, the E-158 Collaboration announced that it had made "the first observation of Parity Violation in electron-electron (Moller) scattering). This precise Parity Violation measurement gives the best determination of the electron's weak charge at low energy (low momentum transfer between interacting particles). E158's measurement tests the predicted running (or evolution) of this weak charge with energy, and searches for new phenomena at TeV energy scales (one thousand times the proton-mass energy scale).[Copied from the experiment's public home page at http://www-project slac.stanford.edu/3158/Default.htm] See also the E158 page for collaborators at http://www.slac.stanford.edu/exp/e158/. Both websites provide data and detailed information.

  2. Directory of Energy Information Administration Models 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-06

    This directory contains descriptions about each model, including the title, acronym, purpose, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. Included in this directory are 35 EIA models active as of May 1, 1993. Models that run on personal computers are identified by ``PC`` as part of the acronym. EIA is developing new models, a National Energy Modeling System (NEMS), and is making changes to existing models to include new technologies, environmental issues, conservation, and renewables, as well as extend forecast horizon. Other parts of the Department are involved in this modeling effort. A fully operational model is planned which will integrate completed segments of NEMS for its first official application--preparation of EIA`s Annual Energy Outlook 1994. Abstracts for the new models will be included in next year`s version of this directory.

  3. Search for Excited or Exotic Electron Production Using the Dielectron + Photon Signature at CDF in Run II

    SciTech Connect (OSTI)

    Gerberich, Heather Kay; /Duke U.

    2004-07-01

    The author presents a search for excited or exotic electrons decaying to an electron and a photon with high transverse momentum. An oppositely charged electron is produced in association with the excited electron, yielding a final state dielectron + photon signature. The discovery of excited electrons would be a first indication of lepton compositeness. They use {approx} 202 pb{sup -1} of data collected in p{bar p} collisions at {radical}s = 1.96 TeV with the Collider Detector at Fermilab during March 2001 through September 2003. The data are consistent with standard model expectations. Upper limits are set on the experimental cross-section {sigma}({bar p}p {yields} ee* {yields} ee{gamma}) at the 95% confidence level in a contact-interaction model and a gauge-mediated interaction model. Limits are also presented as exclusion regions in the parameter space of the excited electron mass (M{sub e*}) and the compositeness energy scale ({Lambda}). In the contact-interaction model, for which there are no previously published limits, they find M{sub e*} < 906 GeV is excluded for M{sub e*} = {Lambda}. In the gauge-mediated model, the exclusion region in the M{sub e*} versus the phenomenological coupling f/{Lambda} parameter space is extended to M{sub e*} < 430 GeV for f/{Lambda} {approx} 10{sup -2} GeV{sup -1}. In comparison, other experiments have excluded M{sub e*} < 280 GeV for f/{Lambda} {approx} 10{sup -2} GeV{sup -1}.

  4. Summary of the ATLAS experiment’s sensitivity to supersymmetry after LHC Run 1 -- interpreted in the phenomenological MSSM

    DOE PAGES-Beta [OSTI]

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; et al

    2015-10-21

    A summary of the constraints from the ATLAS experiment on R -parity-conserving supersymmetry is presented. Results from 22 separate ATLAS searches are considered, each based on analysis of up to 20.3 fb–1 of proton-proton collision data at centre-of-mass energies of √s =7 and 8 TeV at the Large Hadron Collider. The results are interpreted in the context of the 19-parameter phenomenological minimal supersymmetric standard model, in which the lightest supersymmetric particle is a neutralino, taking into account constraints from previous precision electroweak and flavour measurements as well as from dark matter related measurements. The results are presented in terms ofmore » constraints on supersymmetric particle masses and are compared to limits from simplified models. The impact of ATLAS searches on parameters such as the dark matter relic density, the couplings of the observed Higgs boson, and the degree of electroweak fine-tuning is also shown. As a result, spectra for surviving supersymmetry model points with low fine-tunings are presented.« less

  5. Summary of the ATLAS experiment’s sensitivity to supersymmetry after LHC Run 1 -- interpreted in the phenomenological MSSM

    SciTech Connect (OSTI)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bieniek, S. P.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J. -B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D’Auria, S.; D’Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell’Acqua, A.; Dell’Asta, L.; Dell’Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Grahn, K-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J. -F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henkelmann, S.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn’ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S. -C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G. -Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E. -E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O’Brien, B. J.; O’grady, F.; O’Neil, D. C.; O’Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; St. Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M. -A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzo, T. G.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H. -C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Spearman, W. R.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tannoury, N.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2015-10-21

    A summary of the constraints from the ATLAS experiment on R -parity-conserving supersymmetry is presented. Results from 22 separate ATLAS searches are considered, each based on analysis of up to 20.3 fb–1 of proton-proton collision data at centre-of-mass energies of √s =7 and 8 TeV at the Large Hadron Collider. The results are interpreted in the context of the 19-parameter phenomenological minimal supersymmetric standard model, in which the lightest supersymmetric particle is a neutralino, taking into account constraints from previous precision electroweak and flavour measurements as well as from dark matter related measurements. The results are presented in terms of constraints on supersymmetric particle masses and are compared to limits from simplified models. The impact of ATLAS searches on parameters such as the dark matter relic density, the couplings of the observed Higgs boson, and the degree of electroweak fine-tuning is also shown. As a result, spectra for surviving supersymmetry model points with low fine-tunings are presented.

  6. EMMA: Electromechanical Modeling in ALEGRA

    SciTech Connect (OSTI)

    1996-12-31

    To ensure high levels of deterrent capability in the 21st century, new stockpile stewardship principles are being embraced at Sandia National Laboratories. The Department of Energy Accelerated Strategic Computing Initiative (ASCI) program is providing the computational capacity and capability as well as funding the system and simulation software infrastructure necessary to provide accurate, precise and predictive modeling of important components and devices. An important class of components require modeling of piezoelectric and ferroceramic materials. The capability to run highly resolved simulations of these types of components on the ASCI parallel computers is being developed at Sandia in the ElectroMechanical Modeling in Alegra (EMMA) code. This a simulation capability being developed at Sandia National Laboratories for high-fidelity modeling of electromechanical devices. these devices can produce electrical current arising from material changes due to shock impact or explosive detonation.

  7. Climate Model Output Rewriter

    Energy Science and Technology Software Center (OSTI)

    2004-06-21

    CMOR comprises a set of FORTRAN 90 dunctions that can be used to produce CF-compliant netCDF files. The structure of the files created by CMOR and the metadata they contain fulfill the requirements of many of the climate community’s standard model experiments (which are referred to here as "MIPS", which stands for "model intercomparison project", including, for example, AMIP, CMIP, CFMIP, PMIP, APE, and IPCC scenario runs), CMOR was not designed to serve as anmore » all-purpose wfiter of CF-compliant netCDF files, but simply to reduce the effort required to prepare and manage MIP data. Although MIPs encourage systematic analysis of results across models, this is only easy to do if the model output is written in a common format with files structured similarly and with sufficient metadata uniformly stored according to a common standard. Individual modeling groups store their data in different ways. but if a group can read its own data with FORTRAN, then it should easily be able to transform the data, using CMOR, into the common format required by the MIPs, The adoption of CMOR as a standard code for exchanging climate data will facilitate participation in MIPs because after learning how to satisfy the output requirements of one MIP, it will be easy to prepare output for the other MIPs.« less

  8. Search for Third Generation Squarks in the Missing Transverse Energy plus Jet Sample at CDF Run II

    SciTech Connect (OSTI)

    Vidal Marono, Miguel; /Madrid, CIEMAT /Madrid U.

    2010-03-01

    The twentieth century leaves behind one of the most impressive legacies, in terms of human knowledge, ever achieved. In particular the StandardModel (SM) of particle physics has proven to be one of the most accurate descriptions of Nature. The level of accuracy of some theoretical predictions has never been attained before. It includes the electromagnetic interaction, and the weak and strong force, developing the Lagrangian from symmetry principles. There are two different types of fundamental constituents of Nature, in the framework of the Standard Model: bosons and fermions. Bosons are those particles responsible for carrying the interactions among the fermions, which constitute matter. Fermions are divide into six quarks and six leptons, forming a three-folded structure. All these fermions and bosons have an antimatter partner. However, several difficulties point along with the idea that the Standard Model is only an effective low energy theory. These limitations include the difficulty to incorporate gravity and the lack of justification to fine tuning of some perturbative corrections. Moreover, some regions of the theory are not understood, like the mass spectrum of the Standard Model or the mechanism for electroweak symmetry breaking. Supersymmetry is a newer theoretical framework, thought to adress the problems found in the Standard Model, while preserving all its predictive power. It introduces a new symmetry that relates a new boson to each SM fermion and a new fermion to each SM boson. In this way, for every existing boson in the SM it must exist a fermionic super-partner (named with a sufix ino), and likewise, for every fermion a bosonic super-partner (named with a prefix s) must also exist. Moreover, another symmetry called R-parity is introduced to prevent baryon and lepton number violating interactions. If R-parity is conserved, super-particles can only be pair-produced and they cannot decay completely in SM particles. This implies the existence of a

  9. Argonne National Laboratory Smart Grid Technology Interactive Model

    ScienceCinema (OSTI)

    Ted Bohn

    2016-07-12

    As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid to not only handle the new load, but make electricity cheap and efficient for everyone? Argonne engineer Ted Bohn explains a model of a "smart grid" that gives consumers the power to choose their own prices and sources of electricity.

  10. Argonne National Laboratory Smart Grid Technology Interactive Model

    SciTech Connect (OSTI)

    Ted Bohn

    2009-10-13

    As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid to not only handle the new load, but make electricity cheap and efficient for everyone? Argonne engineer Ted Bohn explains a model of a "smart grid" that gives consumers the power to choose their own prices and sources of electricity.

  11. CDF computing and event data models

    SciTech Connect (OSTI)

    Snider, F.D.; /Fermilab

    2005-12-01

    The authors discuss the computing systems, usage patterns and event data models used to analyze Run II data from the CDF-II experiment at the Tevatron collider. A critical analysis of the current implementation and design reveals some of the stronger and weaker elements of the system, which serve as lessons for future experiments. They highlight a need to maintain simplicity for users in the face of an increasingly complex computing environment.

  12. Using Drell-Yan to probe the underlying event in Run II at Collider Detector at Fermilab (CDF)

    SciTech Connect (OSTI)

    Kar, Deepak

    2008-12-01

    We study the behavior of charged particles produced in association with Drell-Yan lepton-pairs in the region of the Z-boson in proton-antiproton collisions at 1.96 TeV. We use the direction of the Z-boson in each event to define 'toward', 'away', and 'transverse' regions. For Drell-Yan production (excluding the leptons) both the 'toward' and 'transverse' regions are very sensitive to the 'underlying event', which is defined as everything except the two hard scattered components. The data are corrected to the particle level and are then compared with several PYTHIA models (with multiple parton interactions) and HERWIG (without multiple parton interactions) at the particle level (i.e. generator level). The data are also compared with a previous analysis on the behavior of the 'underlying event' in high transverse momentum jet production. The goal is to produce data that can be used by the theorists to tune and improve the QCD Monte-Carlo models of the 'underlying event' that are used to simulate hadron-hadron collisions.

  13. Detailed Physical Trough Model for NREL's Solar Advisor Model: Preprint

    SciTech Connect (OSTI)

    Wagner, M. J.; Blair, N.; Dobos, A.

    2010-10-01

    Solar Advisor Model (SAM) is a free software package made available by the National Renewable Energy Laboratory (NREL), Sandia National Laboratory, and the US Department of Energy. SAM contains hourly system performance and economic models for concentrating solar power (CSP) systems, photovoltaic, solar hot-water, and generic fuel-use technologies. Versions of SAM prior to 2010 included only the parabolic trough model based on Excelergy. This model uses top-level empirical performance curves to characterize plant behavior, and thus is limited in predictive capability for new technologies or component configurations. To address this and other functionality challenges, a new trough model; derived from physical first principles was commissioned to supplement the Excelergy-based empirical model. This new 'physical model' approaches the task of characterizing the performance of the whole parabolic trough plant by replacing empirical curve-fit relationships with more detailed calculations where practical. The resulting model matches the annual performance of the SAM empirical model (which has been previously verified with plant data) while maintaining run-times compatible with parametric analysis, adding additional flexibility in modeled system configurations, and providing more detailed performance calculations in the solar field, power block, piping, and storage subsystems.

  14. Generalized Environment for Modeling Systems

    SciTech Connect (OSTI)

    2012-02-07

    GEMS is an integrated environment that allows technical analysts, modelers, researchers, etc. to integrate and deploy models and/or decision tools with associated data to the internet for direct use by customers. GEMS does not require that the model developer know how to code or script and therefore delivers this capability to a large group of technical specialists. Customers gain the benefit of being able to execute their own scenarios directly without need for technical support. GEMS is a process that leverages commercial software products with specialized codes that add connectivity and unique functions to support the overall capability. Users integrate pre-existing models with a commercial product and store parameters and input trajectories in a companion commercial database. The model is then exposed into a commercial web environment and a graphical user interface (GUI) is applied by the model developer. Users execute the model through the web based GUI and GEMS manages supply of proper inputs, execution of models, routing of data to models and display of results back to users. GEMS works in layers, the following description is from the bottom up. Modelers create models in the modeling tool of their choice such as Excel, Matlab, or Fortran. They can also use models from a library of previously wrapped legacy codes (models). Modelers integrate the models (or a single model) by wrapping and connecting the models using the Phoenix Integration tool entitled ModelCenter. Using a ModelCenter/SAS plugin (DOE copyright CW-10-08) the modeler gets data from either an SAS or SQL database and sends results back to SAS or SQL. Once the model is working properly, the ModelCenter file is saved and stored in a folder location to which a SharePoint server tool created at INL is pointed. This enables the ModelCenter model to be run from SharePoint. The modeler then goes into Microsoft SharePoint and creates a graphical user interface (GUI) using the ModelCenter WebPart (CW-12

  15. Generalized Environment for Modeling Systems

    Energy Science and Technology Software Center (OSTI)

    2012-02-07

    GEMS is an integrated environment that allows technical analysts, modelers, researchers, etc. to integrate and deploy models and/or decision tools with associated data to the internet for direct use by customers. GEMS does not require that the model developer know how to code or script and therefore delivers this capability to a large group of technical specialists. Customers gain the benefit of being able to execute their own scenarios directly without need for technical support.more » GEMS is a process that leverages commercial software products with specialized codes that add connectivity and unique functions to support the overall capability. Users integrate pre-existing models with a commercial product and store parameters and input trajectories in a companion commercial database. The model is then exposed into a commercial web environment and a graphical user interface (GUI) is applied by the model developer. Users execute the model through the web based GUI and GEMS manages supply of proper inputs, execution of models, routing of data to models and display of results back to users. GEMS works in layers, the following description is from the bottom up. Modelers create models in the modeling tool of their choice such as Excel, Matlab, or Fortran. They can also use models from a library of previously wrapped legacy codes (models). Modelers integrate the models (or a single model) by wrapping and connecting the models using the Phoenix Integration tool entitled ModelCenter. Using a ModelCenter/SAS plugin (DOE copyright CW-10-08) the modeler gets data from either an SAS or SQL database and sends results back to SAS or SQL. Once the model is working properly, the ModelCenter file is saved and stored in a folder location to which a SharePoint server tool created at INL is pointed. This enables the ModelCenter model to be run from SharePoint. The modeler then goes into Microsoft SharePoint and creates a graphical user interface (GUI) using the ModelCenter Web

  16. Modeling cortical circuits.

    SciTech Connect (OSTI)

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Verzi, Stephen J.; Xavier, Patrick Gordon

    2010-09-01

    The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approach is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.

  17. Groundwater Modeling System Linkage with the Framework for Risk Analysis in Multimedia Environmental Systems

    SciTech Connect (OSTI)

    Whelan, Gene; Castleton, Karl J.

    2006-02-13

    The information in this document summarizes the approach that is used to link FRAMES-2 with GMS. This linkage will provide the user with the ability to (1) send information to a specific model in GMS, thereby modifying the models input information, as allowed by the model developer, (2) run the executable of the numerical model contained in GMS, and (3) extract, from the appropriate GMS output, information required for consumption by downstream models, which are also linked with FRAMES-2.

  18. ISTUM PC: industrial sector technology use model for the IBM-PC

    SciTech Connect (OSTI)

    Roop, J.M.; Kaplan, D.T.

    1984-09-01

    A project to improve and enhance the Industrial Sector Technology Use Model (ISTUM) was originated in the summer of 1983. The project had dix identifiable objectives: update the data base; improve run-time efficiency; revise the reference base case; conduct case studies; provide technical and promotional seminars; and organize a service bureau. This interim report describes which of these objectives have been met and which tasks remain to be completed. The most dramatic achievement has been in the area of run-time efficiency. From a model that required a large proportion of the total resources of a mainframe computer and a great deal of effort to operate, the current version of the model (ISTUM-PC) runs on an IBM Personal Computer. The reorganization required for the model to run on a PC has additional advantages: the modular programs are somewhat easier to understand and the data base is more accessible and easier to use. A simple description of the logic of the model is given in this report. To generate the necessary funds for completion of the model, a multiclient project is proposed. This project will extend the industry coverage to all the industrial sectors, including the construction of process flow models for chemicals and petroleum refining. The project will also calibrate this model to historical data and construct a base case and alternative scenarios. The model will be delivered to clients and training provided. 2 references, 4 figures, 3 tables.

  19. Measurement of the $WW$ and $WZ$ production cross section using final states with a charged lepton and heavy-flavor jets in the full CDF Run II data set

    DOE PAGES-Beta [OSTI]

    Aaltonen, Timo Antero; et al.

    2016-08-23

    We present a measurement of the total WW and WZ production cross sections in pp¯ collision at s=1.96  TeV, in a final state consistent with leptonic W boson decay and jets originating from heavy-flavor quarks from either a W or a Z boson decay. This analysis uses the full data set collected with the CDF II detector during Run II of the Tevatron collider, corresponding to an integrated luminosity of 9.4  fb-1. An analysis of the dijet mass spectrum provides 3.7σ evidence of the summed production processes of either WW or WZ bosons with a measured total cross section of σWW+WZ=13.7±3.9  pb. Independentmore » measurements of the WW and WZ production cross sections are allowed by the different heavy-flavor decay patterns of the W and Z bosons and by the analysis of secondary-decay vertices reconstructed within heavy-flavor jets. The productions of WW and of WZ dibosons are independently seen with significances of 2.9σ and 2.1σ, respectively, with total cross sections of σWW=9.4±4.2  pb and σWZ=3.7-2.2+2.5  pb. The measurements are consistent with standard-model predictions.« less

  20. World Energy Projection System Plus Model Documentation: Commercial Model

    Reports and Publications

    2016-01-01

    The Commercial Model of the World Energy Projection System Plus (WEPS ) is an energy demand modeling system of the world commercial end?use sector at a regional level. This report describes the version of the Commercial Model that was used to produce the commercial sector projections published in the International Energy Outlook 2016 (IEO2016). The Commercial Model is one of 13 components of the WEPS system. The WEPS is a modular system, consisting of a number of separate energy models that are communicate and work with each other through an integrated system model. The model components are each developed independently, but are designed with well?defined protocols for system communication and interactivity. The WEPS modeling system uses a shared database (the “restart” file) that allows all the models to communicate with each other when they are run in sequence over a number of iterations. The overall WEPS system uses an iterative solution technique that forces convergence of consumption and supply pressures to solve for an equilibrium price.

