National Library of Energy BETA

Sample records for mississippi salt basin

  1. Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin

    Gasoline and Diesel Fuel Update

    Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin ... Major Tight Gas Plays, Lower 48 States 0 200 400 100 300 Miles Source: Energy ...

  2. Basin Analysis of the Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain

    SciTech Connect

    Mancini, Ernest A.

    2003-02-06

    The project objectives are improving access to information for the Mississippi Interior Salt Basin by inventorying data files and records of the major information repositories in the region, making these inventories easily accessible in electronic format, increasing the amount of information available on domestic sedimentary basins through a comprehensive analysis of the Mississippi Interior Salt Basin, and enhancing the understanding of the petroleum systems operating in the Mississippi Interior Salt Basin.

  3. Bibliography, geophysical data locations, and well core listings for the Mississippi Interior Salt Basin

    SciTech Connect

    1998-05-01

    To date, comprehensive basin analysis and petroleum system modeling studies have not been performed on any of the basins in the northeastern Gulf of Mexico. Of these basins, the Mississippi Interior Salt Basin has been selected for study because it is the most petroliferous basin in the northeastern Gulf of Mexico, small- and medium-size companies are drilling the majority of the exploration wells. These companies do not have the resources to perform basin analysis or petroleum system modeling research studies nor do they have the resources to undertake elaborate information searches through the volumes of publicly available data at the universities, geological surveys, and regulatory agencies in the region. The Advanced Geologic Basin Analysis Program of the US Department of Energy provides an avenue for studying and evaluating sedimentary basins. This program is designed to improve the efficiency of the discovery of the nation`s remaining undiscovered oil resources by providing improved access to information available in the public domain and by increasing the amount of public information on domestic basins. This report provides the information obtained from Year 1 of this study of the Mississippi Interior Salt Basin. The work during Year 1 focused on inventorying the data files and records of the major information repositories in the northeastern Gulf of Mexico and making these inventories easily accessible in an electronic format.

  4. Mississippi

    Energy Information Administration (EIA) (indexed site)

    Mississippi

  5. Basin Analysis of the Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain, Final Report and Topical Reports 5-8 on Smackover Petroleum system and Underdevelopment Reservoirs

    SciTech Connect

    Mancini, Ernest A.; Puckett, T. Markham; Parcell, William C.; Llinas, Juan Carlos; Kopaska-Merkel, David C.; Townsend, Roger N.

    2002-03-05

    The Smackover Formation, a major hydrocarbon-producing horizon in the Mississippi Interior Salt Basin (MISB), conformably overlies the Norphlet Formation and is conformably overlain by the Buckner Anhydrite Member of the Haynesville Formation. The Norphlet-Smackover contact can be either gradational or abrupt. The thickness and lithofacies distribution of the Smackover Formation were controlled by the configuration of incipient paleotopography. The Smackover Formation has been subdivided into three informal members, referred to as the lower, middle and upper members.

  6. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    SciTech Connect

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

    2006-05-26

    expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring during the Early to Late Cretaceous. The geohistory of the North Louisiana Salt Basin is comparable to the Mississippi Interior Salt Basin with the major difference being the elevated heat flow the strata in the North Louisiana Salt Basin experienced in the Cretaceous due primarily to reactivation of upward movement, igneous activity, and erosion associated with the Monroe and Sabine Uplifts. Potential undiscovered reservoirs in the North Louisiana Salt Basin are Triassic Eagle Mills sandstone and deeply buried Upper Jurassic sandstone and limestone. Potential underdeveloped reservoirs include Lower Cretaceous sandstone and limestone and Upper Cretaceous sandstone.

  7. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    SciTech Connect

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

    2006-02-28

    The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule. The principal objectives of the project are to develop through basin analysis and modeling the concept that petroleum systems acting in a basin can be identified through basin modeling and to demonstrate that the information and analysis resulting from characterizing and modeling of these petroleum systems in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin can be used in providing a more reliable and advanced approach for targeting stratigraphic traps and specific reservoir facies within a geologic system and in providing a refined assessment of undiscovered and underdeveloped reservoirs and associated oil and gas resources.

  8. Supai salt karst features: Holbrook Basin, Arizona

    SciTech Connect

    Neal, J.T.

    1994-12-31

    More than 300 sinkholes, fissures, depressions, and other collapse features occur along a 70 km (45 mi) dissolution front of the Permian Supai Formation, dipping northward into the Holbrook Basin, also called the Supai Salt Basin. The dissolution front is essentially coincident with the so-called Holbrook Anticline showing local dip reversal; rather than being of tectonic origin, this feature is likely a subsidence-induced monoclinal flexure caused by the northward migrating dissolution front. Three major areas are identified with distinctive attributes: (1) The Sinks, 10 km WNW of Snowflake, containing some 200 sinkholes up to 200 m diameter and 50 m depth, and joint controlled fissures and fissure-sinks; (2) Dry Lake Valley and contiguous areas containing large collapse fissures and sinkholes in jointed Coconino sandstone, some of which drained more than 50 acre-feet ({approximately}6 {times} 10{sup 4} m{sup 3}) of water overnight; and (3) the McCauley Sinks, a localized group of about 40 sinkholes 15 km SE of Winslow along Chevelon Creek, some showing essentially rectangular jointing in the surficial Coconino Formation. Similar salt karst features also occur between these three major areas. The range of features in Supai salt are distinctive, yet similar to those in other evaporate basins. The wide variety of dissolution/collapse features range in development from incipient surface expression to mature and old age. The features began forming at least by Pliocene time and continue to the present, with recent changes reportedly observed and verified on airphotos with 20 year repetition. The evaporate sequence along interstate transportation routes creates a strategic location for underground LPG storage in leached caverns. The existing 11 cavern field at Adamana is safely located about 25 miles away from the dissolution front, but further expansion initiatives will require thorough engineering evaluation.

  9. Final report on decommissioning boreholes and wellsite restoration, Gulf Coast Interior Salt Domes of Mississippi

    SciTech Connect

    Not Available

    1989-04-01

    In 1978, eight salt domes in Texas, Louisiana, and Mississippi were identified for study as potential locations for a nuclear waste repository as part of the National Waste Terminal Storage (NWTS) program. Three domes were selected in Mississippi for ``area characterization`` phase study as follows: Lampton Dome near Columbia, Cypress Creek Dome near New Augusta, and Richton Dome near Richton. The purpose of the studies was to acquire geologic and geohydrologic information from shallow and deep drilling investigations to enable selection of sites suitable for more intensive study. Eleven deep well sites were selected for multiple-well installations to acquire information on the lithologic and hydraulic properties of regional aquifers. In 1986, the Gulf Coast salt domes were eliminated from further consideration for repository development by the selection of three candidate sites in other regions of the country. In 1987, well plugging and restoration of these deferred sites became a closeout activity. The primary objectives of this activity are to plug and abandon all wells and boreholes in accordance with state regulations, restore all drilling sites to as near original condition as feasible, and convey to landowners any wells on their property that they choose to maintain. This report describes the activities undertaken to accomplish these objectives, as outlines in Activity Plan 1--2, ``Activity Plan for Well Plugging and Site Restoration of Test Hole Sites in Mississippi.``

  10. Mississippi - Compare - U.S. Energy Information Administration (EIA)

    Energy Information Administration (EIA) (indexed site)

    Mississippi Mississippi

  11. Mississippi - Rankings - U.S. Energy Information Administration (EIA)

    Energy Information Administration (EIA) (indexed site)

    Mississippi Mississippi

  12. Mississippi - Search - U.S. Energy Information Administration (EIA)

    Energy Information Administration (EIA) (indexed site)

    Mississippi Mississippi

  13. Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, 1 April--30 June 1994

    SciTech Connect

    Not Available

    1994-08-01

    This report contains a cluster of twenty separate project reports concerning the fate, environmental transport, and toxicity of hazardous wastes in the Mississippi River Basin. Some of topics investigated involve: biological uptake and metabolism; heavy metal immobilization; biological indicators; toxicity; and mathematical models.

  14. Hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, 30 December 1992--29 December 1993

    SciTech Connect

    Not Available

    1993-12-31

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. In 1989, the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established as the umbrella organization which coordinates environmental research at both universities. In December, 1992, the Tulane/Xavier DBR was awarded a five year grant to study pollution in the Mississippi River system. The ``Hazardous Materials in Aquatic Environments of the Mississippi River Basin`` project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. Individual papers have been processed separately for inclusion in the appropriate data bases.

  15. Geologic technical assessment of the Richton salt dome, Mississippi, for potential expansion of the U.S. strategic petroleum reserve.

    SciTech Connect

    Snider, Anna C.; Rautman, Christopher Arthur; Looff, Karl M.

    2006-01-01

    Technical assessment and remodeling of existing data indicates that the Richton salt dome, located in southeastern Mississippi, appears to be a suitable site for expansion of the U.S. Strategic Petroleum Reserve. The maximum area of salt is approximately 7 square miles, at a subsurface elevation of about -2000 ft, near the top of the salt stock. Approximately 5.8 square miles of this appears suitable for cavern development, because of restrictions imposed by modeled shallow salt overhang along several sides of the dome. The detailed geometry of the overhang currently is only poorly understood. However, the large areal extent of the Richton salt mass suggests that significant design flexibility exists for a 160-million-barrel storage facility consisting of 16 ten-million-barrel caverns. The dome itself is prominently elongated from northwest to southeast. The salt stock appears to consist of two major spine features, separated by a likely boundary shear zone trending from southwest to northeast. The dome decreases in areal extent with depth, because of salt flanks that appear to dip inward at 70-80 degrees. Caprock is present at depths as shallow as 274 ft, and the shallowest salt is documented at -425 ft. A large number of existing two-dimensional seismic profiles have been acquired crossing, and in the vicinity of, the Richton salt dome. At least selected seismic profiles should be acquired, examined, potentially reprocessed, and interpreted in an effort to understand the limitations imposed by the apparent salt overhang, should the Richton site be selected for actual expansion of the Reserve.

  16. Tanzania wildcats to evaluate Jurassic Mandawa salt basin

    SciTech Connect

    Nagati, M.

    1996-10-07

    After 5 years of stagnant exploration in East Africa, Canadian independent Tanganyika Oil Co. of Vancouver, B.C., will drill two wildcats in Tanzania to evaluate the hydrocarbon potential of the coastal Jurassic Mandawa salt basin. Mita-1, spudded around Oct. 1, will be drilled to about 7,000 ft, East Lika-1 will be drilled in early December 1996 to approximately 6,000 ft. The two wells will test different structures and play concepts. The paper describes the exploration history, source rock potential, hydrocarbon shows, potential reservoir, and the prospects.

  17. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    SciTech Connect

    Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman

    2005-05-10

    The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structure and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary

  18. Characterization of bedded salt for storage caverns -- A case study from the Midland Basin, Texas

    SciTech Connect

    Hovorka, Susan D.; Nava, Robin

    2000-06-13

    The geometry of Permian bedding salt in the Midland Basin is a product of interaction between depositional facies and postdepositional modification by salt dissolution. Mapping high-frequency cycle patterns in cross section and map view using wireline logs documents the salt geometry. Geologically based interpretation of depositional and dissolution processes provides a powerful tool for mapping and geometry of salt to assess the suitability of sites for development of solution-mined storage caverns. In addition, this process-based description of salt geometry complements existing data about the evolution of one of the best-known sedimentary basins in the world, and can serve as a genetic model to assist in interpreting other salts.

  19. Rankin County, Mississippi: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    County, Mississippi Brandon, Mississippi Florence, Mississippi Flowood, Mississippi Jackson, Mississippi Pearl, Mississippi Pelahatchie, Mississippi Puckett, Mississippi...

  20. Bolivar County, Mississippi: Energy Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    County, Mississippi Alligator, Mississippi Benoit, Mississippi Beulah, Mississippi Boyle, Mississippi Cleveland, Mississippi Duncan, Mississippi Gunnison, Mississippi...

  1. Geohydrology of the Keechi, Mount Sylvan, Oakwood, and Palestine salt domes in the northeast Texas salt-dome basin

    SciTech Connect

    Carr, J.E.; Halasz, S.J.; Peters, H.B.

    1980-01-01

    The salt within these domes has penetrated as much as 20,000 feet of Mesozoic and Cenozoic strata, and presently extends to within 120 to 800 feet of the land surface. The salt penetrates or closely underlies major freshwater and salinewater aquifers within the basin. To provide a safe repository for radioactive wastes within one or more of these domes, a thorough understanding of the geohydrology needs to be obtained, and the hydrologic stability of the domes needs to be established for the expected life of the storage facility. Dissolution may exist at all four candidate salt domes, possibly through contact with Cretaceous or Tertiary aquifers, or through fault systems in the vicinity of the domes. Strata overlying and surrounding Palestine and Keechi Salt Domes have been arched into steeply-dipping folds that are complexly faulted. Similar conditions exist at Oakwood and Mount Sylvan Domes, except that the Tertiary strata have been only moderately disturbed. Additional problems concerning the hydrologic stability of Oakwood and Palestine Salt Domes have resulted from the disposal of oil-field salinewater in the cap rock at the Oakwood Dome and previous solution mining of salt at the Palestine Dome.

  2. Hinds County, Mississippi: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bolton, Mississippi Byram, Mississippi Clinton, Mississippi Edwards, Mississippi Jackson, Mississippi Learned, Mississippi Raymond, Mississippi Terry, Mississippi Utica,...

  3. Influence of impurities on the creep of salt from the Palo Duro Basin

    SciTech Connect

    Hansen, F.D.; Senseny, P.E.; Pfeifle, T.W.; Vogt, T.J.

    1987-05-01

    Twelve triaxial compression creep tests were performed on salt specimens from the Woods-Holtzclaw well in the Palo Duro Basin to assess the influence of impurities on creep deformation. Four nominal impurity levels were initially selected for investigation: pure salt, salt containing 10% anhydrite, salt containing 10% mud, and salt containing 20% mud. Subsequent petrological measurements show these idealized categories do not exist. Composition of the samples was measured by methods of wet chemistry coupled with ethylene diaminetetraacetic acid (EDTA) digestion and point counting on full-size polished sections. Overall, the 12 specimens comprise 71.6--96.6% halite, 2.4--7.5% anhydrite, and 0.2--24.7% clay. Nine of the 12 specimens are similar to many other tested specimens from the Lower San Andres Unit 5. They range from 90--97% halite and average 94% with a standard deviation of 2%. The remaining 6% impurities are disseminated clay and anhydrite. The other three specimens from the Lower San Andres Unit 4 contain large amounts (average 20%) of uniformly distributed clays and average only 75% halite. 11 refs., 21 figs., 5 tabs.

  4. Holmes County, Mississippi: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    A. Places in Holmes County, Mississippi Cruger, Mississippi Durant, Mississippi Goodman, Mississippi Lexington, Mississippi Pickens, Mississippi Tchula, Mississippi West,...

  5. Lauderdale County, Mississippi: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Zone Subtype A. Places in Lauderdale County, Mississippi Collinsville, Mississippi Marion, Mississippi Meridian Station, Mississippi Meridian, Mississippi Nellieburg,...

  6. Preliminary analyses of scenarios for potential human interference for repositories in three salt formations

    SciTech Connect

    Not Available

    1985-10-01

    Preliminary analyses of scenarios for human interference with the performance of a radioactive waste repository in a deep salt formation are presented. The following scenarios are analyzed: (1) the U-Tube Connection Scenario involving multiple connections between the repository and the overlying aquifer system; (2) the Single Borehole Intrusion Scenario involving penetration of the repository by an exploratory borehole that simultaneously connects the repository with overlying and underlying aquifers; and (3) the Pressure Release Scenario involving inflow of water to saturate any void space in the repository prior to creep closure with subsequent release under near lithostatic pressures following creep closure. The methodology to evaluate repository performance in these scenarios is described and this methodology is applied to reference systems in three candidate formations: bedded salt in the Palo Duro Basin, Texas; bedded salt in the Paradox Basin, Utah; and the Richton Salt Dome, Mississippi, of the Gulf Coast Salt Dome Basin.

  7. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    SciTech Connect

    Ernest A. Mancini; Donald A. Goddard

    2005-08-01

    The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule.

  8. Madison County, Mississippi: Energy Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    A. Places in Madison County, Mississippi Canton, Mississippi Flora, Mississippi Jackson, Mississippi Madison, Mississippi Ridgeland, Mississippi Retrieved from "http:...

  9. Quitman County, Mississippi: Energy Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Crenshaw, Mississippi Crowder, Mississippi Falcon, Mississippi Lambert, Mississippi Marks, Mississippi Sledge, Mississippi Retrieved from "http:en.openei.orgw...

  10. Neshoba County, Mississippi: Energy Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    in Neshoba County, Mississippi Bogue Chitto, Mississippi Pearl River, Mississippi Philadelphia, Mississippi Tucker, Mississippi Union, Mississippi Retrieved from "http:...

  11. Water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine salt domes, northeast Texas salt-dome basin

    SciTech Connect

    Carr, J.E.; Halasz, S.J.; Liscum, F.

    1980-11-01

    This report contains water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes in the northeast Texas salt-dome basin. Water-quality data were compiled for aquifers in the Wilcox Group, the Carrizo Sand, and the Queen City Sand. The data include analyses for dissolved solids, pH, temperature, hardness, calcium, magnesium, sodium, bicarbonate, chloride, and sulfate. Water-quality and streamflow data were obtained from 63 surface-water sites in the vicinity of the domes. These data include water discharge, specific conductance, pH, water temperature, and dissolved oxygen. Samples were collected at selected sites for analysis of principal and selected minor dissolved constituents.

  12. Influence of Permian salt dissolution on Cretaceous oil and gas entrapment and reserve potential, Denver basin, Western Nebraska

    SciTech Connect

    Oldham, D.W.; Smosna, R.A.

    1996-06-01

    Location and trap type of Cretaceous oil and gas fields in the D-J Fairway of Nebraska are related to the occurrence of 12 Permian salt zones. Salt distribution is controlled by the configuration of evaporate basins, truncation at a sub-Jurassic unconformity, and post-Jurassic subsurface dissolution. The Sidney Trough, which marks the eastern (regionally updip) limit of Cretaceous oil production in western Nebraska, is a rootless salt-dissolution collapse feature, whose location and origin is controlled by an abrupt linear facies change from thick, porous Lyons Sandstone to Leonardian salt. Eastward gravity-driven groundwater flow within the Lyons occurred in response to hydraulic gradient and recharge along the Front Range Uplift following Laramide orogeny. Dissolution of salt at the facies change caused collapse of overlying strata, producing fractures through which cross-formational flow occurred. Younger salts were dissolved, enhancing relief across the regional depression and subsidiary synclines. Timing of post-Jurassic dissolution influenced entrapment within D and J sandstone reservoirs. Where Early Cretaceous (pre-reservoir) dissolution occurred, structure at the D and J sandstone level is relatively simple, and stratigraphic traps predominate. Where Late Cretaceous - Tertiary (post-reservoir) dissolution occurred, structure is more complex, formation waters are more saline, oil and gas are localized on dissolution-induced anticlines, and per-well reserves are significantly higher.

  13. Leake County, Mississippi: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Carthage, Mississippi Lena, Mississippi Redwater, Mississippi Sebastopol, Mississippi Standing Pine, Mississippi Walnut Grove, Mississippi Retrieved from "http:en.openei.orgw...

  14. Lafayette County, Mississippi: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Climate Zone Subtype A. Places in Lafayette County, Mississippi Abbeville, Mississippi Oxford, Mississippi Taylor, Mississippi Retrieved from "http:en.openei.orgw...

  15. ,"Mississippi Natural Gas Summary"

    Energy Information Administration (EIA) (indexed site)

    Prices" "Sourcekey","N3050MS3","N3010MS3","N3020MS3","N3035MS3","N3045MS3" "Date","Natural Gas Citygate Price in Mississippi (Dollars per Thousand Cubic Feet)","Mississippi Price ...

  16. ,"Mississippi Natural Gas Summary"

    Energy Information Administration (EIA) (indexed site)

    ...S3","N3010MS3","N3020MS3","N3035MS3","NA1570SMS3","N3045MS3" "Date","Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas Imports ...

  17. Coahoma County, Mississippi: Energy Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Coahoma, Mississippi Friars Point, Mississippi Jonestown, Mississippi Lula, Mississippi Lyon, Mississippi Retrieved from "http:en.openei.orgwindex.php?titleCoahomaCounty,Mis...

  18. Lowndes County, Mississippi: Energy Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Mississippi Columbus AFB, Mississippi Columbus, Mississippi Crawford, Mississippi New Hope, Mississippi Retrieved from "http:en.openei.orgwindex.php?titleLowndesCounty,Mis...

  19. DeSoto County, Mississippi: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Climate Zone Number 3 Climate Zone Subtype A. Places in DeSoto County, Mississippi Hernando, Mississippi Horn Lake, Mississippi Lynchburg, Mississippi Olive Branch, Mississippi...

  20. Choctaw County, Mississippi: Energy Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    3 Climate Zone Subtype A. Places in Choctaw County, Mississippi Ackerman, Mississippi French Camp, Mississippi Mathiston, Mississippi Weir, Mississippi Retrieved from "http:...

  1. Simpson County, Mississippi: Energy Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    County, Mississippi Braxton, Mississippi D'Lo, Mississippi Magee, Mississippi Mendenhall, Mississippi Retrieved from "http:en.openei.orgwindex.php?titleSimpsonCounty,...

  2. Salmon, Mississippi, Site

    Office of Legacy Management (LM)

    Salmon, Mississippi, Site Location of the Salmon, Mississippi, Site Site Description and History The Salmon, Mississippi, Site, also called the Tatum Dome Test Site, is a 1,470-acre tract of land in Lamar County, Mississippi, 21 miles southwest of Hattiesburg. The nearest town is Purvis, about 10 miles east of the site. The site is in a forested region known as the long-leaf pine belt of the Gulf Coastal Plain. Elevations in the area range from about 240 to 350 feet above sea level. The site

  3. Mississippi Ethanol Gasification Project

    SciTech Connect

    2006-08-01

    This is a Congressionally-mandated effort to develop and demonstrate technologies for the conversion of biomass to ethanol in the State of Mississippi.

  4. Elements of an environmental decision support system for seasonal wetland salt management in a river basin subjected to water quality regulation

    SciTech Connect

    Quinn, N.W.T.

    2009-06-01

    Seasonally managed wetlands in the Grasslands Basin on the west-side of California's San Joaquin Valley provide food and shelter for migratory wildfowl during winter months and sport for waterfowl hunters during the annual duck season. Surface water supply to these wetlands contain salt which, when drained to the San Joaquin River during the annual drawdown period, can negatively impact water quality and cause concern to downstream agricultural riparian water diverters. Recent environmental regulation, limiting discharges salinity to the San Joaquin River and primarily targeting agricultural non-point sources, now also targets return flows from seasonally managed wetlands. Real-time water quality management has been advocated as a means of continuously matching salt loads discharged from agricultural, wetland and municipal operations to the assimilative capacity of the San Joaquin River. Past attempts to build environmental monitoring and decision support systems (EDSS's) to implement this concept have enjoyed limited success for reasons that are discussed in this paper. These reasons are discussed in the context of more general challenges facing the successful implementation of a comprehensive environmental monitoring, modelling and decision support system for the San Joaquin River Basin.

  5. Benton County, Mississippi: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    A. Places in Benton County, Mississippi Ashland, Mississippi Hickory Flat, Mississippi Snow Lake Shores, Mississippi Retrieved from "http:en.openei.orgwindex.php?titleBenton...

  6. Mississippi: Mississippi's Clean Energy Resources and Economy (Brochure)

    SciTech Connect

    Not Available

    2013-03-01

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Mississippi.

  7. Mississippi Natural Gas Processed in Mississippi (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    in Mississippi (Million Cubic Feet) Mississippi Natural Gas Processed in Mississippi (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,415 5,021 4,527 5,633 5,770 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Processed Mississippi-Mississippi Natural Gas Plant Processing

  8. Geological evaluation of Gulf Coast salt domes: overall assessment of the Gulf Interior Region

    SciTech Connect

    1981-10-01

    The three major phases in site characterization and selection are regional studies, area studies, and location studies. This report characterizes regional geologic aspects of the Gulf Coast salt dome basins. It includes general information from published sources on the regional geology; the tectonic, domal, and hydrologic stability; and a brief description the salt domes to be investigated. After a screening exercise, eight domes were chosen for further characterization: Keechi, Oakwood, and Palestine Domes in Texas; Vacherie and Rayburn's domes in North Louisiana; and Cypress Creek and Richton domes in Mississippi. A general description of each, maps of the location, property ownership, and surface geology, and a geologic cross section were presented for each dome.

