National Library of Energy BETA

Sample records for million processor hours

  1. PPPL team wins 80 million processor hours on nation's fastest supercomputer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    | Princeton Plasma Physics Lab team wins 80 million processor hours on nation's fastest supercomputer By John Greenwald January 26, 2016 Tweet Widget Google Plus One Share on Facebook Model of colliding magnetic fields before magnetic reconnection. (Model by Will Fox courtesy of Physical Review Letters 113, 105003 2014) Model of colliding magnetic fields before magnetic reconnection. (Model by Will Fox courtesy of Physical Review Letters 113, 105003 2014) The U.S Department of Energy (DOE)

  2. PPPL team wins 80 million processor hours on nation's fastest supercomputer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    | Princeton Plasma Physics Lab team wins 80 million processor hours on nation's fastest supercomputer By John Greenwald January 26, 2016 Tweet Widget Google Plus One Share on Facebook Model of colliding magnetic fields before magnetic reconnection. (Model by Will Fox courtesy of Physical Review Letters 113, 105003 2014) Model of colliding magnetic fields before magnetic reconnection. (Model by Will Fox courtesy of Physical Review Letters 113, 105003 2014) The U.S Department of Energy (DOE)

  3. Team Surpasses 1 Million Hours Safety Milestone

    Energy.gov [DOE]

    NISKAYUNA, N.Y. – Vigilance and dedication to safety led the EM program’s disposition project team at the Separations Process Research Unit (SPRU) to achieve a milestone of one million hours — over two-and-a-half-years — without injury or illness resulting in time away from work.

  4. DOE Awards 265 Million Hours of Supercomputing Time to Advance Leading

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Scientific Research Projects | Department of Energy 265 Million Hours of Supercomputing Time to Advance Leading Scientific Research Projects DOE Awards 265 Million Hours of Supercomputing Time to Advance Leading Scientific Research Projects January 17, 2008 - 10:38am Addthis WASHINGTON, DC -The U.S. Department of Energy's (DOE) Office of Science today announced that 265 million processor-hours were awarded to 55 scientific projects, the largest amount of supercomputing resource awards

  5. DOE's Office of Science Awards 18 Million Hours of Supercomputing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE's Office of Science Awards 18 Million Hours of Supercomputing Time to 15 Teams for Large-Scale Scientific Computing DOE's Office of Science Awards 18 Million Hours of...

  6. Oak Ridge: Approaching 4 Million Safe Work Hours | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Oak Ridge: Approaching 4 Million Safe Work Hours Oak Ridge: Approaching 4 Million Safe Work Hours February 27, 2013 - 12:00pm Addthis Mike Tidwell performs a leak check and ...

  7. DOE's Office of Science Awards 18 Million Hours of Supercomputing...

    Energy Saver

    DOE's Office of Science Awards 18 Million Hours of Supercomputing Time to 15 Teams for ... announced today that DOE's Office of Science has awarded a total of 18.2 million hours ...

  8. Department of Energy's Paducah Site Reaches Million-Hour Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    environmental risk. The LATA Environmental Services of Kentucky Team, the Department's prime cleanup contractor, in October reached a milestone of 1 million hours without a lost...

  9. Oak Ridge: Approaching 4 Million Safe Work Hours

    Energy.gov [DOE]

    Workers at URS | CH2M Oak Ridge (UCOR), the prime contractor for EM’s Oak Ridge cleanup, are approaching a milestone of 4 million safe work hours without a lost time away incident.

  10. EM River Corridor Cleanup Contractor Surpasses 7 Million Safe Hours

    Energy.gov [DOE]

    RICHLAND, Wash. – EM’s Richland Operations Office contractor Washington Closure Hanford (WCH) and its subcontractor employees achieved a significant safety milestone by working 7 million hours without a lost workday injury.

  11. PPPL team wins 80 million processor hours on nation's fastest...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... For more information, please visit science.energy.gov. Contact Info PPPL Office of Communications Email: PPPLOOC@pppl.gov Phone: 609-243-2755 Download Select and View High ...

  12. WIPP Workers Reach Two Million Man-Hours Without a Lost-Time...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Workers Reach Two Million Man-Hours Without a Lost-Time Accident CARLSBAD, N.M., February ... a safety milestone Feb. 19 by working two million man-hours without a lost-time accident. ...

  13. DOE's Office of Science Awards 95 Million Hours of Supercomputing Time to

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advance Research in Science, Academia and Industry | Department of Energy 95 Million Hours of Supercomputing Time to Advance Research in Science, Academia and Industry DOE's Office of Science Awards 95 Million Hours of Supercomputing Time to Advance Research in Science, Academia and Industry January 8, 2007 - 9:59am Addthis WASHINGTON, D.C. - The U.S. Department of Energy's (DOE) Office of Science announced today that 45 projects were awarded a total of 95 million hours of computing time on

  14. Jefferson Lab Group Gets 10 Million Hours of Supercomputer Time | Jefferson

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lab Group Gets 10 Million Hours of Supercomputer Time Jefferson Lab Group Gets 10 Million Hours of Supercomputer Time January 25, 2007 XT3 The Cray XT3 at DOE's Oak Ridge National Laboratory. Newport News, Va. - A project led by the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility's Theory Center has been allotted 10 million hours of processing time by DOE's 2007 INCITE program on the Cray XT3 located at Oak Ridge National Laboratory. According to Jefferson Lab

  15. Department of Energy’s Paducah Site Reaches Million-Hour Safety Milestone

    Energy.gov [DOE]

    PADUCAH, KY – The U.S. Department of Energy’s Paducah Site has reached a million hours of safe work toward completing cleanup objectives to reduce environmental risk.

  16. Y-12 Construction hits one million-hour mark without a lost-time...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Construction hits one ... Y-12 Construction hits one million-hour mark without a lost-time accident Posted: August 30, 2012 - 5:30pm The B&W Y-12 Direct-Hire Construction team has ...

  17. Paducah Site Exceeds 2.5 Million Hours Without Lost Workdays

    Energy.gov [DOE]

    This month, EM’s cleanup contractor at the Paducah site celebrated surpassing 2.5 million work hours without lost workdays resulting from job-related injury or illness.

  18. Workers at Paducah Site Exceed 1.5 Million Hours Without Lost-Time Injury, Illness

    Energy.gov [DOE]

    PADUCAH, Ky. – Workers with Paducah site infrastructure contractor Swift & Staley, Inc. recently exceeded 1.5 million hours without lost time away from work due to injury or illness, representing nine years of safe performance.

  19. Y-12 Construction hits one million-hour mark without a lost-time accident |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Y-12 National Security Complex Construction hits one ... Y-12 Construction hits one million-hour mark without a lost-time accident Posted: August 30, 2012 - 5:30pm The B&W Y-12 Direct-Hire Construction team has worked one million hours, covering a 633-day period, without a lost-time injury. Some 285 people including building trade crafts, non-manual staff and escorts worked without a lost-time accident during this period. The Construction team's last lost workday was in September 2010. A

  20. West Valley Demonstration Project Contractor Reaches 2 Million Safe Work Hours

    Office of Energy Efficiency and Renewable Energy (EERE)

    WEST VALLEY, N.Y. – EM’s West Valley Demonstration Project (WVDP) contractor CH2M HILL BWXT West Valley (CHBWV) and its subcontractors achieved this month 2 million safe work hours without a lost-time accident over the past 30 months

  1. DOE's Office of Science Awards 18 Million Hours of Supercomputing Time to 15 Teams for Large-Scale Scientific Computing

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON, D.C. - Secretary of Energy Samuel W. Bodman announced today that DOE's Office of Science has awarded a total of 18.2 million hours of computing time on some of the world's most powerful...

  2. DOE Moab Project Reaches Halfway Mark in Mill Tailings Removal 2.5 Million Hours Safely Worked

    Energy.gov [DOE]

    (Grand Junction, CO) ― The U.S. Department of Energy (DOE) has reached 8 million tons of uranium mill tailings removed from the Moab site in Utah under the Uranium Mill Tailings Remedial Action Project.

  3. Ames Laboratory Scientists Receive Hours through DOE's INCITE Program | The

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ames Laboratory Ames Laboratory Scientists Receive Hours through DOE's INCITE Program Scientist Mark Gordon was awarded 200 million processor hours through the INCITE program to work on a research project utilizing Argonne National Laboratory's supercomputer. Gordon and his co-investigators will study the behaviors of liquids and their solutes specifically water and ionic liquids. For more information about the team's work with INCITE visit Argonne Leadership Computing Facility. January 12,

  4. Computer Processor Allocator

    Energy Science and Technology Software Center

    2004-03-01

    The Compute Processor Allocator (CPA) provides an efficient and reliable mechanism for managing and allotting processors in a massively parallel (MP) computer. It maintains information in a database on the health. configuration and allocation of each processor. This persistent information is factored in to each allocation decision. The CPA runs in a distributed fashion to avoid a single point of failure.

  5. Sequence information signal processor

    DOEpatents

    Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.

    1999-01-01

    An electronic circuit is used to compare two sequences, such as genetic sequences, to determine which alignment of the sequences produces the greatest similarity. The circuit includes a linear array of series-connected processors, each of which stores a single element from one of the sequences and compares that element with each successive element in the other sequence. For each comparison, the processor generates a scoring parameter that indicates which segment ending at those two elements produces the greatest degree of similarity between the sequences. The processor uses the scoring parameter to generate a similar scoring parameter for a comparison between the stored element and the next successive element from the other sequence. The processor also delivers the scoring parameter to the next processor in the array for use in generating a similar scoring parameter for another pair of elements. The electronic circuit determines which processor and alignment of the sequences produce the scoring parameter with the highest value.

  6. Hopper Hours Used

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hours Used Hopper Hours Used 2015 Hopper Usage Chart Hopper Usage Chart 2014 Hopper Usage Chart Hopper Usage Chart 2013 Hopper Usage Chart Hopper Usage Chart 2012 Hopper Usage Chart Hopper Usage Chart 2011 Hopper Usage Chart Hopper Usage Chart 2015 Date Hours Used (in millions) Percent of Maximum Possible (24 hours/day) 09/20/2015 3.247 88.2 09/19/2015 3.401 92.4 09/18/2015 3.425 93.0 09/17/2015 3.450 93.7 09/16/2015 3.413 92.7 09/15/2015 3.466 94.1 09/14/2015 3.299 89.6 09/13/2015 3.436 93.3

  7. The Cell Processor

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    © 2005 IBM Corporation The Cell Processor Architecture & Issues 2 © 2005 IBM Corporation Agenda Cell Processor Overview Programming the Cell Processor Concluding Remarks 3 © 2005 IBM Corporation Cell Highlights Observed clock speed ►> 4 GHz Peak performance (single precision) ►> 256 GFlops Peak performance (double precision) ►>26 GFlops Area 221 mm2 Technology 90nm SOI Total # of transistors 234M 4 © 2005 IBM Corporation Cell Chip Block Diagram PXU EIB (up to 96

  8. 3081/E processor

    SciTech Connect

    Kunz, P.F.; Gravina, M.; Oxoby, G.; Rankin, P.; Trang, Q.; Ferran, P.M.; Fucci, A.; Hinton, R.; Jacobs, D.; Martin, B.

    1984-04-01

    The 3081/E project was formed to prepare a much improved IBM mainframe emulator for the future. Its design is based on a large amount of experience in using the 168/E processor to increase available CPU power in both online and offline environments. The processor will be at least equal to the execution speed of a 370/168 and up to 1.5 times faster for heavy floating point code. A single processor will thus be at least four times more powerful than the VAX 11/780, and five processors on a system would equal at least the performance of the IBM 3081K. With its large memory space and simple but flexible high speed interface, the 3081/E is well suited for the online and offline needs of high energy physics in the future.

  9. Hardware multiplier processor

    DOEpatents

    Pierce, Paul E.

    1986-01-01

    A hardware processor is disclosed which in the described embodiment is a memory mapped multiplier processor that can operate in parallel with a 16 bit microcomputer. The multiplier processor decodes the address bus to receive specific instructions so that in one access it can write and automatically perform single or double precision multiplication involving a number written to it with or without addition or subtraction with a previously stored number. It can also, on a single read command automatically round and scale a previously stored number. The multiplier processor includes two concatenated 16 bit multiplier registers, two 16 bit concatenated 16 bit multipliers, and four 16 bit product registers connected to an internal 16 bit data bus. A high level address decoder determines when the multiplier processor is being addressed and first and second low level address decoders generate control signals. In addition, certain low order address lines are used to carry uncoded control signals. First and second control circuits coupled to the decoders generate further control signals and generate a plurality of clocking pulse trains in response to the decoded and address control signals.

  10. Hardware multiplier processor

    DOEpatents

    Pierce, P.E.

    A hardware processor is disclosed which in the described embodiment is a memory mapped multiplier processor that can operate in parallel with a 16 bit microcomputer. The multiplier processor decodes the address bus to receive specific instructions so that in one access it can write and automatically perform single or double precision multiplication involving a number written to it with or without addition or subtraction with a previously stored number. It can also, on a single read command automatically round and scale a previously stored number. The multiplier processor includes two concatenated 16 bit multiplier registers, two 16 bit concatenated 16 bit multipliers, and four 16 bit product registers connected to an internal 16 bit data bus. A high level address decoder determines when the multiplier processor is being addressed and first and second low level address decoders generate control signals. In addition, certain low order address lines are used to carry uncoded control signals. First and second control circuits coupled to the decoders generate further control signals and generate a plurality of clocking pulse trains in response to the decoded and address control signals.

  11. Carver Hours Used

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Carver Hours Used Carver Hours Used Hopper Usage Chart Hopper Usage Chart Date Hours Used (in millions) Percent of Maximum Possible (24 hours/day) 12/15/2014 161.25 84.75 12/14/2014 162.32 85.31 12/13/2014 165.95 87.22 12/12/2014 172.69 90.76 12/11/2014 174.45 91.69 12/10/2014 170.09 89.39 12/09/2014 166.50 87.50 12/08/2014 169.20 88.92 12/07/2014 167.44 88.00 12/06/2014 172.83 90.83 12/05/2014 176.73 92.89 12/04/2014 174.69 91.81 12/03/2014 178.77 93.96 12/02/2014 172.30 90.55 12/01/2014 176.12

  12. 3081//sub E/ processor

    SciTech Connect

    Kunz, P.F.; Gravina, M.; Oxoby, G.; Trang, Q.; Fucci, A.; Jacobs, D.; Martin, B.; Storr, K.

    1983-03-01

    Since the introduction of the 168//sub E/, emulating processors have been successful over an amazingly wide range of applications. This paper will describe a second generation processor, the 3081//sub E/. This new processor, which is being developed as a collaboration between SLAC and CERN, goes beyond just fixing the obvious faults of the 168//sub E/. Not only will the 3081//sub E/ have much more memory space, incorporate many more IBM instructions, and have much more memory space, incorporate many more IBM instructions, and have full double precision floating point arithmetic, but it will also have faster execution times and be much simpler to build, debug, and maintain. The simple interface and reasonable cost of the 168//sub E/ will be maintained for the 3081//sub E/.

  13. Bulk-memory processor for data acquisition

    SciTech Connect

    Nelson, R.O.; McMillan, D.E.; Sunier, J.W.; Meier, M.; Poore, R.V.

    1981-01-01

    To meet the diverse needs and data rate requirements at the Van de Graaff and Weapons Neutron Research (WNR) facilities, a bulk memory system has been implemented which includes a fast and flexible processor. This bulk memory processor (BMP) utilizes bit slice and microcode techniques and features a 24 bit wide internal architecture allowing direct addressing of up to 16 megawords of memory and histogramming up to 16 million counts per channel without overflow. The BMP is interfaced to the MOSTEK MK 8000 bulk memory system and to the standard MODCOMP computer I/O bus. Coding for the BMP both at the microcode level and with macro instructions is supported. The generalized data acquisition system has been extended to support the BMP in a manner transparent to the user.

  14. Multimode power processor

    DOEpatents

    O'Sullivan, G.A.; O'Sullivan, J.A.

    1999-07-27

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources. 31 figs.

  15. Multimode power processor

    DOEpatents

    O'Sullivan, George A.; O'Sullivan, Joseph A.

    1999-01-01

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources.

  16. West Valley Demonstration Project Contractor Reaches 2 Million...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demonstration Project Contractor Reaches 2 Million Safe Work Hours West Valley Demonstration Project Contractor Reaches 2 Million Safe Work Hours May 31, 2016 - 12:20pm Addthis A ...

  17. Distributed processor allocation for launching applications in a massively connected processors complex

    DOEpatents

    Pedretti, Kevin

    2008-11-18

    A compute processor allocator architecture for allocating compute processors to run applications in a multiple processor computing apparatus is distributed among a subset of processors within the computing apparatus. Each processor of the subset includes a compute processor allocator. The compute processor allocators can share a common database of information pertinent to compute processor allocation. A communication path permits retrieval of information from the database independently of the compute processor allocators.

  18. The APEX trigger processor

    SciTech Connect

    Wolanski, M. |

    1993-10-01

    Positron identification in APEX is accomplished via the detection of the characteristic back-to-back 511 keV gamma rays emitted when the positrons annihilate in the APEX silicon array. The photons are detected in NaI arrays that surround the silicon arrays. To trigger APEX we designed and constructed the APEX Trigger Processor (ATP). The ATP provides a hardware trigger based on the consistency of the NaI hit pattern with a set of pre-loaded patterns. The pattern look-up and trigger production occur within 80 ns (the ATLAS beam pulse period). The spurious trigger rate is dominated by room background events which generate true back-to-back hit patterns. These false triggers are easily rejected in hardware and software. The basic design and performance of he ATP, with and without beam, will be discussed.

  19. Hopper Hours Used

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hours Used Hopper Hours Used 2015 Hopper Usage Chart Hopper Usage Chart 2014 Hopper Usage ... Hopper Usage Chart 2011 Hopper Usage Chart Hopper Usage Chart 2015 Date Hours Used (in ...

  20. DOE Awards Over a Billion Supercomputing Hours to Address Scientific

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Challenges | Department of Energy Over a Billion Supercomputing Hours to Address Scientific Challenges DOE Awards Over a Billion Supercomputing Hours to Address Scientific Challenges January 26, 2010 - 12:00am Addthis Washington, DC. - The U.S. Department of Energy announced today that approximately 1.6 billion supercomputing processor hours have been awarded to 69 cutting-edge research projects through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program.

  1. Ombuds Office Location & Hours

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ombuds Office Location & Hours Ombuds Office Location & Hours Committed to the fair and equitable treatment of all employees, contractors, and persons doing business with the...

  2. Join the Call: One Million Hours of STEM Volunteer Service

    Office of Energy Efficiency and Renewable Energy (EERE)

    America’s ability to meet the demands of its energy future depends on having a trained, dedicated science, technology, engineering, and mathematics (STEM) workforce.

