National Library of Energy BETA

Sample records for methyl tertiary butyl

  1. State Restrictions on Methyl Tertiary Butyl Ether (released in AEO2006)

    Reports and Publications

    2006-01-01

    By the end of 2005, 25 states had barred, or passed laws banning, any more than trace levels of methyl tertiary butyl ether (MTBE) in their gasoline supplies, and legislation to ban MTBE was pending in 4 others. Some state laws address only MTBE; others also address ethers such as ethyl tertiary butyl ether (ETBE) and tertiary amyl methyl ether (TAME). Annual Energy Outlook 2006 assumes that all state MTBE bans prohibit the use of all ethers for gasoline blending.

  2. Enhanced diisobutene production in the presence of methyl tertiary butyl ether

    DOEpatents

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1983-01-01

    In the liquid phase reaction of isobutene in the presence of resin cation exchange resins with itself in a C.sub.4 hydrocarbon stream to form dimers, the formation of higher polymers, oligomers, and co-dimer by-products is suppressed by the presence of 0.0001 to 1 mole per mole of isobutene of methyl tertiary butyl ether.

  3. Enhanced diisobutene production in the presence of methyl tertiary butyl ether

    DOEpatents

    Smith, L.A. Jr.

    1983-03-01

    In the liquid phase reaction of isobutene in the presence of resin cation exchange resins with itself in a C[sub 4] hydrocarbon stream to form dimers, the formation of higher polymers, oligomers, and co-dimer by-products is suppressed by the presence of 0.0001 to 1 mole per mole of isobutene of methyl tertiary butyl ether. 1 fig.

  4. Vapor pressures of methyl tert-butyl ether, ethyl tert-butyl ether, isopropyl tert-butyl ether, tert-amyl methyl ether, and tert-amyl ethyl ether

    SciTech Connect

    Kraehenbuehl, M.A.; Gmehling, J. . Technische Chemie)

    1994-10-01

    The vapor pressures of methyl tert-butyl ether, ethyl tert-butyl ether, isopropyl tert-butyl ether, tert-amyl methyl ether, and tert-amyl ethyl ether were measured by ebulliometry or the static method in the pressure ranges 14--102 and 3--835 kPa (methyl tert-butyl ether), respectively. The data were correlated using the Antoine and Wagner equations. The experimental data of methyl tert-butyl ether and ethyl tert-butyl ether were compared with data available in the literature.

  5. Cytotoxic and DNA-damaging effects of methyl tert-butyl ether and its metabolites on HL-60 cells in vitro

    SciTech Connect

    Tang, G.H.; Shen, Y.; Shen, H.M.

    1996-12-31

    Methyl tert-butyl ether (MTBE) is a widely used oxygenate in unleaded gasoline; however, few studies have been conducted on the toxicity of this compound. This study evaluates the cytotoxic and DNA-damaging effects of MTBE and its metabolites in a human haemopoietic cell line, HL-60. The metabolites of MTBE studied include tertiary butyl alcohol (TBA), {alpha}-hydroxyisobutyric acid (HIBA), and formaldehyde. Comet assay is used to assess DNA damage, and the cytotoxicity is investigated by lactate dehydrogenease (LDH) release. The results show no significant cytotoxic effects of MTBE, TBA, and HIBA over a concentration ranging from 1 to 30 mM. Formaldehyde, in contrast, causes a substantial LDH release at a concentration of 5 {mu}M. Hydrogen peroxide, a known oxidative agent, at concentrations ranging from 10 to 100 {mu}M, produces a significant dose-related increase in DNA damage, whereas a much higher concentration of MTBE (1 to 30 mM) is required to produce a similar observation. The genotoxic effects of TBA and HIBA appear to be identical to that of MTBE. Conversely, DNA damage is observed for formaldehyde at a relatively low concentration range (5 to 100 {mu}M). These findings suggest that MTBE and its metabolites, except formaldehyde, have relatively low cytotoxic and genotoxic effects. 16 refs., 4 figs.

  6. Thermodynamic properties and ideal-gas enthalpies of formation for butyl vinyl ether, 1,2-dimethoxyethane, methyl glycolate, bicyclo[2.2.1]hept-2-ene, 5-vinylbicyclo[2.2.1]hept-2-ene, trans-azobenzene, butyl acrylate, di-tert-butyl ether, and hexane-1,6-diol

    SciTech Connect

    Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.; Smith, N.K.

    1996-11-01

    Ideal-gas enthalpies of formation of butyl vinyl ether, 1,2-dimethoxyethane, methyl glycolate, bicyclo-[2.2.1]hept-2-ene, 5-vinylbicyclo[2.2.1]hept-2-ene, trans-azobenzene, butyl acrylate, di-tert-butyl ether, and hexane-1,6-diol are reported. Enthalpies of fusion were determined for bicyclo[2.2.1]hept-2-ene and trans-azobenzene. Two-phase (solid + vapor) or (liquid + vapor) heat capacities were determined from 300 K to the critical region or earlier decomposition temperature for each compound studied. Liquid-phase densities along the saturation line were measured for bicyclo[2.2.1]hept-2-ene. For butyl vinyl ether and 1,2-dimethoxyethane, critical temperatures and critical densities were determined from the dsc results and corresponding critical pressures derived from the fitting procedures. Fitting procedures were used to derive critical temperatures, critical pressures, and critical densities for bicyclo[2.2.1]hept-2-ene, 5-vinylbicyclo[2.2.1]hept-2-ene, trans-azobenzene, butyl acrylate, and di-tert-butyl ether. Group-additivity parameters or ring-correction terms useful in the application of the Benson group-contribution correlations were derived.

  7. Exposure to methyl tert-butyl ether, benzene, and total hydrocarbons at the Singapore-Malaysia causeway immigration checkpoint

    SciTech Connect

    Tan, C.; Ong, H.Y.; Kok, P.W.

    1996-12-31

    The primary aim of this study was to determine the extent and levels of exposure to volatile organic compounds (VOCs) from automobile emissions in a group of immigration officers at a busy cross-border checkpoint. A majority (80%) of the workers monitored were exposed to benzene at levels between 0.01 and 0.5 ppm, with only 1.2% exceeding the current Occupational Safety and Health Administration occupational exposure limit of 1 ppm. The geometric mean (GM) concentrations of 8-hr time-weighted average exposure were 0.03 ppm, 0.9 ppm, and 2.46 ppm for methyl-tert-butyl ether (MTBE), benzene, and total hydrocarbons (THC), respectively. The highest time-weighted average concentrations measured were 1.05 ppm for MTBE, 2.01 ppm for benzene, and 34 ppm for THC. It was found that motorbikes emitted a more significant amount of pollutants compared with motor cars. On average, officers at the motorcycle booths were exposed to four to five times higher levels of VOCs (GMs of 0.07 ppm, 0.23 ppm, and 4.7 ppm for MTBE, benzene, and THC) than their counterparts at the motor car booths (GMs of 0.01 ppm, 0.05 ppm, and 1.5 ppm). The airborne concentrations of all three pollutants correlated with the flow of vehicle traffic. Close correlations were also noted for the concentrations in ambient air for the three pollutants measured. Benzene and MTBE had a correlation coefficient of 0.97. The overall findings showed that the concentrations of various VOCs were closely related to the traffic density, suggesting that they were from a common source, such as exhaust emissions from the vehicles. The results also indicated that although benzene, MTBE, and THC are known to be volatile, a significant amount could still be detected in the ambient environment, thus contributing to our exposure to these compounds. 4 refs., 6 figs.

  8. Manipulation of the HIF–Vegf pathway rescues methyl tert-butyl ether (MTBE)-induced vascular lesions

    SciTech Connect

    Bonventre, Josephine A.; Kung, Tiffany S.; White, Lori A.; Cooper, Keith R.

    2013-12-15

    Methyl tert-butyl ether (MTBE) has been shown to be specifically anti-angiogenic in piscine and mammalian model systems at concentrations that appear non-toxic in other organ systems. The mechanism by which MTBE targets developing vascular structures is unknown. A global transcriptome analysis of zebrafish embryos developmentally exposed to 0.00625–5 mM MTBE suggested that hypoxia inducible factor (HIF)-regulated pathways were affected. HIF-driven angiogenesis via vascular endothelial growth factor (vegf) is essential to the developing vasculature of an embryo. Three rescue studies were designed to rescue MTBE-induced vascular lesions: pooled blood in the common cardinal vein (CCV), cranial hemorrhages (CH), and abnormal intersegmental vessels (ISV), and test the hypothesis that MTBE toxicity was HIF–Vegf dependent. First, zebrafish vegf-a over-expression via plasmid injection, resulted in significantly fewer CH and ISV lesions, 46 and 35% respectively, in embryos exposed to 10 mM MTBE. Then HIF degradation was inhibited in two ways. Chemical rescue by N-oxaloylglycine significantly reduced CCV and CH lesions by 30 and 32% in 10 mM exposed embryos, and ISV lesions were reduced 24% in 5 mM exposed zebrafish. Finally, a morpholino designed to knock-down ubiquitin associated von Hippel–Lindau protein, significantly reduced CCV lesions by 35% in 10 mM exposed embryos. In addition, expression of some angiogenesis related genes altered by MTBE exposure were rescued. These studies demonstrated that MTBE vascular toxicity is mediated by a down regulation of HIF–Vegf driven angiogenesis. The selective toxicity of MTBE toward developing vasculature makes it a potentially useful chemical in the designing of new drugs or in elucidating roles for specific angiogenic proteins in future studies of vascular development. - Highlights: • Global gene expression of MTBE exposed zebrafish suggested altered HIF1 signaling. • Over expression of zebrafish vegf-a rescues MTBE

  9. Mode of action of ethyl tertiary-butyl ether hepatotumorigenicity in the rat: Evidence for a role of oxidative stress via activation of CAR, PXR and PPAR signaling pathways

    SciTech Connect

    Kakehashi, Anna; Hagiwara, Akihiro; Imai, Norio; Nagano, Kasuke; Nishimaki, Fukumi; Banton, Marcy; Fukushima, Shoji; Wanibuchi, Hideki

    2013-12-01

    To elucidate possible mode of action (MOA) and human relevance of hepatotumorigenicity in rats for ethyl tertiary-butyl ether (ETBE), male F344 rats were administered ETBE at doses of 0, 150 and 1000 mg/kg body weight twice a day by gavage for 1 and 2 weeks. For comparison, non-genotoxic carcinogen phenobarbital (PB) was applied at a dose of 500 ppm in diet. Significant increase of P450 total content and hydroxyl radical levels by low, high doses of ETBE and PB treatments at weeks 1 and 2, and 8-OHdG formation at week 2, accompanied accumulation of CYP2B1/2B2, CYP3A1/3A2 and CYP2C6, and downregulation of DNA oxoguanine glycosylase 1, induction of apoptosis and cell cycle arrest in hepatocytes, respectively. Up-regulation of CYP2E1 and CYP1A1 at weeks 1 and 2, and peroxisome proliferation at week 2 were found in high dose ETBE group. Results of proteome analysis predicted activation of upstream regulators of gene expression altered by ETBE including constitutive androstane receptor (CAR), pregnane-X-receptor (PXR) and peroxisome proliferator-activated receptors (PPARs). These results indicate that the MOA of ETBE hepatotumorigenicity in rats may be related to induction of oxidative stress, 8-OHdG formation, subsequent cell cycle arrest, and apoptosis, suggesting regenerative cell proliferation after week 2, predominantly via activation of CAR and PXR nuclear receptors by a mechanism similar to that of PB, and differentially by activation of PPARs. The MOA for ETBE hepatotumorigenicity in rats is unlikely to be relevant to humans. - Highlights: • We focus on MOA and human relevance of hepatotumorigenicity in rats for ETBE. • ETBE was administered to F344 rats for 1 and 2 weeks. • Oxidative stress formation, proliferation and apoptosis in the liver are analyzed. • ETBE-induced changes of gene and protein expression in the liver are examined. • The effects are compared with those induced by non-genotoxic carcinogen PB.

  10. TABLE33.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update

    ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary butyl alcohol (TBA), and other aliphatic alcohols and ethers intended for motor gasoline blending...

  11. TABLE34.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update

    ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary butyl alcohol (TBA), and other aliphatic alcohols and ethers intended for motor gasoline blending...

  12. {gamma}-aminobutyric acid{sub A} (GABA{sub A}) receptor regulates ERK1/2 phosphorylation in rat hippocampus in high doses of Methyl Tert-Butyl Ether (MTBE)-induced impairment of spatial memory

    SciTech Connect

    Zheng Gang; Zhang Wenbin; Zhang Yun; Chen Yaoming; Liu Mingchao; Yao Ting; Yang Yanxia; Zhao Fang; Li Jingxia; Huang Chuanshu; Luo Wenjing Chen Jingyuan

    2009-04-15

    Experimental and occupational exposure to Methyl Tert-Butyl Ether (MTBE) has been reported to induce neurotoxicological and neurobehavioral effects, such as headache, nausea, dizziness, and disorientation, etc. However, the molecular mechanisms involved in MTBE-induced neurotoxicity are still not well understood. In the present study, we investigated the effects of MTBE on spatial memory and the expression and function of GABA{sub A} receptor in the hippocampus. Our results demonstrated that intraventricular injection of MTBE impaired the performance of the rats in a Morris water maze task, and significantly increased the expression of GABA{sub A} receptor {alpha}1 subunit in the hippocampus. The phosphorylation of ERK1/2 decreased after the MTBE injection. Furthermore, the decreased ability of learning and the reduction of phosphorylated ERK1/2 level of the MTBE-treated rats was partly reversed by bicuculline injected 30 min before the training. These results suggested that MTBE exposure could result in impaired spatial memory. GABA{sub A} receptor may play an important role in the MTBE-induced impairment of learning and memory by regulating the phosphorylation of ERK in the hippocampus.

  13. Supply Impacts of an MTBE Ban

    Reports and Publications

    2002-01-01

    This paper analyzes the supply impacts of removing methyl tertiary butyl ether (MTBE) from gasoline.

  14. MTBE Production Economics (Released in the STEO April 2001)

    Reports and Publications

    2001-01-01

    The purpose of this analysis is to evaluate the causes of methyl tertiary butyl ether (MTBE) price increases in 2000.

  15. Determination of Methyl tert-Butyl Ether and tert-Butyl Alcohol...

    Office of Scientific and Technical Information (OSTI)

    ... Authors: Oh, Keun-Chan ; Stringfellow, William T. Publication Date: 2003-10-02 OSTI Identifier: 820662 Report Number(s): LBNL--53866 R&D Project: G41101; TRN: US200405%%70 DOE ...

  16. Butyl Fuel LLC formerly Environmental Energy Inc | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Butyl Fuel LLC formerly Environmental Energy Inc Jump to: navigation, search Name: Butyl Fuel LLC (formerly Environmental Energy Inc) Place: Ohio Zip: 43004 Product:...

  17. This Week In Petroleum Printer-Friendly Version

    Annual Energy Outlook

    this transition from Methyl Tertiary Butyl Ether (MTBE) reformulated gasoline (RFG) to ethanol RFG, since ethanol is not blended into the gasoline mixture until just before the...

  18. Impact of Renewable Fuels Standard/MTBE Provisions of S. 517 Requested by Sens. Daschle & Murkowski

    Reports and Publications

    2002-01-01

    Additional analysis of the impact of the Renewable Fuels Standard (RFS) and methyl tertiary butyl ether (MTBE) ban provisions of S. 517.

  19. Total Blender Net Input of Petroleum Products

    Energy Information Administration (EIA) (indexed site)

    Normal Butane Isobutane Other Liquids OxygenatesRenewables Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol...

  20. Motor Gasoline Market Spring 2007 and Implications for Spring...

    Annual Energy Outlook

    began to decline, and with the transition from methyl tertiary butyl ether (MTBE) to ethanol completed and the end of the summer driving season drawing near, gasoline prices...

  1. untitled

    Gasoline and Diesel Fuel Update

    of "other" hydrocarbons and oxygenates include hydrogen and oxygenates especially fuel ethanol and methyl tertiary butyl ether (MTBE). The adjustment is equal to the...

  2. Activation of water soluble amines by halogens for trapping methyl radioactive iodine from air streams

    DOEpatents

    Deitz, Victor R.; Blachly, Charles H.

    1977-01-01

    Gas adsorbent charcoals impregnated with an aqueous solution of the reaction product of a tertiary amine and elemental iodine or bromine are better than 99 per cent efficient in trapping methyl iodine.sup.131. The chemical addition of iodine or bromine to the tertiary amine molecule increases the efficiency of the impregnated charcoal as a trapping agent, and in conjunction with the high flash point of the tertiary amine raises the ignition temperature of the impregnated charcoal.

  3. Methyl tert-butyl ether and ethyl tert-butyl ether: A comparison of properties, synthesis techniques, and operating conditions

    SciTech Connect

    Sneesby, M.G.; Tade, M.O.; Datta, R.

    1996-12-31

    MTBE is currently the most industrially significant oxygenate but some of the properties of ETBE and the EPA ethanol mandate suggest that ETBE could become a viable competitor. Similar synthesis techniques are used for both ethers but the phase behaviour of the ETBE system requires slightly different operating conditions and creates some alternatives for product recovery. The process control strategy for both systems must address some unusual challenges. 9 refs., 1 tab.

  4. Photodetachment and electron reactivity in 1-methyl-1-butyl-pyrrolidinium bis(trifluoromethylsulfonyl)amide

    SciTech Connect

    Molins i Domenech, Francesc; FitzPatrick, Benjamin; Healy, Andrew T.; Blank, David A.

    2012-07-21

    The transient absorption spectrum in the range 500 nm-1000 nm was measured with ultrafast time resolution on a flowing neat, aliphatic, room-temperature ionic liquid following anion photodetachment. In this region the spectrum was shown to be a combination of absorption from the electron and the hole. Spectrally-resolved electron quenching determined a bimodal shape for the hole spectrum in agreement with recent computational predictions on a smaller aliphatic ionic liquid [Margulis et al., J. Am. Chem. Soc. 133, 20186 (2011)]. For time delays beyond 15 ps, spectral evolution qualitatively agrees with recent radiolysis experiments [Wishart et al., Faraday Discuss. 154, 353 (2012)]. However, the shape of the spectrum is different, reflecting the contrast in ionization energy between the two methods. Previously unobserved reactivity of the electron was found with a time constant of 300 fs. The results demonstrate solvent control of the rate coefficient for reaction between the electron and proton, with a rapid decline in the rate within the first picosecond.

  5. Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate

    SciTech Connect

    Binder, Thomas; Erpelding, Michael; Schmid, Josef; Chin, Andrew; Sammons, Rhea; Rockafellow, Erin

    2015-04-10

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate. The purpose of Archer Daniels Midlands Integrated Biorefinery (IBR) was to demonstrate a modified acetosolv process on corn stover. It would show the fractionation of crop residue to distinct fractions of cellulose, hemicellulose, and lignin. The cellulose and hemicellulose fractions would be further converted to ethanol as the primary product and a fraction of the sugars would be catalytically converted to acrylic acid, with butyl acrylate the final product. These primary steps have been demonstrated.

  6. Conversion of Lignocellulosic Biomass to Ethanol Butyl Acrylate

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate March 25, 2015 Principal Investigator Thomas P. Binder ARCHER DANIELS MIDLAND COMPANY 2 Where does ADM fit with the IBR? * Ensuring a supply of technology for future growth is a priority for ADM Research * Corn stover utilization may enable continued growth in starch supply while starting a new industry around a currently underutilized material James R Randall Research Center Decatur, IL ARCHER DANIELS MIDLAND COMPANY 3 Quad

  7. Apolipoprotein AI tertiary structures determine stability and

    Office of Scientific and Technical Information (OSTI)

    phospholipid-binding activity of discoidal high-density lipoprotein particles of different sizes (Journal Article) | SciTech Connect Apolipoprotein AI tertiary structures determine stability and phospholipid-binding activity of discoidal high-density lipoprotein particles of different sizes Citation Details In-Document Search Title: Apolipoprotein AI tertiary structures determine stability and phospholipid-binding activity of discoidal high-density lipoprotein particles of different sizes

  8. Preparations for Meeting New York and Connecticut MTBE Bans

    Reports and Publications

    2003-01-01

    In response to a Congressional request, the Energy Information Administration examined the progress being made to meet the bans on the use of methyl tertiary butyl ether (MTBE) being implemented in New York and Connecticut at the end of 2003.

  9. APPENDXD.CHP:Corel VENTURA

    Annual Energy Outlook

    Report The Form EIA-819, "Monthly Oxygenate Report" provides production data for fuel ethanol and methyl tertiary butyl ether (MTBE). End-of-month stock data held at ethanol...

  10. Cooperative Tertiary Interaction Network Guides RNA Folding

    SciTech Connect

    Behrouzi, Reza; Roh, Joon Ho; Kilburn, Duncan; Briber, R.M.; Woodson, Sarah A.

    2013-04-08

    Noncoding RNAs form unique 3D structures, which perform many regulatory functions. To understand how RNAs fold uniquely despite a small number of tertiary interaction motifs, we mutated the major tertiary interactions in a group I ribozyme by single-base substitutions. The resulting perturbations to the folding energy landscape were measured using SAXS, ribozyme activity, hydroxyl radical footprinting, and native PAGE. Double- and triple-mutant cycles show that most tertiary interactions have a small effect on the stability of the native state. Instead, the formation of core and peripheral structural motifs is cooperatively linked in near-native folding intermediates, and this cooperativity depends on the native helix orientation. The emergence of a cooperative interaction network at an early stage of folding suppresses nonnative structures and guides the search for the native state. We suggest that cooperativity in noncoding RNAs arose from natural selection of architectures conducive to forming a unique, stable fold.

  11. Hydrogen Atom Reactivity toward Aqueous tert-Butyl Alcohol

    SciTech Connect

    Lymar S. V.; Schwarz, H.A.

    2012-02-09

    Through a combination of pulse radiolysis, purification, and analysis techniques, the rate constant for the H + (CH{sub 3}){sub 3}COH {yields} H{sub 2} + {sm_bullet}CH{sub 2}C(CH{sub 3}){sub 2}OH reaction in aqueous solution is definitively determined to be (1.0 {+-} 0.15) x 10{sup 5} M{sup -1} s{sup -1}, which is about half of the tabulated number and 10 times lower than the more recently suggested revision. Our value fits on the Polanyi-type, rate-enthalpy linear correlation ln(k/n) = (0.80 {+-} 0.05){Delta}H + (3.2 {+-} 0.8) that is found for the analogous reactions of other aqueous aliphatic alcohols with n equivalent abstractable H atoms. The existence of such a correlation and its large slope are interpreted as an indication of the mechanistic similarity of the H atom abstraction from {alpha}- and {beta}-carbon atoms in alcohols occurring through the late, product-like transition state. tert-Butyl alcohol is commonly contaminated by much more reactive secondary and primary alcohols (2-propanol, 2-butanol, ethanol, and methanol), whose content can be sufficient for nearly quantitative scavenging of the H atoms, skewing the H atom reactivity pattern, and explaining the disparity of the literature data on the H + (CH{sub 3}){sub 3}COH rate constant. The ubiquitous use of tert-butyl alcohol in pulse radiolysis for investigating H atom reactivity and the results of this work suggest that many other previously reported rate constants for the H atom, particularly the smaller ones, may be in jeopardy.

  12. Controlling DNA Methylation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Controlling DNA Methylation Though life on earth is composed of a diverse range of organisms, some with many different types of tissues and cells, all these are encoded by a molecule we call DNA. The information required to build a protein is stored in DNA within the cells. Not all the message in the DNA is used in each cell and not all the message is used all the time. During cell differentiation, the cells become dedicated for their specific function which involves selectively activating some

  13. Aqueous flooding methods for tertiary oil recovery

    DOEpatents

    Peru, Deborah A.

    1989-01-01

    A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

  14. Combustion characterization of methylal in reciprocating engines

    SciTech Connect

    Dodge, L.; Naegeli, D.

    1994-06-01

    Methylal, CH{sub 3}OCH{sub 2}OCH{sub 3}, also known as dimethoxy-methane, is unique among oxygenates in that it has a low autoignition temperature, no carbon-carbon bonds, and is soluble in middle distillate fuels. Because of these properties, methylal has been shown to be a favorable fuel additive for reducing smoke in diesel engines. Recent measurements of ignition delay times indicate that methylal has a cetane number in the range of 45-50, which is compatible with diesel fuels. Engine tests have shown that adding methylal to diesel fuel significantly reduces smoke emissions. Gaseous emissions and combustion efficiencies obtained with methylal/diesel fuel blends remain essentially the same as those measured using neat diesel fuel. Lubricity measurements of methylal/diesel fuel blends with a ball on cylinder lubrication evaluator (BOCLE) show that methylal improves the lubricity of diesel fuel. Even though additions of methylal lower the fuel viscosity, the results of the BOCLE tests indicate that the methylal/diesel fuel blends cause less pump wear than neat diesel fuel. The one drawback is that methylal has a low boiling point (42{degrees}C) and a relatively high vapor pressure. As a result, it lowers the flash point of diesel fuel and causes a potential fuel tank flammability hazard. One solution to this increased volatility is to make polyoxymethylenes with the general formula of CH{sub 3}O(CH{sub 2}O){sub x}CH{sub 3} where x > 2. The molecules are similar to methylal, but have higher molecular weights and thus higher viscosities and substantially lower vapor pressures. Therefore, their flash points will be compatible with regular diesel fuel. The polyoxymethylenes are expected to have combustion properties similar to methylal. It is theorized that by analogy with hydrocarbons, the ignition quality (i.e., cetane number) of the polyoxymethylenes will be better than that of methylal.

  15. Detailed Chemical Kinetic Reaction Mechanism for Biodiesel Components Methyl Stearate and Methyl Oleate

    SciTech Connect

    Naik, C; Westbrook, C K; Herbinet, O; Pitz, W J; Mehl, M

    2010-01-22

    New chemical kinetic reaction mechanisms are developed for two of the five major components of biodiesel fuel, methyl stearate and methyl oleate. The mechanisms are produced using existing reaction classes and rules for reaction rates, with additional reaction classes to describe other reactions unique to methyl ester species. Mechanism capabilities were examined by computing fuel/air autoignition delay times and comparing the results with more conventional hydrocarbon fuels for which experimental results are available. Additional comparisons were carried out with measured results taken from jet-stirred reactor experiments for rapeseed methyl ester fuels. In both sets of computational tests, methyl oleate was found to be slightly less reactive than methyl stearate, and an explanation of this observation is made showing that the double bond in methyl oleate inhibits certain low temperature chain branching reaction pathways important in methyl stearate. The resulting detailed chemical kinetic reaction mechanism includes more approximately 3500 chemical species and more than 17,000 chemical reactions.

  16. EXTRACTION OF TETRAVALENT PLUTONIUM VALUES WITH METHYL ETHYL KETONE, METHYL ISOBUTYL KETONE ACETOPHENONE OR MENTHONE

    DOEpatents

    Seaborg, G.T.

    1961-08-01

    A process is described for extracting tetravalent plutonium from an aqueous acid solution with methyl ethyl ketone, methyl isobutyl ketone, or acetophenone and with the extraction of either tetravalent or hexavalent plutonium into menthone. (AEC)

  17. Motor Gasoline Outlook and State MTBE Bans

    Reports and Publications

    2003-01-01

    The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending state bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year.

  18. Impact of Renewable Fuels Standard/MTBE Provisions of S. 1766

    Reports and Publications

    2002-01-01

    This service report addresses the Renewable Fuels Standard (RFS)/methyl tertiary butyl ether (MTBE) provisions of S. 1766. The 'S. 1766' Case reflects provisions of S. 1766 including a renewable fuels standard (RFS) reaching five billion gallons by 2012, a complete phase-out of MTBE within four years, and the option for states to waive the oxygen requirement for reformulated gasoline (RFG).

  19. Status and Impacts of State MTBE Bans

    Reports and Publications

    2003-01-01

    This paper describes legislation passed in 16 states banning or restricting the use of methyl tertiary butyl ether (MTBE) in gasoline. Analysis of the status and impact of these state MTBE bans is provided concerning the supply and potential price changes of gasoline.

  20. Eliminating MTBE in Gasoline in 2006

    Reports and Publications

    2006-01-01

    A review of the market implications resulting from the rapid change from methyl tertiary butyl ether (MTBE) to ethanol-blended reformulated gasoline (RFG) on the East Coast and in Texas. Strains in ethanol supply and distribution will increase the potential for price volatility in these regions this summer.