  1. Modeling Treated LAW Feed Evaporation

    SciTech Connect (OSTI)

    DANIEL, WE

    2004-07-08

    This task examines the potential of the treated waste feed blends to form sodium-aluminum silicate precipitates when evaporated using the zeolite database. To investigate the behavior of the blended pretreated waste feed, an OLI Environmental Simulation Package Software (OLI ESP) model of the treated low activity waste (LAW) evaporator was built. A range of waste feed compositions representative of Envelope A, B, and C were then fed into the OLI model to predict various physical and chemical properties of the evaporator concentrates. Additional runs with treated LAW evaporator were performed to compare chemical and physical property model predictions and experimental results for small-scale radioactive tests of the treated feed evaporation process.

  2. Thermal-nutritional regulation of functional groups in running water ecosystems. Technical progress report, October 1, 1978-November 1, 1980

    SciTech Connect (OSTI)

    Cummins, K.W.

    1980-11-01

    The research encompassed three general areas: (1) characterization of stream macroinvertebrate functional feeding groups (shredders, collectors, scrapers, and predators) based on morphological and behavioral adaptations and food-source-specific growth responses of selected species; (2) demonstration of the relative importance of temperature and food quality (in which maximum quality is defined as that producing the most growth) in controlling growth rate and survivorship of stream functional groups; and (3) derivation and refinement of conceptual and quantitative models of stream ecosystem structure and function, with particular emphasis on detrital processing. Verification of the functional group concept as a tool for assessing and predicting is reflected in alterations of the relative dominance of various functional groups. Food quality can strongly influence the growth rates of shredders, collectors and scrapers and override the effects of temperature in a number of cases. Gathering collectors may select food particles by size (or at least be restricted to a limited portion of the total range available) but representative species do not appear to select for quality.

  3. Toolkit Model for SN-03 Final Proposal (ratecases/sn03)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Model SN CRAC ToolKit Model Variable, Flat SN CRAC, 80% TPP (TK187SN-03FS3BPA-PropVariableFlatSNN24-Jun-03.xls, 3.1 MB) Data Input Files (required to run the above...

  4. Interactions between a tropical mixed boundary layer and cumulus convection in a radiative-convective model

    SciTech Connect (OSTI)

    Dean, C.L.

    1993-05-01

    This report details a radiative-convective model, combining previously developed cumulus, stable cloud and radiation parameterizations with a boundary layer scheme, which was developed in the current study. The cloud model was modified to incorporate the effects of both small and large clouds. The boundary layer model was adapted from a mixed layer model was only slightly modified to couple it with the more sophisticated cloud model. The model was tested for a variety of imposed divergence profiles, which simulate the regions of the tropical ocean from approximately the intertropical Convergence Zone (ITCZ) to the subtropical high region. The sounding used to initialize the model for most of the runs is from the trade wind region of ATEX. For each experiment, the model was run with a timestep of 300 seconds for a period of 7 days.

  5. Mathematical Models Shed New Light on Cancer Mutations

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mathematical Models Shed New Light on Cancer Mutations Mathematical Models Shed New Light on Cancer Mutations Calculations Run at NERSC Pinpoint Rare Mutants More Quickly November 3, 2014 Contact: David Cameron, 617.432.0441, david_cameron@hms.harvard.edu cancermutations3 Heat map of the average magnitude of interaction energies projected onto a structural representation of SH2 domains (white) in complex with phosphopeptide (green). SH2 (Src Homology 2) is a protein domain found in many

  6. Borehole Fluid Conductivity Model

    Energy Science and Technology Software Center (OSTI)

    2004-03-15

    Dynamic wellbore electrical conductivity logs provide a valuable means to determine the flow characteristics of fractures intersectin a wellbore, in order to study the hydrologic behavior of fractured rocks. To expedite the analysis of log data, a computer program called BORE II has been deveoloped that considers multiple inflow or outflow points along the wellbore, including the case of horizontal flow across the wellbore, BORE II calculates the evolution of fluid electrical conducivity (FEC) profilesmorein a wellbore or wellbore section, which may be pumped at a low rate, and compares model results to log data in a variety of ways. FEC variations may arise from inflow under natural-state conditions or due to tracer injected in a neighboring well (interference tests). BORE II has an interactive, graphical user interface and runs on a personal computer under the Windows operating system. BORE II is a modification and extension of older codes called BORE and BOREXT, which considered inflow points only. Finite difference solution of the one-dimensional advection-diffusion equation with explicit time stepping; feed points treated as prescribed-mass sources or sinks; assume quadratic relationship between fluid electrical conductivity and ion consentration. Graphical user interface; interactive modification of model parameters and graphical display of model results and filed data in a variety of ways. Can examine horizontal flow or arbitarily complicated combination of upflow, downflow, and horizontal flow. Feed point flow rate and/or concentration may vary in time.less

  7. NREL: Jobs and Economic Development Impacts (JEDI) Models - About JEDI Wind

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Model Wind Model The Jobs and Economic Development Impacts (JEDI) Wind model allows the user to estimate economic development impacts from wind power generation projects. JEDI Wind has default information that can be used to run a generic impacts analysis assuming wind industry averages. Model users are encouraged to enter as much project-specific data as possible. User inputs specific to JEDI Wind include: Construction materials and labor costs Turbine, tower, blade costs, and local content

  8. Technical Review of the CENWP Computational Fluid Dynamics Model of the John Day Dam Forebay

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.

    2010-12-01

    The US Army Corps of Engineers Portland District (CENWP) has developed a computational fluid dynamics (CFD) model of the John Day forebay on the Columbia River to aid in the development and design of alternatives to improve juvenile salmon passage at the John Day Project. At the request of CENWP, Pacific Northwest National Laboratory (PNNL) Hydrology Group has conducted a technical review of CENWP's CFD model run in CFD solver software, STAR-CD. PNNL has extensive experience developing and applying 3D CFD models run in STAR-CD for Columbia River hydroelectric projects. The John Day forebay model developed by CENWP is adequately configured and validated. The model is ready for use simulating forebay hydraulics for structural and operational alternatives. The approach and method are sound, however CENWP has identified some improvements that need to be made for future models and for modifications to this existing model.

  9. Access, Compiling and Running Jobs

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Quad-Fermi and Quad-Tesla Nodes To request a node with 4 Fermi C 2050 GPUs use resource mfermi. To request a node with 4 Tesla C 1060 GPUs, use resource mtesla. qsub -I -q ...

  10. 06 Run R1.xls

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    16 11 14 AP 7 8 8 15 16 13 AP 12 11 14 MA 1 6 AP 1 16 MA 6 8 9 2 9 12 MA AP 21 25 26 24 23 22 20 Dwn 4pm 24 26 29 28 27 27 28 29 30 2 4 3 10 3 8 9 26 27 23 24 25 3 MA 7 3 3 4 1 1...

  11. Isotope Generation and Depletion Code with Libraries Based on JENDL3.2. New ORIGEN users are advised to get CCC-750/SCALE6 and run the ORIGEN-ARP code system in that package.

    Energy Science and Technology Software Center (OSTI)

    2001-11-30

    Version 00 ORIGEN-JENDL32 includes a modified version of the CCC-371/ORIGEN2.1 code along with the libraries from that package plus new libraries, which are based on current reactor designs using the newest nuclear data file developed in Japan, JENDL-3.2. The new libraries contain not only one-group cross section data but also variable actinide cross sections and decay and fission yield data. Main objectives of the libraries are to calculate isotopic compositions averaged over whole fuel assembliesmore » for the case of LWR and isotopic compositions averaged over a whole core for the case of FBR. Target fuel assemblies are PWR 17?17 type and BWR 8?8 or 9?9 type. Target core and blanket types of FBR are chosen from several considered specifications. Evaluation of the LWR libraries was conducted by the analysis of latest post irradiation examinations carried out in Japan Atomic Energy Research Institute. The evaluation showed improved results of many isotopes. Evaluation of the FBR libraries was carried out by the comparison between new and old libraries of FBR. The calculated weights of several isotopes presented large differences. ORIGEN is a computer code system for calculating the buildup, decay, and processing of radioactive materials. ORIGEN2.1 is a revised version of CCC-217/ORIGEN and incorporates updates of the reactor models, cross sections, fission product yields, decay data, and decay photon data, as well as the source code. ORIGEN2.1 includes libraries for standard and extended-burnup PWR and BWR calculations, which are documented in ORNL/TM-11018. Note that new ORIGEN users are generally advised to request the CCC-750/SCALE 6 package, which contains ORIGEN-S and control modules to run it, in addition to a newer selection of data libraries.« less

  12. Maximum likelihood Bayesian model averaging and its predictive analysis for groundwater reactive transport models

    DOE PAGES-Beta [OSTI]

    Lu, Dan; Ye, Ming; Curtis, Gary P.

    2015-08-01

    While Bayesian model averaging (BMA) has been widely used in groundwater modeling, it is infrequently applied to groundwater reactive transport modeling because of multiple sources of uncertainty in the coupled hydrogeochemical processes and because of the long execution time of each model run. To resolve these problems, this study analyzed different levels of uncertainty in a hierarchical way, and used the maximum likelihood version of BMA, i.e., MLBMA, to improve the computational efficiency. Our study demonstrates the applicability of MLBMA to groundwater reactive transport modeling in a synthetic case in which twenty-seven reactive transport models were designed to predict themore » reactive transport of hexavalent uranium (U(VI)) based on observations at a former uranium mill site near Naturita, CO. Moreover, these reactive transport models contain three uncertain model components, i.e., parameterization of hydraulic conductivity, configuration of model boundary, and surface complexation reactions that simulate U(VI) adsorption. These uncertain model components were aggregated into the alternative models by integrating a hierarchical structure into MLBMA. The modeling results of the individual models and MLBMA were analyzed to investigate their predictive performance. The predictive logscore results show that MLBMA generally outperforms the best model, suggesting that using MLBMA is a sound strategy to achieve more robust model predictions relative to a single model. MLBMA works best when the alternative models are structurally distinct and have diverse model predictions. When correlation in model structure exists, two strategies were used to improve predictive performance by retaining structurally distinct models or assigning smaller prior model probabilities to correlated models. Since the synthetic models were designed using data from the Naturita site, the results of this study are expected to provide guidance for real-world modeling. Finally

  13. Maximum likelihood Bayesian model averaging and its predictive analysis for groundwater reactive transport models

    SciTech Connect (OSTI)

    Lu, Dan; Ye, Ming; Curtis, Gary P.

    2015-08-01

    While Bayesian model averaging (BMA) has been widely used in groundwater modeling, it is infrequently applied to groundwater reactive transport modeling because of multiple sources of uncertainty in the coupled hydrogeochemical processes and because of the long execution time of each model run. To resolve these problems, this study analyzed different levels of uncertainty in a hierarchical way, and used the maximum likelihood version of BMA, i.e., MLBMA, to improve the computational efficiency. Our study demonstrates the applicability of MLBMA to groundwater reactive transport modeling in a synthetic case in which twenty-seven reactive transport models were designed to predict the reactive transport of hexavalent uranium (U(VI)) based on observations at a former uranium mill site near Naturita, CO. Moreover, these reactive transport models contain three uncertain model components, i.e., parameterization of hydraulic conductivity, configuration of model boundary, and surface complexation reactions that simulate U(VI) adsorption. These uncertain model components were aggregated into the alternative models by integrating a hierarchical structure into MLBMA. The modeling results of the individual models and MLBMA were analyzed to investigate their predictive performance. The predictive logscore results show that MLBMA generally outperforms the best model, suggesting that using MLBMA is a sound strategy to achieve more robust model predictions relative to a single model. MLBMA works best when the alternative models are structurally distinct and have diverse model predictions. When correlation in model structure exists, two strategies were used to improve predictive performance by retaining structurally distinct models or assigning smaller prior model probabilities to correlated models. Since the synthetic models were designed using data from the Naturita site, the results of this study are expected to provide guidance for real-world modeling. Finally, limitations of

  14. Practical Use of Computationally Frugal Model Analysis Methods

    DOE PAGES-Beta [OSTI]

    Hill, Mary C.; Kavetski, Dmitri; Clark, Martyn; Ye, Ming; Arabi, Mazdak; Lu, Dan; Foglia, Laura; Mehl, Steffen

    2015-03-21

    Computationally frugal methods of model analysis can provide substantial benefits when developing models of groundwater and other environmental systems. Model analysis includes ways to evaluate model adequacy and to perform sensitivity and uncertainty analysis. Frugal methods typically require 10s of parallelizable model runs; their convenience allows for other uses of the computational effort. We suggest that model analysis be posed as a set of questions used to organize methods that range from frugal to expensive (requiring 10,000 model runs or more). This encourages focus on method utility, even when methods have starkly different theoretical backgrounds. We note that many frugalmore » methods are more useful when unrealistic process-model nonlinearities are reduced. Inexpensive diagnostics are identified for determining when frugal methods are advantageous. Examples from the literature are used to demonstrate local methods and the diagnostics. We suggest that the greater use of computationally frugal model analysis methods would allow questions such as those posed in this work to be addressed more routinely, allowing the environmental sciences community to obtain greater scientific insight from the many ongoing and future modeling efforts« less

  15. Practical Use of Computationally Frugal Model Analysis Methods

    SciTech Connect (OSTI)

    Hill, Mary C.; Kavetski, Dmitri; Clark, Martyn; Ye, Ming; Arabi, Mazdak; Lu, Dan; Foglia, Laura; Mehl, Steffen

    2015-03-21

    Computationally frugal methods of model analysis can provide substantial benefits when developing models of groundwater and other environmental systems. Model analysis includes ways to evaluate model adequacy and to perform sensitivity and uncertainty analysis. Frugal methods typically require 10s of parallelizable model runs; their convenience allows for other uses of the computational effort. We suggest that model analysis be posed as a set of questions used to organize methods that range from frugal to expensive (requiring 10,000 model runs or more). This encourages focus on method utility, even when methods have starkly different theoretical backgrounds. We note that many frugal methods are more useful when unrealistic process-model nonlinearities are reduced. Inexpensive diagnostics are identified for determining when frugal methods are advantageous. Examples from the literature are used to demonstrate local methods and the diagnostics. We suggest that the greater use of computationally frugal model analysis methods would allow questions such as those posed in this work to be addressed more routinely, allowing the environmental sciences community to obtain greater scientific insight from the many ongoing and future modeling efforts

  16. Measurement of the top-quark mass in the tt¯ dilepton channel using the full CDF Run II data set

    SciTech Connect (OSTI)

    Aaltonen, T.

    2015-08-06

    We present a measurement of the top-quark mass in events containing two leptons (electrons or muons) with a large transverse momentum, two or more energetic jets, and a transverse-momentum imbalance. We use the full proton-antiproton collision data set collected by the CDF experiment during the Fermilab Tevatron Run II at center-of-mass energy √s = 1.96 TeV, corresponding to an integrated luminosity of 9.1 fb–1. A special observable is exploited for an optimal reduction of the dominant systematic uncertainty, associated with the knowledge of the absolute energy of the hadronic jets. The distribution of this observable in the selected events is compared to simulated distributions of tt¯ dilepton signal and background. We measure a value for the top-quark mass of 171.5±1.9 (stat)±2.5 (syst) GeV/c2.

  17. Analysis of water and soil from the wetlands of Upper Three Runs Creek. Volume 2A, Analytical data packages September--October 1991 sampling

    SciTech Connect (OSTI)

    Haselow, L.A.; Rogers, V.A.; Riordan, C.J.; Eidson, G.W.; Herring, M.K.

    1992-08-01

    Shallow water and soils along Upper Three Runs Creek (UTRC) and associated wetlands between SRS Road F and Cato Road were sampled for nonradioactive and radioactive constituents. The sampling program is associated with risk evaluations being performed for various regulatory documents in these areas of the Savannah River Site (SRS). WSRC selected fifty sampling sites bordering the Mixed Waste Management Facility (MWMF), F- and H-Area Seepage Basins (FHSB), and the Sanitary Landfill (SL). The analytical results from this study provided information on the water and soil quality in UTRC and its associated wetlands. The analytical results from this investigation indicated that the primary constituents and radiological indicators detected in the shallow water and soils were tritium, gross alpha, radium 226, total radium and strontium 90. This investigation involved the collection of shallow water samples during the Fall of 1991 and the Spring of 1992 at fifty (50) sampling locations. Sampling was performed during these periods to incorporate high and low water table periods. Samples were collected from three sections along UTRC denoted as Phase I (MWMF), Phase II (FHSB) and Phase III (SL). One vibracored soil sample was also collected in each phase during the Fall of 1991. This document is compiled solely of experimental data obtained from the sampling procedures.

  18. Documentation and Instructions for Running Two Python Scripts that Aid in Setting up 3D Measurements using the Polytec 3D Scanning Laser Doppler Vibrometer.

    SciTech Connect (OSTI)

    Rohe, Daniel Peter

    2015-08-24

    Sandia National Laboratories has recently purchased a Polytec 3D Scanning Laser Doppler Vibrometer for vibration measurement. This device has proven to be a very nice tool for making vibration measurements, and has a number of advantages over traditional sensors such as accelerometers. The non-contact nature of the laser vibrometer means there is no mass loading due to measuring the response. Additionally, the laser scanning heads can position the laser spot much more quickly and accurately than placing an accelerometer or performing a roving hammer impact. The disadvantage of the system is that a significant amount of time must be invested to align the lasers with each other and the part so that the laser spots can be accurately positioned. The Polytec software includes a number of nice tools to aid in this procedure; however, certain portions are still tedious. Luckily, the Polytec software is readily extensible by programming macros for the system, so tedious portions of the procedure can be made easier by automating the process. The Polytec Software includes a WinWrap (similar to Visual Basic) editor and interface to run macros written in that programming language. The author, however, is much more proficient in Python, and the latter also has a much larger set of libraries that can be used to create very complex macros, while taking advantage of Python’s inherent readability and maintainability.

  19. A Bayesian Measurment Error Model for Misaligned Radiographic Data

    SciTech Connect (OSTI)

    Lennox, Kristin P.; Glascoe, Lee G.

    2013-09-06

    An understanding of the inherent variability in micro-computed tomography (micro-CT) data is essential to tasks such as statistical process control and the validation of radiographic simulation tools. The data present unique challenges to variability analysis due to the relatively low resolution of radiographs, and also due to minor variations from run to run which can result in misalignment or magnification changes between repeated measurements of a sample. Positioning changes artificially inflate the variability of the data in ways that mask true physical phenomena. We present a novel Bayesian nonparametric regression model that incorporates both additive and multiplicative measurement error in addition to heteroscedasticity to address this problem. We also use this model to assess the effects of sample thickness and sample position on measurement variability for an aluminum specimen. Supplementary materials for this article are available online.

  20. A Bayesian Measurment Error Model for Misaligned Radiographic Data

    DOE PAGES-Beta [OSTI]

    Lennox, Kristin P.; Glascoe, Lee G.

    2013-09-06

    An understanding of the inherent variability in micro-computed tomography (micro-CT) data is essential to tasks such as statistical process control and the validation of radiographic simulation tools. The data present unique challenges to variability analysis due to the relatively low resolution of radiographs, and also due to minor variations from run to run which can result in misalignment or magnification changes between repeated measurements of a sample. Positioning changes artificially inflate the variability of the data in ways that mask true physical phenomena. We present a novel Bayesian nonparametric regression model that incorporates both additive and multiplicative measurement error inmore » addition to heteroscedasticity to address this problem. We also use this model to assess the effects of sample thickness and sample position on measurement variability for an aluminum specimen. Supplementary materials for this article are available online.« less

  1. Software enhancements to the IVSEM model of the CTBTO IMS.

    SciTech Connect (OSTI)

    Damico, Joseph P.