  3. DOE's Office of Science Awards 95 Million Hours of Supercomputing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... and Atmospheric Administration and the Max-Planck Institute for Quantum Optics in Germany. ... to 15 Teams for Large-Scale Scientific Computing DOE Awards Supercomputer Access to ...

  4. DOE Awards 265 Million Hours of Supercomputing Time to Advance...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Technology; the Max-Planck Institute for Quantum Optics in Germany; CERFACS, the European ... systems, scientists can receive more computing time, which allows them to conduct more ...

  5. Moab Project Safely Logs 2 Million Work Hours | Department of...

    Energy Saver

    Donald Metzler, Moab Federal Project Director, (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager, (970) 257-2145 (Grand Junction, CO) - The number 1,584 may not mean ...

  6. Ethanol Grain Processors LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Processors LLC Jump to: navigation, search Name: Ethanol Grain Processors, LLC Place: Obion, Tennessee Zip: TN 38240 Product: Tennessee-based ethanol producer. Coordinates:...

  7. Geo processors USA | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    processors USA Jump to: navigation, search Name: Geo-processors USA Place: California Zip: 91204 Sector: Carbon Product: California based Geo-procesors USA has developed an...

  8. Franklin Hours Used

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Franklin Hours Used Franklin Hours Used 2011 Franklin Usage in Hours 2011 Franklin Usage in Hours 2010 2010 Franklin Usage in Hours 2009 2009 Franklin Usage in Hours 2007-2008 2008 Franklin Usage in Hours 2008 Franklin Usage in Hours Date Hours Used (in thousands) Percentage of Maximum Possible (24 hours/day) 04/28/2012 0.00 0.00 04/27/2012 272.62 29.40 04/26/2012 692.81 74.71 04/25/2012 841.60 90.75 04/24/2012 53.86 5.81 04/23/2012 432.01 46.59 04/22/2012 823.23 88.77 04/21/2012 473.95 51.11

  9. Edison Hours Used

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Edison Hours Used 2015 Edison Usage Chart Edison Usage Chart 2014 Edison Usage Chart Edison Usage Chart 2013 Edison Usage Chart Edison Usage Chart 2015 Date Hours Used (in ...

  10. Contacts / Hours - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contacts / Hours Hanford Meteorological Station Real Time Met Data from Around the Site Current and Past 48 Hours HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Contacts / Hours Current NWS Forecast for the Tri-Cities NWS Windchill Chart Contacts / Hours Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Note: Using the telephone is the ONLY way to get up to the minute information. On duty Forecaster (509) 373-2716 Current

  11. Edison Phase I Hours Used

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Edison Phase I Hours Used Edison Phase I Hours Used Edison Usage Chart Edison Usage Chart Date Hours Used (in millions) Percent of Maximum Possible (24 hours/day) 06/23/2013 0.226 88.6 06/22/2013 0.239 93.9 06/21/2013 0.248 97.1 06/20/2013 0.240 94.0 06/19/2013 0.233 91.3 06/18/2013 0.245 96.0 06/17/2013 0.251 98.4 06/16/2013 0.243 95.3 06/15/2013 0.245 95.9 06/14/2013 0.246 96.5 06/13/2013 0.240 94.1 06/12/2013 0.128 50.4 06/11/2013 0.215 84.5 06/10/2013 0.225 88.4 06/09/2013 0.228 89.6

  12. Processor Emulator with Benchmark Applications

    Energy Science and Technology Software Center

    2015-11-13

    A processor emulator and a suite of benchmark applications have been developed to assist in characterizing the performance of data-centric workloads on current and future computer architectures. Some of the applications have been collected from other open source projects. For more details on the emulator and an example of its usage, see reference [1].

  13. Processor Frequency on the Cori Data Partition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Configuration » Processor Frequency on the Cori Data Partition Processor Frequency on the Cori Data Partition The Haswell processors in Cori's data partition have a "Turbo Boost" feature to dynamically adjust CPU frequency and achieve the maximum possible performance. When Turbo Boost is enabled, the processor operates at the maximum frequency allowed by the available power and thermal limits. Further, on Cori (unlike Edison), each core can operate at a different frequency. The

  14. Communications systems and methods for subsea processors

    DOEpatents

    Gutierrez, Jose; Pereira, Luis

    2016-04-26

    A subsea processor may be located near the seabed of a drilling site and used to coordinate operations of underwater drilling components. The subsea processor may be enclosed in a single interchangeable unit that fits a receptor on an underwater drilling component, such as a blow-out preventer (BOP). The subsea processor may issue commands to control the BOP and receive measurements from sensors located throughout the BOP. A shared communications bus may interconnect the subsea processor and underwater components and the subsea processor and a surface or onshore network. The shared communications bus may be operated according to a time division multiple access (TDMA) scheme.

  15. Midwest Grain Processors MGP | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Midwest Grain Processors (MGP) Place: Lakota, Iowa Zip: 50451 Product: Iowa-based bioethanol producer using corn as feedstock. Coordinates: 48.042535, -98.335979 Show Map...

  16. Adapting implicit methods to parallel processors

    SciTech Connect

    Reeves, L.; McMillin, B.; Okunbor, D.; Riggins, D.

    1994-12-31

    When numerically solving many types of partial differential equations, it is advantageous to use implicit methods because of their better stability and more flexible parameter choice, (e.g. larger time steps). However, since implicit methods usually require simultaneous knowledge of the entire computational domain, these methods axe difficult to implement directly on distributed memory parallel processors. This leads to infrequent use of implicit methods on parallel/distributed systems. The usual implementation of implicit methods is inefficient due to the nature of parallel systems where it is common to take the computational domain and distribute the grid points over the processors so as to maintain a relatively even workload per processor. This creates a problem at the locations in the domain where adjacent points are not on the same processor. In order for the values at these points to be calculated, messages have to be exchanged between the corresponding processors. Without special adaptation, this will result in idle processors during part of the computation, and as the number of idle processors increases, the lower the effective speed improvement by using a parallel processor.

  17. PV Hourly Simulation Tool

    Energy Science and Technology Software Center

    2010-12-31

    This software requires inputs of simple general building characteristics and usage information to calculate the energy and cost benefits of solar PV. This tool conducts and complex hourly simulation of solar PV based primarily on the area available on the rooftop. It uses a simplified efficiency calculation method and real panel characteristics. It includes a detailed rate structure to account for time-of-use rates, on-peak and off-peak pricing, and multiple rate seasons. This tool includes themore » option for advanced system design inputs if they are known. This tool calculates energy savings, demand reduction, cost savings, incentives and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  18. Effect of processor temperature on film dosimetry

    SciTech Connect

    Srivastava, Shiv P.; Das, Indra J.

    2012-07-01

    Optical density (OD) of a radiographic film plays an important role in radiation dosimetry, which depends on various parameters, including beam energy, depth, field size, film batch, dose, dose rate, air film interface, postexposure processing time, and temperature of the processor. Most of these parameters have been studied for Kodak XV and extended dose range (EDR) films used in radiation oncology. There is very limited information on processor temperature, which is investigated in this study. Multiple XV and EDR films were exposed in the reference condition (d{sub max.}, 10 Multiplication-Sign 10 cm{sup 2}, 100 cm) to a given dose. An automatic film processor (X-Omat 5000) was used for processing films. The temperature of the processor was adjusted manually with increasing temperature. At each temperature, a set of films was processed to evaluate OD at a given dose. For both films, OD is a linear function of processor temperature in the range of 29.4-40.6 Degree-Sign C (85-105 Degree-Sign F) for various dose ranges. The changes in processor temperature are directly related to the dose by a quadratic function. A simple linear equation is provided for the changes in OD vs. processor temperature, which could be used for correcting dose in radiation dosimetry when film is used.

  19. Fuel Processor Enabled NOx Adsorber Aftertreatment System for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions ...

  20. Geothermal Food Processors Agricultural Drying Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Processors is an Agricultural Drying low temperature direct use geothermal facility in Brady Hot Springs E of Fernley, Nevada. This article is a stub. You can help OpenEI by...

  1. DOE's Transuranic Waste Processing Center Surpasses 3 Million...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This particular waste contains man-made isotopes that pose significant risks to human ... "I am so proud of the TWPC workforce. Surpassing the three million man-hour milestone ...

  2. " Million Housing Units, Final...

    Energy Information Administration (EIA) (indexed site)

    ,"Total U.S.1 (millions)",,,..."Below Poverty Line2" ,,"Less than 20,000","20,000 to ... the number of households below the poverty line, the annual household income and ...

  3. Summary report : universal fuel processor.

    SciTech Connect

    Coker, Eric Nicholas; Rice, Steven F.; Kemp, Richard Alan; Stewart, Constantine A.; Miller, James Edward; Cornelius, Christopher James; Staiger, Chad Lynn; Pickett, Lyle M.

    2008-01-01

    The United States produces only about 1/3 of the more than 20 million barrels of petroleum that it consumes daily. Oil imports into the country are roughly equivalent to the amount consumed in the transportation sector. Hence the nation in general, and the transportation sector in particular, is vulnerable to supply disruptions and price shocks. The situation is anticipated to worsen as the competition for limited global supplies increases and oil-rich nations become increasingly willing to manipulate the markets for this resource as a means to achieve political ends. The goal of this project was the development and improvement of technologies and the knowledge base necessary to produce and qualify a universal fuel from diverse feedstocks readily available in North America and elsewhere (e.g. petroleum, natural gas, coal, biomass) as a prudent and positive step towards mitigating this vulnerability. Three major focus areas, feedstock transformation, fuel formulation, and fuel characterization, were identified and each was addressed. The specific activities summarized herein were identified in consultation with industry to set the stage for collaboration. Two activities were undertaken in the area of feedstock transformation. The first activity focused on understanding the chemistry and operation of autothermal reforming, with an emphasis on understanding, and therefore preventing, soot formation. The second activity was focused on improving the economics of oxygen production, particularly for smaller operations, by integrating membrane separations with pressure swing adsorption. In the fuel formulation area, the chemistry of converting small molecules readily produced from syngas directly to fuels was examined. Consistent with the advice from industry, this activity avoided working on improving known approaches, giving it an exploratory flavor. Finally, the fuel characterization task focused on providing a direct and quantifiable comparison of diesel fuel and JP-8.

  4. Parallel processor for fast event analysis

    SciTech Connect

    Hensley, D.C.

    1983-01-01

    Current maximum data rates from the Spin Spectrometer of approx. 5000 events/s (up to 1.3 MBytes/s) and minimum analysis requiring at least 3000 operations/event require a CPU cycle time near 70 ns. In order to achieve an effective cycle time of 70 ns, a parallel processing device is proposed where up to 4 independent processors will be implemented in parallel. The individual processors are designed around the Am2910 Microsequencer, the AM29116 ..mu..P, and the Am29517 Multiplier. Satellite histogramming in a mass memory system will be managed by a commercial 16-bit ..mu..P system.

  5. Fuel Processors for PEM Fuel Cells

    SciTech Connect

    Levi T. Thompson

    2008-08-08

    Fuel cells are being developed to power cleaner, more fuel efficient automobiles. The fuel cell technology favored by many automobile manufacturers is PEM fuel cells operating with H2 from liquid fuels like gasoline and diesel. A key challenge to the commercialization of PEM fuel cell based powertrains is the lack of sufficiently small and inexpensive fuel processors. Improving the performance and cost of the fuel processor will require the development of better performing catalysts, new reactor designs and better integration of the various fuel processing components. These components and systems could also find use in natural gas fuel processing for stationary, distributed generation applications. Prototype fuel processors were produced, and evaluated against the Department of Energy technical targets. Significant advances were made by integrating low-cost microreactor systems, high activity catalysts, π-complexation adsorbents, and high efficiency microcombustor/microvaporizers developed at the University of Michigan. The microreactor system allowed (1) more efficient thermal coupling of the fuel processor operations thereby minimizing heat exchanger requirements, (2) improved catalyst performance due to optimal reactor temperature profiles and increased heat and mass transport rates, and (3) better cold-start and transient responses.

  6. Cache Energy Optimization Techniques For Modern Processors

    SciTech Connect

    Mittal, Sparsh ORNL

    2013-01-01

    Modern multicore processors are employing large last-level caches, for example Intel's E7-8800 processor uses 24MB L3 cache. Further, with each CMOS technology generation, leakage energy has been dramatically increasing and hence, leakage energy is expected to become a major source of energy dissipation, especially in last-level caches (LLCs). The conventional schemes of cache energy saving either aim at saving dynamic energy or are based on properties specific to first-level caches, and thus these schemes have limited utility for last-level caches. Further, several other techniques require offline profiling or per-application tuning and hence are not suitable for product systems. In this book, we present novel cache leakage energy saving schemes for single-core and multicore systems; desktop, QoS, real-time and server systems. Also, we present cache energy saving techniques for caches designed with both conventional SRAM devices and emerging non-volatile devices such as STT-RAM (spin-torque transfer RAM). We present software-controlled, hardware-assisted techniques which use dynamic cache reconfiguration to configure the cache to the most energy efficient configuration while keeping the performance loss bounded. To profile and test a large number of potential configurations, we utilize low-overhead, micro-architecture components, which can be easily integrated into modern processor chips. We adopt a system-wide approach to save energy to ensure that cache reconfiguration does not increase energy consumption of other components of the processor. We have compared our techniques with state-of-the-art techniques and have found that our techniques outperform them in terms of energy efficiency and other relevant metrics. The techniques presented in this book have important applications in improving energy-efficiency of higher-end embedded, desktop, QoS, real-time, server processors and multitasking systems. This book is intended to be a valuable guide for both newcomers

  7. Solar Hot Water Hourly Simulation

    Energy Science and Technology Software Center

    2009-12-31

    The Software consists of a spreadsheet written in Microsoft Excel which provides an hourly simulation of a solar hot water heating system (including solar geometry, solar collector efficiency as a function of temperature, energy balance on storage tank and lifecycle cost analysis).

  8. Testing and operating a multiprocessor chip with processor redundancy

    DOEpatents

    Bellofatto, Ralph E; Douskey, Steven M; Haring, Rudolf A; McManus, Moyra K; Ohmacht, Martin; Schmunkamp, Dietmar; Sugavanam, Krishnan; Weatherford, Bryan J

    2014-10-21

    A system and method for improving the yield rate of a multiprocessor semiconductor chip that includes primary processor cores and one or more redundant processor cores. A first tester conducts a first test on one or more processor cores, and encodes results of the first test in an on-chip non-volatile memory. A second tester conducts a second test on the processor cores, and encodes results of the second test in an external non-volatile storage device. An override bit of a multiplexer is set if a processor core fails the second test. In response to the override bit, the multiplexer selects a physical-to-logical mapping of processor IDs according to one of: the encoded results in the memory device or the encoded results in the external storage device. On-chip logic configures the processor cores according to the selected physical-to-logical mapping.

  9. Application of the FETI Method to ASCI Problems: Scalability Results on One Thousand Processors and Discussion of Highly Heterogeneous Problems

    SciTech Connect

    Bhardwaj, M.; Day, D.; Farhat, C.; Lesoinne, M; Pierson, K.; Rixen, D.

    1999-04-01

    We report on the application of the one-level FETI method to the solution of a class of substructural problems associated with the Department of Energy's Accelerated Strategic Computing Initiative (ASCI). We focus on numerical and parallel scalability issues, and on preliminary performance results obtained on the ASCI Option Red supercomputer configured with as many as one thousand processors, for problems with as many as 5 million degrees of freedom.

  10. Integral Fast Reactor fuel pin processor

    SciTech Connect

    Levinskas, D.

    1993-03-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.

  11. Integral Fast Reactor fuel pin processor

    SciTech Connect

    Levinskas, D.

    1993-01-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.

  12. Generalized measurements via a programmable quantum processor

    SciTech Connect

    Rosko, Marian; Buzek, Vladimir; Chouha, Paul Robert; Hillery, Mark

    2003-12-01

    We show that it is possible to control the trade-off between information gain and disturbance in generalized measurements of qudits by utilizing a programmable quantum processor. This universal quantum machine allows us to perform a generalized measurement on the initial state of the input qudit to construct a Husimi function of this state. The trade-off between the gain and the disturbance of the qudit is controlled by the initial state of ancillary system that acts as a program for the quantum-information distributor. The trade-off fidelity does not depend on the initial state of the qudit.

  13. Workers at Paducah Site Exceed 1.5 Million Hours Without Lost...

    Office of Environmental Management (EM)

    Kevin Dressman, director of the DOE Office of Worker Safety and Health Enforcement, addresses ... from the former mill buildings at the Moab site is excavated from the mill ...

  14. Workers at EM's West Valley Site Surpass 1 Million Hours without...

    Office of Environmental Management (EM)

    years without a lost-time accident. Portsmouth Site Plant Surpasses Five Years Without Lost-Time Accident Workers load an overpack container into a vertical storage cask. EM's...

  15. Moab Project Logs 2 Million Work Hours Without Lost-Time Injury...

    Office of Environmental Management (EM)

    Empty containers on haul trucks are loaded with mill tailings. GRAND JUNCTION, Colo. - The number 1,584 may not mean much to most people, but for the workers on EM's Moab Uranium ...

  16. Moab Project Logs 2 Million Work Hours Without Lost-Time Injury or Illness

    Energy.gov [DOE]

    GRAND JUNCTION, Colo. – The number 1,584 may not mean much to most people, but for the workers on EM’s Moab Uranium Mill Tailings Remedial Action Project, it represents the number of days without a work-related, lost-time injury or illness, as defined by the Occupational Safety and Health Administration.

  17. Workers at EM's West Valley Site Surpass 1 Million Hours without

    Energy Saver

    History Month this March | Department of Energy Women's Education, Women's Empowerment - Celebrating National Women's History Month this March Women's Education, Women's Empowerment - Celebrating National Women's History Month this March March 1, 2012 - 3:04pm Addthis As we begin Women's History Month this year, we offer a focus on women's education and women's empowerment - two connected threads that the Department of Energy has been advancing on this year. Women have made great strides

  18. Energy Department, Northwest Food Processors Association Set Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency Goals for Industry | Department of Energy Department, Northwest Food Processors Association Set Energy Efficiency Goals for Industry Energy Department, Northwest Food Processors Association Set Energy Efficiency Goals for Industry February 17, 2009 - 12:00am Addthis PORTLAND, OR - The U.S. Department of Energy (DOE) and the Northwest Food Processors Association today set ambitious goals to reduce energy use and carbon emissions in the industrial sector. DOE Industrial Technologies

  19. Energy Department, Northwest Food Processors Association Set Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Efficiency Goals for Industry Energy Department, Northwest Food Processors Association Set Energy Efficiency Goals for Industry PORTLAND, OR - The U.S. Department of Energy (DOE) and the Northwest Food Processors Association today set ambitious goals to reduce energy use and carbon emissions in the industrial sector. DOE Industrial Technologies Program Manager Douglas Kaempf and Northwest Food Processors Association (NWFPA) President David Zepponi signed a Memorandum of Understanding (MOU)

  20. Texas Onshore Natural Gas Processed (Million Cubic Feet) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) (Million Cubic Feet) (Million Cubic Feet) Texas Onshore Natural Gas Processed (Million Cubic Feet) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,019 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Processed (Summary) Louisiana Natural Gas Summary

  1. MillionSolarStrong_signs-SunShot

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    MILLION S LAR STRONG #SunShot #SunShot #MILLION S LAR STRONG I AM #MILLION S LAR STRONG MY HOUSE IS #SunShot #SunShot I #MILLION S LAR STRONG I'M ARE YOU? #SunShot #MILLION S LAR STRONG #SELFIE #SunShot #MILLION S LAR STRONG #MILLION S LAR STRONG WE ARE #SunShot

  2. Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production ...