  9. The Mississippi CCS Project

    SciTech Connect

    Doug Cathro

    2010-09-30

    The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.

  10. Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's reports on preferred repository sites within the Palo Duro Basin, Texas

    SciTech Connect

    Fenster, D.; Edgar, D.; Gonzales, S.; Domenico, P.; Harrison, W.; Engelder, T.; Tisue, M.

    1984-04-01

    Documents are being submitted to the Salt Repository Project Office (SRPO) of the US Department of Energy (DOE) by Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) to satisfy milestones of the Salt Repository Project of the Civilian Radioactive Waste Management Program. Some of these documents are being reviewed by multidisciplinary groups of peers to ensure DOE of their adequacy and credibility. Adequacy of documents refers to their ability to meet the standards of the US Nuclear Regulatory Commission, as enunciated in 10 CFR 60, and the requirements of the National Environmental Policy Act and the Nuclear Waste Policy Act of 1982. Credibility of documents refers to the validity of the assumptions, methods, and conclusions, as well as to the completeness of coverage. This report summarizes Argonne's review of ONWI's two-volume draft report entitled Identification of Preferred Sites within the Palo Duro Basin: Vol. 1 - Palo Duro Location A, and Vol. 2 - Palo Duro Location B, dated January 1984. Argonne was requested by DOE to review these documents on January 17 and 24, 1984 (see App. A). The review procedure involved obtaining written comments on the reports from three members of Argonne's core peer review staff and three extramural experts in related research areas. The peer review panel met at Argonne on February 6, 1984, and reviewer comments were integrated into this report by the review session chairman, with the assistance of Argonne's core peer review staff. All of the peer review panelists concurred in the way in which their comments were represented in this report (see App. B). A letter report and a draft of this report were sent to SRPO on February 10, 1984, and April 17, 1984, respectively. 5 references.

  11. EIS-0428: Mississippi Gasification, LLC, Industrial Gasification...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS ...

  12. Claiborne County, Mississippi: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Climate Zone Number 3 Climate Zone Subtype A. Places in Claiborne County, Mississippi Port Gibson, Mississippi Retrieved from "http:en.openei.orgwindex.php?titleClaiborneCo...

  13. Hattiesburg, Mississippi: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Projects in Hattiesburg, Mississippi South Mississippi Electric Power Association (SMEPA) Smart Grid Project References US Census Bureau Incorporated place and minor civil...

  14. Strategic Energy Planning - Mississippi Choctaw

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Planning Lessons Learned Mississippi Band of Choctaw Indians January 27, 2016 Mississippi Choctaw Overview  Federal Recognition in 1945  10,500 enrolled members  35,000 acres of Trust Land  8 Communities in East Central Mississippi  Democratically-elected Government Topics 1. Why Mississippi Choctaw decided to do a Strategic Energy Plan 2. Our Timeline 3. What data we gathered in advance 4. How we assembled our "Stakeholders" group 5. How we structured our 2 day

  15. Mississippi Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    your school's state, county, city, or district. For more information, please visit the Middle School Coach page. Mississippi Region Middle School Regional Mississippi Mississippi...

  16. Northcentral Mississippi E P A | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Northcentral Mississippi E P A Jump to: navigation, search Name: Northcentral Mississippi E P A Place: Mississippi Phone Number: 662-895-2151 Website: www.northcentralepa.com...

  17. Mississippi Natural Gas Plant Liquids Production Extracted in Mississippi

    Gasoline and Diesel Fuel Update

    (Million Cubic Feet) Extracted in Mississippi (Million Cubic Feet) Mississippi Natural Gas Plant Liquids Production Extracted in Mississippi (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 495 348 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent

  18. Post-Closure Inspection and Monitoring Report for the Salmon, Mississippi, Site Calendar Year 2007

    SciTech Connect

    2008-05-01

    This report summarizes inspection and monitoring activities performed on and near the Salmon, Mississippi, Site in calendar year 2007. The Draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County, Mississippi (DOE 2007) specifies the submittal of an annual report of site activities and the results of sample analyses. This report is submitted to comply with that requirement. The Tatum Salt Dome was used by the U.S. Atomic Energy Commission (AEC) for underground nuclear testing during the cold war. The land surface above the salt dome, the Salmon Site, is located in Lamar County, Mississippi, approximately 12 miles west of Purvis (Figure 1). The U.S. Department of Energy (DOE), the successor to the AEC, is responsible for long-term surveillance and maintenance of the site. The DOE Office of Legacy Management (LM) was assigned this responsibility effective October 2006.

  19. Flora, Mississippi: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Flora is a town in Madison County, Mississippi. It falls under Mississippi's 2nd...

  20. Habitat Restoration at the Salmon, Mississippi, Site

    Energy.gov [DOE]

    The 1,470-acre Salmon, Mississippi, Site is located in Lamar County, approximately 20 miles southwest of Hattiesburg, in southwestern Mississippi. It is roughly square in shape, and each side is...

  1. Natchez, Mississippi: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Map This article is a stub. You can help OpenEI by expanding it. Natchez is a city in Adams County, Mississippi. It falls under Mississippi's 3rd congressional district.12...

  2. Oxford, Mississippi: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Oxford is a city in Lafayette County, Mississippi. It falls under Mississippi's 1st...

  3. Mississippi Agency Weatherizing Homes, Creating Jobs

    Energy.gov [DOE]

    One Mississippi Community Action Agency has already doubled their output for weatherized homes from the previous year.

  4. File:Black.Warrior.Basin usgs.map.pdf | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    usgs.map.pdf Jump to: navigation, search File File history File usage Undiscovered Oil and Gas Resources of the Black Warrior Basin Province of Alabama and Mississippi Size...

  5. Mississippi State Biodiesel Production Project

    SciTech Connect

    Rafael Hernandez; Todd French; Sandun Fernando; Tingyu Li; Dwane Braasch; Juan Silva; Brian Baldwin

    2008-03-20

    Biodiesel is a renewable fuel conventionally generated from vegetable oils and animal fats that conforms to ASTM D6751. Depending on the free fatty acid content of the feedstock, biodiesel is produced via transesterification, esterification, or a combination of these processes. Currently the cost of the feedstock accounts for more than 80% of biodiesel production cost. The main goal of this project was to evaluate and develop non-conventional feedstocks and novel processes for producing biodiesel. One of the most novel and promising feedstocks evaluated involves the use of readily available microorganisms as a lipid source. Municipal wastewater treatment facilities (MWWTF) in the USA produce (dry basis) of microbial sludge annually. This sludge is composed of a variety of organisms, which consume organic matter in wastewater. The content of phospholipids in these cells have been estimated at 24% to 25% of dry mass. Since phospholipids can be transesterified they could serve as a ready source of biodiesel. Examination of the various transesterification methods shows that in situ conversion of lipids to FAMEs provides the highest overall yield of biodiesel. If one assumes a 7.0% overall yield of FAMEs from dry sewage sludge on a weight basis, the cost per gallon of extracted lipid would be $3.11. Since the lipid is converted to FAMEs, also known as biodiesel, in the in Situ extraction process, the product can be used as is for renewable fuel. As transesterification efficiency increases the cost per gallon drops quickly, hitting $2.01 at 15.0% overall yield. An overall yield of 10.0% is required to obtain biodiesel at $2.50 per gallon, allowing it to compete with soybean oil in the marketplace. Twelve plant species with potential for oil production were tested at Mississippi State, MS. Of the species tested, canola, rapeseed and birdseed rape appear to have potential in Mississippi as winter annual crops because of yield. Two perennial crops were investigated, Chinese

  6. VES-0071- In the Matter of Mississippi Power Company

    Energy.gov [DOE]

    On May 1, 2000, the Mississippi Power Company, of Gulfport, Mississippi (Mississippi Power), filed with the Office of Hearings and Appeals (OHA) of the Department of Energy an Application for...

  7. North East Mississippi E P A | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Mississippi E P A Jump to: navigation, search Name: North East Mississippi E P A Place: Mississippi Phone Number: 662.234.6331 Website: northeastpower.orgmainNavhom Facebook:...

  8. ,"Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million...

    Energy Information Administration (EIA) (indexed site)

    AM" "Back to Contents","Data 1: Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSMSMMCF" "Date","Mississippi Natural ...

  9. Adams County, Mississippi ASHRAE 169-2006 Climate Zone | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Adams County, Mississippi ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Mississippi ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  10. ,"Mississippi (with State Offshore) Natural Gas Plant Liquids...

    Energy Information Administration (EIA) (indexed site)

    for" ,"Data 1","Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected ... 1: Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected ...

  11. ,"Mississippi (with State Offshore) Natural Gas Liquids Lease...

    Energy Information Administration (EIA) (indexed site)

    for" ,"Data 1","Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, ... 1: Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, ...

  12. Energy Secretary Moniz Visits Clean Coal Facility in Mississippi...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Mississippi Energy Secretary Moniz Visits Clean Coal Facility in Mississippi November 8, 2013 - 3:36pm Addthis On Friday, Nov. 8, 2013, Secretary Moniz and international energy ...

  13. EIS-0504: Gulf LNG Liquefaction Project, Jackson County, Mississippi...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4: Gulf LNG Liquefaction Project, Jackson County, Mississippi EIS-0504: Gulf LNG Liquefaction Project, Jackson County, Mississippi SUMMARY The Federal Energy Regulatory Commission ...

  14. City of Water Valley, Mississippi (Utility Company) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley, Mississippi (Utility Company) Jump to: navigation, search Name: City of Water Valley Place: Mississippi Phone Number: (662) 473-3243 Outage Hotline: (662) 473-3243...

  15. Mississippi Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    ... High School Science Bowl Simpson County Mississippi Regional High School Science Bowl Smith County Mississippi Regional High School Science Bowl Stone County Louisiana Regional ...

  16. Lincoln County, Mississippi: Energy Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Climate Zone Number 3 Climate Zone Subtype A. Places in Lincoln County, Mississippi Brookhaven, Mississippi Retrieved from "http:en.openei.orgwindex.php?titleLincolnCounty,...

  17. Mississippi State Oil and Gas Board | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Oil and Gas Board Jump to: navigation, search Name: Mississippi State Oil and Gas Board Address: 500 Greymont Ave., Suite E Place: Mississippi Zip: 39202-3446 Website:...

  18. Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's report on the Organic Geochemistry of Deep Groundwaters from the Palo Duro Basin, Texas

    SciTech Connect

    Fenster, D.F.; Brookins, D.G.; Harrison, W.; Seitz, M.G.; Lerman, A.; Stamoudis, V.C.

    1984-08-01

    This report summarizes Argonne's review of the Office of Nuclear Waste Isolation's (ONWI's) final report entitled The Organic Geochemistry of Deep Ground Waters from the Palo Duro Basin, Texas, dated September 1983. Recommendations are made for improving the ONWI report. The main recommendation is to make the text consistent with the title and with the objective of the project as stated in the introduction. Three alternatives are suggested to accomplish this.

  19. Mississippi/Incentives | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    No Coast Electric Power Association - Comfort Advantage Home Program (Mississippi) Utility Rebate Program Yes Coast Electric Power Association - Commercial Energy Efficiency...

  20. Entergy Mississippi- Residential Energy Efficiency Program

    Energy.gov [DOE]

    Entergy Mississippi offers residential energy efficiency programs to help residential customers save energy by providing rebates for lighting, heating and cooling equipment, A/C tune ups, and...

  1. Mississippi Public Service Commission Adopts Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy and Natural Resources Division, Mississippi ... solar-powered LED lights that replaced natural gas-powered streetlights in the city of Deming, New Mexico. | DOE ...

  2. Mississippi Natural Gas Consumption by End Use

    Annual Energy Outlook

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  3. Mississippi Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

  4. Mississippi Power Co | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    www.mississippipower.com Twitter: @mspower?mhpbmsmtwitter Facebook: https:www.facebook.compagesMississippi-Power Outage Hotline: 1-800-487-3275 Outage Map:...

  5. Taylor, Mississippi: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    dataset (All States, all geography) US Census Bureau Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleTaylor,Mississippi&oldid250859...

  6. ,"Mississippi Natural Gas Underground Storage Net Withdrawals...

    Energy Information Administration (EIA) (indexed site)

    Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","102015" ,"Release...

  7. Mississippi/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Mississippi Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  8. Argonne National Laboratory and Mississippi State University...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Argonne National Laboratory and Mississippi State University Partner to Create Energy Storage Technology Solutions for Southeast Region News Release Starkville, Miss., Aug. 13, ...

  9. ,"Mississippi Underground Natural Gas Storage - All Operators...

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:44 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Mississippi Natural Gas in ...

  10. Recovery Act State Memos Mississippi

    Energy.gov [DOE] (indexed site)

    Mississippi For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  11. Salt restrains maturation in subsalt plays

    SciTech Connect

    Mello, U.T. ); Anderson, R.N.; Karner, G.D. . Lamont-Doherty Earth Observatory)

    1994-01-31

    The thermal positive anomaly associated with the top of salt diapirs has attracted significant attention in modifying the temperature structure and history of a sedimentary basin. Here the authors explore the role of the negative thermal anomaly beneath salt in modifying the maturation history of the source rocks in subsalt sediments. Organic matter maturation is believed to follow temperature dependent chemical reactions. Therefore, any temperature anomaly associated with salt masses affects the nearby maturation of potential source rocks. The level of maturity of source rocks close to salt diapirs will differ from that predicted based on regional trends. The impact of the thermal anomaly on a given point will depend on the duration and distance of the thermal anomaly to this particular point. Consequently, the maturation history of source rocks in salt basins is closely related to the salt motion history, implying that a transient thermal analysis is necessary to evaluate the sure impact on maturation of the thermal anomalies associated with salt diapirism. The paper describes vitrinite kinetics, salt in evolving basins, correlation of salt and temperature, salt dome heat drains, and restrained maturation.

  12. Petrographic report on clay-rich samples from Permian Unit 4 salt, G. Friemel No. 1 well, Palo Duro Basin, Deaf Smith County, Texas: unanalyzed data

    SciTech Connect

    Fukui, L M

    1983-09-01

    This report presents the results of mineralogic and petrographic analyses performed on five samples of clay-rich rock from salt-bearing Permian strata sampled by drill core from G. Friemel No. 1 Well, Deaf Smith County, Texas. Five samples of clay-rich rock from depths of about 2457, 2458, 2521, 2548, and 2568 feet were analyzed to determine the amounts of soluble phase (halite) and the amounts and mineralogy of the insoluble phases. The amounts of halite found were 59, 79, 47, 40, and 4 weight percent, respectively, for the samples. The insoluble minerals are predominately clay (20 to 60 volume percent) and anhydrite (up to 17 volume percent), with minor (about 1.0%) and trace amounts of quartz, dolomite, muscovite, and gypsum. The clays include illite, chlorite, and interstratified chlorite-smectite. The results presented in this petrographic report are descriptive, uninterpreted data. 2 references, 7 tables.

  13. Mississippi Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Grand Gulf Unit 1","1,251","9,643",100.0,"System Energy Resources, Inc" "1 Plant 1 Reactor","1,251","9,643",100.0

  14. Baseline ecological risk assessment Salmon Site, Lamar County, Mississippi

    SciTech Connect

    1995-04-01

    The Salmon Site (SS), formerly the Tatum Dome Test Site, located in Mississippi was the site of two nuclear and two gas explosion tests conducted between 1964 and 1970. A consequence of these testing activities is that radionuclides were released into the salt dome, where they are presently contained. During reentry drilling and other site activities, incidental liquid and solid wastes that contained radioactivity were generated, resulting in some soil, ground water and equipment contamination. As part of the remedial investigation effort, a Baseline Ecological Risk Assessment was conducted at the SS. The purpose is to gauge ecological and other environmental impacts attributable to past activities at the former test facility. The results of this facility-specific baseline risk assessment are presented in this document.

  15. Sandia Energy - Molten Salt Test Loop Melted Salt

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Salt Home Renewable Energy Energy News Concentrating Solar Power Solar Molten Salt Test Loop Melted Salt Previous Next Molten Salt Test Loop Melted Salt The Molten Salt Test...

  16. Jackson, Mississippi: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson is a city in Hinds County and Madison County and Rankin County, Mississippi. It falls...

  17. Tennessee Valley Authority (Mississippi) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Tennessee Valley Authority Place: Mississippi References: Energy Information Administration.1 EIA Form 861 Data Utility Id 18642 This article is a stub. You can help OpenEI...

  18. Entergy Mississippi Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    ergy-mississippi.com Twitter: @EntergyMS Facebook: https:www.facebook.comEntergyMS Outage Hotline: 1-800-968-8243 Outage Map: www.etrviewoutage.comexternal References: EIA...

  19. Enerkem Mississippi Biofuels Pontotoc, MS Facility

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enerkem Mississippi Biofuels Pontotoc, MS Facility 2013 IBR Peer Review May 21 st , 2013 ... as part of the first wave of advanced biofuels projects in the U.S. The advanced and ...

  20. Harrison County, Mississippi: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Harrison County is a county in Mississippi. Its FIPS County Code is 047. It is classified as...

  1. Mississippi County Electric Coop | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Mississippi County Electric Coop Place: Arkansas Phone Number: 870-762-2586 or toll free 1-800-439-4563 Website: www.mceci.com Outage Hotline: 870-762-2586 or toll free...

  2. Montgomery County, Mississippi: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Montgomery County is a county in Mississippi. Its FIPS County Code is 097. It is classified as...

  3. South Mississippi El Pwr Assn | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    South Mississippi El Pwr Assn Place: Mississippi Phone Number: 601.268.2083 Website: www.smepa.coop Outage Hotline: 601.268.2083 References: EIA Form EIA-861 Final Data File for...

  4. East Mississippi Elec Pwr Assn | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: East Mississippi Elec Pwr Assn Place: Mississippi Phone Number: Meridian Office: 601-581-8600 -- Quitman Office: 601-776-6271 -- DeKalb Office: 601-743-2641 --...

  5. Mississippi Natural Gas Gross Withdrawals (Million Cubic Feet...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Mississippi Natural Gas Gross Withdrawals (Million Cubic Feet) Mississippi Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ...

  6. Mississippi Adopts New Rules to Save Energy, Money | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Mississippi Adopts New Rules to Save Energy, Money Mississippi Adopts New Rules to Save Energy, Money November 8, 2013 - 11:59am Addthis The Jackson County Welcome Center in Moss ...

  7. SEP Success Story: Mississippi Adopts New Rules to Save Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Mississippi Adopts New Rules to Save Energy, Money SEP Success Story: Mississippi Adopts New Rules to Save Energy, Money November 8, 2013 - 9:52am Addthis The Jackson County ...

  8. Southwest Mississippi E P A | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    E P A Jump to: navigation, search Name: Southwest Mississippi E P A Place: Mississippi Phone Number: (800) 287-8564 Website: southwestepa.com Outage Hotline: 1-800-287-8564...

  9. Alternative Fuels Data Center: Mississippi Transportation Data for

    Alternative Fuels and Advanced Vehicles Data Center

    Alternative Fuels and Vehicles Mississippi Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Mississippi Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Mississippi Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Mississippi Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative

  10. EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Moss Point, MS | Department of Energy 8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS Documents Available for Download November 12, 2009 EIS-0428: Notice of Intent to Prepare an Environmental Impact Statement Construction and Startup of the Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, Mississippi December 1, 2009 EIS-0428:

  11. Mississippi: Mississippi’s Clean Energy Resources and Economy

    SciTech Connect

    2013-03-15

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Mississippi.

  12. Mississippi Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Mississippi Recovery Act State Memo Mississippi Recovery Act State Memo Mississippi has substantial natural resources, including biomass, oil, coal, and natural gas. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Mississippi are supporting abroad range of clean energy projects, from energy efficiency and the smart grid to advanced biofuels. Through these investments,

  13. Benefits of Biofuel Production and Use in Mississippi

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Mississippi can leverage its biomass resources to produce renewable fuels and products. The Bioenergy Technologies Office enables the development of novel technologies that can be used to establish Mississippi as a leader in the growing bioeconomy. Mississippi Abundant biomass resources and existing infrastructure present Mississippi the opportunity to benefit from both traditional and renewable energy sources. Developing advanced biofuels can boost economic development, improve energy security,

  14. Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance...

    OpenEI (Open Energy Information) [EERE & EIA]

    To The Hydrocarbon Exploration In The Tuz Golu (Salt Lake) Basin, Central Anatolia, Turkey Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  15. Climate Action Champions: Salt Lake City, UT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Salt Lake City, UT Climate Action Champions: Salt Lake City, UT Salt Lake City, the capital of Utah, blends snowy mountain ranges with an urban downtown. Known historically as the “Crossroads of the West,” Salt Lake City today is a major economic center in the Great Basin and a hub of tourism. │ Photo courtesy of University of Utah Department of Mathematics. Salt Lake City, the capital of Utah, blends snowy mountain ranges with an urban downtown. Known historically as the

  16. AgraPure Mississippi Biomass Project

    SciTech Connect

    Blackwell,D.A; Broadhead, L.W.; Harrell, W.J.

    2006-03-31

    The AgraPure Mississippi Biomass project was a congressionally directed project, initiated to study the utilization of Mississippi agricultural byproducts and waste products in the production of bio-energy and to determine the feasibility of commercialization of these agricultural byproducts and waste products as feedstocks in the production of energy. The final products from this project were two business plans; one for a Thermal plant, and one for a Biodiesel/Ethanol plant. Agricultural waste fired steam and electrical generating plants and biodiesel plants were deemed the best prospects for developing commercially viable industries. Additionally, oil extraction methods were studied, both traditional and two novel techniques, and incorporated into the development plans. Mississippi produced crop and animal waste biomasses were analyzed for use as raw materials for both industries. The relevant factors, availability, costs, transportation, storage, location, and energetic value criteria were considered. Since feedstock accounts for more than 70 percent of the total cost of producing biodiesel, any local advantages are considered extremely important in developing this particular industry. The same factors must be evaluated in assessing the prospects of commercial operation of a steam and electrical generation plant. Additionally, the access to the markets for electricity is more limited, regulated and tightly controlled than the liquid fuel markets. Domestically produced biofuels, both biodiesel and ethanol, are gaining more attention and popularity with the consuming public as prices rise and supplies of foreign crude become less secure. Biodiesel requires no major modifications to existing diesel engines or supply chain and offers significant environmental benefits. Currently the biodiesel industry requires Federal and State incentives to allow the industry to develop and become self-sustaining. Mississippi has available the necessary feedstocks and is

  17. Project Reports for Sac and Fox Tribe of the Mississippi in Iowa...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sac and Fox Tribe of the Mississippi in Iowa - 2010 Project Project Reports for Sac and Fox Tribe of the Mississippi in Iowa - 2010 Project The Sac and Fox Tribe of the Mississippi ...

  18. Southern Company - Kemper County, Mississippi | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Southern Company - Kemper County, Mississippi Southern Company - Kemper County, Mississippi Southern Company - Kemper County, Mississippi KEMPER COUNTY ENERGY FACILITY In February 2006, the U.S. Department of Energy awarded a Cooperative Agreement to Southern Company Services under the Clean Coal Power Initiative (CCPI) Round 2 Program to provide financial support for the development and deployment of the Transport Integrated Gasification (TRIGTM) technology that is being utilized by the

  19. Mississippi Public Service Commission Adopts Energy Efficiency Rules |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Mississippi Public Service Commission Adopts Energy Efficiency Rules Mississippi Public Service Commission Adopts Energy Efficiency Rules November 8, 2013 - 12:00am Addthis Mississippi Public Service Commission (PSC) approved new energy efficiency rules for electric and natural gas utility companies to offer customers several pathways to increase energy efficiency. According to the PSC, the rules could potentially save the state's consumers $2.3 billion by 2034 and

  20. City of Philadelphia, Mississippi (Utility Company) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Place: Mississippi Phone Number: 601-656-2601 Website: neshoba.orgutilities.html Facebook: https:www.facebook.compagesCentral-Electric-Power-Association...

  1. Argonne and Mississippi State University partner to create energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Mississippi State University partner to create energy storage technology solutions for southeast region August 13, 2015 Tweet EmailPrint Starkville, Miss., - The U.S. Department of...

  2. Mississippi (with State Offshore) Natural Gas Plant Liquids,...

    Annual Energy Outlook

    Expected Future Production (Million Barrels) Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2...

  3. ,"Mississippi Natural Gas Industrial Price (Dollars per Thousand...

    Energy Information Administration (EIA) (indexed site)

    Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  4. Clay County, Mississippi: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Mississippi: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.6567838, -88.8263006 Show Map Loading map... "minzoom":false,"mappingservice":"...

  5. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    OpenEI (Open Energy Information) [EERE & EIA]

    4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County...

  6. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    OpenEI (Open Energy Information) [EERE & EIA]

    4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric...