  1. Green polymer electrolytes based on chitosan and 1-butyl-3-methylimidazolium acetate

    SciTech Connect

    Shamsudin, Intan Juliana; Ahmad, Azizan; Hassan, Nur Hasyareeda

    2014-09-03

    Green polymer electrolytes based on chitosan as the polymer matrix and ionic liquid 1-butyl-3-methylimidazolium acetate [Bmim][OAc] as charge carriers were prepared by solution casting technique. Complexes with various amount of ionic liquid loading were investigated as possible ionic conducting polymers. The ionic conductivity was found to increase with increasing weight percent of ionic liquid. The highest ionic conductivity of the charged chitosan-[Bmim][OAc] was 2.44 × 10{sup −3} S cm{sup −1} at 90 wt.% of [Bmim][OAc] content at ambient temperature. Attenuated Total Reflection Fourier Transform infrared (ATR-FTIR) spectroscopy has proven the interaction between chitosan and [Bmim][OAc]. X-ray Diffraction (XRD) has shown that the amorphosity of the complexes increase as the amount of [Bmim][OAc] increase.

  2. FCC LPG olefinicity and branching enhanced by octane catalysts

    SciTech Connect

    Keyworth, D.A.; Reid, T.A.; Kreider, K.R.; Yatsu, C.A.

    1989-05-29

    Refiners are increasingly recognizing the downstream opportunities for fluid catalytic cracking LPG olefins for the production of methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE, if the ethanol subsidy is extended to the production of ETBE), and as petrochemical feedstocks. Some of new gasoline FCC octane-enhancing catalysts can support those opportunities because their low non-framework alumina (low NFA) preserve both LPG olefinicity and promote branching of the LPG streams from the FCCU. The combined effect results in more isobutane for alkylate feed, more propylene in the propane/propylene stream, and more isobutene - which makes the addition of an MTBE unit very enticing.

  3. Regional prospectivity of Mesozoic and Tertiary in the eastern Adriatic and adjacent area

    SciTech Connect

    Scott, J.; Dolan, P.; Lunn, G. )

    1988-08-01

    Post-Hercynian deposits in the eastern Adriatic and the adjacent external zones of the Dinarides and Albanian Hellenides may be subdivided into four facies groups. (1) Permian-Lower Triassic clastics and carbonates with some evaporites, (2) Middle Triassic-lower Tertiary carbonate platform facies with associated continental margin deeper marine sequences, (3) Upper Cretaceous-lower Tertiary flysch, and (4) middle Tertiary molasse and postorogenic Neogene sediments. The Permian to lower Tertiary section was deposited during the complex Alpine cycle, while the upper Tertiary section is the product of post-Alpine deposition. This depositional history during markedly different tectonic regimes creates two groups of petroleum plays in the eastern Adriatic: (1) Alpine cycle plays in the Permian to lower Tertiary in the thrust-faulted and folded foreland of Adria and (2) post-Alpine plays in upper Tertiary postorogenic or late synorogenic basins. Around the Adriatic, the post-Alpine plays have so far proved the most successful. Major production occurs in the onshore Po basin and its extension beneath the Adriatic. Some of this production is from deep Alpine-cycle reservoirs, but the bulk is from the upper Tertiary-Quaternary. Similar horizons produce onshore and offshore the central-southern Adriatic coast of Italy. Major Tertiary production also occurs to the northeast in the Pannonian basin of Yugoslavia and Hungary from Miocene and younger sequences. Onshore Albania produces significant quantities of hydrocarbons; although data are scarce, much of this production is presumably from upper Tertiary molasse or lower Tertiary flysch.

  4. Method and apparatus for secondary and tertiary recovery of hydrocarbons

    SciTech Connect

    Rivas, N.; Beichel, R.

    1987-07-07

    This patent describes an apparatus for secondary and tertiary recovery of hydrocarbons from oil fields comprising: a. a bipropellant generator capable of producing exhaust gases at supercritical pressures and temperatures; b. transport means for carrying the exhaust gases into a well bore, at least a portion of the well bore extending into a hydrocarbon bearing formation from which hydrocarbons are to be recovered; c. means for introducing water into the transport means; and d. a water cooling jacket extending into at least the upper portion of the well bore, the center of the cooling jacket receiving the exhaust gases from the transport means, means being provided for the introduction of chemical additives through a portion of the cooling jacket. A process is described for secondary and tertiary recovery of hydrocarbons from geological formations comprising: a. providing a well bore extending at least into the strata of the geologic formation containing the hydrocarbons to be recovered; b. providing at least the upper portion of the well bore with a cooling jacket, the cooling jacket being provided with a central, open portion; c. generating gases at supercritical temperatures and pressures; d. introducing water into the supercritical gases to form steam; e. forcing the mixture of supercritical combustion gases and steam through the central open portion of the cooling jacket and the well bore into the hydrocarbon strata; and f. adding chemical additives to the mixture of combustion gases and steam below the cooling jacket.

  5. Features of the spectral dependences of transmittance of organic semiconductors based on tert-butyl substituted lutetium phthalocyanine molecules

    SciTech Connect

    Belogorokhov, I. A.; Tikhonov, E. V.; Dronov, M. A.; Belogorokhova, L. I.; Ryabchikov, Yu. V.; Tomilova, L. G.; Khokhlov, D. R.

    2011-11-15

    Vibronic properties of organic semiconductors based on tert-butyl substituted phthalocyanine lutetium diphthalocyanine molecules are studied by IR and Raman spectroscopy. It is shown that substitution of several carbon atoms in initial phthalocyanine (Pc) ligands with {sup 13}C isotope atoms causes a spectral shift in the main absorption lines attributed to benzene, isoindol, and peripheral C-H groups. A comparison of spectral characteristics showed that the shift can vary from 3 to 1 cm{sup -1}.

  6. Method for photochemical reduction of uranyl nitrate by tri-N-butyl phosphate and application of this method to nuclear fuel reprocessing

    DOEpatents

    De Poorter, Gerald L.; Rofer-De Poorter, Cheryl K.

    1978-01-01

    Uranyl ion in solution in tri-n-butyl phosphate is readily photochemically reduced to U(IV). The product U(IV) may effectively be used in the Purex process for treating spent nuclear fuels to reduce Pu(IV) to Pu(III). The Pu(III) is readily separated from uranium in solution in the tri-n-butyl phosphate by an aqueous strip.

  7. N-butyl Cyanoacrylate Glue Embolization of Arterial Networks to Facilitate Hepatic Arterial Skeletonization before Radioembolization

    SciTech Connect

    Samuelson, Shaun D.; Louie, John D.; Sze, Daniel Y.

    2013-06-15

    Purpose. Avoidance of nontarget microsphere deposition via hepatoenteric anastomoses is essential to the safety of yttrium-90 radioembolization (RE). The hepatic hilar arterial network may remain partially patent after coil embolization of major arteries, resulting in persistent risk. We retrospectively reviewed cases where n-butyl cyanoacrylate (n-BCA) glue embolization was used to facilitate endovascular hepatic arterial skeletonization before RE. Methods. A total of 543 RE procedures performed between June 2004 and March 2012 were reviewed, and 10 were identified where n-BCA was used to embolize hepatoenteric anastomoses. Arterial anatomy, prior coil embolization, and technical details were recorded. Outcomes were reviewed to identify subsequent complications of n-BCA embolization or nontarget RE. Results. The rate of complete technical success was 80 % and partial success 20 %, with one nontarget embolization complication resulting in a minor change in treatment plan. No evidence of gastrointestinal or biliary ischemia or infarction was identified, and no microsphere-related gastroduodenal ulcerations or other evidence of nontarget RE were seen. Median volume of n-BCA used was <0.1 ml. Conclusion. n-BCA glue embolization is useful to eliminate hepatoenteric networks that may result in nontarget RE, especially in those that persist after coil embolization of major vessels such as the gastroduodenal and right gastric arteries.

  8. Methylal and Methylal-Diesel Blended Fuels from Use In Compression-Ignition Engines

    SciTech Connect

    Keith D. Vertin; James M. Ohi; David W. Naegeli; Kenneth H. Childress; Gary P. Hagen; Chris I. McCarthy; Adelbert S. Cheng; Robert W. Dibble

    1999-05-05

    Gas-to-liquids catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude derived fuels. Methylal (CH{sub 3}-O-CH{sub 2}-O-CH{sub 3}) also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins 85.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions. Substantial reductions of particulate matter emissions h ave been demonstrated 3r IO to 30% blends of methylal in diesel fuel. This research indicates that methylal may be an effective blendstock for diesel fuel provided design changes are made to vehicle fuel handling systems.

  9. Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or

    Office of Scientific and Technical Information (OSTI)

    enhanced oil recovery: High performance at low concentration (Journal Article) | SciTech Connect Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration Citation Details In-Document Search This content will become publicly available on January 12, 2017 Title: Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration Authors: Luo, Dan ;

  10. West Hackberry Tertiary Project. Annual report, September 3, 1997--September 2, 1998

    SciTech Connect

    Gillham, T.H.

    1997-09-10

    The following report is the Project Management Plan for the fifth year of the West Hackberry Tertiary Project. The West Hackberry Tertiary Project is one of four mid-term projects selected by the United States Department of Energy (DOE) as part of the DOE`s Class 1 Program for the development of advance recovery technologies in fluvial dominated deltaic reservoirs. The West Hackberry Tertiary Project is a field test of the idea that air injection can be combined with the Double Displacement Process to produce a low cost tertiary recovery process which is economic at current oil prices. The Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering tertiary oil by gravity drainage. The Double Displacement Process is based upon the concept that in fields such as West Hackberry waterdrive recoveries are typically 50%-60% of the original oil in place while gravity drainage recoveries average 80%-90% of the original oil in place. Therefore, by injecting a gas into a watered out reservoir, a gas cap will form an additional oil can be recovered due to gravity drainage. Although the Double Displacement Process has been shown to be successful in recovering tertiary oil in other fields, this project will be the first to utilize air injection in the Double Displacement Process. The use of air injection in this process combines the benefits of air`s low cost and universal accessibility with the potential for accelerated oil recovery due to the combustion process. If successful, this project will demonstrate that the use of air injection in the Double Displacement Process will result in an economically viable tertiary process in reservoirs where tertiary oil recovery is presently uneconomical.

  11. West Hackberry tertiary project. Annual report, September 3, 1994--September 2, 1995

    SciTech Connect

    Gillham, T.; Cerveny, B.; Turek, E.

    1996-05-01

    The West Hackberry Tertiary Project is a field test of the idea that air injection can be combined with the Double Displacement Process to produce a low cost tertiary recovery process which is economic at current oil prices. The Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering tertiary oil by gravity drainage. The Double Displacement Process is based upon the concept that in fields such as West Hackberry waterdrive recoveries are typically 50%-60% of the original oil in place while gravity drainage recoveries average 80%-90% of the original oil in place. Therefore, by injecting a gas into a watered out reservoir, a gas cap will form and additional oil can be recovered due to gravity drainage. Although the Double Displacement Process has been shown to be successful in recovering tertiary oil in other fields, this project will be the first to utilize air injection in the Double Displacement Process. The use of air injection in this process combines the benefits of air`s low cost and universal accessibility with the potential for accelerated oil recovery due to the combustion process. If successful, this project will demonstrate that the use of air injection in the Double Displacement Process will result in an economically viable tertiary process in reservoirs where tertiary oil recovery is presently uneconomical.

  12. Distribution of 1-Butyl-3-methylimidazolium Bistrifluoromethylsulfonimide in Mesoporous Silica as a Function of Pore Filling

    SciTech Connect

    Han, Kee Sung; Wang, Xiqing; Hagaman, Edward {Ed} W; Dai, Sheng

    2013-01-01

    Rotational dynamics of the ionic liquid (IL) 1-butyl-3-methlyimidazolium bistrifluoromethylsulfonimide, [C4mim][Tf2N], 1, as a neat liquid and confined in mesoporous silica were investigated by 1H spin-spin (T2) and spin-lattice (T1) relaxation measurements and 13C NMR spectroscopy. Translational dynamics (self-diffusion) were monitored via the diffusion coefficient, D, obtained with 1H pulsed field gradient NMR measurements. These data were used to determine the distribution of 1 in the pores of KIT-6, a mesoporous silica with a bicontinuous gyroid pore structure, as a function of filling fraction. Relaxation studies performed as a function of filling factor and temperature, reveal a dynamic heterogeneity in both translational and rotational motions for 1 at filling factors, f, = 0.2-1.0 (f = 1 corresponds to fully filled pores). Spin-lattice and spin-spin relaxation times reveal the motion of 1 in silica mesopores conform to that expected for a two-dimensional relaxation model. The relaxation dynamics are interpreted using a two-state, fast exchange model for all motions; a slow rotation (and translation) of molecules in contact with the surface and a faster motion approximated by the values for bulk relaxation and diffusion. 1 retains liquid like behavior at all filling factors and temperatures that extend to ca. 50 degrees below the bulk melting point. Translational motion in these systems, interpreted with MD-simulated diffusivity limits, confirms the high propensity of 1 to form a monolayer film on the silica surface at low filling factors.. The attractive interaction of 1 with the surface is greater than that for self-association of 1. The trends in diffusion data at short and long diffusion time suggest that the population of surface-bound 1 is in intimate contact with 1 in the pores. This condition is most easily met at higher filling fractions with successive additions of 1 increasing the layer thickness built up on the surface layer.

  13. Low temperature synthesis of methyl formate

    DOEpatents

    Mahajan, Devinder; Slegeir, William A.; Sapienza, Richard S.; O'Hare, Thomas E.

    1986-01-01

    A gas reaction process for the preferential production of methyl formate over the co-production of methanol wherein the reactant ratio of CO/H.sub.2 is upgraded and this reaction takes place at low temperatures of 50.degree.-150.degree. C. and moderate pressures of .gtoreq.100 psi.

  14. Modulation of histone methylation and MLH1 gene silencing by...

    Office of Scientific and Technical Information (OSTI)

    ... Subject: 60 APPLIED LIFE SCIENCES; ARGININE; CARCINOGENS; CHROMIUM; DNA DAMAGES; GENES; HUMAN POPULATIONS; LUNGS; LYSINE; METHYLATION; NEOPLASMS; OCCUPATIONAL EXPOSURE; PROMOTERS ...

  15. Oxygenates du`jour...MTBE? Ethanol? ETBE?

    SciTech Connect

    Wolfe, R.

    1995-12-31

    There are many different liquids that contain oxygen which could be blended into gasoline. The ones that have been tried and make the most sense are in the alcohol (R-OH) and ether (R-O-R) chemical family. The alcohols considered are: methanol (MeOH), ethanol (EtOH), tertiary butyl alcohol (TBA). The ethers are: methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary amyl ethyl ether (TAEE), di-isopropyl ether (DIPE). Of the eight oxygenates listed above, the author describes the five that are still waiting for widespread marketing acceptance (methanol, TBA, TAME, TAEE, and DIPE). He then discusses the two most widely used oxygenates in the US, MTBE and ethanol, along with the up-and-coming ethanol ether, ETBE. Selected physical properties for all of these oxygenates can be found in Table 2 at the end of this paper. A figure shows a simplified alcohol/ether production flow chart for the oxygenates listed above and how they are interrelated.

  16. Dosimetric measurements of an n-butyl cyanoacrylate embolization material for arteriovenous malformations

    SciTech Connect

    Labby, Zacariah E.; Chaudhary, Neeraj; Gemmete, Joseph J.; Pandey, Aditya S.; Roberts, Donald A.

    2015-04-15

    Purpose: The therapeutic regimen for cranial arteriovenous malformations often involves both stereotactic radiosurgery and endovascular embolization. Embolization agents may contain tantalum or other contrast agents to assist the neurointerventionalists, leading to concerns regarding the dosimetric effects of these agents. This study investigated dosimetric properties of n-butyl cyanoacrylate (n-BCA) plus lipiodol with and without tantalum powder. Methods: The embolization agents were provided cured from the manufacturer with and without added tantalum. Attenuation measurements were made for the samples and compared to the attenuation of a solid water substitute using a 6 MV photon beam. Effective linear attenuation coefficients (ELAC) were derived from attenuation measurements made using a portal imager and derived sample thickness maps projected in an identical geometry. Probable dosimetric errors for calculations in which the embolized regions are overridden with the properties of water were calculated using the ELAC values. Interface effects were investigated using a parallel plate ion chamber placed at set distances below fixed samples. Finally, Hounsfield units (HU) were measured using a stereotactic radiosurgery CT protocol, and more appropriate HU values were derived from the ELAC results and the CT scanners HU calibration curve. Results: The ELAC was 0.0516 0.0063 cm{sup ?1} and 0.0580 0.0091 cm{sup ?1} for n-BCA without and with tantalum, respectively, compared to 0.0487 0.0009 cm{sup ?1} for the water substitute. Dose calculations with the embolized region set to be water equivalent in the treatment planning system would result in errors of ?0.29% and ?0.93% per cm thickness of n-BCA without and with tantalum, respectively. Interface effects compared to water were small in magnitude and limited in distance for both embolization materials. CT values at 120 kVp were 2082 and 2358 HU for n-BCA without and with tantalum, respectively; dosimetrically

  17. Tension-compression-tension tertiary twins in coarse-grained polycrystalline pure magnesium at room temperature

    DOE PAGES [OSTI]

    Yu, Qin; Jiang, Yanyao; Wang, Jian

    2015-04-07

    Using electron backscatter diffraction, the microstructural features of tension–compression–tension (T–C–T) tertiary twins are studied in coarse-grained pure polycrystalline magnesium subjected to monotonic compression along the extrusion direction in ambient air. T–C–T tertiary twins are developed due to the formation of a compression–tension double twin inside a primary tension twin. All the observed T–C–T twin variants are of TiCjTj type. TiCi+1Ti+1 (or TiCi–1Ti–1) variants are observed more frequently than TiCi+2Ti+2 (or TiCi–2Ti–2) variants. Moreover, the number of tertiary twin lamellae increases with the applied compressive strain.

  18. An Experimental and Kinetic Modeling Study of Methyl Decanoate Combustion

    SciTech Connect

    Sarathy, S M; Thomson, M J; Pitz, W J; Lu, T

    2010-02-19

    Biodiesel is typically a mixture of long chain fatty acid methyl esters for use in compression ignition engines. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This research study presents new combustion data for methyl decanoate in an opposed-flow diffusion flame. An improved detailed chemical kinetic model for methyl decanoate combustion is developed, which serves as the basis for deriving a skeletal mechanism via the direct relation graph method. The novel skeletal mechanism consists of 648 species and 2998 reactions. This mechanism well predicts the methyl decanoate opposed-flow diffusion flame data. The results from the flame simulations indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular weight oxygenated compounds such as carbon monoxide, formaldehyde, and ketene.

  19. Lithium Methyl Carbonate as a Reaction Product of Metallic Lithiumand...

    Office of Scientific and Technical Information (OSTI)

    Lithium methyl carbonate is only one of the components, the others being lithium oxalate and lithium methoxide. Authors: Zhuang, Guorong V. ; Yang, Hui ; Ross Jr., Philip N. ; Xu, ...

  20. Conversion of Levulinic Acid to Methyl Tetrahydrofuran - Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    acid is a highly desirable renewable chemical platform, which, using this process, can be converted into Methyl Tetrahydrofuran (Me-THF) with reasonable yield. The...

  1. Refinery & Blenders Net Input of Crude Oil

    Energy Information Administration (EIA) (indexed site)

    Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils,

  2. Refinery Stocks of Crude Oil and Petroleum Products

    Energy Information Administration (EIA) (indexed site)

    Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils

  3. Update of Summer Reformulated Gasoline Supply Assessment for New York and Connecticut

    Reports and Publications

    2004-01-01

    In October 2003, the Energy Information Administration (EIA) published a review of the status of the methyl tertiary butyl ether (MTBE) ban transition in New York (NY) and Connecticut (CT) that noted significant uncertainties in gasoline supply for those states for the summer of 2004. To obtain updated information, EIA spoke to major suppliers to the two states over the past several months as the petroleum industry began the switch from winter- to summer-grade gasoline.

  4. MTEM Map

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MTBE Production Economics Tancred C. M. Lidderdale Contents 1. Summary 2. MTBE Production Costs 3. Relationship between price of MTBE and Reformulated Gasoline 4. Influence of Natural Gas Prices on the Gasoline Market 5. Regression Results 6. Data Sources 7. End Notes 1. Summary Last year the price of MTBE (methyl tertiary butyl ether) increased dramatically on two occasions (Figure 1) (see Data Sources at end of article.): 1. Between April and June 2000, the price (U.S. Gulf Coast waterborne

  5. MTBE Production Economics

    Gasoline and Diesel Fuel Update

    MTBE Production Economics Tancred C. M. Lidderdale Contents 1. Summary 2. MTBE Production Costs 3. Relationship between price of MTBE and Reformulated Gasoline 4. Influence of Natural Gas Prices on the Gasoline Market 5. Regression Results 6. Data Sources 7. End Notes 1. Summary Last year the price of MTBE (methyl tertiary butyl ether) increased dramatically on two occasions (Figure 1) (see Data Sources at end of article.): 1. Between April and June 2000, the price (U.S. Gulf Coast waterborne

  6. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update

    Imports & Exports Definitions Key Terms Definition All Other Motor Gasoline Blending Components Naphthas (e.g. straight-run gasoline, alkylate, reformate, benzene, toluene, xylene) used for blending or compounding into finished motor gasoline. Includes receipts and inputs of Gasoline Treated as Blendstock (GTAB). Excludes conventional blendstock for oxygenate blending (CBOB), reformulated blendstock for oxygenate blending, oxygenates (e.g. fuel ethanol and methyl tertiary butyl ether),

  7. Total Crude Oil and Petroleum Products Exports

    Energy Information Administration (EIA) (indexed site)

    Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter

  8. Total Crude Oil and Petroleum Products Imports by Area of Entry

    Energy Information Administration (EIA) (indexed site)

    by Area of Entry Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel

  9. Theoretical spectroscopic characterization at low temperatures of S-methyl thioformate and O-methyl thioformate

    SciTech Connect

    Senent, M. L.; Puzzarini, C.; Hochlaf, M.; Domínguez-Gómez, R.; Carvajal, M.

    2014-09-14

    Highly correlated ab initio methods are employed to determine spectroscopic properties at low temperatures of two S-analogs of methyl formate: S-methyl thioformate CH{sub 3}-S-CHO (MSCHO) and O-methyl thioformate CH{sub 3}-O-CHS (MOCHS). Both species are detectable and they are expected to play an important role in Astrochemistry. Molecular properties are compared with those of the O-analog, methyl formate. Both isomers present two conformers cis and trans. cis-CH{sub 3}-S-CHO represents the most stable structure lying 4372.2 cm{sup −1} below cis-CH{sub 3}-O-CHS. The energy difference between the cis and trans forms is drastically lower for MSCHO (1134 cm{sup −1}) than for MOCHS (1963.6 cm{sup −1}). Harmonic and anharmonic fundamentals and the corresponding intensities, as well as the rotational constants for the ground vibrational and first excited torsional states and the centrifugal distortions constants, are provided. Low torsional energy levels have been obtained by solving variationally a two dimensional Hamiltonian expressed in terms of the two torsional degrees of freedom. The corresponding 2D potential energy surfaces have been computed at the CCSD(T)/aug-cc-pVTZ level of theory. The methyl torsional barriers V{sub 3}(cis) are determined to be 139.7 cm{sup −1} (CH{sub 3}-S-CHO) and 670.4 cm{sup −1} (CH{sub 3}-O-CHS). The A/E splitting of ground torsional state has been estimated to be 0.438 cm{sup −1} for CH{sub 3}-S-CHO and negligible for CH{sub 3}-O-CHS.

  10. Production of methyl-vinyl ketone from levulinic acid

    DOEpatents

    Dumesic, James A.; West; Ryan M.

    2011-06-14

    A method for converting levulinic acid to methyl vinyl ketone is described. The method includes the steps of reacting an aqueous solution of levulinic acid, over an acid catalyst, at a temperature of from room temperature to about 1100 K. Methyl vinyl ketone is thereby formed.

  11. Host cells and methods for producing 3-methyl-2-buten-1-ol, 3-methyl-3-buten-1-ol, and 3-methyl-butan-1-ol

    DOEpatents

    Chou, Howard H.; Keasling, Jay D.

    2011-07-26

    The invention provides for a method for producing a 5-carbon alcohol in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses a first enzyme capable of catalyzing the dephosphorylation of an isopentenyl pyrophosphate (IPP) or dimethylallyl diphosphate (DMAPP), such as a Bacillus subtilis phosphatase (YhfR), under a suitable condition so that 5-carbon alcohol is 3-methyl-2-buten-1-ol and/or 3-methyl-3-buten-1-ol is produced. Optionally, the host cell may further comprise a second enzyme capable of reducing a 3-methyl-2-buten-1-ol to 3-methyl-butan-1-ol, such as a reductase.

  12. Field pilot tests for tertiary recovery using butane and propane injection

    SciTech Connect

    Pacheco, E.F.; Garcia, A.I.

    1981-01-01

    This work describes a pilot project for tertiary recovery of liquid hydrocarbons through LPG injection in water-out sections of the Bolivar reservoir in La Pena Field, Santa Cruz, Boliva. The promising results obtained in the initial field miscibility tests, as well as the results from a mathematical model built to stimulate and evaluate the tertiary recovery project, directed subsequent work into a cyclic scheme for enhanced recovery. This scheme is explained and injection production data is presented. Field facilities built to handle both the injected LPG and the produced oil-LPG mixture are described. The oil/LPG ratio and the LPG recovered/injected fraction are the main factors measured in this to make further considerations for a full scale project.

  13. Identification of volatile butyl rubber thermal-oxidative degradation products by cryofocusing gas chromatography/mass spectrometry (cryo-GC/MS).

    SciTech Connect

    Smith, Jonell Nicole; White, Michael Irvin; Bernstein, Robert; Hochrein, James Michael

    2013-02-01

    Chemical structure and physical properties of materials, such as polymers, can be altered as aging progresses, which may result in a material that is ineffective for its envisioned intent. Butyl rubber formulations, starting material, and additives were aged under thermal-oxidative conditions for up to 413 total days at up to 124 %C2%B0C. Samples included: two formulations developed at Kansas City Plant (KCP) (%236 and %2310), one commercially available formulation (%2321), Laxness bromobutyl 2030 starting material, and two additives (polyethylene AC-617 and Vanax MBM). The low-molecular weight volatile thermal-oxidative degradation products that collected in the headspace over the samples were preconcentrated, separated, and detected using cryofocusing gas chromatography mass spectrometry (cryo-GC/MS). The majority of identified degradation species were alkanes, alkenes, alcohols, ketones, and aldehydes. Observations for Butyl %2310 aged in an oxygen-18 enriched atmosphere (18O2) were used to verify when the source of oxygen in the applicable degradation products was from the gaseous environment rather than the polymeric mixture. For comparison purposes, Butyl %2310 was also aged under non-oxidative thermal conditions using an argon atmosphere.

  14. Computational Study of Molecular Structure and Self-Association of Tri-n-butyl Phosphates in n-Dodecane

    SciTech Connect

    Vo, Quynh N.; Hawkins, Cory; Dang, Liem X.; Nilsson, Mikael; Nguyen, Hung D.

    2015-01-29

    Tri-n-butyl phosphate is an important extractant used in solvent extraction process for the recovery of uranium and plutonium from spent nuclear fuel. To understand the fundamental molecular level behavior of extracting agents in solution, an atomistic parameterization study was carried out using the AMBER force field to model TBP molecule and n-dodecane molecule, a commonly used organic solvent, for molecular dynamics simulations. For validation of the optimized force field, various thermophysical properties of pure TBP and pure n-dodecane in the bulk liquid phase such as mass density, dipole moment, self-diffusion coefficient and heat of vaporization were calculated and compared favorably with experimental values. The molecular structure of TBPs in n-dodecane at various TBP concentrations was examined based on radial distribution functions and 2D potential mean force, which was used as criteria for identifying TBP aggregates. The dimerization constant of TBP in n-dodecane was also obtained and matches the experimental value. The U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences funded the work performed by LXD.

  15. Molecular Dynamics Simulations of Tri-n-butyl-phosphate/n-Dodecane Mixture: Thermophysical Properties and Molecular Structure

    SciTech Connect

    de Almeida, Valmor F; Cui, Shengting; Khomami, Bamin

    2014-01-01

    Molecular dynamics simulations of tri-n-butyl-phosphate (TBP)/n-dodecane mixture in the liquid phase have been carried out using two recently developed TBP force field models (J. Phys. Chem. B 2012, 116, 305) in combination with the all-atom optimized potentials for liquid simulations (OPLS-AA) force field model for n-dodecane. Specifically, the electric dipole moment of TBP, mass density of the mixture, and the excess volume of mixing were computed with TBP mole fraction ranging from 0 to 1. It is found that the aforementioned force field models accurately predict the mass density of the mixture in the entire mole fraction range. Commensurate with experimental measurements, the electric dipole moment of the TBP was found to slightly increase with the mole fraction of TBP in the mixture. Also, in accord with experimental data, the excess volume of mixing is positive in the entire mole fraction range, peaking at TBP mole fraction range 0.3 0.5. Finally, a close examination of the spatial pair correlation functions between TBP molecules, and between TBP and n-dodecane molecules, revealed formation of TBP dimers through self-association at close distance, a phenomenon with ample experimental evidence.