  3. Signal processor for processing ultrasonic receiver signals

    DOEpatents

    Fasching, George E.

    1980-01-01

    A signal processor is provided which uses an analog integrating circuit in conjunction with a set of digital counters controlled by a precision clock for sampling timing to provide an improved presentation of an ultrasonic transmitter/receiver signal. The signal is sampled relative to the transmitter trigger signal timing at precise times, the selected number of samples are integrated and the integrated samples are transferred and held for recording on a strip chart recorder or converted to digital form for storage. By integrating multiple samples taken at precisely the same time with respect to the trigger for the ultrasonic transmitter, random noise, which is contained in the ultrasonic receiver signal, is reduced relative to the desired useful signal.

  4. Soft-core processor study for node-based architectures.

    SciTech Connect

    Van Houten, Jonathan Roger; Jarosz, Jason P.; Welch, Benjamin James; Gallegos, Daniel E.; Learn, Mark Walter

    2008-09-01

    Node-based architecture (NBA) designs for future satellite projects hold the promise of decreasing system development time and costs, size, weight, and power and positioning the laboratory to address other emerging mission opportunities quickly. Reconfigurable Field Programmable Gate Array (FPGA) based modules will comprise the core of several of the NBA nodes. Microprocessing capabilities will be necessary with varying degrees of mission-specific performance requirements on these nodes. To enable the flexibility of these reconfigurable nodes, it is advantageous to incorporate the microprocessor into the FPGA itself, either as a hardcore processor built into the FPGA or as a soft-core processor built out of FPGA elements. This document describes the evaluation of three reconfigurable FPGA based processors for use in future NBA systems--two soft cores (MicroBlaze and non-fault-tolerant LEON) and one hard core (PowerPC 405). Two standard performance benchmark applications were developed for each processor. The first, Dhrystone, is a fixed-point operation metric. The second, Whetstone, is a floating-point operation metric. Several trials were run at varying code locations, loop counts, processor speeds, and cache configurations. FPGA resource utilization was recorded for each configuration. Cache configurations impacted the results greatly; for optimal processor efficiency it is necessary to enable caches on the processors. Processor caches carry a penalty; cache error mitigation is necessary when operating in a radiation environment.

  5. Parallel processor-based raster graphics system architecture

    DOEpatents

    Littlefield, Richard J.

    1990-01-01

    An apparatus for generating raster graphics images from the graphics command stream includes a plurality of graphics processors connected in parallel, each adapted to receive any part of the graphics command stream for processing the command stream part into pixel data. The apparatus also includes a frame buffer for mapping the pixel data to pixel locations and an interconnection network for interconnecting the graphics processors to the frame buffer. Through the interconnection network, each graphics processor may access any part of the frame buffer concurrently with another graphics processor accessing any other part of the frame buffer. The plurality of graphics processors can thereby transmit concurrently pixel data to pixel locations in the frame buffer.

  6. Launching applications on compute and service processors running under different operating systems in scalable network of processor boards with routers

    DOEpatents

    Tomkins, James L.; Camp, William J.

    2009-03-17

    A multiple processor computing apparatus includes a physical interconnect structure that is flexibly configurable to support selective segregation of classified and unclassified users. The physical interconnect structure also permits easy physical scalability of the computing apparatus. The computing apparatus can include an emulator which permits applications from the same job to be launched on processors that use different operating systems.

  7. Gate Hours & Services | Stanford Synchrotron Radiation Lightsource

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Gate Hours & Services Sand Hill Road Main Gate Open 24 hours a day, 7 days a week ... SLAC has proximity card readers at the entrances from Sand Hill Road and Alpine Road as ...

  8. T-631: Cisco XR 12000 Series Shared Port Adapters Interface Processor...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    31: Cisco XR 12000 Series Shared Port Adapters Interface Processor Vulnerability T-631: Cisco XR 12000 Series Shared Port Adapters Interface Processor Vulnerability May 26, 2011 - ...

  9. Labor Standards/Wage and Hour Laws

    Office of Energy Efficiency and Renewable Energy (EERE)

    Labor Standards and Wage/Hour laws establish minimum wage, overtime pay, recordkeeping, and minimum leave requirements:

  10. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    3 Lighting Usage Indicators by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Lighting Usage Indicators",,"City","Town","Surburbs","Rural" "Total U.S. Housing Units",111.1,47.1,19,22.7,22.3 "Indoor Lights Turned On During Summer" "Number of Lights Turned On" "Between 1 and 4 Hours per

  11. Little Sioux Corn Processors LP | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LP Place: Iowa Zip: 51035 Product: Owners and operators of the 40m gallon per year bioethanol plant in Marcus, Iowa. References: Little Sioux Corn Processors LP1 This article...

  12. Memorandum of Understanding with Northwest Food Processors Association

    SciTech Connect

    2009-02-01

    The Northwest Food Processors Association (NWFPA) and the U.S. Department of Energy entered into this memorandum of understanding to work collaboratively to reduce energy intensity by 25% within ten years.

  13. Forthcoming Upgrades to the ARM MMCRs: Improved Radar Processor...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... laboratory test of the new processor, operating the current modes used on the SGP radar. ... In the upgrade the hardware is altered with the addition of an ortho- mode transducer ...

  14. Use of DynamicAggregationProcessor | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Use of DynamicAggregationProcessor Home > Groups > Databus Hi, I'm trying to understand how the dynamicAggregation works. Do you have an example of URL ? Thank you Alex Submitted...

  15. Multithreaded processor architecture for parallel symbolic computation. Technical report

    SciTech Connect

    Fujita, T.

    1987-09-01

    This paper describes the Multilisp Architecture for Symbolic Applications (MASA), which is a multithreaded processor architecture for parallel symbolic computation with various features intended for effective Multilisp program execution. The principal mechanisms exploited for this processor are multiple contexts, interleaved pipeline execution from separate instruction streams, and synchronization based on a bit in each memory cell. The tagged architecture approach is taken for Lisp program execution, and trap conditions are provided for future object manipulation and garbage collection.

  16. Thirteen Solar Energy Projects to Receive Up to $168 Million

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE announced on March 8th that it has selected 13 industry-led solar technology projects to negotiate for up to $168 million in funding starting in the current fiscal year (2007) through fiscal year 2009. The teams will share more than 50 percent of the project costs, for a total value of up to $357 million over three years. The projects will aim to increase the capacity of photovoltaic (PV) systems from the 2005 level of 240 megawatts to 2,850 megawatts by 2010. Such an increase could reduce the cost of electricity produced by PV systems from the current level of $0.18-$.023 per kilowatt-hour to a more competitive $0.05-$0.10 per kilowatt-hour.

  17. Review of trigger and on-line processors at SLAC

    SciTech Connect

    Lankford, A.J.

    1984-07-01

    The role of trigger and on-line processors in reducing data rates to manageable proportions in e/sup +/e/sup -/ physics experiments is defined not by high physics or background rates, but by the large event sizes of the general-purpose detectors employed. The rate of e/sup +/e/sup -/ annihilation is low, and backgrounds are not high; yet the number of physics processes which can be studied is vast and varied. This paper begins by briefly describing the role of trigger processors in the e/sup +/e/sup -/ context. The usual flow of the trigger decision process is illustrated with selected examples of SLAC trigger processing. The features are mentioned of triggering at the SLC and the trigger processing plans of the two SLC detectors: The Mark II and the SLD. The most common on-line processors at SLAC, the BADC, the SLAC Scanner Processor, the SLAC FASTBUS Controller, and the VAX CAMAC Channel, are discussed. Uses of the 168/E, 3081/E, and FASTBUS VAX processors are mentioned. The manner in which these processors are interfaced and the function they serve on line is described. Finally, the accelerator control system for the SLC is outlined. This paper is a survey in nature, and hence, relies heavily upon references to previous publications for detailed description of work mentioned here. 27 references, 9 figures, 1 table.

  18. ,"Florida Natural Gas Processed (Million Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Florida Natural Gas Processed (Million Cubic ... 2:38:40 PM" "Back to Contents","Data 1: Florida Natural Gas Processed (Million Cubic ...

  19. Florida Natural Gas Processed (Million Cubic Feet)

    Annual Energy Outlook

    Processed (Million Cubic Feet) Florida Natural Gas Processed (Million Cubic Feet) Decade ... Referring Pages: Natural Gas Processed Florida Natural Gas Plant Processing Natural Gas ...

  20. ,"Virginia Natural Gas Repressuring (Million Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Virginia Natural Gas Repressuring (Million Cubic ... 2:51:54 AM" "Back to Contents","Data 1: Virginia Natural Gas Repressuring (Million Cubic ...

  1. Oklahoma Natural Gas Repressuring (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Repressuring (Million Cubic Feet) Oklahoma Natural Gas Repressuring (Million Cubic Feet) ... Referring Pages: Natural Gas Used for Repressuring Oklahoma Natural Gas Gross Withdrawals ...

  2. Kansas Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Processed (Million Cubic Feet) Kansas Natural Gas Processed (Million Cubic Feet) Decade ... Referring Pages: Natural Gas Processed Kansas Natural Gas Plant Processing Natural Gas ...

  3. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 New Hampshire - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle ...

  4. Hour of Code | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Home Learning Center Undergraduates Graduates Faculty Partners News & Events Learning Center Community Outreach Hour of Code Introduce a Girl to Engineering Science Careers in ...

  5. EIA-930 Hourly and Daily Balancing ...

    Energy Information Administration (EIA) (indexed site)

    ... file retrieval using business-to-business data transfer or web services technology. ... but are to be included in the posted hourly value for balancing authority net generation. ...

  6. Happy Birthday Unmet Hours! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Happy Birthday Unmet Hours! Happy Birthday Unmet Hours! September 3, 2015 - 1:43pm Addthis Unmet Hours is a question-and-answer resource for the building energy modeling community. Unmet Hours is a question-and-answer resource for the building energy modeling community. Amir Roth, Ph.D. Amir Roth, Ph.D. Building Energy Modeling Technology Manager A year ago this week, a star was born. Working with IBPSA-USA, the US chapter of the International Building Performance Simulation Association, and Big

  7. Stepping motor control processor reference manual. Volume I

    SciTech Connect

    Holloway, F.W.; VanArsdall, P.J.; Suski, G.J.; Gant, R.G.; Rash, M.

    1980-06-06

    This manual is intended to serve several purposes. The first goal is to describe the capabilities and operation of the SMC processor package from an operator or user point of view. Secondly, the manual will describe in some detail the basic hardware elements and how they can be used effectively to implement a step motor control system. Practical information on the use, installation and checkout of the hardware set is presented in the following sections along with programming suggestions. Available related system software is described in this manual for reference and as an aid in understanding the system architecture. Section two presents an overview and operations manual of the SMC processor describing its composition and functional capabilities. Section three contains hardware descriptions in some detail for the LLL-designed hardware used in the SMC processor. Basic theory of operation and important features are explained.

  8. Hour of Code | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1 in 3 students in US schools have tried an Hour of Code activity Over 100M students have participated at 77,000 Hour of Code events worldwide More girls have tried computer science than in the last 70 years Featured Videos Hour of Code Video Argonne's Super Computer Mira Contact education@anl.gov Explore Computer Science! Let your creativity guide your imagination with the tools of computer science, the tools of the future! Argonne National Laboratory researchers will open students' minds and

  9. Method for fast start of a fuel processor

    DOEpatents

    Ahluwalia, Rajesh K.; Ahmed, Shabbir; Lee, Sheldon H. D.

    2008-01-29

    An improved fuel processor for fuel cells is provided whereby the startup time of the processor is less than sixty seconds and can be as low as 30 seconds, if not less. A rapid startup time is achieved by either igniting or allowing a small mixture of air and fuel to react over and warm up the catalyst of an autothermal reformer (ATR). The ATR then produces combustible gases to be subsequently oxidized on and simultaneously warm up water-gas shift zone catalysts. After normal operating temperature has been achieved, the proportion of air included with the fuel is greatly diminished.

  10. Global synchronization of parallel processors using clock pulse width modulation

    SciTech Connect

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.

    2013-04-02

    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  11. Bradbury Science Museum announces winter opening hours

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bradbury Science Museum winter hours Bradbury Science Museum announces winter opening hours Museum will be closed on Christmas Day (December 25) and New Year's Day (January 1, 2011). December 21, 2010 Bradbury Science Museum Bradbury Science Museum Contact Communications Office (505) 667-7000 Often called "a window to the Laboratory," the museum annually attracts thousands of visitors from all over the world. LOS ALAMOS, New Mexico, December 21, 2010-Los Alamos National Laboratory's

  12. Nonlinear stimulated Brillouin scattering based photonic signal processors

    SciTech Connect

    Minasian, Robert A.

    2014-10-06

    Recent new methods in photonic signal processing based on stimulated Brillouin scattering, that enable the realization of photonic mixers with high conversion efficiency, ultra-wide continuously tunable high-resolution microwave photonic filters and programmable switchable microwave photonic tunable filters, are presented. These processors provide new capabilities for the realisation of high-performance and high-resolution signal processing.

  13. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor

  14. Oklahoma Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Repressuring (Million Cubic Feet) Oklahoma Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 81,755 ...

  15. Nebraska Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Repressuring (Million Cubic Feet) Nebraska Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,629 ...

  16. Pennsylvania Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Repressuring (Million Cubic Feet) Pennsylvania Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 375 ...

  17. Pennsylvania Natural Gas Underground Storage Volume (Million...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Pennsylvania Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  18. Arizona Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Repressuring (Million Cubic Feet) Arizona Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 103 ...

  19. Tennessee Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Repressuring (Million Cubic Feet) Tennessee Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 ...

  20. Ohio Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Repressuring (Million Cubic Feet) Ohio Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 ...

  1. Delaware Natural Gas Underground Storage Withdrawals (Million...

    Energy Information Administration (EIA) (indexed site)

    Withdrawals (Million Cubic Feet) Delaware Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  2. Connecticut Natural Gas Underground Storage Withdrawals (Million...

    Energy Information Administration (EIA) (indexed site)

    Withdrawals (Million Cubic Feet) Connecticut Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  3. Wisconsin Natural Gas Underground Storage Withdrawals (Million...

    Gasoline and Diesel Fuel Update

    Withdrawals (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  4. Georgia Natural Gas Underground Storage Withdrawals (Million...

    Energy Information Administration (EIA) (indexed site)

    Withdrawals (Million Cubic Feet) Georgia Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  5. Fermilab | Visit Fermilab | Hours, Maps and Directions

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hours and site access Check the Fermilab home page for our latest news and a calendar of events, which also includes days that our main building and exhibits are closed. Hours Fermilab's site is open to the public every day of the week from 8 a.m. to 6 p.m. from November to March and from 8 a.m. to 8 p.m. the rest of the year. A map of Fermilab's public areas is available online. Fermilab visitors are allowed to visit two buildings on their own: Wilson Hall and the Leon Lederman Science

  6. Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electrolysis Production | Department of Energy Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Download the presentation slides from the U.S. Department of Energy Fuel Cell Technologies Office webinar, "Wind-to-Hydrogen Cost Modeling and Project Findings," held on January 17, 2013. Wind-to-Hydrogen Cost Modeling and Project Findings Webinar Slides (2.09

  7. SHINES - the Answer to 24-Hour Solar Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SHINES - the Answer to 24-Hour Solar Energy SHINES - the Answer to 24-Hour Solar Energy May 6, 2016 - 4:27pm Addthis Austin Energy – Mueller development<br /> SHINES is a funding program from the Department of Energy’s SunShot Initiative Austin Energy - Mueller development SHINES is a funding program from the Department of Energy's SunShot Initiative As part of the Grid Modernization Initiative, EERE recently announced $18 million in funding for six new projects that could make

  8. Dense and Sparse Matrix Operations on the Cell Processor

    SciTech Connect

    Williams, Samuel W.; Shalf, John; Oliker, Leonid; Husbands,Parry; Yelick, Katherine

    2005-05-01

    The slowing pace of commodity microprocessor performance improvements combined with ever-increasing chip power demands has become of utmost concern to computational scientists. Therefore, the high performance computing community is examining alternative architectures that address the limitations of modern superscalar designs. In this work, we examine STI's forthcoming Cell processor: a novel, low-power architecture that combines a PowerPC core with eight independent SIMD processing units coupled with a software-controlled memory to offer high FLOP/s/Watt. Since neither Cell hardware nor cycle-accurate simulators are currently publicly available, we develop an analytic framework to predict Cell performance on dense and sparse matrix operations, using a variety of algorithmic approaches. Results demonstrate Cell's potential to deliver more than an order of magnitude better GFLOP/s per watt performance, when compared with the Intel Itanium2 and Cray X1 processors.

  9. HVDC control system based on parallel digital signal processors

    SciTech Connect

    Maharsi, Y.; Do, V.Q.; Sood, V.K.; Casoria, S.; Belanger, J.

    1995-05-01

    A numerical HVDC control system operating in real time has been developed for a simulator to be used for operator training. The control system, implemented with digital signal processors (DSPs), consists of typical HVDC control functions such as the synchronizing unit, the regulation unit, the protection unit, the firing unit, the tap changer and the reactive power regulation unit. Results from the steady-state and the transient performance validation tests carried out on the IREQ power system simulator are provided.

  10. Probabilistic programmable quantum processors with multiple copies of program states

    SciTech Connect

    Brazier, Adam; Buzek, Vladimir; Knight, Peter L.

    2005-03-01

    We examine the execution of general U(1) transformations on programmable quantum processors. We show that, with only the minimal assumption of availability of copies of the 1-qubit program state, the apparent advantage of existing schemes proposed by G. Vidal et al. [Phys. Rev. Lett. 88, 047905 (2002)] and M. Hillery et al. [Phys. Rev. A 65, 022301 (2003)] to execute a general U(1) transformation with greater probability using complex program states appears not to hold.