  7. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    OpenEI (Open Energy Information) [EERE & EIA]

    4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County...

  8. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    OpenEI (Open Energy Information) [EERE & EIA]

    4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric...

  9. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    OpenEI (Open Energy Information) [EERE & EIA]

    4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric...

  10. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    OpenEI (Open Energy Information) [EERE & EIA]

    4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric...

  11. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    OpenEI (Open Energy Information) [EERE & EIA]

    4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - March 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric...

  12. Mississippi (with State off) Coalbed Methane Proved Reserves...

    Energy Information Administration (EIA) (indexed site)

    Mississippi (with State off) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  13. Mississippi Crude Oil + Lease Condensate Proved Reserves (Million...

    Energy Information Administration (EIA) (indexed site)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  14. Mississippi Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region East Region South Central Region Midwest Region Mountain Region Pacific Region Period: Monthly Annual Download Series History Download

  15. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 ...

  16. EIS-0409: Kemper County Integrated Gasification Combined Cycle Project, Mississippi

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EIS analyzes DOE's decision to provide funding for the Kemper County Integrated Gasification Combined Cycle Project in Kemper County, Mississippi to assess the potential environmental impacts associated with the construction and operation of a project proposed by Southern Power Company, through its affiliate Mississippi Power Company, which has been selected by DOE for consideration under the Clean Coal Power Initiative (CCPI) program.

  17. EIS-0428: Department of Energy Loan Guarantee for Mississippi Integrated Gasification Combined Cycle, Moss Point, Mississippi

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EIS evaluates the environmental impacts of a petroleum coke-to-substitute natural gas facility proposed to be built by Mississippi Gasification. The facility would be designed to produce 120 million standard cubic feet of gas per day. Other products would be marketable sulfuric acid, carbon dioxide, argon, and electric power. This project is inactive.

  18. Electrolyte salts for power sources

    DOEpatents

    Doddapaneni, Narayan; Ingersoll, David

    1995-01-01

    Electrolyte salts for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts.

  19. Mississippi Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Mississippi" "Primary Renewable Energy Capacity Source","Wood/Wood Waste" "Primary Renewable Energy Generation Source","Wood/Wood Waste" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",15691,100 "Total Net Summer Renewable Capacity",235,1.5 " Geothermal","-","-" " Hydro Conventional","-","-"

  20. Mississippi Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update

    Feet) Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Mississippi Coalbed Methane Proved Reserves, Reserves Changes, and Production

    off) Shale

  1. Analysis of the Monitoring Network at the Salmon, Mississippi, Site

    SciTech Connect

    2013-08-01

    The Salmon site in southern Mississippi was the location of two underground nuclear tests and two methane-oxygen gas explosion tests conducted in the Tatum Salt Dome at a depth of 2,715 feet below ground surface. The U.S. Atomic Energy Commission (a predecessor agency of the U.S. Department of Energy [DOE]) and the U.S. Department of Defense jointly conducted the tests between 1964 and 1970. The testing operations resulted in surface contamination at multiple locations on the site and contamination of shallow aquifers. No radionuclides from the nuclear tests were released to the surface or to groundwater, although radionuclide-contaminated drill cuttings were brought to the surface during re-entry drilling. Drilling operations generated the largest single volume of waste materials, including radionuclide-contaminated drill cuttings and drilling fluids. Nonradioactive wastes were also generated as part of the testing operations. Site cleanup and decommissioning began in 1971 and officially ended in 1972. DOE conducted additional site characterization between 1992 and 1999. The historical investigations have provided a reasonable understanding of current surface and shallow subsurface conditions at the site, although some additional investigation is desirable. For example, additional hydrologic data would improve confidence in assigning groundwater gradients and flow directions in the aquifers. The U.S. Environmental Protection Agency monitored groundwater at the site as part of its Long-Term Hydrologic Monitoring Program from 1972 through 2007, when DOE's Office of Legacy Management (LM) assumed responsibility for site monitoring. The current monitoring network consists of 28 monitoring wells and 11 surface water locations. Multiple aquifers which underlie the site are monitored. The current analyte list includes metals, radionuclides, and volatile organic compounds (VOCs).

  2. Environmental assessment: Richton Dome Site, Mississippi

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Richton Dome site in Mississippi as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Richton Dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. The site is in the Gulf interior region, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains two other potentially acceptable sites--the Cypress Creek Dome site in Mississippi and the Vacherie Dome site in Louisiana. Although the Cypress Creek Dome and the Vacherie Dome sites are suitable for site characterization, the DOE has concluded that the Richton Dome site is the preferred site in the Gulf interior region. On the basis of the evaluations reported in this EA, the DOE has found that the Richton Dome site is not disqualified under the guidelines.

  3. Environmental assessment: Richton Dome site, Mississippi

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Richton Dome site in Mississippi as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Richton Dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. The site is in the Gulf interior region, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains two other potentially acceptable sites--the Cypress Creek Dome site in Mississippi and the Vacherie Dome site in Louisiana. Although the Cypress Creek Dome and the Vacherie Dome sites are suitable for site characterization, the DOE has concluded that the Richton Dome site is the preferred site in the Gulf interior region. On the basis of the evaluations reported in this EA, the DOE has found that the Richton Dome site is not disqualified under the guidelines.

  4. Slime-busting Salt

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    past issues All Issues submit Slime-busting Salt A potential new treatment gets bacteria deep in their hiding places May 1, 2015 Slime-busting Salt Biofilms are made of...

  5. Mississippi Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update

    Expected Future Production (Billion Cubic Feet) Mississippi Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  6. Mississippi Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Mississippi Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  7. Mississippi Total Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Mississippi" "Energy Source",2006,2007,2008,2009,2010 "Fossil",15125,14707,14454,14340,142... " Other Gases",4,4,4,4,4 "Nuclear",1266,1268,1259,1251,1251 ...

  8. Mississippi Dry Natural Gas New Reservoir Discoveries in Old...

    Energy Information Administration (EIA) (indexed site)

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Mississippi Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  9. Adams County, Mississippi: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Adams County is a county in Mississippi. Its FIPS County Code is 001. It is classified as...

  10. Scott County, Mississippi: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Scott County is a county in Mississippi. Its FIPS County Code is 123. It is classified as...

  11. Mississippi Power- EarthCents New Home Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Mississippi Power offers incentives to its residential customers to help offset the cost of installing energy efficient measures in new homes. A three-level program is offered to encourage the...

  12. Jackson County, Mississippi: Energy Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson County is a county in Mississippi. Its FIPS County Code is 059. It is classified as...

  13. City of Tupelo, Mississippi (Utility Company) | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Tupelo City of Place: Mississippi Phone Number: 662-841-6460 Website: www.tupeloms.govwater-light Twitter: @TWLDEPT Facebook: https:www.facebook.comTupeloWaterLight Outage...

  14. Mississippi (with State off) Shale Production (Billion Cubic...

    Gasoline and Diesel Fuel Update

    off) Shale Production (Billion Cubic Feet) Mississippi (with State off) Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  15. City of Oxford, Mississippi (Utility Company) | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Oxford Place: Mississippi Phone Number: 662-232-2373 or 662-236-1310 Website: www.oxfordms.netdepartmentse Twitter: @OxfordMS Facebook: https:www.facebook.com...

  16. Marion County, Mississippi: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Marion County is a county in Mississippi. Its FIPS County Code is 091. It is classified as...

  17. Lee County, Mississippi: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Lee County is a county in Mississippi. Its FIPS County Code is 081. It is classified as...

  18. Smith County, Mississippi: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Smith County is a county in Mississippi. Its FIPS County Code is 129. It is classified as...

  19. Perry County, Mississippi: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Perry County is a county in Mississippi. Its FIPS County Code is 111. It is classified as...

  20. Mississippi Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Mississippi Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 14,797 13,076 ...

  1. Pike County, Mississippi: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Pike County is a county in Mississippi. Its FIPS County Code is 113. It is classified as...

  2. Ancient Salt Beds

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ancient Salt Beds Dr. Jack Griffith The key to the search for life on other planets may go through WIPP's ancient salt beds. In 2008, a team of scientists led by Jack Griffith, from the University of North Carolina, Chapel Hill, retrieved salt samples from the WIPP underground and studied them with a transmission electron microscopy lab at the Lineberger Comprehensive Cancer Center of the University of North Carolina School of Medicine. In examining fluid inclusions in the salt and solid halite

  3. Project Specific Waiver from the Mississippi State Energy Office |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Project Specific Waiver from the Mississippi State Energy Office Project Specific Waiver from the Mississippi State Energy Office ms_decision (111.07 KB) More Documents & Publications Status of Waivers Issued under the Recovery Act: Public Interest Waivers Microsoft Word - 06-22-09 FINAL ECAT Comments on OMB Recovery Act Guidance.doc Nationwide Limited Public Interest Waiver for LED and HVAC Units

  4. Argonne National Laboratory and Mississippi State University Partner to

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Create Energy Storage Technology Solutions for Southeast Region - Joint Center for Energy Storage Research Argonne National Laboratory and Mississippi State University Partner to Create Energy Storage Technology Solutions for Southeast Region News Release Starkville, Miss., Aug. 13, 2015 - The U.S. Department of Energy's Argonne National Laboratory and Mississippi State University (MSU) are collaborating to develop new technologies that address next-generation energy storage challenges.

  5. Mississippi Band of Choctaw Indians- 2002 Project

    Energy.gov [DOE]

    The Mississippi Band of Choctaw Indians (MBCI) always seeks new opportunities to diversify its economy and create new career opportunities for tribal members, which is the purpose of this feasibility study. The MBCI will study the feasibility of locating a renewable energy installation on tribal lands. The technologies to be utilized in the renewable energy installation will be those that can readily handle poultry litter, either alone or in combination with wood residues. The purpose of the study is to determine whether such an installation can be both economically sustainable and consistent with the cultural, social, and economic goals of the tribe. The feasibility study will result in the development of a thorough business plan that will allow the MBCI to make an informed decision regarding this project.

  6. Mississippi Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update

    Commercial Consumers (Number of Elements) Mississippi Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,362 44,170 44,253 1990's 43,184 43,693 44,313 45,310 43,803 45,444 46,029 47,311 45,345 47,620 2000's 50,913 51,109 50,468 50,928 54,027 54,936 55,741 56,155 55,291 50,713 2010's 50,537 50,636 50,689 50,153 49,911 49,821 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  7. South Atlantic sag basins: new petroleum system components

    SciTech Connect

    Henry, S.G. Mohriak, W.U.; Mello, M.R.

    1996-08-01

    Newly discovered pre-salt source rocks, reservoirs and seals need to be included as components to the petroleum systems of both sides of the South Atlantic. These new components lie between the pre-salt rift strata and the Aptian salt layers, forming large, post-rift, thermal subsidence sag basins. These are differentiated from the older rift basins by the lack of syn-rift faulting and a reflector geometry that is parallel to the base salt regional unconformity rather than to the Precambrian basement. These basins are observed in deep water regions overlying areas where both the mantle and the crust have been involved in the extension. This mantle involvement creates post-rift subsiding depocenters in which deposition is continuous while proximal rift-phase troughs with little or no mantle involvement are bypassed and failed to accumulate potential source rocks during anoxic times. These features have been recognized in both West African Kwanza Basin and in the East Brasil Rift systems. The pre-salt source rocks that are in the West African sag basins were deposited in lacustrine brackish to saline water environment and are geochemically distinct from the older, syn-rift fresh to brackish water lakes, as well as from younger, post-salt marine anoxic environments of the drift phase. Geochemical analyses of the source rocks and their oils have shown a developing source rock system evolving from isolated deep rift lakes to shallow saline lakes, and culminating with the infill of the sag basin by large saline lakes to a marginally marine restricted gulf. Sag basin source rocks may be important in the South Atlantic petroleum system by charging deep-water prospects where syn-rift source rocks are overmature and the post-salt sequences are immature.

  8. Parana basin

    SciTech Connect

    Zalan, P.V.; Wolff, S.; Conceicao, J.C.J.; Vieira, I.S.; Astolfi, M.A.; Appi, V.T.; Zanotto, O.; Neto, E.V.S.; Cerqueira, J.R.

    1987-05-01

    The Parana basin is a large intracratonic basin in South America, developed entirely on continental crust and filled with sedimentary and volcanic rocks ranging in age from Silurian to Cretaceous. It occupies the southern portion of Brazil (1,100,000 km/sup 2/ or 425,000 mi/sup 2/) and the eastern half of Paraguay (100,000 km/sup 2/ or 39,000 mi/sup 2/); its extension into Argentina and Uruguay is known as the Chaco-Parana basin. Five major depositional sequences (Silurian, Devonian, Permo-Carboniferous, Triassic, Juro-Cretaceous) constitute the stratigraphic framework of the basin. The first four are predominantly siliciclastic in nature, and the fifth contains the most voluminous basaltic lava flows of the planet. Maximum thicknesses are in the order of 6000 m (19,646 ft). The sequences are separated by basin wide unconformities related in the Paleozoic to Andean orogenic events and in the Mesozoic to the continental breakup and sea floor spreading between South America and Africa. The structural framework of the Parana basin consists of a remarkable pattern of criss-crossing linear features (faults, fault zones, arches) clustered into three major groups (N45/sup 0/-65/sup 0/W, N50/sup 0/-70/sup 0/E, E-W). The northwest- and northeast-trending faults are long-lived tectonic elements inherited from the Precambrian basement whose recurrent activity throughout the Phanerozoic strongly influenced sedimentation, facies distribution, and development of structures in the basin. Thermomechanical analyses indicate three main phases of subsidence (Silurian-Devonian, late Carboniferous-Permian, Late Jurassic-Early Cretaceous) and low geothermal gradients until the beginning of the Late Jurassic Permian oil-prone source rocks attained maturation due to extra heat originated from Juro-Cretaceous igneous intrusions. The third phase of subsidence also coincided with strong tectonic reactivation and creation of a third structural trend (east-west).

  9. Geomechanical Analysis and Design Considerations for Thin-Bedded Salt Caverns

    SciTech Connect

    Michael S. Bruno

    2005-06-15

    The bedded salt formations located throughout the United States are layered and interspersed with non-salt materials such as anhydrite, shale, dolomite and limestone. The salt layers often contain significant impurities. GRI and DOE have initialized this research proposal in order to increase the gas storage capabilities by providing operators with improved geotechnical design and operating guidelines for thin bedded salt caverns. Terralog has summarized the geologic conditions, pressure conditions, and critical design factors that may lead to: (1) Fracture in heterogeneous materials; (2) Differential deformation and bedding plane slip; (3) Propagation of damage around single and multiple cavern; and (4) Improved design recommendations for single and multiple cavern configurations in various bedded salt environments. The existing caverns within both the Permian Basin Complex and the Michigan and Appalachian Basins are normally found between 300 m to 1,000 m (1,000 ft to 3,300 ft) depth depending on local geology and salt dissolution depth. Currently, active cavern operations are found in the Midland and Anadarko Basins within the Permian Basin Complex and in the Appalachian and Michigan Basins. The Palo Duro and Delaware Basins within the Permian Basin Complex also offer salt cavern development potential. Terralog developed a number of numerical models for caverns located in thin bedded salt. A modified creep viscoplastic model has been developed and implemented in Flac3D to simulate the response of salt at the Permian, Michigan and Appalachian Basins. The formulation of the viscoplastic salt model, which is based on an empirical creep law developed for Waste Isolation Pilot Plant (WIPP) Program, is combined with the Drucker-Prager model to include the formation of damage and failure. The Permian salt lab test data provided by Pfeifle et al. 1983, are used to validate the assumptions made in the material model development. For the actual cavern simulations two

  10. Information technology and decision support tools for stakeholder-driven river basin salinity management

    SciTech Connect

    Quinn, N.W.T; Cozad, D.B.; Lee, G.

    2010-01-01

    Innovative strategies for effective basin-scale salinity management have been developed in the Hunter River Basin of Australia and more recently in the San Joaquin River Basin of California. In both instances web-based stakeholder information dissemination has been a key to achieving a high level of stakeholder involvement and the formulation of effective decision support salinity management tools. A common element to implementation of salinity management strategies in both river basins has been the concept of river assimilative capacity for controlling export salt loading and the potential for trading of the right to discharge salt load to the river - the Hunter River in Australia and the San Joaquin River in California. Both rivers provide basin drainage and the means of exporting salt to the ocean. The paper compares and contrasts the use of monitoring, modeling and information dissemination in the two basins to achieve environmental compliance and sustain irrigated agriculture in an equitable and socially and politically acceptable manner.

  11. Influence of Permian salt dissolution on distribution of shallow Niobrara gas fields, eastern Colorado

    SciTech Connect

    Oldham, D.W.; Smosna, R.A.

    1996-06-01

    Subsurface analysis of Permian salt and related strata in the shallow Niobrara gas area on the eastern flank of the Denver basin reveals that the location of faulted anticlines which produce gas from porous chalk is related to the occurrence of six Nippewalla Group (Leonardian) salt zones. Salt distribution is controlled by the configuration of evaporate basins during the Leonardian, truncation at a sub-Jurassic unconformity (which has completely removed Guadalupian salts), and post-Jurassic subsurface dissolution. Significant dissolution took place in response to Laramide orogeny and subsequent eastward regional groundwater flow within the Lyons (Cedar Hills) Sandstone aquifer. Initially, dissolution occurred along a regional facies change from sandstone to salt. Solution collapse allowed for cross-formational flow and removal of younger salts. Shallow Niobrara gas fields are situated above salt outliers or along regionally updip salt edges. No significant Niobrara production exists in areas where salt is absent. Structural relief across fields is related to Leonardian thickness variations, rather than subsalt offset. Seismic data reveal abrupt Leonardian thinning at the regionally updip limit of Eckley field, which has produced over 33 BCFG. Thickness of residual salt may be important in controlling the amount of gas trapped within the Niobrara. Where thick salts are preserved, structural relief is greater, the gas-water transition zone is thicker, and gas saturation is higher at the crests of faulted anticlines.

  12. Mississippi Underground Natural Gas Storage Capacity

    Annual Energy Outlook

    187,251 210,128 235,638 240,241 289,416 303,522 1988-2013 Salt Caverns 62,424 62,301 82,411 90,452 139,627 153,733 1999-2013 Aquifers 0 1999-2012 Depleted Fields 124,827 147,827...

  13. Dosimetry using silver salts

    DOEpatents

    Warner, Benjamin P.

    2003-06-24

    The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.

  14. Mississippi Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Mississippi Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 46,068 44,510 0 1970's 50,509 44,732 29,538 29,081 24,568 29,694 0 0 0 1980's 34,337 38,315 29,416 29,705 23,428 21,955 12,131 9,565 8,353 1990's 7,887 7,649 4,822 4,892 5,052 4,869 4,521 4,372 3,668 135,773 2000's 205,106 239,830 263,456 283,675 283,763 292,023 278,436 224,596 174,573 215,951 2010's 218,840 126,859 6,865 4,527 5,633

  15. Post-Closure Inspection, Sampling, and Maintenance Report for the Salmon, Mississippi, Site Calendar Year 2011

    SciTech Connect

    2012-03-01

    This report summarizes the 2011 annual inspection, sampling, measurement, and maintenance activities performed at the Salmon, Mississippi, Site (Salmon site1). The draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County, Mississippi (DOE 2007) specifies the submittal of an annual report of site activities with the results of sample analyses. The Salmon site consists of 1,470 acres. The site is located in Lamar County, Mississippi, approximately 10 miles west of Purvis, Mississippi, and about 21 miles southwest of Hattiesburg, Mississippi.

  16. Molten salt electrolyte separator

    DOEpatents

    Kaun, T.D.

    1996-07-09

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  17. Hydroxycarboxylic acids and salts

    SciTech Connect

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  18. Mississippi Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 35 29 33 29 9 54 30 78 4 2 2010's 13 10 109 90 82 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Mississippi Dry Natural Gas

  19. Mississippi Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 96 34 29 42 18 17 44 24 2 17 2010's 31 11 159 39 115 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Mississippi Dry Natural Gas Proved Reserves

  20. Mississippi Natural Gas Imports (No intransit Receipts) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) (No intransit Receipts) (Million Cubic Feet) Mississippi Natural Gas Imports (No intransit Receipts) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 5,774 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Imports (Summary) Mississippi U.S. Natural Gas

  1. Mississippi Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Mississippi Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 561 618 581 540 501 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Mississippi Natural Gas

  2. Solar ponds in hydrometallurgy and salt production

    SciTech Connect

    Lesino, G.; Saravia, L. )

    1991-01-01

    The possibilities of using solar ponds in the mining industry are explored. Their advantages are identified from an economic point of view and the main technical points for proper operation are discussed. A short account is given of the hydrometallurgical and salt production processes of interest from the point of view of solar ponds. Solar ponds can provide a working environment for many mineral processing systems, not only as a source of energy, but also as a large basin maintained at nearly constant temperature where different operations can be performed. Examples are described for applications in the production of sodium sulfate, boric acid, copper, potassium chloride, and sodium borate.

  3. Water purification using organic salts

    DOEpatents

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  4. Playa basin development, southern High Plains, Texas and New Mexico

    SciTech Connect

    Gustavson, T.C. (Univ. of Texas, Austin, TX (United States)); Holliday, V.T. (Univ. of Wisconsin, Madison, WI (United States))

    1992-01-01

    More than 20,000 playa basins have formed on fine-grained eolian sediments of the Quaternary Blackwater Draw and Tertiary Ogallala Formations on the High Plains of TX and NM. Numerous hypotheses have been proposed for the development of playa basins: (1) subsidence due to dissolution of underlying Permian bedded salt, (2) dissolution of soil carbonate and piping of clastic sediment into the subsurface, (3) animal activity, and (4) deflation. Evidence of eolian processes includes lee dunes and straightened shorelines on the eastern and southern margins of many playas. Lee dunes, which occur on the eastern side of ca 15% of playa basins and contain sediment deflated from adjacent playas, are cresentic to oval in plain view and typically account for 15--40% of the volume of the playa basin. Quaternary fossil biotas and buried calcic soils indicate that grasslands and semi-arid to aid climatic conditions prevailed as these basins formed. Evidence of fluviolacustrine processes in playa basins includes centripetal drainage leading to fan deltas at playa margins and preserved deltaic and lacustrine sediments. Playa basins expanded as fluvial processes eroded basin slopes and carried sediment to the basin floor where, during periods of minimal vegetation cover, loose sediment was removed by deflation. Other processes that played secondary roles in the development of certain playa basins include subsidence induced by dissolution of deeply buried Permian salt, dissolution of soil carbonate and piping, and animal activity. Two small lake basins in Gray County, TX, occur above strata affected by dissolution-induced subsidence. Dissolution of soil carbonate was observed in exposures and cores of strata underlying playa basins. Cattle, and in the past vast numbers of migrating buffalo, destroy soil crusts in dry playas, making these sediments more susceptible to deflation, and carry sediment out of flooded playas on their hooves.

  5. Basin Destination State

    Annual Energy Outlook

    43 0.0294 W - W W - - - Northern Appalachian Basin Florida 0.0161 W W W W 0.0216 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin...

  6. Basin Destination State

    Gasoline and Diesel Fuel Update

    4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware 26.24 - W...

  7. Basin Destination State

    Annual Energy Outlook

    3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware 28.49 - W...

  8. Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million...

    Energy Information Administration (EIA) (indexed site)

    Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 ...

  9. Amine salts of nitroazoles

    DOEpatents

    Kienyin Lee; Stinecipher, M.M.

    1993-10-26

    Compositions of matter, a method of providing chemical energy by burning said compositions, and methods of making said compositions are described. These compositions are amine salts of nitroazoles. 1 figure.

  10. Electrodialysis technology for salt recovery from aluminum salt cake

    SciTech Connect

    Hryn, J. N.; Krumdick, G.; Graziano, D.; Sreenivasarao, K.

    2000-02-02

    Electrodialysis technology for recovering salt from aluminum salt cake is being developed at Argonne National Laboratory. Salt cake, a slag-like aluminum-industry waste stream, contains aluminum metal, salt (NaCl and KCl), and nonmetallics (primarily aluminum oxide). Salt cake can be recycled by digesting with water and filtering to recover the metal and oxide values. A major obstacle to widespread salt cake recycling is the cost of recovering salt from the process brine. Electrodialysis technology developed at Argonne appears to be a cost-effective approach to handling the salt brines, compared to evaporation or disposal. In Argonne's technology, the salt brine is concentrated until salt crystals are precipitated in the electrodialysis stack; the crystals are recovered downstream. The technology is being evaluated on the pilot scale using Eurodia's EUR 40-76-5 stack.