  16. Molecular dynamics simulations of n-hexane at 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide interface

    SciTech Connect

    Lisal, Martin; Izak, Pavel

    2013-07-07

    Molecular dynamics simulations of n-hexane adsorbed onto the interface of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([bmim][Tf{sub 2}N]) are performed at three n-hexane surface densities, ranged from 0.7 to 2.3 {mu}mol/m{sup 2} at 300 K. For [bmim][Tf{sub 2}N] room-temperature ionic liquid, we use a non-polarizable all-atom force field with the partial atomic charges based on ab initio calculations for the isolated ion pair. The net charges of the ions are {+-}0.89e, which mimics the anion to cation charge transfer and polarization effects. The OPLS-AA force field is employed for modeling of n-hexane. The surface tension is computed using the mechanical route and its value decreases with increase of the n-hexane surface density. The [bmim][Tf{sub 2}N]/n-hexane interface is analyzed using the intrinsic method, and the structural and dynamic properties of the interfacial, sub-interfacial, and central layers are computed. We determine the surface roughness, global and intrinsic density profiles, and orientation ordering of the molecules to describe the structure of the interface. We further compute the survival probability, normal and lateral self-diffusion coefficients, and re-orientation correlation functions to elucidate the effects of n-hexane on dynamics of the cations and anions in the layers.

  17. Characterization of molybdenum interfacial crud in a uranium mill that employs tertiary-amine solvent extraction

    SciTech Connect

    Moyer, B.; McDowell, W.J.

    1983-01-01

    In the present work, samples of a molybdenum-caused green gummy interfacial crud from an operating western US uranium mill have been physically and chemically examined. Formaton of cruds of this description has been a long-standing problem in the use of tertiary amine solvent extraction for the recovery of uranium from low-grade ores (Amex Process). The crud is essentially an organic-continuous dispersion containing about 10 wt % aqueous droplets and about 37 wt % greenish-yellow crystalline solids suspended in kerosene-amine process solvent. The greenish-yellow crystals were found to be a previously unknown double salt of tertiary amine molybdophosphate with three tertiary amine chlorides having the empirical formula (R/sub 3/NH)/sub 3/(PMo/sub 12/O/sub 40/).3(R/sub 3/NH)Cl. To confirm the identification of the compound, a pure trioctylamine (TOA) analog was synthesized. In laboratory extraction experiments, it was demonstrated that organic-soluble amine molydophosphate forms slowly upon contact of TOA solvent with dilute sulfuric acid solutions containing low concentrations of molybdate and phosphate. If the organic solutions of amine molybdophosphate were then contacted with aqueous NaCl solutions, a greenish-yellow precipitate of (TOAH)/sub 3/(PMo/sub 12/O/sub 40/).3(TOAH)Cl formed at the interface. The proposed mechanism for the formation of the crud under process conditions involves build up of molybdenum in the solvent, followed by reaction with extracted phosphate to give dissolved amine molybdophosphate. The amine molybdophosphate then co-crystallizes with amine chloride, formed during the stripping cycle, to give the insoluble double salt, which precipitates as a layer of small particles at the interface. The proposed solution to the problem is the use of branched-chain, instead of straight-chain, tertiary amine extractants under the expectation that branching would increase the solubility of the double salt. 2 figures, 5 tables.

  18. Laramide thrusting and Tertiary deformation Tierra Caliente, Michoacan and Guerrero States, southwestern Mexico

    SciTech Connect

    Johnson, C.A.; Harrison, C.G.A. ); Lang, H. ); Barros, J.A.; Cabral-Cano, E.

    1990-05-01

    Field investigations and detailed interpretations of Landsat Thematic Mapper images are in progress to improve understanding of regional structure and tectonics of the southernmost extension of the North American cordillera. Two areas have been selected within the Ciudad Altamirano 1:250,000 topographical sheet for geologic mapping and structural interpretation at 1:50,000 scale. The authors results to date require modification of previous ideas concerning the style and timing of deformations, the role and timing of terrane accretion in the overall tectonic history of the region, and the importance of southern Mexico to investigations of the tectonic evolution of the plates in the region. The relative sequence of deformation in the area correlates well with variations in relative motion between North America and plates in the Pacific. Post-Campanian thrusts and generally eastward-verging folds deformed the Mesozoic sequence during the (Laramide equivalent) Hidalgoan orogeny, associated with high-velocity east-west convergence with the Farallon plate that began about 70 Ma. The resulting unconformity was covered by the Tertiary Balsas Formation, a thick sequence of mostly continental clastics. The Tertiary stratigraphy is regionally and sometimes locally variable, but it can be divided into two members. The lower member is relatively volcanic poor and more deformed, and it lies below a regionally significant mid-Tertiary unconformity, which may mark a change to northeast-directed convergence with the Farallon plate sometime prior to 40 Ma. Continued mid-Tertiary deformation in southern Mexico may be related to eastward movement of the Chortis block and the resulting truncation of the Pacific margin of Mexico. The authors also suggest a tentative correlation between the volcaniclastic member of the Lower Cretaceous San Lucas Formation and the protolith of the Roca Verde metamorphics to the east.

  19. Spherules from the Cretaceous/Tertiary boundary clay at Gubbio, Italy: the problem of outcrop contamination

    SciTech Connect

    Montanari, A.

    1986-12-01

    Surficial outcrop contamination has occurred in some well-known stratigraphic sections of carbonate rocks in the northern Apennines. A critical case involves several contaminated clay partings, including the Cretaceous/Tertiary boundary clay in the classic Bottaccione section near Gubbio, Italy. These clay layers contain shiny spherules which, in several recent studies, have been said to consist of volcanic glass and have been used to support the hypothesis that the terminal Cretaceous mass extinction was caused by widespread volcanism. Laboratory tests, however, indicate that these shiny spherules are made of HF-insoluble and combustible material and are therefore of recent biological origin. These objects were introduced into the Cretaceous/Tertiary boundary clay and other clay layers from the surrounding soil along with abundant detrital contaminants derived from erosion of the middle Miocene flysch exposed at the head of the Bottaccione Gorge. They are completely different from the altered and flattened microtektitelike spheroids that are found only in the iridium-rich Cretaceous/Tertiary boundary clay and that provide strong evidence for a large impact.

  20. West Hackberry Tertiary Project. Quarterly technical progress report, January 1, 1996--March 31, 1996

    SciTech Connect

    Gillham, T.; Cerveny, B.; Turek, E.

    1996-04-10

    The goal of the West Hackberry Tertiary Project is to demonstrate the technical and economic feasibility of combining air injection with the Double Displacement Process for tertiary oil recovery. The Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering oil through gravity drainage. The novel aspect of this project is the use of air as the injection fluid. The target reservoir for the project is the Camerina C-1,2,3 sand located on the West Flank of West Hackberry Field in Cameron Parish, Louisiana. If successful, this project will demonstrate that the use of air injection in the Double Displacement Process can economically recover oil in reservoirs where tertiary oil recovery is presently uneconomic. The first quarter of 1996 was outstanding both in terms of volume of air injected and low cost operations. More air was injected during this quarter than in any preceding quarter. The compressors experienced much improved run time with minimal repairs. Low operating costs resulted from no repairs required for injection or production wells. A discussion of the following topics are contained herein: (1) performance summary for the injection and production wells, (2) air compressor operations, (3) updated bottom hole pressure data, (4) technology transfer activities and (5) plans for the upcoming quarter.

  1. Tension-compression-tension tertiary twins in coarse-grained polycrystalline pure magnesium at room temperature

    SciTech Connect

    Yu, Qin; Jiang, Yanyao; Wang, Jian

    2015-04-07

    Using electron backscatter diffraction, the microstructural features of tension–compression–tension (T–C–T) tertiary twins are studied in coarse-grained pure polycrystalline magnesium subjected to monotonic compression along the extrusion direction in ambient air. T–C–T tertiary twins are developed due to the formation of a compression–tension double twin inside a primary tension twin. All the observed T–C–T twin variants are of TiCjTj type. TiCi+1Ti+1 (or TiCi–1Ti–1) variants are observed more frequently than TiCi+2Ti+2 (or TiCi–2Ti–2) variants. Moreover, the number of tertiary twin lamellae increases with the applied compressive strain.

  2. Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum

    SciTech Connect

    Guss, Adam M; Olson, Daniel G.; Caiazza, Nicky; Lynd, Lee R

    2012-01-01

    BACKGROUND: Industrial production of biofuels and other products by cellulolytic microorganisms is of interest but hindered by the nascent state of genetic tools. Although a genetic system for Clostridium thermocellum DSM1313 has recently been developed, available methods achieve relatively low efficiency and similar plasmids can transform C. thermocellum at dramatically different efficiencies. RESULTS: We report an increase in transformation efficiency of C. thermocellum for a variety of plasmids by using DNA that has been methylated by Escherichia coli Dam but not Dcm methylases. When isolated from a dam+ dcm+ E. coli strain, pAMG206 transforms C. thermocellum 100-fold better than the similar plasmid pAMG205, which contains an additional Dcm methylation site in the pyrF gene. Upon removal of Dcm methylation, transformation with pAMG206 showed a four- to seven-fold increase in efficiency; however, transformation efficiency of pAMG205 increased 500-fold. Removal of the Dcm methylation site from the pAM205 pyrF gene via silent mutation resulted in increased transformation efficiencies equivalent to that of pAMG206. Upon proper methylation, transformation efficiency of plasmids bearing the pMK3 and pB6A origins of replication increased ca. three orders of magnitude. CONCLUSION: E. coli Dcm methylation decreases transformation efficiency in C. thermocellum DSM1313. The use of properly methylated plasmid DNA should facilitate genetic manipulation of this industrially relevant bacterium.

  3. Role of methyl groups in dynamics and evolution of biomolecules

    SciTech Connect

    Nickels, Jonathan D [ORNL; Curtis, J. E. [National Institute of Standards and Technology (NIST), Gaithersburg, MD; Oneill, Hugh [Oak Ridge National Laboratory (ORNL); Sokolov, Alexei P [ORNL

    2012-01-01

    Recent studies have discovered strong differences between the dynamics of nucleic acids (RNA and DNA) and proteins, especially at low hydration and low temperatures. This difference is caused primarily by dynamics of methyl groups that are abundant in proteins, but are absent or very rare in RNA and DNA. In this paper, we present a hypothesis regarding the role of methyl groups as intrinsic plasticizers in proteins and their evolutionary selection to facilitate protein dynamics and activity. We demonstrate the profound effect methyl groups have on protein dynamics relative to nucleic acid dynamics, and note the apparent correlation of methyl group content in protein classes and their need for molecular flexibility. Moreover, we note the fastest methyl groups of some enzymes appear around dynamical centers such as hinges or active sites. Methyl groups are also of tremendous importance from a ydrophobicity/folding/entropy perspective. These significant roles, however, complement our hypothesis rather than preclude the recognition of methyl groups in the dynamics and evolution of biomolecules.

  4. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  5. Comparison of SPME headspace analysis to U.S. EPA method5030/8260B for MTBE monitoring

    SciTech Connect

    Stringfellow, William T.; Oh, Kuen-Chan

    2005-02-01

    A novel method for analysis of methyl tert-butyl ether andtert-butyl alcohol using solid phase microextraction is described andcompared to a standard method.

  6. Portal Vein Embolization before Right Hepatectomy: Improved Results Using n-Butyl-Cyanoacrylate Compared to Microparticles Plus Coils

    SciTech Connect

    Guiu, Boris Bize, Pierre; Gunthern, Daniel; Demartines, Nicolas; Halkic, Nermin; Denys, Alban

    2013-10-15

    Background: There is currently no consensus in the literature on which embolic agent induces the greatest degree of liver hypertrophy after portal vein embolization (PVE). Only experimental results in a pig model have demonstrated an advantage of n-butyl-cyanoacrylate (NBCA) over 3 other embolic materials (hydrophilic gel, small and large polyvinyl alcohol particles) for PVE. Therefore, the aim of this human study was to retrospectively compare the results of PVE using NBCA with those using spherical microparticles plus coils. Methods: A total of 34 patients underwent PVE using either NBCA (n = 20), or spherical microparticles plus coils (n = 14). PVE was decided according to preoperative volumetry on the basis of contrast-enhanced CT. Groups were compared for age, sex, volume of the left lobe before PVE and future remnant liver ratio (FRL) (volume of the left lobe/total liver volume - tumor volume). The primary end point was the increase in left lobe volume 1 month after PVE. Secondary end points were procedure complications and biological tolerance. Results: Both groups were similar in terms of age, sex ratio, left lobe volume, and FRL before PVE. NBCA induced a greater increase in volume after PVE than did microparticles plus coils (respectively, +74 {+-} 69 % and +23 {+-} 14 %, p < 0.05). The amount of contrast medium used for the procedure was significantly larger when microparticles and coils rather than NBCA were used (respectively, 264 {+-} 43 ml and 162 {+-} 34 ml, p < 0.01). The rate of PVE complications as well as the biological tolerance was similar in both groups. Conclusion: NBCA seems more effective than spherical microparticles plus coils to induce left-lobe hypertrophy.

  7. Laboratory measurements of parameters affecting wet deposition of methyl iodide

    SciTech Connect

    Maeck, W.J.; Honkus, R.J.; Keller, J.H.; Voilleque, P.G.

    1984-09-01

    The transfer of gaseous methyl iodide (CH/sub 3/I) to raindrops and the initial retention by vegetation of CH/sub 3/I in raindrops have been studied in a laboratory experimental program. The measured air-to-drop transfer parameters and initial retention factors both affect the wet deposition of methyl iodide onto vegetation. No large effects on the air-to-drop transfer due to methyl iodide concentration, temperature, acidity, or rain type were observed. Differences between laboratory measurements and theoretical values of the mass transfer coefficient were found. Pasture grass, lettuce, and alfalfa were used to study the initial retention of methyl iodide by vegetation. Only a small fraction of the incident CH/sub 3/I in raindrops was held by any of the three vegetation types.

  8. Distributions of methyl group rotational barriers in polycrystalline organic solids

    SciTech Connect

    Beckmann, Peter A. E-mail: wangxianlong@uestc.edu.cn; Conn, Kathleen G.; Division of Education and Human Services, Neumann University, One Neumann Drive, Aston, Pennsylvania 19014-1298 ; Mallory, Clelia W.; Department of Chemistry, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 ; Mallory, Frank B.; Rheingold, Arnold L.; Rotkina, Lolita; Wang, Xianlong E-mail: wangxianlong@uestc.edu.cn

    2013-11-28

    We bring together solid state {sup 1}H spin-lattice relaxation rate measurements, scanning electron microscopy, single crystal X-ray diffraction, and electronic structure calculations for two methyl substituted organic compounds to investigate methyl group (CH{sub 3}) rotational dynamics in the solid state. Methyl group rotational barrier heights are computed using electronic structure calculations, both in isolated molecules and in molecular clusters mimicking a perfect single crystal environment. The calculations are performed on suitable clusters built from the X-ray diffraction studies. These calculations allow for an estimate of the intramolecular and the intermolecular contributions to the barrier heights. The {sup 1}H relaxation measurements, on the other hand, are performed with polycrystalline samples which have been investigated with scanning electron microscopy. The {sup 1}H relaxation measurements are best fitted with a distribution of activation energies for methyl group rotation and we propose, based on the scanning electron microscopy images, that this distribution arises from molecules near crystallite surfaces or near other crystal imperfections (vacancies, dislocations, etc.). An activation energy characterizing this distribution is compared with a barrier height determined from the electronic structure calculations and a consistent model for methyl group rotation is developed. The compounds are 1,6-dimethylphenanthrene and 1,8-dimethylphenanthrene and the methyl group barriers being discussed and compared are in the 212 kJ?mol{sup ?1} range.

  9. Rape oil methyl ester (RME) and used cooking oil methyl ester (UOME) as alternative fuels

    SciTech Connect

    Hohl, G.H.

    1995-12-31

    The author presents a review about the fleet tests carried out by the Austrian Armed Forces concerning the practical application of a vegetable oil, i.e Rape Oil Methyl Ester (RME) and Used Cooking Oil Methyl Ester (UOME) as alternative fuels for vehicles under military conditions, and reviews other research results carried out in Austria. As a result of over-production in Western European agriculture, the increase in crop yields has led to tremendous surpluses. Alternative agricultural products have been sought. One alternative can be seen in biological fuel production for tractors, whereby the farmer is able to produce his own fuel supply as was the case when he previously provided self-made feed for his horses. For the market introduction different activities were necessary. A considerable number of institutes and organizations including the Austrian Armed Forces have investigated, tested and developed these alternative fuels. The increasing disposal problems of used cooking oil have initiated considerations for its use. The recycling of this otherwise waste product, and its preparation for use as an alternative fuel to diesel oil, seems to be most promising.

  10. Phytoremediation of ionic and methyl mercury pollution

    SciTech Connect

    Meagher, R.B.

    1998-06-01

    'The long-term objective of the research is to manipulate single-gene traits into plants, enabling them to process heavy metals and remediate heavy-metal pollution by resistance, sequestration, removal, and management of these contaminants. The authors are focused on mercury pollution as a case study of this plant genetic engineering approach. The working hypothesis behind this proposal was that transgenic plants expressing both the bacterial organo mercury lyase (merB) and the mercuric ion reductase gene (merA) will: (A) remove the mercury from polluted sites and (B) prevent methyl mercury from entering the food chain. The results from the research are so positive that the technology will undoubtedly be applied in the very near future to cleaning large mercury contaminates sites. Many such sites were not remediable previously due to the excessive costs and the negative environmental impact of conventional mechanical-chemical technologies. At the time this grant was awarded 20 months ago, the authors had successfully engineered a small model plant, Arabidopsis thaliana, to use a highly modified bacterial mercuric ion reductase gene, merA9, to detoxify ionic mercury (Hg(II)), reducing it to much less toxic and volatile metallic Hg(0) (Rugh et al., 1996). Seeds from these plants germinate, grow, and set seed at normal growth rates on levels of Hg(II) that are lethal to normal plants. In assays on transgenic seedlings suspended in a solution of Hg(II), 10 ng of Hg(0) was evolved per min per mg wet weight of plant tissue. At that time, the authors had no information on expression of merA in any other plant species, nor had the authors tested merB in any plant. However, the results were so startlingly positive and well received that they clearly presaged a paradigm shift in the field of environmental remediation.'

  11. Anastomosing grabens, low-angle faults, and Tertiary thrust( ) faults, western Markagunt Plateau, southwestern Utah

    SciTech Connect

    Maldonado, F.; Sable, E.G. )

    1993-04-01

    A structurally complex terrane composed of grabens and horsts, low-angle faults, Tertiary thrust( ) faults, gravity-slide blocks, and debris deposits has been mapped along the western Markagunt Plateau, east of Parowan and Summit, southwestern Utah. This terrane, structurally situated within the transition between the Basin and Range and Colorado Plateau provinces, contains Tertiary volcanic and sedimentary and Cretaceous sedimentary rocks. The structures are mostly Miocene to Oligocene but some are Pleistocene. The oldest structure is the Red Hills low-angle shear zone, interpreted as a shallow structure that decoupled an upper plate composed of a Miocene-Oligocene volcanic ash-flow tuff and volcaniclastic succession from a lower plate of Tertiary sedimentary rocks. The period of deformation on the shear zone is bracketed from field relationships between 22.5 and 20 Ma. The graben-horst system trends northeast and formed after about 20 Ma (and probably much later) based on displacement of dated dikes and a laccolith. The central part of the system contains many grabens that merge toward its southerly end to become a single graben. Within these grabens, (1) older structures are preserved, (2) debris eroded from horst walls forms lobe-shaped deposits, (3) Pleistocene basaltic cinder cones have localized along graben-bounding faults, and (4) rock units are locally folded suggesting some component of lateral translation along graben-bounding faults. Megabreccia deposits and landslide debris are common. Megabreccia deposits are interpreted as gravity-slide blocks of Miocene-Oligocene( ) age resulting from formation of the Red Hills shear zone, although some may be related to volcanism, and still others to later deformation. The debris deposits are landslides of Pleistocene-Pliocene( ) age possibly caused by continued uplift of the Markagunt Plateau.

  12. Properties of some ionic liquids based on1-methyl-3-octylimidazolium and 4-methyl-N-butylpyridinium cations.

    SciTech Connect

    Papaiconomou, Nicolas; Yakelis, Neal; Salminen, Justin; Bergman,Robert; Prausnitz, John M.

    2005-09-29

    Syntheses are reported for ionic liquids containing 1-methyl-3octylimidazolium and 4-methyl-N-butylpyridinium cations, and trifluoromethansulfonate, dicyanamide, bis(trifluoromethylsulfonyl)imide, and nonafluorobutanesulfonate anions. Densities, melting points and glass transition points, solubility in water as well as polarities have been measured. Ionic liquids based on pyridinium cations exhibit higher melting points, lower solubility in water, and higher polarity than those based on imidazolium cations.

  13. Evidence for temperate conditions along the Antarctic peninsula during the Early Tertiary

    SciTech Connect

    Zinsmeister, W.J.

    1985-01-01

    Several investigators based on deep sea glacial marine sediments from the southern oceans and volcanic sequences in West Antarctica have suggested extreme glacial conditions existed around Antarctica during the early Tertiary. Their data suggest ice sheets with ice shelves greater than those today were present on Antarctica by the late Eocene. If these data are correct, conditions during the Eocene along the Peninsula were similar to those that exist today. Late Eocene faunas and floras from Seymour Island indicate that conditions along the Peninsula were temperature. No paleontologic or geologic evidence have been obtained from Seymour Island (64/degree/18'S) to support the existence of glacial conditions along the northern part of the Peninsula during the early Tertiary. The presence of large quantities of fossil wood and plant debris in the upper Eocene sediments on Seymour Island indicates the presence of dense forests on the Peninsula during the Eocene. The discovery of marsupial and land birds remains on Seymour Island also indicate the presence of abundant terrestrial life on the Peninsula. The occurrence of an abundant marine life on Seymour Island supports the existence of temperate conditions along the Peninsula. Similarities of the Eocene faunas and floras with present day biotas from Tasmania, New Zealand and southern South America indicate that conditions along the Antarctic Peninsula during the late Eocene were comparable to present day mid latitudes of the southern hemisphere.

  14. Anaerobic Mercury Methylation and Demethylation by Geobacter bemidjiensis Bem

    DOE PAGES [OSTI]

    Lu, Xia; Liu, Yurong; Johs, Alexander; Zhao, Linduo; Wang, Tieshan; Yang, Ziming; Lin, Hui; Elias, Dwayne A.; Pierce, Eric M.; Liang, Liyuan; et al

    2016-03-28

    Two competing processes controlling the net production and bioaccumulation of neurotoxic methylmercury (MeHg) in natural ecosystems are microbial methylation and demethylation. Though mercury (Hg) methylation by anaerobic microorganisms and demethylation by aerobic Hg-resistant bacteria have both been extensively studied, little attention has been given to MeHg degradation by anaerobic bacteria, particularly the iron-reducing bacterium Geobacter bemidjensis Bem. Here we report, for the first time, that the strain G. bemidjensis Bem can methylate inorganic Hg and degrade MeHg concurrently under anoxic conditions. Our results suggest that G. bemidjensis cells utilize a reductive demethylation pathway to degrade MeHg, with elemental Hg(0) asmore » the major reaction product, possibly due to the presence of homologs encoding both organo-mercurial lyase (MerB) and mercuric reductase (MerA) in this organism. In addition, the cells can mediate multiple reactions including Hg/MeHg sorption, Hg reduction and oxidation, resulting in both time and concentration dependent Hg species transformations. Moderate concentrations (10 500 M) of Hg-binding ligands such as cysteine enhance Hg(II) methylation but inhibit MeHg degradation. These findings indicate a cycle of methylation and demethylation among anaerobic bacteria and suggest that mer-mediated demethylation may play a role in the net balance of MeHg production in anoxic water and sediments.« less

  15. Phytoremediation of Ionic and Methyl Mercury Pollution

    SciTech Connect

    Meagher, Richard B.

    2005-06-01

    control the chemical speciation, electrochemical state, transport, and aboveground binding of mercury in order to manage this toxicant. To advance this mercury phytoremediation strategy, our planned research focuses on the following Specific Aims: (1) to increase the transport of mercury to aboveground tissue; (2) to identify small mercury binding peptides that enhance hyperaccumulation aboveground; (3) to test the ability of multiple genes acting together to enhance resistance and hyperaccumulation; (4) to construct a simple molecular system for creating male/female sterility, allowing engineered grass, shrub, and tree species to be released indefinitely at contaminated sites; (5) to test the ability of transgenic cottonwood and rice plants to detoxify ionic mercury and prevent methylmercury release from contaminated sediment; and (6) to initiate field testing with transgenic cottonwood and rice for the remediation of methylmercury and ionic mercury. The results of these experiments will enable the phytoremediation of methyl- and ionic mercury by a wide spectrum of deep-rooted, fast-growing plants adapted to diverse environments. We have made significant progress on all six of these specific aims as summarized below.

  16. Nested methylation-specific polymerase chain reaction cancer detection method

    DOEpatents

    Belinsky, Steven A.; Palmisano, William A.

    2007-05-08

    A molecular marker-based method for monitoring and detecting cancer in humans. Aberrant methylation of gene promoters is a marker for cancer risk in humans. A two-stage, or "nested" polymerase chain reaction method is disclosed for detecting methylated DNA sequences at sufficiently high levels of sensitivity to permit cancer screening in biological fluid samples, such as sputum, obtained non-invasively. The method is for detecting the aberrant methylation of the p16 gene, O 6-methylguanine-DNA methyltransferase gene, Death-associated protein kinase gene, RAS-associated family 1 gene, or other gene promoters. The method offers a potentially powerful approach to population-based screening for the detection of lung and other cancers.

  17. Methods for detection of methyl-CpG dinucleotides

    DOEpatents

    Dunn, John J

    2013-11-26

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  18. Methods for detection of methyl-CpG dinucleotides

    DOEpatents

    Dunn, John J.

    2012-09-11

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  19. Methods for detection of methyl-CpG dinucleotides

    DOEpatents

    Dunn, John J.