    2011-03-01

    Sandia National Laboratories (SNL) developed the Integrated Verification System Evaluation Model (IVSEM) to estimate the performance of the International Monitoring System (IMS) operated by the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO). IVSEM was developed in several phases between 1995 and 2000. The model was developed in FORTRAN with an IDL-based user interface and was compiled for Windows and UNIX operating systems. Continuing interest in this analysis capability, coupled with numerous advances in desktop computer hardware and software since IVSEM was written, enabled significant improvements to IVSEM run-time performance and data analysis capabilities. These improvements were implemented externally without modifying the FORTRAN executables, which had been previously verified. This paper describes the parallelization approach developed to significantly reduce IVSEM run-times and the new test setup and analysis tools developed to facilitate better IVSEM operation.

  2. Dawn Usage, Scheduling, and Governance Model

    SciTech Connect (OSTI)

    Louis, S

    2009-11-02

    This document describes Dawn use, scheduling, and governance concerns. Users started running full-machine science runs in early April 2009 during the initial open shakedown period. Scheduling Dawn while in the Open Computing Facility (OCF) was controlled and coordinated via phone calls, emails, and a small number of controlled banks. With Dawn moving to the Secure Computing Facility (SCF) in fall of 2009, a more detailed scheduling and governance model is required. The three major objectives are: (1) Ensure Dawn resources are allocated on a program priority-driven basis; (2) Utilize Dawn resources on the job mixes for which they were intended; and (3) Minimize idle cycles through use of partitions, banks and proper job mix. The SCF workload for Dawn will be inherently different than Purple or BG/L, and therefore needs a different approach. Dawn's primary function is to permit adequate access for tri-lab code development in preparation for Sequoia, and in particular for weapons multi-physics codes in support of UQ. A second purpose is to provide time allocations for large-scale science runs and for UQ suite calculations to advance SSP program priorities. This proposed governance model will be the basis for initial time allocation of Dawn computing resources for the science and UQ workloads that merit priority on this class of resource, either because they cannot be reasonably attempted on any other resources due to size of problem, or because of the unavailability of sizable allocations on other ASC capability or capacity platforms. This proposed model intends to make the most effective use of Dawn as possible, but without being overly constrained by more formal proposal processes such as those now used for Purple CCCs.

  3. Model documentation report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System

    SciTech Connect (OSTI)

    Not Available

    1994-02-07

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Macroeconomic Activity Module (MAM) used to develop the Annual Energy Outlook for 1994 (AEO94). The report catalogues and describes the module assumptions, computations, methodology, parameter estimation techniques, and mainframe source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS MAM used for the AEO 1994 production runs for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models (Public Law 94-385, section 57.b.2). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  4. Review of dWindDS Model Initial Results; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Baring-Gould, Ian; Gleason, Michael; Preus, Robert; Sigrin, Ben

    2015-06-17

    The dWindDS model analyses the market diffusion of distributed wind generation for behind the meter applications. It is consumer decision based and uses a variety of data sets including a high resolution wind data set. It projects market development through 2050 based on input on specified by the user. This presentation covers some initial runs with draft base case assumptions.

  5. Vortex model of the Darrieus turbine: an analytical and experimental study. Final report

    SciTech Connect (OSTI)

    Strickland, J.H.; Smith, T.; Sun, K.

    1981-06-01

    Improvements in a vortex/lifting, line-based Darrieus wind turbine, aerodynamic performance/loads model are described. These improvements include consideration of dynamic stall, pitching circulation, and added mass. Validation of these calculations was done through water tow tank experiments. Certain computer run time reduction schemes for the code are discussed.

  6. An extension of the OpenModelica compiler for using Modelica models in a discrete event simulation

    SciTech Connect (OSTI)

    Nutaro, James

    2014-11-03

    In this article, a new back-end and run-time system is described for the OpenModelica compiler. This new back-end transforms a Modelica model into a module for the adevs discrete event simulation package, thereby extending adevs to encompass complex, hybrid dynamical systems. The new run-time system that has been built within the adevs simulation package supports models with state-events and time-events and that comprise differential-algebraic systems with high index. Finally, although the procedure for effecting this transformation is based on adevs and the Discrete Event System Specification, it can be adapted to any discrete event simulation package.

  7. Ice Sheet Model Reveals Most Comprehensive Projections for West

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Antarctica's Future Most Comprehensive Projections for West Antarctica's Future Revealed Ice Sheet Model Reveals Most Comprehensive Projections for West Antarctica's Future BISICLES Simulations Run at NERSC Help Estimate Ice Loss, Sea Level Rise August 18, 2015 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov IceSheet Retreat in the Amundsen Sea Embayment in 2154 (Credit: Cornford et al., The Cryosphere, 2015) A new international study is the first to use a high-resolution, large-scale

  8. Wind energy conversion system analysis model (WECSAM) computer program documentation

    SciTech Connect (OSTI)

    Downey, W T; Hendrick, P L

    1982-07-01

    Described is a computer-based wind energy conversion system analysis model (WECSAM) developed to predict the technical and economic performance of wind energy conversion systems (WECS). The model is written in CDC FORTRAN V. The version described accesses a data base containing wind resource data, application loads, WECS performance characteristics, utility rates, state taxes, and state subsidies for a six state region (Minnesota, Michigan, Wisconsin, Illinois, Ohio, and Indiana). The model is designed for analysis at the county level. The computer model includes a technical performance module and an economic evaluation module. The modules can be run separately or together. The model can be run for any single user-selected county within the region or looped automatically through all counties within the region. In addition, the model has a restart capability that allows the user to modify any data-base value written to a scratch file prior to the technical or economic evaluation. Thus, any user-supplied data for WECS performance, application load, utility rates, or wind resource may be entered into the scratch file to override the default data-base value. After the model and the inputs required from the user and derived from the data base are described, the model output and the various output options that can be exercised by the user are detailed. The general operation is set forth and suggestions are made for efficient modes of operation. Sample listings of various input, output, and data-base files are appended. (LEW)

  9. Models & Tools

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Models & Tools - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Multimedia & Software Videos Images Models & Tools Partnerships Tribal Energy Program ...

  10. Systems Modeling

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Simulations Model Barton Springs Urban Growth and Groundwater Sustainability Model ...

  11. Instructional package on regulatory air quality modeling. Part 1: videos on the guideline on air quality models (revised) and the model clearinghouse (video). Audio-Visual

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    Video tape presentations describe the major regulatory air modeling guidance document, the Guideline on Air Quality Models (Revised), and the Agency's focal point for reviewing the use of dispersion modeling techniques, the Model Clearinghouse. The intended audience for these materials is those professionals who have some technical experience using a personal computer (PC) and whose responsibilities now include running EPA's air quality models (1) to assess the impact of emissions from new or modified sources or air toxics releases, or (2) to replicate the model results submitted in conjunction with such regulatory programs as New Source Review (NSR), Prevention of Significant Deterioration (PSD), National Ambient Air Quality Standard (NAAQS) attainment demonstrations, Superfund (SARA), and others.

  12. Model simulation of climate changes in China

    SciTech Connect (OSTI)

    Chen Ming; Fu Congbin

    1997-12-31

    At present there are a large amount of work about influence of human activities and industrization on global climate changes. But due to the non-homogeneous boundary layer between earth and atmosphere there exist distinct difference of climate changes between different regions. China locates in the cast edge of Eurasian continent and border on the Pacific Ocean, it is the most famous monsoon region in the world. Climate of this region is very complex not only because of monsoon but also because its complicated topography. Researches about climate change in this region arc far from adequate. For this reason we use the Australia CSIRO 9-level truncated spectral model to nest with our regional climate model to simulate climate changes of China under conditions of double co2. Models arc running continuously for three years in both conditions of present co2 level and double co2 ppm.

  13. THE LOS ALAMOS NATIONAL LABORATORY ATMOSPHERIC TRANSPORT AND DIFFUSION MODELS

    SciTech Connect (OSTI)

    M. WILLIAMS

    1999-08-01

    The LANL atmospheric transport and diffusion models are composed of two state-of-the-art computer codes. The first is an atmospheric wind model called HOThlAC, Higher Order Turbulence Model for Atmospheric circulations. HOTMAC generates wind and turbulence fields by solving a set of atmospheric dynamic equations. The second is an atmospheric diffusion model called RAPTAD, Random Particle Transport And Diffusion. RAPTAD uses the wind and turbulence output from HOTMAC to compute particle trajectories and concentration at any location downwind from a source. Both of these models, originally developed as research codes on supercomputers, have been modified to run on microcomputers. Because the capability of microcomputers is advancing so rapidly, the expectation is that they will eventually become as good as today's supercomputers. Now both models are run on desktop or deskside computers, such as an IBM PC/AT with an Opus Pm 350-32 bit coprocessor board and a SUN workstation. Codes have also been modified so that high level graphics, NCAR Graphics, of the output from both models are displayed on the desktop computer monitors and plotted on a laser printer. Two programs, HOTPLT and RAPLOT, produce wind vector plots of the output from HOTMAC and particle trajectory plots of the output from RAPTAD, respectively. A third CONPLT provides concentration contour plots. Section II describes step-by-step operational procedures, specifically for a SUN-4 desk side computer, on how to run main programs HOTMAC and RAPTAD, and graphics programs to display the results. Governing equations, boundary conditions and initial values of HOTMAC and RAPTAD are discussed in Section III. Finite-difference representations of the governing equations, numerical solution procedures, and a grid system are given in Section IV.

  14. Modelling random growth behaviour of malignant tumours: An aid to development in clinical management

    SciTech Connect (OSTI)

    Mirnezaini, N.Z.; Taylor, D.E.M.; Esat, I.I.

    1996-12-31

    Solid tissue cancers are characterized by a wide variability and unpredictability in the progression of the disease. Clinical decision making depends on the assessment of probabilities of outcome rather than precise prognosis. Conversely, most mathematical models of tumour growth are linear or quasilinear. Variable outcomes can only be produced by predetermined variation of model parameters. The present studies have introduced random, probabilistic methods into a mathematical model of tumour growth; the former being the equivalent of biological variability. Each run produced a different outcome in terms of eventual size and shape. The programs were designed to be interactive and {open_quotes}user friendly{close_quotes}. The model permitted a large number of runs to be used to produce a spectrum of results. It can be validated by matching the distribution of the predicted outcomes against clinical data.

  15. Lifecycle Model

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-05-21

    This chapter describes the lifecycle model used for the Departmental software engineering methodology.

  16. Evaluating and Improving Cloud Processes in the Multi-Scale Modeling Framework

    SciTech Connect (OSTI)

    Ackerman, Thomas P.

    2015-03-01

    The research performed under this grant was intended to improve the embedded cloud model in the Multi-scale Modeling Framework (MMF) for convective clouds by using a 2-moment microphysics scheme rather than the single moment scheme used in all the MMF runs to date. The technical report and associated documents describe the results of testing the cloud resolving model with fixed boundary conditions and evaluation of model results with data. The overarching conclusion is that such model evaluations are problematic because errors in the forcing fields control the results so strongly that variations in parameterization values cannot be usefully constrained

  17. Role Model and Activity Volunteers Needed to Help with BEAMS - Jefferson

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Lab's Science and Math Outreach Program for Students | Jefferson Lab Role Model and Activity Volunteers Needed to Help with BEAMS - Jefferson Lab's Science and Math Outreach Program for Students Role Model and Activity Volunteers Needed to Help with BEAMS - Jefferson Lab's Science and Math Outreach Program for Students Becoming Enthusiastic About Math and Science - or BEAMS - Jefferson Lab's long-running math and science enrichment program for upper-elementary and middle-school students

  18. Risk-Based Remediation Approach for Cs-137 Contaminated Sediment/Soils at the Savannah River Site (SRS) Lower Three Runs Tail (U) - 13348 - SRNS-RP-2012-00546

    SciTech Connect (OSTI)

    Freeman, Candice; Bergren, Christopher; Blas, Susan; Kupar, James

    2013-07-01

    Lower Three Runs is a large blackwater stream that runs through the eastern and southern portion of the Savannah River Site. The Lower Three Runs watershed includes two SRS facility areas: P Area (P Reactor) and R Area (R Reactor) that provided effluent discharges to Lower Three Runs. During reactor operations, effluent discharges were well above natural (pre-industrial) or present day stream discharges. The watershed contains a 2,500-acre mainstream impoundment (PAR Pond), several smaller pre-cooler ponds, and a canal system that connects the pre-cooler ponds and discharges surface water to PAR Pond. From the PAR Pond dam, Lower Three Runs flows approximately 36 kilometers braiding through bottom-land/flood-plain forests before it enters the Savannah River. About eight kilometers downstream from the PAR Pond dam, the SRS boundary narrows (termed the Lower Three Runs tail) providing a limited buffer of DOE property for the Lower Three Runs stream and associated flood-plain. Previous screening characterization efforts revealed Cs-137 contamination in the sediment/soils of the flood-plain. As a part of the American Recovery and Reinvestment Act stimulus package, a comprehensive characterization effort was executed on the sediment/soils of the Lower Three Runs tail flood-plain providing a comprehensive look at the contaminant signature of the area. As a follow-up to that characterization, a regulatory decision Core Team, comprised of members of the South Carolina Department of Health and Environmental Control, Environmental Protection Agency - Region IV, and DOE, conducted negotiations on a risk-based approach to address the level of contamination found in the tail flood-plain as an early action that provided a long-term solution to exposure scenarios. For evaluation purposes, the adolescent trespasser was selected as the most likely human receptor for the Lower Three Runs tail portion because of the natural attractiveness of the area for recreational activities (i

  19. Systematic approach to verification and validation: High explosive burn models

    SciTech Connect (OSTI)

    Menikoff, Ralph; Scovel, Christina A.

    2012-04-16

    Most material models used in numerical simulations are based on heuristics and empirically calibrated to experimental data. For a specific model, key questions are determining its domain of applicability and assessing its relative merits compared to other models. Answering these questions should be a part of model verification and validation (V and V). Here, we focus on V and V of high explosive models. Typically, model developers implemented their model in their own hydro code and use different sets of experiments to calibrate model parameters. Rarely can one find in the literature simulation results for different models of the same experiment. Consequently, it is difficult to assess objectively the relative merits of different models. This situation results in part from the fact that experimental data is scattered through the literature (articles in journals and conference proceedings) and that the printed literature does not allow the reader to obtain data from a figure in electronic form needed to make detailed comparisons among experiments and simulations. In addition, it is very time consuming to set up and run simulations to compare different models over sufficiently many experiments to cover the range of phenomena of interest. The first difficulty could be overcome if the research community were to support an online web based database. The second difficulty can be greatly reduced by automating procedures to set up and run simulations of similar types of experiments. Moreover, automated testing would be greatly facilitated if the data files obtained from a database were in a standard format that contained key experimental parameters as meta-data in a header to the data file. To illustrate our approach to V and V, we have developed a high explosive database (HED) at LANL. It now contains a large number of shock initiation experiments. Utilizing the header information in a data file from HED, we have written scripts to generate an input file for a hydro code

  20. Dynamic model predicts well bore surge and swab pressures

    SciTech Connect (OSTI)

    Bing, Z.; Kaiji, Z.

    1996-12-30

    A dynamic well control model predicts surge and swab pressures more accurately than a steady-state model, thereby providing better estimates of pressure fluctuations when pipe is tripped. Pressure fluctuations from tripping pipe into a well can contribute to lost circulation, kicks,and well control problems. This dynamic method of predicting surge and swab pressures was verified in a full-scale test well in the Zhong Yuan oil field in China. Both the dynamic model and steady state model were verified through the test data. The test data showed the dynamic model can correctly predict downhole pressures from running or pulling pipe in a well; steady state models may result in relatively large prediction errors, especially in deeper wells.

  1. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    SciTech Connect (OSTI)

    Tidball, Rick; Bluestein, Joel; Rodriguez, Nick; Knoke, Stu

    2010-11-01

    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  2. Parallel Computation of the Regional Ocean Modeling System (ROMS)

    SciTech Connect (OSTI)

    Wang, P; Song, Y T; Chao, Y; Zhang, H

    2005-04-05

    The Regional Ocean Modeling System (ROMS) is a regional ocean general circulation modeling system solving the free surface, hydrostatic, primitive equations over varying topography. It is free software distributed world-wide for studying both complex coastal ocean problems and the basin-to-global scale ocean circulation. The original ROMS code could only be run on shared-memory systems. With the increasing need to simulate larger model domains with finer resolutions and on a variety of computer platforms, there is a need in the ocean-modeling community to have a ROMS code that can be run on any parallel computer ranging from 10 to hundreds of processors. Recently, we have explored parallelization for ROMS using the MPI programming model. In this paper, an efficient parallelization strategy for such a large-scale scientific software package, based on an existing shared-memory computing model, is presented. In addition, scientific applications and data-performance issues on a couple of SGI systems, including Columbia, the world's third-fastest supercomputer, are discussed.

  3. GROUT HOPPER MODELING STUDY

    SciTech Connect (OSTI)

    Lee, S.

    2011-08-30

    state analyses with a two-equation turbulence model were performed with the FLUENT{trademark} codes. All analyses were based on three-dimensional results. Recommended operational guidance was developed by using the basic concept that local shear rate profiles and flow patterns can be used as a measure of hydraulic performance and spatial stirring. Flow patterns were estimated by a Lagrangian integration technique along the flow paths from the material feed inlet. The modeling results show that when the two-stage agitator consisting of a 45{sup o} pitched propeller and radial flat-plate blades is run at 140 rpm speed with 28 in diameter, the agitator provides an adequate stirring of the feed materials for a wide range of yield stresses (1 to 21 Pa) and the vortex system is shed into the remote region of the tank boundary by the blade passage in an efficient way. The results of this modeling study were used to develop the design guidelines for the agitator stirring and dispersion of the Saltstone feed materials in a hopper tank.

  4. Pumping Optimization Model for Pump and Treat Systems - 15091

    SciTech Connect (OSTI)

    Baker, S.; Ivarson, Kristine A.; Karanovic, M.; Miller, Charles W.; Tonkin, M.

    2015-01-15

    Pump and Treat systems are being utilized to remediate contaminated groundwater in the Hanford 100 Areas adjacent to the Columbia River in Eastern Washington. Design of the systems was supported by a three-dimensional (3D) fate and transport model. This model provided sophisticated simulation capabilities but requires many hours to calculate results for each simulation considered. Many simulations are required to optimize system performance, so a two-dimensional (2D) model was created to reduce run time. The 2D model was developed as a equivalent-property version of the 3D model that derives boundary conditions and aquifer properties from the 3D model. It produces predictions that are very close to the 3D model predictions, allowing it to be used for comparative remedy analyses. Any potential system modifications identified by using the 2D version are verified for use by running the 3D model to confirm performance. The 2D model was incorporated into a comprehensive analysis system (the Pumping Optimization Model, POM) to simplify analysis of multiple simulations. It allows rapid turnaround by utilizing a graphical user interface that: 1 allows operators to create hypothetical scenarios for system operation, 2 feeds the input to the 2D fate and transport model, and 3 displays the scenario results to evaluate performance improvement. All of the above is accomplished within the user interface. Complex analyses can be completed within a few hours and multiple simulations can be compared side-by-side. The POM utilizes standard office computing equipment and established groundwater modeling software.

  5. Theory & Modeling

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  6. Modeling & Analysis

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    National Solar Thermal Test Facility Nuclear ... Climate & Earth Systems Climate Measurement & Modeling ... Tribal Energy Program Intellectual Property Current EC ...