  11. Salt Selected (FINAL)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    WHY SALT WAS SELECTED AS A DISPOSAL MEDIUM Waste Isolation Pilot Plant U.S. Department Of Energy Government officials and scientists chose the Waste Isolation Pilot Plant (WIPP) site through a selection process that started in the 1950s. At that time, the National Academy of Sciences conducted a nationwide search for geological formations stable enough to contain radioactive wastes for thousands of years. In 1955, after extensive study, salt deposits were recommended as a promising medium for

  12. Mississippi State University Wins DOE and GM Challenge X 2008 Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Competition | Department of Energy Mississippi State University Wins DOE and GM Challenge X 2008 Advanced Vehicle Competition Mississippi State University Wins DOE and GM Challenge X 2008 Advanced Vehicle Competition May 21, 2008 - 12:00pm Addthis Launches EcoCAR: The NeXt Challenge WASHINGTON - U.S. Secretary of Energy Samuel W. Bodman today announced that Mississippi State University in Starkville, Miss. is the first place winner of Challenge X, in which 17 university teams from

  13. Fundamental Properties of Salts

    SciTech Connect

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  14. Agronomic Suitability of Bioenergy Crops in Mississippi

    SciTech Connect

    Lemus, Rocky; Baldwin, Brian; Lang, David

    2011-10-01

    In Mississippi, some questions need to be answered about bioenergy crops: how much suitable land is available? How much material can that land produce? Which production systems work best in which scenarios? What levels of inputs will be required for productivity and longterm sustainability? How will the crops reach the market? What kinds of infrastructure will be necessary to make that happen? This publication helps answer these questions: • Which areas in the state are best for bioenergy crop production? • How much could these areas produce sustainably? • How can bioenergy crops impact carbon sequestration and carbon credits? âÂÃÃÂ

  15. DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2

    Energy.gov [DOE]

    A large-scale carbon dioxide storage project in Mississippi has become the fifth worldwide to reach the important milestone of more than 1 million tons injected.

  16. DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    at the Cranfield site in Southwestern Mississippi. It is led by the Southeast Regional Carbon Sequestration Partnership (SECARB), one of seven members of the Regional Carbon...

  17. Gas releases from salt

    SciTech Connect

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  18. Mississippi (with State off) Shale Proved Reserves Adjustments (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Adjustments (Billion Cubic Feet) Mississippi (with State off) Shale Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 21 23 -26 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Reserves Adjustments

  19. Mississippi (with State off) Shale Proved Reserves Extensions (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Extensions (Billion Cubic Feet) Mississippi (with State off) Shale Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Reserves Extensions

  20. Mississippi Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Mississippi Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 4 2010's 8 0 9 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  1. Mississippi (with State off) Shale Proved Reserves (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Mississippi (with State off) Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 19 37 19 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31

  2. Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    0 5,774 0 0 0 0 2007-2015 Import Price -- 12.93 -- -- -- -- 2007

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region East

  3. Sac and Fox Tribe of the Mississippi in Iowa

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sac and Fox Tribe of the Mississippi in Iowa Meskwaki Nation Department of Energy Tribal Energy Program Review 2010 Denver, Colorado Wind Energy Resource Assessment on Tribal Land Presented by: Donald Wanatee October 26, 2010 Project Participants: Technical POC: Thomas M. Gearing Business POC: Lucas Smith (Grants/Contracts Officer) Tribal Council Liaison: Donald Wanatee *RECAP - Project location Assess Energy Needs RFP Results * 15 companies bid on our wind resource assessment project. * 12 of

  4. Salt Wells Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 Salt...

  5. Electrolytic orthoborate salts for lithium batteries (Patent...

    Office of Scientific and Technical Information (OSTI)

    Electrolytic orthoborate salts for lithium batteries Title: Electrolytic orthoborate salts for lithium batteries Orthoborate salts suitable for use as electrolytes in lithium ...

  6. Sandia Energy - Molten Salt Test Loop Commissioning

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Energy News EC News & Events Concentrating Solar Power Solar Molten Salt Test Loop Commissioning Previous Next Molten Salt Test Loop Commissioning The Molten Salt...

  7. Seawater as salt and water source for solar ponds

    SciTech Connect

    Folchitto, S. )

    1991-01-01

    This paper presents a method for preliminary design of a 1 km{sup 2} solar pond that will be supplied with salt and water from the sea. The evaporating basins, needed to concentrate the seawater are also included in the project. Starting from the experience that Agip Petroli gained in running the 25,000 m{sup 2} Solar Pond, built inside a salt-work in Margherita di Savoia, in southern Italy, two projects were worked out: the first one of 25,000 m{sup 2} and the second one of 1 km{sup 2} of surface. Making comparison between harvested energy cost of the solar pond, and the energy cost of alternative and traditional energy sources, the coastal Solar Pond of 1 km{sup 2} that utilizes seawater as salt and water source, is competitive.

  8. Salt repository design approach

    SciTech Connect

    Matthews, S.C.

    1983-01-01

    This paper presents a summary discussion of the approaches that have been and will be taken in design of repository facilities for use with disposal of radioactive wastes in salt formations. Since specific sites have yet to be identified, the discussion is at a general level, supplemented with illustrative examples where appropriate. 5 references, 1 figure.

  9. Actinide removal from spent salts

    DOEpatents

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  10. Metals removal from spent salts

    DOEpatents

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  11. Mississippi Ethanol Gasification Project, Final Scientific / Technical Report

    SciTech Connect

    Pearson, Larry, E.

    2007-04-30

    The Mississippi Ethanol (ME) Project is a comprehensive effort to develop the conversion of biomass to ethanol utilizing a proprietary gasification reactor technology developed by Mississippi Ethanol, LLC. Tasks were split between operation of a 1/10 scale unit at the Diagnostic Instrumentation and Analysis Laboratory (DIAL) of Mississippi State University (MSU) and the construction, development, and operation of a full scale pilot unit located at the ME facility in Winona, Mississippi. In addition to characterization of the ME reactor gasification system, other areas considered critical to the operational and economic viability of the overall ME concept were evaluated. These areas include syngas cleanup, biological conversion of syngas to alcohol, and effects of gasification scale factors. Characterization of run data from the Pre-Pilot and Pilot Units has allowed development of the factors necessary for scale-up from the small unit to the larger unit. This scale range is approximately a factor of 10. Particulate and tar sampling gave order of magnitude values for preliminary design calculations. In addition, sampling values collected downstream of the ash removal system show significant reductions in observed loadings. These loading values indicate that acceptable particulate and tar loading rates could be attained with standard equipment additions to the existing configurations. Overall operation both the Pre-Pilot and Pilot Units proceeded very well. The Pilot Unit was operated as a system, from wood receiving to gas flaring, several times and these runs were used to address possible production-scale concerns. Among these, a pressure feed system was developed to allow feed of material against gasifier system pressure with little or no purge requirements. Similarly, a water wash system, with continuous ash collection, was developed, installed, and tested. Development of a biological system for alcohol production was conducted at Mississippi State University with

  12. Post-Closure Inspection, Sampling, and Maintenance Report for the Salmon, Mississippi, Site Calendar Year 2012

    SciTech Connect

    2013-03-01

    This report summarizes the 2012 annual inspection, sampling, measurement, and maintenance activities performed at the Salmon, Mississippi, Site (Salmon site). The draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County, Mississippi (DOE 2007) specifies the submittal of an annual report of site activities with the results of sample analyses. A revised plan is in preparation. The Long-Term Surveillance Plan for the Salmon, Mississippi, Site is intended for release in 2013. The Salmon site consists of 1,470 acres. The site is located in Lamar County, Mississippi, approximately 10 miles west of Purvis, Mississippi, and about 21 miles southwest of Hattiesburg, Mississippi The State of Mississippi owns the surface real estate subject to certain restrictions related to subsurface penetration. The State is the surface operator; the Mississippi Forestry Commission is its agent. The federal government owns the subsurface real estate (including minerals and some surface features), shares right-of-entry easements with the State, and retains rights related to subsurface monitoring. The U.S. Department of Energy (DOE) Office of Legacy Management (LM), a successor agency to the U.S. Atomic Energy Commission, is responsible for the long-term surveillance of the subsurface real estate

  13. Basin Destination State

    Gasoline and Diesel Fuel Update

    0.0323 0.0284 W - W W - - - Northern Appalachian Basin Florida 0.0146 W W W W 0.0223 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian...

  14. Nocturnal Low-Level Jet in a Mountain Basin Complex. I. Evolution and Effects on Local Flows

    SciTech Connect

    Banta, Robert M.; Darby, Lisa S.; Fast, Jerome D.; Pinto, James O.; Whiteman, Charles D.; Shaw, William J.; Orr, Brad W.

    2004-10-01

    A Doppler lidar deployed to the center of the Great Salt Lake (GSL) basin during the Vertical Transport and Mixing Experiment (VTMX) in October 2000 found a diurnal cycle of the along-basin winds with northerly, up-basin flow during the day and a southerly, down-basin low-level jet at night. The emphasis of VTMX was on stable atmospheric processes in the cold-air pool that formed in the basin at night. During the night the jet was fully formed as it entered the GSL basin from the south. Thus it was a feature of the complex string of basins draining into the Great Salt Lake, which included at least the Utah Lake basin to the south. The timing of the evening reversal to down-basin flow was sensitive to the larger-scale north-south pressure gradient imposed on the basin complex. On nights when the pressure gradient was not too strong, local drainage flow (slope flows and canyon outflow) was well developed along the Wasatch Range to the east and coexisted with the basin jet. The coexistence of these two types of flow generated localized regions of convergence and divergence, in which regions of vertical motions and transport were focused. Mesoscale numerical simulations captured these features and indicated that updrafts on the order of 5 cm/s could persist in these localized convergence zones, contributing to vertical displacement of air masses within the basin cold pool.

  15. Results of screening activities in salt states prior to the enactment of the Nationall Waste Policy Act

    SciTech Connect

    Carbiener, W.A.

    1983-01-01

    The identification of potential sites for a nuclear waste repository through screening procedures in the salt states is a well-established, deliberate process. This screening process has made it possible to carry out detailed studies of many of the most promising potential sites, and general studies of all the sites, in anticipation of the siting guidelines specified in the Nuclear Waste Policy Act. The screening work completed prior to the passage of the Act allowed the Secretary of Energy to identify seven salt sites as potentially acceptable under the provisions of Section 116(a) of the Act. These sites were formally identified by letters from Secretary Hodel to the states of Texas, Utah, Mississippi, and Louisiana on February 2, 1983. The potentially acceptable salt sites were in Deaf Smith and Swisher Counties in Texas; Davis and Lavender Canyons in the Gibson Dome location in Utah; Richton and Cypress Creek Domes in Mississippi; and Vacherie Dome in Louisiana. Further screening will include comparison of each potentially acceptable site against disqualification factors and selection of a preferred site in each of the three geohydrologic settings from those remaining, in accordance with the siting guidelines. These steps will be documented in statutory Environmental Assessments prepared for each site to be nominated for detailed characterization. 9 references.

  16. Mechanical modeling of the growth of salt structures

    SciTech Connect

    Alfaro, R.A.M.

    1993-05-01

    A 2D numerical model for studying the morphology and history of salt structures by way of computer simulations is presented. The model is based on conservation laws for physical systems, a fluid marker equation to keep track of the salt/sediments interface, and two constitutive laws for rocksalt. When buoyancy alone is considered, the fluid-assisted diffusion model predicts evolution of salt structures 2.5 times faster than the power-law creep model. Both rheological laws predict strain rates of the order of 4.0 {times} 10{sup {minus}15}s{sup {minus}1} for similar structural maturity level of salt structures. Equivalent stresses and viscosities predicted by the fluid-assisted diffusion law are 10{sup 2} times smaller than those predicted by the power-law creep rheology. Use of East Texas Basin sedimentation rates and power-law creep rheology indicate that differential loading is an effective mechanism to induce perturbations that amplify and evolve to mature salt structures, similar to those observed under natural geological conditions.

  17. Mississippi Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9 104 -18 1980's 29 399 24 11 7 8 51 5 -1 17 1990's 82 106 -102 68 -1 31 13 -16 -19 34 2000's -20 53 81 -26 20 5 -26 37 12 26 2010's 1 109 65 29 -15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  18. Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Estimated Production (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 88 121 154 1980's 170 196 198 159 181 151 165 178 181 155 1990's 141 143 109 111 82 91 88 93 79 79 2000's 78 94 98 94 93 86 83 100 110 100 2010's 87 75 64 61 54 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  19. Mississippi Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 341 108 68 1980's 103 73 42 31 49 79 71 32 31 57 1990's 20 11 9 2 2 30 43 48 109 11 2000's 53 43 54 81 27 75 119 146 155 132 2010's 33 24 4 5 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  20. Mississippi Dry Natural Gas Reserves Revision Decreases (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Decreases (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 148 118 124 1980's 151 161 372 279 193 176 214 96 85 192 1990's 142 151 121 108 133 46 88 56 112 120 2000's 39 43 75 41 55 27 40 50 96 250 2010's 70 156 300 75 29 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  1. Mississippi Dry Natural Gas Reserves Revision Increases (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Increases (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 55 107 71 1980's 45 75 226 179 176 88 192 153 130 181 1990's 163 88 121 64 55 73 87 66 177 165 2000's 84 70 89 67 48 57 96 53 108 92 2010's 77 105 91 39 82 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  2. Mississippi Natural Gas Imports Price All Countries (Dollars per Thousand

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Price All Countries (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's -- 13 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Imports Price

  3. Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.82 1.63 2.51 2.76 2.79 2.91 2000's 3.75 7.85 -- -- -- -- -- -- -- -- 2010's -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring

  4. Mississippi Renewable Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Mississippi" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional","-","-","-","-","-" "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",1535,1488,1386,1417,1503 "MSW

  5. Mississippi Total Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Mississippi" "Energy Source",2006,2007,2008,2009,2010 "Fossil",34254,39184,37408,36266,43331 " Coal",18105,17407,16683,12958,13629 " Petroleum",399,399,76,17,81 " Natural Gas",15706,21335,20607,23267,29619 " Other Gases",44,42,40,25,2 "Nuclear",10419,9359,9397,10999,9643 "Renewables",1541,1493,1391,1424,1504 "Pumped Storage","-","-","-","-","-"

  6. Mississippi (with State Offshore) Associated-Dissolved Natural Gas,

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Mississippi (with State Offshore) Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6 14 9 4 2000's 12 12 13 11 7 6 6 6 11 2 2010's 0 1 0 0 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  7. Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate,

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves Acquisitions (Million Barrels) Acquisitions (Million Barrels) Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 1 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  8. Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate,

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves Adjustments (Million Barrels) Adjustments (Million Barrels) Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2010's 3 0 -3 3 -1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  9. Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate,

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves Decreases (Million Barrels) Decreases (Million Barrels) Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2010's 3 2 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease

  10. Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate,

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves Extensions (Million Barrels) Extensions (Million Barrels) Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease

  11. Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate,

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves Increases (Million Barrels) Increases (Million Barrels) Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 3 8 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease

  12. Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate,

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves Sales (Million Barrels) Sales (Million Barrels) Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 2 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate

  13. Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate,

    Energy Information Administration (EIA) (indexed site)

    Reserves Based Production (Million Barrels) Based Production (Million Barrels) Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 7 3 2 1 1 1 1 1 1 1 1990's 1 1 1 1 1 1 1 1 1 1 2000's 1 1 1 1 1 1 1 1 1 1 2010's 1 1 1 1 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  14. Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate,

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Million Barrels) in Nonproducing Reservoirs (Million Barrels) Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1 2 2000's 2 2 0 0 0 0 0 1 1 1 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  15. Mississippi (with State Offshore) Natural Gas Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Mississippi (with State Offshore) Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 60 70 126 156 2000's 144 120 111 103 83 110 149 206 243 257 2010's 207 220 127 143 204 - = No Data Reported; -- = Not

  16. Mississippi (with State Offshore) Nonassociated Natural Gas, Reserves in

    Energy Information Administration (EIA) (indexed site)

    Nonproducing Reservoirs, Wet (Billion Cubic Feet) Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Mississippi (with State Offshore) Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 54 56 117 152 2000's 132 109 98 92 76 104 143 200 232 255 2010's 207 219 127 143 200 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  17. Mississippi (with State off) Shale Proved Reserves New Field Discoveries

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Field Discoveries (Billion Cubic Feet) Mississippi (with State off) Shale Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas New Field Discoveries

  18. Mississippi (with State off) Shale Proved Reserves New Reservoir

    Energy Information Administration (EIA) (indexed site)

    Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) Mississippi (with State off) Shale Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  19. Mississippi (with State off) Shale Proved Reserves Revision Decreases

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Decreases (Billion Cubic Feet) Mississippi (with State off) Shale Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Reserves Revision Decreases

  20. Mississippi (with State off) Shale Proved Reserves Revision Increases

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Increases (Billion Cubic Feet) Mississippi (with State off) Shale Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Reserves Revision Increases

  1. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9 1980's 10 9 14 10 13 12 14 12 10 12 1990's 11 14 12 16 10 6 7 8 7 6 2000's 6 4 5 8 3 3 3 5 6 8 2010's 7 8 9 6 8 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    New Field Discoveries (Billion Cubic Feet) Field Discoveries (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3 1980's 0 3 0 5 1 8 0 1 0 0 1990's 15 0 0 0 1 0 0 0 0 0 2000's 0 0 1 0 0 0 0 0 2 2 2010's 0 1 1 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  3. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 1 1 0 0 1990's 0 0 7 0 0 1 0 0 0 0 2000's 0 0 0 0 0 0 2 0 1 0 2010's 0 0 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not

  4. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 11 2 9 1 5 0 0 9 0 0 2010's 2 0 3 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  5. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -66 1980's 6 -6 6 -2 2 2 0 -1 0 31 1990's 7 10 -4 -13 19 -12 20 0 -6 -6 2000's -1 -3 5 -1 -2 1 0 2 11 22 2010's 11 37 -3 -14 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  6. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1980's 7 1 3 1 4 3 3 3 13 11 1990's 2 1 0 0 1 0 9 12 0 0 2000's 4 2 3 0 0 1 7 0 0 0 2010's 0 0 4 3 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  7. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5 1980's 5 9 7 5 6 23 60 7 7 18 1990's 36 29 24 10 31 6 15 8 12 14 2000's 7 7 5 4 2 2 1 1 10 20 2010's 12 17 8 8 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 15 1980's 8 13 20 17 46 13 31 10 14 22 1990's 44 14 10 7 10 7 13 8 21 10 2000's 6 4 6 8 3 4 1 6 17 7 2010's 10 13 13 6 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 3 7 2 8 1 5 2 0 10 2010's 6 0 1 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  10. Mississippi Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Mississippi Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 24 2010's 24 24 28 24 25 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease

  11. Mississippi Crude Oil + Lease Condensate New Reservoir Discoveries in Old

    Energy Information Administration (EIA) (indexed site)

    Fields (Million Barrels) New Reservoir Discoveries in Old Fields (Million Barrels) Mississippi Crude Oil + Lease Condensate New Reservoir Discoveries in Old Fields (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus

  12. Mississippi Crude Oil + Lease Condensate Reserves Acquisitions (Million

    Energy Information Administration (EIA) (indexed site)

    Barrels) Acquisitions (Million Barrels) Mississippi Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 1 1 10 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Acquisitions

  13. Mississippi Crude Oil + Lease Condensate Reserves Adjustments (Million

    Energy Information Administration (EIA) (indexed site)

    Barrels) Adjustments (Million Barrels) Mississippi Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -1 2010's 25 12 40 -20 12 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves

  14. Mississippi Crude Oil + Lease Condensate Reserves Extensions (Million

    Energy Information Administration (EIA) (indexed site)

    Barrels) Extensions (Million Barrels) Mississippi Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 2010's 0 0 8 10 19 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Extensions

  15. Mississippi Crude Oil + Lease Condensate Reserves New Field Discoveries

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) New Field Discoveries (Million Barrels) Mississippi Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 2010's 0 1 1 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate New Field

  16. Mississippi Crude Oil + Lease Condensate Reserves Revision Decreases

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Decreases (Million Barrels) Mississippi Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 8 2010's 9 13 28 15 17 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Revision Decreases, Wet

  17. Mississippi Crude Oil + Lease Condensate Reserves Revision Increases

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Increases (Million Barrels) Mississippi Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 30 2010's 17 14 37 8 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Revision Increases

  18. Mississippi Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Liquids, Proved Reserves (Million Barrels) Mississippi Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16 1980's 20 18 18 19 15 12 11 11 12 12 1990's 11 10 9 11 9 8 7 6 8 10 2000's 8 10 8 7 6 7 8 9 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural

  19. Mississippi Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 146 1980's 161 187 185 150 169 140 151 166 172 144 1990's 130 129 97 95 73 85 81 85 72 74 2000's 73 90 94 85 90 83 81 95 104 93 2010's 81 67 56 56 47 - = No Data Reported; -- =

  20. Mississippi Nonassociated Natural Gas, Wet After Lease Separation, New

    Energy Information Administration (EIA) (indexed site)

    Field Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) Mississippi Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 1980's 360 42 15 4 16 2 0 0 20 25 1990's 6 12 5 10 3 14 0 0 0 0 2000's 1 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. Mississippi Nonassociated Natural Gas, Wet After Lease Separation, New

    Energy Information Administration (EIA) (indexed site)

    Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) Mississippi Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9 1980's 50 31 24 8 20 11 4 2 9 29 1990's 19 8 2 3 8 1 1 2 0 8 2000's 1 19 27 28 7 3 4 1 2 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 25 28 24 28 3 54 29 70 4 2 2010's 11 10 107 91 80 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  3. Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 55 1980's 23 405 19 14 5 4 51 5 1 -13 1990's 71 97 -97 81 -17 45 -7 -18 -12 40 2000's -22 55 76 -26 21 6 -23 33 1 6 2010's -8 75 67 44 -29 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  4. Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 65 1980's 96 72 39 30 45 77 68 29 18 46 1990's 19 10 9 2 1 30 34 36 110 11 2000's 49 41 52 81 27 74 112 147 156 133 2010's 33 24 0 2 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  5. Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 119 1980's 146 152 366 275 188 153 155 89 79 175 1990's 106 122 98 99 104 41 74 48 100 106 2000's 32 36 71 37 53 25 39 49 87 232 2010's 59 140 294 68 16 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  6. Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 56 1980's 37 62 207 163 130 76 162 143 116 160 1990's 121 74 111 57 45 66 74 58 157 156 2000's 78 66 83 59 46 53 94 48 92 85 2010's 67 93 79 33 76 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  7. Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 92 31 21 40 10 16 39 22 2 7 2010's 25 11 159 39 116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  8. ,"Mississippi Dry Natural Gas Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  9. ,"Mississippi Proved Nonproducing Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  10. Energy Department Awards Cooperative Agreement to Mississippi State University

    Energy.gov [DOE]

    Cincinnati – The U.S. Department of Energy (DOE) today awarded a cooperative agreement to Mississippi State University, Institute for Clean Energy Technology (MSU-ICET), to continue research efforts in the evaluation of High-Efficiency Particulate Air Filters (HEPA) and other technologies to enhance nuclear safety in the defense waste complex. The total value of the cooperative agreement over five years is $5 million. The project period of the cooperative agreement will be from January 20, 2015 through January 19, 2020.

  11. Mississippi (with State Offshore) Crude Oil Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Mississippi (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 49 68 2000's 38 71 42 68 79 87 79 35 126 117 2010's 94 90 82 73 85 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  12. Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate,

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves (Million Barrels) (Million Barrels) Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11 1980's 15 13 12 13 10 8 8 8 9 9 1990's 8 7 6 8 6 5 5 4 5 7 2000's 6 8 6 5 5 5 6 6 6 8 2010's 7 7 10 12 11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  13. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves (Billion Cubic Feet) Proved Reserves (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 67 1980's 73 66 74 80 114 105 66 61 71 105 1990's 126 108 85 53 43 27 47 51 47 31 2000's 35 26 33 27 20 20 21 30 45 38 2010's 36 62 62 43 58 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  14. Gulf LNG, Mississippi Liquefied Natural Gas Imports from Egypt (Million

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Egypt (Million Cubic Feet) Gulf LNG, Mississippi Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,954 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Gulf LNG, MS LNG Imports from Egypt

  15. Gulf LNG, Mississippi Liquefied Natural Gas Imports from Trinidad and

    Energy Information Administration (EIA) (indexed site)

    Tobago (Million Cubic Feet) Trinidad and Tobago (Million Cubic Feet) Gulf LNG, Mississippi Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,820 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Gulf LNG, MS LNG

  16. Mississippi (with State off) Coalbed Methane Production (Billion Cubic

    Gasoline and Diesel Fuel Update

    Feet) Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Mississippi Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane Production

  17. Born on an Air Force base in Mississippi, Jan never

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    on an Air Force base in Mississippi, Jan never lived any place for more than three years as a child. Her family moved to Germany when she was seven, and she recalls trips all over Europe. "We visited Holland, camped in Italy for a summer, and toured numerous museums and castles. My dad had been a pilot in World War II and Korea, and he took us to Hitler's Eagle's Nest retreat, and even to the Dachau concentration camp. These made extremely strong impressions of the influences of cultural

  18. Superposed Neogene extension, contraction, and salt canopy emplacement in the Yemeni Red Sea

    SciTech Connect

    Heaton, R.C.; Jackson, M.P.A.; Bamahmoud, M.; Nani, A.S.O.