    2013-01-29

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  20. Geometric and Electronic Structures of the Ni(I) and Methyl-Ni(III)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Intermediates of Methyl-Coenzyme M Reductase 9 Geometric and Electronic Structures of the Ni(I) and Methyl-Ni(III) Intermediates of Methyl-Coenzyme M Reductase Methyl-coenzyme M reductase (MCR) from methanogenic archaea catalyzes the terminal step in biological methane synthesis. Using coenzyme B (CoBSH) as the two-electron donor, MCR reduces methyl-coenzyme M (methyl-SCoM) to form methane and the heterodisulfide product, CoBS-SCoM. MCR contains an essential redox active nickel tetrapyrrolic

  1. Tertiary and Quaternary Ammonium-Phosphate Ionic Liquids as Lubricant Additives

    DOE PAGES [OSTI]

    Barnhill, William C.; Luo, Huimin; Meyer, III, Harry M; Ma, Cheng; Chi, Miaofang; Papke, Brian L.; Qu, Jun

    2016-06-23

    In this work we investigated the feasibility of five quaternary (aprotic) and four tertiary (protic) ammonium ionic liquids (ILs) with an identical organophosphate anion as lubricant antiwear additives. Viscosity, oil solubility, thermal stability, and corrosivity of the candidate ILs were characterized and correlated to the molecular structure. The protic group exhibits higher oil solubility than the aprotic group, and longer alkyl chains seem to provide better oil solubility and higher thermal stability. Selected ILs were applied as oil additives in steel-cast iron tribological tests and demonstrated promising anti-scuffing and anti-wear functionality. The thickness, nanostructure, coverage and composition of the tribofilmmore » formed by the besting performing IL were revealed by surface characterization for mechanistic understanding of the tribochemical interactions between the IL and metal surface. Results provide fundamental insights of the correlations among the molecular structure, physiochemical properties and lubricating performance for ammonium-phosphate ILs.« less

  2. Infant sex-specific placental cadmium and DNA methylation associations

    SciTech Connect

    Mohanty, April F.; Farin, Fred M.; Bammler, Theo K.; MacDonald, James W.; Afsharinejad, Zahra; Burbacher, Thomas M.; Siscovick, David S.; and others

    2015-04-15

    Background: Recent evidence suggests that maternal cadmium (Cd) burden and fetal growth associations may vary by fetal sex. However, mechanisms contributing to these differences are unknown. Objectives: Among 24 maternal-infant pairs, we investigated infant sex-specific associations between placental Cd and placental genome-wide DNA methylation. Methods: We used ANOVA models to examine sex-stratified associations of placental Cd (dichotomized into high/low Cd using sex-specific Cd median cutoffs) with DNA methylation at each cytosine-phosphate-guanine site or region. Statistical significance was defined using a false discovery rate cutoff (<0.10). Results: Medians of placental Cd among females and males were 5 and 2 ng/g, respectively. Among females, three sites (near ADP-ribosylation factor-like 9 (ARL9), siah E3 ubiquitin protein ligase family member 3 (SIAH3), and heparin sulfate (glucosamine) 3-O-sulfotransferase 4 (HS3ST4) and one region on chromosome 7 (including carnitine O-octanoyltransferase (CROT) and TP5S target 1 (TP53TG1)) were hypomethylated in high Cd placentas. Among males, high placental Cd was associated with methylation of three sites, two (hypomethylated) near MDS1 and EVI1 complex locus (MECOM) and one (hypermethylated) near spalt-like transcription factor 1 (SALL1), and two regions (both hypomethylated, one on chromosome 3 including MECOM and another on chromosome 8 including rho guanine nucleotide exchange factor (GEF) 10 (ARHGEF10). Differentially methylated sites were at or close to transcription start sites of genes involved in cell damage response (SIAH3, HS3ST4, TP53TG1) in females and cell differentiation, angiogenesis and organ development (MECOM, SALL1) in males. Conclusions: Our preliminary study supports infant sex-specific placental Cd-DNA methylation associations, possibly accounting for previously reported differences in Cd-fetal growth associations across fetal sex. Larger studies are needed to replicate and extend these

  3. Low Temperature Autoignition of C8H16O2 Ethyl and Methyl Esters...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Temperature Autoignition of C8H16O2 Ethyl and Methyl Esters in a Motored Engine Low Temperature Autoignition of C8H16O2 Ethyl and Methyl Esters in a Motored Engine qThe alkyl chain ...

  4. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect

    Nick Soelberg; Tony Watson

    2014-08-01

    Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that

  5. Chemically induced Parkinson's disease: intermediates in the oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to the 1-methyl-4-phenyl-pyridinium ion

    SciTech Connect

    Chacon, J.N.; Chedekel, M.R.; Land, E.J.; Truscott, T.G.

    1987-04-29

    Various unstable intermediate oxidation states have been postulated in the metabolic activation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to the 1-methyl-4-phenyl pyridinium ion. We now report the first direct observation of these free radical intermediates by pulse radiolysis and flash photolysis. Studies are described of various reactions of such species, in particular with dopamine whose autoxidation to dopamine quinone is reported to be potentiated by 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine.

  6. Tropospheric oxidation mechanism of dimethyl ether and methyl formate

    SciTech Connect

    Good, D.A.; Francisco, J.S.

    2000-02-17

    The oxidation mechanism of dimethyl ether is investigated using ab initio methods. The structure and energetics of reactants, products, and transition structures are determined for all pathways involved in the oxidation mechanism. The detailed pathways leading to the experimentally observed products of dimethyl ether oxidation are presented. The energetics of over 50 species and transition structures involved in the oxidation process are calculated with G2 and G2(MP2) energies. The principal pathway following the initial attack of dimethyl ether (CH{sub 3}OCH{sub 3}) by the OH radical is the formation of the methoxymethyl radical (CH{sub 2}OCH{sub 3}). Oxidation steps lead to the formation of methyl formate, which is consistent with the experimentally observed products. Oxidation pathways of methyl formate are also considered.

  7. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    Makarand R. Gogate; James J. Spivey; Joseph R. Zoeller; Richard D. Colberg; Gerald N. Choi; Samuel S. Tam

    1999-04-21

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter (January-March/99), in-situ formaldehyde generation and condensation with methyl propionate were tested over various catalysts and reaction conditions. The patent application is in preparation and the results are retained for future reports.

  8. Synthesis of 6-Methyl-9-n-propyldibenzothiophene-4-ol

    SciTech Connect

    Not Available

    1991-10-28

    The material presented here has been described to some extent in Status Reports 12, 13, and 14 and covers the progress toward the synthesis of the modified target molecules 9-isopropyl-4-methoxy-6-methyldibenzothiophene (13) and 9-isopropyl-6-methyldibenzothiophene-4-ol (14). It is divided into three parts: (a) Dehydrogenation experiments On tetrahydrodibenzothiophene 12. (b) methoxyl methyl cleavage of 13 to 14 using boron tribromide. (c) isolation and purification of methoxydibenzothiophene 13.

  9. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    SciTech Connect

    Soelberg, Nicholas Ray; Watson, Tony Leroy

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  10. Iridium profile for 10 million years across the Cretaceous-Tertiary boundary at Gubbio (Italy)

    SciTech Connect

    Alvarez, W.; Montanari, A. ); Asaro, F. )

    1990-12-21

    The iridium anomaly at the Cretaceous-Tertiary (KT) boundary was discovered in the pelagic limestone sequence at Gubbio on the basis of 12 samples analyzed by neutron activation analysis (NAA) and was interpreted as indicating impact of a large extraterrestrial object at exactly the time of the KT mass extinction. Continuing controversy over the shape of the Ir profile at the Gubbio KT boundary and its interpretation called for a more detailed follow-up study. Analysis of a 57-meter-thick, 10-million-year-old part of the Gubbio sequence using improved NAA techniques revealed that there is only one Ir anomaly at the KT boundary, but this anomaly shows an intricate fine structure, the origin of which cannot yet be entirely explained. The KT Ir anomaly peaks in a 1-centimeter-thick clay layer, where the average Ir concentration is 3,000 parts per trillion (ppt); this peak is flanked by tails with Ir concentrations of 20 to 80 ppt that rise above a background of 12 to 13 ppt. The fine structure of the tails is probably due in part to lateral reworking, diffusion, burrowing, and perhaps Milankovitch cyclicity.

  11. Synsedimentary tectonics in Late Cretaceous-Early Tertiary pelagic basin of northern Apennines, Italy

    SciTech Connect

    Montanari, A.; Chan, L.S.; Alvarez, W.

    1987-05-01

    The sequence of Upper Cretaceous-Lower Tertiary pelagic limestones in the Umbria-Marches Apennines of Italy have recorded, with remarkable continuity, the geologic history of an epeiric sea on the eastern continental margin of the Ligurian Ocean during a time of widespread tectonism in the western Tethys domain. Sedimentary facies and paleocurrent analyses indicate that intrabasinal depocenters and structural highs have formed in response to extensional tectonic movements which started to affect the central part of the paleobasin in the early Turonian. The topography of the paleobasin was probably controlled by a complex pattern of buried fault blocks formed during the passive margin phase of the western Tethys and then reactivated in the Turonian after a prolonged time (Aptian to Cenomanian) of tectonic quiescence. Calcareous turbidites essentially made of remobilized pelagic mud were generated on the newly formed intrabasinal slopes and deposited in the adjacent depocenters. Conspicuous sedimentary events such as maxima in turbiditic deposition and soft-sediment slumps in these intrabasinal depocenters are attributed to major syndepositional earthquakes of regional extent. A detailed event-stratigraphy based on these sedimentary features indicates that the level of syndepositional tectonic activity reached a peak in the late Maastrichtian-early Paleocene and rapidly diminished in the Eocene.

  12. Low-temperature CVD of iron, cobalt, and nickel nitride thin films from bis[di(tert-butyl)amido]metal(II) precursors and ammonia

    SciTech Connect

    Cloud, Andrew N.; Abelson, John R., E-mail: abelson@illinois.edu [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 201 Materials Science and Engineering Building, 1304 W. Green St., Urbana, Illinois 61801 (United States); Davis, Luke M.; Girolami, Gregory S., E-mail: girolami@scs.illinois.edu [School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801 (United States)

    2014-03-15

    Thin films of late transition metal nitrides (where the metal is iron, cobalt, or nickel) are grown by low-pressure metalorganic chemical vapor deposition from bis[di(tert-butyl)amido]metal(II) precursors and ammonia. These metal nitrides are known to have useful mechanical and magnetic properties, but there are few thin film growth techniques to produce them based on a single precursor family. The authors report the deposition of metal nitride thin films below 300?C from three recently synthesized M[N(t-Bu){sub 2}]{sub 2} precursors, where M?=?Fe, Co, and Ni, with growth onset as low as room temperature. Metal-rich phases are obtained with constant nitrogen content from growth onset to 200?C over a range of feedstock partial pressures. Carbon contamination in the films is minimal for iron and cobalt nitride, but similar to the nitrogen concentration for nickel nitride. X-ray photoelectron spectroscopy indicates that the incorporated nitrogen is present as metal nitride, even for films grown at the reaction onset temperature. Deposition rates of up to 18?nm/min are observed. The film morphologies, growth rates, and compositions are consistent with a gas-phase transamination reaction that produces precursor species with high sticking coefficients and low surface mobilities.

  13. Methyl aryl ethers from coal liquids as gasoline extenders and octane improvers

    SciTech Connect

    Singerman, G.M.

    1980-11-01

    A mixture of methyl aryl ethers derived from the phenols present in direct liquefaction coal liquids shows considerable promise as a gasoline blending agent and octane improver. The mixture of methyl aryl ethers was blended at five volume percent with a commercial, unleaded gasoline. The properties and performance of the blend in a variety of laboratory and automotive tests is reported. The tests show that the mixture of methyl aryl ethers improves gasoline octane without degrading other gasoline properties.

  14. Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Iodide

    Office of Scientific and Technical Information (OSTI)

    Perovskite Interface (Technical Report) | SciTech Connect Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Iodide Perovskite Interface Citation Details In-Document Search Title: Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Iodide Perovskite Interface This work correlates resonant peaks from first principles calculation on ammonia (NH3) Nitrogen 1s x-ray absorption spectroscopy (XAS) within the methyl ammonium lead iodide perovskite (CH3NH3PbI3), and

  15. Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model (Released in the STEO March 1998)

    Reports and Publications

    1998-01-01

    The blending of oxygenates, such as fuel ethanol and methyl tertiary butyl ether (MTBE), into motor gasoline has increased dramatically in the last few years because of the oxygenated and reformulated gasoline programs. Because of the significant role oxygenates now have in petroleum product markets, the Short-Term Integrated Forecasting System (STIFS) was revised to include supply and demand balances for fuel ethanol and MTBE. The STIFS model is used for producing forecasts in the Short-Term Energy Outlook. A review of the historical data sources and forecasting methodology for oxygenate production, imports, inventories, and demand is presented in this report.

  16. MTBE, Oxygenates, and Motor Gasoline (Released in the STEO October 1999)

    Reports and Publications

    1999-01-01

    The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an increase in MTBE production between 1990 and 1994. MTBE demand increased from 83,000 in 1990 to 161,000 barrels per day in 1994. The reformulated gasoline (RFG) program provided a further boost to oxygenate blending. The MTBE contained in motor gasoline increased to 269,000 barrels per day by 1997.

  17. California's Move Toward E10 (released in AEO2009)

    Reports and Publications

    2009-01-01

    In Annual Energy Outlook 2009, (AEO) E10a gasoline blend containing 10% ethanolis assumed to be the maximum ethanol blend allowed in California erformulated gasoline (RFG), as opposed to the 5.7% blend assumed in earlier AEOs. The 5.7% blend had reflected decisions made when California decided to phase out use of the additive methyl tertiary butyl ether in its RFG program in 2003, opting instead to use ethanol in the minimum amount that would meet the requirement for 2.0% oxygen content under the Clean Air Act provisions in effect at that time.

  18. Table 10.5 Estimated Number of Alternative-Fueled Vehicles in Use and Fuel Consumption, 1992-2010

    Energy Information Administration (EIA) (indexed site)

    Estimated Number of Alternative-Fueled Vehicles in Use and Fuel Consumption, 1992-2010 Year Alternative and Replacement Fuels 1 Liquefied Petroleum Gases Compressed Natural Gas Liquefied Natural Gas Methanol, 85 Percent (M85) 3 Methanol, Neat (M100) 4 Ethanol, 85 Percent (E85) 3,5 Ethanol, 95 Percent (E95) 3 Elec- tricity 6 Hydro- gen Other Fuels 7 Subtotal Oxygenates 2 Bio- diesel 10 Total Methyl Tertiary Butyl Ether 8 Ethanol in Gasohol 9 Total Alternative-Fueled Vehicles in Use 11

  19. Fuel Ethanol Oxygenate Production

    Gasoline and Diesel Fuel Update

    Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History U.S. 30,812 28,059 30,228 30,258 31,251 31,669 1981-2016 East Coast (PADD 1) 804 725 734 812 862

  20. Word Pro - Untitled1

    Energy Information Administration (EIA) (indexed site)

    1 Table 10.5 Estimated Number of Alternative-Fueled Vehicles in Use and Fuel Consumption, 1992-2010 Year Alternative and Replacement Fuels 1 Liquefied Petroleum Gases Compressed Natural Gas Liquefied Natural Gas Methanol, 85 Percent (M85) 3 Methanol, Neat (M100) 4 Ethanol, 85 Percent (E85) 3,5 Ethanol, 95 Percent (E95) 3 Elec- tricity 6 Hydro- gen Other Fuels 7 Subtotal Oxygenates 2 Bio- diesel 10 Total Methyl Tertiary Butyl Ether 8 Ethanol in Gasohol 9 Total Alternative-Fueled Vehicles in Use

  1. Vacuum ultraviolet and infrared spectra of condensed methyl acetate on cold astrochemical dust analogs

    SciTech Connect

    Sivaraman, B.; Nair, B. G.; Mason, N. J.; Lo, J.-I.; Cheng, B.-M.; Kundu, S.; Davis, D.; Prabhudesai, V.; Krishnakumar, E.; Raja Sekhar, B. N.

    2013-12-01

    Following the recent report of the first identification of methyl acetate (CH{sub 3}COOCH{sub 3}) in the interstellar medium (ISM), we have carried out vacuum ultraviolet (VUV) and infrared (IR) spectroscopy studies on methyl acetate from 10 K until sublimation in an ultrahigh vacuum chamber simulating astrochemical conditions. We present the first VUV and IR spectra of methyl acetate relevant to ISM conditions. Spectral signatures clearly showed molecular reorientation to have started in the ice by annealing the amorphous ice formed at 10 K. An irreversible phase change from amorphous to crystalline methyl acetate ice was found to occur between 110 K and 120 K.

  2. Protein arginine methyltransferase 1 regulates herpes simplex virus replication through ICP27 RGG-box methylation

    SciTech Connect

    Yu, Jungeun; Shin, Bongjin; Park, Eui-Soon; Yang, Sujeong; Choi, Seunga; Kang, Misun; Rho, Jaerang

    2010-01-01

    Protein arginine methylation is involved in viral infection and replication through the modulation of diverse cellular processes including RNA metabolism, cytokine signaling, and subcellular localization. It has been suggested previously that the protein arginine methylation of the RGG-box of ICP27 is required for herpes simplex virus type-1 (HSV-1) viral replication and gene expression in vivo. However, a cellular mediator for this process has not yet been identified. In our current study, we show that the protein arginine methyltransferase 1 (PRMT1) is a cellular mediator of the arginine methylation of ICP27 RGG-box. We generated arginine substitution mutants in this domain and examined which arginine residues are required for methylation by PRMT1. R138, R148 and R150 were found to be the major sites of this methylation but additional arginine residues serving as minor methylation sites are still required to sustain the fully methylated form of ICP27 RGG. We also demonstrate that the nuclear foci-like structure formation, SRPK interactions, and RNA-binding activity of ICP27 are modulated by the arginine methylation of the ICP27 RGG-box. Furthermore, HSV-1 replication is inhibited by hypomethylation of this domain resulting from the use of general PRMT inhibitors or arginine mutations. Our data thus suggest that the PRMT1 plays a key role as a cellular regulator of HSV-1 replication through ICP27 RGG-box methylation.

  3. Exploring the roles of DNA methylation in the metal-reducing bacterium Shewanella oneidensis MR-1

    SciTech Connect

    Bendall, Matthew L.; Luong, Khai; Wetmore, Kelly M.; Blow, Matthew; Korlach, Jonas; Deutschbauer, Adam; Malmstrom, Rex

    2013-08-30

    We performed whole genome analyses of DNA methylation in Shewanella 17 oneidensis MR-1 to examine its possible role in regulating gene expression and 18 other cellular processes. Single-Molecule Real Time (SMRT) sequencing 19 revealed extensive methylation of adenine (N6mA) throughout the 20 genome. These methylated bases were located in five sequence motifs, 21 including three novel targets for Type I restriction/modification enzymes. The 22 sequence motifs targeted by putative methyltranferases were determined via 23 SMRT sequencing of gene knockout mutants. In addition, we found S. 24 oneidensis MR-1 cultures grown under various culture conditions displayed 25 different DNA methylation patterns. However, the small number of differentially 26 methylated sites could not be directly linked to the much larger number of 27 differentially expressed genes in these conditions, suggesting DNA methylation is 28 not a major regulator of gene expression in S. oneidensis MR-1. The enrichment 29 of methylated GATC motifs in the origin of replication indicate DNA methylation 30 may regulate genome replication in a manner similar to that seen in Escherichia 31 coli. Furthermore, comparative analyses suggest that many 32 Gammaproteobacteria, including all members of the Shewanellaceae family, may 33 also utilize DNA methylation to regulate genome replication.

  4. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide ...

  5. Accurate ab initio vibrational energies of methyl chloride

    SciTech Connect

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2015-06-28

    Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup  HL}, and CBS-37{sup  HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup  HL} and CBS-37{sup  HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.

  6. Evaluation of alternate routes for the synthesis of methyl methacrylate

    SciTech Connect

    Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.; Choi, G.N.

    1998-12-31

    The use of coal-derived syngas to produce high value chemicals is an important means of upgrading this resource. One example of a chemical that can be produced from coal-derived syngas is methyl methacrylate (MMA). Poly-methyl methacrylate is widely used in coatings and in various industrial molded products. The most widely practiced commercial technology for the synthesis of MMA is the acetone cyanohydrin (ACH) process. This process requires handling of large quantities of toxic hydrogen cyanide and generates one mole of ammonium bisulfate waste per mole of MMA. This bisulfate must either be regenerated or discarded, either of which substantially increases the cost. The ACH technology is thus environmentally and economically untenable for any new MMA plant expansions that would be needed to meet increasing demand. The RTI-Eastman-Bechtel research team is developing an alternative, environmentally benign route to MMA consisting of three steps; (step 1) synthesis of a propionate from ethylene, carbon monoxide, and steam, (step 2) condensation of this propionate with formaldehyde, and (step 3) esterification of resulting methacrylic acid with methanol to form MMA. This paper describes the preliminary economics of the overall process compared to other emerging processes, and focuses on step 2, including long term testing of catalysts for the condensation of propionic acid with formaldehyde to form MAA.

  7. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    SciTech Connect

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by

  8. Quaternary and tertiary aldoxime antidotes for organophosphate exposure in a zebrafish model system

    SciTech Connect

    Schmidt, Hayden R.; Radić, Zoran; Taylor, Palmer; Fradinger, Erica A.

    2015-04-15

    The zebrafish is rapidly becoming an important model system for screening of new therapeutics. Here we evaluated the zebrafish as a potential pharmacological model for screening novel oxime antidotes to organophosphate (OP)-inhibited acetylcholinesterase (AChE). The k{sub i} values determined for chlorpyrifos oxon (CPO) and dichlorvos (DDVP) showed that CPO was a more potent inhibitor of both human and zebrafish AChE, but overall zebrafish AChE was less sensitive to OP inhibition. In contrast, aldoxime antidotes, the quaternary ammonium 2-PAM and tertiary amine RS-194B, showed generally similar overall reactivation kinetics, k{sub r}, in both zebrafish and human AChE. However, differences between the K{sub ox} and k{sub 2} constants suggest that zebrafish AChE associates more tightly with oximes, but has a slower maximal reactivation rate than human AChE. Homology modeling suggests that these kinetic differences result from divergences in the amino acids lining the entrance to the active site gorge. Although 2-PAM had the more favorable in vitro reactivation kinetics, RS-194B was more effective antidote in vivo. In intact zebrafish embryos, antidotal treatment with RS-194B rescued embryos from OP toxicity, whereas 2-PAM had no effect. Dechorionation of the embryos prior to antidotal treatment allowed both 2-PAM and RS-194B to rescue zebrafish embryos from OP toxicity. Interestingly, RS-194B and 2-PAM alone increased cholinergic motor activity in dechorionated embryos possibly due to the reversible inhibition kinetics, K{sub i} and αK{sub i}, of the oximes. Together these results demonstrate that the zebrafish at various developmental stages provides an excellent model for investigating membrane penetrant antidotes to OP exposure. - Highlights: • Zebrafish AChE shares significant structural similarities with human AChE. • OP-inhibited zebrafish and human AChE exhibit similar reactivation kinetics. • The zebrafish chorion is permeable to BBB penetrant and not

  9. Unexpected methyl migrations of ethanol dimer under synchrotron VUV radiation

    SciTech Connect

    Xiao, Weizhan; Hu, Yongjun E-mail: lssheng@ustc.edu.cn; Li, Weixing; Guan, Jiwen; Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi E-mail: lssheng@ustc.edu.cn

    2015-01-14

    While methyl transfer is well known to occur in the enzyme- and metal-catalyzed reactions, the methyl transfer in the metal-free organic molecules induced by the photon ionization has been less concerned. Herein, vacuum ultraviolet single photon ionization and dissociation of ethanol dimer are investigated with synchrotron radiation photoionization mass spectroscopy and theoretical methods. Besides the protonated clusters cation (C{sub 2}H{sub 5}OH) ⋅ H{sup +} (m/z = 47) and the β-carbon-carbon bond cleavage fragment CH{sub 2}O ⋅ (C{sub 2}H{sub 5}OH)H{sup +} (m/z = 77), the measured mass spectra revealed that a new fragment (C{sub 2}H{sub 5}OH) ⋅ (CH{sub 3}){sup +} (m/z = 61) appeared at the photon energy of 12.1 and 15.0 eV, where the neutral dimer could be vertically ionized to higher ionic state. Thereafter, the generated carbonium ions are followed by a Wagner-Meerwein rearrangement and then dissociate to produce this new fragment, which is considered to generate after surmounting a few barriers including intra- and inter-molecular methyl migrations by the aid of theoretical calculations. The appearance energy of this new fragment is measured as 11.55 ± 0.05 eV by scanning photoionization efficiency curve. While the signal intensity of fragment m/z = 61 starts to increase, the fragments m/z = 47 and 77 tend to slowly incline around 11.55 eV photon energy. This suggests that the additional fragment channels other than (C{sub 2}H{sub 5}OH) ⋅ H{sup +} and CH{sub 2}O ⋅ (C{sub 2}H{sub 5}OH)H{sup +} have also been opened, which consume some dimer cations. The present report provides a clear description of the photoionization and dissociation processes of the ethanol dimer in the range of the photon energy 12-15 eV.

  10. Characterization of the Deltaproteobacteria in contaminated and uncontaminated stream sediments and identification of potential mercury methylators

    SciTech Connect

    Mosher, Jennifer; Vishnivetskaya, Tatiana A; Elias, Dwayne A; Podar, Mircea; Brooks, Scott C; Brown, Steven D; Brandt, Craig C; Palumbo, Anthony Vito

    2012-01-01

    Microbial communities were examined in surface stream sediments at 5 contaminated sites and 1 control site near Oak Ridge, TN, USA, to identify bacteria that could be contributing to mercury (Hg) methylation. The phylogenetic composition of the sediment bacterial community was examined over 3 quarterly sampling periods (36 samples) using 16S rRNA gene pyrosequencing. Only 3064 sequences (0.85% of the total community) were identified as Deltaproteobacteria, the only group known to methylate Hg, using the Ribosomal Database Project classifier at the 99% confidence threshold. Constrained ordination techniques indicated statistically significant positive linear correlations between Desulfobulbus spp., Desulfonema spp. and Desulfobacca spp. and methyl-Hg concentrations at the Hg-contaminated sites. In contrast, the distribution of organisms related to Byssovorax spp. was significantly correlated to inorganic carbon, nitrate and uranium concentrations but not to Hg or methyl-Hg. Overall, the abundance and richness of Deltaproteobacteria sequences were higher in uncontaminated sediments, while the majority of the members present at the contaminated sites were either known potential metal-reducers/methylators or metal tolerant species. Given the abundance relative to other known Hg methylators and the association with methyl-Hg, Desulfobulbus spp. is considered a prime candidate for involvement in Hg methylation in these streams.

  11. Methyl-CpG island-associated genome signature tags

    DOEpatents

    Dunn, John J

    2014-05-20

    Disclosed is a method for analyzing the organismic complexity of a sample through analysis of the nucleic acid in the sample. In the disclosed method, through a series of steps, including digestion with a type II restriction enzyme, ligation of capture adapters and linkers and digestion with a type IIS restriction enzyme, genome signature tags are produced. The sequences of a statistically significant number of the signature tags are determined and the sequences are used to identify and quantify the organisms in the sample. Various embodiments of the invention described herein include methods for using single point genome signature tags to analyze the related families present in a sample, methods for analyzing sequences associated with hyper- and hypo-methylated CpG islands, methods for visualizing organismic complexity change in a sampling location over time and methods for generating the genome signature tag profile of a sample of fragmented DNA.

  12. High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes

    SciTech Connect

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M

    2011-03-01

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

  13. Global prevalence and distribution of genes and microorganisms involved in mercury methylation

    SciTech Connect

    Podar, Mircea; Gilmour, C C; Brandt, Craig C; Bullock, Allyson L; Brown, Steven D; Crable, Bryan R; Palumbo, Anthony Vito; Somenahally, Anil C; Elias, Dwayne A

    2015-01-01

    Mercury methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). Recent identification of the methylation genes (hgcAB) provides the foundation for broadly evaluating microbial Hg-methylation potential in nature without making explicit rate measurements. We queried hgcAB diversity and distribution in all available microbial metagenomes, encompassing most environments. The genes were found in nearly all anaerobic, but not in aerobic, environments including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate guts, thawing permafrost, coastal dead zones , soils, sediments, and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups potentially capable of Hg-methylation emerged, including lineages having no cultured representatives. We begin to address long-standing evolutionary questions about Hg-methylation and ancient carbon fixation mechanisms while generating a new global view of Hg-methylation potential.

  14. Global prevalence and distribution of genes and microorganisms involved in mercury methylation

    DOE PAGES [OSTI]

    Podar, Mircea; Gilmour, C. C.; Brandt, Craig C.; Soren, Allyson; Brown, Steven D.; Crable, Bryan R.; Palumbo, Anthony Vito; Somenahally, Anil C.; Elias, Dwayne A.

    2015-10-09

    Mercury methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). Recent identification of the methylation genes (hgcAB) provides the foundation for broadly evaluating microbial Hg-methylation potential in nature without making explicit rate measurements. We first queried hgcAB diversity and distribution in all available microbial metagenomes, encompassing most environments. The genes were found in nearly all anaerobic, but not in aerobic, environments including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate guts, thawing permafrost, coastal dead zones, soils, sediments,more » and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups potentially capable of Hg-methylation emerged, including lineages having no cultured representatives. We then begin to address long-standing evolutionary questions about Hg-methylation and ancient carbon fixation mechanisms while generating a new global view of Hg-methylation potential.« less

  15. Global prevalence and distribution of genes and microorganisms involved in mercury methylation

    SciTech Connect

    Podar, Mircea; Gilmour, C. C.; Brandt, Craig C.; Soren, Allyson; Brown, Steven D.; Crable, Bryan R.; Palumbo, Anthony Vito; Somenahally, Anil C.; Elias, Dwayne A.

    2015-01-01

    Mercury methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). Recent identification of the methylation genes (hgcAB) provides the foundation for broadly evaluating microbial Hg-methylation potential in nature without making explicit rate measurements. We first queried hgcAB diversity and distribution in all available microbial metagenomes, encompassing most environments. The genes were found in nearly all anaerobic, but not in aerobic, environments including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate guts, thawing permafrost, coastal dead zones, soils, sediments, and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups potentially capable of Hg-methylation emerged, including lineages having no cultured representatives. We then begin to address long-standing evolutionary questions about Hg-methylation and ancient carbon fixation mechanisms while generating a new global view of Hg-methylation potential.