  11. 3081/E processor and its on-line use

    SciTech Connect

    Rankin, P.; Bricaud, B.; Gravina, M.; Kunz, P.F.; Oxoby, G.; Trang, Q.; Ferran, P.M.; Fucci, A.; Hinton, R.; Jacobs, D.

    1985-05-01

    The 3081/E is a second generation emulator of a mainframe IBM. One of it's applications will be to form part of the data acquisition system of the upgraded Mark II detector for data taking at the SLAC linear collider. Since the processor does not have direct connections to I/O devices a FASTBUS interface will be provided to allow communication with both SLAC Scanner Processors (which are responsible for the accumulation of data at a crate level) and the experiment's VAX 8600 mainframe. The 3081/E's will supply a significant amount of on-line computing power to the experiment (a single 3081/E is equivalent to 4 to 5 VAX 11/780's). A major advantage of the 3081/E is that program development can be done on an IBM mainframe (such as the one used for off-line analysis) which gives the programmer access to a full range of debugging tools. The processor's performance can be continually monitored by comparison of the results obtained using it to those given when the same program is run on an IBM computer. 9 refs.

  12. Sequence information signal processor for local and global string comparisons

    DOEpatents

    Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.

    1997-01-01

    A sequence information signal processing integrated circuit chip designed to perform high speed calculation of a dynamic programming algorithm based upon the algorithm defined by Waterman and Smith. The signal processing chip of the present invention is designed to be a building block of a linear systolic array, the performance of which can be increased by connecting additional sequence information signal processing chips to the array. The chip provides a high speed, low cost linear array processor that can locate highly similar global sequences or segments thereof such as contiguous subsequences from two different DNA or protein sequences. The chip is implemented in a preferred embodiment using CMOS VLSI technology to provide the equivalent of about 400,000 transistors or 100,000 gates. Each chip provides 16 processing elements, and is designed to provide 16 bit, two's compliment operation for maximum score precision of between -32,768 and +32,767. It is designed to provide a comparison between sequences as long as 4,194,304 elements without external software and between sequences of unlimited numbers of elements with the aid of external software. Each sequence can be assigned different deletion and insertion weight functions. Each processor is provided with a similarity measure device which is independently variable. Thus, each processor can contribute to maximum value score calculation using a different similarity measure.

  13. Electric System Intra-hour Operation Simulator

    Energy Science and Technology Software Center

    2014-03-07

    ESIOS is a software program developed at Pacific Northwest National Laboratory (PNNL) that performs intra-hour dispatch and automatic generation control (AGC) simulations for electric power system frequency regulation and load/variable generation following. The program dispatches generation resources at minute interval to meet control performance requirements, while incorporating stochastic models of forecast errors and variability with generation, load, interchange and market behaviors. The simulator also contains an operator model that mimics manual actions to adjust resourcemore » dispatch and maintain system reserves. Besides simulating generation fleet intra-hour dispatch, ESIOS can also be used as a test platform for the design and verification of energy storage, demand response, and other technologies helping to accommodate variable generation.« less

  14. Household Energy Consumption Segmentation Using Hourly Data

    SciTech Connect

    Kwac, J; Flora, J; Rajagopal, R

    2014-01-01

    The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.

  15. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Delaware - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals

  16. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Massachusetts - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross

  17. Wiring reconfiguration saves millions for Trinity supercomputer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wiring reconfiguration saves millions for Trinity supercomputer Wiring reconfiguration saves millions for Trinity supercomputer A moment of inspiration during a wiring diagram review has saved more than $2 million in material and labor costs for the Trinity supercomputer. August 15, 2016 The first row of cabinets for the Trinity supercomputer at Los Alamos National Laboratory. The first row of cabinets for the Trinity supercomputer at Los Alamos National Laboratory. Contact Nancy Ambrosiano

  18. One Million Electric Vehicles By 2015

    SciTech Connect

    none,

    2011-02-01

    February 2011 status report on the steps needed to achieve President Obama's goal of putting one million electric vehicles on the road by 2015.

  19. One million curies of radioactive material recovered

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Radioactive material recovered One million curies of radioactive material recovered The accomplishment represents a major milestone in protecting our nation and the world from...

  20. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    Units" ,,"UrbanRural Location (as Self-Reported)" ,"Housing Units (millions)" "Space ... ,,"RSEs for UrbanRural Location (as Self-Reported)" ,"RSEs for Housing Units " "Space ...

  1. Million U.S. Housing Units Total...............................

    Energy Information Administration (EIA) (indexed site)

    Home Electronics Usage Indicators Detached Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. ...

  2. 20140430_Green Machine Florida Canyon Hourly Data

    SciTech Connect

    Thibedeau, Joe

    2014-05-05

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

  3. Green Machine Florida Canyon Hourly Data 20130731

    SciTech Connect

    Vanderhoff, Alex

    2013-08-30

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

  4. Green Machine Florida Canyon Hourly Data

    SciTech Connect

    Vanderhoff, Alex

    2013-07-15

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

  5. 20130416_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    2013-04-24

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

  6. Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

  7. Green Machine Florida Canyon Hourly Data 20130731

    DOE Data Explorer

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

  8. 20130416_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

  9. 20140430_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

  10. Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Genevieve Saur (PI), Chris Ainscough (Presenter), Kevin Harrison, Todd Ramsden National Renewable Energy Laboratory January 17 th , 2013 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Acknowledgements * This work was made possible by support from the U.S. Department of Energy's Fuel Cell Technologies Office within the Office of Energy Efficiency and

  11. Making Wind Energy Predictable: New Profilers Provide Hourly...

    Energy Saver

    Making Wind Energy Predictable: New Profilers Provide Hourly Forecasts Making Wind Energy Predictable: New Profilers Provide Hourly Forecasts May 11, 2016 - 6:48pm Addthis ...

  12. Webinar: BioenergizeME Office Hours Webinar: Biomass Basics ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass Basics Webinar: BioenergizeME Office Hours Webinar: Biomass Basics Webinar: BioenergizeME Office Hours Webinar: Biomass Basics biomasbasicswebinar20150827.pdf (3.05 MB) ...

  13. NREL: Education Center - Hours, Directions, and Contact Information

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hours, Directions, and Contact Information An aerial photo of a tan Education Center. NREL's Education Center Credit: NREL 18591 Hours The Education Center is open Monday through...

  14. Energy Savings Performance Contracting 14-hour Agency Onsite...

    Energy Saver

    Energy Savings Performance Contracting 14-hour Agency Onsite Workshop Energy Savings Performance Contracting 14-hour Agency Onsite Workshop January 20, 2016 8:30AM PST to January...

  15. REPORTS; IDENTIFIED $774 MILLION IN QUESTIONED COSTS; AND $17

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FY 2016, WE ISSUED 74 REPORTS; IDENTIFIED $774 MILLION IN QUESTIONED COSTS; AND $17 MILLION IN FINES SETTLEMENTS AND RECOVERIES. DURING FY 2016, WE ISSUED 74 REPORTS; IDENTIFIED $774 MILLION IN QUESTIONED COSTS; AND $17 MILLION IN FINES SETTLEMENTS AND RECOVERIES. DURING FY 2016, WE ISSUED 74 REPORTS; IDENTIFIED $774 MILLION IN QUESTIONED COSTS; AND $17 MILLION IN FINES SETTLEMENTS AND RECOVERIES. DURING FY 2016, WE ISSUED 74 REPORTS; IDENTIFIED $774 MILLION IN QUESTIONED COSTS; AND $17 MILLION

  16. Optical apparatus for forming correlation spectrometers and optical processors

    DOEpatents

    Butler, M.A.; Ricco, A.J.; Sinclair, M.B.; Senturia, S.D.

    1999-05-18

    Optical apparatus is disclosed for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process. 24 figs.

  17. Unmixed fuel processors and methods for using the same

    DOEpatents

    Kulkarni, Parag Prakash; Cui, Zhe

    2010-08-24

    Disclosed herein are unmixed fuel processors and methods for using the same. In one embodiment, an unmixed fuel processor comprises: an oxidation reactor comprising an oxidation portion and a gasifier, a CO.sub.2 acceptor reactor, and a regeneration reactor. The oxidation portion comprises an air inlet, effluent outlet, and an oxygen transfer material. The gasifier comprises a solid hydrocarbon fuel inlet, a solids outlet, and a syngas outlet. The CO.sub.2 acceptor reactor comprises a water inlet, a hydrogen outlet, and a CO.sub.2 sorbent, and is configured to receive syngas from the gasifier. The regeneration reactor comprises a water inlet and a CO.sub.2 stream outlet. The regeneration reactor is configured to receive spent CO.sub.2 adsorption material from the gasification reactor and to return regenerated CO.sub.2 adsorption material to the gasification reactor, and configured to receive oxidized oxygen transfer material from the oxidation reactor and to return reduced oxygen transfer material to the oxidation reactor.

  18. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, G.P.; Skeate, M.F.

    1996-10-15

    An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.

  19. Multi-processor including data flow accelerator module

    DOEpatents

    Davidson, George S.; Pierce, Paul E.

    1990-01-01

    An accelerator module for a data flow computer includes an intelligent memory. The module is added to a multiprocessor arrangement and uses a shared tagged memory architecture in the data flow computer. The intelligent memory module assigns locations for holding data values in correspondence with arcs leading to a node in a data dependency graph. Each primitive computation is associated with a corresponding memory cell, including a number of slots for operands needed to execute a primitive computation, a primitive identifying pointer, and linking slots for distributing the result of the cell computation to other cells requiring that result as an operand. Circuitry is provided for utilizing tag bits to determine automatically when all operands required by a processor are available and for scheduling the primitive for execution in a queue. Each memory cell of the module may be associated with any of the primitives, and the particular primitive to be executed by the processor associated with the cell is identified by providing an index, such as the cell number for the primitive, to the primitive lookup table of starting addresses. The module thus serves to perform functions previously performed by a number of sections of data flow architectures and coexists with conventional shared memory therein. A multiprocessing system including the module operates in a hybrid mode, wherein the same processing modules are used to perform some processing in a sequential mode, under immediate control of an operating system, while performing other processing in a data flow mode.

  20. Optical apparatus for forming correlation spectrometers and optical processors

    DOEpatents

    Butler, Michael A.; Ricco, Antonio J.; Sinclair, Michael B.; Senturia, Stephen D.

    1999-01-01

    Optical apparatus for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process.

  1. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, George P.; Skeate, Michael F.

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  2. Realization Of Algebraic Processor For XML Documents Processing

    SciTech Connect

    Georgiev, Bozhidar; Georgieva, Adriana

    2010-10-25

    In this paper, are presented some possibilities concerning the implementation of an algebraic method for XML hierarchical data processing which makes faster the XML search mechanism. Here is offered a different point of view for creation of advanced algebraic processor (with all necessary software tools and programming modules respectively). Therefore, this nontraditional approach for fast XML navigation with the presented algebraic processor may help to build an easier user-friendly interface provided XML transformations, which can avoid the difficulties in the complicated language constructions of XSL, XSLT and XPath. This approach allows comparatively simple search of XML hierarchical data by means of the following types of functions: specification functions and so named build-in functions. The choice of programming language Java may appear strange at first, but it isn't when you consider that the applications can run on different kinds of computers. The specific search mechanism based on the linear algebra theory is faster in comparison with MSXML parsers (on the basis of the developed examples with about 30%). Actually, there exists the possibility for creating new software tools based on the linear algebra theory, which cover the whole navigation and search techniques characterizing XSLT/XPath. The proposed method is able to replace more complicated operations in other SOA components.

  3. Fuel processor and method for generating hydrogen for fuel cells

    DOEpatents

    Ahmed, Shabbir; Lee, Sheldon H. D.; Carter, John David; Krumpelt, Michael; Myers, Deborah J.

    2009-07-21

    A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.

  4. Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficient Regeneration of Single Leg NOx Adsorber Systems Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems 2003 DEER ...

  5. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    6 District of Columbia - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic

  6. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Hawaii - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S13. Summary statistics for natural gas - Hawaii, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From

  7. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    6 Idaho - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From

  8. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    20 Maine - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From

  9. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    6 Oregon - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells R 28 R 24 R 24 R 12 14 Production (million cubic feet) Gross

  10. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    6 Tennessee - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 52 75 NA NA NA Gas Wells R 1,027 R 1,027 1,089 NA NA Production (million cubic

  11. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Virginia - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 2 1 1 2 2 Gas Wells R 7,781 R 7,874 7,956 R 8,061 8,111 Production (million

  12. DOT Awards University Transportation Centers $63 Million

    Energy.gov [DOE]

    The U.S. Department of Transportation's (DOT) announced approximately $63 million in grants to 33 University Transportation Centers to advance research and education programs that address critical transportation challenges.

  13. President Obama Announces $400 Million Conditional Commitment...

    Energy.gov [DOE] (indexed site)

    announced the offer of a conditional commitment for a loan guarantee of 400 million to Abound Solar Manufacturing, LLC to manufacture state-of-the-art thin-film solar panels. ...

  14. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    2 Appliances in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,"Total U.S.1 (millions)",,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes"

  15. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    8 Home Appliances in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Home

  16. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    2 Televisions in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)"

  17. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    2 Water Heating in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,"Total U.S.1 (millions)",,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes"

  18. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    8 Televisions in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT"

  19. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    2 Computers and Other Electronics in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)"

  20. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    2 Air Conditioning in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" "Air

  1. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    8 Air Conditioning in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Air

  2. Lab contractor awards LANL Foundation $3 million

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contractor awards LANL Foundation $3 million Lab contractor awards LANL Foundation $3 million To provide educational enrichment and educational outreach funding for a wide variety of education programs in the seven Northern New Mexico counties. October 29, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  3. Indiana Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Processed (Million Cubic Feet) Indiana Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 191 102 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Processed

  4. Efficient Breadth-First Search on the Cell/BE Processor

    SciTech Connect

    Scarpazza, Daniele P.; Villa, Oreste; Petrini, Fabrizio

    2008-10-01

    Multi-core processors are a shift of paradigm in computer architecture that promises a dramatic increase in performance. But multi-core processors also bring an unprecedented level of complexity in algorithmic design and software development. In this paper we describe the challenges involved in designing a breadth-first search (BFS) for advanced multi-core processors. The proposed methodology combines a high-level algorithmic design that captures the machine-independent aspects, to guarantee portability with performance to future processors, with a low-level implementation that embeds processor-specific optimizations. Using a fine-graind global coordination strategy derived by the Bulk-Synchronous Parallel (BSP) model we have determined an accurate performance model that has guided the implementation and the optimization of our algorithms. To validate our approach, we use a state-of-the-art multicore processor, the Cell Broadband Engine (Cell BE). Our experiments, obtained on a pre-production Cell BE board running at 3.2 GHz, show almost linear speedups when using multiple synergistic processing elements, and an impressive level of performance when compared to other processors. The Cell BE is typically an order of magnitude faster than conventional processors, such as the AMD Opteron and the Intel Pentium 4 and Woodcrest, an order of magnitude faster than the MTA-2 multi-threaded processor, and two orders of magnitude faster than a BlueGene/L processor. Index Terms—Multi-core processors, Parallel Computing, Cell Broadband Engine, Parallelization Techniques, Graph Exploration Algorithms, Breadth-First Search, BFS.

  5. Deep Trek Re-configurable Processor for Data Acquisition (RPDA)

    SciTech Connect

    Bruce Ohme; Michael Johnson

    2009-06-30

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop a high-temperature Re-configurable Processor for Data Acquisition (RPDA). The RPDA development has incorporated multiple high-temperature (225C) electronic components within a compact co-fired ceramic Multi-Chip-Module (MCM) package. This assembly is suitable for use in down-hole oil and gas applications. The RPDA module is programmable to support a wide range of functionality. Specifically this project has demonstrated functional integrity of the RPDA package and internal components, as well as functional integrity of the RPDA configured to operate as a Multi-Channel Data Acquisition Controller. This report reviews the design considerations, electrical hardware design, MCM package design, considerations for manufacturing assembly, test and screening, and results from prototype assembly and characterization testing.

  6. Recent developments at the cathode processor for spent fuel treatment.

    SciTech Connect

    Westphal, B. R.; Vaden, D.; Hua, T. Q.; Willit, J. L.; Laug, D. V.

    2002-07-29

    As part of the spent fuel treatment program at Argonne National Laboratory, a vacuum distillation process is being employed for the recovery of uranium following an electrorefining process. Distillation of a molten salt electrolyte, primarily consisting of a eutectic mixture of lithium and potassium chlorides with minor amounts of fission product chlorides, from uranium is achieved by a batch operation called cathode processing. Described in this paper are recent developments, both equipment and process-related, at the cathode processor during the treatment of blanket-type spent fuel. For the equipment developments, the installation of a new induction heating coil has produced significant improvements in equipment performance. The process developments include the elimination of a process step and the study of plutonium in the uranium product.

  7. Exhibit Hall Floor Plan & Hours | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Exhibit Hall Floor Plan & Hours Exhibit Hall Floor Plan & Hours Exhibit Hall Floor Plan & Hours Exhibitor Move-in Hours Tuesday, May 16 9:00 am - 5:00 pm Wednesday, May 17 7:00 am - Noon Exhibit Hall Hours Wednesday, May 17 Opens: Noon - 3:45 pm (Lunch will be served) Closes: 3:45 pm - 5:00 pm) Reopens: 5:00 pm - 7:00 pm (Welcome Reception) Thursday, May 18 Opens: 7:00 am - Noon (Breakfast will be served) Closes: Noon (Lunch will be served) Exhibitor Move-out Hours Thursday, May 18

  8. SeizAlert could give patients 4.5 hour warning of seizure

    ScienceCinema

    Dr. Lee Hively and Kara Kruse

    2010-01-08

    One percent of Americans, 3 million people, suffer from epilepsy. And their lives are about to be dramatically changed by scientists at Oak Ridge National Laboratory. For 15 years, Dr. Lee Hively has been working on "SeizAlert", a seizure-detecting device that resembles a common PDA. "It allows us to analyze scalp brain waves and give us up to 4.5 hours' forewarning of that event," he said. With the help of partner Kara Kruse, he's now able to help patients predict the previously unpredictable.

  9. Large-Scale Test of Dynamic Correlation Processors: Implications for Correlation-Based Seismic Pipelines

    DOE PAGES [OSTI]

    Dodge, D. A.; Harris, D. B.