    1996-12-31

    Although the Neogene Red Sea basin has been intensively examined as the type example of a young, narrow ocean, salt tectonics there has been neglected. The Yemeni part of the Red Sea exhibits a wide array of salt tectonic features within a small area. Above the rift section, a middle Miocene evaporite layer, originally 1.5-2 km thick, is the source for autochthonous and allochthonous salt structures. In the middle-late Miocene, evaporite-clastic overburden, halite, and anhydrite layers 50-350 m thick assisted deformation by providing several levels for decollement. Four southward-narrowing tectonics zones trend subparallel to the basin axis. Areas of extension in the easternmost Roller Zone, severe shortening in the central Canopy Zone, and mild shortening in the western Anticline Zone all narrow then pinch out at roughly the same latitude. This convergence suggests that extension and contraction are linked by various salt layers and by transfer structures transecting the tectonic zones. Extension, contraction, and coeval salt canopy emplacement were superposed, mostly between 8 and 5 Ma. The presence of allochthonous salt sheets casts doubt on previous estimates of salt 5 km thick in the southern Red Sea. Fault scarp asperities in the basin floor may have acted as buttresses against which contraction was initiated. The wide variety of salt structures may be due to the weakness and anisotropy of the partially evaporitic overburden and to high geothermal gradients (up to 77{degrees}C/km). These factors enhanced the deformation driven by gravity spreading and sedimentary differential loading.

  19. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  20. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  1. Molten salt lithium cells

    DOEpatents

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  2. Electrolyte salts for nonaqueous electrolytes

    DOEpatents

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  3. Electrochromic salts, solutions, and devices

    DOEpatents

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky,7,064,212 T. Mark

    2006-06-20

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  4. Batteries using molten salt electrolyte

    DOEpatents

    Guidotti, Ronald A.

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  5. Electrochromic Salts, Solutions, and Devices

    DOEpatents

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-11-11

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  6. Electrochromic Salts, Solutions, and Devices

    DOEpatents

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-10-14

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  7. EcoCAR 2 Announces Year One Winner: Mississippi State University |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Announces Year One Winner: Mississippi State University EcoCAR 2 Announces Year One Winner: Mississippi State University May 24, 2012 - 10:40am Addthis NEWS MEDIA CONTACT (202) 586-4940 Los Angeles, Calif. - EcoCAR 2: Plugging In to the Future today named Mississippi State University its Year One winner at the EcoCAR 2012 Competition in Los Angeles. The 15 universities competing in EcoCAR 2 gathered for six days of judged competition this week with $100,000 in prize

  8. Gulf Of Mexico Natural Gas Processed in Mississippi (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Mississippi (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed in Mississippi (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 91,618 74,637 98,497 118,368 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Processed Gulf of Mexico-Mississippi

  9. EIS-0165: Strategic Petroleum Reserve Alabama, Louisiana, Mississippi, and Texas

    Energy.gov [DOE]

    This EIS assesses the impacts of construction and operation for the range of alternatives being considered and focuses on oil and brine spill risk and impacts of brine disposal. The proposed action entails the development of a plan for 250 million barrels of new crude oil storage capacity in two Gulf Coast salt domes to expand the Strategic Petroleum Reserve pursuant to Congressional directive (PL I 01-383 and PL 101-512). Storage capacity would be developed by solution-mining the salt which would require about two billion barrels of surface water and would generate about two billion barrels of salt brine.

  10. DOE - Office of Legacy Management -- Salt_Lake

    Office of Legacy Management (LM)

    Salt_Lake Salt Lake City Sites ut_map Salt Lake City Disposal Site Salt Lake City Processing Site Last Updated: 12/14/2015

  11. Project Reports for Sac and Fox Tribe of the Mississippi in Iowa- 2010 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Sac and Fox Tribe of the Mississippi in Iowa Wind Energy Feasibility Study project will prepare the tribe for the development of clean, dependable, renewable wind energy on tribal land.

  12. SEP Success Story: Mississippi Adopts New Rules to Save Energy, Money

    Office of Energy Efficiency and Renewable Energy (EERE)

    An economic impact statement issued by the Mississippi Public Service Commission indicates new energy efficiency rules could potentially save the state’s consumers $2.3 billion by 2034 and create 9,500 jobs by 2030. Learn more.

  13. Mississippi State Briefing Book for low-level radioactive waste management

    SciTech Connect

    1981-08-01

    The Mississippi State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state an federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Mississippi. The profile is the result of a survey of NRC licensees in Mississippi. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Mississippi.

  14. Plant salt-tolerance mechanisms

    DOE PAGES [OSTI]

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore » and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  15. Plant salt-tolerance mechanisms

    SciTech Connect

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

  16. Mississippi Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC)

    (SC) Mississippi Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Mississippi Regional High

  17. Mississippi Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC)

    Science (SC) Mississippi Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Mississippi

  18. Molten Salt Promoting Effect in Double Salt CO2 Absorbents

    SciTech Connect

    Zhang, Keling; Li, Xiaohong S.; Chen, Haobo; Singh, Prabhakar; King, David L.

    2016-01-01

    The purpose of this paper is to elaborate on the concept of molten salts as catalysts for CO2 absorption by MgO, and extend these observations to the MgO-containing double salt oxides. We will show that the phenomena involved with CO2 absorption by MgO and MgO-based double salts are similar and general, but with some important differences. This paper focuses on the following key concepts: i) identification of conditions that favor or disfavor participation of isolated MgO during double salt absorption, and investigation of methods to increase the absorption capacity of double salt systems by including MgO participation; ii) examination of the relationship between CO2 uptake and melting point of the promoter salt, leading to the recognition of the role of pre-melting (surface melting) in these systems; and iii) extension of the reaction pathway model developed for the MgO-NaNO3 system to the double salt systems. This information advances our understanding of MgO-based CO2 absorption systems for application with pre-combustion gas streams.

  19. Developments in Molten Salt and Liquid-Salt-Cooled Reactors

    SciTech Connect

    Forsberg, Charles W.

    2006-07-01

    In the last 5 years, there has been a rapid growth in interest in the use of high-temperature (700 to 1000 deg C) molten and liquid fluoride salts as coolants in nuclear systems. This renewed interest is a consequence of new applications for high-temperature heat and the development of new reactor concepts. Fluoride salts have melting points between 350 and 500 deg C; thus, they are of use only in high-temperature systems. Historically, steam cycles with temperature limits of {approx}550 deg C have been the only efficient method to convert heat to electricity. This limitation produced few incentives to develop high-temperature reactors for electricity production. However, recent advances in Brayton gas turbine technology now make it possible to convert higher-temperature heat efficiency into electricity on an industrial scale and thus have created the enabling technology for more efficient nuclear reactors. Simultaneously, there is a growing interest in using high-temperature nuclear heat for the production of hydrogen and shale oil. Five nuclear-related applications are being investigated: (1) liquid-salt heat-transport systems in hydrogen and shale oil production systems; (2) the advanced high-temperature reactor, which uses a graphite-matrix coated-particle fuel and a liquid salt coolant; (3) the liquid-salt-cooled fast reactor which uses metal-clad fuel and a liquid salt coolant; (4) the molten salt reactor, with the fuel dissolved in the molten salt coolant; and (5) fusion energy systems. The reasons for the new interest in liquid salt coolants, the reactor concepts, and the relevant programs are described. (author)

  20. Mississippi Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) New Field Discoveries (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 98 53 17 1980's 359 45 15 9 17 10 0 1 20 25 1990's 21 12 5 10 4 14 0 0 0 0 2000's 1 0 1 0 0 0 0 0 2 2 2010's 0 1 1 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  1. Mississippi Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Mississippi Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,777 6,372 5,655 5,971 7,706 6,802 4,741 1990's 6,636 3,877 4,372 4,291 3,169 3,108 3,202 3,280 3,347 3,283 2000's 2,962 3,304 3,818 4,243 4,559 4,718 5,473 7,068 8,976 9,090 2010's 10,388 2,107 3,667 2,663 755 807 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) and Plant Fuel Consumption (Million Cubic Feet) Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,582 9,158 8,521 1970's 7,893 5,840 9,153 6,152 5,357 7,894 4,836 4,979 5,421 8,645 1980's 4,428 4,028 7,236 6,632 7,202 6,296 6,562 8,091 7,100 5,021 1990's 7,257 4,585 4,945 4,829 3,632 3,507 3,584 3,652 3,710 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  3. Mississippi Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Mississippi Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,362 44,170 44,253 1990's 43,184 43,693 44,313 45,310 43,803 45,444 46,029 47,311 45,345 47,620 2000's 50,913 51,109 50,468 50,928 54,027 54,936 55,741 56,155 55,291 50,713 2010's 50,537 50,636 50,689 50,153 49,911 49,821 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  4. Mississippi Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Mississippi Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,312 1,263 1,282 1990's 1,317 1,314 1,327 1,324 1,313 1,298 1,241 1,199 1,165 1,246 2000's 1,199 1,214 1,083 1,161 996 1,205 1,181 1,346 1,132 1,141 2010's 980 982 936 933 943 930 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  5. Mississippi Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) Mississippi Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 370,094 372,238 376,353 1990's 382,251 386,264 392,155 398,472 405,312 415,123 418,442 423,397 415,673 426,352 2000's 434,501 438,069 435,146 438,861 445,212 445,856 437,669 445,043 443,025 437,715 2010's 436,840 442,479 442,840 445,589 440,252 439,359 - = No Data Reported; -- =

  6. Mississippi Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Mississippi Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 44,979 36,329 31,594 2000's 30,895 30,267 26,997 26,003 21,869 21,496 22,131 27,316 28,677 28,951 2010's 28,117 28,828 48,497 23,667 20,550 20,794 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  7. Mississippi Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Mississippi Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 855 830 641 591 385 298 280 1990's 621 708 573 538 463 399 382 372 363 638 2000's 786 722 758 251 895 1,018 1,138 1,196 1,140 1,150 2010's 1,155 1,042 1,111 1,103 1,310 1,286 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  8. Mississippi Natural Gas Plant Liquids Production (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Liquids Production (Million Cubic Feet) Mississippi Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,127 971 1,334 1970's 1,270 1,217 1,058 878 679 567 520 367 485 1,146 1980's 553 830 831 633 618 458 463 437 811 380 1990's 445 511 416 395 425 377 340 300 495 5,462 2000's 11,377 15,454 16,477 11,430 13,697 14,308 14,662 13,097 10,846 18,354 2010's 18,405 11,221 486 466 495 348 - = No Data Reported; --

  9. Mississippi Natural Gas Total Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Total Consumption (Million Cubic Feet) Mississippi Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 255,475 241,342 306,733 2000's 300,652 332,589 343,890 265,842 282,051 301,663 307,305 364,067 355,006 364,323 2010's 438,733 433,538 494,016 420,594 427,584 519,276 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016

  10. Mississippi Quantity of Production Associated with Reported Wellhead Value

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Mississippi Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 211,116 206,871 178,426 197,217 195,299 196,912 148,167 1990's 149,012 126,637 129,340 131,450 105,646 95,349 88,805 98,075 88,723 83,232 2000's 70,965 76,986 112,979 133,901 145,692 52,923 60,531 73,460 96,641

  11. Mississippi Natural Gas % of Total Residential Deliveries (Percent)

    Energy Information Administration (EIA) (indexed site)

    % of Total Residential Deliveries (Percent) Mississippi Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.57 0.56 0.56 0.58 0.55 0.55 0.52 2000's 0.54 0.59 0.54 0.52 0.50 0.51 0.49 0.47 0.49 0.49 2010's 0.57 0.52 0.47 0.51 0.56 0.50 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  12. Mississippi Natural Gas Delivered to Commercial Consumers for the Account

    Energy Information Administration (EIA) (indexed site)

    of Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Mississippi Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 1990's 777 731 645 647 647 615 585 1,148 1,101 807 2000's 954 935 707 937 943 895 993 2,327 1,942 1,715 2010's 1,983 2,067 1,958 2,123 2,772 2,806 - = No Data Reported; -- = Not Applicable;

  13. Mississippi Natural Gas, Wet After Lease Separation Proved Reserves

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Mississippi Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,511 1980's 1,776 2,042 1,803 1,603 1,496 1,364 1,304 1,223 1,146 1,108 1990's 1,129 1,061 873 800 653 667 634 583 662 681 2000's 620 663 746 748 692 758 816 958 1,035 922 2010's 858 868 612 600 563 - = No Data Reported; -- = Not

  14. Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Proved

    Energy Information Administration (EIA) (indexed site)

    Reserves (Billion Cubic Feet) Proved Reserves (Billion Cubic Feet) Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,444 1980's 1,703 1,976 1,729 1,523 1,382 1,259 1,238 1,162 1,075 1,003 1990's 1,003 953 788 747 610 640 587 532 615 650 2000's 585 637 713 721 672 738 795 928 990 884 2010's 822 806 550 557 505 - = No Data Reported; -- = Not Applicable; NA

  15. Project Reports for Mississippi Band of Choctaw Indians- 2002 Project

    Energy.gov [DOE]

    The Mississippi Band of Choctaw Indians (MBCI) always seeks new opportunities to diversify its economy and create new career opportunities for tribal members, which is the purpose of this feasibility study. The MBCI will study the feasibility of locating a renewable energy installation on tribal lands. The technologies to be utilized in the renewable energy installation will be those that can readily handle poultry litter, either alone or in combination with wood residues. The purpose of the study is to determine whether such an installation can be both economically sustainable and consistent with the cultural, social, and economic goals of the tribe. The feasibility study will result in the development of a thorough business plan that will allow the MBCI to make an informed decision regarding this project.

  16. Mississippi Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) Mississippi Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 520 546 489 552 551 583 595 593 606 630 653 653 2007 678 690 709 736 749 756 714 717 752 809 845 813 2008 847 877 880 896 929 913 927 948 945 1,046 1,057 1,091 2009 1,079 1,098 941 876 853 840 880 916 917 964 1,084 1,161 2010 1,040 1,011 1,055 960 1,024 1,048 1,090 1,110 1,180 1,200 1,262 1,219 2011 1,233 1,223 1,201 1,236

  17. Wave Basin | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Basin Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWaveBasin&oldid596392" Feedback Contact needs updating Image needs updating Reference...

  18. Basin Destination State

    Annual Energy Outlook

    10.68 12.03 13.69 14.71 16.11 19.72 20.69 9.1 4.9 Northern Appalachian Basin Massachusetts W W - - - - - - - - - Northern Appalachian Basin Michigan 6.74 8.16 W 8.10 W W...

  19. Basin Destination State

    Gasoline and Diesel Fuel Update

    11.34 12.43 13.69 14.25 15.17 18.16 18.85 6.5 3.8 Northern Appalachian Basin Massachusetts W W - - - - - - - - - Northern Appalachian Basin Michigan 7.43 8.85 W 8.37 W W...

  20. Structural Interactions within Lithium Salt Solvates: Acyclic...

    Office of Scientific and Technical Information (OSTI)

    Structural Interactions within Lithium Salt Solvates: Acyclic Carbonates and Esters Citation Details In-Document Search Title: Structural Interactions within Lithium Salt Solvates: ...

  1. Protic Salt Polymer Membranes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Protic Salt Polymer Membranes Protic Salt Polymer Membranes A presentation to the High Temperature Membranes Working Group meeting, May 19, 2006. More Documents & Publications ...

  2. Enterprise Assessments Salt Waste Processing Facility Construction...

    Office of Environmental Management (EM)

    Salt Waste Processing Facility Construction Quality and Fire Protection Systems Follow-up Review at the Savannah River Site - January 2016 Enterprise Assessments Salt Waste ...

  3. Salt Waste Contractor Reaches Contract Milestone | Department...

    Office of Environmental Management (EM)

    Salt Waste Contractor Reaches Contract Milestone Salt Waste Contractor Reaches Contract Milestone April 29, 2013 - 12:00pm Addthis Robert Brown, SRR tank farm operator, performs ...

  4. K Basin safety analysis

    SciTech Connect

    Porten, D.R.; Crowe, R.D.

    1994-12-16

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  5. Petroleum systems of Jianghan Basin, Hubel Province, China

    SciTech Connect

    Cunningham, A.E.; Schaps, S.; McGregor, D.

    1996-12-31

    The Jianghan Basin is a Cretaceous-Tertiary nonmarine rift basin superimposed on a late Precambrian to Jurassic passive margin and foreland basin succession deformed by mid-Mesozoic folding and thrusting. Hence the basin has potential for superimposed petroleum systems. Oil production is established in a Tertiary petroleum system developed in two major depocenters, the Jiangling (west) and Qianjiang (east) Depressions. Lacustrine source beds in the early Eocene Xingouzhui and late Eocene Qianjiang Formations generated hydrocarbons during local maximum basin fill in the Oligocene to present. Very early, low temperature generation of petroleum occurs where Type 1S Qianjiang Formation kerogen is present. Tertiary fluvial and deltaic sandstones form reservoirs that trap oil in highs or rollover structures formed by normal faulting and salt movement. The pre-rift section contains large folds and good source-beds, but has high exploration risk. Factors limiting effectiveness of older petroleum systems are: (1) Uplift and erosion of thrust structures; (2) Overmaturation of pre-Permian source rocks prior to folding and thrusting; (3) Limited extent of secondary maturation of Late Paleozoic and Mesozoic source beds; and (4) Disruption of older traps and seals by widespread normal faulting. Production of hydrocarbons from Permian and Triassic rocks to the west of Hubei suggests that further seismic work and drilling are merited to evaluate pre-Tertiary potential in the Jianghan Basin.

  6. Petroleum systems of Jianghan Basin, Hubel Province, China

    SciTech Connect

    Cunningham, A.E. ); Schaps, S.; McGregor, D. )

    1996-01-01

    The Jianghan Basin is a Cretaceous-Tertiary nonmarine rift basin superimposed on a late Precambrian to Jurassic passive margin and foreland basin succession deformed by mid-Mesozoic folding and thrusting. Hence the basin has potential for superimposed petroleum systems. Oil production is established in a Tertiary petroleum system developed in two major depocenters, the Jiangling (west) and Qianjiang (east) Depressions. Lacustrine source beds in the early Eocene Xingouzhui and late Eocene Qianjiang Formations generated hydrocarbons during local maximum basin fill in the Oligocene to present. Very early, low temperature generation of petroleum occurs where Type 1S Qianjiang Formation kerogen is present. Tertiary fluvial and deltaic sandstones form reservoirs that trap oil in highs or rollover structures formed by normal faulting and salt movement. The pre-rift section contains large folds and good source-beds, but has high exploration risk. Factors limiting effectiveness of older petroleum systems are: (1) Uplift and erosion of thrust structures; (2) Overmaturation of pre-Permian source rocks prior to folding and thrusting; (3) Limited extent of secondary maturation of Late Paleozoic and Mesozoic source beds; and (4) Disruption of older traps and seals by widespread normal faulting. Production of hydrocarbons from Permian and Triassic rocks to the west of Hubei suggests that further seismic work and drilling are merited to evaluate pre-Tertiary potential in the Jianghan Basin.

  7. Geology and geohydrology of the Palo Duro Basin, Texas Panhandle. Report on the progress of nuclear waste isolation feasibility studies, 1979

    SciTech Connect

    Gustavson, T.C.; Presley, M.W.; Handford, C.R.; Finley, R.J.; Dutton, S.P.; Baumgardner, R.W. Jr.; McGillis, K.A.; Simpkins, W.W.

    1980-01-01

    Since early 1977, the Bureau of Economic Geology has been evaluating several salt-bearing basins within the State of Texas as part of the national nuclear repository program. The Bureau, a research unit of The University of Texas at Austin and the State of Texas, is carrying out a long-term program to gather and interpret all geologic and hydrologic information necessary for description, delineation, and evaluation of salt-bearing strata in the Palo Duro and Dalhart Basins of the Texas Panhandle. The program in FY 79 has been subdivided into four broad research tasks, which are addressed by a basin analysis group, a surface studies group, a geohydrology group, and a host-rock analysis group. The basin analysis group has delineated the structural and stratigraphic framework of the basins, initiated natural resource assessment, and integrated data from 8000 ft (2400 m) of core material into salt-stratigraphy models. Salt depth and thickness have been delineated for seven salt-bearing stratigraphic units. Concurrently, the surface studies group has collected ground and remotely sensed data to describe surficial processes, including salt solution, slope retreat/erosion mechanisms, geomorphic evolution, and fracture system development. The basin geohydrology group has begun evaluating both shallow and deep fluid circulation within the basins. The newly formed host-rock analysis group has initiated study of cores from two drilling sites for analysis of salt and the various lithologies overlying and interbedded with salt units. This paper, a summary report of progress in FY 79, presents principal conclusions and reviews methods used and types of data and maps generated.

  8. Reserves in western basins

    SciTech Connect

    Caldwell, R.H.; Cotton, B.W.

    1995-04-01

    The objective of this project is to investigate the reserves potential of tight gas reservoirs in three Rocky Mountain basins: the Greater Green River (GGRB), Uinta and Piceance basins. The basins contain vast gas resources that have been estimated in the thousands of Tcf hosted in low permeability clastic reservoirs. This study documents the productive characteristics of these tight reservoirs, requantifies gas in place resources, and characterizes the reserves potential of each basin. The purpose of this work is to promote understanding of the resource and to encourage its exploitation by private industry. At this point in time, the GGRB work has been completed and a final report published. Work is well underway in the Uinta and Piceance basins which are being handled concurrently, with reports on these basins being scheduled for the middle of this year. Since the GGRB portion of the project has been completed, this presentation win focus upon that basin. A key conclusion of this study was the subdivision of the resource, based upon economic and technological considerations, into groupings that have distinct properties with regard to potential for future producibility, economics and risk profile.

  9. Remediated Nitrate Salt Drums Background

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Providing Additional Pressure Relief to the Remediated Nitrate Salt Drums Background After the radiological event on February 14, 2014 at the Waste Isolation Pilot Plant (WIPP), Department of Energy (DOE) scientists from several national laboratories conducted extensive experiments and modeling studies to determine what caused the drum to breach. These investigations indicated that an incompatible mixture of nitrate salts and an organic absorbent created the conditions that resulted in an

  10. the Central Basin Platform,

    Office of Scientific and Technical Information (OSTI)

    ... As a result. it is believed that most of the structures formed within the context of an ... order to facilitate flexure modeling of the CBP and adjacent Delaware and Midland basins. ...

  11. Energy Information Administration (EIA) (indexed site)

    Mississippi Mississippi

  12. K Basins Hazard Analysis

    SciTech Connect

    WEBB, R.H.

    1999-12-29

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  13. K Basin Hazard Analysis

    SciTech Connect

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  14. Understanding Long-Term Solute Transport in Sedimentary Basins: Simulating Brine Migration in the Alberta Basin. Final Report

    SciTech Connect

    Alicia M. Wilson

    2009-11-30

    Mass transport in deep sedimentary basins places important controls on ore formation, petroleum migration, CO2 sequestration, and geochemical reactions that affect petroleum reservoir quality, but large-scale transport in this type of setting remains poorly understood. This lack of knowledge is highlighted in the resource-rich Alberta Basin, where geochemical and hydrogeologic studies have suggested residence times ranging from hundreds of millions of years to less than 5 My, respectively. Here we developed new hydrogeologic models that were constrained by geochemical observations to reconcile these two very different estimates. The models account for variable-density fluid flow, heat transport, solute transport, sediment deposition and erosion, sediment compressibility, and dissolution of salt deposits, including Cl/Br systematics. Prior interpretations of Cl/Br ratios in the Alberta Basin concluded that the brines were derived from evaporatively-concentrated brines that were subsequently diluted by seawater and freshwater; models presented here show that halite dissolution must have contributed strongly as well, which implies significantly greater rates of mass transport. This result confirms that Cl/Br ratios are subject to significant non-uniqueness and thus do not provide good independent indicators of the origin of brines. Salinity and Cl/Br ratios provided valuable new constraints for basin-scale models, however. Sensitivity studies revealed that permeabilities obtained from core- and field-scale tests were appropriate for basin-scale models, despite the differences in scale between the tests and the models. Simulations of groundwater age show that the residence time of porefluids in much of the basin is less than 100 My. Groundwater age increases with depth and approaches 200 My in the deepest part of the basin, but brines are significantly younger than their host rocks throughout the basin.