  7. Adversary Sequence Interruption Model

    Energy Science and Technology Software Center (OSTI)

    1985-11-15

    PC EASI is an IBM personal computer or PC-compatible version of an analytical technique for measuring the effectiveness of physical protection systems. PC EASI utilizes a methodology called Estimate of Adversary Sequence Interruption (EASI) which evaluates the probability of interruption (PI) for a given sequence of adversary tasks. Probability of interruption is defined as the probability that the response force will arrive before the adversary force has completed its task. The EASI methodology is amore » probabilistic approach that analytically evaluates basic functions of the physical security system (detection, assessment, communications, and delay) with respect to response time along a single adversary path. It is important that the most critical scenarios for each target be identified to ensure that vulnerabilities have not been overlooked. If the facility is not overly complex, this can be accomplished by examining all paths. If the facility is complex, a global model such as Safeguards Automated Facility Evaluation (SAFE) may be used to identify the most vulnerable paths. PC EASI is menu-driven with screen forms for entering and editing the basic scenarios. In addition to evaluating PI for the basic scenario, the sensitivities of many of the parameters chosen in the scenario can be analyzed. These sensitivities provide information to aid the analyst in determining the tradeoffs for reducing the probability of interruption. PC EASI runs under the Micro Data Base Systems'' proprietary database management system Knowledgeman. KMAN provides the user environment and file management for the specified basic scenarios, and KGRAPH the graphical output of the sensitivity calculations. This software is not included. Due to errors in release 2 of KMAN, PC EASI will not execute properly; release 1.07 of KMAN is required.« less

  8. Interpretation of simulated global warming using a simple model

    SciTech Connect (OSTI)

    Watterson, I.G.

    2000-01-01

    A simple energy balance model with two parameters, an effective heat capacity and an effective climate sensitivity, is used to interpret six GCM simulations of greenhouse gas-induced global warming. By allowing the parameters to vary in time, the model can be accurately calibrated for each run. It is found that the sensitivity can be approximated as a constant in each case. However, the effective heat capacity clearly varies, and it is important that the energy equation is formulated appropriately, and thus unlike many such models. For simulations with linear forcing and from a cold start, the capacity is in each case close to that of a homogeneous ocean with depth initially 200 m, but increasing some 4.3 m each year, irrespective of the sensitivity and forcing growth rate. Analytic solutions for t his linear capacity function are derived, and these reproduce the GCM runs well, even for cases where the forcing is stabilized after a century or so. The formation of a subsurface maximum in the mean ocean temperature anomaly is a significant feature of such cases. A simple model for a GCM run with a realistic forcing scenario starting from 1,880 is constructed using component results for forcing segments. Given this, an estimate of the cold start error of a simulation of the warming due to forcing after the present would be given by the negative of the temperature drift of the anomaly due to the past forcing. The simple model can evidently be used to give an indication of likely warming curves, at lest for this range of scenarios and GCM sensitivities.

  9. SPR Hydrostatic Column Model Verification and Validation.

    SciTech Connect (OSTI)

    Bettin, Giorgia; Lord, David; Rudeen, David Keith

    2015-10-01

    A Hydrostatic Column Model (HCM) was developed to help differentiate between normal "tight" well behavior and small-leak behavior under nitrogen for testing the pressure integrity of crude oil storage wells at the U.S. Strategic Petroleum Reserve. This effort was motivated by steady, yet distinct, pressure behavior of a series of Big Hill caverns that have been placed under nitrogen for extended period of time. This report describes the HCM model, its functional requirements, the model structure and the verification and validation process. Different modes of operation are also described, which illustrate how the software can be used to model extended nitrogen monitoring and Mechanical Integrity Tests by predicting wellhead pressures along with nitrogen interface movements. Model verification has shown that the program runs correctly and it is implemented as intended. The cavern BH101 long term nitrogen test was used to validate the model which showed very good agreement with measured data. This supports the claim that the model is, in fact, capturing the relevant physical phenomena and can be used to make accurate predictions of both wellhead pressure and interface movements.

  10. Modeling the Benefits of Storage Technologies to Wind Power

    SciTech Connect (OSTI)

    Sullivan, P.; Short, W.; Blair, N.

    2008-06-01

    Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

  11. Calibrating Building Energy Models Using Supercomputer Trained Machine Learning Agents

    SciTech Connect (OSTI)

    Sanyal, Jibonananda; New, Joshua Ryan; Edwards, Richard; Parker, Lynne Edwards

    2014-01-01

    Building Energy Modeling (BEM) is an approach to model the energy usage in buildings for design and retrofit purposes. EnergyPlus is the flagship Department of Energy software that performs BEM for different types of buildings. The input to EnergyPlus can often extend in the order of a few thousand parameters which have to be calibrated manually by an expert for realistic energy modeling. This makes it challenging and expensive thereby making building energy modeling unfeasible for smaller projects. In this paper, we describe the Autotune research which employs machine learning algorithms to generate agents for the different kinds of standard reference buildings in the U.S. building stock. The parametric space and the variety of building locations and types make this a challenging computational problem necessitating the use of supercomputers. Millions of EnergyPlus simulations are run on supercomputers which are subsequently used to train machine learning algorithms to generate agents. These agents, once created, can then run in a fraction of the time thereby allowing cost-effective calibration of building models.

  12. An Interactive Multi-Model for Consensus on Climate Change

    SciTech Connect (OSTI)

    Kocarev, Ljupco

    2014-07-02

    This project purports to develop a new scheme for forming consensus among alternative climate models, that give widely divergent projections as to the details of climate change, that is more intelligent than simply averaging the model outputs, or averaging with ex post facto weighting factors. The method under development effectively allows models to assimilate data from one another in run time with weights that are chosen in an adaptive training phase using 20th century data, so that the models synchronize with one another as well as with reality. An alternate approach that is being explored in parallel is the automated combination of equations from different models in an expert-system-like framework.

  13. CoMD Implementation Suite in Emerging Programming Models

    Energy Science and Technology Software Center (OSTI)

    2014-09-23

    CoMD-Em is a software implementation suite of the CoMD [4] proxy app using different emerging programming models. It is intended to analyze the features and capabilities of novel programming models that could help ensure code and performance portability and scalability across heterogeneous platforms while improving programmer productivity. Another goal is to provide the authors and venders with some meaningful feedback regarding the capabilities and limitations of their models. The actual application is a classical molecularmore » dynamics (MD) simulation using either the Lennard-Jones method (LJ) or the embedded atom method (EAM) for primary particle interaction. The code can be extended to support alternate interaction models. The code is expected ro run on a wide class of heterogeneous hardware configurations like shard/distributed/hybrid memory, GPU's and any other platform supported by the underlying programming model.« less

  14. A Network Contention Model for the Extreme-scale Simulator

    SciTech Connect (OSTI)

    Engelmann, Christian [ORNL; Naughton, III, Thomas J [ORNL

    2015-01-01

    The Extreme-scale Simulator (xSim) is a performance investigation toolkit for high-performance computing (HPC) hardware/software co-design. It permits running a HPC application with millions of concurrent execution threads, while observing its performance in a simulated extreme-scale system. This paper details a newly developed network modeling feature for xSim, eliminating the shortcomings of the existing network modeling capabilities. The approach takes a different path for implementing network contention and bandwidth capacity modeling using a less synchronous and accurate enough model design. With the new network modeling feature, xSim is able to simulate on-chip and on-node networks with reasonable accuracy and overheads.

  15. CASL - Initial Validation and Benchmark Study of new 3D CRUD Model

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Initial Validation and Benchmark Study of new 3D CRUD Model A new 3D CRUD model, known as "MAMBA" (for "MPO Advanced Model for Boron Analysis"), is being developed by the Crud Group within the MPO focus area of CASL. The 3D MAMBA v2.0 computer code was released to CASL on Feb. 28, 2012 and is capable of being run in "stand-alone" mode or in coupled mode with a thermal hydraulics computational fluid dynamics model (e.g., STAR-CCM+) and/or a neutron transport

  16. The Potosi Reservoir Model 2013c, Property Modeling Update

    SciTech Connect (OSTI)

    Adushita, Yasmin; Smith, Valerie; Leetaru, Hannes

    2014-09-30

    As part of a larger project co-funded by the United States Department of Energy (US DOE) to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon as potential targets for carbon sequestration in the Illinois and Michigan Basins, the Illinois Clean Coal Institute (ICCI) requested Schlumberger to evaluate the potential injectivity and carbon dioxide (CO2) plume size of the Cambrian Potosi Formation. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data from this project as well as two other separately funded projects: the US DOE-funded Illinois Basin–Decatur Project (IBDP) being conducted by the Midwest Geological Sequestration Consortium (MGSC) in Macon County, Illinois, and the Illinois Industrial Carbon Capture and Sequestration (ICCS) project funded through the American Recovery and Reinvestment Act. In 2010, technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the Verification Well #1 (VW1) and the Injection Well (CCS1), structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for Potosi Formation. The intention was for 2.2 million tons per annum (2 million tonnes per annum [MTPA]) of CO2 to be injected for 20 years. In the Task Error! Reference source not found., the 2010 Potosi heterogeneous model (referred to as the "Potosi Dynamic Model 2010") was re-run using a new injection scenario of 3.5 million tons per annum (3.2 MTPA) for 30 years. The extent of the Potosi Dynamic Model 2010, however, appeared too small for the new injection target. The models size was insufficient to accommodate the evolution of the plume. The new model, Potosi Dynamic Model 2013a, was built by extending the Potosi Dynamic Model 2010 grid to 30 by 30 mi (48 by 48 km), while preserving all

  17. Modeling of thermal storage systems in MILP distributed energy resource models

    SciTech Connect (OSTI)

    Steen, David; Stadler, Michael; Cardoso, Gonçalo; Groissböck, Markus; DeForest, Nicholas; Marnay, Chris

    2014-08-04

    Thermal energy storage (TES) and distributed generation technologies, such as combined heat and power (CHP) or photovoltaics (PV), can be used to reduce energy costs and decrease CO2 emissions from buildings by shifting energy consumption to times with less emissions and/or lower energy prices. To determine the feasibility of investing in TES in combination with other distributed energy resources (DER), mixed integer linear programming (MILP) can be used. Such a MILP model is the well-established Distributed Energy Resources Customer Adoption Model (DER-CAM); however, it currently uses only a simplified TES model to guarantee linearity and short run-times. Loss calculations are based only on the energy contained in the storage. This paper presents a new DER-CAM TES model that allows improved tracking of losses based on ambient and storage temperatures, and compares results with the previous version. A multi-layer TES model is introduced that retains linearity and avoids creating an endogenous optimization problem. The improved model increases the accuracy of the estimated storage losses and enables use of heat pumps for low temperature storage charging. Ultimately,results indicate that the previous model overestimates the attractiveness of TES investments for cases without possibility to invest in heat pumps and underestimates it for some locations when heat pumps are allowed. Despite a variation in optimal technology selection between the two models, the objective function value stays quite stable, illustrating the complexity of optimal DER sizing problems in buildings and microgrids.

  18. Autonomie Model

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Autonomie Model (Argonne National Laboratory) Objectives Perform simulations to assess the ... performance of advanced component and powertrain technologies in a vehicle system context. ...

  19. Ventilation Model

    SciTech Connect (OSTI)

    V. Chipman

    2002-10-05

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. The purposes of Revision 01 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post

  20. Design of Experiments, Model Calibration and Data Assimilation

    SciTech Connect (OSTI)

    Williams, Brian J.

    2014-07-30

    This presentation provides an overview of emulation, calibration and experiment design for computer experiments. Emulation refers to building a statistical surrogate from a carefully selected and limited set of model runs to predict unsampled outputs. The standard kriging approach to emulation of complex computer models is presented. Calibration refers to the process of probabilistically constraining uncertain physics/engineering model inputs to be consistent with observed experimental data. An initial probability distribution for these parameters is updated using the experimental information. Markov chain Monte Carlo (MCMC) algorithms are often used to sample the calibrated parameter distribution. Several MCMC algorithms commonly employed in practice are presented, along with a popular diagnostic for evaluating chain behavior. Space-filling approaches to experiment design for selecting model runs to build effective emulators are discussed, including Latin Hypercube Design and extensions based on orthogonal array skeleton designs and imposed symmetry requirements. Optimization criteria that further enforce space-filling, possibly in projections of the input space, are mentioned. Designs to screen for important input variations are summarized and used for variable selection in a nuclear fuels performance application. This is followed by illustration of sequential experiment design strategies for optimization, global prediction, and rare event inference.

  1. Financial constraints in capacity planning: a national utility regulatory model (NUREG). Volume II of III: user's guide. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-10-29

    This volume is a User's Guide to the National Utility Regulatory Model (NUREG) and its implementation of the National Coal Model. This is the second of three volumes provided by ICF under contract number DEAC-01-79EI-10579. These three volumes are: a manual describing the NUREG methodology; a users guide; and a description of the software. This manual provides a brief introduction to the National Utility Regulation Model, describes the various programs that comprise the National Utility Regulatory Model, gives sample input files, and provides information needed to run the model.

  2. Model documentation natural gas transmission and distribution model (NGTDM) of the national energy modeling system. Volume II: Model developer`s report

    SciTech Connect (OSTI)

    Not Available

    1995-01-03

    To partially fulfill the requirements for {open_quotes}Model Acceptance{close_quotes} as stipulated in EIA Standard 91-01-01 (effective February 3, 1991), the Office of Integrated Analysis and Forecasting has conducted tests of the Natural Gas Transmission and Distribution Model (NGTDM) for the specific purpose of validating the forecasting model. This volume of the model documentation presents the results of {open_quotes}one-at-a-time{close_quotes} sensitivity tests conducted in support of this validation effort. The test results are presented in the following forms: (1) Tables of important model outputs for the years 2000 and 2010 are presented with respect to change in each input from the reference case; (2) Tables of percent changes from base case results for the years 2000 and 2010 are presented for important model outputs; (3) Tables of conditional sensitivities (percent change in output/percent change in input) for the years 2000 and 2010 are presented for important model outputs; (4) Finally, graphs presenting the percent change from base case results for each year of the forecast period are presented for selected key outputs. To conduct the sensitivity tests, two main assumptions are made in order to test the performance characteristics of the model itself and facilitate the understanding of the effects of the changes in the key input variables to the model on the selected key output variables: (1) responses to the amount demanded do not occur since there are no feedbacks of inputs from other NEMS models in the stand-alone NGTDM run. (2) All the export and import quantities from and to Canada and Mexico, and liquefied natural gas (LNG) imports and exports are held fixed (i.e., there are no changes in imports and exports between the reference case and the sensitivity cases) throughout the forecast period.

  3. OSPREY Model

    SciTech Connect (OSTI)

    Veronica J. Rutledge

    2013-01-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of off-gas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data is obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data and parameters were input into the adsorption model to develop models specific for krypton adsorption. The same can be done for iodine, xenon, and tritium. The model will be validated with experimental breakthrough curves. Customers will be given access to

  4. Building Simulation Modelers are we big-data ready?

    SciTech Connect (OSTI)

    Sanyal, Jibonananda; New, Joshua Ryan

    2014-01-01

    Recent advances in computing and sensor technologies have pushed the amount of data we collect or generate to limits previously unheard of. Sub-minute resolution data from dozens of channels is becoming increasingly common and is expected to increase with the prevalence of non-intrusive load monitoring. Experts are running larger building simulation experiments and are faced with an increasingly complex data set to analyze and derive meaningful insight. This paper focuses on the data management challenges that building modeling experts may face in data collected from a large array of sensors, or generated from running a large number of building energy/performance simulations. The paper highlights the technical difficulties that were encountered and overcome in order to run 3.5 million EnergyPlus simulations on supercomputers and generating over 200 TBs of simulation output. This extreme case involved development of technologies and insights that will be beneficial to modelers in the immediate future. The paper discusses different database technologies (including relational databases, columnar storage, and schema-less Hadoop) in order to contrast the advantages and disadvantages of employing each for storage of EnergyPlus output. Scalability, analysis requirements, and the adaptability of these database technologies are discussed. Additionally, unique attributes of EnergyPlus output are highlighted which make data-entry non-trivial for multiple simulations. Practical experience regarding cost-effective strategies for big-data storage is provided. The paper also discusses network performance issues when transferring large amounts of data across a network to different computing devices. Practical issues involving lag, bandwidth, and methods for synchronizing or transferring logical portions of the data are presented. A cornerstone of big-data is its use for analytics; data is useless unless information can be meaningfully derived from it. In addition to technical

  5. Next Generation Calibration Models with Dimensional Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Calibration Models with Dimensional Modeling Next Generation Calibration Models with ... Calibration Optimization for Next Generation Diesel Engines An Accelerated Aging ...

  6. PORFLOW Modeling Supporting The H-Tank Farm Performance Assessment

    SciTech Connect (OSTI)

    Jordan, J. M.; Flach, G. P.; Westbrook, M. L.

    2012-08-31

    Numerical simulations of groundwater flow and contaminant transport in the vadose and saturated zones have been conducted using the PORFLOW code in support of an overall Performance Assessment (PA) of the H-Tank Farm. This report provides technical detail on selected aspects of PORFLOW model development and describes the structure of the associated electronic files. The PORFLOW models for the H-Tank Farm PA, Rev. 1 were updated with grout, solubility, and inventory changes. The aquifer model was refined. In addition, a set of flow sensitivity runs were performed to allow flow to be varied in the related probabilistic GoldSim models. The final PORFLOW concentration values are used as input into a GoldSim dose calculator.

  7. Weather Research and Forecasting Model with Vertical Nesting Capability

    Energy Science and Technology Software Center (OSTI)

    2014-08-01

    The Weather Research and Forecasting (WRF) model with vertical nesting capability is an extension of the WRF model, which is available in the public domain, from www.wrf-model.org. The new code modifies the nesting procedure, which passes lateral boundary conditions between computational domains in the WRF model. Previously, the same vertical grid was required on all domains, while the new code allows different vertical grids to be used on concurrently run domains. This new functionality improvesmore » WRF's ability to produce high-resolution simulations of the atmosphere by allowing a wider range of scales to be efficiently resolved and more accurate lateral boundary conditions to be provided through the nesting procedure.« less

  8. Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect (OSTI)

    David Muth, Jr.; Jared Abodeely; Richard Nelson; Douglas McCorkle; Joshua Koch; Kenneth Bryden

    2011-08-01

    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice data required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.

  9. Documentation of the petroleum market model (PMM). Appendix: Model developer`s report

    SciTech Connect (OSTI)

    Not Available

    1994-12-28

    The Office of Integrated Analysis and Forecasting (OIAF) is required to provide complete model documentation to meet the EIA Model Acceptance Standards. The EIA Model Documentation: Petroleum Market Model of the National Energy Modeling System provides a complete description of the Petroleum Market Model`s (PMM) methodology, and relation to other modules in the National Energy Modeling System (NEMS). This Model Developer`s Report (MDR) serves as an appendix to the methodology documentation and provides an assessment of the sensitivity of PMM results to changes in input data. The MDR analysis for PMM is performed by varying several sets of input variables one-at-a-time and examining the effect on a set of selected output variables. The analysis is based on stand-alone, rather than integrated, National Energy Modeling System (NEMS) runs. This means that other NEMS modules are not responding to PMM outputs. The PMM models petroleum refining and marketing. The purpose of the PMM is to project petroleum product prices, refining activities, and movements of petroleum into the United States and among domestic regions. In addition, the PMM estimates capacity expansion and fuel consumption in, the refining industry. The PMM is also used to analyze a wide variety of petroleum-related issues and policies, in order to foster better understanding of the petroleum refining and marketing industry and the effects of certain policies and regulations. The PMM simulates the operation of petroleum refineries in the United States, including the supply and transportation of crude oil to refineries, the regional processing of these raw materials into petroleum products, and the distribution of petroleum products to meet regional demands. The essential outputs of this model are product prices, a petroleum supply/demand balance, demands for refinery fuel use, and capacity expansion.