  16. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    BEN W.-L. JANG; GERALD N. CHOI; JAMES J. SPIVEY; JOSPEH R. ZOELLER; RICHARD D. COLBERG

    1999-01-20

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter(Oct.-Dec./98), we have investigated the condensation between methyl propionate and formaldehyde (MP/HCHO=4.5/1) at various reaction temperatures(280-360EC) over 5%, 10%, and 20% Nb O /SiO catalysts. The conversion of HCHO increases with reaction 2 5 2 temperature and niobium loading. MMA+MAA selectivity goes through a maximum with the temperature over both 10% and 20% Nb O /SiO . The selectivities to MMA+MAA are 67.2%, 2 5 2 72.3%and 58.1% at 320EC over 5%, 10%, 20% Nb O /SiO , respectively. However, the 2 5 2 conversion of formaldehyde decreases rapidly with time on stream. The results suggest that silica supported niobium catalysts are active and selective for condensation of MP with HCHO, but deactivation needs to be minimized for the consideration of commercial application. We have preliminarily investigated the partial oxidation of dimethyl ether(DME) over 5% Nb O /SiO catalyst. Reactant gas mixture of 0.1% DME, 0.1% O and balance nitrogen is 2 5 2 2 studied with temperature ranging from 200°C to 500°C. The conversion of DME first increases with temperature reaching an maximum at 400°C then decreases. The selectivity to HCHO also increases with reaction temperature first. But the selectivity to HCHO decreases at temperature above 350

  17. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    Makarand R. Gogate; James J. Spivey; Joseph R. Zoeller; Richard D. Colberg; Gerald N. Choi

    1999-07-19

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. During the April-June quarter(04-06/99) the first in-situ formaldehyde generation from DME and condensation with methyl propionate is demonstrated and the results are summarized. The supported niobium catalyst shows better condensation activity, but supported tungsten catalyst has higher formaldehyde selectivity. The project team has also completed a 200-hour long term test of PA-HCHO condensation over 30% Nb{sub 2}O{sub 5}/SiO{sub 2}. Three activity cycles and two regeneration cycles were carried out. 30% Nb{sub 2}O{sub 5}/SiO{sub 2} showed similar MAA yields as 10% Nb{sub 2}O{sub 5}/SiO{sub 2} at 300 C. However, the deactivation appears to be slower with 30% Nb{sub 2}O{sub 5}/SiO{sub 2} than 10% Nb{sub 2}O{sub 5}/SiO{sub 2}. An detailed economic analysis of PA-HCHO condensation process for a 250 million lb/yr MMA plant is currently studied by Bechtel. Using the Amoco data-based azeotropic distillation model as the basis, an ASPEN flow sheet model was constructed to simulate the formaldehyde and propionic acid condensation processing section based on RTI's design data. The RTI MAA effluent azeotropic distillation column was found to be much more difficult to converge. The presence of non-condensible gases along with the byproduct DEK (both of which were not presented in

  18. Factors affecting the retention of methyl iodide by iodide-impregnated carbon

    SciTech Connect

    Hyder, M.L.; Malstrom, R.A.

    1990-12-31

    Iodide-impregnated activated carbon that had been in use for up to 30 months was studied to characterize those factors that affect its interaction with and retention of methyl iodide. Humidity and competing organic sorbents were observed to decrease the residence time of the methyl iodide on the carbon bed. Additionally, changes in the effective surface area and the loss of iodide from the surface are both important in determining the effectiveness of the carbon for retaining radioactive iodine from methyl iodide. A simple model incorporating both factors gave a fairly good fit to the experimental data.

  19. Factors affecting the retention of methyl iodide by iodide-impregnated carbon

    SciTech Connect

    Hyder, M.L.; Malstrom, R.A.

    1990-01-01

    Iodide-impregnated activated carbon that had been in use for up to 30 months was studied to characterize those factors that affect its interaction with and retention of methyl iodide. Humidity and competing organic sorbents were observed to decrease the residence time of the methyl iodide on the carbon bed. Additionally, changes in the effective surface area and the loss of iodide from the surface are both important in determining the effectiveness of the carbon for retaining radioactive iodine from methyl iodide. A simple model incorporating both factors gave a fairly good fit to the experimental data.

  20. Thermochemistry of C-O, (CO)-O, and (CO)-C bond breaking in fatty acid methyl esters

    SciTech Connect

    Osmont, Antoine; Yahyaoui, Mohammed; Catoire, Laurent; Goekalp, Iskender; Swihart, Mark T.

    2008-10-15

    Density functional theory quantum chemical calculations corrected with empirical atomic increments have been used to examine C-O, (CO)-O, and (CO)-C bond scission enthalpies in gas-phase fatty acid methyl esters (FAMEs) present in biodiesel derived from rapeseed oil methyl ester and soybean oil methyl ester. Mechanistic information, currently not available elsewhere for these large species, is obtained based on thermochemical considerations and compared to thermochemical considerations reported for methyl butanoate, a small methyl ester sometimes used as a model for FAMEs. These results are compared to previously reported C-C and C-H bond scissions in these FAMEs, derived using this same protocol. (author)

  1. Review and reconnaissance of the hydrogeology of Tertiary sedimentary rocks in the vicinity of Frenchman Flat, Nevada Test Site

    SciTech Connect

    Prothro, L.B.; Drellack, S.L. Jr.

    1997-09-01

    Work is currently underway within the Underground Test Area (UGTA) subproject of the US Department of Energy/Nevada Operations Office Environmental Restoration Program to develop corrective action plans in support of the overall corrective action strategy for the Nevada Test Site (NTS) as established in the Federal Facility Agreement and Consent Order (FFACO, 1996). A closure plan is currently being developed for Frenchman Flat, which has been identified in the FFACO as a Corrective Action Unit (CAU). Part of this effort requires that hydrogeologic data be compiled for inclusion in a CAU-specific hydrologic flow and transport model that will be used to predict contaminant boundaries. Hydrogeologic maps and cross sections are currently being prepared for use in the model to define the nature and extent of aquifers and confining units that might influence the flow of contaminated groundwater from underground nuclear tests conducted in Frenchman Flat. During this effort, it has been found that older Tertiary-age sediments might be hydrogeologically important in the Frenchman Flat model area. Although the character and extent of these units are poorly known, there is reason to believe that in some parts of Frenchman Flat they may lie between the regional Lower Carbonate Aquifer (LCA) and the younger Tertiary saturated alluvium and volcanic units in which several underground nuclear tests were conducted. It was not possible to quickly determine their extent, or ascertain whether or not these units might act as confining units or aquifers. The work described in this report was done to gain a better understanding of the hydrogeology of these rocks.

  2. Renewed petroleum generation related to Tertiary intrusions and increased heat flow, western Permian basin, Texas and New Mexico

    SciTech Connect

    Barker, C.E.; Pawlewicz, M.J.

    1989-03-01

    Higher paleogeothermal gradients, commencing in the Tertiary after maximum burial, have caused renewed petroleum generation in the western Permian basin. Evidence for this reheating is two distinct trends in the mean random vitrinite reflectance (R/sub m/) and depth data compiled from over 40 wells. One group, with a 0.7% R/sub m//km gradient, is from the western edge of the basin; the other, with a 0.5% R/sub m//km gradient, is from the central and eastern portions. Post-Mississippian tilting produced greater subsidence and a thicker, mostly uneroded sedimentary section in the eastern portion of the Permian basin. Continued tilting prior to the Cretaceous caused uplift and erosion that exposed the Upper Permian section in the western part. Potassium-argon ages of igneous intrusions along the western edge of the basin show they were emplaced about 35 Ma, followed by Miocene to Holocene basin-and-range-type block faulting and associated high heat flow. Isopach-reflectance contours confirm this renewed heating is post-tectonic - that is, it occurred after eastward tilting and erosion had reduced burial depth. Maximum temperatures computed from R/sub m/-depth relationships infer that paleogeothermal gradients exceeded 40/degrees/C/km (2.2/degrees/F/100 ft) in the Tertiary. This reheating thermally matured rocks as young as Guadalupian in the western Permian basin and apparently caused a second episode of petroleum generation. By this time, however, the potential reservoir rocks and evaporite seals had been deeply eroded, resulting in poor conditions for trapping the renewed pulse of petroleum.

  3. Synthesis of Methyl Methacrylate from Coal-Derived Syngas

    SciTech Connect

    Gerald N. Choi; James J. Spivey; Jospeh R. Zoeller; Makarand R. Gogate; Richard D. Colberg; Samuel S. Tam

    1998-04-17

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. RTI has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, RTI is currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last month, RTI has finalized the design of a fixed-bed microreactor system for DME partial oxidation reactions. RTI incorporated some design changes to the feed blending system, so as to be able to blend varying proportions of DME and oxygen. RTI has also examined the flammability limits of DME-air mixtures. Since the lower flammability limit of DME in air is 3.6 volume percent, RTI will use a nominal feed composition of 1.6 percent in air, which is less than half the lower explosion limit for DME-air mixtures. This nominal feed composition is thus considered operationally safe, for DME partial oxidation reactions. RTI is also currently developing an analytical system for DME partial oxidation reaction system.

  4. Novel syngas-based process for methyl methacrylate

    SciTech Connect

    Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.; Choi, G.N.; Tam, S.S.; Tischer, R.E.; Srivastava, R.D.

    1996-12-31

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel are developing a novel process for synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the U.S. Department of Energy, Pittsburgh Energy Technology Center. This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Eastman has focused on the research on propionate synthesis step. The resultant Mo catalysts work efficiently at much less severe conditions (170{degrees}C and 30 atm) than the conventional Ni catalysts (270{degrees}C and 180 atm). Bechtel has performed an extensive cost analysis, which shows that Eastman`s propionate synthesis process is competitive with other technologies to produce the anhydride. In the second step, RTI and Eastman have developed active and stable V-SI-P and Ta metal oxide catalysts for condensation reactions of propionates with formaldehyde. RTI has demonstrated a novel correlation among the catalyst acid-base properties, condensation reaction yield, and long-term catalyst activity. Current research focuses on enhancing the condensation reaction yields, acid-base properties, in situ condensation in a high- temperature, high-pressure (HTHP) slurry reactor, and alternate formaldehyde feedstocks. Based on Eastman and RTI laboratory reactor operating data, a cost estimate is also being developed for the integrated process.

  5. Optimized End-Stacking Provides Specificity of N-Methyl Mesoporphyrin...

    Office of Scientific and Technical Information (OSTI)

    Optimized End-Stacking Provides Specificity of N-Methyl Mesoporphyrin IX for Human Telomeric G-Quadruplex DNA Citation Details In-Document Search Title: Optimized End-Stacking ...

  6. Radio-methyl vorozole and methods for making and using the same

    DOEpatents

    Kim, Sung Won; Biegon, Anat; Fowler, Joanna S.

    2014-08-12

    Radiotracer vorozole compounds for in vivo and in vitro assaying, studying and imaging cytochrome P450 aromatase enzymes in humans, animals, and tissues and methods for making and using the same are provided. [N-radio-methyl] vorozole substantially separated from an N-3 radio-methyl isomer of vorozole is provided. Separation is accomplished through use of chromatography resins providing multiple mechanisms of selectivity.

  7. Radio-methyl vorozole and methods for making and using the same

    DOEpatents

    Kim, Sung Won; Biegon, Anat; Fowler, Joanna S.

    2014-08-05

    Radiotracer vorozole compounds for in vivo and in vitro assaying, studying and imaging cytochrome P450 aromatase enzymes in humans, animals, and tissues and methods for making and using the same are provided. [N-radio-methyl] vorozole substantially separated from an N-3 radio-methyl isomer of vorozole is provided. Separation is accomplished through use of chromatography resins providing multiple mechanisms of selectivity.

  8. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ

    Office of Scientific and Technical Information (OSTI)

    Transesterification: Laboratory Analytical Procedure (LAP) (Technical Report) | SciTech Connect Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP) Citation Details In-Document Search Title: Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP) This procedure is based on a whole biomass transesterification of lipids to fatty acid

  9. Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Trihalide

    Office of Scientific and Technical Information (OSTI)

    Perovskite Interface - Oral Presentation (Technical Report) | SciTech Connect Technical Report: Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Trihalide Perovskite Interface - Oral Presentation Citation Details In-Document Search Title: Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Trihalide Perovskite Interface - Oral Presentation This work correlates resonant peaks from first principles calculation on ammonia (NH3) Nitrogen 1s x-ray absorption

  10. Experimental and Kinetic Modeling Study of Extinction and Ignition of Methyl Decanoate in Laminar Nonpremixed Flows

    SciTech Connect

    Seshadri, K; Lu, T; Herbinet, O; Humer, S; Niemann, U; Pitz, W J; Law, C K

    2008-01-09

    Methyl decanoate is a large methyl ester that can be used as a surrogate for biodiesel. In this experimental and computational study, the combustion of methyl decanoate is investigated in nonpremixed, nonuniform flows. Experiments are performed employing the counterflow configuration with a fuel stream made up of vaporized methyl decanoate and nitrogen, and an oxidizer stream of air. The mass fraction of fuel in the fuel stream is measured as a function of the strain rate at extinction, and critical conditions of ignition are measured in terms of the temperature of the oxidizer stream as a function of the strain rate. It is not possible to use a fully detailed mechanism for methyl decanoate to simulate the counterflow flames because the number of species and reactions is too large to employ with current flame codes and computer resources. Therefore a skeletal mechanism was deduced from a detailed mechanism of 8555 elementary reactions and 3036 species using 'directed relation graph' method. This skeletal mechanism has only 713 elementary reactions and 125 species. Critical conditions of ignition were calculated using this skeletal mechanism and are found to agree well with experimental data. The predicted strain rate at extinction is found to be lower than the measurements. In general, the methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  11. Synthesis of Methyl Methacrylate From Coal-Derived Syngas

    SciTech Connect

    Ben W.-L. Jang; Gerald N. Choi; James J. Spivey; Jospeh R. Zoeller; Richard D. Colberg; Samuel S. Tam

    1998-07-27

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. RTI has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, RTI is currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter(April-June, 1998), RTI has modified the reactor system including a new preheater and new temperature settings for the preheater. Continuous condensation of formaldehyde with propionic acid were carried out over 10% Nb O /SiO at 300°C without 2 5 2 interruption. Five activity and four regeneration cycles have been completed without plugging or material balance problems. The results show that 10% Nb O /SiO deactivates slowly with time 2 5 2 but can be regenerated, at least four times, to 100% of its original activity with 2% O in nitrogen 2 at 400°C. The cycles continue with consistent 90-95% of carbon balance. The reaction is scheduled to complete with 6 activity cycles and 5 regenerations. Used catalysts will be analyzed with TGA and XPS to determine bulk and surface coke content and coke properties. RTI will start the investigation of effects of propionic acid/formaldehyde ratio on reaction activity and product selectivity over 20% Nb O /SiO catalysts.

  12. Novel catalysts for the environmentally friendly synthesis of methyl methacrylate

    SciTech Connect

    Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.

    1997-11-01

    The development of a process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas can alleviate the environmental hazards associated with the current commercial MMA technology, the acetone cyanohydrin (ACH) process. A three-step syngas-based process consisted of synthesis of a propionic acid, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) to form MMA. The first two steps, propionic acid synthesis and condensation, are discussed here. The low-temperature, low-pressure process for single-step hydrocarbonylation of ethylene to propionic acid is carried out using a homogeneous iodine-promoted Mo(CO){sub 6} catalyst at pressures (30--70 atm) and temperatures (150--200 C) lower than those reported for other catalysts. Mechanistic investigations suggest that catalysis is initiated by a rate-limiting CO dissociation from Mo(CO){sub 6}. This dissociation appears to be followed by an inner electron-transfer process of an I atom from EtI to the coordinately unsaturated Mo(CO){sub 5}. This homogeneous catalyst for propionate synthesis represents the first case of an efficient carbonylation process based on Cr group metals. The condensation of formaldehyde with propionic acid is carried out by acid-base bifunctional catalysts. As a result of screening over 80 catalytic materials, group V metals supported on an amorphous silica are found to be most effective. A 20% Nb/SiO{sub 2} catalyst appears to be the most active and stable catalyst thus far. Preliminary relations among the reaction yield and catalyst properties indicate that a high surface area and a low overall surface acidity (<50 = mol of NH{sub 3}/g), with a high proportion of the acidity being weak (<350 C desorption of NH{sub 3}), are desirable. Long-term deactivation of V-Si-P, Nb-Si, and Ta-Si catalysts suggests that carbon deposition is the primary cause for activity decay, and the catalyst activity is partially restorable by oxidative regeneration.

  13. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    BEN W.-L. JANG; GERALD N. CHOI; JAMES J. SPIVEY; JOSPEH R. ZOELLER; RICHARD D. COLBERG

    1998-10-20

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. RTI has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, RTI is currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter (July-September, 1998), the project team has completed the continuous condensation of formaldehyde with propionic acid over 10% Nb{sub 2}O{sub 5}/SiO{sub 2} at 300 C. Six activity and five regeneration cycles have been completed. The results show that 10% Nb{sub 2}O{sub 5}/SiO{sub 2} deactivates slowly with time but can be regenerated to its original activity with 2% O{sub 2} in nitrogen over night at 400 C. We have investigated the effects of regeneration, propionic acid/formaldehyde ratio (PA/HCHO = 4.5/1 to 1.5/1) and reaction temperature(280-300 C) on reaction activity and product selectivity over 20% Nb{sub 2}O{sub 5}/SiO{sub 2} catalysts. The regeneration effect on 20% Nb{sub 2}O{sub 5}/SiO{sub 2} is similar to the effect on 10% Nb{sub 2}O{sub 5}/SiO{sub 2}. The regeneration can bring the deactivated catalyst to its original activity. However, the selectivity to MAA decreases with regeneration while the selectivity to DEK and CO{sub 2} increases. When PA/HCHO ratio is decreased from 4.5/1 to 2.25/1 then to 1.5/1 at 300 C the MAA yield decreases but the MAA selectivity first increases then decreases. Decreasing the reaction temperature from 300 C to 280 C decreases the MAA yield from 39.5% to 30.7% but increases the MAA selectivity from 73.7% to 82.2%. The

  14. The use of nonmarine palynomorphs as correlation tools in rapidly deposited upper tertiary sediments of the Gulf of Mexico

    SciTech Connect

    Ravn, R.L. ); D'Ablaing, J.A. )

    1993-09-01

    Rapidly deposited upper Tertiary sediments can pose significant correlation problems for the biostratigrapher using foraminifera or calcareous nannoplankton because the abundance of marine organisms commonly is greatly diluted. In contrast, such sediments often contain abundant pollen and spores. This palynological population was collected by the proto-Mississippi and perhaps other rivers from a huge hinterland source area probably comparable to that of the Mississippi drainage today. The sediment therefore reflects a general floral population over a large region and may be expected to record important fluctuations in constituent elements of the flora due to climatic changes over time. A secondary overprint of physical sorting also may influence the relative distributions of certain forms. Although not strongly useful as an age-dating tool (the vast majority of forms occurring in Miocene or younger strata represent parent plant types that still exist today), these palynomorph populations do show strong potential as tools for correlation based on quantitative analyses. Palynological [open quotes]logs[close quotes] can be produced using inexpensive standard spreadsheet software and various mathematical evaluation techniques. An example from the Pliocene of offshore Louisiana demonstrates that numerous potential correlation horizons can be defined in a relatively brief time interval in a section in which standard marine microfossils are of little use owing to their scarcity.

  15. Understanding chemical reactions of CO{sub 2} and its isoelectronic molecules with 1-butyl-3-methylimidazolium acetate by changing the nature of the cation: The case of CS{sub 2} in 1-butyl-1-methylpyrrolidinium acetate studied by NMR spectroscopy and density functional theory calculations

    SciTech Connect

    Cabao, M. Isabel, E-mail: isabelcabaco@ist.utl.pt [Departamento de Fsica, Instituto Superior Tcnico, UTL, Av. Rovisco Pais 1049-001 Lisboa (Portugal); Centro de Fsica Atmica da UL, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Besnard, Marcel; Danten, Yann [GSM Institut des Sciences Molculaires, CNRS (UMR 5255), Universit de Bordeaux, 351, Cours de la Libration 33405 Talence Cedex (France); Chvez, Fabin Vaca [Centro de Fsica da Matria Condensada da UL, Av. Prof. Gama Pinto 2, 1694-003 Lisboa (Portugal); Pinaud, Nol [CESAMO Institut des Sciences Molculaires, CNRS (UMR 5255), Universit de Bordeaux, 351, Cours de la Libration 33405 Talence Cedex (France); Sebastio, Pedro J. [Departamento de Fsica, Instituto Superior Tcnico, UTL, Av. Rovisco Pais 1049-001 Lisboa (Portugal); Centro de Fsica da Matria Condensada da UL, Av. Prof. Gama Pinto 2, 1694-003 Lisboa (Portugal); Coutinho, Joo A. P. [CICECO, Departamento de Qumica, Universidade de Aveiro 3810-193 Aveiro (Portugal)

    2014-06-28

    NMR spectroscopy ({sup 1}H, {sup 13}C, {sup 15}N) shows that carbon disulfide reacts spontaneously with 1-butyl-1-methylpyrrolidinium acetate ([BmPyrro][Ac]) in the liquid phase. It is found that the acetate anions play an important role in conditioning chemical reactions with CS{sub 2} leading, via coupled complex reactions, to the degradation of this molecule to form thioacetate anion (CH{sub 3}COS{sup ?}), CO{sub 2}, OCS, and trithiocarbonate (CS{sub 3}{sup 2?}). In marked contrast, the cation does not lead to the formation of any adducts allowing to conclude that, at most, its role consists in assisting indirectly these reactions. The choice of the [BmPyrro]{sup +} cation in the present study allows disentangling the role of the anion and the cation in the reactions. As a consequence, the ensemble of results already reported on CS{sub 2}-[Bmim][Ac] (1), OCS-[Bmim][Ac] (2), and CO{sub 2}-[Bmim][Ac] (3) systems can be consistently rationalized. It is argued that in system (1) both anion and cation play a role. The CS{sub 2} reacts with the acetate anion leading to the formation of CH{sub 3}COS{sup ?}, CO{sub 2}, and OCS. After these reactions have proceeded the nascent CO{sub 2} and OCS interact with the cation to form imidazolium-carboxylate ([Bmim] CO{sub 2}) and imidazolium-thiocarboxylate ([Bmim] COS). The same scenario also applies to system (2). In contrast, in the CO{sub 2}-[Bmim] [Ac] system a concerted cooperative process between the cation, the anion, and the CO{sub 2} molecule takes place. A carbene issued from the cation reacts to form the [Bmim] CO{sub 2}, whereas the proton released by the ring interacts with the anion to produce acetic acid. In all these systems, the formation of adduct resulting from the reaction between the solute molecule and the carbene species originating from the cation is expected. However, this species was only observed in systems (2) and (3). The absence of such an adduct in system (1) has been theoretically investigated

  16. Crystal structure of 1-methyl-3-([2,2-dimethyl-4,6-dioxo-1,3-dioxane-5-ylidene]methyl)urea

    SciTech Connect

    Habibi, A. Ghorbani, H. S.; Bruno, G.; Rudbari, H. A.; Valizadeh, Y.

    2013-12-15

    The crystal structure of 1-Methyl-3-([2,2-dimethyl-4,6-dioxo-1,3-dioxane-5-ylidene]methyl)urea (C{sub 9}H{sub 12}N{sub 2}O{sub 5}) has been determined by single crystal X-ray diffraction analysis. The crystals are monoclinic, a = 5.3179(2), b = 18.6394(6), c =10.8124(3) , ? = 100.015(2), Z = 4, sp. gr. P2{sub 1}/c, R = 0.0381 for 2537 reflections with I > 2?(I). Except for C(CH{sub 3}){sub 2} group, the molecule is planar. The structure is stabilized by inter- and intramolecular N-H...O hydrogen bonds and weak C-H...O interactions.

  17. Polylactide?Poly(6-methyl-[espilson]-caprolactone)?Polylactide Thermoplastic Elastomers

    SciTech Connect

    Martello, Mark T.; Hillmyer, Marc A.

    2012-11-14

    Amorphous ABA type block aliphatic polyesters can be useful as degradable and biorenewable thermoplastic elastomers. These materials can be prepared by sequential ring-opening transesterification polymerization (ROTEP) reactions and can exhibit a range of physical properties and morphologies. In this work a set of amorphous polylactide-poly(6-methyl-{epsilon}-caprolactone)-polylactide aliphatic polyester ABA triblock copolymers were prepared by consecutive controlled ring-opening polymerizations. Ring-opening polymerization of neat 6-methyl-{epsilon}-caprolactone in the presence of 1,4-benzenedimethanol and tin(II) octoate afforded {alpha},{omega}-hydroxyl-terminated poly(6-methyl-{epsilon}-caprolactone). High conversions of 6-methyl-{epsilon}-caprolactone (>96%) afforded polymers with molar masses ranging from 12 to 98 kg mol{sup -1}, depending on monomer-to-initiator ratios, polymers with narrow, monomodal molecular weight distributions. An array of polylactide-poly(6-methyl-{epsilon}-caprolactone)-polylactide triblock copolymers with controlled molecular weights and narrow molecular weight distributions were synthesized using the telechelic poly(6-methyl-{epsilon}-caprolactone) samples as macroinitiators for the ring-opening polymerization of D,L-lactide. The morphological, thermal, and mechanical behaviors of these materials were explored. Several triblocks adopted well-ordered microphase-separated morphologies, and both hexagonally packed cylindrical and lamellar structures were observed. The Flory-Huggins interaction parameter was determined, x(T) = 61.2 T{sup -1} - 0.1, based on the order-to-disorder transition temperatures of two symmetric triblocks using the calculated mean field theory result. The elastomeric mechanical behavior of two high molecular weight triblocks was characterized by tensile and elastic recovery experiments.

  18. Experimental study of the oxidation of methyl oleate in a jet-stirred reactor

    SciTech Connect

    Bax, Sarah; Hakka, Mohammed Hichem; Glaude, Pierre-Alexandre; Herbinet, Olivier; Battin-Leclerc, Frederique

    2010-06-15

    The experimental study of the oxidation of a blend containing n-decane and a large unsaturated ester, methyl oleate, was performed in a jet-stirred reactor over a wide range of temperature covering both low and high temperature regions (550-1100 K), at a residence time of 1.5 s, at quasi atmospheric pressure with high dilution in helium (n-decane and methyl oleate inlet mole fractions of 1.48 x 10{sup -3} and 5.2 x 10{sup -4}) and under stoichiometric conditions. The formation of numerous reaction products was observed. At low and intermediate temperatures, the oxidation of the blend led to the formation of species containing oxygen atoms like cyclic ethers, aldehydes and ketones deriving from n-decane and methyl oleate. At higher temperature, these species were not formed anymore and the presence of unsaturated species was observed. Because of the presence of the double bond in the middle of the alkyl chain of methyl oleate, the formation of some specific products was observed. These species are dienes and esters with two double bonds produced from the decomposition paths of methyl oleate and some species obtained from the addition of H-atoms, OH and HO{sub 2} radicals to the double bond. Experimental results were compared with former results of the oxidation of a blend of n-decane and methyl palmitate performed under similar conditions. This comparison allowed highlighting the similarities and the differences in the reactivity and in the distribution of the reaction products for the oxidation of large saturated and unsaturated esters. (author)

  19. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  20. The role of DNA methylation in catechol-enhanced erythroid differentiation of K562 cells

    SciTech Connect

    Li, Xiao-Fei; Wu, Xiao-Rong; Xue, Ming; Wang, Yan; Wang, Jie; Li, Yang; Suriguga,; Zhang, Guang-Yao; Yi, Zong-Chun

    2012-11-15

    Catechol is one of phenolic metabolites of benzene in vivo. Catechol is also widely used in pharmaceutical and chemical industries. In addition, fruits, vegetables and cigarette smoke also contain catechol. Our precious study showed that several benzene metabolites (phenol, hydroquinone, and 1,2,4-benzenetriol) inhibited erythroid differentiation of K562 cells. In present study, the effect of catechol on erythroid differentiation of K562 cells was investigated. Moreover, to address the role of DNA methylation in catechol-induced effect on erythroid differentiation in K562 cells, methylation levels of erythroid-specific genes were analyzed by Quantitative MassARRAY methylation analysis platform. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation in K562 cells in concentration- and time-dependent manners. The mRNA expression of erythroid specific genes, including ?-globin, ?-globin, ?-globin, erythroid 5-aminolevulinate synthase, erythroid porphobilinogen deaminase, and transcription factor GATA-1 genes, showed a significant concentration-dependent increase in catechol-treated K562 cells. The exposure to catechol caused a decrease in DNA methylation levels at a few CpG sites in some erythroid specific genes including ?-globin, ?-globin and erythroid porphobilinogen deaminase genes. These results indicated that catechol improved erythroid differentiation potency of K562 cells at least partly via up-regulating transcription of some erythroid related genes, and suggested that inhibition of DNA methylation might be involved in up-regulated expression of some erythroid related genes. -- Highlights: ? Catechol enhanced hemin-induced hemoglobin accumulation. ? Exposure to catechol resulted in up-regulated expression of erythroid genes. ? Catechol reduced methylation levels at some CpG sites in erythroid genes.