    2016-03-15

    Correlation detectors are of considerable interest to the seismic monitoring communities because they offer reduced detection thresholds and combine detection, location and identification functions into a single operation. They appear to be ideal for applications requiring screening of frequent repeating events. However, questions remain about how broadly empirical correlation methods are applicable. We describe the effectiveness of banks of correlation detectors in a system that combines traditional power detectors with correlation detectors in terms of efficiency, which we define to be the fraction of events detected by the correlators. This paper elaborates and extends the concept of a dynamic correlationmore » detection framework – a system which autonomously creates correlation detectors from event waveforms detected by power detectors; and reports observed performance on a network of arrays in terms of efficiency. We performed a large scale test of dynamic correlation processors on an 11 terabyte global dataset using 25 arrays in the single frequency band 1-3 Hz. The system found over 3.2 million unique signals and produced 459,747 screened detections. A very satisfying result is that, on average, efficiency grows with time and, after nearly 16 years of operation, exceeds 47% for events observed over all distance ranges and approaches 70% for near regional and 90% for local events. This observation suggests that future pipeline architectures should make extensive use of correlation detectors, principally for decluttering observations of local and near-regional events. Our results also suggest that future operations based on correlation detection will require commodity large-scale computing infrastructure, since the numbers of correlators in an autonomous system can grow into the hundreds of thousands.« less

  10. After-hours, weekend changes through East Jemez road vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    After-hours, weekend changes through East Jemez Road Vehicle Access Portal After-hours, weekend changes through East Jemez road vehicle access portal begin June 18 All vehicles ...

  11. 1999 Commercial Buildings Characteristics--Off-Hour Equipment...

    Energy Information Administration (EIA) (indexed site)

    such programs (Figure 1). About the same amount of floorspace had either heating system or cooling system off-hour reduction. Off-hour reduction was least for office...

  12. BioenergizeME Office Hours Webinar: Integrating Bioenergy into...

    Energy Saver

    Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom ...

  13. DOE Awards $63 Million to Advance Clean Energy Commercialization

    Energy.gov [DOE]

    DOE announced on September 15 its award of more than $63 million to support the commercialization of clean energy technologies, including $57 million for small businesses and $5.3 million for universities.

  14. Tennessee Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Processed (Million Cubic Feet) Tennessee Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 1990's 19 26 0 0 0 0 0 0 2010's 6,146 6,200 6,304 5,721 5,000 4,612 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Processed Tennessee Natural Gas Plant Processing

  15. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    Air Conditioning in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Air Conditioning" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Air Conditioning Equipment"

  16. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    1 Space Heating in U.S. Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total Mountain",,,"ID, MT, UT,

  17. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    0 Structural and Geographic Characteristics of Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" "Structural

  18. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    1 Structural and Geographic Characteristics of Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" "Structural and Geographic

  19. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    1 Appliances in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total Mountain",,,"ID, MT, UT,

  20. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    0 Televisions in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" ,,"Total South",,,,,"DC, DE, MD,

  1. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    1 Televisions in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total Mountain",,,"ID, MT, UT,

  2. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    0 Computers and Other Electronics in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" ,,"Total

  3. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    1 Computers and Other Electronics in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total

  4. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    0 Water Heating in U.S. Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" ,,"Total South",,,,,"DC,

  5. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    11 Water Heating in U.S. Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total Mountain",,,"ID, MT,

  6. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    0 Appliances in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" ,,"Total South",,,,,"DC, DE, MD,

  7. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    0 Air Conditioning in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" ,,"Total South",,,,,"DC, DE,

  8. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    6 Fuels Used and End Uses in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold/","Mixed- Humid","Mixed-Dry/" "Fuels Used and End Uses",,"Cold",,"Hot-Dry","Hot-Humid","Marine" "Total Homes",113.6,38.8,35.4,14.1,19.1,6.3 "Fuels Used for Any Use"

  9. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    2 Structural and Geographic Characteristics of U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" "Structural and Geographic

  10. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    4 Structural and Geographic Characteristics of U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,,,,,"5 or More Members" ,,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "Census Region and Division"

  11. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    8 Structural and Geographic Characteristics of Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" "Structural and Geographic Characteristics",,"Total Northeast",,,"CT, ME, NH, RI, VT"

  12. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census Division",,,,,"West North Central Census Division" ,,,"Total East North Central",,,,,"Total West North Central" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,"Total Midwest",,,,," IN,

  13. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    Appliances in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,,,,,"5 or More Units","Mobile Homes" "Appliances",,"Detached","Attached","2 to 4 Units" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Cooking Appliances" "Stoves (Units With

  14. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    9 Appliances in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census Division",,,,,"West North Central Census Division" ,,,"Total East North Central",,,,,"Total West North Central" ,"Total U.S.1 (millions)" ,,"Total Midwest",,,,," IN, OH",,,"IA, MN, ND, SD"

  15. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    6 Televisions in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold/","Mixed- Humid","Mixed-Dry/" "Televisions",,"Cold",,"Hot-Dry","Hot-Humid","Marine" "Total Homes",113.6,38.8,35.4,14.1,19.1,6.3 "Televisions" "Number of Televisions" 0,1.5,0.6,0.4,0.2,0.2,0.2

  16. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    HC4.9 Televisions in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census Division",,,,,"West North Central Census Division" ,,,"Total East North Central",,,,,"Total West North Central" ,"Total U.S.1 (millions)" ,,"Total Midwest",,,,," IN, OH",,,"IA, MN, ND, SD"

  17. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    4 Computers and Other Electronics in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More Members" "Computers and Other Electronics",,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "Computers" "Number of Computers"

  18. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    8 Computers and Other Electronics in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Computers and Other

  19. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    9 Computers and Other Electronics in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census Division",,,,,"West North Central Census Division" ,,,"Total East North Central",,,,,"Total West North Central" ,"Total U.S.1 (millions)" ,,"Total Midwest",,,,," IN, OH",,,"IA, MN, ND, SD" "Computers and Other

  20. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    8 Space Heating in U.S. Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Space

  1. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    9 Space Heating in U.S. Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" " ",,,"East North Central Census Division",,,,,"West North Central Census Division" ,,,"Total East North Central",,,,,"Total West North Central" ,"Total U.S.1 (millions)" ,,"Total Midwest",,,,," IN, OH",,,"IA, MN, ND, SD" "Space

  2. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    Water Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Water Heating" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Number of Storage Tank Water Heaters"

  3. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    8 Water Heating in U.S. Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Water

  4. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    9 Water Heating in U.S. Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census Division",,,,,"West North Central Census Division" ,,,"Total East North Central",,,,,"Total West North Central" ,"Total U.S.1 (millions)" ,,"Total Midwest",,,,,,,,"IA, MN, ND, SD" "Water

  5. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    4 Fuels Used and End Uses in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More Members" "Fuels Used and End Uses",,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "Fuels Used for Any Use"

  6. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    3 Structural and Geographic Characteristics of U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2009" "Total

  7. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    6 Structural and Geographic Characteristics of U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,"Very Cold/","Mixed- Humid","Mixed-Dry/" ,,"Cold",,"Hot-Dry","Hot-Humid","Marine" "Total Homes",113.6,38.8,35.4,14.1,19.1,6.3 "Census Region and Division"

  8. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    7 Structural and Geographic Characteristics of U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,"Northeast","Midwest","South","West" "Total Homes",113.6,20.8,25.9,42.1,24.8 "Urban and Rural2" "Urban",88.1,18,19.9,28.6,21.5 "Rural",25.5,2.8,6,13.4,3.3

  9. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    4 Appliances in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More Members" "Appliances",,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "Cooking Appliances" "Stoves (Units With Both" "an Oven and a Cooktop)"

  10. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    6 Appliances in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold/","Mixed- Humid","Mixed-Dry/" "Appliances",,"Cold",,"Hot-Dry","Hot-Humid","Marine" "Total Homes",113.6,38.8,35.4,14.1,19.1,6.3 "Cooking Appliances" "Stoves (Units With Both" "an Oven and a Cooktop)"

  11. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    7 Appliances in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,"Total U.S.1 (millions)","Census Region" "Appliances",,"Northeast","Midwest","South","West" "Total Homes",113.6,20.8,25.9,42.1,24.8 "Cooking Appliances" "Stoves (Units With Both" "an Oven and a Cooktop)" "Use a Stove",102.3,19.2,23.9,38.2,20.9

  12. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    Televisions in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Televisions" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Televisions" "Number of

  13. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    Computers and Other Electronics in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Computers and Other Electronics" "Total Homes",113.6,71.8,6.7,9,19.1,6.9

  14. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    3 Computers and Other Electronics in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2009" "Computers and Other Electronics" "Total

  15. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    4 Space Heating in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More Members" "Space Heating",,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "Space Heating Equipment" "Use Space Heating

  16. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    4 Air Conditioning in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More Members" "Air Conditioning",,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "Air Conditioning Equipment" "Use Air Conditioning

  17. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census Division",,,,,"West North Central Census Division" ,,,"Total East North Central",,,,,"Total West North Central" ,"Total U.S.1 (millions)" ,,"Total Midwest",,,,," IN, OH",,,"IA, MN, ND, SD" "Air

  18. A Million Meter Milestone | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A Million Meter Milestone A Million Meter Milestone March 4, 2011 - 2:36pm Addthis To see what installing the 1 millionth meter looked like, check out this video. Don Macdonald Don Macdonald Senior Advisor for Strategic Projects What does this mean for me? Smart meters allow consumers to take personal control and ownership of her energy usage in a way not possible before. As program manager for the Department of Energy's Recovery Act funded Smart Grid Investment Grant (SGIG) program, I've had

  19. Million Solar Strong | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Million Solar Strong Million Solar Strong Addthis 1 of 7 SunShot funding helped 2,700 Hawaiian homes and businesses go solar. Using advanced inverters and systems integration research, the company was able to clear a massive backlog of projects that were installed but weren't yet connected to the grid. Thanks to SunShot, thousands of projects flipped the switch, while maintaining the safety and reliability of the electric grid. 2 of 7 This 2-megawatt solar array at the CoServ Solar Station in

  20. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 Alabama - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 346 367 402 436 414 Gas Wells R 6,243 R 6,203 R 6,174 R 6,117 6,044 Production

  1. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    2 Alaska - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 2,040 1,981 2,006 2,042 2,096 Gas Wells R 274 R 281 R 300 R 338 329 Production

  2. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 Colorado - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 5,963 6,456 6,799 7,771 7,733 Gas Wells R 43,792 R 46,141 R 46,883 R 46,876

  3. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 Mississippi - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 561 618 581 540 501 Gas Wells R 1,703 R 1,666 R 1,632 R 1,594 1,560

  4. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Montana - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 1,956 2,147 2,268 2,377 2,277 Gas Wells R 6,615 R 6,366 R 5,870 R 5,682 5,655

  5. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 New Mexico - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 12,887 13,791 14,171 14,814 14,580 Gas Wells R 40,231 R 40,441 R 40,119 R

  6. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    6 New York - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 988 1,170 1,589 1,731 1,697 Gas Wells R 7,372 R 7,731 R 7,553 R 7,619 7,605

  7. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 North Dakota - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 5,561 7,379 9,363 11,532 12,799 Gas Wells R 526 R 451 R 423 R 398 462

  8. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    2 Ohio - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 6,775 6,745 7,038 7,257 5,941 Gas Wells R 31,966 R 31,647 R 30,804 R 31,060 26,599

  9. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Oklahoma - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 6,723 7,360 8,744 7,105 8,368 Gas Wells R 51,712 R 51,472 R 50,606 R 50,044

  10. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    8 Pennsylvania - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 7,046 7,627 7,164 8,481 7,557 Gas Wells R 61,815 R 62,922 R 61,838 R

  11. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    8 Texas - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 85,030 94,203 96,949 104,205 105,159 Gas Wells R 139,368 R 140,087 R 140,964 R 142,292

  12. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 Utah - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 3,119 3,520 3,946 4,249 3,966 Gas Wells R 7,603 R 8,121 R 8,300 R 8,537 8,739 Production

  13. Mississippi Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Natural Gas Processed (Million Cubic Feet) 218,840 126,859 6,865 4,527 5,633 5,770 1967-2015 Total Liquids Extracted (Thousand Barrels) 12,618 7,732 377 359 365 257 1983-2015 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 18,405 11,221 486 466 495 348 1967

    2010 2011 2012 2013 2014 2015 View History Wellhead Price 4.17 1967-2010 Imports Price -- 12.93 -- -- -- -- 2007-2015 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.73

  14. Secretary Chu Announces $47 Million to Improve Efficiency in...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7 Million to Improve Efficiency in Information Technology and Communications Sectors Secretary Chu Announces 47 Million to Improve Efficiency in Information Technology and ...

  15. Arizona - Natural Gas 2015 Million Cu. Feet Percent...

    Gasoline and Diesel Fuel Update

    4 Arizona - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: ...

  16. Florida Natural Gas Total Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Total Consumption (Million Cubic Feet) Florida Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption Florida Natural Gas Consumption by End Use Total ...

  17. Florida Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook

    Fuel Consumption (Million Cubic Feet) Florida Natural Gas Lease Fuel Consumption (Million ... Referring Pages: Natural Gas Lease Fuel Consumption Florida Natural Gas Consumption by End ...

  18. Energy Secretary Bodman Announces $119 Million in Funding and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Secretary Bodman Announces 119 Million in Funding and Roadmap to Advance Hydrogen Fuel Cell Vehicles Energy Secretary Bodman Announces 119 Million in Funding and Roadmap to...

  19. West Virginia Natural Gas Repressuring (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Repressuring (Million Cubic Feet) West Virginia Natural Gas Repressuring (Million Cubic ... Referring Pages: Natural Gas Used for Repressuring West Virginia Natural Gas Gross ...

  20. West Virginia Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Processed (Million Cubic Feet) West Virginia Natural Gas Processed (Million Cubic Feet) ... Referring Pages: Natural Gas Processed West Virginia Natural Gas Plant Processing Natural ...

  1. Virginia Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Virginia Natural Gas Lease Fuel Consumption (Million ... Referring Pages: Natural Gas Lease Fuel Consumption Virginia Natural Gas Consumption by ...

  2. Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Vented and Flared (Million Cubic Feet) Virginia Natural Gas Vented and Flared (Million ... Referring Pages: Natural Gas Vented and Flared Virginia Natural Gas Gross Withdrawals and ...

  3. Virginia Natural Gas Total Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Total Consumption (Million Cubic Feet) Virginia Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption Virginia Natural Gas Consumption by End Use ...

  4. Energy Department Offers $50 Million to Advance Fuel Efficient...

    Energy.gov [DOE] (indexed site)

    Moniz Announces Nearly 50 Million to Advance High-Tech, Fuel Efficient American Autos Energy Department Invests More Than 55 Million to Advance Efficient Vehicle...

  5. Energy Department Invests Over $7 Million to Commercialize Cost...

    Energy Saver

    Over 7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies Energy Department Invests Over 7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell ...

  6. DOE Announces $30 Million Investment in Hydrogen and Fuel Cells...

    Office of Environmental Management (EM)

    DOE Announces 30 Million Investment in Hydrogen and Fuel Cells as Industry Continues Unprecedented Growth Rates DOE Announces 30 Million Investment in Hydrogen and Fuel Cells as ...

  7. Department of Energy Announces $64 Million in Hydrogen Research...

    Energy Saver

    4 Million in Hydrogen Research & Development Projects Department of Energy Announces 64 Million in Hydrogen Research & Development Projects May 25, 2005 - 12:55pm Addthis ...

  8. Energy Department Invests $20 Million to Advance Hydrogen Production...

    Energy Saver

    20 Million to Advance Hydrogen Production and Delivery Technologies Energy Department Invests 20 Million to Advance Hydrogen Production and Delivery Technologies June 16, 2014 - ...

  9. Energy Department Awards More Than $7 Million for Innovative...

    Office of Environmental Management (EM)

    More Than 7 Million for Innovative Hydrogen Storage Technologies in Fuel Cell Electric Vehicles Energy Department Awards More Than 7 Million for Innovative Hydrogen Storage ...

  10. Nevada Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook

    Fuel Consumption (Million Cubic Feet) Nevada Natural Gas Lease Fuel Consumption (Million ... Referring Pages: Natural Gas Lease Fuel Consumption Nevada Natural Gas Consumption by End ...

  11. Nevada Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook

    Total Consumption (Million Cubic Feet) Nevada Natural Gas Total Consumption (Million Cubic ... Referring Pages: Natural Gas Consumption Nevada Natural Gas Consumption by End Use ...

  12. Nevada Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Dry Natural Gas Production (Million Cubic Feet) Nevada Dry Natural Gas Production (Million ... Referring Pages: Natural Gas Dry Production Nevada Natural Gas Gross Withdrawals and ...

  13. Washington Natural Gas Exports (No Intransit Deliveries) (Million...

    Energy Information Administration (EIA) (indexed site)

    Exports (No Intransit Deliveries) (Million Cubic Feet) Washington Natural Gas Exports (No Intransit Deliveries) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  14. $3 million approved for 2015 LANS Community Commitment Plan

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    LANS Community Commitment Plan will provide 1 million for education, including science, technology, engineering and math (STEM) education programs 1 million for economic...

  15. Texas Onshore Natural Gas Processed in Kansas (Million Cubic...

    Annual Energy Outlook

    Kansas (Million Cubic Feet) Texas Onshore Natural Gas Processed in Kansas (Million Cubic ... Next Release Date: 5312016 Referring Pages: Natural Gas Processed Texas Onshore-Kansas

  16. Texas Onshore Natural Gas Processed in Oklahoma (Million Cubic...

    Gasoline and Diesel Fuel Update

    Oklahoma (Million Cubic Feet) Texas Onshore Natural Gas Processed in Oklahoma (Million ... Next Release Date: 5312016 Referring Pages: Natural Gas Processed Texas Onshore-Oklahoma

  17. Texas Onshore Natural Gas Processed in New Mexico (Million Cubic...

    Annual Energy Outlook

    New Mexico (Million Cubic Feet) Texas Onshore Natural Gas Processed in New Mexico (Million ... Release Date: 5312016 Referring Pages: Natural Gas Processed Texas Onshore-New Mexico

  18. Utah Natural Gas Plant Liquids Production (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Liquids Production (Million Cubic Feet) Utah Natural Gas Plant Liquids Production (Million ... NGPL Production, Gaseous Equivalent Utah Natural Gas Plant Processing NGPL Production, ...

  19. Kentucky Natural Gas Plant Fuel Consumption (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Plant Fuel Consumption (Million ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  20. Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Fuel Consumption (Million Cubic Feet) Utah Natural Gas Plant Fuel Consumption (Million ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  1. Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook

    Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Plant Fuel Consumption (Million ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  2. Kansas Natural Gas Plant Fuel Consumption (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Kansas Natural Gas Plant Fuel Consumption (Million ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  3. Energy Department Invests Over $7 Million to Commercialize Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department Invests Over 7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies Energy Department Invests Over 7 Million to Commercialize Cost-Effective ...

  4. Energy Department Announces $4 Million for Projects Launching...

    Office of Environmental Management (EM)

    Million for Projects Launching the Orange Button Solar Energy Data Initiative Energy Department Announces 4 Million for Projects Launching the Orange Button Solar Energy Data ...