  15. Permian basin gas production

    SciTech Connect

    Haeberle, F.R.

    1995-06-01

    Of the 242 major gas fields in the Permian basin, 67 are on the Central Basin Platform, 59 are in the Delaware basin, 44 are in the Midland basin, 28 are in the Val Verde basin, 24 are on the Eastern Shelf, 12 are in the Horshoe Atoll and eight are on the Northwest Shelf. Eleven fields have produced over one trillion cubic feet of gas, 61 have produced between 100 billion and one trillion cubic feet of gas and 170 have produced less than 100 billion cubic feet. Highlights of the study show 11% of the gas comes from reservoirs with temperatures over 300 degrees F. and 11% comes from depths between 19,000 and 20,000 feet. Twenty percent of the gas comes from reservoirs with pressures between 1000 and 2000 psi, 22% comes from reservoirs with 20-24% water saturation and 24% comes from reservoirs between 125 and 150 feet thick. Fifty-three reservoirs in the Ellenburger formation have produced 30% of the gas, 33% comes from 88 reservoirs in the Delaware basin and 33% comes from reservoirs with porosities of less than five percent. Forty percent is solution gas and 46% comes from combination traps. Over 50% of the production comes from reservoirs with five millidarcys or less permeability, and 60% of the gas comes from reservoirs in which dolomite is the dominant lithology. Over 50% of the gas production comes from fields discovered before 1957 although 50% of the producing fields were not discovered until 1958.

  16. Mississippi Natural Gas Pipeline and Distribution Use Price (Dollars per

    Energy Information Administration (EIA) (indexed site)

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.20 0.19 1970's 0.20 0.21 0.23 0.24 0.28 0.36 0.46 0.73 0.88 1.28 1980's 1.75 2.34 2.91 3.06 2.94 2.92 2.44 1.99 1.87 2.09 1990's 2.11 2.33 2.34 2.37 1.98 1.82 2.63 2.62 2.33 2.19 2000's 3.37 4.28 NA -- -- - = No Data Reported; -- = Not Applicable; NA

  17. Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Wellhead Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.17 0.18 1970's 0.18 0.21 0.27 0.23 0.29 0.50 0.71 0.73 1.15 1.60 1980's 2.32 3.21 3.91 3.78 3.47 3.17 2.13 1.94 1.86 1.97 1990's 1.76 1.66 1.64 1.73 1.49 1.24 1.66 1.73 1.42 1.63 2000's 3.30 3.93 3.06 5.13 5.83 8.54 6.84 6.70 8.80 3.73 2010's 4.17 - = No Data Reported; -- = Not

  18. Mississippi Natural Gas in Underground Storage (Base Gas) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Base Gas) (Million Cubic Feet) Mississippi Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 1991 47,530 47,483 47,483 47,483 47,483 47,868 48,150 48,150 48,150 48,150 48,150 48,150 1992 48,150 48,150 48,149 48,149 48,149 48,149 48,149 48,149 48,149 48,149 47,851 48,049 1993 48,039 48,049 48,049 48,049 47,792 48,049 48,049 48,049

  19. Mississippi Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Mississippi Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 33,234 33,553 34,322 39,110 43,935 47,105 53,425 58,298 62,273 65,655 66,141 60,495 1991 43,838 39,280 39,196 45,157 48,814 50,833 52,841 54,954 60,062 64,120 56,034 50,591 1992 40,858 39,723 37,350 37,516 41,830 46,750 51,406 51,967 58,355 59,621 59,164 52,385 1993 46,427 38,859 32,754 35,256 42,524 46,737 51,884

  20. Mississippi Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    Gasoline and Diesel Fuel Update

    Feet) Base Gas) (Million Cubic Feet) Mississippi Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 1991 47,530 47,483 47,483 47,483 47,483 47,868 48,150 48,150 48,150 48,150 48,150 48,150 1992 48,150 48,150 48,149 48,149 48,149 48,149 48,149 48,149 48,149 48,149 47,851 48,049 1993 48,039 48,049 48,049 48,049 47,792 48,049 48,049 48,049

  1. Haynes Wave Basin | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wave Basin Jump to: navigation, search Basic Specifications Facility Name Haynes Wave Basin Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Wave Basin...

  2. Hydrogeochemistry of the Antrim Shale (Devonian) in the Michigan Basin

    SciTech Connect

    Martini, A.M.; Walter, L.M.; Richards, J.A.; Budai, J.M. . Dept. of Geological Sciences)

    1994-04-01

    The Antrim shale has been the focus of active exploration and production in the Michigan Basin since 1987. The producing trend is presently located along the northern rim of the basin, but new ventures are expanding into the southern part of the basin and a predictive model for gas generation and production is greatly needed. The authors have undertaken a geochemical investigation of the waters co-produced with gases in the Antrim shale. There is unusual regional variability in the water chemistry. For example, salinity ranges from near potable water to nearly 10 times the salinity of ocean water within a distance of 80 km. Understanding the origin of solutes, waters and natural gas being produced from the Antrim Shale will aid in developing a model for natural gas generation and migration within the basin. The chemical and isotopic compositions of Antrim waters suggest that there are two sources of water and salinity within the reservoir: (1) saline, high-bromide basinal brine moving updip into the producing areas, and (2) ancient, dilute glacial melt water. Either of these waters can gain additional NaCl from dissolving Br-poor halite located within the updip pinch-out of the Detroit River Salt. When plotted geographically, variations in these components exhibit distinct regional patterns and may ultimately highlight major water and gas migration avenues. In addition to variable water salinity, the authors' preliminary results suggest that complexities in natural gas chemistry are reflected in the composition of coexisting waters.

  3. Williston basin oil exploration: Past, present, and future

    SciTech Connect

    Jennings, A.H.

    1991-06-01

    Past: In 1951, modern oil exploration came to the Williston basin with the discovery of Paleozoic oil on the large Nesson anticline. This was quickly followed by similar discoveries on Cedar Creek and Poplar anticlines. To the north, the Canadians, lacking large structures, concentrated on Paleozoic stratigraphic traps and were highly successful. US explorationists quickly followed, finding similar traps on the basin's northeastern flank and center. The 1960s saw multiple Devonian salt dissolution structures produce on the western flank. To the northwest, shallow Mississippian and deeper Ordovician pays were found on small structural closures. These later were combined with pays in the Devonian and Silurian to give multiple pay potential. In the basin center large buried structures, visible only to seismic, were located. The 1970s revealed an Ordovician subcrop trap on the southeast flank. Centrally, a Jurassic astrobleme with Mississippian oil caused a flurry of leasing and deep drilling. The 1982 collapse of oil prices essentially halted exploration. 1987 saw a revival when horizontal drilling for the Mississippian Bakken fractured shale promised viable economics. Present: Today, emphasis is on Bakken horizontal drilling in the deeper portion of the basin. Next in importance is shallow drilling such as on the northeastern flank. Future: An estimated on billion barrels of new oil awaits discovery in the Williston basin. Additional exploration in already established production trends will find some of this oil. Most of this oil, however, will almost certainly be found by following up the numerous geological leads hinted at by past drilling.

  4. Geology and geohydrology of the east Texas Basin. Report on the progress of nuclear waste isolation feasibility studies (1979)

    SciTech Connect

    Kreitler, C.W.; Agagu, O.K.; Basciano, J.M.

    1980-01-01

    The program to investigate the suitability of salt domes in the east Texas Basin for long-term nuclear waste repositories addresses the stability of specific domes for potential repositories and evaluates generically the geologic and hydrogeologic stability of all the domes in the region. Analysis during the second year was highlighted by a historical characterization of East Texas Basin infilling, the development of a model to explain the growth history of the domes, the continued studies of the Quaternary in East Texas, and a better understanding of the near-dome and regional hydrology of the basin. Each advancement represents a part of the larger integrated program addressing the critical problems of geologic and hydrologic stabilities of salt domes in the East Texas Basin.

  5. Salt site performance assessment activities

    SciTech Connect

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  6. Carbonate seismic stratigraphy of Cretaceous Paso Caballos basin, Guatemala: new structures in a structureless basin

    SciTech Connect

    Pigott, J.D.; Mazariegos, R.; Forgotson, J.M. Jr.

    1989-03-01

    Previous exploration in the carbonate and evaporite sequences of the Paso Caballos basin focused primarily upon structural plays. Early data acquisition and processing purposely excluded the resolution advantages of broad frequency ranges and ignored the problems of statics. Interpretations based on these data were predictably unsuccessful in this large, presently karsted, Cretaceous shallow marine platform. Seismic stratigraphic analysis of 735.5 km of statics-corrected, broad-band, zero-phase dynamic and Vibroseis data acquired in 1981 and 1982 delineates four seismic sequences within the Cretaceous (in increasing age): The Lacandon-Barton Creek limestone sequence, the upper Coban salt sequence, the middle Coban dolomitic salt sequence, and the Lower Cretaceous dolomitic sequence. The sequences overlying the faulted and folded Lower Cretaceous dolomitic sequence are relatively smooth and dip at a low angle toward a depocenter to the northwest. Within the carbonate section of the upper Coban salt sequence are several large (45 km/sup 2/), mounded structures with substantial lateral and vertical variations in both reflection group configurations and wavelet characteristics. Detailed modeling and attribute analysis offer additional insight into the interpretation of these structures. For example, analysis of one such feature, the Santa Amelia structure, shows notched frequency attenuation off structure, which suggests permeable hydrocarbon-filled porosities on the flank isolated and sealed from a wet structural center.

  7. Production of chlorine from chloride salts

    DOEpatents

    Rohrmann, Charles A. (Kennewick, WA)

    1981-01-01

    A process for converting chloride salts and sulfuric acid to sulfate salts and elemental chlorine is disclosed. A chloride salt and sulfuric acid are combined in a furnace where they react to produce a sulfate salt and hydrogen chloride. Hydrogen chloride from the furnace contacts a molten salt mixture containing an oxygen compound of vanadium, an alkali metal sulfate and an alkali metal pyrosulfate to recover elemental chlorine. In the absence of an oxygen-bearing gas during the contacting, the vanadium is reduced, but is regenerated to its active higher valence state by separately contacting the molten salt mixture with an oxygen-bearing gas.

  8. Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet) Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's -- 12.93 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Price of Liquefied Natural

  9. Geohydrological feasibility study of the Black Warrior Basin for the potential applicability of Jack W. McIntyre`s patented process

    SciTech Connect

    Reed, P.D.

    1994-03-01

    Geraghty & Miller, Inc. of Midland, Texas conducted geological and hydrological feasibility studies of the potential applicability of Jack W. Mclntyre`s patented process for the recovery of natural gas from coalbed/sand formations in the Black Warrior Basin of Mississippi and Alabama through literature surveys. Methane gas from coalbeds in the Black Warrior Basin is confined to the coal fields of northern Alabama. Produced water from degasification of coalbeds is currently disposed by surface discharge. Treatment prior to discharge consists of short-term storage and in-stream dilution. Mr. Mclntyre`s process appears to be applicable to the Black Warrior Basin and could provide an environmentally sound alternative for produced water production.

  10. Treatment of Remediated Nitrate Salts

    Energy.gov [DOE]

    Los Alamos National Laboratory, provided a presentation at the NNMCABs November 18, 2015 Board Meeting at New Mexico Highlands University. The topic of the presentation was the plan for remediation the nitrate salt waste from the 3706 campaign that is currently stored at Material Disposal Area G, presenter was David Funk, LANS.

  11. Solar on Salt Lake City Convention Center

    Energy.gov [DOE]

    This photograph features the Calvin L. Rampton Salt Palace Convention Center, which will soon become a solar power-producing giant. Salt Lake County and its project partners announced plans to...

  12. Salt Wells Geothermal Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Salt Wells Geothermal Project Project Location Information Coordinates 39.580833333333,...

  13. Modeling of Sulfate Double-salts in Nuclear Wastes

    SciTech Connect

    Toghiani, B.

    2000-10-30

    Due to limited tank space at Hanford and Savannah River, the liquid nuclear wastes or supernatants have been concentrated in evaporators to remove excess water prior to the hot solutions being transferred to underground storage tanks. As the waste solutions cooled, the salts in the waste exceeded the associated solubility limits and precipitated in the form of saltcakes. The initial step in the remediation of these saltcakes is a rehydration process called saltcake dissolution. At Hanford, dissolution experiments have been conducted on small saltcake samples from five tanks. Modeling of these experimental results, using the Environmental Simulation Program (ESP), are being performed at the Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University. The River Protection Project (RPP) at Hanford will use these experimental and theoretical results to determine the amount of water that will be needed for its dissolution and retrieval operations. A comprehensive effort by the RPP and the Tank Focus Area continues to validate and improve the ESP and its databases for this application. The initial effort focused on the sodium, fluoride, and phosphate system due to its role in the formation of pipeline plugs. In FY 1999, an evaluation of the ESP predictions for sodium fluoride, trisodium phosphate dodecahydrate, and natrophosphate clearly indicated that improvements to the Public database of the ESP were needed. One of the improvements identified was double salts. The inability of any equilibrium thermodynamic model to properly account for double salts in the system can result in errors in the predicted solid-liquid equilibria (SLE) of species in the system. The ESP code is evaluated by comparison with experimental data where possible. However, data does not cover the range of component concentrations and temperatures found in many tank wastes. Therefore, comparison of ESP with another code is desirable, and may illuminate problems with both

  14. Brine Migration Experimental Studies for Salt Repositories

    Office of Energy Efficiency and Renewable Energy (EERE)

    Experiments were used to examine water content in Permian salt samples including impact of variation in thermal regime on water content of evaporites and other mineral species, behavior of brine inclusions in salt, and evolution of the gas/liquid brine/salt system.

  15. Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics

    Energy.gov [DOE]

    The report addresses granular salt reconsolidation from three vantage points: laboratory testing, modeling, and petrofabrics.

  16. the Central Basin Platform,

    Office of Scientific and Technical Information (OSTI)

    ... Bolden, G.P., 1984, Wrench Faulting in Selected Areas of the Permian Basin, &: Moore, G. ... I I I I I 1 I I I I I I 1 I I I I Henry, C.A. and Price, J.G., 1985, Summary of ...

  17. EIS-0385-S1: Ancillary Facilities for the Richton Site of the Strategic Petroleum Reserve, Mississippi

    Energy.gov [DOE]

    Since selecting the Richton site, DOE has engaged in further consultations with Federal and Mississippi state agencies and is now considering different locations from those addressed in DOE/EIS–0385 for certain facilities associated with the Richton SPR expansion site.

  18. Salt tectonics and structural styles in the deep-water province of the Cabo Frio Region, Rio de Janeiro, Brazil

    SciTech Connect

    Mohriak, W.U.; Macedo, J.M.; Castellani, R.T.

    1996-12-31

    The Cabo Frio region, offshore Rio de Janeiro, lies between two of the most prolific Brazilian oil provinces, the Campos and Santos basins. Major geologic features have been identified using a multidisciplinary approach integrating seismic, gravity, petrographic, and borehole data. The Cabo Frio frontier region is characterized by marked changes in stratigraphy and structural style and is unique among the Brazilian marginal basins. Major geologic features include the deflection of the coastline and pre-Aptian hings line from northeast to east; a large east-striking offshore graben related to salt tectonics; a northwest-trending lineament extending from oceanic crust to the continent; basement-involved landward-dipping (antithetic) normal faults in shallow water; a stable platform in the southern Campos Basin; a thick sequence of postbreakup intrusive and extrusive rocks; and, near the Santos Basin, a mobilized sequence of deep-water postrift strata affected by landward-dipping listric normal faults. These faults are unusual in salt-related passive margins in that they dip landward, apparently detach on the Aptian salt, and show large late Tertiary offsets. Locally, the older sequences do not show substantial growth in the downthrown blocks. South of the Rio de Janeiro coast, a phenomenal landward-dipping fault system detaches blocks of the Albian platform to the north and, to the south, coincides with the depositional limit of the Albian platform. Two end-member processes of salt tectonics in the Cabo Frio region result in either synthetic or antithetic basal shear along the fault weld under the overburden: (1) thin-skinned processes, in which the listric faults were caused by salt flow in response to gravity forces related to massive clastic progradation from the continent; and (2) thick-skinned processes, in which faulting was indirectly triggered by diastrophic causes or disequilibrium in the basement topography.

  19. Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waste Processing Facility Independent Technical Review | Department of Energy Facility: Briefing on the Salt Waste Processing Facility Independent Technical Review Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt Waste Processing Facility Independent Technical Review This is a presentation outlining the Salt Waste Processing Facility process, major risks, approach for conducting reviews, discussion of the findings, and conclusions. Savannah River Site - Salt Waste

  20. Thermophysical properties of reconsolidating crushed salt.

    SciTech Connect

    Bauer, Stephen J.; Urquhart, Alexander

    2014-03-01

    Reconsolidated crushed salt is being considered as a backfilling material placed upon nuclear waste within a salt repository environment. In-depth knowledge of thermal and mechanical properties of the crushed salt as it reconsolidates is critical to thermal/mechanical modeling of the reconsolidation process. An experimental study was completed to quantitatively evaluate the thermal conductivity of reconsolidated crushed salt as a function of porosity and temperature. The crushed salt for this study came from the Waste Isolation Pilot Plant (WIPP). In this work the thermal conductivity of crushed salt with porosity ranging from 1% to 40% was determined from room temperature up to 300oC, using two different experimental methods. Thermal properties (including thermal conductivity, thermal diffusivity and specific heat) of single-crystal salt were determined for the same temperature range. The salt was observed to dewater during heating; weight loss from the dewatering was quantified. The thermal conductivity of reconsolidated crushed salt decreases with increasing porosity; conversely, thermal conductivity increases as the salt consolidates. The thermal conductivity of reconsolidated crushed salt for a given porosity decreases with increasing temperature. A simple mixture theory model is presented to predict and compare to the data developed in this study.

  1. Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, July 1, 1993--September 30, 1993

    SciTech Connect

    Not Available

    1993-11-01

    This document is a brief progress report from each of the research and education projects that are currently funded through the ERWM contract. During third quarter 1993, approval was given by DOE for purchase of equipment. Equipment purchases were initiated and much of the equipment has been received and installed. The committees in charge of coordination of sampling and analyses associated with the collaborative research groups continued to meet and address these issues. Sampling has been done in the lower part of Devil`s Swamp and in the Devil`s Swamp Lake area. In addition, extensive sampling has been done in Bayou Trepagnier and in Bayou St. John. During this period, Tulane and Xavier Universities continued working closely with Oak Ridge National Laboratories (ORNL). The ORNL 1993 summer student internship program was completed. Plans were made for expanding the program to support 8 students next summer. Leonard Price, a Xavier University Chemistry professor and John Walz, a Tulane University Engineering professor each spent 5 weeks at ORNL. During this time these faculty worked with ORNL researchers exploring mutual interests and discussing possible future collaborations. In September, Drs. Carl Gehrs, Lee Shugart and Marshall Adams of ORNL, visited the Tulane and Xavier campuses. They presented two seminars and met with several of the investigators being supported by the ERWM contract. Tulane/Xavier project administrators participated in the Office of Technology Development`s ``New Technologies and Program Exhibition`` in the Rayburn House Office Building on September 23 and in the Hart Senate Office Building on September 27.

  2. EA-1865: Department of Energy Loan Guarantee to Kior, Inc., for Biorefinery Facilities in Georgia, Mississippi, and Texas

    Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proposal to issue a Federal loan guarantee to Kior, Inc., for biorefinery facilities in Georgia, Mississippi, and Texas. This EA is on hold.

  3. Simple approximations for estimating quickly the motion and timing of salt diapir rise, overhang development, and associated thermal anomalies using present-day observations: Case history from the Gulf of Mexico and Danish North Sea

    SciTech Connect

    Lerche, I. ); Thomsen, R.O. )

    1993-09-01

    Estimates of the upward motion of salt, due solely to buoyancy forces, through deposited and depositing sedimentary cover can be split into several parts: the critical thickness of sedimentary cover necessary to cause an underlying salt to become buoyant; the critical thickness of sedimentary cover necessary for a salt diapir to reach the sediment mudline in the absence of an impeding pressure of competent sediments opposing salt rise and in the absence of significant overpressure (both differential impedance and differential overpressure will slow the rise of the salt to the mudline); the effective speed of motion of the salt through the nonimpeding sediments during the salt's buoyant-ascent phase; current observed salt-top depth below mudline versus nonimpeded predicted salt-top depth leading to (a) minimum estimate of mechanical strength of competent resistive layers, and (b) an approximate estimate of buoyancy pressure of salt attempting to penetrate the resistive cover layer; uplift estimate of the overlying competent sediments because of the buoyancy pressure, in relation to observed uplift, leading to an estimate of salt-diapir rise speed since reaching the impeding formation; timing estimates of [open quotes]mushroom cap[close quotes] development of salt since emplacement of the resistive overlying layer and an estimate of the lateral competence of sedimentary beds ahead of the mushroom-salt sheet cap as a consequence of the observed mushroom extent; an estimate of evolving thermal anomalies around the dynamic salt/sediment system as a consequence of high-salt thermal conductivity. Such simple rough estimation methods are important in assessing the local and regional factors influencing the dynamic, thermal, and hydrocarbon retention factors in basinal sediments influenced by salt. Examples from the Gulf of Mexico and the Danish North Sea illustrate how to use both seismic and/or downhole data to perform the simple estimates.

  4. Identifying suitable "piercement" salt domes for nuclear waste storage sites

    SciTech Connect

    Kehle, R.

    1980-08-01

    Piercement salt domes of the northern interior salt basins of the Gulf of Mexico are being considered as permanent storage sites for both nuclear and chemically toxic wastes. The suitable domes are stable and inactive, having reached their final evolutionary configuration at least 30 million years ago. They are buried to depths far below the level to which erosion will penetrate during the prescribed storage period and are not subject to possible future reactivation. The salt cores of these domes are themselves impermeable, permitting neither the entry nor exit of ground water or other unwanted materials. In part, a stable dome may be recognized by its present geometric configuration, but conclusive proof depends on establishing its evolutionary state. The evolutionary state of a dome is obtained by reconstructing the growth history of the dome as revealed by the configuration of sedimentary strata in a large area (commonly 3,000 square miles or more) surrounding the dome. A high quality, multifold CDP reflection seismic profile across a candidate dome will provide much of the necessary information when integrated with available subsurface control. Additional seismic profiles may be required to confirm an apparent configuration of the surrounding strata and an interpreted evolutionary history. High frequency seismic data collected in the near vicinity of a dome are also needed as a supplement to the CDP data to permit accurate depiction of the configuration of shallow strata. Such data must be tied to shallow drill hole control to confirm the geologic age at which dome growth ceased. If it is determined that a dome reached a terminal configuration many millions of years ago, such a dome is incapable of reactivation and thus constitutes a stable storage site for nuclear wastes.

  5. Uranium Resource Evaluation Project. Hydrochemical and stream-sediment reconnaissance basic data for Palestine, Alexandria, and Natchez Quadrangles, Texas; Louisiana; Mississippi

    SciTech Connect

    Not Available

    1982-06-07

    Data are compiled for hydrochemical and stream sediment reconnaissance of the Palestine, Alexandria and Natchez quadrangles in Texas, Louisiana and Mississippi.

  6. Multiphase Flow and Cavern Abandonment in Salt

    SciTech Connect

    Ehgartner, Brian; Tidwell, Vince

    2001-02-13

    This report will explore the hypothesis that an underground cavity in gassy salt will eventually be gas filled as is observed on a small scale in some naturally occurring salt inclusions. First, a summary is presented on what is known about gas occurrences, flow mechanisms, and cavern behavior after abandonment. Then, background information is synthesized into theory on how gas can fill a cavern and simultaneously displace cavern fluids into the surrounding salt. Lastly, two-phase (gas and brine) flow visualization experiments are presented that demonstrate some of the associated flow mechanisms and support the theory and hypothesis that a cavity in salt can become gas filled after plugging and abandonment

  7. Electrolytic orthoborate salts for lithium batteries

    DOEpatents

    Angell, Charles Austen; Xu, Wu

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  8. Electrolytic orthoborate salts for lithium batteries

    DOEpatents

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  9. SEPARATION OF INORGANIC SALTS FROM ORGANIC SOLUTIONS

    DOEpatents

    Katzin, L.I.; Sullivan, J.C.