  1. Isomerization and dissociation in competition: The two-component dissociation rates of methyl propionate ions

    SciTech Connect

    Mazyar, O.A.; Baer, T.

    1999-03-04

    Threshold photoelectron-photoion coincidence (TPEPICO) spectroscopy has been used to investigate the unimolecular chemistry of gas-phase methyl propionate ions. This ion undergoes isomerization to a lower energy enol structure, CH{sub 3}CHC(OH)OCH{sub 3}{sup {sm_bullet}+}, via two different pathways involving two distonic isomers, {sup {sm_bullet}}CH{sub 2}CH{sub 2}C{sup +}(OH)OCH{sub 3} and CH{sub 3}CH{sub 2}C{sup +}(OH)OCH{sub 2}{sup {sm_bullet}}. This isomerization reaction is in competition with the direct CH{sub 3}O{sup {sm_bullet}} loss reaction, which leads to two-component dissociation rates of the methyl propionate ions. Detailed modeling of this complex reaction permitted the extraction of the dissociative photoionization threshold for methyl propionate, which at 0 K is 10.83 {+-} 0.01 eV, as well as the isomerization barrier between the distonic CH{sub 3}CH{sub 2}C{sup +}(OH)OCH{sub 2}{sup {sm_bullet}} and enol CH{sub 3}CHC(OH)OCH{sub 3}{sup {sm_bullet}+} ions of 8.5 kcal/mol (relative to the methyl propionate ion). By combining this with the 0 K heats of formation of methyl propionate and the methoxy radical, the authors derive a 0 K heat of formation of the product propanoyl ion of 147 kcal/mol. Also measured was the adiabatic ionization energy of methyl propionate, 10.03 {+-} 0.05 eV.

  2. Acute environmental toxicity and persistence of methyl salicylate: A chemical agent simulant. Final report

    SciTech Connect

    Cataldo, D.A.; Ligotke, M.W.; Harvey, S.D.; Fellows, R.J.; Li, S.W.

    1994-06-01

    The interactions of methyl salicylate with plant foliage and soils were assessed using aerosol/vapor exposure methods. Measurements of deposition velocity and residence times for soils and foliar surfaces are reported. Severe plant contact toxicity was observed at foliar mass-loading levels above 4 {mu}g/cm{sup 2} leaf; however, recovery was noted after four to fourteen days. Methyl salicylate has a short-term effect on soil dehydrogenase activity, but not phosphatase activity. Results of the earthworm bioassay indicated only minimal effects on survival.

  3. Structures, Phase Transitions and Tricritical Behavior of the Hybrid Perovskite Methyl Ammonium Lead Iodide

    Office of Scientific and Technical Information (OSTI)

    OPEN Received: 14 June 2016 Accepted: 03 October 2016 Published: 21 October 2016 Structures, Phase Transitions and Tricritical Behavior of the Hybrid Perovskite Methyl Ammonium Lead Iodide P. S. Whitfield1, N. Herron2, W. E. Guise3,4, K. Page1, Y. Q. Cheng1,1. Milas3 & M. K. Crawford3,5 We have examined the crystal structures and structural phase transitions of the deuterated, partially deuterated and hydrogenous organic-inorganic hybrid perovskite methyl ammonium lead iodide (MAPbl3) using

  4. Gravity and magnetic anomalies associated with Tertiary volcanism and a Proterozoic crustal boundary, Hopi Buttes volcanic field, Navajo Nation (Arizona)

    SciTech Connect

    Donovan-Ealy, P.F. . Geology Dept.); Hendricks, J.D. )

    1992-01-01

    The Hopi Buttes volcanic field is located in the Navajo Nation of northeastern Arizona, near the southern margin of the Colorado Plateau. Explosive phreatomagmatic eruptions from late Miocene to mid-Pliocene time produced more than 300 maar-diatremes and deposited limburgite tuffs and tuff breccia and monchiquite dikes, necks and flows within a roughly circular 2,500 km[sup 2] area. The volcanic and volcaniclastic rocks make up the middle member of the Bidahochi Formation, whose lower and upper members are lacustrine and fluvial, respectively. The Bidahochi Formation overlies gently dipping Mesozoic sedimentary rocks exposed in the southwestern portion of the volcanic field. Two significant gravity and magnetic anomalies appear within the Hopi Buttes volcanic field that are unlike the signatures of other Tertiary volcanic fields on the Colorado Plateau. A circular 20 mGal negative gravity anomaly is centered over exposed sedimentary rocks in the southwestern portion of the field. The anomaly may be due to the large volume of low density pyroclastic rocks in the volcanic field and/or extensive brecciation of the underlying strata from the violent maar eruptions. The second significant anomaly is the northeast-trending Holbrook lineament, a 5 km-wide gravity and magnetic lineament that crosses the southeastern part of the volcanic field. The lineament reflects substantial gravity and magnetic decreases of 1.67 mGals/km and 100 gammas/km respectively, to the southeast. Preliminary two-dimensional gravity and magnetic modeling suggests the lineament represents a major Proterozoic crustal boundary and may correlate with one of several Proterozoic faults exposed in the transition zone of central Arizona. Gravity modeling shows a 3--5 km step'' in the Moho near the crustal boundary. The decrease in depth of the Moho to the northwest indicates either movement along the fault or magmatic upwelling beneath the volcanic field.

  5. Facies and diagenesis of upper Tertiary-Pleistocene platform carbonates in a 300m borehole, southern Ambergris Caye, Belize

    SciTech Connect

    Burtnett, C.A.

    1996-12-31

    Well cuttings from an {approx}300 m-deep borehole drilled by the Belize government on Ambergris Caye were examined for inferred depositional environments, mineralogy, and stable oxygen-carbon isotopic compositions. The recovered section composes carbonates of the Barton Creek and (?)Sand Hill Formations, presumably of upper-most Tertiary to Pleistocene age. Location of the wellbore to the west of the exposed Pleistocene and superposed Holocene platform margin reef suggests continuous platform deposition. Comparison to modem facies indicates that the entire section is, in fact, mostly outer-shelf reef and immediate back-reef facies. Four unconformities are recognized in the upper 150 m of section on the basis of microbreccias and calcretes, and they truncate stacked, shallowing-upward cycles within the section. Depleted {delta}{sup 18}O and {delta}{sup 13}C compositions of whole-rock samples from the upper 150 m, which are highly porous and LMC-dominated, range from -2.5 to -5 {per_thousand} and -3 to -7 {per_thousand} (PDB), respectively. Unconformities are therefore believed to be subaerial exposure surfaces. Dolomite (replacive and cement) occurs below 150 m within HMC-dominated limestones that also contain aragonite. Dolomite generally increases with depth from 8-28%, its composition varies from Ca{sub 51-57}, and its mean isotopic composition is {delta}{sup 18}O = 3.2 {per_thousand} and {delta}{sup 13}C = 2.5 o/oo. There are no depth-related trends in dolomite stoichiometry or isotopic composition. Although the timing and site of dolomitization are not known, available data suggest formation from circulating marine fluids of near-normal composition.

  6. Facies and diagenesis of upper Tertiary-Pleistocene platform carbonates in a 300m borehole, southern Ambergris Caye, Belize

    SciTech Connect

    Burtnett, C.A. )

    1996-01-01

    Well cuttings from an [approx]300 m-deep borehole drilled by the Belize government on Ambergris Caye were examined for inferred depositional environments, mineralogy, and stable oxygen-carbon isotopic compositions. The recovered section composes carbonates of the Barton Creek and ( )Sand Hill Formations, presumably of upper-most Tertiary to Pleistocene age. Location of the wellbore to the west of the exposed Pleistocene and superposed Holocene platform margin reef suggests continuous platform deposition. Comparison to modem facies indicates that the entire section is, in fact, mostly outer-shelf reef and immediate back-reef facies. Four unconformities are recognized in the upper 150 m of section on the basis of microbreccias and calcretes, and they truncate stacked, shallowing-upward cycles within the section. Depleted [delta][sup 18]O and [delta][sup 13]C compositions of whole-rock samples from the upper 150 m, which are highly porous and LMC-dominated, range from -2.5 to -5 [per thousand] and -3 to -7 [per thousand] (PDB), respectively. Unconformities are therefore believed to be subaerial exposure surfaces. Dolomite (replacive and cement) occurs below 150 m within HMC-dominated limestones that also contain aragonite. Dolomite generally increases with depth from 8-28%, its composition varies from Ca[sub 51-57], and its mean isotopic composition is [delta][sup 18]O = 3.2 [per thousand] and [delta][sup 13]C = 2.5 o/oo. There are no depth-related trends in dolomite stoichiometry or isotopic composition. Although the timing and site of dolomitization are not known, available data suggest formation from circulating marine fluids of near-normal composition.

  7. Stepwise DNA Methylation Changes Are Linked to Escape from Defined Proliferation Barriers and Mammary Epithelial Cell Immortalization

    SciTech Connect

    Novak, Petr; Jensen, Taylor J.; Garbe, James C.; Stampfer, Martha R.; Futscher, Bernard W.

    2009-04-20

    The timing and progression of DNA methylation changes during carcinogenesis are not completely understood. To develop a timeline of aberrant DNA methylation events during malignant transformation, we analyzed genome-wide DNA methylation patterns in an isogenic human mammary epithelial cell (HMEC) culture model of transformation. To acquire immortality and malignancy, the cultured finite lifespan HMEC must overcome two distinct proliferation barriers. The first barrier, stasis, is mediated by the retinoblastoma protein and can be overcome by loss of p16(INK4A) expression. HMEC that escape stasis and continue to proliferate become genomically unstable before encountering a second more stringent proliferation barrier, telomere dysfunction due to telomere attrition. Rare cells that acquire telomerase expression may escape this barrier, become immortal, and develop further malignant properties. Our analysis of HMEC transitioning from finite lifespan to malignantly transformed showed that aberrant DNA methylation changes occur in a stepwise fashion early in the transformation process. The first aberrant DNA methylation step coincides with overcoming stasis, and results in few to hundreds of changes, depending on how stasis was overcome. A second step coincides with immortalization and results in hundreds of additional DNA methylation changes regardless of the immortalization pathway. A majority of these DNA methylation changes are also found in malignant breast cancer cells. These results show that large-scale epigenetic remodeling occurs in the earliest steps of mammary carcinogenesis, temporally links DNA methylation changes and overcoming cellular proliferation barriers, and provides a bank of potential epigenetic biomarkers that mayprove useful in breast cancer risk assessment.

  8. Hydrogen-terminated silicon nanowire photocatalysis: Benzene oxidation and methyl red decomposition

    SciTech Connect

    Lian, Suoyuan; School of Chemical Engineering and Materials, Dalian Polytechnic University, Dalian 116034 ; Tsang, Chi Him A.; Centre of Super Diamond and Advanced Films, City University of Hong Kong, Hong Kong ; Kang, Zhenhui; Liu, Yang; Wong, Ningbew; Lee, Shuit-Tong; Centre of Super Diamond and Advanced Films, City University of Hong Kong, Hong Kong

    2011-12-15

    Graphical abstract: H-SiNWs can catalyze hydroxylation of benzene and degradation of methyl red under visible light irradiation. Highlights: Black-Right-Pointing-Pointer Hydrogen-terminated silicon nanowires were active photocatalyst in the hydroxylation of benzene under light. Black-Right-Pointing-Pointer Hydrogen-terminated silicon nanowires were also effective in the decomposition of methyl red dye. Black-Right-Pointing-Pointer The Si/SiO{sub x} core-shell structure is the main reason of the obtained high selectivity during the hydroxylation. -- Abstract: Hydrogen-terminated silicon nanowires (H-SiNWs) were used as heterogeneous photocatalysts for the hydroxylation of benzene and for the decomposition of methyl red under visible light irradiation. The above reactions were monitored by GC-MS and UV-Vis spectrophotometry, respectively, which shows 100% selectivity for the transformation of benzene to phenol. A complete decomposition of a 2 Multiplication-Sign 10{sup -4} M methyl red solution was achieved within 30 min. The high selectivity for the hydroxylation of benzene and the photodecomposition demonstrate the catalytic activity of ultrafine H-SiNWs during nanocatalysis.

  9. Impaired methylation as a novel mechanism for proteasome suppression in liver cells

    SciTech Connect

    Osna, Natalia A.; White, Ronda L.; Donohue, Terrence M.; Beard, Michael R.; Tuma, Dean J.; Kharbanda, Kusum K.

    2010-01-08

    The proteasome is a multi-catalytic protein degradation enzyme that is regulated by ethanol-induced oxidative stress; such suppression is attributed to CYP2E1-generated metabolites. However, under certain conditions, it appears that in addition to oxidative stress, other mechanisms are also involved in proteasome regulation. This study investigated whether impaired protein methylation that occurs during exposure of liver cells to ethanol, may contribute to suppression of proteasome activity. We measured the chymotrypsin-like proteasome activity in Huh7CYP cells, hepatocytes, liver cytosols and nuclear extracts or purified 20S proteasome under conditions that maintain or prevent protein methylation. Reduction of proteasome activity of hepatoma cell and hepatocytes by ethanol or tubercidin was prevented by simultaneous treatment with S-adenosylmethionine (SAM). Moreover, the tubercidin-induced decline in proteasome activity occurred in both nuclear and cytosolic fractions. In vitro exposure of cell cytosolic fractions or highly purified 20S proteasome to low SAM:S-adenosylhomocysteine (SAH) ratios in the buffer also suppressed proteasome function, indicating that one or more methyltransferase(s) may be associated with proteasomal subunits. Immunoblotting a purified 20S rabbit red cell proteasome preparation using methyl lysine-specific antibodies revealed a 25 kDa proteasome subunit that showed positive reactivity with anti-methyl lysine. This reactivity was modified when 20S proteasome was exposed to differential SAM:SAH ratios. We conclude that impaired methylation of proteasome subunits suppressed proteasome activity in liver cells indicating an additional, yet novel mechanism of proteasome activity regulation by ethanol.

  10. Energy and crude oil input requirements for the production of reformulated gasolines

    SciTech Connect

    Singh, M.; McNutt, B.

    1993-10-01

    The energy and crude oil requirements for the production of reformulated gasoline (RFG) are estimated. The scope of the study includes both the energy and crude oil embodied in the final product and the process energy required to manufacture the RFG and its components. The effects on energy and crude oil use of employing various oxygenates to meet the minimum oxygen-content level required by the Clean Air Act Amendments are evaluated. The analysis shows that production of RFG requires more total energy, but uses less crude oil, than that of conventional gasoline. The energy and crude oil use requirements of the different RFGs vary considerably. For the same emissions performance level, RFG with ethanol requires substantially more total energy and crude oil than does RFG with methyl tertiary butyl ether (MTBE) or ethyl tertiary butyl ether. A specific proposal by the US Environmental Protection Agency, designed to allow the use of ethanol in RFG, would increase the total energy required to produce RFG by 2% and the total crude oil required by 2.0 to 2.5% over the corresponding values for the base RFG with MTBE.

  11. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    DOE PAGES [OSTI]

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea; Wall, Judy D.

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential formore » mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.« less

  12. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    SciTech Connect

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea; Wall, Judy D.

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.

  13. Proximal impact deposits at the Cretaceous-Tertiary boundary in the Gulf of Mexico: A restudy of DSDP Leg 77 Sites 536 and 540

    SciTech Connect

    Alvarez, W.; Asaro, F. ); Smit, J. ); Lowrie, W. ); Asaro, F. ); Margolis, S.V.; Claeys, P. ); Kastner, M. ); Hildebrand, A.R. )

    1992-08-01

    Restudy of Deep Sea Drilling Project Sites 536 and 540 in the southeast Gulf of Mexico gives evidence for a giant wave at Cretaceous-Tertiary boundary time. Five units are recognized: (1) Cenomanian limestone underlies a hiatus in which the five highest Cretaceous stages are missing, possibly because of catastrophic K-T erosion. (2) Pebbly mudstone, 45 m thick, represents a submarine landslide possibly of K-T age. (3) Current-bedded sandstone, more than 2.5 m thick, contains anomalous iridium, tektite glass, and shocked quartz; it is interpreted as ejecta from a nearby impact crater, reworked on the deep-sea floor by the resulting tsunami. (4) A 50-cm interval of calcareous mudstone containing small Cretaceous planktic foraminifera and the Ir peak is interpreted as the silt-size fraction of the Cretaceous material suspended by the impact-generated wave. (5) Calcareous mudstone with basal Tertiary forams and the uppermost tail of the Ir anomaly overlies the disturbed interval, dating the impact and wave event as K-T boundary age. Like Beloc in Haiti and Mimbral in Mexico, Sites 536 and 540 are consistent with a large K-T age impact at the nearby Chicxulub crater.

  14. Sub-crop geologic map of pre-Tertiary rocks in the Yucca Flat and northern Frenchman Flat areas, Nevada Test Site, southern Nevada

    SciTech Connect

    Cole, J.C.; Harris, A.G.; Wahl, R.R.

    1997-10-02

    This map displays interpreted structural and stratigraphic relations among the Paleozoic and older rocks of the Nevada Test Site region beneath the Miocene volcanic rocks and younger alluvium in the Yucca Flat and northern Frenchman Flat basins. These interpretations are based on a comprehensive examination and review of data for more than 77 drillholes that penetrated part of the pre-Tertiary basement beneath these post-middle Miocene structural basins. Biostratigraphic data from conodont fossils were newly obtained for 31 of these holes, and a thorough review of all prior microfossil paleontologic data is incorporated in the analysis. Subsurface relationships are interpreted in light of a revised regional geologic framework synthesized from detailed geologic mapping in the ranges surrounding Yucca Flat, from comprehensive stratigraphic studies in the region, and from additional detailed field studies on and around the Nevada Test Site. All available data indicate the subsurface geology of Yucca Flat is considerably more complicated than previous interpretations have suggested. The western part of the basin, in particular, is underlain by relics of the eastward-vergent Belted Range thrust system that are folded back toward the west and thrust by local, west-vergent contractional structures of the CP thrust system. Field evidence from the ranges surrounding the north end of Yucca Flat indicate that two significant strike-slip faults track southward beneath the post-middle Miocene basin fill, but their subsurface traces cannot be closely defined from the available evidence. In contrast, the eastern part of the Yucca Flat basin is interpreted to be underlain by a fairly simple north-trending, broad syncline in the pre-Tertiary units. Far fewer data are available for the northern Frenchman Flat basin, but regional analysis indicates the pre-Tertiary structure there should also be relatively simple and not affected by thrusting. This new interpretation has implications

  15. Spectroscopic investigation of the vibrational quasi-continuum arising from internal rotation of a methyl group

    SciTech Connect

    Hougen, J.T.

    1993-12-01

    The goal of this project is to use spectroscopic techniques to investigate in detail phenomena involving the vibrational quasi-continuum in a simple physical system. Acetaldehyde was chosen for the study because: (i) methyl groups have been suggested to be important promotors of intramolecular vibrational relaxation, (ii) the internal rotation of a methyl group is an easily describle large-amplitude motion, which should retain its simple character even at high levels of excitation, and (iii) the aldehyde carbonyl group offers the possibility of both vibrational and electronic probing. The present investigation of the ground electronic state has three parts: (1) understanding the {open_quotes}isolated{close_quotes} internal-rotation motion below, at, and above the top of the torsional barrier, (2) understanding in detail traditional (bond stretching and bending) vibrational fundamental and overtone states, and (3) understanding interactions involving states with multiquantum excitations of at least one of these two kinds of motion.

  16. Method of recycling lithium borate to lithium borohydride through methyl borate

    DOEpatents

    Filby, Evan E.

    1977-01-01

    This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a methyl borate intermediate to complete the recycle scheme.

  17. Durability of Poly(Methyl Methacrylate) Lenses Used in Concentrating Photovoltaic Technology (Revised) (Presentation)

    SciTech Connect

    Miller, D. C.; Carloni, J. D.; Pankow, J. W.; Gjersing, E. L.; To, B.; Packard, C. E.; Kennedy, C. E.; Kurtz, S. R.

    2012-01-01

    Concentrating photovoltaic (CPV) technology recently gained interest based on its expected low levelized cost of electricity, high efficiency, and scalability. Many CPV systems employ Fresnel lenses composed of poly(methyl methacrylate) (PMMA) to obtain a high optical flux density on the cell. The optical and mechanical durability of these lenses, however, is not well established relative to the desired surface life of 30 years. Our research aims to quantify the expected lifetime of PMMA in key market locations (FL, AZ, and CO).

  18. Crystallization of lysozyme with (R)-, (S)- and (RS)-2-methyl-2, 4-pentanediol

    SciTech Connect

    Stauber, Mark; Jakoncic, Jean; Berger, Jacob; Karp, Jerome M.; Axelbaum, Ariel; Sastow, Dahniel; Buldyrev, Sergey V.; Hrnjez, Bruce J.; Asherie, Neer

    2015-03-01

    Crystallization of lysozyme with (R)-2-methyl-2, 4-pentanediol produces more ordered crystals and a higher resolution protein structure than crystallization with (S)-2-methyl-2, 4-pentanediol. The results suggest that chiral interactions with chiral additives are important in protein crystal formation. Chiral control of crystallization has ample precedent in the small-molecule world, but relatively little is known about the role of chirality in protein crystallization. In this study, lysozyme was crystallized in the presence of the chiral additive 2-methyl-2, 4-pentanediol (MPD) separately using the R and S enantiomers as well as with a racemic RS mixture. Crystals grown with (R)-MPD had the most order and produced the highest resolution protein structures. This result is consistent with the observation that in the crystals grown with (R)-MPD and (RS)-MPD the crystal contacts are made by (R)-MPD, demonstrating that there is preferential interaction between lysozyme and this enantiomer. These findings suggest that chiral interactions are important in protein crystallization.

  19. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    SciTech Connect

    Zhang, Heyu; Nan, Xu; Li, Xuefen; Chen, Yan; Zhang, Jianyun; Sun, Lisha; Han, Wenlin; Li, Tiejun

    2014-05-02

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.

  20. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1.

    SciTech Connect

    Avvakumov, George V.; Walker, John R.; Xue, Sheng; Li, Yanjun; Duan, Shili; Bronner, Christian; Arrowsmith, Cheryl H.; Dhe-Paganon, Sirano

    2008-11-17

    Epigenetic inheritance in mammals is characterized by high-fidelity replication of CpG methylation patterns during development. UHRF1 (also known as ICBP90 in humans and Np95 in mouse) is an E3 ligase important for the maintenance of global and local DNA methylation in vivo. The preferential affinity of UHRF1 for hemi-methylated DNA over symmetrically methylated DNA by means of its SET and RING-associated (SRA) domain and its association with the maintenance DNA methyltransferase 1 (DNMT1) suggests a role in replication of the epigenetic code. Here we report the 1.7 {angstrom} crystal structure of the apo SRA domain of human UHRF1 and a 2.2 {angstrom} structure of its complex with hemi-methylated DNA, revealing a previously unknown reading mechanism for methylated CpG sites (mCpG). The SRA-DNA complex has several notable structural features including a binding pocket that accommodates the 5-methylcytosine that is flipped out of the duplex DNA. Two specialized loops reach through the resulting gap in the DNA from both the major and the minor grooves to read the other three bases of the CpG duplex. The major groove loop confers both specificity for the CpG dinucleotide and discrimination against methylation of deoxycytidine of the complementary strand. The structure, along with mutagenesis data, suggests how UHRF1 acts as a key factor for DNMT1 maintenance methylation through recognition of a fundamental unit of epigenetic inheritance, mCpG.

  1. Spatial and Functional Relationships Among Pol V-Associated loci, Pol IV-Dependent siRNAs, and Cytosine Methylation in the Arabidopsis Epigenome

    SciTech Connect

    Wierzbicki, A. T.; Cocklin, Ross; Mayampurath, Anoop; Lister, Ryan; Rowley, M. J.; Gregory, Brian D.; Ecker, Joseph R.; Tang, Haixu; Pikaard, Craig S.

    2012-08-15

    Multisubunit RNA polymerases IV and V (Pols IV and V) mediate RNA-directed DNA methylation and transcriptional silencing of retrotransposons and heterochromatic repeats in plants. We identified genomic sites of Pol V occupancy in parallel with siRNA deep sequencing and methylcytosine mapping, comparing wild-type plants with mutants defective for Pol IV, Pol V, or both Pols IV and V. Approximately 60% of Pol V-associated regions encompass regions of 24-nucleotide (nt) siRNA complementarity and cytosine methylation, consistent with cytosine methylation being guided by base-pairing of Pol IV-dependent siRNAs with Pol V transcripts. However, 27% of Pol V peaks do not overlap sites of 24-nt siRNA biogenesis or cytosine methylation, indicating that Pol V alone does not specify sites of cytosine methylation. Surprisingly, the number of methylated CHH motifs, a hallmark of RNA-directed de novo methylation, is similar in wild-type plants and Pol IV or Pol V mutants. In the mutants, methylation is lost at 50%-60% of the CHH sites that are methylated in the wild type but is gained at new CHH positions, primarily in pericentromeric regions. These results indicate that Pol IV and Pol V are not required for cytosine methyltransferase activity but shape the epigenome by guiding CHH methylation to specific genomic sites.

  2. The interaction of organic adsorbate vibrations with substrate lattice waves in methyl-Si(111)-(1??1)

    SciTech Connect

    Brown, Ryan D.; Hund, Zachary M.; Sibener, S. J.; Campi, Davide; Bernasconi, M.; OLeary, Leslie E.; Lewis, Nathan S.; Benedek, G.

    2014-07-14

    A combined helium atom scattering and density functional perturbation theory study has been performed to elucidate the surface phonon dispersion relations for both the CH{sub 3}-Si(111)-(1??1) and CD{sub 3}-Si(111)-(1??1) surfaces. The combination of experimental and theoretical methods has allowed characterization of the interactions between the low energy vibrations of the adsorbate and the lattice waves of the underlying substrate, as well as characterization of the interactions between neighboring methyl groups, across the entire wavevector resolved vibrational energy spectrum of each system. The Rayleigh wave was found to hybridize with the surface rocking libration near the surface Brillouin zone edge at both the M{sup }-point and K{sup }-point. The calculations indicated that the range of possible energies for the potential barrier to the methyl rotation about the Si-C axis is sufficient to prevent the free rotation of the methyl groups at a room temperature interface. The density functional perturbation theory calculations revealed several other surface phonons that experienced mode-splitting arising from the mutual interaction of adjacent methyl groups. The theory identified a Lucas pair that exists just below the silicon optical bands. For both the CH{sub 3}- and CD{sub 3}-terminated Si(111) surfaces, the deformations of the methyl groups were examined and compared to previous experimental and theoretical work on the nature of the surface vibrations. The calculations indicated a splitting of the asymmetric deformation of the methyl group near the zone edges due to steric interactions of adjacent methyl groups. The observed shifts in vibrational energies of the -CD{sub 3} groups were consistent with the expected effect of isotopic substitution in this system.

  3. Lithium cycling performance in improved lithium hexafluoroarsenate/2-Methyl tetrahydrofuran electrolytes

    SciTech Connect

    Desjardins, C.D.; Cadge, T.G.; Casey, E.J.; Donaldson, G.; Salter, R.S.

    1985-03-01

    Lithium hexafluoroarsenate/2-methyl tetrahydrofuran electrolytes have been prepared, purified, and evaluated using half-cell galvanostatic lithium cycling, cyclic voltammetry, plus colorimetric, gas chromatographic, and UV absorption techniques. Superior electrolytes have been prepared yielding reproducible cycling efficiencies in excess of 97%. Static aging trials at ambient temperature clearly demonstrate deterioration in cycling performance with time. This decline in performance is related to electrolyte degradation, possibly arising from the formation of peroxides. However, studies of various battery testing regimes on 1M LiAsF/sub 6//2Me-THF electrolyte support the system' battery potential with respect to both rate capability and shelf-life characteristics.

  4. Organic Carbon Transformation and Mercury Methylation in Tundra Soils from Barrow Alaska

    DOE Data Explorer

    Liang, L.; Wullschleger, Stan; Graham, David; Gu, B.; Yang, Ziming

    2016-04-20

    This dataset includes information on soil labile organic carbon transformation and mercury methylation for tundra soils from Barrow, Alaska. The soil cores were collected from high-centered polygon (trough) at BEO and were incubated under anaerobic laboratory conditions at both freezing and warming temperatures for up to 8 months. Soil organic carbon including reducing sugars, alcohols, and organic acids were analyzed, and CH4 and CO2 emissions were quantified. Net production of methylmercury and Fe(II)/Fe(total) ratio were also measured and provided in this dataset.