  10. An enumerative technique for modeling wind power variations in production costing

    SciTech Connect (OSTI)

    Milligan, M.R.; Graham, M.S.

    1997-04-01

    Production cost, generation expansion, and reliability models are used extensively by utilities in the planning process. Most models do not provide adequate means for representing the full range of potential variation in wind power plants. In order to properly account for expected variation in wind-generated electricity with these models, the authors describe an enumerated probabilistic approach that is performed outside the production cost model, compare it with a reduced enumerated approach, and present some selected utility results. The technique can be applied to any model, and can considerably reduce the number of model runs as compared to the full enumerated approach. They use both a load duration curve model and a chronological model to measure wind plant capacity credit, and also present some other selected results.

  11. Community Climate System Model (CCSM) Experiments and Output Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Center for Atmospheric Research (NCAR) created the first version of the Community Climate Model (CCM) in 1983 as a global atmosphere model. It was improved in 1994 when NCAR, with support from the National Science Foundation (NSF), developed and incorporated a Climate System Model (CSM) that included atmosphere, land surface, ocean, and sea ice. As the capabilities of the model grew, so did interest in its applications and changes in how it would be managed. A workshop in 1996 set the future management structure, marked the beginning of the second phase of the model, a phase that included full participation of the scientific community, and also saw additional financial support, including support from the Department of Energy. In recognition of these changes, the model was renamed to the Community Climate System Model (CCSM). It began to function as a model with the interactions of land, sea, and air fully coupled, providing computer simulations of Earth's past climate, its present climate, and its possible future climate. The CCSM website at http://www2.cesm.ucar.edu/ describes some of the research that has been done since then: A 300-year run has been performed using the CSM, and results from this experiment have appeared in a special issue of theJournal of Climate, 11, June, 1998. A 125-year experiment has been carried out in which carbon dioxide was described to increase at 1% per year from its present concentration to approximately three times its present concentration. More recently, the Climate of the 20th Century experiment was run, with carbon dioxide and other greenhouse gases and sulfate aerosols prescribed to evolve according to our best knowledge from 1870 to the present. Three scenarios for the 21st century were developed: a "business as usual" experiment, in which greenhouse gases are assumed to increase with no economic constraints; an experiment using the Intergovernmental Panel on Climate Change (IPCC) Scenario A1; and a "policy

  12. Programming models

    SciTech Connect (OSTI)

    Daniel, David J; Mc Pherson, Allen; Thorp, John R; Barrett, Richard; Clay, Robert; De Supinski, Bronis; Dube, Evi; Heroux, Mike; Janssen, Curtis; Langer, Steve; Laros, Jim

    2011-01-14

    A programming model is a set of software technologies that support the expression of algorithms and provide applications with an abstract representation of the capabilities of the underlying hardware architecture. The primary goals are productivity, portability and performance.

  13. ISDAC Modeling

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Modeling Modeling of aerosol effects on Arctic stratiform clouds: Preliminary results from the ISDAC case study (poster 13J) Mikhail Ovchinnikov, Steve Ghan, Jiwen Fan, Xiaohong Liu (PNNL), Alexei Korolev, Peter Liu (Env. Canada) Shaocheng Xie (LLNL), Hugh Morrison (NCAR), ISDAC PI's, and members of the CMWG 2 Indirect Semi-Direct Aerosol Campaign Science questions: How do properties of the arctic aerosol during April differ from those measured during the MPACE in October? To what extent do the

  14. Spectral analysis of the efficiency of vertical mixing in the deep ocean due to interaction of tidal currents with a ridge running down a continental slope

    SciTech Connect (OSTI)

    Ibragimov, Ranis N.; Tartakovsky, Alexandre M.

    2014-10-29

    Efficiency of mixing, resulting from the reflection of an internal wave field imposed on the oscillatory background flow with a three-dimensional bottom topography, is investigated using a linear approximation. The radiating wave field is associated with the spectrum of the linear model, which consists of those mode numbers n and slope values α, for which the solution represents the internal waves of frequencies ω = nω0 radiating upwrad of the topography, where ω0 is the fundamental frequency at which internal waves are generated at the topography. The effects of the bottom topography and the earth’s rotation on the spectrum is analyzed analytically and numerically in the vicinity of the critical slope, which is a slope with the same angle to the horizontal as the internal wave characteristic. In this notation, θ is latitude, f is the Coriolis parameter and N is the buoyancy frequency, which is assumed to be a constant, which corresponds to the uniform stratification.

  15. Building America Top Innovations Hall of Fame Profile … Model Simulating Real Domestic Hot Water Use

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and the Davis Energy Group used the Domestic Hot Water Event Schedule Generator to accurately quantify effects of low and high water usage on distribution system measures such as pipe insulation, home run plumbing, and demand-controlled recirculation loops. As progress continues with high-R, tightly sealed thermal enclosures, domestic hot water becomes an increasingly important energy use in high-performance homes. Building America research has improved our ability to model hot water use so new

  16. Status of searches for Higgs and physics beyond the standard model at CDF

    SciTech Connect (OSTI)

    Tsybychev, D.; /Florida U.

    2004-12-01

    This article presents selected experimental results on searches for Higgs and physics beyond the standard model (BSM) at the Collider Detector at Fermilab (CDF). The results are based on about 350 pb{sup -1} of proton-antiproton collisions data at {radical}s = 1.96 TeV, collected during Run II of the Tevatron. No evidence of signal was found and limits on the production cross section of various physics processes BSM are derived.

  17. MAXDOSE-SR: A routine release atmospheric dose model used at SRS

    SciTech Connect (OSTI)

    Simpkins, A.A.

    2000-02-09

    MAXDOSE-SR is a PC version of the dosimetry code MAXIGASP, which was used to calculate doses to the maximally exposed offsite individual for routine atmospheric releases of radioactive material at the Savannah River Site (SRS). Complete code description, verification of models, and user's manual have been included in this report. Minimal input is required to run the program, and site specific parameters are used when possible.

  18. Users guide for SAMM: A prototype southeast Alaska multiresource model. Forest Service general technical report

    SciTech Connect (OSTI)

    Weyermann, D.L.; Fight, R.D.; Garrett, F.D.

    1991-08-01

    This paper instructs resource analysts on using the southeast Alaska multiresource model (SAMM). SAMM is an interactive microcomputer program that allows users to explore relations among several resources in southeast Alaska (timber, anadromous fish, deer, and hydrology) and the effects of timber management activities (logging, thinning, and road building) on those relations and resources. This guide assists users in installing SAMM on a microcomputer, developing input data files, making simulation runs, and strong output data for external analysis and graphic display.

  19. Data Transfer Software-SAS MetaData Server & Phoenix Integration Model Center

    Energy Science and Technology Software Center (OSTI)

    2010-04-15

    This software is a plug-in that interfaces between the Phoenix Integration's Model Center and the Base SAS 9.2 applications. The end use of the plug-in is to link input and output data that resides in SAS tables or MS SQL to and from "legacy" software programs without recoding. The potential end users are users who need to run legacy code and want data stored in a SQL database.

  20. EQ3/6 A Software Package for Geochemical Modeling

    Energy Science and Technology Software Center (OSTI)

    2010-12-13

    EQ3/6 is a software package for modeling geochemical interactions between aqueous solution, solids, and gases, following principles of chemical thermodynamics and chemical kinetics. It is useful for interpreting aqueiou solution chemical compositions and for calculating the consequences of reaction of such solutions with minerals, other solids, and gases. It is designed to run in a command line environment. EQPT is a thermodynamic data file preprocessor. EQ3NR is a speciation-solubility code. EQ6 is a reaction pathmore » code.« less

  1. An Elastic Plastic Contact Model with Strain Hardening for the LAMMPS Granular Package

    SciTech Connect (OSTI)

    Kuhr, Bryan; Brake, Matthew Robert; Lechman, Jeremy B.

    2015-03-01

    The following details the implementation of an analytical elastic plastic contact model with strain hardening for normal im pacts into the LAMMPS granular package. The model assumes that, upon impact, the co llision has a period of elastic loading followed by a period of mixed elastic plas tic loading, with contributions to each mechanism estimated by a hyperbolic seca nt weight function. This function is implemented in the LAMMPS source code as the pair style gran/ep/history. Preliminary tests, simulating the pouring of pure nickel spheres, showed the elastic/plastic model took 1.66x as long as similar runs using gran/hertz/history.

  2. Upper Rio Grande Simulation Model (URGSIM)

    Energy Science and Technology Software Center (OSTI)

    2010-08-05

    URGSIM estimates the location of surface water and groundwater resources in the upper Rio Grande Basin between the Colorado-New Mexico state line, and Caballo Reservoir from 1975 - 2045. It is a mass balance hydrology model of the Upper Rio Grande surface water, groundwater, and water demand systems which runs at a monthly timestep from 1975-1999 in calibration mode, 2000 – 2004 in validation mode, and 2005 – 2045 in scenario analysis mode.

  3. Kaiser Permanente-Sandia National Health Care Model: Phase 1 prototype final report. Part 2 -- Domain analysis

    SciTech Connect (OSTI)

    Edwards, D.; Yoshimura, A.; Butler, D.; Judson, R.; Mason, W.; Napolitano, L.; Mariano, R.; Eddy, D.; Schlessinger, L.

    1996-11-01

    This report describes the results of a Cooperative Research and Development Agreement between Sandia National Laboratories and Kaiser Permanente Southern California to develop a prototype computer model of Kaiser Permanente`s health care delivery system. As a discrete event simulation, SimHCO models for each of 100,000 patients the progression of disease, individual resource usage, and patient choices in a competitive environment. SimHCO is implemented in the object-oriented programming language C{sup 2}, stressing reusable knowledge and reusable software components. The versioned implementation of SimHCO showed that the object-oriented framework allows the program to grow in complexity in an incremental way. Furthermore, timing calculations showed that SimHCO runs in a reasonable time on typical workstations, and that a second phase model will scale proportionally and run within the system constraints of contemporary computer technology.

  4. Evaluation study of building-resolved urban dispersion models

    SciTech Connect (OSTI)

    Flaherty, Julia E.; Allwine, K Jerry; Brown, Mike J.; Coirier, WIlliam J.; Ericson, Shawn C.; Hansen, Olav R.; Huber, Alan H.; Kim, Sura; Leach, Martin J.; Mirocha, Jeff D.; Newsom, Rob K.; Patnaik, Gopal; Senocak, Inanc

    2007-09-10

    For effective emergency response and recovery planning, it is critically important that building-resolved urban dispersion models be evaluated using field data. Several full-physics computational fluid dynamics (CFD) models and semi-empirical building-resolved (SEB) models are being advanced and applied to simulating flow and dispersion in urban areas. To obtain an estimate of the current state-of-readiness of these classes of models, the Department of Homeland Security (DHS) funded a study to compare five CFD models and one SEB model with tracer data from the extensive Midtown Manhattan field study (MID05) conducted during August 2005 as part of the DHS Urban Dispersion Program (UDP; Allwine and Flaherty 2007). Six days of tracer and meteorological experiments were conducted over an approximately 2-km-by-2-km area in Midtown Manhattan just south of Central Park in New York City. A subset of these data was used for model evaluations. The study was conducted such that an evaluation team, independent of the six modeling teams, provided all the input data (e.g., building data, meteorological data and tracer release rates) and run conditions for each of four experimental periods simulated. Tracer concentration data for two of the four experimental periods were provided to the modeling teams for their own evaluation of their respective models to ensure proper setup and operation. Tracer data were not provided for the second two experimental periods to provide for an independent evaluation of the models. The tracer concentrations resulting from the model simulations were provided to the evaluation team in a standard format for consistency in inter-comparing model results. An overview of the model evaluation approach will be given followed by a discussion on the qualitative comparison of the respective models with the field data. Future model developments efforts needed to address modeling gaps identified from this study will also be discussed.

  5. Constraints on the tensor-to-scalar ratio for non-power-law models

    SciTech Connect (OSTI)

    Vázquez, J. Alberto; Bridges, M.; Ma, Yin-Zhe; Hobson, M.P. E-mail: mb435@mrao.cam.ac.uk E-mail: mph@mrao.cam.ac.uk

    2013-08-01

    Recent cosmological observations hint at a deviation from the simple power-law form of the primordial spectrum of curvature perturbations. In this paper we show that in the presence of a tensor component, a turn-over in the initial spectrum is preferred by current observations, and hence non-power-law models ought to be considered. For instance, for a power-law parameterisation with both a tensor component and running parameter, current data show a preference for a negative running at more than 2.5σ C.L. As a consequence of this deviation from a power-law, constraints on the tensor-to-scalar ratio r are slightly broader. We also present constraints on the inflationary parameters for a model-independent reconstruction and the Lasenby and Doran (LD) model. In particular, the constraints on the tensor-to-scalar ratio from the LD model are: r{sub LD} = 0.11±0.024. In addition to current data, we show expected constraints from Planck-like and CMB-Pol sensitivity experiments by using Markov-Chain-Monte-Carlo sampling chains. For all the models, we have included the Bayesian Evidence to perform a model selection analysis. The Bayes factor, using current observations, shows a strong preference for the LD model over the standard power-law parameterisation, and provides an insight into the accuracy of differentiating models through future surveys.

  6. Modelling the microstructure of thermal barrier coatings

    SciTech Connect (OSTI)

    Cirolini, S.; Marchese, M.; Jacucci, G.; Harding, J.H.; Mulheran, P.A.

    1994-12-31

    Thermal barrier coatings produced by plasma spraying have a characteristic microstructure of lamellae, pores and cracks. The lamellae are produced by the splashing of particles onto the substrate. As the coating grows, the lamellae pile on top of each other, producing an interlocking structure. In most cases the growth is rapid and chaotic. The result is a microstructure characterized by pores and cracks. The authors present an improved model for the deposition process of thermal barrier coatings. The task of modeling the coating growth is split into two parts: first the authors consider a description of the particle on arrival at the film, based on the available theoretical, numerical and experimental findings. Second they define and discuss a set of physically-based rules for combining these events to obtain the film. The splats run along the surface and are permitted to curl up (producing pores) or interlock. The computer model uses a mesh to combine these processes and build the coating. They discuss the use of the proposed model in predicting microstructures and hence in correlating the properties of these coatings with the parameters of the process used to make them.

  7. Simulating coarse-scale vegetation dynamics using the Columbia River Basin succession model-crbsum. Forest Service general technical report

    SciTech Connect (OSTI)

    Keane, R.E.; Long, D.G.; Menakis, J.P.; Hann, W.J.; Bevins, C.D.

    1996-10-01

    The paper details the landscape succession model developed for the coarse-scale assessment called CRBSUM (Columbia River Basin SUccession Model) and presents some general results of the application of this model to the entire basin. CRBSUM was used to predict future landscape characteristics to evaluate management alternatives for both mid-and coarse-scale efforts. A test and sensitivity analysis of CRBSUM is also presented. This paper was written as a users guide for those who wish to run the model and interprete results, and its was also written as documentation for some results of the Interior Columbia River Basin simulation effort.

  8. Analytic models of supercomputer performance in multiprogramming environments

    SciTech Connect (OSTI)

    Menasce, D.A. ); Almeida, V.A.F. )

    1989-01-01

    Supercomputers run multiprogrammed time-sharing operating systems, so their facilities can be shared by many local and remote users. Therefore, it is important to be able to assess the performance of supercomputers and multiprogrammed environments. Analytic models based on Queueing Networks (QNs) and Stochastic Petri Nets (SPNs) are used in this paper with two purposes: to evaluate the performance of supercomputers in multiprogrammed environments, and to compare, performance-wise, conventional supercomputer architectures with a novel architecture proposed here. It is shown, with the aid of the analytic models, that the proposed architecture is preferable performance-wise over the existing conventional supercomputer architectures. A three-level workload characterization model for supercomputers is presented. Input data for the numerical examples discussed here are extracted from the well-known Los Alamos benchmark, and the results are validated by simulation.

  9. Criticality Model

    SciTech Connect (OSTI)

    A. Alsaed

    2004-09-14

    The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of this analysis is to document the criticality computational method. The criticality

  10. Discussion: the design and analysis of the Gaussian process model

    SciTech Connect (OSTI)

    Williams, Brian J; Loeppky, Jason L

    2008-01-01

    The investigation of complex physical systems utilizing sophisticated computer models has become commonplace with the advent of modern computational facilities. In many applications, experimental data on the physical systems of interest is extremely expensive to obtain and hence is available in limited quantities. The mathematical systems implemented by the computer models often include parameters having uncertain values. This article provides an overview of statistical methodology for calibrating uncertain parameters to experimental data. This approach assumes that prior knowledge about such parameters is represented as a probability distribution, and the experimental data is used to refine our knowledge about these parameters, expressed as a posterior distribution. Uncertainty quantification for computer model predictions of the physical system are based fundamentally on this posterior distribution. Computer models are generally not perfect representations of reality for a variety of reasons, such as inadequacies in the physical modeling of some processes in the dynamic system. The statistical model includes components that identify and adjust for such discrepancies. A standard approach to statistical modeling of computer model output for unsampled inputs is introduced for the common situation where limited computer model runs are available. Extensions of the statistical methods to functional outputs are available and discussed briefly.

  11. Final Report: Performance Modeling Activities in PERC2

    SciTech Connect (OSTI)

    Allan Snavely

    2007-02-25

    Progress in Performance Modeling for PERC2 resulted in: • Automated modeling tools that are robust, able to characterize large applications running at scale while simultaneously simulating the memory hierarchies of mul-tiple machines in parallel. • Porting of the requisite tracer tools to multiple platforms. • Improved performance models by using higher resolution memory models that ever before. • Adding control-flow and data dependency analysis to the tracers used in perform-ance tools. • Exploring and developing several new modeling methodologies. • Using modeling tools to develop performance models for strategic codes. • Application of modeling methodology to make a large number of “blind” per-formance predictions on certain mission partner applications, targeting most cur-rently available system architectures. • Error analysis to correct some systematic biases encountered as part of the large-scale blind prediction exercises. • Addition of instrumentation capabilities for communication libraries other than MPI. • Dissemination the tools and modeling methods to several mission partners, in-cluding DoD HPCMO and two DARPA HPCS vendors (Cray and IBM), as well as to the wider HPC community via a series of tutorials.