  5. Energy Department Announces $21 Million to Lower Solar Energy...

    Office of Environmental Management (EM)

    21 Million to Lower Solar Energy Deployment Barriers Energy Department Announces 21 Million to Lower Solar Energy Deployment Barriers February 8, 2016 - 8:30am Addthis Energy ...

  6. DOE Announces Nearly $170 Million in Available Funding to Advance...

    Energy Saver

    70 Million in Available Funding to Advance Solar Energy Technologies DOE Announces Nearly 170 Million in Available Funding to Advance Solar Energy Technologies April 8, 2011 - ...

  7. Energy Department Finalizes $737 Million Loan Guarantee to Tonopah...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    737 Million Loan Guarantee to Tonopah Solar Energy for Nevada Project Energy Department Finalizes 737 Million Loan Guarantee to Tonopah Solar Energy for Nevada Project September ...

  8. President Obama Announces Over $467 Million in Recovery Act Funding...

    Energy Saver

    Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar ...

  9. President Obama Announces Over $467 Million in Recovery Act Funding...

    Office of Environmental Management (EM)

    President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for ...

  10. Energy Department Announces $32 Million to Boost Solar Workforce...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    32 Million to Boost Solar Workforce Training, Drive Solar Energy Innovation Energy Department Announces 32 Million to Boost Solar Workforce Training, Drive Solar Energy Innovation ...

  11. Department of Energy Announces $15 Million to Promote Innovative...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    15 Million to Promote Innovative Geothermal Heat Recovery Methods and Technologies Department of Energy Announces 15 Million to Promote Innovative Geothermal Heat Recovery...

  12. Energy Department Awards $5 Million to Spur Local Clean Energy...

    Energy Saver

    5 Million to Spur Local Clean Energy Development, Energy Savings Energy Department Awards 5 Million to Spur Local Clean Energy Development, Energy Savings October 14, 2014 - ...

  13. Energy Department Announces $18 Million for Innovative Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    8 Million for Innovative Projects to Advance Geothermal Energy Energy Department Announces 18 Million for Innovative Projects to Advance Geothermal Energy August 6, 2014 - 1:00pm ...

  14. Secretary Chu Announces $93 Million from Recovery Act to Support...

    Energy Saver

    Secretary Chu Announces 93 Million from Recovery Act to Support Wind Energy Projects Secretary Chu Announces 93 Million from Recovery Act to Support Wind Energy Projects April ...

  15. Obama Administration Announces More Than $327 Million in Recovery...

    Office of Environmental Management (EM)

    laboratories and universities for fusion energy research; Expanded funding for ... Joint Genome Institute; 11 million for fusion energy research; 8.8 million for ...

  16. Energy Department Awards $6 Million to Universities in Tennessee...

    Energy Saver

    to receive 2.9 million and Virginia Polytechnic Institute and State University (Virginia Tech) to receive 3 million to create masters or doctoral training programs that will ...

  17. Energy Department Invests More Than $55 Million to Advance Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies Energy Department Offers 50 Million to Advance Fuel Efficient Autos Secretary Moniz Announces Nearly 50 Million to Advance High-Tech, Fuel Efficient American Autos

  18. Energy Department Invests $20 Million to Advance Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department Invests 20 Million to Advance Hydrogen Production and Delivery Technologies Energy Department Invests 20 Million to Advance Hydrogen Production and Delivery...

  19. Energy Department to Award $6 Million to State Partnerships to...

    Energy Saver

    to Award 6 Million to State Partnerships to Increase Energy Efficiency Energy Department to Award 6 Million to State Partnerships to Increase Energy Efficiency September 19, 2006 ...

  20. DOE Awards $15 Million in Technical Assistance to Support Major...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    15 Million in Technical Assistance to Support Major Retailers, Financial Institutions and Real Estate Firms to Adopt Energy-Efficient Technologies DOE Awards 15 Million in ...

  1. Wyoming Natural Gas Underground Storage Net Withdrawals (Million...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Underground Storage Net Withdrawals (Million Cubic Feet) Wyoming Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  2. Arkansas Natural Gas Underground Storage Net Withdrawals (Million...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Underground Storage Net Withdrawals (Million Cubic Feet) Arkansas Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  3. Oregon Natural Gas Underground Storage Net Withdrawals (Million...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Underground Storage Net Withdrawals (Million Cubic Feet) Oregon Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  4. Illinois Natural Gas Underground Storage Net Withdrawals (Million...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Underground Storage Net Withdrawals (Million Cubic Feet) Illinois Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  5. Alaska Natural Gas Underground Storage Net Withdrawals (Million...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Underground Storage Net Withdrawals (Million Cubic Feet) Alaska Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  6. $23.5 Million Investment in Innovative Manufacturing Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    23.5 Million Investment in Innovative Manufacturing Projects Supports the New Clean Energy Manufacturing Initiative 23.5 Million Investment in Innovative Manufacturing Projects ...

  7. Secretary Chu Announces Nearly $50 Million of Recovery Act Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    50 Million of Recovery Act Funding to Accelerate Deployment of Geothermal Heat Pumps Secretary Chu Announces Nearly 50 Million of Recovery Act Funding to Accelerate Deployment of ...

  8. Secretary Chu Announces $45 Million to Support Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Secretary Chu Announces 45 Million to Support Next Generation of Wind Turbine Designs Secretary Chu Announces 45 Million to Support Next Generation of Wind Turbine Designs...

  9. Utah Natural Gas Pipeline and Distribution Use (Million Cubic...

    Gasoline and Diesel Fuel Update

    (Million Cubic Feet) Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet) ... 10312016 Referring Pages: Natural Gas Pipeline & Distribution Use Utah Natural Gas ...

  10. Department of Energy Announces $39 Million to Strengthen University...

    Energy Saver

    39 Million to Strengthen University-Led Nuclear Energy Research and Development Department of Energy Announces 39 Million to Strengthen University-Led Nuclear Energy Research and ...

  11. Energy Department Invests $82 Million to Advanced Nuclear Technology...

    Energy Saver

    Invests 82 Million to Advanced Nuclear Technology Energy Department Invests 82 Million to Advanced Nuclear Technology June 14, 2016 - 1:41pm Addthis News release from the ...

  12. Department of Energy and Beacon Power Finalize $43 Million Loan...

    Energy Saver

    Beacon Power Finalize 43 Million Loan Guarantee for Innovative Energy Storage Project in New York State Department of Energy and Beacon Power Finalize 43 Million Loan Guarantee ...

  13. Energy Department Awards $7 Million to Advance Hydrogen Storage...

    Office of Environmental Management (EM)

    Million to Advance Hydrogen Storage Systems Energy Department Awards 7 Million to Advance Hydrogen Storage Systems May 19, 2014 - 1:43pm Addthis The Energy Department today ...

  14. Secretary Chu Announces $30 Million for Research Competition...

    Office of Environmental Management (EM)

    0 Million for Research Competition to Develop Next Generation Energy Storage Technologies Secretary Chu Announces 30 Million for Research Competition to Develop Next Generation ...

  15. Energy Department Announces $18 Million to Develop Solar Energy...

    Energy Saver

    18 Million to Develop Solar Energy Storage Solutions, Boost Grid Resiliency Energy Department Announces 18 Million to Develop Solar Energy Storage Solutions, Boost Grid Resiliency ...

  16. Energy Department Announces $15 Million to Help Communities Boost...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 Million to Help Communities Boost Solar Deployment Energy Department Announces 15 Million to ... - creating more jobs, reducing carbon pollution and boosting economic growth." ...

  17. Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Vented and Flared (Million Cubic Feet) Oklahoma Natural Gas Vented and Flared (Million ... Referring Pages: Natural Gas Vented and Flared Oklahoma Natural Gas Gross Withdrawals and ...

  18. Oklahoma Natural Gas Processed in Kansas (Million Cubic Feet...

    Gasoline and Diesel Fuel Update

    Kansas (Million Cubic Feet) Oklahoma Natural Gas Processed in Kansas (Million Cubic Feet) ...2016 Next Release Date: 04292016 Referring Pages: Natural Gas Processed Oklahoma-Kansas

  19. Oklahoma Natural Gas Processed in Texas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Texas (Million Cubic Feet) Oklahoma Natural Gas Processed in Texas (Million Cubic Feet) ...2016 Next Release Date: 04292016 Referring Pages: Natural Gas Processed Oklahoma-Texas

  20. Kansas Natural Gas Total Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Total Consumption (Million Cubic Feet) Kansas Natural Gas Total Consumption (Million Cubic ... Referring Pages: Natural Gas Consumption Kansas Natural Gas Consumption by End Use Natural ...

  1. DOE Announces Over $30 Million to Help Universities Train the...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Announces Over 30 Million to Help Universities Train the Next Generation of Industrial Energy Efficiency Experts DOE Announces Over 30 Million to Help Universities Train the...

  2. Energy Department Announces $70 Million for Innovation Institute...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    70 Million for Innovation Institute on Smart Manufacturing Energy Department Announces 70 Million for Innovation Institute on Smart Manufacturing September 16, 2015 - 8:36am ...

  3. Small Business Innovation Research Announces $1.15 Million to...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Small Business Innovation Research Announces 1.15 Million to Expand Under-Utilized Geothermal Markets Small Business Innovation Research Announces 1.15 Million to Expand ...

  4. Energy Department Awards Nearly $7 Million for Research to Reduce...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7 Million for Research to Reduce Costs of Electric Vehicle Chargers Energy Department Awards Nearly 7 Million for Research to Reduce Costs of Electric Vehicle Chargers December ...

  5. ARPA-E Announces $43 Million for Transformational Energy Storage...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    43 Million for Transformational Energy Storage Projects to Advance Electric Vehicle and Grid Technologies ARPA-E Announces 43 Million for Transformational Energy Storage Projects ...

  6. DOE Delivers More than $354 Million for Energy Efficiency and...

    Energy Saver

    More than 354 Million for Energy Efficiency and Conservation Projects in 22 States DOE Delivers More than 354 Million for Energy Efficiency and Conservation Projects in 22 States ...

  7. New York Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook

    Fuel Consumption (Million Cubic Feet) New York Natural Gas Lease Fuel Consumption (Million ... Referring Pages: Natural Gas Lease Fuel Consumption New York Natural Gas Consumption by ...

  8. New Jersey Natural Gas Total Consumption (Million Cubic Feet...

    Gasoline and Diesel Fuel Update

    Total Consumption (Million Cubic Feet) New Jersey Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption New Jersey Natural Gas Consumption by End Use ...

  9. New York Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook

    Total Consumption (Million Cubic Feet) New York Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption New York Natural Gas Consumption by End Use ...

  10. New Facility Saves $20 Million, Accelerates Waste Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Facility Saves 20 Million, Accelerates Waste Processing New Facility Saves 20 Million, Accelerates Waste Processing August 15, 2012 - 12:00pm Addthis The new Cask Processing ...

  11. New Mexico Natural Gas Total Consumption (Million Cubic Feet...

    Gasoline and Diesel Fuel Update

    Total Consumption (Million Cubic Feet) New Mexico Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption New Mexico Natural Gas Consumption by End Use ...

  12. New Mexico Natural Gas Processed (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    (Million Cubic Feet) New Mexico Natural Gas Processed (Million Cubic Feet) Decade Year-0 ... Referring Pages: Natural Gas Processed New Mexico Natural Gas Plant Processing Natural ...

  13. New Mexico Natural Gas Processed in Texas (Million Cubic Feet...

    Gasoline and Diesel Fuel Update

    Texas (Million Cubic Feet) New Mexico Natural Gas Processed in Texas (Million Cubic Feet) ...2016 Next Release Date: 8312016 Referring Pages: Natural Gas Processed New Mexico-Texas

  14. Two small businesses selected for work valued at $80 million

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Businesses compete for drilling, monitoring work Two small businesses selected for work valued at 80 million Two small businesses compete for up to 80 million in well drilling ...

  15. North Dakota Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Processed (Million Cubic Feet) North Dakota Natural Gas Processed (Million Cubic Feet) ... Referring Pages: Natural Gas Processed North Dakota Natural Gas Plant Processing Natural ...

  16. North Dakota Natural Gas Total Consumption (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Total Consumption (Million Cubic Feet) North Dakota Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption North Dakota Natural Gas Consumption by End Use ...

  17. Energy Department, Treasury Announce Availability of $150 Million...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department, Treasury Announce Availability of 150 Million in Tax Credits for Clean Energy Manufacturers Energy Department, Treasury Announce Availability of 150 Million in Tax...

  18. Energy Department Announces $12 Million for Technologies to Produce...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Announces 12 Million for Technologies to Produce Renewable Carbon Fiber from Biomass Energy Department Announces 12 Million for Technologies to Produce Renewable Carbon Fiber ...

  19. DOE Hydrogen Program Saved Nearly 30 Million by Investing in...

    Office of Environmental Management (EM)

    DOE Hydrogen Program Saved Nearly 30 Million by Investing in Annual In-Progress Peer ... and Renewable Energy, outllines how "DOE Hydrogen Program Saved Nearly 30 Million by ...

  20. Alaska Crude Oil + Lease Condensate Proved Reserves (Million...

    Energy Information Administration (EIA) (indexed site)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Alaska Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  1. Mississippi Crude Oil + Lease Condensate Proved Reserves (Million...

    Energy Information Administration (EIA) (indexed site)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  2. Nebraska Crude Oil + Lease Condensate Proved Reserves (Million...

    Energy Information Administration (EIA) (indexed site)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Nebraska Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  3. Louisiana Crude Oil + Lease Condensate Proved Reserves (Million...

    Energy Information Administration (EIA) (indexed site)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  4. Alabama Crude Oil + Lease Condensate Proved Reserves (Million...

    Energy Information Administration (EIA) (indexed site)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  5. Indiana Crude Oil + Lease Condensate Proved Reserves (Million...

    Energy Information Administration (EIA) (indexed site)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Indiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  6. The Department of Energy's $700 Million Smart Grid Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    700 Million Smart Grid Demonstration Program Funded through the American Recovery and ... of Energy's 700 Million Smart Grid Demonstration Program Funded through the American ...

  7. Obama-Biden Administration Announces More Than $49 Million in...

    Office of Environmental Management (EM)

    9 Million in Weatherization Funding and Energy Efficiency Grants for New Hampshire Obama-Biden Administration Announces More Than 49 Million in Weatherization Funding and Energy ...

  8. Minnesota Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Total Consumption (Million Cubic Feet) Minnesota Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption Minnesota Natural Gas Consumption by End Use ...

  9. Energy Department Finalizes $337 Million Loan Guarantee to Mesquite...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Finalizes 337 Million Loan Guarantee to Mesquite Solar 1 for Innovative Solar Power Plant Energy Department Finalizes 337 Million Loan Guarantee to Mesquite Solar 1 for...

  10. Million Cu. Feet Percent of National Total

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Production (million cubic feet) Gross Withdrawals From Gas Wells 0 17,182 16,459 R 43 69 From Oil Wells 17,129 1,500 1,551 R 3,135 5,720 From Coalbed Wells 0 0 0 0 0 From Shale Gas ...

  11. TIS (Technology Information System): The Intelligent Gateway Processor (IGP)

    SciTech Connect

    Hampel, V.E.; Barker, R.; Berch, M.; Kawin, R.; Lann, N.; McGrogan, S.; Sharpe, N.; Winiger, G.

    1984-10-01

    The Technology Information System (TIS) is an Intelligent Gateway Processor (IGP) capable of interconnecting heterogeneous information resources at geographically distributed locations in an automated, unified, and controlled manner. It augments the capabilities of personal computers and workstations of scientists and engineers by providing a shared directory to worldwide bibliographic and numeric resources and a library of self-guided procedures by which test, data, and graphs can be downloaded, reformatted, aggregated, analyzed, and shared among users and different host machines. The TIS link capability is used routinely for transcontinental tutorials and as a proactical means for the audiovisual linking of TIS users with experts at their respective locations. The IGP universal user interface permits changes and additions of available resources while running non-stop. The TIS/IGP at th Lawrence Livermore National Laboratory (LLNL) serves as the host system for several different communities of users who develop integrated information systems for personal and shared programmatic resources. The TIS local area network utilizes a 10 Mbps Ethernet which serves as a testbed for high-technology hardware and software.

  12. Massively parallel processor networks with optical express channels

    DOEpatents

    Deri, R.J.; Brooks, E.D. III; Haigh, R.E.; DeGroot, A.J.

    1999-08-24

    An optical method for separating and routing local and express channel data comprises interconnecting the nodes in a network with fiber optic cables. A single fiber optic cable carries both express channel traffic and local channel traffic, e.g., in a massively parallel processor (MPP) network. Express channel traffic is placed on, or filtered from, the fiber optic cable at a light frequency or a color different from that of the local channel traffic. The express channel traffic is thus placed on a light carrier that skips over the local intermediate nodes one-by-one by reflecting off of selective mirrors placed at each local node. The local-channel-traffic light carriers pass through the selective mirrors and are not reflected. A single fiber optic cable can thus be threaded throughout a three-dimensional matrix of nodes with the x,y,z directions of propagation encoded by the color of the respective light carriers for both local and express channel traffic. Thus frequency division multiple access is used to hierarchically separate the local and express channels to eliminate the bucket brigade latencies that would otherwise result if the express traffic had to hop between every local node to reach its ultimate destination. 3 figs.

  13. Massively parallel processor networks with optical express channels

    DOEpatents

    Deri, Robert J.; Brooks, III, Eugene D.; Haigh, Ronald E.; DeGroot, Anthony J.

    1999-01-01

    An optical method for separating and routing local and express channel data comprises interconnecting the nodes in a network with fiber optic cables. A single fiber optic cable carries both express channel traffic and local channel traffic, e.g., in a massively parallel processor (MPP) network. Express channel traffic is placed on, or filtered from, the fiber optic cable at a light frequency or a color different from that of the local channel traffic. The express channel traffic is thus placed on a light carrier that skips over the local intermediate nodes one-by-one by reflecting off of selective mirrors placed at each local node. The local-channel-traffic light carriers pass through the selective mirrors and are not reflected. A single fiber optic cable can thus be threaded throughout a three-dimensional matrix of nodes with the x,y,z directions of propagation encoded by the color of the respective light carriers for both local and express channel traffic. Thus frequency division multiple access is used to hierarchically separate the local and express channels to eliminate the bucket brigade latencies that would otherwise result if the express traffic had to hop between every local node to reach its ultimate destination.