  5. Continuous realtime radioiodine monitor employing on-line methyl iodide conversion

    SciTech Connect

    Fernandez, S.J.; Motes, B.G.

    1980-01-01

    An integrated /sup 14/C, /sup 129/I, and /sup 85/Kr monitor was proposed by Fernandez, et al. that separates /sup 129/I from /sup 85/Kr by selective permeation across thin silicone rubber membranes. Subsequent studies of the permeation of CH/sub 3/I and I/sub 2/ through silicone rubber membranes demonstrated that I/sub 2/ transport across the membranes is too slow to be useful in a realtime monitor. Transport of methyl iodide, however, is rapid and gives a separation factor of greater than 100 from /sup 85/Kr.

  6. Low-lying excited states and nonradiative processes of 9-methyl-2-aminopurine

    SciTech Connect

    Trachsel, Maria A.; Lobsiger, Simon; Schr, Tobias; Leutwyler, Samuel

    2014-01-28

    The UV spectrum of the adenine analogue 9-methyl-2-aminopurine (9M-2AP) is investigated with one- and two-color resonant two-photon ionization spectroscopy at 0.3 and 0.05 cm{sup ?1} resolution in a supersonic jet. The electronic origin at 32252 cm{sup ?1} exhibits methyl torsional subbands that originate from the 0A{sub 1}{sup ??} (l = 0) and 1E{sup ?} (l = 1) torsional levels. These and further torsional bands that appear up to 0{sub 0}{sup 0}+230 cm{sup ?1} allow to fit the threefold (V{sub 3}) barriers of the torsional potentials as |V{sub 3}{sup ??}|=50 cm{sup ?1} in the S{sub 0} and |V{sub 3}{sup ?}|=126 cm{sup ?1} in the S{sub 1} state. Using the B3LYP density functional and correlated approximate second-order coupled cluster CC2 methods, the methyl orientation is calculated to be symmetric relative to the 2AP plane in both states, with barriers of V{sub 3}{sup ??}=20 cm{sup ?1} and V{sub 3}{sup ?}=115 cm{sup ?1}. The 0{sub 0}{sup 0} rotational band contour is 75% in-plane (a/b) polarized, characteristic for a dominantly long-axis {sup 1}??{sup *} excitation. The residual 25% c-axis polarization may indicate coupling of the {sup 1}??{sup *} to the close-lying {sup 1}n?{sup *} state, calculated at 4.00 and 4.01 eV with the CC2 method. However, the CC2 calculated {sup 1}n? oscillator strength is only 6% of that of the {sup 1}??{sup *} transition. The {sup 1}??{sup *} vibronic spectrum is very complex, showing about 40 bands within the lowest 500 cm{sup ?1}. The methyl torsion and the low-frequency out-of-plane ?{sub 1}{sup ?} and ?{sub 2}{sup ?} vibrations are strongly coupled in the {sup 1}??{sup *} state. This gives rise to many torsion-vibration combination bands built on out-of-plane fundamentals, which are without precedence in the {sup 1}??{sup *} spectrum of 9H-2-aminopurine [S. Lobsiger, R. K. Sinha, M. Trachsel, and S. Leutwyler, J. Chem. Phys. 134, 114307 (2011)]. From the Lorentzian broadening needed to fit the 0{sub 0}{sup 0} contour of 9M-2AP

  7. Henry's law constants for paint solvents and their implications on volatile organic compound emissions from automotive painting

    SciTech Connect

    Kim, B.R.; Kalis, E.M.; DeWulf, T.; Andrews, K.M.

    2000-02-01

    This paper describes experimental results of equilibrium partitioning of several significant paint solvents and formaldehyde between air and water to quantify the potential for capturing and retaining the constituents in spraybooth scrubber water during automotive painting. The compounds studied are toluene, n-butanol, methyl ethyl ketone methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone, butyl cellosolve, butyl cellosolve acetate, butyl carbitol, and n-methyl-2-pyrrolidinone. A set of field data collected at a Ford Motor Company assembly plant was also analyzed to determine whether data were consistent with the equilibrium phenomenon. The primary findings include: (a) There were more than six orders of magnitude difference in the Henry's law constants among the solvents studied. A solvent with a smaller constant is less easily stripped from water. The Henry's law constants decrease in the following order: toluene and xylenes > methyl ethyl ketone > n-butanol > butyl cellosolve acetate > butyl cellosolve > formaldehyde > butyl carbitol > n-methyl-2-pyrrolidinone. (b) Field data showed accumulation of n-methyl-2-pyrrolidinone and stable concentrations of butyl carbitol, butyl cellosolve, and n-butanol in the paint-sludge pit water during a 2-month period. Stable concentrations indicate a continuous, balanced capture and stripping of the solvents. Data were consistent with measured Henry's law constants. (c) The low Henry's law constant for formaldehyde is the result of the fact that it is hydrated when dissolved in water.

  8. The efficient use of natural gas in transportation

    SciTech Connect

    Stodolsky, F.; Santini, D.J.

    1992-04-01

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  9. The efficient use of natural gas in transportation

    SciTech Connect

    Stodolsky, F.; Santini, D.J.

    1992-01-01

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  10. Catalytic distillation process

    DOEpatents

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  11. Catalytic distillation process

    DOEpatents

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  12. Theory of long-lived nuclear spin states in methyl groups and quantum-rotor induced polarisation

    SciTech Connect

    Dumez, Jean-Nicolas; Håkansson, Pär; Mamone, Salvatore; Meier, Benno; Stevanato, Gabriele; Hill-Cousins, Joseph T.; Roy, Soumya Singha; Brown, Richard C. D.; Pileio, Giuseppe; Levitt, Malcolm H.

    2015-01-28

    Long-lived nuclear spin states have a relaxation time much longer than the longitudinal relaxation time T{sub 1}. Long-lived states extend significantly the time scales that may be probed with magnetic resonance, with possible applications to transport and binding studies, and to hyperpolarised imaging. Rapidly rotating methyl groups in solution may support a long-lived state, consisting of a population imbalance between states of different spin exchange symmetries. Here, we expand the formalism for describing the behaviour of long-lived nuclear spin states in methyl groups, with special attention to the hyperpolarisation effects observed in {sup 13}CH{sub 3} groups upon rapidly converting a material with low-barrier methyl rotation from the cryogenic solid state to a room-temperature solution [M. Icker and S. Berger, J. Magn. Reson. 219, 1 (2012)]. We analyse the relaxation properties of methyl long-lived states using semi-classical relaxation theory. Numerical simulations are supplemented with a spherical-tensor analysis, which captures the essential properties of methyl long-lived states.

  13. Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme

    DOE PAGES [OSTI]

    Sherkhanov, Saken; Korman, Tyler P.; Clarke, Steven G.; Bowie, James U.

    2016-04-07

    Here, most biodiesel currently in use consists of fatty acid methyl esters (FAMEs) produced by transesterification of plant oils with methanol. To reduce competition with food supplies, it would be desirable to directly produce biodiesel in microorganisms. To date, the most effective pathway for the production of biodiesel in bacteria yields fatty acid ethyl esters (FAEEs) at up to ~1.5 g/L. A much simpler route to biodiesel produces FAMEs by direct S-adenosyl-L-methionine (SAM) dependent methylation of free fatty acids, but FAME production by this route has been limited to only ~16 mg/L. Here we employ an alternative, broad spectrum methyltransferase,more » Drosophila melanogaster Juvenile Hormone Acid O-Methyltransferase (DmJHAMT). By introducing DmJHAMT in E. coli engineered to produce medium chain fatty acids and overproduce SAM, we obtain medium chain FAMEs at titers of 0.56 g/L, a 35-fold increase over titers previously achieved. Although considerable improvements will be needed for viable bacterial production of FAMEs and FAEEs for biofuels, it may be easier to optimize and transport the FAME production pathway to other microorganisms because it involves fewer enzymes.« less

  14. Autoignition measurements and a validated kinetic model for the biodiesel surrogate, methyl butanoate

    SciTech Connect

    Dooley, S.; Curran, H.J.; Simmie, J.M.

    2008-04-15

    The autoignition of methyl butanoate has been studied at 1 and 4 atm in a shock tube over the temperature range 1250-1760 K at equivalence ratios of 1.5, 1.0, 0.5, and 0.25 at fuel concentrations of 1.0 and 1.5%. These measurements are complemented by autoignition data from a rapid compression machine over the temperature range 640-949 K at compressed gas pressures of 10, 20, and 40 atm and at varying equivalence ratios of 1.0, 0.5, and 0.33 using fuel concentrations of 1.59 and 3.13%. The autoignition of methyl butanoate is observed to follow Arrhenius-like temperature dependence over all conditions studied. These data, together with speciation data reported in the literature in a flow reactor, a jet-stirred reactor, and an opposed-flow diffusion flame, were used to produce a detailed chemical kinetic model. It was found that the model correctly simulated the effect of change in equivalence ratio, fuel fraction, and pressure for shock tube ignition delays. The agreement with rapid compression machine ignition delays is less accurate, although the qualitative agreement is reasonable. The model reproduces most speciation data with good accuracy. In addition, the important reaction pathways over each regime have been elucidated by both sensitivity and flux analyses. (author)

  15. Arbuzov rearrangement in alkoxy derivatives and chloro derivatives of methyl phosphonites

    SciTech Connect

    Livantsov, M.V.; Prishchenko, A.A.; Lutsenko, I.F.

    1987-10-20

    In a series of alkoxy- and chloro-substituted methyl phosphonites, the Arbuzov reaction is a preparative method for the synthesis of new types of functionally substituted methyl phosphinates. The Arbuzov reaction takes a new pathway in the case of dialkoxymethyl phosphonites, in which the phosphorus-carbon bond is ruptured at the stage where a quasiphosphonium compound forms, producing alkoxycarbonyl phosphonites that have not been available before. The IR spectra were obtained on UR-20 and IKS-22 instruments in a thin layer (NaCL). The PMR spectra were taken on a Tesla BS-497 spectrometer (100 MHz) in C/sub 6/D/sub 6/ and CDCl/sub 3/ solutions (20 to 30% concn.), with TMS as standard. The /sup 13/C NMR spectrum of phosphonite (XI) was obtained on a Varian FT-80A spectrometer (20 MHz) in an 80% solution in C/sub 6/D/sub 6/ and with TMS as standard. The /sup 31/P NMR spectra were obtained on JEOL 6-50OHL (24.3 MHz), Varian FT-80A (32.2 MHz), and JOEL FX-100 (42 MHz) spectrometers with an 85% solution of H/sub 3/PO/sub 4/ in D/sub 2/O as standard.

  16. Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Iodide Perovskite Interface

    SciTech Connect

    Przepioski, Joshua

    2015-08-28

    This work correlates resonant peaks from first principles calculation on ammonia (NH3) Nitrogen 1s x-ray absorption spectroscopy (XAS) within the methyl ammonium lead iodide perovskite (CH3NH3PbI3), and proposes a curve to determine the alignment of the methyl ammonium dipole if there exists angular dependence. The Nitrogen 1s XAS was performed at varying incident angles on the perovskite with and without a carbon nanotube (CNT) interface produced from an ultrasonic spray deposition. We investigated the peak contribution from PbI2 and the poly(9,9-dioctylfluorene- 2,7-diyl) with bipyridine (PFO-BPy) wrapped around the CNT, and used normalization techniques to better identify the dipole alignment. There was angular dependence on samples containing the CNT interface suggesting an existing dipole alignment, but there was no angular dependence on the perovskite samples alone; however, more normalization techniques and experimental work must be performed in order to ensure its validity and to better describe its alignment, and possible controlling factors.

  17. Methyl chloride via oxyhydrochlorination of methane: A building block for chemicals and fuels from natural gas

    SciTech Connect

    Benson, R.L.; Brown, S.S.D.; Ferguson, S.P.; Jarvis, R.F. Jr.

    1995-12-31

    The objectives of this program are to (a) develop a process for converting natural gas to methyl chloride via an oxyhydrochlorination route using highly selective, stable catalysts in a fixed-bed, (b) design a reactor capable of removing the large amount of heat generated in the process so as to control the reaction, (c) develop a recovery system capable of removing the methyl chloride from the product stream and (d) determine the economics and commercial viability of the process. The general approach has been as follows: (a) design and build a laboratory scale reactor, (b) define and synthesize suitable OHC catalysts for evaluation, (c) select first generation OHC catalyst for Process Development Unit (PDU) trials, (d) design, construct and startup PDU, (e) evaluate packed bed reactor design, (f) optimize process, in particular, product recovery operations, (g) determine economics of process, (h) complete preliminary engineering design for Phase II and (i) make scale-up decision and formulate business plan for Phase II. Conclusions regarding process development and catalyst development are presented.

  18. Characterization of the Deltaproteobacteria in Contaminated and Uncontaminated Surface Stream Sediments and Identification of Potential Mercury Methylators

    SciTech Connect

    Mosher, Jennifer J; Vishnivetskaya, Tatiana A; Elias, Dwayne A; Podar, Mircea; Brooks, Scott C; Brown, Steven D; Brandt, Craig C; Palumbo, Anthony Vito

    2012-01-01

    Microbial communities were examined in surface stream sediments at five contaminated sites and one control site near Oak Ridge, TN in order to identify bacteria that could be contributing to mercury methylation. The phylogenetic composition of the sediment bacterial community was examined over three quarterly sampling periods (36 samples) using 16s rRNA pyrosequencing. Only 3064 sequences (0.85 % of the total community) were identified as Deltaproteobacteria by the RDP classifier at the 99% confidence threshold. Constrained ordination techniques indicated significant positive correlations between Desulfobulbus spp., Desulfonema spp. and Desulfobacca spp. and methyl mercury concentrations in the contaminated sites. On the contrary, the distribution of organisms related to Byssovorax was significantly correlated to inorganic carbon, nitrate and uranium concentrations. Overall, the abundance and richness of Deltaproteobacteria sequences were higher in the sediments of the site, while the majority of the members present at the contaminated sites were either known metal reducers/methylators or metal tolerant species.

  19. Covalent Coupling of Organophosphorus Hydrolase Loaded Quantum Dots to Carbon Nanotube/Au Nanocomposite for Enhanced Detection of Methyl Parathion

    SciTech Connect

    Du, Dan; Chen, Wenjuan; Zhang, Weiying; Liu, Deli; Li, Haibing; Lin, Yuehe

    2010-02-15

    An amperometric biosensor for highly selective and sensitive determination of methyl parathion (MP) was developed based on dual signal amplification: (1) a large amount of introduced enzyme on the electrode surface and (2) synergistic effects of nanoparticles towards enzymatic catalysis. The fabrication process includes (1) electrochemical deposition of gold nanoparticles by a multi-potential step technique at multiwalled carbon nanotube (MWCNT) film pre-cast on a glassy carbon electrode and (2) immobilization of methyl parathion degrading enzyme (MPDE) onto a modified electrode through CdTe quantum dots (CdTe QDs) covalent attachment. The introduced MWCNT and gold nanoparticles significantly increased the surface area and exhibited synergistic effects towards enzymatic catalysis. CdTe QDs are further used as carriers to load a large amount of enzyme. As a result of these two important enhancement factors, the proposed biosensor exhibited extremely sensitive, perfectly selective, and rapid response to methyl parathion in the absence of a mediator.

  20. Heterogeneous catalyst for the production of acetic anhydride from methyl acetate

    DOEpatents

    Ramprasad, D.; Waller, F.J.

    1999-04-06

    This invention relates to a process for producing acetic anhydride by the reaction of methyl acetate, carbon monoxide, and hydrogen at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that contains an insoluble polymer having pendant quaternized phosphine groups, some of which phosphine groups are ionically bonded to anionic Group VIII metal complexes, the remainder of the phosphine groups being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for consecutive runs without loss in activity. Bifunctional catalysts for use in carbonylating dimethyl ether are also provided.

  1. Heterogeneous catalyst for the production of acetic anhydride from methyl acetate

    DOEpatents

    Ramprasad, Dorai; Waller, Francis Joseph

    1999-01-01

    This invention relates to a process for producing acetic anhydride by the reaction of methyl acetate, carbon monoxide, and hydrogen at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that contains an insoluble polymer having pendant quaternized phosphine groups, some of which phosphine groups are ionically bonded to anionic Group VIII metal complexes, the remainder of the phosphine groups being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for consecutive runs without loss in activity. Bifunctional catalysts for use in carbonylating dimethyl ether are also provided.

  2. Investigation of methyl decanoate combustion in an optical direct-injection diesel engine

    DOE PAGES [OSTI]

    Cheng, A. S.; Dumitrescu, Cosmin E.; Mueller, Charles J.

    2014-11-24

    In this study, an optically accessible heavy-duty diesel engine was used to investigate the impact of methyl decanoate (MD) on combustion and emissions. A specific goal of the study was to determine if MD could enable soot-free leaner-lifted flame combustion (LLFC) – a mode of mixing-controlled combustion associated with fuel-air equivalence ratios below approximately two. An ultra-low sulfur diesel certification fuel (CF) was used as the baseline fuel, and experiments were conducted at two fuel-injection pressures with three levels of charge-gas dilution. In addition to conventional pressure-based and engine-out emissions measurements, exhaust laser-induced incandescence, in-cylinder natural luminosity (NL), and in-cylindermore » chemiluminescence (CL) diagnostics were used to provide detailed insight into combustion processes.« less

  3. Crystallization of lysozyme with (R)-, (S)- and (RS)-2-methyl-2,4-pentanediol

    DOE PAGES [OSTI]

    Stauber, Mark; Jakoncic, Jean; Berger, Jacob; Karp, Jerome M.; Axelbaum, Ariel; Sastow, Dahniel; Buldyrev, Sergey V.; Hrnjez, Bruce J.; Asherie, Neer

    2015-03-01

    Chiral control of crystallization has ample precedent in the small-molecule world, but relatively little is known about the role of chirality in protein crystallization. In this study, lysozyme was crystallized in the presence of the chiral additive 2-methyl-2,4-pentanediol (MPD) separately using the R and S enantiomers as well as with a racemic RS mixture. Crystals grown with (R)-MPD had the most order and produced the highest resolution protein structures. This result is consistent with the observation that in the crystals grown with (R)-MPD and (RS)-MPD the crystal contacts are made by (R)-MPD, demonstrating that there is preferential interaction between lysozymemore » and this enantiomer. These findings suggest that chiral interactions are important in protein crystallization.« less

  4. Interactions in 1-ethyl-3-methyl imidazolium tetracyanoborate ion pair: Spectroscopic and density functional study

    SciTech Connect

    Mao, James X; Lee, Anita S; Kitchin, John R; Nulwala, Hunaid B; Luebke, David R; Damodaran, Krishnan

    2013-04-24

    Density Functional Theory is used to investigate a weakly coordinating room-temperature ionic liquid, 1-ethyl-3-methyl imidazolium tetracyanoborate ([Emim]{sup +}[TCB]{sup -}). Four locally stable conformers of the ion pair were located. Atoms-in-molecules (AIM) and electron density analysis indicated the existence of several hydrogen bonds. Further investigation through the Natural Bond Orbital (NBO) and Natural Energy Decomposition Analysis (NEDA) calculations provided insight into the origin of interactions in the [Emim]{sup +}[TCB]{sup -} ion pair. Strength of molecular interactions in the ionic liquid was correlated with frequency shifts of the characteristic vibrations of the ion pair. Harmonic vibrations of the ion pair were also compared with the experimental Raman and Infrared spectra. Vibrational frequencies were assigned by visualizing displacements of atoms around their equilibrium positions and through Potential Energy Distribution (PED) analysis.

  5. Tuning of cross-linking and mechanical properties of laser-deposited poly (methyl methacrylate) films

    SciTech Connect

    Sueske, Erik; Scharf, Thorsten; Krebs, Hans-Ulrich; Panchenko, Elena; Junkers, Thomas; Egorov, Mark; Buback, Michael; Kijewski, Harald

    2005-03-15

    The chemical composition, amount of cross-linking and its influence on the mechanical properties of poly(methyl methacrylate) (PMMA) thin films produced by pulsed laser deposition (PLD) at a wavelength of 248 nm under ultrahigh vacuum were investigated by infrared spectroscopy, scanning electron microscopy, size-exclusion chromatography, thermogravimetric analysis, and nanoindentation experiments. The films consist of two components, one fraction with a molecular weight well below that of the target material and a second fraction, which is cross-linked. Compared to bulk material, the Young's modulus of the film is increased. The amount of cross-linking in the film can be tuned by the applied laser fluence leading to changes of the mechanical properties.

  6. Methyl Chloride from Direct Methane Partial Oxidation: A High-Temperature Shilov-Like Catalytic System

    SciTech Connect

    Yongchun Tang; John Ma

    2012-03-23

    The intention of this study is to demonstrate and evaluate the scientific and economic feasibility of using special solvents to improve the thermal stability of Pt-catalyst in the Shilov system, such that a high reaction temperature could be achieved. The higher conversion rate (near 100%) of methyl chloride from partial oxidation of methane under the high temperature ({approx} 200 C) without significant Pt0 precipitation has been achieved. High concentration of the Cl- ion has been identified as the key for the stabilization of the Pt-catalysts. H/D exchange measurements indicated that the over oxidation will occur at the elevated temperature, developments of the effective product separation processes will be necessary in order to rationalize the industry-visible CH4 to CH3Cl conversion.

  7. Investigation of methyl decanoate combustion in an optical direct-injection diesel engine

    SciTech Connect

    Cheng, A. S.; Dumitrescu, Cosmin E.; Mueller, Charles J.

    2014-11-24

    In this study, an optically accessible heavy-duty diesel engine was used to investigate the impact of methyl decanoate (MD) on combustion and emissions. A specific goal of the study was to determine if MD could enable soot-free leaner-lifted flame combustion (LLFC) – a mode of mixing-controlled combustion associated with fuel-air equivalence ratios below approximately two. An ultra-low sulfur diesel certification fuel (CF) was used as the baseline fuel, and experiments were conducted at two fuel-injection pressures with three levels of charge-gas dilution. In addition to conventional pressure-based and engine-out emissions measurements, exhaust laser-induced incandescence, in-cylinder natural luminosity (NL), and in-cylinder chemiluminescence (CL) diagnostics were used to provide detailed insight into combustion processes.

  8. Mesoscale simulation of shocked poly-(4-methyl-1-pentene) (PMP) foams.

    SciTech Connect

    Schroen, Diana Grace; Flicker, Dawn G.; Haill, Thomas A.; Root, Seth; Mattsson, Thomas Kjell Rene

    2011-06-01

    Hydrocarbon foams are commonly used in HEDP experiments, and are subject to shock compression from tens to hundreds of GPa. Modeling foams is challenging due to the heterogeneous character of the foam. A quantitative understanding of foams under strong dynamic compression is sought. We use Sandia's ALEGRA-MHD code to simulate 3D mesoscale models of pure poly(4-methyl-1-petene) (PMP) foams. We employ two models of the initial polymer-void structure of the foam and analyze the statistical properties of the initial and shocked states. We compare the simulations to multi-Mbar shock experiments at various initial foam densities and flyer impact velocities. Scatter in the experimental data may be a consequence of the initial foam inhomogeneity. We compare the statistical properties the simulations with the scatter in the experimental data.

  9. Interfacial hydrothermal synthesis of SnO{sub 2} nanorods towards photocatalytic degradation of methyl orange

    SciTech Connect

    Hou, L.R. Lian, L.; Zhou, L.; Zhang, L.H.; Yuan, C.Z.

    2014-12-15

    Highlights: Efficient interfacial hydrothermal strategy was developed. 1D SnO{sub 2} nanorods as an advanced photocatalyst. SnO{sub 2} nanorods exhibit photocatalytic degradation of the MO. - Abstract: One-dimensional (1D) SnO{sub 2} nanorods (NRs) have been successfully synthesized by means of an efficient interfacial hydrothermal strategy. The resulting product was physically characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscope, etc. The as-fabricated SnO{sub 2} NRs exhibited excellent photocatalytic degradation of the methyl orange with high degradation efficiency of 99.3% with only 60 min ultra violet light irradiation. Meanwhile, the 1D SnO{sub 2} NRs exhibited intriguing photostability after four recycles.

  10. Homogeneous Hydrogenation of CO? to Methyl Formate Utilizing Switchable Ionic Liquids

    SciTech Connect

    Yadav, Mahendra; Linehan, John C.; Karkamkar, Abhijeet J.; Van Der Eide, Edwin F.; Heldebrant, David J.

    2014-09-15

    Capture of CO? and subsequent hydrogenation allows for base/alcohol-catalyzed conversion of CO? to methylformate in one pot. The conversion of CO? proceeds via alkylcarbonates, to formate salts and then formate esters, which can be catalyzed by base and alcohol with the only byproduct being water. The system operates at mild conditions (300 psi H?, 140 C). Reactivity is strongly influenced by temperature and choice of solvent. In the presence of excess of base (DBU) formate is predominant product while in excess of methanol methyl formate is major product. 110 C yields formate salts, 140 C promotes methylformate. The authors acknowledge internal Laboratory Directed Re-search and Development (LDRD) funding from Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.

  11. Generation kinetics of color centers in irradiated poly(4-methyl-1-pentene)

    SciTech Connect

    Peng, J. S.; Li, C. L.; Lee, Sanboh; Chou, K. F.

    2011-09-15

    The transient absorbance of poly(4-methyl-1-pentene) (PMP) irradiated with gamma rays at elevated temperatures has been investigated. The absorbance in the ultraviolet and visible range increases with gamma ray dose. A bathochromic shift in transmission spectra emerges significantly upon irradiation. A first-order generation model is proposed to analyze the kinetics of color centers during annealing. The activation energy of the color center increases with increasing gamma ray dose. The equilibrium behavior of color centers in PMP is similar to that of vacancies in metals, and the formation energy of color centers in PMP decreases with increasing gamma ray dose. However, annealable color centers are not observed in this study.

  12. Reactions of methyl groups on a non-reducible metal oxide: The reaction of iodomethane on stoichiometric ?-Cr2O3(0001)

    SciTech Connect

    Dong, Yujung; Brooks, John D.; Chen, Tsung-Liang; Mullins, David R.; Cox, David F.

    2015-06-10

    The reaction of iodomethane on the nearly stoichiometric ?-Cr2O3(0001) surface produces gas phase ethylene, methane, and surface iodine adatoms. The reaction is first initiated by the dissociation of iodomethane into surface methyl fragments, -CH3, and iodine adatoms. Methyl fragments bound at surface Cr cation sites undergo a rate-limiting dehydrogenation reaction to methylene, =CH2. The methylene intermediates formed from methyl dehydrogenation can then undergo coupling reactions to produce ethylene via two principle reaction pathways: (1) direct coupling of methylene and (2) methylene insertion into the methyl surface bond to form surface ethyl groups which undergo ?-H elimination to produce ethylene. The liberated hydrogen also combines with methyl groups to form methane. Iodine adatoms from the dissociation of iodomethane deactivate the surface by simple site blocking of the surface Cr3+ cations.

  13. Reactions of methyl groups on a non-reducible metal oxide: The reaction of iodomethane on stoichiometric α-Cr2O3(0001)

    DOE PAGES [OSTI]

    Dong, Yujung; Brooks, John D.; Chen, Tsung-Liang; Mullins, David R.; Cox, David F.

    2015-06-10

    The reaction of iodomethane on the nearly stoichiometric α-Cr2O3(0001) surface produces gas phase ethylene, methane, and surface iodine adatoms. The reaction is first initiated by the dissociation of iodomethane into surface methyl fragments, -CH3, and iodine adatoms. Methyl fragments bound at surface Cr cation sites undergo a rate-limiting dehydrogenation reaction to methylene, =CH2. The methylene intermediates formed from methyl dehydrogenation can then undergo coupling reactions to produce ethylene via two principle reaction pathways: (1) direct coupling of methylene and (2) methylene insertion into the methyl surface bond to form surface ethyl groups which undergo β-H elimination to produce ethylene. Themore » liberated hydrogen also combines with methyl groups to form methane. Iodine adatoms from the dissociation of iodomethane deactivate the surface by simple site blocking of the surface Cr3+ cations.« less

  14. Enantioselective hydrogenation. III. Methyl pyruvate hydrogenation catalyzed by alkaloid-modified iridium

    SciTech Connect

    Simons, K.E.; Johnston, P.; Plum, H.; Wells, P.B.; Ibbotson, A.