  12. The Potosi Reservoir Model 2013

    SciTech Connect (OSTI)

    Adushita, Yasmin; Smith, Valerie; Leetaru, Hannes

    2014-09-30

    As a part of a larger project co-funded by the United States Department of Energy (US DOE) to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon as potential targets for carbon sequestration in the Illinois and Michigan Basins, the Illinois Clean Coal Institute (ICCI) requested Schlumberger to evaluate the potential injectivity and carbon dioxide (CO2) plume size of the Cambrian Potosi Formation. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data from the US DOE-funded Illinois Basin–Decatur Project (IBDP) being conducted by the Midwest Geological Sequestration Consortium in Macon County, Illinois. In 2010, technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the VW1 and the CCS1 wells, structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for Potosi Formation. Intention was for two million tons per annum (MTPA) of CO2 to be injected for 20 years. In the preceding, the 2010 Potosi heterogeneous model (referred to as the "Potosi Dynamic Model 2010" in this topical report) was re-run using a new injection scenario; 3.2 MTPA for 30 years. The extent of the Potosi Dynamic Model 2010, however, appeared too small for the new injection target. It was not sufficiently large enough to accommodate the evolution of the plume. The new model, Potosi Dynamic Model 2013a, was built by extending the Potosi Dynamic Model 2010 grid to 30 miles x 30 miles (48.3km x48.3km), while preserving all property modeling workflows and layering. This model was retained as the base case of Potosi Dynamic Model 2013a. The Potosi reservoir model was updated to take into account the new data from the verification well VW2 which was drilled in 2012. The new porosity and permeability modeling was

  13. Dummy Run of Quality Assurance Program in a Phase 3 Randomized Trial Investigating the Role of Internal Mammary Lymph Node Irradiation in Breast Cancer Patients: Korean Radiation Oncology Group 08-06 Study

    SciTech Connect (OSTI)

    Chung, Yoonsun; Kim, Jun Won; Shin, Kyung Hwan; Kim, Su Ssan; Ahn, Sung-Ja; Park, Won; Lee, Hyung-Sik; Kim, Dong Won; Lee, Kyu Chan; Suh, Hyun Suk; Kim, Jin Hee; Shin, Hyun Soo; Kim, Yong Bae; Suh, Chang-Ok

    2015-02-01

    Purpose: The Korean Radiation Oncology Group (KROG) 08-06 study protocol allowed radiation therapy (RT) technique to include or exclude breast cancer patients from receiving radiation therapy to the internal mammary lymph node (IMN). The purpose of this study was to assess dosimetric differences between the 2 groups and potential influence on clinical outcome by a dummy run procedure. Methods and Materials: All participating institutions were asked to produce RT plans without irradiation (Arm 1) and with irradiation to the IMN (Arm 2) for 1 breast-conservation treatment case (breast-conserving surgery [BCS]) and 1 mastectomy case (modified radical mastectomy [MRM]) whose computed tomography images were provided. We assessed interinstitutional variations in IMN delineation and evaluated the dose-volume histograms of the IMN and normal organs. A reference IMN was delineated by an expert panel group based on the study guidelines. Also, we analyzed the potential influence of actual dose variation observed in this study on patient survival. Results: Although physicians intended to exclude the IMN within the RT field, the data showed almost 59.0% of the prescribed dose was delivered to the IMN in Arm 1. However, the mean doses covering the IMN in Arm 1 and Arm 2 were significantly different for both cases (P<.001). Due to the probability of overdose in Arm 1, the estimated gain in 7-year disease-free survival rate would be reduced from 10% to 7.9% for BCS cases and 7.1% for MRM cases. The radiation doses to the ipsilateral lung, heart, and coronary artery were lower in Arm 1 than in Arm 2. Conclusions: Although this dummy run study indicated that a substantial dose was delivered to the IMN, even in the nonirradiation group, the dose differences between the 2 groups were statistically significant. However, this dosimetric profile should be studied further with actual patient samples and be taken into consideration when analyzing clinical outcomes according to IMN

  14. Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)

    SciTech Connect (OSTI)

    Turchi, C. S.; Heath, G. A.

    2013-02-01

    This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The reference plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.

  15. On linking an Earth system model to the equilibrium carbon representation of an economically optimizing land use model

    SciTech Connect (OSTI)

    Bond-Lamberty, Benjamin; Calvin, Katherine V.; Jones, Andrew D.; Mao, Jiafu; Patel, Pralit L.; Shi, Xiaoying; Thomson, Allison M.; Thornton, Peter E.; Zhou, Yuyu

    2014-01-01

    Human activities are significantly altering biogeochemical cycles at the global scale, posing a significant problem for earth system models (ESMs), which may incorporate static land-use change inputs but do not actively simulate policy or economic forces. One option to address this problem is a to couple an ESM with an economically oriented integrated assessment model. Here we have implemented and tested a coupling mechanism between the carbon cycles of an ESM (CLM) and an integrated assessment (GCAM) model, examining the best proxy variables to share between the models, and quantifying our ability to distinguish climate- and land-use-driven flux changes. CLMs net primary production and heterotrophic respiration outputs were found to be the most robust proxy variables by which to manipulate GCAMs assumptions of long-term ecosystem steady state carbon, with short-term forest production strongly correlated with long-term biomass changes in climate-change model runs. By leveraging the fact that carbon-cycle effects of anthropogenic land-use change are short-term and spatially limited relative to widely distributed climate effects, we were able to distinguish these effects successfully in the model coupling, passing only the latter to GCAM. By allowing climate effects from a full earth system model to dynamically modulate the economic and policy decisions of an integrated assessment model, this work provides a foundation for linking these models in a robust and flexible framework capable of examining two-way interactions between human and earth system processes.

  16. Comparing Simulation Results with Traditional PRA Model on a Boiling Water Reactor Station Blackout Case Study

    SciTech Connect (OSTI)

    Zhegang Ma; Diego Mandelli; Curtis Smith

    2011-07-01

    A previous study used RELAP and RAVEN to conduct a boiling water reactor station black-out (SBO) case study in a simulation based environment to show the capabilities of the risk-informed safety margin characterization methodology. This report compares the RELAP/RAVEN simulation results with traditional PRA model results. The RELAP/RAVEN simulation run results were reviewed for their input parameters and output results. The input parameters for each simulation run include various timing information such as diesel generator or offsite power recovery time, Safety Relief Valve stuck open time, High Pressure Core Injection or Reactor Core Isolation Cooling fail to run time, extended core cooling operation time, depressurization delay time, and firewater injection time. The output results include the maximum fuel clad temperature, the outcome, and the simulation end time. A traditional SBO PRA model in this report contains four event trees that are linked together with the transferring feature in SAPHIRE software. Unlike the usual Level 1 PRA quantification process in which only core damage sequences are quantified, this report quantifies all SBO sequences, whether they are core damage sequences or success (i.e., non core damage) sequences, in order to provide a full comparison with the simulation results. Three different approaches were used to solve event tree top events and quantify the SBO sequences: W process flag, default process flag without proper adjustment, and default process flag with adjustment to account for the success branch probabilities. Without post-processing, the first two approaches yield incorrect results with a total conditional probability greater than 1.0. The last approach accounts for the success branch probabilities and provides correct conditional sequence probabilities that are to be used for comparison. To better compare the results from the PRA model and the simulation runs, a simplified SBO event tree was developed with only four top

  17. Programming models

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    NERSC-8 Procurement Programming models File Storage and I/O Edison PDSF Genepool Queues and Scheduling Retired Systems Storage & File Systems Application Performance Data & Analytics Job Logs & Statistics Training & Tutorials Software Policies User Surveys NERSC Users Group Help Staff Blogs Request Repository Mailing List Need Help? Out-of-hours Status and Password help Call operations: 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov

  18. Competency Models

    Energy.gov [DOE]

    An industry-validated competency model is an excellent tool for identifying the skills needed to succeed in a particular job, developing curricula to teach them, and benchmarking their attainment. Particularly valuable in dynamic industries like solar energy, a competency framework is critical to any training program attempting to advance lower-skilled workers into navigable career pathways, or transition higher skilled workers into new industry sectors.

  19. Nuclear Models

    SciTech Connect (OSTI)

    Fossion, Ruben [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico D. F., C.P. 04510 (Mexico)

    2010-09-10

    The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction).Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.

  20. VISION Model

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    VISION Model (Argonne National Laboratory) Objectives To provide estimates of the potential energy use, oil use, and carbon emission impacts of advanced light- and heavy-duty highway vehicle technologies and alternative fuels, up to the year 2100. Key Attributes & Strengths Uses vehicle survival and age-dependent usage characteristics to project total light- and heavy-vehicle stock, total vehicle miles of travel, and total energy use by technology and fuel type by year, given market

  1. A Programming Model Performance Study Using the NAS Parallel Benchmarks

    DOE PAGES-Beta [OSTI]

    Shan, Hongzhang; Blagojević, Filip; Min, Seung-Jai; Hargrove, Paul; Jin, Haoqiang; Fuerlinger, Karl; Koniges, Alice; Wright, Nicholas J.

    2010-01-01

    Harnessing the power of multicore platforms is challenging due to the additional levels of parallelism present. In this paper we use the NAS Parallel Benchmarks to study three programming models, MPI, OpenMP and PGAS to understand their performance and memory usage characteristics on current multicore architectures. To understand these characteristics we use the Integrated Performance Monitoring tool and other ways to measure communication versus computation time, as well as the fraction of the run time spent in OpenMP. The benchmarks are run on two different Cray XT5 systems and an Infiniband cluster. Our results show that in general the threemore » programming models exhibit very similar performance characteristics. In a few cases, OpenMP is significantly faster because it explicitly avoids communication. For these particular cases, we were able to re-write the UPC versions and achieve equal performance to OpenMP. Using OpenMP was also the most advantageous in terms of memory usage. Also we compare performance differences between the two Cray systems, which have quad-core and hex-core processors. We show that at scale the performance is almost always slower on the hex-core system because of increased contention for network resources.« less

  2. Mixed dark matter in left-right symmetric models

    DOE PAGES-Beta [OSTI]

    Berlin, Asher; Fox, Patrick J.; Hooper, Dan; Mohlabeng, Gopolang

    2016-06-08

    Motivated by the recently reported diboson and dijet excesses in Run 1 data at ATLAS and CMS, we explore models of mixed dark matter in left-right symmetric theories. In this study, we calculate the relic abundance and the elastic scattering cross section with nuclei for a number of dark matter candidates that appear within the fermionic multiplets of left-right symmetric models. In contrast to the case of pure multiplets, WIMP-nucleon scattering proceeds at tree-level, and hence the projected reach of future direct detection experiments such as LUX-ZEPLIN and XENON1T will cover large regions of parameter space for TeV-scale thermal darkmore » matter. Decays of the heavy charged W(') boson to particles in the dark sector can potentially shift the right-handed gauge coupling to larger values when fixed to the rate of the Run 1 excesses, moving towards the theoretically attractive scenario, gR = gL. Furthermore, this region of parameter space may be probed by future collider searches for new Higgs bosons or electroweak fermions.« less

  3. Modeling needs for very large systems.

    SciTech Connect (OSTI)

    Stein, Joshua S.

    2010-10-01

    Most system performance models assume a point measurement for irradiance and that, except for the impact of shading from nearby obstacles, incident irradiance is uniform across the array. Module temperature is also assumed to be uniform across the array. For small arrays and hourly-averaged simulations, this may be a reasonable assumption. Stein is conducting research to characterize variability in large systems and to develop models that can better accommodate large system factors. In large, multi-MW arrays, passing clouds may block sunlight from a portion of the array but never affect another portion. Figure 22 shows that two irradiance measurements at opposite ends of a multi-MW PV plant appear to have similar irradiance (left), but in fact the irradiance is not always the same (right). Module temperature may also vary across the array, with modules on the edges being cooler because they have greater wind exposure. Large arrays will also have long wire runs and will be subject to associated losses. Soiling patterns may also vary, with modules closer to the source of soiling, such as an agricultural field, receiving more dust load. One of the primary concerns associated with this effort is how to work with integrators to gain access to better and more comprehensive data for model development and validation.

  4. Anaerobic digestion analysis model: User`s manual

    SciTech Connect (OSTI)

    Ruth, M.; Landucci, R.

    1994-08-01

    The Anaerobic Digestion Analysis Model (ADAM) has been developed to assist investigators in performing preliminary economic analyses of anaerobic digestion processes. The model, which runs under Microsoft Excel{trademark}, is capable of estimating the economic performance of several different waste digestion process configurations that are defined by the user through a series of option selections. The model can be used to predict required feedstock tipping fees, product selling prices, utility rates, and raw material unit costs. The model is intended to be used as a tool to perform preliminary economic estimates that could be used to carry out simple screening analyses. The model`s current parameters are based on engineering judgments and are not reflective of any existing process; therefore, they should be carefully evaluated and modified if necessary to reflect the process under consideration. The accuracy and level of uncertainty of the estimated capital investment and operating costs are dependent on the accuracy and level of uncertainty of the model`s input parameters. The underlying methodology is capable of producing results accurate to within {+-} 30% of actual costs.

  5. Building 235-F Goldsim Fate And Transport Model

    SciTech Connect (OSTI)

    Taylor, G. A.; Phifer, M. A.

    2012-09-14

    Savannah River National Laboratory (SRNL) personnel, at the request of Area Completion Projects (ACP), evaluated In-Situ Disposal (ISD) alternatives that are under consideration for deactivation and decommissioning (D&D) of Building 235-F and the Building 294-2F Sand Filter. SRNL personnel developed and used a GoldSim fate and transport model, which is consistent with Musall 2012, to evaluate relative to groundwater protection, ISD alternatives that involve either source removal and/or the grouting of portions or all of 235-F. This evaluation was conducted through the development and use of a Building 235-F GoldSim fate and transport model. The model simulates contaminant release from four 235-F process areas and the 294-2F Sand Filter. In addition, it simulates the fate and transport through the vadose zone, the Upper Three Runs (UTR) aquifer, and the Upper Three Runs (UTR) creek. The model is designed as a stochastic model, and as such it can provide both deterministic and stochastic (probabilistic) results. The results show that the median radium activity concentrations exceed the 5 ?Ci/L radium MCL at the edge of the building for all ISD alternatives after 10,000 years, except those with a sufficient amount of inventory removed. A very interesting result was that grouting was shown to basically have minimal effect on the radium activity concentration. During the first 1,000 years grouting may have some small positive benefit relative to radium, however after that it may have a slightly deleterious effect. The Pb-210 results, relative to its 0.06 ?Ci/L PRG, are essentially identical to the radium results, but the Pb-210 results exhibit a lesser degree of exceedance. In summary, some level of inventory removal will be required to ensure that groundwater standards are met.

  6. Community Land Model Version 3.0 (CLM3.0) Developer's Guide

    SciTech Connect (OSTI)

    Hoffman, FM

    2004-12-21

    This document describes the guidelines adopted for software development of the Community Land Model (CLM) and serves as a reference to the entire code base of the released version of the model. The version of the code described here is Version 3.0 which was released in the summer of 2004. This document, the Community Land Model Version 3.0 (CLM3.0) User's Guide (Vertenstein et al., 2004), the Technical Description of the Community Land Model (CLM) (Oleson et al., 2004), and the Community Land Model's Dynamic Global Vegetation Model (CLM-DGVM): Technical Description and User's Guide (Levis et al., 2004) provide the developer, user, or researcher with details of implementation, instructions for using the model, a scientific description of the model, and a scientific description of the Dynamic Global Vegetation Model integrated with CLM respectively. The CLM is a single column (snow-soil-vegetation) biogeophysical model of the land surface which can be run serially (on a laptop or personal computer) or in parallel (using distributed or shared memory processors or both) on both vector and scalar computer architectures. Written in Fortran 90, CLM can be run offline (i.e., run in isolation using stored atmospheric forcing data), coupled to an atmospheric model (e.g., the Community Atmosphere Model (CAM)), or coupled to a climate system model (e.g., the Community Climate System Model Version 3 (CCSM3)) through a flux coupler (e.g., Coupler 6 (CPL6)). When coupled, CLM exchanges fluxes of energy, water, and momentum with the atmosphere. The horizontal land surface heterogeneity is represented by a nested subgrid hierarchy composed of gridcells, landunits, columns, and plant functional types (PFTs). This hierarchical representation is reflected in the data structures used by the model code. Biophysical processes are simulated for each subgrid unit (landunit, column, and PFT) independently, and prognostic variables are maintained for each subgrid unit. Vertical heterogeneity

  7. Running Jobs under SLURM on Babbage

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    More details on on SLURM keywords, job control and monitoring commands, etc. can be found at the SLURM Introduction (with links to Monitoring Jobs under SLURM and MoabTorque to ...

  8. 05-RunningJobs-Turner.pdf

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    David Turner" NERSC User Services Group" New User Training" July 15, 2014 Jobs at NERSC * Most j obs a re p arallel, u sing 1 0s t o 1 00,000+ c ores * Produc8on r uns e xecute i n ...

  9. Run 1147 Event 0. August 6

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    34 cm 4

  10. Run 1147 Event 0. August 6

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    200 cm 20

  11. Run 1148 Event 1016. August 6

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1016. August 6 th 2015 17:15 20 cm 20

  12. Run 1148 Event 778. August 6

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    778. August 6 th 2015 17:16 40 cm 26

  13. Run 1153 Event 40. August 6

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    53 Event 40. August 6 th 2015 21:07 40 cm 24

  14. Run Spear Down Low-alpha Shutdown

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Spear Down Low-alpha Shutdown Maintenance / AP University Holidays Sep Oct S 1 Mar Apr May Jun Jul Aug 4/6/2012 SPEAR OPERATING SCHEDULE 2011-2012 2011 2012 Sep Oct Nov Dec Jan Feb 1 2 M 3 1 1 1 S 2 4 1 3 1 AP 2 2 2 W 5 2 4 2 AP AP 3 3 AP 1 3 T 3 5 3 4 1 4 2 4 1 6 4 F 2 7 5 2 1 5 3 1 5 2 T 1 6 4 S 3 8 5 3 7 5 4 1 6 3 2 6 4 2 6 8 5 S 4 9 6 8 6 low 2 7 4 3 7 5 3 7 5 9 MA MA 9 7 M 5 10 3 8 5 4 alpha 8 6 4 T 6 11 8 6 10 8 7 4 9 MA 6 5 9 MA AP 7 13 11 9 W 7 12 9 5 10 AP 7 6 AP 10 8 6 AP 10 AP 7 AP 13

  15. Running Greener: E-Mobility at SAP

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CO 2 neutral Reduce consumption of fossil fuels and noise Environmental Mobility Unique battery subsidy as benefit Enjoy free charging exclusively at SAP's charging spots...

  16. Running River PLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    6HQ Sector: Hydro Product: UK-based private equity investor that has interests in mini-hydro power generation assets. Coordinates: 51.506325, -0.127144 Show Map Loading...

  17. Running against hunger | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Texas Panhandle and to raise money for the High Plains Food Bank. On the route, Logan and Stokes stopped talk to the students from Highland Park High School in Amarillo, Texas, ...

  18. Blue running of the primordial tensor spectrum

    SciTech Connect (OSTI)

    Gong, Jinn-Ouk

    2014-07-01

    We examine the possibility of positive spectral index of the power spectrum of the primordial tensor perturbation produced during inflation in the light of the detection of the B-mode polarization by the BICEP2 collaboration. We find a blue tilt is in general possible when the slow-roll parameter decays rapidly. We present two known examples in which a positive spectral index for the tensor power spectrum can be obtained. We also briefly discuss other consistency tests for further studies on inflationary dynamics.

  19. 06 Run 6-16-05.xls

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    4 MA MA 15 11 AP 7 14 12 5 26 16 16 18 20 22 21 Conf 17 18 19 20 21 13 14 User 16 15 21 22 23 1 1 5 AP 2 14 5 6 13 9 18 14 17 16 15 16 23 24 27 30 27 28 31 Oct Sep 26 BL May Aug...

  20. FY2003 Run Sched.xls

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Robleto, B. Scott 31 29 2002 2003 1 2 3 N 13 4 2002 2003 1 2 3 29 30 31 10 5 6 5 6 7 8 9 22 23 MAAP AP A E 5 17 18 19 10 11 12 9 MAAP 18 Startup 24 23 22 21 16 17 15 1 2 3 15 10...

  1. NERSC_Capability_Run_Rules.docx

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    un t he b enchmark w ill b e c hosen b y t he vendor t o p rovide t he b est p erformance. ... e nabled b y i ncreasing t he n umber o f k --- points u sed i n t he l arge t est c ase. ...

  2. SunRun Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Place: San Francisco, California Zip: 94103 Region: Bay Area Sector: Solar Product: Solar installer Website: www.sunrunhome.com Coordinates: 37.7871306, -122.4041075...

  3. Supersymmetric Dark Matter after LHC Run 1

    SciTech Connect (OSTI)

    Bagnaschi, E. A.; Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M. J.; Ellis, J. R.; Flacher, H.; Heinemeyer, S.; Isidori, G.; Malik, S.; Santos, D. Martinez; Olive, K. A.; Sakurai, K.; de Vries, K. J.; Weiglein, G.