    1958-06-24

    A process is described for recovering the nitrates of uranium and plutonium from solution in oxygen-containing organic solvents such as ketones or ethers. The solution of such salts dissolved in an oxygen-containing organic compound is contacted with an ion exchange resin whereby sorption of the entire salt on the resin takes place and then the salt-depleted liquid and the resin are separated from each other. The reaction seems to be based on an anion formation of the entire salt by complexing with the anion of the resin. Strong base or quaternary ammonium type resins can be used successfully in this process.

  10. Granular Salt Summary: Reconsolidation Principles and Applications

    SciTech Connect

    Hansen, Frank; Popp, Till; Wieczorek, Klaus; Stuehrenberg, Dieter

    2014-07-01

    The purposes of this paper are to review the vast amount of knowledge concerning crushed salt reconsolidation and its attendant hydraulic properties (i.e., its capability for fluid or gas transport) and to provide a sufficient basis to understand reconsolidation and healing rates under repository conditions. Topics covered include: deformation mechanisms and hydro-mechanical interactions during reconsolidation; the experimental data base pertaining to crushed salt reconsolidation; transport properties of consolidating granulated salt and provides quantitative substantiation of its evolution to characteristics emulating undisturbed rock salt; and extension of microscopic and laboratory observations and data to the applicable field scale.

  11. Noncentrosymmetric salt inclusion oxides: Role of salt lattices and counter ions in bulk polarity

    SciTech Connect

    West, J. Palmer; Hwu, Shiou-Jyh

    2012-11-15

    The synthesis and structural features of a newly emerged class of salt-inclusion solids (SISs) are reviewed. The descriptive chemistry with respect to the role of ionic salt and its correlation with bulk noncentrosymmetricity and polarity of the covalent oxide lattice in question is discussed by means of structure analysis. These unprecedented discoveries have opened doors to novel materials synthesis via the utilities of salt-inclusion chemistry (SIC) that are otherwise known as the molten-salt approach. The result of these investigations prove that the bulk acentricity, or cancellation of which, can be accounted for from the perspective of ionic and/or salt lattices. Highlights: Black-Right-Pointing-Pointer Synthesis and structure of newly emerged salt-inclusion solids are reviewed. Black-Right-Pointing-Pointer Salt lattice and its symmetry correlation with polar framework are discussed. Black-Right-Pointing-Pointer Preservation of acentricity is accounted for from the perspective of ionic and salt lattices.

  12. Post-Closure Inspection, Sampling, and Maintenance Report for the Salmon, Mississippi, Site Calendar Year 2010

    SciTech Connect

    2011-03-01

    This report summarizes the annual inspection, sampling, measurement, and maintenance activities performed at the Salmon, Mississippi, Site in calendar year 2010. The draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County Mississippi (DOE 2007) specifies the submittal of an annual report of site activities with the results of sample analyses. The Salmon, MS, Site is a federally owned site located in Lamar County, MS, approximately 12 miles west of Purvis, MS, and about 21 miles southwest of Hattiesburg, MS (Figure 1). The U.S. Department of Energy (DOE), a successor agency to the U.S. Atomic Energy Commission (AEC), is responsible for the long-term surveillance and maintenance of the 1,470-acre site. DOE's Office of Legacy Management (LM) is the operating agent for the surface and subsurface real estate.

  13. Mississippi exploration field trials using microbial, radiometrics, free soil gas, and other techniques

    SciTech Connect

    Moody, J.S.; Brown, L.R.; Thieling, S.C.

    1995-12-31

    The Mississippi Office of Geology has conducted field trials using the surface exploration techniques of geomicrobial, radiometrics, and free soil gas. The objective of these trials is to determine if Mississippi oil and gas fields have surface hydrocarbon expression resulting from vertical microseepage migration. Six fields have been surveyed ranging in depth from 3,330 ft to 18,500 ft. The fields differ in trapping styles and hydrocarbon type. The results so far indicate that these fields do have a surface expression and that geomicrobial analysis as well as radiometrics and free soil gas can detect hydrocarbon microseepage from pressurized reservoirs. All three exploration techniques located the reservoirs independent of depth, hydrocarbon type, or trapping style.

  14. Denver Basin Map | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Basin Map Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Denver Basin Map Abstract This webpage contains a map of the Denver Basin. Published Colorado...

  15. Pathways Toward Sustainable Bioenergy Feedstock Production in the Mississippi River Watershed

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pathways Toward Sustainable Bioenergy Feedstock Production in the Mississippi River Watershed March 24, 2015 Analysis and Sustainability Review Jason Hill University of Minnesota This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement * The overall goal of this project is to use an ecosystem service framework to evaluate the environmental impact of biomass production options and their placement on the landscape so as to guide the

  16. Mississippi's ratable-take rule preempted: Transcontinental Gas Pipeline Corp. v. State Oil and Gas Board

    SciTech Connect

    Box, A.L.

    1986-01-01

    While the Court's objections to Mississippi's ratable-take rules as applied to interstate pipelines are clear, conservation lawyers have concerns about the impact of the Transco decision upon state interests in oil and gas conservation and because the decision does not clarify the limits of preemption of state conservation legislation. A variety of state regulatory legislation challenges will likely result in different contexts. These could affect interest on royalties, payment procedures, and could even lead to conflicting regulations.

  17. Sac and Fox Tribe of the Mississippi in Iowa- 2010 Project

    Energy.gov [DOE]

    The Sac and Fox Tribe of the Mississippi in Iowa Wind Energy Feasibility Study project will prepare the tribe for the development of clean, dependable, renewable wind energy on tribal land. The feasibility study reports resulting from this project, including technical and business analyses, will be used to obtain contracts and financing required to develop and implement a wind turbine project on the Meskwaki Settlement.

  18. Feasibility study of a corn-to-ethanol plant in Sardis, Mississippi

    SciTech Connect

    Not Available

    1982-06-01

    A feasibility study for a corn-to-ethanol plant in Panola County, Mississippi was carried out. This area is well suited for the production of ethanol from corn, as it has a mild climate, a plentiful supply of wood fuel, and a well-developed agricultural infrastructure. The project was designed for 5 million gallons per year, using the ACR Process, a process proven in 6 plants now operating. It was determined to be technically feasible for this size. However, without a state financial incentive such as a gasoline excise tax or sales tax exemption, the plant is not economically feasible in Mississippi. Even though a 4 cents per gallon federal excise tax exemption will likely remain, the economics without any other incentive are not strong enough to obtain financing or equity funds. While the Mississippi legislature decided not to consider a financial incentive in their 1982 session, an attempt will be made to introduce a proposal for a suitable exemption during the 1983 legislative session. Until then, the project is on hold.

  19. Fifteenmile Basin Habitat Enhancement Project: Annual Report...

    Office of Scientific and Technical Information (OSTI)

    wild winter steelhead in the Fifteenmile Creek Basin under the Columbia River Basin Fish and Wildlife Program. The project is funded by through the Bonneville Power...

  20. Sediment Basin Flume | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sediment Basin Flume Jump to: navigation, search Basic Specifications Facility Name Sediment Basin Flume Overseeing Organization University of Iowa Hydrodynamic Testing Facility...

  1. Great Basin Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Great Basin Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Great Basin Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  2. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    SciTech Connect

    Ernest A. Mancini

    2006-07-31

    The principal research effort for Year 1 of Phase 2 (Concept Demonstration) of the project is Smackover petroleum system characterization and modeling. The necessary software applications are in the process of being acquired to accomplish this work. No major problems have been encountered to date, and the project is on schedule.

  3. Basin Analysis and Petroleum System Characterization and Modelling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    SciTech Connect

    Ernest A. Mancini

    2006-09-30

    The principal research effort for Year 1 of Phase 2 (Concept Demonstration) of the project is Smackover petroleum system characterization and modeling. The necessary software applications have been acquired to accomplish this work. No major problems have been encountered to date, and the project is on schedule.

  4. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    SciTech Connect

    Ernest A. Mancini

    2006-12-31

    The principal research effort for Year 1 of Phase 2 (Concept Demonstration) of the project is Smackover petroleum system characterization and modeling. The necessary software applications have been acquired to accomplish this work. No major problems have been encountered to date, and the project is on schedule.

  5. Nitrate Salt Surrogate Blending Scoping Test Plan

    SciTech Connect

    Anast, Kurt Roy

    2015-11-13

    Test blending equipment identified in the “Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing”. Determine if the equipment will provide adequate mixing of zeolite and surrogate salt/Swheat stream; optimize equipment type and operational sequencing; impact of baffles and inserts on mixing performance; and means of validating mixing performance

  6. Metal salt catalysts for enhancing hydrogen spillover

    DOEpatents

    Yang, Ralph T; Wang, Yuhe

    2013-04-23

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  7. Conceptual model for regional radionuclide transport from a salt dome repository: a technical memorandum

    SciTech Connect

    Kier, R.S.; Showalter, P.A.; Dettinger, M.D.

    1980-05-30

    Disposal of high-level radioactive wastes is a major environmental problem influencing further development of nuclear energy in this country. Salt domes in the Gulf Coast Basin are being investigated as repository sites. A major concern is geologic and hydrologic stability of candidate domes and potential transport of radionuclides by groundwater to the biosphere prior to their degradation to harmless levels of activity. This report conceptualizes a regional geohydrologic model for transport of radionuclides from a salt dome repository. The model considers transport pathways and the physical and chemical changes that would occur through time prior to the radionuclides reaching the biosphere. Necessary, but unknown inputs to the regional model involve entry and movement of fluids through the repository dome and across the dome-country rock interface and the effect on the dome and surrounding strata of heat generated by the radioactive wastes.

  8. Solar Policy Environment: Salt Lake

    Office of Energy Efficiency and Renewable Energy (EERE)

    The overall objective of the “Solar Salt Lake” (SSL) team is to develop a fully-scoped city and county-level implementation plan that will facilitate at least an additional ten megawatts of solar photovoltaic (PV) installations in the government, commercial, industrial, and residential sectors by 2015. To achieve this aggressive goal, the program strategy includes a combination of barrier identification, research, and policy analysis that utilizes the input of various stakeholders. Coupled with these activities will be the development and implementation of pilot installations in the government and residential sectors, and broad outreach to builders and potential practitioners of solar energy products in the process. In this way, while creating mechanisms to enable a demand for solar, SSL will also facilitate capacity building for suppliers, thereby helping to ensure long-term sustainability for the regional market.

  9. SEPARATION OF METAL SALTS BY ADSORPTION

    DOEpatents

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  10. Evaluation of Salt Coolants for Reactor Applications

    SciTech Connect

    Williams, David F

    2008-01-01

    Molten fluorides were initially developed for use in the nuclear industry as the high-temperature fluid fuel for the Molten Salt Reactor (MSR). The U.S. Department of Energy Office of Nuclear Energy is exploring the use of molten salts as primary and secondary coolants in a new generation of solid-fueled, thermal-spectrum, hightemperature reactors. This paper provides a review of relevant properties for use in evaluation and ranking of salt coolants for high-temperature reactors. Nuclear, physical, and chemical properties were reviewed, and metrics for evaluation are recommended. Chemical properties of the salt were examined to identify factors that affect materials compatibility (i.e., corrosion). Some preliminary consideration of economic factors for the candidate salts is also presented.

  11. Underground Salt Haul Truck Fire at the Waste Isolation Pilot...

    Office of Environmental Management (EM)

    Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant February 5, 2014 March 2014 Salt Haul Truck Fire at the Waste Isolation Pilot Plant Salt Haul Truck Fire at the ...

  12. Remediated Nitrate Salt Drums Safety Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Remediated Nitrate Salt Drums Safety Update Remediated Nitrate Salt Drums Safety Update Topic: Mr. Nickless, Environmental Management Los Alamos, Provided a presentation on the status of the Nitrate Salt waste at Los Alamos.

  13. BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ormat Technologies Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Ormat Technologies Salt Wells...

  14. Isotopic Analysis- Fluid At Salt Wells Area (Shevenell & Garside...

    OpenEI (Open Energy Information) [EERE & EIA]

    At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 2002 -...

  15. Compound and Elemental Analysis At Salt Wells Area (Shevenell...

    OpenEI (Open Energy Information) [EERE & EIA]

    At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date...

  16. Conceptual Model At Salt Wells Area (Faulds, Et Al., 2011) |...

    OpenEI (Open Energy Information) [EERE & EIA]

    At Salt Wells Area (Faulds, Et Al., 2011) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Conceptual Model Activity Date 2011 Usefulness...

  17. Project Profile: Deep Eutectic Salt Formulations Suitable as...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Project Profile: Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Halotechnics ...

  18. Molten salt heat transfer fluids and thermal storage technology...

    Office of Scientific and Technical Information (OSTI)

    Molten salt heat transfer fluids and thermal storage technology. Citation Details In-Document Search Title: Molten salt heat transfer fluids and thermal storage technology. No ...

  19. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar ...

  20. Novel Molten Salts Thermal Energy Storage for Concentrating Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation This presentation ...

  1. Salt Lake Community College | OSTI, US Dept of Energy Office...

    Office of Scientific and Technical Information (OSTI)

    DOE Applauds Salt Lake Community College Science and Technical Programs slccLogo-orange.jpg Salt Lake City, Utah Architectural Technology Biology Biotechnology Biomanufacturing ...

  2. Sandia Energy - Molten Nitrate Salt Initial Flow Testing is a...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nitrate Salt Initial Flow Testing is a Tremendous Success Home Renewable Energy News Concentrating Solar Power Solar Molten Nitrate Salt Initial Flow Testing is a Tremendous...

  3. Salt Lake City, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Salt Lake City, Utah: Energy Resources (Redirected from Salt Lake City, UT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7607793, -111.8910474 Show Map...

  4. Independent Oversight Review, Savannah River Site Salt Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    August 2013 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - August 2013 August 2013 Review of the Savannah River Site Salt Waste Processing...

  5. Salt Lake County, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Creek Valley, Utah Magna, Utah Midvale, Utah Millcreek, Utah Mount Olympus, Utah Murray, Utah Riverton, Utah Salt Lake City, Utah Sandy, Utah South Jordan, Utah South Salt...

  6. Solution Package Scope Definition, Report 72, Salt Waste (SP...

    Office of Environmental Management (EM)

    Solution Package Scope Definition, Report 72, Salt Waste (SP 72) Solution Package Scope Definition, Report 72, Salt Waste (SP 72) This document was used to determine facts and ...

  7. Geothermal Literature Review At Salt Wells Area (Faulds, Et Al...

    OpenEI (Open Energy Information) [EERE & EIA]

    Salt Wells Area (Faulds, Et Al., 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Salt Wells Area (Faulds,...

  8. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container...

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the ...

  9. Remediated Nitrate Salt Drums Storage at Los Alamos National...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory As a part of its national security ...

  10. Assessment of Nuclear Safety Culture at the Salt Waste Processing...

    Office of Environmental Management (EM)

    Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility ... Independent Oversight Assessment of Nuclear Safety Culture at the Salt Waste ...

  11. Magnetotellurics At Salt Wells Area (Bureau of Land Management...

    OpenEI (Open Energy Information) [EERE & EIA]

    Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Salt Wells Area (Bureau of...

  12. Voluntary Protection Program Onsite Review, Parsons Corp., Salt...

    Office of Environmental Management (EM)

    Corp., Salt Waste Processing Facility Construction Project - May 2014 Voluntary Protection Program Onsite Review, Parsons Corp., Salt Waste Processing Facility Construction Project...

  13. DOE - Office of Legacy Management -- Penn Salt Manufacturing...

    Office of Legacy Management (LM)

    Salt Manufacturing Co Whitemarsh Research Laboratories - PA 20 FUSRAP Considered Sites Site: PENN SALT MANUFACTURING CO., WHITEMARSH RESEARCH LABORATORIES (PA.20) Eliminated from...

  14. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...

    Energy Information Administration (EIA) (indexed site)

    Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc.

  15. Sandia Energy - 2015 VIII MECHANICAL BEHAVIOR OF SALT

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    VIII MECHANICAL BEHAVIOR OF SALT Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Workshops 2015 VIII MECHANICAL BEHAVIOR OF SALT 2015 VIII MECHANICAL BEHAVIOR OF...

  16. THE ENVIRONMENT CREATED BY A NUCLEAR EXPLOSION IN SALT. Project...

    Office of Scientific and Technical Information (OSTI)

    THE ENVIRONMENT CREATED BY A NUCLEAR EXPLOSION IN SALT. Project GNOME Citation Details In-Document Search Title: THE ENVIRONMENT CREATED BY A NUCLEAR EXPLOSION IN SALT. Project ...

  17. 2016 US/German Workshop on Salt Repository Research, Design,...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    USGerman Workshop on Salt Repository Research, Design, and Operation - Sandia Energy Energy Search Icon ... Mechanical Behavior of Salt IX View Presentations and Abstracts ...

  18. Sandia Energy - Customer Interface Document for the Molten Salt...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Customer Interface Document for the Molten Salt Test Loop at the NSTTF Home Partnership News News & Events Publications Customer Interface Document for the Molten Salt Test Loop at...

  19. Sandia Energy - Molten Salt Test Loop Pump Installed

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Energy News Concentrating Solar Power Solar Energy Storage Systems Molten Salt Test Loop Pump Installed Previous Next Molten Salt Test Loop Pump Installed The pump was...

  20. Savannah River Site - Salt Waste Processing Facility Independent...

    Office of Environmental Management (EM)

    SALT WASTE PROCESSING FACILITY INDEPENDENT TECHNICAL REVIEW November 22, 2006 Conducted ... Leader SPD-SWPF-217 SPD-SWPF-217: Salt Waste Processing Facility Independent Technical ...

  1. Savannah River Site Salt Waste Processing Facility Technology...

    Office of Environmental Management (EM)

    Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report ... of Energy Washington, D.C. SRS Salt Waste Processing Facility Technology Readiness ...

  2. Analytical chemistry of aluminum salt cake

    SciTech Connect

    Graczyk, D.G.; Essling, A.M.; Huff, E.A.; Smith, F.P.; Snyder, C.T.

    1997-02-01

    Component phases of Al salt cake or products from processing salt cake, resist dissolution, a key first step in most analysis procedures. In this work (analysis support to a study of conversion of salt cake fines to value-added oxide products), analysis methods were adapted or devised for determining leachable salt, total halides (Cl and F), Al metal, and elemental composition. Leaching of salt cake fines was by ultrasonic agitation with deionized water. The leachate was analyzed for anions by ion chromatography and for cations by ICP-atomic emission spectroscopy. Only chloride could be measured in the anions, and charge balances between cations and chloride were near unity, indicating that all major dissolved species were chloride salts. For total halides, the chloride and fluorides components were first decomposed by KOH fusion, and the dissolved chloride and fluoride were measured by ion chromatography. Al metal in the fines was determined by a hydrogen evolution procedure adapted for submilligram quantities of metallic Al: the Al was reacted with HCl in a closed system containing a measured amount of high-purity He. After reaction, the H/He ratio was measured by mass spectroscopy. Recoveries of Al metal standards (about 30mg) averaged 93%. Comparison of the acid evolution with caustic reaction of the Al metal showed virtually identical results, but reaction was faster in the acid medium. Decomposition of the salt cake with mineral acids left residues that had to be dissolved by fusion with Na carbonate. Better dissolution was obtained by fusing the salt cake with Li tetraborate; the resulting solution could be used for accurate Al assay of salt cake materials by classical 8-hydroxyquinolate gravimetry.

  3. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer

  4. Structural framework, stratigraphy, and evolution of Brazilian marginal basins

    SciTech Connect

    Ojeda, H.A.O.

    1982-06-01

    The structural framework of the Brazilian continental margin is basically composed of eight structural types: antithetic tilted step-fault blocks, synthetic untilted step-fault blocks, structural inversion axes, hinges with compensation grabens, homoclinal structures, growth faults with rollovers, diapirs, and igneous structures. The antithetic tilted and synthetic untilted step-fault blocks are considered as synchronous, complementary structural systems, separated by an inversion axis. Two evaporitic cycles (Paripueira and Ibura) were differentiated in the Sergipe-Alagoas type basin and tentatively correlated to the evaporitic section of other Brazilian marginal basis. Four phases are considered in the evolution of the Brazilian marginal basins: pre-rift, rift, transitional, and drift. During the pre-rift phase (Late Jurassic-Early Cretaceous), continental sediments were deposited in peripheral intracratonic basins. In the rift phase (Early Cretaceous), the breakup of the continental crust of the Gondwana continent gave rise to a central graben and rift valleys where lacustrine sediments were deposited. The transitional phase (Aptian) developed under relative tectonic stability, when evaporitic and clastic lacustrine sequences were being deposited. In the drift phase (Albian to Holocene), a regionl homoclinal structure developed, consisting of two distinct sedimentary sequences, a lower clastic-carbonate and an upper clastic. From the Albian to the Holocene Epoch, structures associated to plastic displacement of salt or shale developed in many Brazilian marginal basins. Two phases of major igneous activity occurred: one in the Early Cretaceous associated with the rift phase of the Gondwana continent, and the other in the Tertiary during the migration phase of the South American and African plates.

  5. Liquid salt environment stress-rupture testing

    DOEpatents

    Ren, Weiju; Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-03-22

    Disclosed herein are systems, devices and methods for stress-rupture testing selected materials within a high-temperature liquid salt environment. Exemplary testing systems include a load train for holding a test specimen within a heated inert gas vessel. A thermal break included in the load train can thermally insulate a load cell positioned along the load train within the inert gas vessel. The test specimen can include a cylindrical gage portion having an internal void filled with a molten salt during stress-rupture testing. The gage portion can have an inner surface area to volume ratio of greater than 20 to maximize the corrosive effect of the molten salt on the specimen material during testing. Also disclosed are methods of making a salt ingot for placement within the test specimen.

  6. Salt Lake City- High Performance Buildings Requirement

    Energy.gov [DOE]

    Salt Lake City's mayor issued an executive order in July 2005 requiring that all public buildings owned and controlled by the city be built or renovated to meet the requirements of LEED "silver"...

  7. Director, Salt Waste Processing Facility Project Office

    Energy.gov [DOE]

    This position is located within The Department of Energy (DOE) Savannah River (SR) Operations Office, Salt Waste Processing Facility Project Office (SWPFPO). SR is located in Aiken, South Carolina....

  8. Salt Selection for the LS-VHTR

    SciTech Connect

    Williams, D.F.; Clarno, K.T.

    2006-07-01

    Molten fluorides were initially developed for use in the nuclear industry as the high temperature fluid-fuel for a Molten Salt Reactor (MSR). The Office of Nuclear Energy is exploring the use of molten fluorides as a primary coolant (rather than helium) in an Advanced High Temperature Reactor (AHTR) design, also know as the Liquid-Salt cooled Very High Temperature Reactor (LS-VHTR). This paper provides a review of relevant properties for use in evaluation and ranking of candidate coolants for the LS-VHTR. Nuclear, physical, and chemical properties were reviewed and metrics for evaluation are recommended. Chemical properties of the salt were examined for the purpose of identifying factors that effect materials compatibility (i.e., corrosion). Some preliminary consideration of economic factors for the candidate salts is also presented. (authors)

  9. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, William A.; Upadhye, Ravindra S.; Pruneda, Cesar O.

    1995-01-01

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

  10. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

    1995-07-18

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

  11. Mississippi Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Mississippi" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional","-","-","-","-","-" "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",229,229,229,229,235

  12. ,"Mississippi Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  13. ,"Mississippi Crude Oil plus Lease Condensate Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  14. ,"Mississippi Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  15. ,"Mississippi Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  16. ,"Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  17. ,"Mississippi Dry Natural Gas Reserves Extensions (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Dry Natural Gas Reserves Extensions (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  18. ,"Mississippi Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  19. ,"Mississippi Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Decreases (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  20. ,"Mississippi Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Increases (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  1. ,"Mississippi Dry Natural Gas Reserves Sales (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Dry Natural Gas Reserves Sales (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  2. ,"Mississippi Lease Condensate Proved Reserves, Reserve Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  3. ,"Mississippi Natural Gas Gross Withdrawals and Production"

    Energy Information Administration (EIA) (indexed site)

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Gross Withdrawals and Production",10,"Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  4. ,"Mississippi Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Price All Countries (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016"

  5. ,"Mississippi Natural Gas Lease Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1840_sms_2a.xls"

  6. ,"Mississippi Natural Gas Plant Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1850_sms_2a.xls"

  7. ,"Mississippi Natural Gas Plant Liquids Production (Million Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Liquids Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Plant Liquids Production (Million Cubic Feet)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  8. ,"Mississippi Natural Gas Processed (Million Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Processed (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Processed (Million Cubic Feet)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1180_sms_2a.xls"

  9. ,"Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  10. ,"Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  11. ,"Mississippi Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  12. ,"Mississippi Shale Gas Proved Reserves, Reserves Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2012" ,"Release Date:","11/19/2015" ,"Next Release

  13. ,"Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    Energy Information Administration (EIA) (indexed site)

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  14. ,"Mississippi Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  15. Thermal Characterization of Molten Salt Systems

    SciTech Connect

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  16. Ammonia Solubility in High Concentration Salt Solutions

    SciTech Connect

    HEDENGREN, D.C.