  14. Million U.S. Housing Units Total............................................................................

    Energy Information Administration (EIA) (indexed site)

    Personal Computers Do Not Use a Personal Computer......................... 35.5 3.2 8.3 8.9 7.7 7.5 Use a Personal Computer...................................... 75.6 7.8 17.8 18.4 16.3 15.3 Most-Used Personal Computer Type of PC Desk-top Model................................................. 58.6 6.2 14.3 14.2 12.1 11.9 Laptop Model.................................................... 16.9 1.6 3.5 4.3 4.2 3.4 Hours Turned on Per Week Less than 2 Hours.............................................

  15. Recovery Act: Integrated DC-DC Conversion for Energy-Efficient Multicore Processors

    SciTech Connect

    Shepard, Kenneth L

    2013-03-31

    devices. These new approaches to scaled voltage regulation for computing devices also promise significant impact on electricity consumption in the United States and abroad by improving the efficiency of all computational platforms. In 2006, servers and datacenters in the United States consumed an estimated 61 billion kWh or about 1.5% of the nation's total energy consumption. Federal Government servers and data centers alone accounted for about 10 billion kWh, for a total annual energy cost of about $450 million. Based upon market growth and efficiency trends, estimates place current server and datacenter power consumption at nearly 85 billion kWh in the US and at almost 280 billion kWh worldwide. Similar estimates place national desktop, mobile and portable computing at 80 billion kWh combined. While national electricity utilization for computation amounts to only 4% of current usage, it is growing at a rate of about 10% a year with volume servers representing one of the largest growth segments due to the increasing utilization of cloud-based services. The percentage of power that is consumed by the processor in a server varies but can be as much as 30% of the total power utilization, with an additional 50% associated with heat removal. The approaches considered here should allow energy efficiency gains as high as 30% in processors for all computing platforms, from high-end servers to smart phones, resulting in a direct annual energy savings of almost 15 billion kWh nationally, and 50 billion kWh globally. The work developed here is being commercialized by the start-up venture, Ferric Semiconductor, which has already secured two Phase I SBIR grants to bring these technologies to the marketplace.

  16. Hour of Code sparks interest in computer science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    STEM skills Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:November 2, 2016 all issues All Issues » submit Hour of Code sparks interest in computer science Taking the mystery out of programming February 1, 2016 Hour of Code participants work their way through fun computer programming tutorials. Hour of Code participants work their way through fun computer programming tutorials. Contacts Community Programs Director Kathy Keith Email

  17. SLAC Scanner Processor: a FASTBUS module for data collection and processing

    SciTech Connect

    Brafman, H.; Glanzman, T.; Lankford, A.J.; Olsen, J.; Paffrath, L.

    1984-10-01

    A new, general purpose, programmable FASTBUS module, the SLAC Scanner Processor (SSP), is introduced. Both hardware and software elements of SSP operation are discussed. The role of the SSP within the upgraded Mark II Detector at SLAC is described.

  18. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    7 Water Heating in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Water Heating" "Total Homes",113.6,20.8,25.9,42.1,24.8 "Number of Storage Tank Water Heaters" 0,2.9,1.3,0.4,0.7,0.5 1,108.1,19.3,25,40.2,23.6 "2 or More",2.7,0.2,0.5,1.2,0.7 "Number of Tankless Water

  19. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    3 Fuels Used and End Uses in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2009" "Fuels Used and End Uses" "Total Homes",113.6,14.4,5.2,13.5,13.3,18.3,17,16.4,15.6

  20. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    5 Fuels Used and End Uses in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,,,,,,"Below Poverty Line2" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 to $99,999","$100,000 to $119,999","$120,000 or More" "Fuels Used and End Uses" "Total

  1. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    7 Fuels Used and End Uses in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Fuels Used and End Uses" "Total Homes",113.6,20.8,25.9,42.1,24.8 "Fuels Used for Any Use" "Electricity",113.6,20.8,25.9,42.1,24.8 "Natural Gas",69.2,13.8,19.4,17.7,18.3

  2. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    3 Televisions in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2009" "Televisions" "Total Homes",113.6,14.4,5.2,13.5,13.3,18.3,17,16.4,15.6 "Televisions"

  3. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    4 Televisions in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More Members" "Televisions",,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "Televisions" "Number of Televisions" 0,1.5,1,0.3,"Q","Q",0.1

  4. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    5 Televisions in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,,,,,,"Below Poverty Line2" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 to $99,999","$100,000 to $119,999","$120,000 or More" "Televisions" "Total

  5. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    3 Water Heating in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2009" "Water Heating" "Total Homes",113.6,14.4,5.2,13.5,13.3,18.3,17,16.4,15.6 "Number of Storage

  6. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    4 Water Heating in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More Members" "Water Heating",,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "Number of Storage Tank Water Heaters" 0,2.9,0.9,0.8,0.4,0.4,0.3

  7. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    5 Water Heating in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,,,,,,"Below Poverty Line2" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 to $99,999","$100,000 to $119,999","$120,000 or More" "Water Heating" "Total

  8. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    Fuels Used and End Uses in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Fuels Used and End Uses" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Fuels Used for Any

  9. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    3 Appliances in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2009" "Appliances" "Total Homes",113.6,14.4,5.2,13.5,13.3,18.3,17,16.4,15.6 "Cooking Appliances"

  10. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    5 Appliances in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,,,,,,"Below Poverty Line2" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 to $99,999","$100,000 to $119,999","$120,000 or More" "Appliances" "Total

  11. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    7 Televisions in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Televisions" "Total Homes",113.6,20.8,25.9,42.1,24.8 "Televisions" "Number of Televisions" 0,1.5,0.4,0.3,0.5,0.4 1,24.2,4.6,5.4,8.1,6.1 2,37.5,7,8,13.8,8.5 3,26.6,4.5,6.1,10.5,5.3 4,14.2,2.2,3.4,5.7,2.9 "5 or

  12. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    7 Computers and Other Electronics in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Computers and Other Electronics" "Total Homes",113.6,20.8,25.9,42.1,24.8 "Computers" "Number of Computers" 0,27.4,4.7,6.7,11.1,4.8 1,46.9,8.7,10.6,17.2,10.3 2,24.3,4.3,5.5,8.7,5.8

  13. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    3 Space Heating in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2009" "Space Heating" "Total Homes",113.6,14.4,5.2,13.5,13.3,18.3,17,16.4,15.6 "Space Heating

  14. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    3 Air Conditioning in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2009" "Air Conditioning" "Total Homes",113.6,14.4,5.2,13.5,13.3,18.3,17,16.4,15.6 "Air

  15. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    6 Water Heating in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold/","Mixed- Humid","Mixed-Dry/" "Water Heating",,"Cold",,"Hot-Dry","Hot-Humid","Marine" "Total Homes",113.6,38.8,35.4,14.1,19.1,6.3 "Number of Storage Tank Water Heaters" 0,2.9,1.3,0.8,0.4,0.4,0.1

  16. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    7 Household Demographics of U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Number of Household Members" "Total Homes",113.6,20.8,25.9,42.1,24.8 "Number of Household Members" "1 Person",31.3,6,7.4,11.5,6.3 "2 Persons",35.8,6.3,8.5,13.4,7.6 "3

  17. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    5 Computers and Other Electronics in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,,,,,,"Below Poverty Line2" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 to $99,999","$100,000 to $119,999","$120,000 or More" "Computers and Other Electronics"

  18. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    5 Air Conditioning in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,,,,,,"Below Poverty Line2" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 to $99,999","$100,000 to $119,999","$120,000 or More" "Air Conditioning" "Total

  19. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    5 Household Demographics of U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,,,,,,"Below Poverty Line2" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 to $99,999","$100,000 to $119,999","$120,000 or More" "Household Demographics" "Total

  20. Consumers face $5. 9 million rate increase

    SciTech Connect

    Not Available

    1984-11-01

    Testimony at hearings before the Garrison Diversion Compromise Commission claimed that rural consumers in the Upper Midwest could face $5.9 million in electric rate increases if the commission deauthorizes the project and hydroelectric rates go up to pay the costs of the 1944 Pick-Sloan project originally assigned to irrigation. If there is no irrigation development, the revenue that irrigation must raise to repay the $67 million debt assigned to irrigation must be reassigned to hydroelectric power. The commission represents a compromise between supporters and opponents of the Garrison Diversion project. Spokesmen for regional utilities spoke in support of the project as an investment whose costs have escalated because of delays at the expense of economic development in North Dakota.

  1. Nebraska Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Processed (Million Cubic Feet) Nebraska Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 13,130 9,437 6,415 1970's 3,697 2,848 2,890 33,369 34,243 34,463 35,351 32,226 29,828 1980's 1,648 1,281 1,154 1,256 1,097 707 987 690 381 1990's 31 136 65 586 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  2. Ohio Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Processed (Million Cubic Feet) Ohio Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 207 670 1,713 2,263 2,591 2,555 3,036 2,812 2,608 1990's 3,081 2,615 2,730 2,989 2,930 2,257 2,477 2,553 2,895 2,933 2000's 3,285 4,336 4,098 3,609 3,883 2,657 2,397 1,456 2010's 2,211 33,031 344,073 745,715 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  3. California Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Processed (Million Cubic Feet) California Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 505,063 476,596 455,692 1970's 444,700 431,605 386,664 359,841 252,402 213,079 216,667 206,981 204,693 1980's 169,812 261,725 263,475 276,209 281,389 263,823 276,969 270,191 254,286 1990's 263,667 246,335 243,692 246,283 228,346 226,548 240,566 243,054 235,558 259,518 2000's 260,049 258,271 249,671 238,743 236,465 226,230 223,580

  4. Colorado Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Colorado Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 112,440 96,397 85,171 1970's 82,736 97,420 104,116 110,662 118,686 136,090 175,624 171,233 167,959 1980's 201,637 220,108 173,894 181,150 191,625 163,614 180,290 178,048 196,682 1990's 208,069 234,851 256,019 307,250 353,855 345,441 493,963 374,728 425,083 444,978 2000's 494,581 497,385 534,295 555,544 703,804 730,948 751,036 888,705

  5. Utah Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Utah Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 1980's 68,211 95,670 93,934 98,598 99,233 241,904 274,470 286,592 286,929 1990's 334,067 333,591 319,017 348,010 368,585 308,174 265,546 249,930 242,070 211,514 2000's 169,553 166,505 136,843 161,275 193,093 187,524 193,836 195,701 202,380 412,639 2010's 454,832 490,233 535,365 448,687 419,773 386,823 - = No Data

  6. Wyoming Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Wyoming Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 261,478 259,227 269,921 1970's 276,926 292,434 298,439 303,519 263,684 215,104 251,846 262,801 255,760 1980's 366,530 393,027 432,313 579,479 624,619 506,241 512,579 560,603 591,472 1990's 635,922 681,266 728,113 750,853 821,689 895,129 845,253 863,052 870,518 902,889 2000's 993,702 988,595 1,083,860 1,101,425 1,249,309 1,278,087 1,288,124

  7. Michigan Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Natural Gas Processed (Million Cubic Feet) 22,405 21,518 21,243 21,416 18,654 16,288 1967-2015 Total Liquids Extracted (Thousand Barrels) 2,207 2,132 2,046 2,005 1,593 1,565 1983-2015 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 2,943 2,465 2,480 2,345 1,922 1,793 1967

    2010 2011 2012 2013 2014 2015 View History Wellhead Price 3.79 1967-2010 Imports Price 4.73 4.38 2.88 4.02 8.34 2.87 1989-2015 Exports Price 4.85 4.44 3.12 4.07 6.26 3.19

  8. Montana Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Natural Gas Processed (Million Cubic Feet) 12,391 11,185 12,727 14,575 14,751 15,146 1967-2015 Total Liquids Extracted (Thousand Barrels) 989 927 1,115 1,235 1,254 1,311 1983-2015 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 1,367 1,252 1,491 1,645 1,670 1,730 1967

    2010 2011 2012 2013 2014 2015 View History Wellhead Price 3.64 1967-2010 Imports Price 4.13 3.75 2.45 3.23 4.39 2.40 1989-2015 Exports Price 4.05 3.82 2.40 3.43 5.38 12.54

  9. Oklahoma Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Natural Gas Processed (Million Cubic Feet) 1,110,236 1,218,855 1,310,331 1,377,119 1,696,107 1,717,757 1967-2015 Total Liquids Extracted (Thousand Barrels) 83,174 91,963 96,237 98,976 117,057 118,229 1983-2015 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 120,631 134,032 139,928 142,595 169,864 163,365 1967

    2010 2011 2012 2013 2014 2015 View History Wellhead Price 4.71 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price

  10. Utah Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Natural Gas Processed (Million Cubic Feet) 454,832 490,233 535,365 448,687 419,773 386,823 1967-2015 Total Liquids Extracted (Thousand Barrels) 7,648 10,805 11,441 11,279 13,343 11,165 1983-2015 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 9,978 14,910 15,637 15,409 18,652 15,298 1967

    2010 2011 2012 2013 2014 2015 View History Wellhead Price 4.23 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.53 5.68 5.50 5.70

  11. Wyoming Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Natural Gas Processed (Million Cubic Feet) 1,642,190 1,634,364 1,614,320 1,517,876 1,526,746 1,352,224 1967-2015 Total Liquids Extracted (Thousand Barrels) 63,857 66,839 70,737 52,999 54,933 35,418 1983-2015 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 92,777 97,588 102,549 74,409 76,943 48,552 1967

    2010 2011 2012 2013 2014 2015 View History Wellhead Price 4.30 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.04

  12. Illinois Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Processed (Million Cubic Feet) Illinois Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 483,902 483,336 478,291 1970's 429,691 341,750 376,310 358,142 342,046 322,393 305,441 275,060 327,451 1980's 150,214 152,645 166,568 156,791 153,419 146,463 106,547 757 509 1990's 607 951 942 809 685 727 578 500 468 358 2000's 271 233 299 306 328 280 242 235 233 164 2010's 5,393 294 320 - = No Data Reported; -- = Not

  13. Colorado Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Natural Gas Processed (Million Cubic Feet) 1,434,003 1,507,467 1,464,261 1,373,046 1,495,360 1,663,095 1967-2015 Total Liquids Extracted (Thousand Barrels) 57,924 63,075 57,379 51,978 60,850 73,980 1983-2015 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 82,637 90,801 82,042 87,513 85,198 104,633 1967

    2010 2011 2012 2013 2014 2015 View History Wellhead Price 3.96 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.26

  14. Florida Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Natural Gas Processed (Million Cubic Feet) 2,915 5,526 1967-2015 Total Liquids Extracted (Thousand Barrels) 173 173 1983-2015 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 0 0 0 0 233 235 1968

    2010 2011 2012 2013 2014 2015 View History Wellhead Price NA 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.49 5.07 3.93 4.44 5.05 4.75 1984-2015 Residential Price 17.89 18.16 18.34 18.46 19.02 19.55 1967-2015 Percentage of

  15. Kansas Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Natural Gas Processed (Million Cubic Feet) 341,778 322,944 259,565 190,503 191,034 163,788 1967-2015 Total Liquids Extracted (Thousand Barrels) 18,424 18,098 14,844 10,900 11,611 10,347 1983-2015 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 26,251 25,804 21,220 15,446 16,515 15,056 1967

    2010 2011 2012 2013 2014 2015 View History Wellhead Price 4.23 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.08 5.53 4.74 4.98

  16. Emulating a million machines to investigate botnets.

    SciTech Connect

    Rudish, Donald W.

    2010-06-01

    Researchers at Sandia National Laboratories in Livermore, California are creating what is in effect a vast digital petridish able to hold one million operating systems at once in an effort to study the behavior of rogue programs known as botnets. Botnets are used extensively by malicious computer hackers to steal computing power fron Internet-connected computers. The hackers harness the stolen resources into a scattered but powerful computer that can be used to send spam, execute phishing, scams or steal digital information. These remote-controlled 'distributed computers' are difficult to observe and track. Botnets may take over parts of tens of thousands or in some cases even millions of computers, making them among the world's most powerful computers for some applications.

  17. Reliable appropriate topology design for multiple-processor systems

    SciTech Connect

    Chou, C.P.

    1987-01-01

    A Shift and Replace Graph which is a very appropriate candidate for the topology of a multiple-processor system is a function of two positive integers r and m, and is denoted as SRF(r,m). Pradhan and Reddy proved that the node connectivity of SRG(r,m) is at least r and also give a routing algorithm which generally requires 2m jumps if the number of node failures is no larger than r - 1. Later, Esfahanian and Hakimi proved that SRG(r,m) has maximum node connectivity 2r - 2 and give routing algorithms which require: (1) at most m + 3 + log/sub r/m jumps if 3 + log/sub r/m does not exceed m and the number of node failures is at most r - 1; (2) at most m + 5 + log/sub r/m jumps if 4 + log/sub r/m less than or equal to m and the number of node failures if less than or equal to 2r - 3; (3) all the other situations require no more than 2m jumps. By modifying the SRG(r,m), it is first proved that node connectivity of SRG(r,m) can be increased to: (1) 2r - 1 when r = 2, m = 2, and (2) 2r when (r = 2, m > 2) or (r > 2, m greater than or equal to 2, m greater than or equal to 2). The routing algorithms are also given for the modified SRG (r,m), which require at most 2m + 3 jumps when the number of node failures is less than or equal to 2r - 1.

  18. BioenergizeME Office Hours Webinar: Integrating Bioenergy into the

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9th-12th Grade Classroom | Department of Energy BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom bioenergize_me_ngss_20151210.pdf (5.35 MB) More Documents & Publications Webinar: BioenergizeME Office Hours Webinar: Biomass Basics Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge BioenergizeME Infographic

  19. Pay and Leave Administration and Hours of Duty

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1996-09-30

    The order establishes policy, requirements and responsibilities for the management of pay, including overtime and compensatory time, leave administration, and hours of duty.

  20. Hospital Triage in First Hours After Nuclear or Radiological...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hospital Triage in the First 24 Hours after a Nuclear or Radiological Disaster Medical professionals with the Radiation Emergency Assistance CenterTraining Site (REACTS) at the...

  1. Reformulated Gasoline Use Under the 8-Hour Ozone Rule

    Reports and Publications

    2002-01-01

    This paper focuses on the impact on gasoline price and supply when additional ozone non-attainment areas come under the new 8-hour ozone standard.