    2015-10-23

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, χ~01, assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau τ~1, stop t~1 or chargino χ1, resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the τ~1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for /ET events and long-lived charged particles, whereas theirH / A funnel, focus-point and χ1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. Furthermore, we find that the dominant DM mechanism in our pMSSM10 analysis is χ~±1 coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.

  4. Supersymmetric Dark Matter after LHC Run 1

    DOE PAGES-Beta [OSTI]

    Bagnaschi, E. A.; Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M. J.; Ellis, J. R.; Flacher, H.; Heinemeyer, S.; Isidori, G.; et al

    2015-10-23

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, χ~01, assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau τ~1, stop t~1 or chargino χ~±1, resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-pointmore » region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the τ~1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for /ET events and long-lived charged particles, whereas theirH / A funnel, focus-point and χ~±1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. Furthermore, we find that the dominant DM mechanism in our pMSSM10 analysis is χ~±1 coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.« less

  5. Running dry at the power plant

    SciTech Connect (OSTI)

    Barker, B.

    2007-07-01

    In the future, competition for water will require electricity generators in the United States to address conservation of fresh water. There are a number of avenues to consider. One is to use dry-cooling and dry-scrubbing technologies. Another is to find innovative ways to recycle water within the power plant itself. A third is to find and use alternative sources of water, including wastewater supplies from municipalities, agricultural runoff, blackish groundwater, or seawater. Dry technologies are usually more capital intensive and typically exact a penalty in terms of plant performance, which in turn raises the cost of power generation. On the other hand, if the cost of water increases in response to greater demand, the cost differences between dry and wet technologies will be reduced. EPRI has a substantial R & D programme evaluating new water-conserving power plant technologies, improving dry and hybrid cooling technologies, reducing water losses in cooling towers, using degraded water sources and developing resource assessment and management decision support tools. 5 refs., 10 figs.

  6. Running Dry at the Power Plant

    Office of Energy Efficiency and Renewable Energy (EERE)

    Securing sufficient supplies of fresh water for societal, industrial, and agricultural uses while protecting the natural environment is becoming increasingly difficult in many parts of the United...

  7. Running Jobs | Argonne Leadership Computing Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    script job environment: COBALTPARTNAME - physical partition assigned by cobalt (e.g. MIR-XXXXX-YYYYY-512) COBALTPARTSIZE - size of the partition assigned by cobalt (e.g. 512)...

  8. 2005_Run 3-29-05.xls

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    28 14 17 18 19 16 2 24 31 29 30 26 27 28 27 Dwn - 12pm 30 1 6 3 1 4 2 2 3 5 3 2 H 6 O D 7 1 S 1 3 U T 4 2 7 3 4 6 5 7 11 9 9 10 9 8 7 4 29 1 11 16 6 7 31 30 29 30 29 24 19 12 18 17 22 20 13 11 9 10 MA 12 10 3 1 2 1 4 2 N 9 11 10 6 8 AP 10 MA 15 17 AP MA 5 2 4 4 3 7 4 13 11 15 12 24 16 23 19 16 20 22 15 22 23 24 17 27 26 24 AP 23 22 28 25 29 30 27 26 25 24 30 28 27 2005 2006 28 29 30 31 26 19 11 14 15 16 13 12 17 14 12 18 15 8 8 8 14 13 13 2 5 10 3 5 4 3 1 6 7 5 2 4 5 W 4 1 3 1 2 21 23 10 12 11 9

  9. Running Greener: E-Mobility at SAP

    Energy.gov (indexed) [DOE]

    ... of 48 months At SAP charge 100% renewable energy CO 2 neutral Reduce consumption of ... E-Car initiatives planned: Austria, Vienna Bulgaria, Sofia France, Paris Hungary, ...

  10. Modeling of thermal storage systems in MILP distributed energy resource models

    DOE PAGES-Beta [OSTI]

    Steen, David; Stadler, Michael; Cardoso, Gonçalo; Groissböck, Markus; DeForest, Nicholas; Marnay, Chris

    2014-08-04

    Thermal energy storage (TES) and distributed generation technologies, such as combined heat and power (CHP) or photovoltaics (PV), can be used to reduce energy costs and decrease CO2 emissions from buildings by shifting energy consumption to times with less emissions and/or lower energy prices. To determine the feasibility of investing in TES in combination with other distributed energy resources (DER), mixed integer linear programming (MILP) can be used. Such a MILP model is the well-established Distributed Energy Resources Customer Adoption Model (DER-CAM); however, it currently uses only a simplified TES model to guarantee linearity and short run-times. Loss calculations aremore » based only on the energy contained in the storage. This paper presents a new DER-CAM TES model that allows improved tracking of losses based on ambient and storage temperatures, and compares results with the previous version. A multi-layer TES model is introduced that retains linearity and avoids creating an endogenous optimization problem. The improved model increases the accuracy of the estimated storage losses and enables use of heat pumps for low temperature storage charging. Ultimately,results indicate that the previous model overestimates the attractiveness of TES investments for cases without possibility to invest in heat pumps and underestimates it for some locations when heat pumps are allowed. Despite a variation in optimal technology selection between the two models, the objective function value stays quite stable, illustrating the complexity of optimal DER sizing problems in buildings and microgrids.« less

  11. Searches for Higgs bosons beyond the Standard Model at the Tevatron

    SciTech Connect (OSTI)

    Biscarat, Catherine; /Lancaster U.

    2004-08-01

    Preliminary results from the CDF and D0 Collaborations on the searches for Higgs bosons beyond the Standard Model at the Run II Tevatron are reviewed. These results are based on datasets corresponding to an integrated luminosity of 100-200 pb{sup -1} collected from proton anti-proton collisions at a center of mass energy of 1.96 TeV. No evidence of signal is observed and limits on Higgs bosons production cross sections times branching ratio, couplings and masses from various models are set.

  12. N Reactor core heatup sensitivity study for the 32-inch unit cell model

    SciTech Connect (OSTI)

    Martin, F.; Zimmerman, B.; Heard, F.

    1988-02-01

    A number of N Reactor core heatup studies have been performed using the TRUMP-BD computer code. These studies were performed to address questions concerning the dependency of results on potential variations in the material properties and/or modeling assumptions. This report described and documents a series of 31 TRUMP-BD runs that were performed to determine the sensitivity of calculated inner-fuel temperatures to a variety of TRUMP input parameters and also to a change in the node density in a high-temperature-gradient region. The results of this study are based on the 32-in. model. 18 refs., 17 figs., 2 tab.

  13. A bounce-averaged kinetic model of the ring current ion population

    SciTech Connect (OSTI)

    Jordanova, V.K.; Kozyra, J.U.; Khazanov, G.V.; Nagy, A.F.; Rasmussen, C.E.; Fok, M.C.

    1994-12-15

    A bounce-averaged ring current kinetic model for arbitrary pitch angle, including losses due to charge exchange and Coulomb collisions along ion drift paths, is developed and solved numerically. Results from simplified model runs, intended to illustrate the effects of adiabatic drifts and collisional losses on the proton population, are presented. The processes of (i) particle acceleration under the conditions of time-independent magnetospheric electric fields; (ii) a predominant loss of particles with small pitch angles due to charge exchange; and (iii) a buildup of a low-energy population caused by the Coulomb drag energy degradation, are discussed. 21 refs., 1 fig.

  14. Junior Solar Sprint - An Introduction to Building a Model Solar Car

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    8 Revised 8/23/01 An Introduction to Building a Model Solar Car Student Guide for the Junior Solar Sprint Competition Produced by: Krisztina Holly and Akhil Madhani 2 Introduction Welcome to Junior Solar Sprint! By competing in Junior Solar Sprint, you will learn how to make your own model solar car that will run entirely from the power of the sun. Design You will experience first-hand the process of design. When you design your car, you will start with some ideas in your head and turn then into

  15. InMAP: a new model for air pollution interventions

    DOE PAGES-Beta [OSTI]

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    2015-10-29

    Mechanistic air pollution models are essential tools in air quality management. Widespread use of such models is hindered, however, by the extensive expertise or computational resources needed to run most models. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations the air pollution outcome generally causing the largest monetized health damages attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical andmorechemical information from the output of a state-of-the-science chemical transport model (WRF-Chem) within an Eulerian modeling framework, to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. InMAP uses a variable resolution grid that focuses on human exposures by employing higher spatial resolution in urban areas and lower spatial resolution in rural and remote locations and in the upper atmosphere; and by directly calculating steady-state, annual average concentrations. In comparisons run here, InMAP recreates WRF-Chem predictions of changes in total PM2.5 concentrations with population-weighted mean fractional error (MFE) and bias (MFB) R2 ~ 0.99. Among individual PM2.5 species, the best predictive performance is for primary PM2.5 (MFE: 16 %; MFB: 13 %) and the worst predictive performance is for particulate nitrate (MFE: 119 %; MFB: 106 %). Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. Features planned for future model releases include a larger spatial domain, more temporal information, and the ability to predict ground-level ozone (O3) concentrations. The In

  16. Supercomputer Assisted Generation of Machine Learning Agents for the Calibration of Building Energy Models

    SciTech Connect (OSTI)

    Sanyal, Jibonananda; New, Joshua Ryan; Edwards, Richard

    2013-01-01

    Building Energy Modeling (BEM) is an approach to model the energy usage in buildings for design and retrot pur- poses. EnergyPlus is the agship Department of Energy software that performs BEM for dierent types of buildings. The input to EnergyPlus can often extend in the order of a few thousand parameters which have to be calibrated manu- ally by an expert for realistic energy modeling. This makes it challenging and expensive thereby making building en- ergy modeling unfeasible for smaller projects. In this paper, we describe the \\Autotune" research which employs machine learning algorithms to generate agents for the dierent kinds of standard reference buildings in the U.S. building stock. The parametric space and the variety of building locations and types make this a challenging computational problem necessitating the use of supercomputers. Millions of En- ergyPlus simulations are run on supercomputers which are subsequently used to train machine learning algorithms to generate agents. These agents, once created, can then run in a fraction of the time thereby allowing cost-eective cali- bration of building models.

  17. Model Components of the Certification Framework for Geologic Carbon Sequestration Risk Assessment

    SciTech Connect (OSTI)

    Oldenburg, Curtis M.; Bryant, Steven L.; Nicot, Jean-Philippe; Kumar, Navanit; Zhang, Yingqi; Jordan, Preston; Pan, Lehua; Granvold, Patrick; Chow, Fotini K.

    2009-06-01

    We have developed a framework for assessing the leakage risk of geologic carbon sequestration sites. This framework, known as the Certification Framework (CF), emphasizes wells and faults as the primary potential leakage conduits. Vulnerable resources are grouped into compartments, and impacts due to leakage are quantified by the leakage flux or concentrations that could potentially occur in compartments under various scenarios. The CF utilizes several model components to simulate leakage scenarios. One model component is a catalog of results of reservoir simulations that can be queried to estimate plume travel distances and times, rather than requiring CF users to run new reservoir simulations for each case. Other model components developed for the CF and described here include fault characterization using fault-population statistics; fault connection probability using fuzzy rules; well-flow modeling with a drift-flux model implemented in TOUGH2; and atmospheric dense-gas dispersion using a mesoscale weather prediction code.

  18. Hyperspectral Aquatic Radiative Transfer Modeling Using a High-Performance Cluster Computing-Based Approach

    SciTech Connect (OSTI)

    Filippi, Anthony M; Bhaduri, Budhendra L; Naughton, III, Thomas J; King, Amy L; Scott, Stephen L; Guneralp, Inci

    2012-01-01

    Abstract For aquatic studies, radiative transfer (RT) modeling can be used to compute hyperspectral above-surface remote sensing reflectance that can be utilized for inverse model development. Inverse models can provide bathymetry and inherent-and bottom-optical property estimation. Because measured oceanic field/organic datasets are often spatio-temporally sparse, synthetic data generation is useful in yielding sufficiently large datasets for inversion model development; however, these forward-modeled data are computationally expensive and time-consuming to generate. This study establishes the magnitude of wall-clock-time savings achieved for performing large, aquatic RT batch-runs using parallel computing versus a sequential approach. Given 2,600 simulations and identical compute-node characteristics, sequential architecture required ~100 hours until termination, whereas a parallel approach required only ~2.5 hours (42 compute nodes) a 40x speed-up. Tools developed for this parallel execution are discussed.

  19. Hyperspectral Aquatic Radiative Transfer Modeling Using a High-Performance Cluster Computing Based Approach

    SciTech Connect (OSTI)

    Fillippi, Anthony; Bhaduri, Budhendra L; Naughton, III, Thomas J; King, Amy L; Scott, Stephen L; Guneralp, Inci

    2012-01-01

    For aquatic studies, radiative transfer (RT) modeling can be used to compute hyperspectral above-surface remote sensing reflectance that can be utilized for inverse model development. Inverse models can provide bathymetry and inherent- and bottom-optical property estimation. Because measured oceanic field/organic datasets are often spatio-temporally sparse, synthetic data generation is useful in yielding sufficiently large datasets for inversion model development; however, these forward-modeled data are computationally expensive and time-consuming to generate. This study establishes the magnitude of wall-clock-time savings achieved for performing large, aquatic RT batch-runs using parallel computing versus a sequential approach. Given 2,600 simulations and identical compute-node characteristics, sequential architecture required {approx}100 hours until termination, whereas a parallel approach required only {approx}2.5 hours (42 compute nodes) - a 40x speed-up. Tools developed for this parallel execution are discussed.

  20. Simplified models for Higgs physics: singlet scalar and vector-like quark phenomenology

    DOE PAGES-Beta [OSTI]

    Dolan, Matthew J.; Hewett, J. L.; Krämer, M.; Rizzo, T. G.

    2016-07-08

    Simplified models provide a useful tool to conduct the search and exploration of physics beyond the Standard Model in a model-independent fashion. In this study, we consider the complementarity of indirect searches for new physics in Higgs couplings and distributions with direct searches for new particles, using a simplified model which includes a new singlet scalar resonance and vector-like fermions that can mix with the SM top-quark. We fit this model to the combined ATLAS and CMS 125 GeV Higgs production and coupling measurements and other precision electroweak constraints, and explore in detail the effects of the new matter contentmore » upon Higgs production and kinematics. Finally, we highlight some novel features and decay modes of the top partner phenomenology, and discuss prospects for Run II.« less

  1. Global and Regional Ecosystem Modeling: Databases of Model Drivers and Validation Measurements

    SciTech Connect (OSTI)

    Olson, R.J.

    2002-03-19

    Understanding global-scale ecosystem responses to changing environmental conditions is important both as a scientific question and as the basis for making policy decisions. The confidence in regional models depends on how well the field data used to develop the model represent the region of interest, how well the environmental model driving variables (e.g., vegetation type, climate, and soils associated with a site used to parameterize ecosystem models) represent the region of interest, and how well regional model predictions agree with observed data for the region. To assess the accuracy of global model forecasts of terrestrial carbon cycling, two Ecosystem Model-Data Intercomparison (EMDI) workshops were held (December 1999 and April 2001). The workshops included 17 biogeochemical, satellite-driven, detailed process, and dynamic vegetation global model types. The approach was to run regional or global versions of the models for sites with net primary productivity (NPP) measurements (i.e., not fine-tuned for specific site conditions) and analyze the model-data differences. Extensive worldwide NPP data were assembled with model driver data, including vegetation, climate, and soils data, to perform the intercomparison. This report describes the compilation of NPP estimates for 2,523 sites and 5,164 0.5{sup o}-grid cells under the Global Primary Production Data Initiative (GPPDI) and the results of the EMDI review and outlier analysis that produced a refined set of NPP estimates and model driver data. The EMDI process resulted in 81 Class A sites, 933 Class B sites, and 3,855 Class C cells derived from the original synthesis of NPP measurements and associated driver data. Class A sites represent well-documented study sites that have complete aboveground and below ground NPP measurements. Class B sites represent more numerous ''extensive'' sites with less documentation and site-specific information available. Class C cells represent estimates of NPP for 0.5{sup o

  2. Diffractively produced Z bosons in the muon decay channel in p-pbar collisions at s**(1/2) = 1.96 TeV, and the measurement of the efficiency of the D0 Run II luminosity monitor

    SciTech Connect (OSTI)

    Edwards, Tamsin L

    2006-04-01

    The first analysis of diffractively produced Z bosons in the muon decay channel is presented, using data taken by the D0 detector at the Tevatron at {radical}s = 1.96 TeV. The data sample corresponds to an integrated luminosity of 109 pb{sup -1}. The diffractive sample is defined using the fractional momentum loss {zeta} of the intact proton or antiproton measured using the calorimeter and muon detector systems. In a sample of 10791 (Z/{gamma})* {yields} {mu}{sup +}{mu}{sup -} events, 24 diffractive candidate events are found with {zeta} < 0.02. The first work towards measuring the cross section times branching ratio for diffractive production of (Z/{gamma})* {yields} {mu}{sup +}{mu}{sup -} is presented for the kinematic region {zeta} < 0.02. The first work towards measuring the cross section times branching ratio for diffractive production of (Z/{gamma})* {yields} {mu}{sup +}{mu}{sup -} is presented for the kinematic region {zeta} < 0.02. The systematic uncertainties are not yet sufficiently understood to present the cross section result. In addition, the first measurement of the efficiency of the Run II D0 Luminosity Monitor is presented, which is used in all cross section measurements. The efficiency is: {var_epsilon}{sub LM} = (90.9 {+-} 1.8)%.

  3. A Search for Long-Lived Doubly-Charged Higgs Boson Production in anti-p p Collisions at sqrt(s)=1.96 TeV using RunII CDF

    SciTech Connect (OSTI)

    Tuttle, Joshua P.; /Duke U.

    2005-01-01

    We present a search for a quasi-stable doubly-charged Higgs particle at CDF using the Fermilab Tevatron for {radical}s = 1.96 TeV. The data presented are from approximately 290 pb{sup -1} of integrated luminosity collected using the upgraded Run 2 Collider Detector at Fermilab. These data were taken between February, 2002 and February, 2004. The long-lived decay products of Z's are selected in the central detector region (|{eta}| < 1.0). They select events triggered on a muon candidate having p{sub T} > 18 GeV in the event. After offline reconstruction, they require two isolated tracks (p{sub T} > 20 GeV) in the event, one of which points to a stub in a muon detector. Since the search is based on the increased ionization a doubly-charged particle would produce as it passes through the detector, they require that both tracks be highly ionizing for an event to be selected as a H{sup {+-}{+-}} candidate. No such candidates are observed in the data. They set a lower mass limit of 146 GeV on a quasi-stable H{sup {+-}{+-}} boson.

  4. The Madden-Julian oscillation in ECHAM4 coupled and uncoupled general circulation models

    DOE PAGES-Beta [OSTI]

    Sperber, Kenneth R.; Gualdi, Silvio; Legutke, Stephanie; Gayler, Veronika

    2005-06-29

    The Madden-Julian oscillation (MJO) dominates tropical variability on timescales of 30–70 days. During the boreal winter/spring, it is manifested as an eastward propagating disturbance, with a strong convective signature over the eastern hemisphere. The space–time structure of the MJO is analyzed using simulations with the ECHAM4 atmospheric general circulation model run with observed monthly mean sea-surface temperatures (SSTs), and coupled to three different ocean models. The coherence of the eastward propagation of MJO convection is sensitive to the ocean model to which ECHAM4 is coupled. For ECHAM4/OPYC and ECHO-G, models for which ~100 years of daily data is available, Montemore » Carlo sampling indicates that their metrics of eastward propagation are different at the 1% significance level. The flux-adjusted coupled simulations, ECHAM4/OPYC and ECHO-G, maintain a more realistic mean-state, and have a more realistic MJO simulation than the nonadjusted scale interaction experiment (SINTEX) coupled runs. The SINTEX model exhibits a cold bias in Indian Ocean and tropical West Pacific Ocean sea-surface temperature of ~0.5°C. This cold bias affects the distribution of time-mean convection over the tropical eastern hemisphere. Furthermore, the eastward propagation of MJO convection in this model is not as coherent as in the two models that used flux adjustment or when compared to an integration of ECHAM4 with prescribed observed SST. This result suggests that simulating a realistic basic state is at least as important as air–sea interaction for organizing the MJO. While all of the coupled models simulate the warm (cold) SST anomalies that precede (succeed) the MJO convection, the interaction of the components of the net surface heat flux that lead to these anomalies are different over the Indian Ocean. The ECHAM4/OPYC model in which the atmospheric model is run at a horizontal resolution of T42, has eastward propagating zonal wind anomalies and latent heat

  5. Predictive models of circulating fluidized bed combustors

    SciTech Connect (OSTI)

    Gidaspow, D.