    2000-02-01

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia in water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks.

  17. Ethylenediamine salt of 5-nitrotetrazole and preparation

    DOEpatents

    Lee, Kien-yin; Coburn, Michael D.

    1985-01-01

    Ethylenediamine salt of 5-nitrotetrazole and preparation. This salt has been found to be useful as an explosive alone and in eutectic mixtures with ammonium nitrate and/or other explosive compounds. Its eutectic with ammonium nitrate has been demonstrated to behave in a similar manner to a monomolecular explosive such as TNT, and is less sensitive than the pure salt. Moreover, this eutectic mixture, which contains 87.8 mol % of ammonium nitrate, is close to the CO.sub.2 -balanced composition of 90 mol %, and has a relatively low melting point of 110.5 C. making it readily castable. The ternary eutectic system containing the ethylenediamine salt of 5-nitrotetrazole, ammonium nitrate and ethylenediamine dinitrate has a eutectic temperature of 89.5 C. and gives a measured detonation pressure of 24.8 GPa, which is 97.6% of the calculated value. Both the pure ethylenediamine salt and its known eutectic compounds behave in substantially ideal manner. Methods for the preparation of the salt are described.

  18. K Basins Sludge Treatment Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Process K Basins Sludge Treatment Process Full Document and Summary Versions are available for download K Basins Sludge Treatment Process (27.17 MB) Summary - K Basins Sludge ...

  19. Salt Wells Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    by Gary Edmondo (MiniGIS, Inc., Reno, NV)24 modified by the Great Basin Center for Geothermal Energy to include symbols for geothermal surface features was used to actively...

  20. Low temperature oxidation using support molten salt catalysts

    DOEpatents

    Weimer, Alan W.; Czerpak, Peter J.; Hilbert, Patrick M.

    2003-05-20

    Molten salt reactions are performed by supporting the molten salt on a particulate support and forming a fluidized bed of the supported salt particles. The method is particularly suitable for combusting hydrocarbon fuels at reduced temperatures, so that the formation NO.sub.x species is reduced. When certain preferred salts are used, such as alkali metal carbonates, sulfur and halide species can be captured by the molten salt, thereby reducing SO.sub.x and HCl emissions.

  1. Salt Waste Processing Facility Testing Proceeds on Schedule | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Salt Waste Processing Facility Testing Proceeds on Schedule Salt Waste Processing Facility Testing Proceeds on Schedule October 31, 2016 - 12:30pm Addthis The Salt Waste Processing Facility. The Salt Waste Processing Facility. AIKEN, S.C. - Savannah River Site's (SRS) Salt Waste Processing Facility (SWPF) startup testing is progressing well, with the plant's operations scheduled to begin by the end of 2018. Site contractor Parsons has so far completed six of 60 planned SWPF system

  2. Liquid fuel molten salt reactors for thorium utilization (Journal Article)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Journal Article: Liquid fuel molten salt reactors for thorium utilization Citation Details In-Document Search This content will become publicly available on April 8, 2017 Title: Liquid fuel molten salt reactors for thorium utilization Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and

  3. The Role of Landscape in the Distribution of Deer-Vehicle Collisions in South Mississippi

    SciTech Connect

    McKee, Jacob J; Cochran, David

    2012-01-01

    Deer-vehicle collisions (DVCs) have a negative impact on the economy, traffic safety, and the general well-being of otherwise healthy deer. To mitigate DVCs, it is imperative to gain a better understanding of factors that play a role in their spatial distribution. Much of the existing research on DVCs in the United States has been inconclusive, pointing to a variety of causal factors that seem more specific to study site and region than indicative of broad patterns. Little DVC research has been conducted in the southern United States, making the region particularly important with regard to this issue. In this study, we evaluate landscape factors that contributed to the distribution of 347 DVCs that occurred in Forrest and Lamar Counties of south Mississippi, from 2006 to 2009. Using nearest-neighbor and discriminant analysis, we demonstrate that DVCs in south Mississippi are not random spatial phenomena. We also develop a classification model that identified seven landscape metrics, explained 100% of the variance, and could distinguish DVCs from control sites with an accuracy of 81.3 percent.

  4. Stormwater detention basin sediment removal

    SciTech Connect

    Gross, W.E.

    1995-12-31

    In the past, stormwater runoff from landfills has been treated mainly by focusing on reducing the peak storm discharge rates so as not to hydraulically impact downstream subsheds. However, with the advent of stricter water quality regulations based on the Federal Clean Water Act, and the related NPDES and SPDES programs, landfill owners and operators are now legally responsible for the water quality of the runoff once it leaves the landfill site. At the Fresh Kills Landfill in New York City, the world`s largest covering over 2000 acres, landfilling activities have been underway since 1945. With the main objective at all older landfill sites having focused on maximizing the available landfill footprint in order to obtain the most possible airspace volume, consideration was not given for the future siting of stormwater basin structures. Therefore, when SCS Engineers began developing the first comprehensive stormwater management plan for the site, the primary task was to locate potential sites for all the stormwater basins in order to comply with state regulations for peak stormwater runoff control. The basins were mostly constructed where space allowed, and were sized to be as large as possible given siting and subshed area constraints. Seventeen stormwater basins have now been designed and are being constructed to control the peak stormwater runoff for the 25-year, 24-hour storm as required by New York State. As an additional factor of safety, the basins were also designed for controlled discharge of the 100-year, 24 hour storm.

  5. Pumping test and fluid sampling report, Mansfield No. 1 well, Palo Duro Basin: Report of the Geologic Project Manager, Permian Basin

    SciTech Connect

    Not Available

    1983-07-01

    This report describes pumping test and fluid sampling activities performed at the Mansfield No. 1 well in Oldham County about 10 miles north of Vega, Texas. The well site was selected by TBEG and is located along the northern margin of the Palo Duro Basin in an area of active dissolution with the Permian salt sections. The objectives of the pumping test and fluid sampling program were to collect data to determine the hydrologic characteristics (formation pressure and permeability) of deep water bearing formations, and to obtain formation fluid samples for analyses (gas and fluid chemistry) in order to evaluate fluid migration and age relationships in the Permian Basin. 4 refs., 8 figs., 2 tabs.

  6. Chemistry control and corrosion mitigation of heat transfer salts for the fluoride salt reactor (FHR)

    SciTech Connect

    Kelleher, B. C.; Sellers, S. R.; Anderson, M. H.; Sridharan, K.; Scheele, R. D.

    2012-07-01

    The Molten Salt Reactor Experiment (MSRE) was a prototype nuclear reactor which operated from 1965 to 1969 at Oak Ridge National Laboratory. The MSRE used liquid fluoride salts as a heat transfer fluid and solvent for fluoride based {sup 235}U and {sup 233}U fuel. Extensive research was performed in order to optimize the removal of oxide and metal impurities from the reactor's heat transfer salt, 2LiF-BeF{sub 2} (FLiBe). This was done by sparging a mixture of anhydrous hydrofluoric acid and hydrogen gas through the FLiBe at elevated temperatures. The hydrofluoric acid reacted with oxides and hydroxides, fluorinating them while simultaneously releasing water vapor. Metal impurities such as iron and chromium were reduced by hydrogen gas and filtered out of the salt. By removing these impurities, the corrosion of reactor components was minimized. The Univ. of Wisconsin - Madison is currently researching a new chemical purification process for fluoride salts that make use of a less dangerous cleaning gas, nitrogen trifluoride. Nitrogen trifluoride has been predicted as a superior fluorinating agent for fluoride salts. These purified salts will subsequently be used for static and loop corrosion tests on a variety of reactor materials to ensure materials compatibility for the new FHR designs. Demonstration of chemistry control methodologies along with potential reduction in corrosion is essential for the use of a fluoride salts in a next generator nuclear reactor system. (authors)

  7. Characterization of the molten salt reactor experiment fuel and flush salts

    SciTech Connect

    Williams, D.F.; Peretz, F.J.

    1996-05-01

    Wise decisions about the handling and disposition of spent fuel from the Molten Salt Reactor Experiment (MSRE) must be based upon an understanding of the physical, chemical, and radiological properties of the frozen fuel and flush salts. These {open_quotes}static{close_quotes} properties can be inferred from the extensive documentation of process history maintained during reactor operation and the knowledge gained in laboratory development studies. Just as important as the description of the salt itself is an understanding of the dynamic processes which continue to transform the salt composition and govern its present and potential physicochemical behavior. A complete characterization must include a phenomenological characterization in addition to the typical summary of properties. This paper reports on the current state of characterization of the fuel and flush salts needed to support waste management decisions.

  8. Regional hydrology of the Green River-Moab area, northwestern Paradox Basin, Utah

    SciTech Connect

    Rush, F.E.; Whitfield, M.S.; Hart, I.M.

    1982-12-01

    The Green River-Moab area encompasses about 7800 square kilometers or about 25% of the Paradox basin. The entire Paradox basin is a part of the Colorado Plateaus that is underlain by a thick sequence of evaporite (salt) beds of Pennsylvanian age. The rock units that underlie the area have been grouped into hydrogeologic units based on their water-transmitting ability. Confining beds consist of evaporite beds of mostly salt, and overlying and underlying thick sequences of rocks with minimal permeability; above and below these confining beds are aquifers. The upper Mesozoic sandstone aquifer, probably is the most permeable hydrogeologic unit of the area and is the subject of this investigation. The principal component of groundwater outflow from this aquifer probably is subsurface flow to regional streams (the Green and Colorado Rivers) and is about 100 million cubic meters per year. All other components of outflow are relatively small. The average annual recharge to the aquifer is about 130 million cubic meters, of which about 20 million cubic meters is from local precipitation. For the lower aquifer, all recharge and discharge probably is by subsurface flow and was not estimated. The aquifers are generally isolated from the evaporite beds by the bounding confining beds; as a result, most ground water has little if any contact with the evaporites. Brines are present in the confining beds, but solution of beds of salt probably is very slow in most parts of the area. No brine discharges have been identified.

  9. EA-64 Basin Electric Power Cooperative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Basin Electric Power Cooperative EA-64 Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada EA-64 Basin Electric Power Cooperative (2.8 MB) More Documents & Publications EA-64-A

  10. Corrosion of aluminides by molten nitrate salt

    SciTech Connect

    Tortorelli, P.F.; Bishop, P.S.

    1990-01-01

    The corrosion of titanium-, iron-, and nickel-based aluminides by a highly aggressive, oxidizing NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} has been studied at 650{degree}C. It was shown that weight changes could be used to effectively evaluate corrosion behavior in the subject nitrate salt environments provided these data were combined with salt analyses and microstructural examinations. The studies indicated that the corrosion of relatively resistant aluminides by these nitrate salts proceeded by oxidation and a slow release from an aluminum-rich product layer into the salt at rates lower than that associated with many other types of metallic materials. The overall corrosion process and resulting rate depended on the particular aluminide being exposed. In order to minimize corrosion of nickel or iron aluminides, it was necessary to have aluminum concentrations in excess of 30 at. %. However, even at a concentration of 50 at. % Al, the corrosion resistance of TiAl was inferior to that of Ni{sub 3}Al and Fe{sub 3}Al. At higher aluminum concentrations, iron, nickel, and iron-nickel aluminides exhibited quite similar weight changes, indicative of the principal role of aluminum in controlling the corrosion process in NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} salts. 20 refs., 5 figs., 3 tabs.

  11. Ethylenediamine salt of 5-nitrotetrazole and preparation

    DOEpatents

    Lee, K.; Coburn, M.D.

    1984-05-17

    The ethylenediamine salt of 5-nitrotetrazole has been found to be useful as an explosive alone and in eutectic mixtures with ammonium nitrate and/or other explosive compounds. Its eutectic with ammonium nitrate has been demonstrated to behave in a similar manner to a monomolecular explosive such as TNT, and is less sensitive than the pure salt. Moreover, this eutectic mixture, which contains 87.8 mol% of ammonium nitrate, is close to the CO/sub 2/-balanced composition of 90 mol%, and has a relatively low melting point of 110.5 C making it readily castable. The ternary eutectic system containing the ethylenediamine salt of 5-nitrotetrazole, ammonium nitrate and ethylenediamine dinitrate has a eutectic temperature of 89.5 C and gives a measured detonation pressure of 24.8 GPa, which is 97.6% of the calculated value. Both the pure ethylenediamine salt and its known eutectic compounds behave in substantially ideal manner. Methods for the preparation of the salt are described.

  12. H-Area Seepage Basins

    SciTech Connect

    Stejskal, G.

    1990-12-01

    During the third quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium.

  13. Hydrogeochemical Indicators for Great Basin Geothemal Resources

    Energy.gov [DOE]

    Hydrogeochemical Indicators for Great Basin Geothemal Resources presentation at the April 2013 peer review meeting held in Denver, Colorado.

  14. Brine flow in heated geologic salt.

    SciTech Connect

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  15. Fast Spectrum Molten Salt Reactor Options

    SciTech Connect

    Gehin, Jess C; Holcomb, David Eugene; Flanagan, George F; Patton, Bruce W; Howard, Rob L; Harrison, Thomas J

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  16. Supplementary information on K-Basin sludges

    SciTech Connect

    MAKENAS, B.J.

    1999-03-15

    Three previous documents in this series have been published covering the analysis of: K East Basin Floor and Pit Sludge, K East Basin Canister Sludge, and K West Basin Canister Sludge. Since their publication, additional data have been acquired and analyses performed. It is the purpose of this volume to summarize the additional insights gained in the interim time period.

  17. Liquid fuel molten salt reactors for thorium utilization (Journal Article)

    Office of Scientific and Technical Information (OSTI)

    | DOE PAGES Liquid fuel molten salt reactors for thorium utilization This content will become publicly available on April 8, 2017 « Prev Next » Title: Liquid fuel molten salt reactors for thorium utilization Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and fuel with fuel dissolved in a carrier salt.

  18. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for July, August, and September 2006

    SciTech Connect

    Peterson, Robert E.

    2006-12-08

    This report provides information on groundwater monitoring at the K Basins during July, August, and September 2006. Conditions remain very similar to those reported in the previous quarterly report, with no evidence in monitoring results to suggest groundwater impact from current loss of basin water to the ground. The K Basins monitoring network will be modified in the coming quarters as a consequence of remedial action at KE Basin, i.e., removal of sludge and basin demolition.

  19. High Temperature Fluoride Salt Test Loop

    SciTech Connect

    Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.; Holcomb, David Eugene; Kisner, Roger A.; Peretz, Fred J.; Robb, Kevin R.; Wilson, Dane F.; Yoder, Jr, Graydon L.

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  20. Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 543 1990's 585 629 507 620 583 535 568 560 527 560 2000's 997 1,143 979 427 1,536 1,676 1,836 2,315 2,343 2,320 2010's 1,979 1,703 1,666 1,632 1,594 1,560 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. Hybrid Molten Salt Reactor (HMSR) System Study

    SciTech Connect

    Woolley, Robert D; Miller, Laurence F

    2014-04-01

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  2. Accelerators for Subcritical Molten-Salt Reactors

    SciTech Connect

    Johnson, Roland

    2011-08-03

    Accelerator parameters for subcritical reactors have usually been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salt fuel was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts. Moreover, the requirements to drive a molten salt reactor can be considerably relaxed compared to a solid fuel reactor, especially regarding accelerator reliability and spallation neutron targetry, to the point that much of the required technology exists today. It is proposed that Project-X be developed into a prototype commercial machine to produce energy for the world by, for example, burning thorium in India and nuclear waste from conventional reactors in the USA.

  3. Salt repository project closeout status report

    SciTech Connect

    1988-06-01

    This report provides an overview of the scope and status of the US Department of Energy (DOE`s) Salt Repository Project (SRP) at the time when the project was terminated by the Nuclear Waste Policy Amendments Act of 1987. The report reviews the 10-year program of siting a geologic repository for high-level nuclear waste in rock salt formations. Its purpose is to aid persons interested in the information developed during the course of this effort. Each area is briefly described and the major items of information are noted. This report, the three salt Environmental Assessments, and the Site Characterization Plan are the suggested starting points for any search of the literature and information developed by the program participants. Prior to termination, DOE was preparing to characterize three candidate sites for the first mined geologic repository for the permanent disposal of high-level nuclear waste. The sites were in Nevada, a site in volcanic tuff; Texas, a site in bedded salt (halite); and Washington, a site in basalt. These sites, identified by the screening process described in Chapter 3, were selected from the nine potentially acceptable sites shown on Figure I-1. These sites were identified in accordance with provisions of the Nuclear Waste Policy Act of 1982. 196 refs., 21 figs., 11 tabs.

  4. Salt Lake City | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Salt Lake City Gamma Shield Thunder Exercise Concludes National Nuclear Security Administration (NNSA) and the FBI announced today the completion of the Gamma Shield Thunder counterterrorism table-top exercise at LDS Hospital. The exercise is part of NNSA's Silent Thunder table-top series, which is aimed at giving federal, state and local

  5. Alternative Fuels Data Center: Salt Lake City Fuels Vehicles...

    Alternative Fuels and Advanced Vehicles Data Center

    Salt Lake City Fuels Vehicles With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Facebook Tweet about ...

  6. BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Vulcan Power Company Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Vulcan Power Company Salt Wells...

  7. File:Salt2.pdf | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Salt2.pdf Jump to: navigation, search File File history File usage Metadata File:Salt2.pdf Size of this preview: 463 599 pixels. Other resolution: 464 600 pixels. Go to page...

  8. Tank 41-H salt level fill history 1985 to 1987

    SciTech Connect

    Ross, R.H.

    1996-05-16

    The fill rate of the evaporator drop waste tank (i.e., salt tank) at Savannah River Site contained in the Waste Management Technology (WMT) monthly data record is based upon a simple formula that apportioned 10 percent of the evaporator output concentrate to the salt fill volume. Periodically, the liquid level of the salt tank would be decanted below the salt level surface and a visual inspection of the salt profile would be accomplished. The salt volume of the drop tank would then be corrected, if necessary, based upon the visual elevation of the salt formation. This correction can erroneously indicate an excess amount of salt fill occurred in a short time period. This report established the correct fill history for Tank 41H.

  9. Completing Salt Waste Processing Facility is an EM Priority and...

    Office of Environmental Management (EM)

    Completing Salt Waste Processing Facility is an EM Priority and Key to SRS Cleanup Progress Completing Salt Waste Processing Facility is an EM Priority and Key to SRS Cleanup ...

  10. Geostatistical analysis of potentiometric data in Wolfcamp aquifer of the Palo Duro Basin, Texas

    SciTech Connect

    Harper, W.V.; Furr, J.M.

    1986-04-01

    This report details a geostatistical analysis of potentiometric data from the Wolfcamp aquifer in the Palo Duro Basin, Texas. Such an analysis is a part of an overall uncertainty analysis for a high-level waste repository in salt. Both an expected potentiometric surface and the associated standard error surface are produced. The Wolfcamp data are found to be well explained by a linear trend with a superimposed spherical semivariogram. A cross-validation of the analysis confirms this. In addition, the cross-validation provides a point-by-point check to test for possible anomalous data.

  11. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars

  12. Operation of Grand Gulf Nuclear Station, Units 1 and 2, Dockets Nos. 50-416 and 50-417: Mississippi Power and Light Company, Middle South Energy, Inc. , South Mississippi Electric Power Association. Final environmental statement

    SciTech Connect

    Not Available

    1981-09-01

    The information in this Final Environmental Statement is the second assessment of the environmental impacts associated with the construction and operation of the Grand Gulf Nuclear Station, Units 1 and 2, located on the Mississippi River in Claiborne County, Mississippi. The Draft Environmental Statement was issued in May 1981. The first assessment was the Final Environmental Statement related to construction, which was issued in August 1973 prior to issuance of the Grand Gulf Nuclear Station construction permits. In September 1981 Grand Gulf Unit 1 was 92% complete and Unit 2 was 22% complete. Fuel loading for Unit 1 is scheduled for December 1981. The present assessment is the result of the NRC staff review of the activities associated with the proposed operation of the Station, and includes the staff responses to comments on the Draft Environmental Statement.

  13. Method for preparing salt solutions having desired properties

    DOEpatents

    Ally, Moonis R.; Braunstein, Jerry

    1994-01-01

    The specification discloses a method for preparing salt solutions which exhibit desired thermodynamic properties. The method enables prediction of the value of the thermodynamic properties for single and multiple salt solutions over a wide range of conditions from activity data and constants which are independent of concentration and temperature. A particular application of the invention is in the control of salt solutions in a process to provide a salt solution which exhibits the desired properties.

  14. Prediction of heat capacities of solid inorganic salts from group...

    Office of Scientific and Technical Information (OSTI)

    Subject: 36 MATERIALS SCIENCE; 99 MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS; SALTS; SPECIFIC HEAT; OXIDES; FLUORIDES; CHLORIDES; ANIONS; CATIONS; ...

  15. Savannah River Site - Salt Waste Processing Facility Independent Technical

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Review | Department of Energy Facility Independent Technical Review Savannah River Site - Salt Waste Processing Facility Independent Technical Review Full Document and Summary Versions are available for download Savannah River Site - Salt Waste Processing Facility Independent Technical Review (2.14 MB) Summary - Salt Waste Processing Facility Design at the Savannah River Site (63.73 KB) More Documents & Publications Savannah River Site - Salt Waste Processing Facility: Briefing on the

  16. Savannah River Site Salt Waste Processing Facility Technology Readiness

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Assessment Report | Department of Energy Salt Waste Processing Facility Technology Readiness Assessment Report Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report Full Document and Summary Versions are available for download Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report (1.44 MB) Summary - SRS Salt Waste Processing Facility (119.02 KB) More Documents & Publications EIS-0082-S2: Amended Record of Decision

  17. PROJECT PROFILE: Salt Lake City Corporation (Solar Market Pathways) |

    Energy Saver

    Department of Energy Salt Lake City Corporation (Solar Market Pathways) PROJECT PROFILE: Salt Lake City Corporation (Solar Market Pathways) Title: Wasatch Solar Project WASATCH solar logo.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: Salt Lake City, UT Amount Awarded: $600,000 Awardee Cost Share: $164,645 Salt Lake City and its partners are developing a comprehensive long-term solar deployment strategy, which includes an analysis of the value of

  18. New casing for salt problems ''hot item''

    SciTech Connect

    Rountree, R.

    1983-10-01

    Operators in the Williston Basin indicate interest in the high performance casing, which is designed to resist collapse. Lone Star Steel Co. offers custom designed, high performance casing to withstand high pressures and H/sub 2/S encroachment. A number of companies will continue to evaluate the results of the casing programs that employ high performance pipe with considerable interest.

  19. Oil exploration and development in Marib/Al Jawf basin, Yemen Arab Republic

    SciTech Connect

    Maycock, I.D.

    1988-02-01

    In 1981, Yemen Hunt Oil Company (YHOC) negotiated a production-sharing agreement covering 12,600 km/sup 2/ in the northeast part of the Yemen Arab Republic. A reconnaissance seismic program of 1864 km acquired in 1982 revealed the presence of a major half graben, designated the Marib/Al Jawf basin by YHOC. A sedimentary section up to 18,000 ft thick has been recognized. Geologic field mapping identified Jurassic carbonates covered by Cretaceous sands overlying Permian glaciolacustrine sediments, Paleozoic sandstones, or Precambrian basement. The first well, Alif-1, drilled in 1984, aimed at a possible Jurassic carbonate objective, encountered hydrocarbon-bearing sands in the Jurassic-Cretaceous transition between 5000 and 6000 ft. Appraisal and development drilling followed. The Alif field is believed to contain in excess of 400 million bbl of recoverable oil. Subsequent wildcat drilling has located additional accumulations while further amplifying basin stratigraphy. Rapid basin development took place in the Late Jurassic culminating with the deposition of Tithonian salt. The evaporites provide an excellent seal for hydrocarbons apparently sourced from restricted basin shales and trapped in rapidly deposited clastics.

  20. 1,"Victor J Daniel Jr","Coal","Mississippi Power Co",1992 2,"Grand Gulf","Nuclear","System Energy Resources, Inc",1408.5

    Energy Information Administration (EIA) (indexed site)

    Mississippi" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Victor J Daniel Jr","Coal","Mississippi Power Co",1992 2,"Grand Gulf","Nuclear","System Energy Resources, Inc",1408.5 3,"Baxter Wilson","Natural gas","Entergy Mississippi Inc",1143.2 4,"Jack Watson","Coal","Mississippi Power Co",998