  2. One million curies of radioactive material recovered

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Radioactive material recovered One million curies of radioactive material recovered The accomplishment represents a major milestone in protecting our nation and the world from material that could be used in "dirty bombs" by terrorists. December 22, 2014 Rick Day of Los Alamos National Laboratory's International Threat Reduction group and the Off-Site Source Recovery Project (OSRP) holds a non-radioactive training mockup of what a typical cobalt-60 source might look like. The source is

  3. Employees pledge record $2.8 million

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2012 Employee Giving Campaign sets record Employees pledge record $2.8 million during 2012 employee giving campaign Laboratory employee contributions will fund a wide range of programs offered by eligible nonprofit organizations. December 13, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  4. Energy Department Announces $21 Million to Lower Solar Energy Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Barriers | Department of Energy 1 Million to Lower Solar Energy Deployment Barriers Energy Department Announces $21 Million to Lower Solar Energy Deployment Barriers February 8, 2016 - 8:30am Addthis Energy Department Announces $21 Million to Lower Solar Energy Deployment Barriers The U.S. Department of Energy today announced $21 million in new funding to lower solar energy deployment barriers and expand access to solar energy to all Americans. The Department is making $13 million available

  5. IG Investigation with DOJ Results in over $10million Settlement |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy IG Investigation with DOJ Results in over $10million Settlement IG Investigation with DOJ Results in over $10million Settlement IG Investigation with DOJ Results in Over $10million Settlement (106.63 KB) More Documents & Publications Savannah River Site Contractor Agrees to Pay $3.8 Million to Settle False Claims Act Allegations Semiannual Report to Congress: October 1, 2015 - March 31, 2016 Lockheed Martin Agrees to Pay $5 Million to Settle False Claims Act

  6. Liquefied U.S. Natural Gas Exports by Vessel to Portugal (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Portugal (Million Cubic Feet

  7. Automation of ORIGEN2 calculations for the transuranic waste baseline inventory database using a pre-processor and a post-processor

    SciTech Connect

    Liscum-Powell, J.

    1997-06-01

    The purpose of the work described in this report was to automate ORIGEN2 calculations for the Waste Isolation Pilot Plant (WIPP) Transuranic Waste Baseline Inventory Database (WTWBID); this was done by developing a pre-processor to generate ORIGEN2 input files from WWBID inventory files and a post-processor to remove excess information from the ORIGEN2 output files. The calculations performed with ORIGEN2 estimate the radioactive decay and buildup of various radionuclides in the waste streams identified in the WTWBID. The resulting radionuclide inventories are needed for performance assessment calculations for the WIPP site. The work resulted in the development of PreORG, which requires interaction with the user to generate ORIGEN2 input files on a site-by-site basis, and PostORG, which processes ORIGEN2 output into more manageable files. Both programs are written in the FORTRAN 77 computer language. After running PreORG, the user will run ORIGEN2 to generate the desired data; upon completion of ORIGEN2 calculations, the user can run PostORG to process the output to make it more manageable. All the programs run on a 386 PC or higher with a math co-processor or a computer platform running under VMS operating system. The pre- and post-processors for ORIGEN2 were generated for use with Rev. 1 data of the WTWBID and can also be used with Rev. 2 and 3 data of the TWBID (Transuranic Waste Baseline Inventory Database).

  8. Texas Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Processed (Million Cubic Feet) Texas Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 7,018,237 7,239,621 7,613,234 1970's 7,808,476 7,938,550 8,139,408 7,683,830 7,194,453 6,509,132 6,253,159 6,030,131 5,621,419 1980's 4,563,931 4,507,771 4,258,852 4,377,799 4,164,382 4,199,501 3,997,226 3,813,727 3,842,395 1990's 3,860,388 4,874,718 4,231,145 4,301,504 4,160,551 4,132,491 4,180,062 4,171,967 4,073,739 3,903,351

  9. Pennsylvania Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Pennsylvania Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,247 2,390 1,708 1970's 1,418 1,112 1,711 0 0 0 0 0 0 1980's 2,001 2,393 5,432 6,115 5,407 6,356 6,459 6,126 6,518 1990's 6,613 10,244 11,540 10,263 7,133 10,106 10,341 11,661 11,366 11,261 2000's 7,758 9,928 7,033 9,441 9,423 11,462 12,386 13,367 18,046 22,364 2010's 56,162 131,959 236,817 396,726 301,514 405,787 - = No Data Reported;

  10. Michigan Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Michigan Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 171,531 156,996 143,802 1970's 139,571 141,784 94,738 37,384 45,106 79,154 151,318 172,578 199,347 1980's 155,984 151,560 137,364 148,076 151,393 142,255 137,687 125,183 123,578 1990's 134,550 170,574 186,144 201,985 196,000 179,678 117,119 86,564 83,052 67,514 2000's 58,482 50,734 47,292 41,619 37,977 34,545 33,213 29,436 30,008 23,819

  11. Mississippi Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Mississippi Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 46,068 44,510 0 1970's 50,509 44,732 29,538 29,081 24,568 29,694 0 0 0 1980's 34,337 38,315 29,416 29,705 23,428 21,955 12,131 9,565 8,353 1990's 7,887 7,649 4,822 4,892 5,052 4,869 4,521 4,372 3,668 135,773 2000's 205,106 239,830 263,456 283,675 283,763 292,023 278,436 224,596 174,573 215,951 2010's 218,840 126,859 6,865 4,527 5,633

  12. Montana Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Montana Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 60,500 59,058 57,793 1970's 59,193 57,105 61,757 56,960 146,907 156,203 0 0 0 1980's 11,825 13,169 15,093 16,349 19,793 16,212 14,177 15,230 15,475 1990's 14,629 14,864 12,697 11,010 10,418 9,413 10,141 8,859 8,715 5,211 2000's 5,495 5,691 6,030 6,263 6,720 10,057 12,685 13,646 13,137 12,415 2010's 12,391 11,185 12,727 14,575 14,751 15,146 -

  13. Oklahoma Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Oklahoma Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,038,103 1,122,692 1,167,150 1970's 1,183,273 1,123,614 1,116,872 1,175,548 1,092,487 1,033,003 1,072,992 1,057,326 1,069,293 1980's 1,063,256 1,112,740 1,023,057 1,118,403 1,137,463 1,103,062 1,127,780 1,301,673 1,145,688 1990's 1,102,301 1,100,812 1,071,426 1,082,452 1,092,734 1,015,965 1,054,123 1,014,008 947,177 892,396 2000's 963,464

  14. Alabama Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Processed (Million Cubic Feet) Alabama Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 57,208 1970's 0 0 0 0 0 0 25,517 31,610 32,806 1980's 38,572 41,914 38,810 42,181 45,662 48,382 49,341 52,511 55,939 1990's 58,136 76,739 126,910 132,222 136,195 118,688 112,868 114,411 107,334 309,492 2000's 372,136 285,953 290,164 237,377 263,426 255,157 287,278 257,443 253,028 248,232 2010's 242,444 230,546 87,269 89,258 80,590

  15. Alaska Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Processed (Million Cubic Feet) Alaska Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 1970's 0 0 0 0 0 0 149,865 151,669 147,954 1980's 111,512 115,394 42,115 62,144 66,062 58,732 134,945 76,805 75,703 1990's 1,571,438 1,873,279 2,121,838 2,295,499 2,667,254 2,980,557 2,987,364 2,964,734 2,966,461 2,950,502 2000's 3,123,599 2,984,807 2,997,824 2,447,017 2,680,859 3,089,229 2,665,742 2,965,956 2,901,760 2,830,034

  16. Arkansas Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Arkansas Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 93,452 88,011 56,190 1970's 37,816 31,387 17,946 26,135 19,784 17,918 20,370 18,630 18,480 1980's 29,003 31,530 33,753 34,572 258,648 174,872 197,781 213,558 228,157 1990's 272,278 224,625 156,573 198,074 218,710 100,720 219,477 185,244 198,148 179,524 2000's 207,045 207,352 12,635 13,725 10,139 16,756 13,702 11,532 6,531 2,352 2010's 9,599

  17. Kentucky Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Kentucky Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 1980's 237,759 230,940 241,558 256,522 253,652 150,627 26,888 26,673 18,707 1990's 28,379 40,966 47,425 45,782 42,877 44,734 46,015 43,352 37,929 44,064 2000's 36,734 36,901 41,078 42,758 38,208 38,792 39,559 38,158 58,899 60,167 2010's 66,579 60,941 92,883 85,549 79,985 75,162 - = No Data Reported; -- = Not

  18. Freeport, TX Liquefied Natural Gas Exports to Turkey (Million...

    Energy Information Administration (EIA) (indexed site)

    Turkey (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Turkey (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 3,145 - No Data ...

  19. Other States Natural Gas Gross Withdrawals from Shale Gas (Million...

    Gasoline and Diesel Fuel Update

    Shale Gas (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 13,204 ...

  20. Cameron, LA Liquefied Natural Gas Exports to Spain (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Spain (Million Cubic Feet) Cameron, LA Liquefied Natural Gas Exports to Spain (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,911 - No Data ...

  1. Sabine Pass, LA Exports to Spain Liquefied Natural Gas (Million...

    Energy Information Administration (EIA) (indexed site)

    Spain Liquefied Natural Gas (Million Cubic Feet) Sabine Pass, LA Exports to Spain Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ...

  2. Maine Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook

    Total Consumption (Million Cubic Feet) Maine Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

  3. Maine Natural Gas Exports (No Intransit Deliveries) (Million...

    Energy Information Administration (EIA) (indexed site)

    Exports (No Intransit Deliveries) (Million Cubic Feet) Maine Natural Gas Exports (No Intransit Deliveries) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  4. Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Vehicle Fuel Consumption (Million Cubic Feet) Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  5. Other States Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 72,328 ...

  6. Freeport, TX Liquefied Natural Gas Exports to Egypt (Million...

    Energy Information Administration (EIA) (indexed site)

    Egypt (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 2,947 - No Data ...

  7. Texas Natural Gas Underground Storage Volume (Million Cubic Feet...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Texas Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 456,385 ...

  8. Tennessee Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Tennessee Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 ...

  9. Michigan Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Michigan Natural Gas Gross Withdrawals (Million Cubic Feet) Michigan Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 ...

  10. Mississippi Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Mississippi Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  11. Kansas Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Kansas Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 245,145 ...

  12. Washington Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Washington Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  13. Iowa Natural Gas Underground Storage Volume (Million Cubic Feet...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Iowa Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 228,019 ...

  14. Virginia Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Virginia Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 ...

  15. Arizona Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Vented and Flared (Million Cubic Feet) Arizona Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

  16. Montana Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Montana Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  17. Ohio Natural Gas Underground Storage Volume (Million Cubic Feet...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Ohio Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 439,384 ...

  18. Illinois Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Illinois Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  19. Arkansas Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Arkansas Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  20. Oregon Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Oregon Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 6,996 ...

  1. Maryland Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Maryland Natural Gas Gross Withdrawals (Million Cubic Feet) Maryland Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 ...

  2. Indiana Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Indiana Natural Gas Gross Withdrawals (Million Cubic Feet) Indiana Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 21 ...

  3. Colorado Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Colorado Natural Gas Gross Withdrawals (Million Cubic Feet) Colorado Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 ...

  4. Louisiana Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Louisiana Natural Gas Gross Withdrawals (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 ...

  5. California Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) California Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  6. Kentucky Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Kentucky Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  7. Wyoming Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Wyoming Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 84,808 ...

  8. Louisiana Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Louisiana Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  9. Alabama Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Alabama Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 1,379 ...

  10. Illinois Natural Gas Withdrawals from Gas Wells (Million Cubic...

    Annual Energy Outlook

    Gas Wells (Million Cubic Feet) Illinois Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 40 37 39 38 37 36 35 ...

  11. Kansas Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Kansas Natural Gas Gross Withdrawals (Million Cubic Feet) Kansas Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 64,057 ...

  12. Nebraska Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Nebraska Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  13. Montana Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Montana Natural Gas Gross Withdrawals (Million Cubic Feet) Montana Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 ...

  14. Oregon Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oregon Natural Gas Gross Withdrawals (Million Cubic Feet) Oregon Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 159 ...

  15. Nevada Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nevada Natural Gas Gross Withdrawals (Million Cubic Feet) Nevada Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 3 3 5 ...

  16. Michigan Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Michigan Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  17. California Natural Gas Gross Withdrawals (Million Cubic Feet...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    California Natural Gas Gross Withdrawals (Million Cubic Feet) California Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ...

  18. Ohio Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ohio Natural Gas Gross Withdrawals (Million Cubic Feet) Ohio Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 13,138 ...

  19. Colorado Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Colorado Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  20. Minnesota Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Minnesota Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  1. Maryland Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Maryland Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  2. Pennsylvania Natural Gas Gross Withdrawals (Million Cubic Feet...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Pennsylvania Natural Gas Gross Withdrawals (Million Cubic Feet) Pennsylvania Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ...

  3. Oklahoma Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Oklahoma Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  4. Mississippi Natural Gas Gross Withdrawals (Million Cubic Feet...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Mississippi Natural Gas Gross Withdrawals (Million Cubic Feet) Mississippi Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ...

  5. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million...

    Gasoline and Diesel Fuel Update

    from Gas Wells (Million Cubic Feet) Nevada Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  6. Missouri Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Missouri Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  7. Nebraska Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nebraska Natural Gas Gross Withdrawals (Million Cubic Feet) Nebraska Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 57 ...

  8. Oklahoma Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oklahoma Natural Gas Gross Withdrawals (Million Cubic Feet) Oklahoma Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 ...

  9. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million...

    Gasoline and Diesel Fuel Update

    from Oil Wells (Million Cubic Feet) Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  10. Florida Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Florida Natural Gas Gross Withdrawals (Million Cubic Feet) Florida Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 562 ...

  11. Indiana Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Indiana Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 96,943 ...

  12. Missouri Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Missouri Natural Gas Gross Withdrawals (Million Cubic Feet) Missouri Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 ...

  13. Alaska Natural Gas LNG Storage Withdrawals (Million Cubic Feet...

    Gasoline and Diesel Fuel Update

    Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Alaska Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  14. Utah Natural Gas Underground Storage Volume (Million Cubic Feet...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Utah Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 59,806 ...

  15. Florida Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Vented and Flared (Million Cubic Feet) Florida Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

  16. Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic...

    Gasoline and Diesel Fuel Update

    Oil Wells (Million Cubic Feet) Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

  17. Illinois Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Illinois Natural Gas Gross Withdrawals (Million Cubic Feet) Illinois Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 41 ...

  18. Kentucky Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Kentucky Natural Gas Gross Withdrawals (Million Cubic Feet) Kentucky Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 ...

  19. Secretary Chu Announces Closing of $117 Million Loan Guarantee...

    Energy Saver

    17 Million Loan Guarantee for Kahuku Wind Power Project Secretary Chu Announces Closing of 117 Million Loan Guarantee for Kahuku Wind Power Project July 27, 2010 - 12:00am Addthis ...

  20. Alabama--State Offshore Natural Gas Dry Production (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    State Offshore Natural Gas Dry Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  1. Florida Natural Gas Processed in Florida (Million Cubic Feet...

    Gasoline and Diesel Fuel Update

    Processed in Florida (Million Cubic Feet) Florida Natural Gas Processed in Florida (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

  2. ,"Florida Dry Natural Gas Production (Million Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    7:59:39 AM" "Back to Contents","Data 1: Florida Dry Natural Gas Production (Million Cubic Feet)" "Sourcekey","NA1160SFL2" "Date","Florida Dry Natural Gas Production (Million Cubic ...

  3. Energy Department Invests $67 Million to Advanced Nuclear Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    67 Million to Advanced Nuclear Technology Energy Department Invests 67 Million to Advanced Nuclear Technology August 20, 2014 - 12:00pm Addthis News Media Contact 202-586-4940 ...

  4. Federal Offshore--Alabama Natural Gas Marketed Production (Million...

    Energy Information Administration (EIA) (indexed site)

    Marketed Production (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  5. Department of Energy Awards $43 Million to Spur Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Awards 43 Million to Spur Offshore Wind Energy Department of Energy Awards 43 Million to Spur Offshore Wind Energy October 3, 2011 - 12:00pm Addthis This is an excerpt from the ...

  6. Alabama--State Offshore Natural Gas Marketed Production (Million...

    Energy Information Administration (EIA) (indexed site)

    Marketed Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  7. Alaska--State Offshore Natural Gas Marketed Production (Million...

    Energy Information Administration (EIA) (indexed site)

    Marketed Production (Million Cubic Feet) Alaska--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  8. Gulf of Mexico -- Offshore Natural Gas Withdrawals (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    -- Offshore Natural Gas Withdrawals (Million Cubic Feet) Gulf of Mexico -- Offshore Natural Gas Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  9. DOE Hydrogen Program Saved Nearly $30 Million by Investing in...

    Office of Environmental Management (EM)

    Hydrogen Program Saved Nearly 30 Million by Investing in Annual In-Progress Peer Reviews DOE Hydrogen Program Saved Nearly 30 Million by Investing in Annual In-Progress Peer ...

  10. Energy Department Announces $14 Million to Advance Hydrogen Fuel...

    Office of Environmental Management (EM)

    14 Million to Advance Hydrogen Fuel Technologies Energy Department Announces 14 Million to Advance Hydrogen Fuel Technologies July 12, 2016 - 3:15pm Addthis Today, the U.S. ...

  11. Energy Department Announces $35 Million to Advance Hydrogen and...

    Office of Environmental Management (EM)

    5 Million to Advance Hydrogen and Fuel Cell Technologies Energy Department Announces 35 Million to Advance Hydrogen and Fuel Cell Technologies December 11, 2015 - 10:00am Addthis ...

  12. Energy Department Announces $35 Million to Advance Fuel Cell...

    Office of Environmental Management (EM)

    5 Million to Advance Fuel Cell and Hydrogen Technologies Energy Department Announces 35 Million to Advance Fuel Cell and Hydrogen Technologies March 3, 2015 - 11:30am Addthis The ...

  13. Secretary Chu Announces more than $200 Million for Solar and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    more than 200 Million for Solar and Water Power Technologies Secretary Chu Announces more than 200 Million for Solar and Water Power Technologies April 22, 2010 - 12:00am Addthis...

  14. Kenai, AK Exports to Taiwan Liquefied Natural Gas (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Exports to Taiwan Liquefied Natural Gas (Million Cubic Feet) Kenai, AK Exports to Taiwan Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov ...

  15. Secretary Chu Announces $93 Million from Recovery Act to Support...

    Energy Saver

    93 Million from Recovery Act to Support Wind Energy Projects Secretary Chu Announces 93 Million from Recovery Act to Support Wind Energy Projects April 29, 2009 - 12:00am Addthis ...

  16. Washington Natural Gas Total Consumption (Million Cubic Feet...

    Annual Energy Outlook

    Total Consumption (Million Cubic Feet) Washington Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  17. Portal, ND Compressed Natural Gas Exports to Canada (Million...

    Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) Portal, ND Compressed Natural Gas Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 0 2 - No Data Reported; -- ...

  18. Compressed Houlton, ME Natural Gas Imports from Canada (Million...

    Energy Information Administration (EIA) (indexed site)

    Houlton, ME Natural Gas Imports from Canada (Million Cubic Feet) Compressed Houlton, ME Natural Gas Imports from Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug ...

  19. Calais, ME Compressed Natural Gas Exports to Canada (Million...

    Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) Calais, ME Compressed Natural Gas Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1 24 19 15 3 8 23 22 2014 32 ...

  20. Energy Department Launches Up to $30 Million Effort to Improve...

    Energy Saver

    Up to 30 Million Effort to Improve Solar Module Materials Energy Department Launches Up to 30 Million Effort to Improve Solar Module Materials September 15, 2016 - 9:00am Addthis ...