    1992-07-01

    Steady flows influenced by walls cannot be described by inviscid models. Flows in circulating fluidized beds have significant wall effects. Particles in the form of clusters or layers can be seen to run down the walls. Hence modeling of circulating fluidized beds (CFB) without a viscosity is not possible. However, in interpreting Equations (8-1) and (8-2) it must be kept in mind that CFB or most other two phase flows are never in a true steady state. Then the viscosity in Equations (8-1) and (8-2) may not be the true fluid viscosity to be discussed next, but an Eddy type viscosity caused by two phase flow oscillations usually referred to as turbulence. In view of the transient nature of two-phase flow, the drag and the boundary layer thickness may not be proportional to the square root of the intrinsic viscosity but depend upon it to a much smaller extent. As another example, liquid-solid flow and settling of colloidal particles in a lamella electrosettler the settling process is only moderately affected by viscosity. Inviscid flow with settling is a good first approximation to this electric field driven process. The physical meaning of the particulate phase viscosity is described in detail in the chapter on kinetic theory. Here the conventional derivation resented in single phase fluid mechanics is generalized to multiphase flow.

  6. Nonlinear structure formation in the cubic Galileon gravity model

    SciTech Connect (OSTI)

    Barreira, Alexandre; Li, Baojiu; Hellwing, Wojciech A.; Baugh, Carlton M.; Pascoli, Silvia E-mail: baojiu.li@durham.ac.uk E-mail: c.m.baugh@durham.ac.uk

    2013-10-01

    We model the linear and nonlinear growth of large scale structure in the Cubic Galileon gravity model, by running a suite of N-body cosmological simulations using the ECOSMOG code. Our simulations include the Vainshtein screening effect, which reconciles the Cubic Galileon model with local tests of gravity. In the linear regime, the amplitude of the matter power spectrum increases by ? 20% with respect to the standard ?CDM model today. The modified expansion rate accounts for ? 15% of this enhancement, while the fifth force is responsible for only ? 5%. This is because the effective unscreened gravitational strength deviates from standard gravity only at late times, even though it can be twice as large today. In the nonlinear regime (k?>0.1h Mpc{sup ?1}), the fifth force leads to only a modest increase (?<8%) in the clustering power on all scales due to the very efficient operation of the Vainshtein mechanism. Such a strong effect is typically not seen in other models with the same screening mechanism. The screening also results in the fifth force increasing the number density of halos by less than 10%, on all mass scales. Our results show that the screening does not ruin the validity of linear theory on large scales which anticipates very strong constraints from galaxy clustering data. We also show that, whilst the model gives an excellent match to CMB data on small angular scales (l?>50), the predicted integrated Sachs-Wolfe effect is in tension with Planck/WMAP results.

  7. Reducing uncertainty in high-resolution sea ice models.

    SciTech Connect (OSTI)

    Peterson, Kara J.; Bochev, Pavel Blagoveston

    2013-07-01

    Arctic sea ice is an important component of the global climate system, reflecting a significant amount of solar radiation, insulating the ocean from the atmosphere and influencing ocean circulation by modifying the salinity of the upper ocean. The thickness and extent of Arctic sea ice have shown a significant decline in recent decades with implications for global climate as well as regional geopolitics. Increasing interest in exploration as well as climate feedback effects make predictive mathematical modeling of sea ice a task of tremendous practical import. Satellite data obtained over the last few decades have provided a wealth of information on sea ice motion and deformation. The data clearly show that ice deformation is focused along narrow linear features and this type of deformation is not well-represented in existing models. To improve sea ice dynamics we have incorporated an anisotropic rheology into the Los Alamos National Laboratory global sea ice model, CICE. Sensitivity analyses were performed using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) to determine the impact of material parameters on sea ice response functions. Two material strength parameters that exhibited the most significant impact on responses were further analyzed to evaluate their influence on quantitative comparisons between model output and data. The sensitivity analysis along with ten year model runs indicate that while the anisotropic rheology provides some benefit in velocity predictions, additional improvements are required to make this material model a viable alternative for global sea ice simulations.

  8. Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: the VOCA intercomparison

    DOE PAGES-Beta [OSTI]

    Wyant, M. C.; Bretherton, Christopher S.; Wood, Robert; Carmichael, Gregory; Clarke, A. D.; Fast, Jerome D.; George, R.; Gustafson, William I.; Hannay, Cecile; Lauer, Axel; et al

    2015-01-09

    A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October–November 2008 VOCALS REx (VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment) field campaign. Regional models simulate the period continuously in boundary-forced free-running mode, while global forecast models and GCMs (general circulation models) are run in forecast mode. The models are compared to extensive observations along a line at 20° S extending westward from the South American coast. Most of the models simulate cloud and aerosol characteristics and gradients across the region that are recognizably similar tomore » observations, despite the complex interaction of processes involved in the problem, many of which are parameterized or poorly resolved. Some models simulate the regional low cloud cover well, though many models underestimate MBL (marine boundary layer) depth near the coast. Most models qualitatively simulate the observed offshore gradients of SO2, sulfate aerosol, CCN (cloud condensation nuclei) concentration in the MBL as well as differences in concentration between the MBL and the free troposphere. Most models also qualitatively capture the decrease in cloud droplet number away from the coast. However, there are large quantitative intermodel differences in both means and gradients of these quantities. Many models are able to represent episodic offshore increases in cloud droplet number and aerosol concentrations associated with periods of offshore flow. Most models underestimate CCN (at 0.1% supersaturation) in the MBL and free troposphere. The GCMs also have difficulty simulating coastal gradients in CCN and cloud droplet number concentration near the coast. The overall performance of the models demonstrates their potential utility in simulating aerosol–cloud interactions in the MBL, though quantitative estimation of aerosol–cloud interactions and aerosol indirect effects of MBL clouds

  9. Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: the VOCA intercomparison

    SciTech Connect (OSTI)

    Wyant, M. C.; Bretherton, Christopher S.; Wood, Robert; Carmichael, Gregory; Clarke, A. D.; Fast, Jerome D.; George, R.; Gustafson, William I.; Hannay, Cecile; Lauer, Axel; Lin, Yanluan; Morcrette, J. -J.; Mulcahay, Jane; Saide, Pablo; Spak, S. N.; Yang, Qing

    2015-01-09

    A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October–November 2008 VOCALS REx (VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment) field campaign. Regional models simulate the period continuously in boundary-forced free-running mode, while global forecast models and GCMs (general circulation models) are run in forecast mode. The models are compared to extensive observations along a line at 20° S extending westward from the South American coast. Most of the models simulate cloud and aerosol characteristics and gradients across the region that are recognizably similar to observations, despite the complex interaction of processes involved in the problem, many of which are parameterized or poorly resolved. Some models simulate the regional low cloud cover well, though many models underestimate MBL (marine boundary layer) depth near the coast. Most models qualitatively simulate the observed offshore gradients of SO2, sulfate aerosol, CCN (cloud condensation nuclei) concentration in the MBL as well as differences in concentration between the MBL and the free troposphere. Most models also qualitatively capture the decrease in cloud droplet number away from the coast. However, there are large quantitative intermodel differences in both means and gradients of these quantities. Many models are able to represent episodic offshore increases in cloud droplet number and aerosol concentrations associated with periods of offshore flow. Most models underestimate CCN (at 0.1% supersaturation) in the MBL and free troposphere. The GCMs also have difficulty simulating coastal gradients in CCN and cloud droplet number concentration near the coast. The overall performance of the models demonstrates their potential utility in simulating aerosol–cloud interactions in the MBL, though quantitative estimation of aerosol–cloud interactions and aerosol indirect effects of MBL

  10. Spatiotemporal modeling of node temperatures in supercomputers

    DOE PAGES-Beta [OSTI]

    Storlie, Curtis Byron; Reich, Brian James; Rust, William Newton; Ticknor, Lawrence O.; Bonnie, Amanda Marie; Montoya, Andrew J.; Michalak, Sarah E.

    2016-06-10

    Los Alamos National Laboratory (LANL) is home to many large supercomputing clusters. These clusters require an enormous amount of power (~500-2000 kW each), and most of this energy is converted into heat. Thus, cooling the components of the supercomputer becomes a critical and expensive endeavor. Recently a project was initiated to investigate the effect that changes to the cooling system in a machine room had on three large machines that were housed there. Coupled with this goal was the aim to develop a general good-practice for characterizing the effect of cooling changes and monitoring machine node temperatures in this andmore » other machine rooms. This paper focuses on the statistical approach used to quantify the effect that several cooling changes to the room had on the temperatures of the individual nodes of the computers. The largest cluster in the room has 1,600 nodes that run a variety of jobs during general use. Since extremes temperatures are important, a Normal distribution plus generalized Pareto distribution for the upper tail is used to model the marginal distribution, along with a Gaussian process copula to account for spatio-temporal dependence. A Gaussian Markov random field (GMRF) model is used to model the spatial effects on the node temperatures as the cooling changes take place. This model is then used to assess the condition of the node temperatures after each change to the room. The analysis approach was used to uncover the cause of a problematic episode of overheating nodes on one of the supercomputing clusters. Lastly, this same approach can easily be applied to monitor and investigate cooling systems at other data centers, as well.« less

  11. Simplified Predictive Models for CO2 Sequestration Performance Assessment: Research Topical Report on Task #4 - Reduced-Order Method (ROM) Based Models

    SciTech Connect (OSTI)

    Mishra, Srikanta; Jin, Larry; He, Jincong; Durlofsky, Louis

    2015-06-30

    Reduced-order models provide a means for greatly accelerating the detailed simulations that will be required to manage CO2 storage operations. In this work, we investigate the use of one such method, POD-TPWL, which has previously been shown to be effective in oil reservoir simulation problems. This method combines trajectory piecewise linearization (TPWL), in which the solution to a new (test) problem is represented through a linearization around the solution to a previously-simulated (training) problem, with proper orthogonal decomposition (POD), which enables solution states to be expressed in terms of a relatively small number of parameters. We describe the application of POD-TPWL for CO2-water systems simulated using a compositional procedure. Stanford’s Automatic Differentiation-based General Purpose Research Simulator (AD-GPRS) performs the full-order training simulations and provides the output (derivative matrices and system states) required by the POD-TPWL method. A new POD-TPWL capability introduced in this work is the use of horizontal injection wells that operate under rate (rather than bottom-hole pressure) control. Simulation results are presented for CO2 injection into a synthetic aquifer and into a simplified model of the Mount Simon formation. Test cases involve the use of time-varying well controls that differ from those used in training runs. Results of reasonable accuracy are consistently achieved for relevant well quantities. Runtime speedups of around a factor of 370 relative to full- order AD-GPRS simulations are achieved, though the preprocessing needed for POD-TPWL model construction corresponds to the computational requirements for about 2.3 full-order simulation runs. A preliminary treatment for POD-TPWL modeling in which test cases differ from training runs in terms of geological parameters (rather than well controls) is also presented. Results in this case involve only small differences between

  12. I&C Modeling in SPAR Models

    SciTech Connect (OSTI)

    John A. Schroeder

    2012-06-01

    The Standardized Plant Analysis Risk (SPAR) models for the U.S. commercial nuclear power plants currently have very limited instrumentation and control (I&C) modeling [1]. Most of the I&C components in the operating plant SPAR models are related to the reactor protection system. This was identified as a finding during the industry peer review of SPAR models. While the Emergency Safeguard Features (ESF) actuation and control system was incorporated into the Peach Bottom Unit 2 SPAR model in a recent effort [2], various approaches to expend resources for detailed I&C modeling in other SPAR models are investigated.

  13. Equilibrium Response and Transient Dynamics Datasets from VEMAP: Vegetation/Ecosystem Modeling and Analysis Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Vegetation-Ecosystem Modeling and Analysis Project (VEMAP) was a large, collaborative, multi-agency program to simulate and understand ecosystem dynamics for the continental U.S. The project involved the development of common data sets for model input including a high-resolution topographically-adjusted climate history of the U.S. from 1895-1993 on a 0.5? grid, with soils and vegetation cover. The vegetation cover data set includes a detailed agricultural data base based on USDA statistics and remote sensing, as well as natural vegetation (also derived from satellite imagery). Two principal model experiments were run. First, a series of ecosystem models were run from 1895 to 1993 to simulate current ecosystem biogeochemistry. Second, these same models were integrated forward using the output from two climate system models (CCC (Canadian Climate Centre) and Hadley Centre models) using climate results translated into the VEMAP grid and re-adjusted for high-resolution topography for the simulated period 1994-2100.[Quoted from http://www.cgd.ucar.edu/vemap/findings.html] The VEMAP Data Portal is a central collection of files maintained and serviced by the NCAR Data Group. These files (the VEMAP Community Datasets) represent a complete and current collection of VEMAP data files. All data files available through the Data Portal have undergone extensive quality assurance.[Taken from http://www.cgd.ucar.edu/vemap/datasets.html] Users of the VEMAP Portal can access input files of numerical data that include monthly and daily files of geographic data, soil and site files, scenario files, etc. Model results from Phase I, the Equilibrium Response datasets, are available through the NCAR anonymous FTP site at http://www.cgd.ucar.edu/vemap/vresults.html. Phase II, Transient Dynamics, include climate datasets, models results, and analysis tools. Many supplemental files are also available from the main data page at http://www.cgd.ucar.edu/vemap/datasets.html.

  14. Modeling natural gas reservoirs - a simple model

    SciTech Connect (OSTI)

    Collier, R.S.

    1981-10-01

    A mathematical model is developed and tested for the production of natural gas with water encroachment and gas entrapment. The model is built on the material and volumetric balance relations, the Schilthuis water drive model, and a gas entrapment mechanism which assumes that the rate of gas entrapment is proportional to the volumetric rate of water influx. This model represents an alternative to the large grid models because of its low computer, maintenance, and manpower costs. 13 refs.

  15. travel-demand-modeling

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Demand Modeler, Cambridge Systematics, Tallahassee, FL Abstract ... Travel demand ... Ahmed Mohideen Travel Demand Modeler Cambridge Systematics, Tallahassee, FL Transportation ...

  16. Development and pilot testing of modular dynamic thermomechanical pulp mill model to develop energy reduction strategies. Final report

    SciTech Connect (OSTI)

    Coffin, D.W.

    1996-10-01

    With the development of on-line and real-time process simulations, one obtains the ability to predict and control the process; thus, the opportunity exists to improve energy efficiency, decrease materials wastes, and maintain product quality. Developing this capability was the objective of the this research program. A thermomechanical pulp mill was simulated using both a first principles model and a neural network. The models made use of actual process data and a model that calculated the mass and energy balance of the mill was successfully implemented and run at the mill on an hourly basis. The attempt to develop a model that accurately predicted the quality of the pulp was not successful. It was concluded that the key fro a successful implementation of a real-time control model, such as a neural net model, is availability of on-line sensors that sufficiently characterize the pulp.

  17. The Lagrangian particle dispersion model FLEXPART-WRF VERSION 3.1

    SciTech Connect (OSTI)

    Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, Don; Seibert, P.; Angevine, W. M.; Evan, S.; Dingwell, A.; Fast, Jerome D.; Easter, Richard C.; Pisso, I.; Bukhart, J.; Wotawa, G.

    2013-11-01

    The Lagrangian particle dispersion model FLEXPART was originally designed for cal- culating long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. In the meantime FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis at different scales. This multiscale need from the modeler community has encouraged new developments in FLEXPART. In this document, we present a version that works with the Weather Research and Forecasting (WRF) mesoscale meteoro- logical model. Simple procedures on how to run FLEXPART-WRF are presented along with special options and features that differ from its predecessor versions. In addition, test case data, the source code and visualization tools are provided to the reader as supplementary material.

  18. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XV : Evaluation of the 2007 Predictions of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead Smolts to Rock Island, Lower Granite, McNary, John Day, and Bonneville Dams using Program RealTime.

    SciTech Connect (OSTI)

    Griswold, Jim; Townsend, Richard L.; Skalski, John R.

    2008-12-01

    Program RealTime provided monitoring and forecasting of the 2007 inseason outmigrations via the internet for 26 PIT-tagged stocks of wild ESU Chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, one PIT-tagged wild stock of sockeye salmon to McNary Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville dams. Nineteen stocks are of wild yearling Chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2007 and have at least one year's historical migration data previous to the 2007 migration. These stocks originate in 19 tributaries of the Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through tag identification and monitored at Lower Granite Dam. Seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling Chinook salmon and the steelhead runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling Chinook, coho, and sockeye salmon, and steelhead forecasted to Rock Island, McNary, John Day, and Bonneville dams.

  19. Monitoring and Evaluation of Smolt Migration in the Columbia Basin, Volume XIV; Evaluation of 2006 Prediction of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead at Rock Island, Lower Granite, McNary, John Day and Bonneville Dams using Program Real Time, Technical Report 2006.

    SciTech Connect (OSTI)

    Griswold, Jim

    2007-01-01

    Program RealTime provided monitoring and forecasting of the 2006 inseason outmigrations via the internet for 32 PIT-tagged stocks of wild ESU chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville Dams. Twenty-four stocks are of wild yearling chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2006, and have at least one year's historical migration data previous to the 2006 migration. These stocks originate in drainages of the Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through the tag identification and monitored at Lower Granite Dam. In addition, seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling chinook salmon and the steelhead trout runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout forecasted to Rock Island, McNary, John Day, and Bonneville Dams.

  20. Large eddy simulation models for incompressible magnetohydrodynamics derived from the variational multiscale formulation

    SciTech Connect (OSTI)

    Sondak, David; Oberai, Assad A.

    2012-10-15

    Novel large eddy simulation (LES) models are developed for incompressible magnetohydrodynamics (MHD). These models include the application of the variational multiscale formulation of LES to the equations of incompressible MHD. Additionally, a new residual-based eddy viscosity model is introduced for MHD. A mixed LES model that combines the strengths of both of these models is also derived. The new models result in a consistent numerical method that is relatively simple to implement. The need for a dynamic procedure in determining model coefficients is no longer required. The new LES models are tested on a decaying Taylor-Green vortex generalized to MHD and benchmarked against classical LES turbulence models. The LES simulations are run in a periodic box of size [-{pi}, {pi}]{sup 3} with 32 modes in each direction and are compared to a direct numerical simulation (DNS) with 512 modes in each direction. The new models are able to account for the essential MHD physics which is demonstrated via comparisons of energy spectra. We also compare the performance of our models to a DNS simulation by Pouquet et al.['The dynamics of unforced turbulence at high Reynolds number for Taylor-Green vortices generalized to MHD,' Geophys. Astrophys. Fluid Dyn. 104, 115-134 (2010)], for which the ratio of DNS modes to LES modes is 262:144.