    1994-12-01

    Enantioselective hydrogenation of methyl pyruvate, MeCOCOOMe to methyl lactate, MeCH(OH)COOMe, is catalyzed in solution at room temperature by supported iridium catalysts modified with cinchona alkaloids. Modification with cinchonidine or quinine yields R-lactate in excess, whereas modification with cinchonine or quinidine favors S-lactate formation. Ir/SiO{sub 2} catalysts (20%) calcined at 393 to 573 K and reduced at 523 to 593 K were highly active for racemic hydrogenation in the absence of a modifier (rates typically 1.8 mol h{sup -1} g{sub cat}{sup -1}) and were comparably active when modified with cinchonidine but gave an enantiomeric excess of about 30%. Use of higher calcination or reduction temperatures led to substantially inferior activity and selectivity. The high rates recorded for both racemic and enantioselective reactions are dependent on the catalysts being activated before use by a procedure involving exposure of the catalyst to air after the initial reduction. Use of a Cl-free precursor gave an Ir/SiO{sub 2} catalyst (20%) of superior activity but inferior enantioselectivity. Ir/CaCO{sub 3} (5%) was more active for racemic hydrogenation than for enantioselective hydrogenation, but provided the highest value of the enantiomeric excess 39%. Kinematics of reaction are reported. Exchange of H for D in 10,11-dihydrocinchonidine at room temperature over Ir/CaCO{sub 3} occurred in the quinoline moiety but not in the quinuclidine ring system, indicating that the alkaloid was adsorbed to the Ir surface via the interaction of its {pi}-electron system. For both silica-supported and calcium carbonate-supported Ir, the presence of chloride ion in the catalyst was advantageous for the achievement of enantioselectivity. 25 refs., 2 figs., 3 tabs.

  15. Noncovalently-functionalized reduced graphene oxide sheets by water-soluble methyl green for supercapacitor application

    SciTech Connect

    Ren, Xiaoying; Hu, Zhongai Hu, Haixiong; Qiang, Ruibin; Li, Li; Li, Zhimin; Yang, Yuying; Zhang, Ziyu; Wu, Hongying

    2015-10-15

    Graphical abstract: Electroactive methyl green (MG) is selected to functionalize reduced graphene oxide (RGO) through non-covalent modification and the composite achieves high specific capacitance, good rate capability and excellent long life cycle. - Highlights: • MG–RGO composites were firstly prepared through non-covalent modification. • The mass ratio in composites is a key for achieving high specific capacitance. • MG–RGO 5:4 exhibits the highest specific capacitance of 341 F g{sup −1}. • MG–RGO 5:4 shows excellent rate capability and long life cycle. - Abstract: In the present work, water-soluble electroactive methyl green (MG) has been used to non-covalently functionalize reduced graphene oxide (RGO) for enhancing supercapacitive performance. The microstructure, composition and morphology of MG–RGO composites are systematically characterized by UV–vis absorption, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrochemical performances are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS). The fast redox reactions from MG could generate additional pseudocapacitance, which endows RGO higher capacitances. As a result, the MG–RGO composite (with the 5:4 mass ratio of MG:RGO) achieve a maximum value of 341 F g{sup −1} at 1 A g{sup −1} within the potential range from −0.25 to 0.75 V and provide a 180% enhancement in specific capacitance in comparison with pure RGO. Furthermore, excellent rate capability (72% capacitance retention from 1 A g{sup −1} to 20 A g{sup −1}) and long life cycle (12% capacitance decay after 5000 cycles) are achieved for the MG–RGO composite electrode.

  16. Insights antifibrotic mechanism of methyl palmitate: Impact on nuclear factor kappa B and proinflammatory cytokines

    SciTech Connect

    Mantawy, Eman M.; Tadros, Mariane G.; Awad, Azza S.; Hassan, Dina A.A.; El-Demerdash, Ebtehal

    2012-01-01

    Fibrosis accompanies most chronic liver disorders and is a major factor contributing to hepatic failure. Therefore, the need for an effective treatment is evident. The present study was designed to assess the potential antifibrotic effect of MP and whether MP can attenuate the severity of oxidative stress and inflammatory response in chronic liver injury. Male albino rats were treated with either CCl{sub 4} (1 ml/kg, twice a week) and/or MP (300 mg/kg, three times a week) for six weeks. CCl{sub 4}-intoxication significantly increased liver weight, serum aminotransferases, total cholesterol and triglycerides while decreased albumin level and these effects were prevented by co-treatment with MP. As indicators of oxidative stress, CCl{sub 4}-intoxication caused significant glutathione depletion and lipid peroxidation while MP co-treatment preserved them within normal values. As markers of fibrosis, hydroxyproline content and ?-SMA expression increased markedly in the CCl{sub 4} group and MP prevented these alterations. Histopathological examination by both light and electron microscope further confirmed the protective efficacy of MP. To elucidate the antifibrotic mechanisms of MP, the expression of NF-?B, iNOS and COX-2 and the tissue levels of TNF-? and nitric oxide were assessed; CCl{sub 4} increased the expression of NF-?B and all downstream inflammatory cascade while MP co-treatment inhibited them. Collectively these findings indicate that MP possesses a potent antifibrotic effect which may be partly a consequence of its antioxidant and anti-inflammatory properties. -- Highlights: ? Methyl palmitate is free fatty acid methyl ester. ? It possesses a strong antifibrotic effect. ? It inhibits NF-?B and the consequent proinflammatory and oxidative stress response.

  17. Factors controlling reservoir quality in tertiary sandstones and their significance to geopressured geothermal production. Annual report, May 1, 1979-May 31, 1980

    SciTech Connect

    Loucks, R.G.; Richmann, D.L.; Milliken, K.L.

    1980-07-01

    Differing extents of diagenetic modification is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the Upper and Lower Texas Gulf Coast. Detailed comparison of Frio sandstones from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. Vicksburg sandstones from the McAllen Ranch Field area are less stable, chemically and mechanically, than Frio sandstones from the Chocolate Bayou/Danbury dome area. Vicksburg sandstones are mineralogically immature and contain greater proportions of feldspars and rock fragments than do Frio sandstones. Thr reactive detrital assemblage of Vicksubrg sandstones is highly susceptible to diagenetic modification. Susceptibility is enhanced by higher than normal geothermal gradients in the McAllen Ranch Field area. Thus, consolidation of Vicksburg sandstones began at shallower depth of burial and precipitation of authigenic phases (especially calcite) was more pervasive than in Frio sandstones. Moreover, the late-stage episode of ferroan calcite precipitation that occluded most secondary porosity in Vicksburg sandstones did not occur significantly in Frio sandstones. Therefore, regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production.

  18. Assessment of thermal evolution stages and oil-gas migration of carbonate source rocks of early tertiary in eastern Sichuan, China, by organic inclusion analysis

    SciTech Connect

    Shi Jixi; Li Benchao; Fu Jiamo

    1989-03-01

    The Jialinjiang Formation of early Tertiary in Sichuan, China, is a series of limestone and dolomite sediments deposited in a platform shoal environment. The diagenetic sequence and organic inclusions trapped in minerals of 95 samples from 20 drillings have been studied. At the late diagenetic stage, pale yellow organic inclusions consisted of liquid hydrocarbons disseminated in pore-infiltrating dolomite, and the homogeneous temperature of contemporaneous saline liquid inclusions possessing a low gas-liquid ratio was 86/degree/C. This indicates the evolution of the organic matter had gone over the oil generating threshold and oil formation had initiated. In the limestone formed at the late diagenetic stage, more brown-yellow organic inclusions were scattered and/or developed along with fissures, comprising 60-70% liquid hydrocarbons and 30-40% gaseous hydrocarbons. Contemporaneous saline liquid inclusions with gas-liquid ratios of 5-10% had homogeneous temperatures of 90/degree/-130/degree/C. These findings show that the organic material had entered a high evolution stage and oil migration had taken place on a large scale.

  19. NMR Analysis of Methyl Groups at 100-500 kDa: Model Systems and Arp2/3 Complex

    SciTech Connect

    Kreishman-Deitrick, Mara; Egile, Coumaran; Hoyt, David W.; Ford, Joseph J.; Rong, Li; Rosen, Michael K.

    2003-07-01

    Large macromolecular machines are among the most important and challenging targets for structural and mechanistic analyses. Consequently, there is great interest in development of NMR methods for the study of multicomponent systems in the 50-500 kDa range. Biochemical methods also must be developed in concert to produce such systems in selectively labeled form. Here, we present 1H/13C-HSQC spectra of protonated methyl groups in a model system that mimics molecular weights up to ~560 kDa. Signals from side chain methyl groups of Ile, Leu, and Val residues are clearly detectable at correlation times up to ~330 ns. We have also developed a biochemical procedure to produce the 240 kDa, heteroheptameric Arp2/3 actin nucleation complex selectively labeled at one subunit and obtained 1H/13C-HSQC spectra of this assembly. Sensitivity in spectra of both the Arp2/3 complex and the model system indicate that methyl groups will be useful sources of information in nonsymmetric systems with molecular weights greater than 600 kDa at concentrations less than 100 μM. Methyl analyses will complement TROSY and CRINEPT analyses of amides in NMR studies of structure and molecular interactions of extremely large macromolecules and assemblies.

  20. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP)

    SciTech Connect

    Van Wychen, S.; Laurens, L. M. L.

    2013-12-01

    This procedure is based on a whole biomass transesterification of lipids to fatty acid methyl esters to represent an accurate reflection of the potential of microalgal biofuels. Lipids are present in many forms and play various roles within an algal cell, from cell membrane phospholipids to energy stored as triacylglycerols.

  1. Photoimaging of the multiple filamentation of femtosecond laser pulses in poly(methyl methacrylate) doped with 2,2-difluoro-4-(9-anthracyl)-6-methyl-1,3,2-dioxaborine

    SciTech Connect

    Kulchin, Yu N; Vitrik, O B; Chekhlenok, A A; Zhizhchenko, A Yu; Proschenko, D Yu; Mirochnik, A G; Lyu Guohui

    2013-12-31

    We have studied the filamentation of femtosecond laser pulses (? = 800 nm, ?42 fs pulse duration) in poly(methyl methacrylate) doped with 2,2-difluoro-4-(9-anthracyl)-6-methyl-1,3,2- dioxaborine and the associated photomodification of the material. The results demonstrate that multiple filamentation occurs at pulse energies above 5 ?J. At a pulse energy of 1.5 mJ, it is accompanied by supercontinuum generation. The average filament length in PMMA is 9 mm and the filament diameter is ?10 ?m. An incident power density of ?10{sup 12} W cm{sup -2} ensures inscription of the filament pattern owing to two-photon photochemical processes. Preliminary exposure to continuous light at ? = 400 nm enables an ordered filament pattern to be written. (interaction of laser radiation with matter)

  2. Gamma-radiolytic stability of new methylated TODGA derivatives for minor actinide recycling

    DOE PAGES [OSTI]

    Galan, Hitos; Zarzana, Christopher A.; Wilden, Andreas; Nunez, Ana; Schmidt, Holger; Egberink, Richard J. M.; Leoncini, Andrea; Cobos, Joaquin; Verboom, Willem; Modolo, Giuseppe; et al

    2015-09-15

    The stability against gamma radiation of MeTODGA (methyl tetraoctyldiglycolamide) and Me2TODGA (dimethyl tetraoctyldiglycolamide), derivatives from the well-known extractant TODGA (N,N,N',N';-tetraoctyldiglycolamide), were studied and compared. Solutions of MeTODGA and Me2TODGA in alkane diluents were subjected to 60Co γ-irradiation in the presence and absence of nitric acid and analyzed using LC-MS to determine their rates of radiolytic concentration decrease, as well as to identify radiolysis products. The results of product identification from three different laboratories are compared and found to be in good agreement. The diglycolamide (DGA) concentrations decreased exponentially with increasing absorbed dose. The MeTODGA degradation rate constants (dose constants) weremore » uninfluenced by the presence of nitric acid, but the acid increased the rate of degradation for Me2TODGA. The degradation products formed by irradiation are also initially produced in greater amounts in acid-contacted solution, but products may also be degraded by continued radiolysis. As a result, the identified radiolysis products suggest that the weakest bonds are those in the diglycolamide center of these molecules.« less

  3. Fabrication of superhydrophilic and antireflective silica coatings on poly(methyl methacrylate) substrates

    SciTech Connect

    Geng, Zhi; He, Junhui; Xu, Ligang

    2012-06-15

    Graphical abstract: Self-cleaning and antireflection properties were successfully achieved by assembling (PDDA/S-20){sub n} coatings on PMMA substrates followed by oxygen plasma treatment. Highlights: ► Porous silica coatings were created by layer-by-layer assembly on PMMA substrates. ► Silica coatings were treated by oxygen plasma. ► Porous silica coatings were highly antireflective and superhydrophilic on PMMA substrates. -- Abstract: Silica nanoparticles of ca. 20 nm in size were synthesized, from which hierarchically porous silica coatings were fabricated on poly(methyl methacrylate) (PMMA) substrates via layer-by-layer (LbL) assembly followed by oxygen plasma treatment. These porous silica coatings were highly transparent and superhydrophilic. The maximum transmittance reached as high as 99%, whereas that of the PMMA substrate is only 92%. After oxygen plasma treatment, the time for a water droplet to spread to a contact angle of lower than 5° decreased to as short as 0.5 s. Scanning and transmission electron microscopy were used to observe the morphology and structure of nanoparticles and coating surfaces. Transmission and reflection spectra were recorded on UV–vis spectrophotometer. Surface wettability was studied by a contact angle/interface system. The influence of mesopores on the transmittance and wetting properties of coatings was discussed on the basis of experimental observations.

  4. On the role of chemical reactions in initiating ultraviolet laser ablation in poly(methyl methacrylate)

    SciTech Connect

    Prasad, Manish; Conforti, Patrick F.; Garrison, Barbara J.

    2007-05-15

    The role of chemical reactions is investigated versus the thermal and mechanical processes occurring in a polymer substrate during irradiation by a laser pulse and subsequent ablation. Molecular dynamics simulations with an embedded Monte Carlo based reaction scheme were used to study ultraviolet ablation of poly(methyl methacrylate) at 157 nm. We discuss the onset of ablation, the mechanisms leading to ablation, and the role of stress relaxation of the polymer matrix during ablation. Laser induced heating and chemical decomposition of the polymer substrate are considered as ablation pathways. It is shown that heating the substrate can set off ablation via mechanical failure of the material only for very short laser pulses. For longer pulses, the mechanism of ejection is thermally driven limited by the critical number of bonds broken in the substrate. Alternatively, if the photon energy goes towards direct bond breaking, it initiates chemical reactions, polymer unzipping, and formation of gaseous products, leading to a nearly complete decomposition of the top layers of substrates. The ejection of small molecules has a hollowing out effect on the weakly connected substrates which can lead to lift-off of larger chunks. Excessive pressure buildup upon the creation of gaseous molecules does not lead to enhanced yield. The larger clusters are thermally ejected, and an entrainment of larger polymer fragments in gaseous molecules is not observed.

  5. Phosphorylation and Methylation of Proteasomal Proteins of the HaloarcheonHaloferax volcanii

    DOE PAGES [OSTI]

    Humbard, Matthew A.; Reuter, Christopher J.; Zuobi-Hasona, Kheir; Zhou, Guangyin; Maupin-Furlow, Julie A.

    2010-01-01

    Proteasomes are composed of 20S core particles (CPs) of?- and?-type subunits that associate with regulatory particle AAA ATPases such as the proteasome-activating nucleotidase (PAN) complexes of archaea. In this study, the roles and additional sites of post-translational modification of proteasomes were investigated using the archaeonHaloferax volcaniias a model. Indicative of phosphorylation, phosphatase-sensitive isoforms of?1and?2were detected by 2-DE immunoblot. To map these and other potential sites of post-translational modification, proteasomes were purified and analyzed by tandem mass spectrometry (MS/MS). Using this approach, several phosphosites were mapped including?1Thr147,?2 Thr13/Ser14 and PAN-A Ser340. Multiple methylation sites were also mapped to?1, thus, revealing amorenew type of proteasomal modification. Probing the biological role of?1and PAN-A phosphorylation by site-directed mutagenesis revealed dominant negative phenotypes for cell viability and/or pigmentation for?1variants including Thr147Ala, Thr158Ala and Ser58Ala. AnH. volcaniiRio1p Ser/Thr kinase homolog was purified and shown to catalyze autophosphorylation and phosphotransfer to?1. The?1variants in Thr and Ser residues that displayed dominant negative phenotypes were significantly reduced in their ability to accept phosphoryl groups from Rio1p, thus, providing an important link between cell physiology and proteasomal phosphorylation.less

  6. Calcined Mg-Fe layered double hydroxide as an absorber for the removal of methyl orange

    SciTech Connect

    Peng, Chao; Dai, Jing; Yu, Jianying; Yin, Jian

    2015-05-15

    In this work, methyl orange (MO) was effectively removed from aqueous solution with the calcined product of hydrothermal synthesized Mg/Fe layered double hydroxide (Mg/Fe-LDH). The structure, composition, morphology and textural properties of the Mg/Fe-LDH before and after adsorption were characterized by X-ray diffraction, Fourier transformation infrared spectroscopy, transmission electron microscopy, nitrogen adsorption apparatus and X-ray photoelectron spectroscopy. It was confirmed that MO had been absorbed by calcined Mg/Fe-LDH which had strong interactions with MO. The adsorption of MO onto the Mg/Fe-LDH was systematically investigated by batch tests. The adsorption capacity of the Mg/Fe-LDH toward MO was found to be 194.9 mg • g{sup −1}. Adsorption kinetics and isotherm studies revealed that the adsorption of MO onto Mg/Fe-LDH was a spontaneous and endothermic process. These results indicate that Mg/Fe-LDH is a promising material for the removal of MO.

  7. Durability of Poly(Methyl Methacrylate) Lenses Used in Concentrating Photovoltaic Modules: Preprint

    SciTech Connect

    Miller, D. C.; Gedvilas, L. M.; To, B.; Kennedy, C. E.; Kurtz, S. R.

    2010-08-01

    Concentrating photovoltaic (CPV) technology has recently gained interest based on their expected low levelized cost of electricity, high efficiency, and scalability. Many CPV systems use Fresnel lenses made of poly(methyl methacrylate)(PMMA) to obtain a high optical flux density. The optical and mechanical durability of such components, however, are not well established relative to the desired service life of 30 years. Specific reliability issues may include: reduced optical transmittance, discoloration, hazing, surface erosion, embrittlement, crack growth, physical aging, shape setting (warpage), and soiling. The initial results for contemporary lens- and material-specimens aged cumulatively to 6 months are presented. The study here uses an environmental chamber equipped with a xenon-arc lamp to age specimens at least 8x the nominal field rate. A broad range in the affected characteristics (including optical transmittance, yellowness index, mass loss, and contact angle) has been observed to date, depending on the formulation of PMMA used. The most affected specimens are further examined in terms of their visual appearance, surface roughness (examined via atomic force microscopy), and molecular structure (via Fourier transform infrared spectroscopy).

  8. Trapping radiodine, in the form of methyl iodide, on nuclear carbon

    SciTech Connect

    Nacapricha, D.; Taylor, C.

    1996-12-31

    Studies have been performed on potassium-iodide-impregnated charcoals of the type used in the nuclear industry for trapping radioiodine released during nuclear fission. The effects of various parameters on the trapping efficiency of methyl iodide have been investigated. A variation in particle size within a bulk charcoal caused poor precision in K value measurements because of differences in surface area, pore volume, and bed density, leading to differences in the deposition of the impregnant. Precision is improved by sieving the charcoal to a narrower size because smaller particles have a higher porosity. This finding is supported by surface area and pore measurements. Two methods of impregnation are compared by measuring K values and the deposition of potassium iodide. Charcoal impregnated by rotary evaporation exhibits both higher K values and higher potassium iodide contents than sprayed charcoal. Two designs of spraying drum are compared: a drum with helical vanes allows more efficient deposition and more uniform distribution of impregnant than a drum with axial vanes. A decrease in the K value with increasing humidity correlates with the available surface area. A similar correlation exists between water content and available pore volume. Aging of potassium-iodide-impregnated charcoal, caused by the formation of oxygen complexes on the surface, is associated with significant falls in K value. K values of charcoals also can be restored to at least their original values by heat treatment in the absence of air. 12 refs., 6 figs., 1 tab.

  9. Electron Affinity of Phenyl-C61-Butyric Acid Methyl Ester (PCBM)

    SciTech Connect

    Larson, Bryon W.; Whitaker, James B.; Wang, Xue B.; Popov, Alexey A.; Rumbles, Garry; Kopidakis, Nikos; Strauss, Steven H.; Boltalina, Olga V.

    2013-07-25

    The gas-phase electron affinity (EA) of phenyl-C61-butyric acid methyl ester (PCBM), one of the best-performing electron acceptors in organic photovoltaic devices, is measured by lowtemperature photoelectron spectroscopy for the first time. The obtained value of 2.63(1) eV is only ca. 0.05 eV lower than that of C60 (2.68(1) eV), compared to a 0.09 V difference in their E1/2 values measured in this work by cyclic voltammetry. Literature E(LUMO) values for PCBM that are typically estimated from cyclic voltammetry, and commonly used as a quantitative measure of acceptor properties, are dispersed over a wide range between -4.3 and -3.62 eV; the reasons for such a huge discrepancy are analyzed here, and the protocol for reliable and consistent estimations of relative fullerene-based acceptor strength in solution is proposed.

  10. Phosphorylation and Methylation of Proteasomal Proteins of the Haloarcheon Haloferax volcanii

    DOE PAGES [OSTI]

    Humbard, Matthew A.; Reuter, Christopher J.; Zuobi-Hasona, Kheir; Zhou, Guangyin; Maupin-Furlow, Julie A.

    2010-01-01

    Promore » teasomes are composed of 20S core particles (CPs) of α - and β -type subunits that associate with regulatory particle AAA ATPases such as the proteasome-activating nucleotidase (PAN) complexes of archaea. In this study, the roles and additional sites of post-translational modification of proteasomes were investigated using the archaeon Haloferax volcanii as a model. Indicative of phosphorylation, phosphatase-sensitive isoforms of α 1 and α 2 were detected by 2-DE immunoblot. To map these and other potential sites of post-translational modification, proteasomes were purified and analyzed by tandem mass spectrometry (MS/MS). Using this approach, several phosphosites were mapped including α 1 Thr147, α 2 Thr13/Ser14 and PAN-A Ser340. Multiple methylation sites were also mapped to α 1 , thus, revealing a new type of proteasomal modification.bing the biological role of α 1 and PAN-A phosphorylation by site-directed mutagenesis revealed dominant negative phenotypes for cell viability and/or pigmentation for α 1 variants including Thr147Ala, Thr158Ala and Ser58Ala. An H. volcanii Rio1p Ser/Thr kinase homolog was purified and shown to catalyze autophosphorylation and phosphotransfer to α 1 . The α 1 variants in Thr and Ser residues that displayed dominant negative phenotypes were significantly reduced in their ability to accept phosphoryl groups from Rio1p, thus, providing an important link between cell physiology and proteasomal phosphorylation.« less

  11. Structures, Phase Transitions and Tricritical Behavior of the Hybrid Perovskite Methyl Ammonium Lead Iodide

    DOE PAGES [OSTI]

    Whitfield, P. S.; Herron, N.; Guise, W. E.; Page, K.; Cheng, Y. Q.; Milas, I.; Crawford, M. K.

    2016-10-21

    Here, we examine the crystal structures and structural phase transitions of the deuterated, partially deuterated and hydrogenous organic-inorganic hybrid perovskite methyl ammonium lead iodide (MAPbI3) using time-of-flight neutron and synchrotron X-ray powder diffraction. Near 330 K the high temperature cubic phases transformed to a body-centered tetragonal phase. The variation of the order parameter Q for this transition scaled with temperature T as Q (Tc-T) , where Tc is the critical temperature and the exponent was close to , as predicted for a tricritical phase transition. We also observed coexistence of the cubic and tetragonal phases over a range of temperaturemore » in all cases, demonstrating that the phase transition was in fact first-order, although still very close to tricritical. Upon cooling further, all the tetragonal phases transformed into a low temperature orthorhombic phase around 160 K, again via a first-order phase transition. Finally, based upon these results, we discuss the impact of the structural phase transitions upon photovoltaic performance of MAPbI3 based solar cells.« less

  12. Spin-symmetry conversion in methyl rotors induced by tunnel resonance at low temperature

    SciTech Connect

    Zhang, B.; Sun, C.; Horsewill, A. J.; Alsanoosi, A. M.; Aibout, A.

    2014-02-28

    Field-cycling NMR in the solid state at low temperature (4.2 K) has been employed to measure the tunneling spectra of methyl (CH{sub 3}) rotors in phenylacetone and toluene. The phenomenon of tunnel resonance reveals anomalies in {sup 1}H magnetization from which the following tunnel frequencies have been determined: phenylacetone, ν{sub t} = 6.58 ± 0.08 MHz; toluene, ν{sub t(1)} = 6.45 ± 0.06 GHz and ν{sub t(2)} = 7.07 ± 0.06 GHz. The tunnel frequencies in the two samples differ by three orders of magnitude, meaning different experimental approaches are required. In phenylacetone the magnetization anomalies are observed when the tunnel frequency matches one or two times the {sup 1}H Larmor frequency. In toluene, doping with free radicals enables magnetization anomalies to be observed when the tunnel frequency is equal to the electron spin Larmor frequency. Cross-polarization processes between the tunneling and Zeeman systems are proposed and form the basis of a thermodynamic model to simulate the tunnel resonance spectra. These invoke space-spin interactions to drive the changes in nuclear spin-symmetry. The tunnel resonance lineshapes are explained, showing good quantitative agreement between experiment and simulations.

  13. Detection of Methyl Salicylate Transforted by Honeybees (Apis mellifera) Using Solid Phase Microextration (SPME) Fibers

    SciTech Connect

    BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; BARNETT, JAMES L.; BENDER, GARY L.

    2001-12-01

    The ultimate goal of many environmental measurements is to determine the risk posed to humans or ecosystems by various contaminants. Conventional environmental monitoring typically requires extensive sampling grids covering several media including air, water, soil and vegetation. A far more efficient, innovative and inexpensive tactic has been found using honeybees as sampling mechanisms. Members from a single bee colony forage over large areas ({approx}2 x 10{sup 6} m{sup 2}), making tens of thousands of trips per day, and return to a fixed location where sampling can be conveniently conducted. The bees are in direct contact with the air, water, soil and vegetation where they encounter and collect any contaminants that are present in gaseous, liquid and particulate form. The monitoring of honeybees when they return to the hive provides a rapid method to assess chemical distributions and impacts (1). The primary goal of this technology is to evaluate the efficiency of the transport mechanism (honeybees) to the hive using preconcentrators to collect samples. Once the extent and nature of the contaminant exposure has been characterized, resources can be distributed and environmental monitoring designs efficiently directed to the most appropriate locations. Methyl salicylate, a chemical agent surrogate was used as the target compound in this study.

  14. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models

    SciTech Connect

    Saeed, Noha M.; El-Demerdash, Ebtehal; Abdel-Rahman, Hanaa M.; Algandaby, Mardi M.; Al-Abbasi, Fahad A.; Abdel-Naim, Ashraf B.

    2012-10-01

    Methyl palmitate (MP) and ethyl palmitate (EP) are naturally occurring fatty acid esters reported as inflammatory cell inhibitors. In the current study, the potential anti-inflammatory activity of MP and EP was evaluated in different experimental rat models. Results showed that MP and EP caused reduction of carrageenan-induced rat paw edema in addition to diminishing prostaglandin E2 (PGE2) level in the inflammatory exudates. In lipopolysaccharide (LPS)-induced endotoxemia in rats, MP and EP reduced plasma levels of tumor necrosis factor-? (TNF-?) and interleukin-6 (IL-6). MP and EP decreased NF-?B expression in liver and lung tissues and ameliorated histopathological changes caused by LPS. Topical application of MP and EP reduced ear edema induced by croton oil in rats. In the same animal model, MP and EP reduced neutrophil infiltration, as indicated by decreased myeloperoxidase (MPO) activity. In conclusion, this study demonstrates the effectiveness of MP and EP in combating inflammation in several experimental models. -- Highlights: ? Efficacy of MP and EP in combating inflammation was displayed in several models. ? MP and EP reduced carrageenan-induced rat paw edema and prostaglandin E2 level. ? MP and EP decreased TNF-? and IL-6 levels in experimental endotoxemia. ? MP and EP reduced NF-?B expression and histological changes in rat liver and lung. ? MP and EP reduced croton oil-induced ear edema and neutrophil infiltration.

  15. Synthesis of methyl methacrylate from coal-derived syngas: Quarterly report,, October 1-December 31, 1997

    SciTech Connect

    1998-09-01

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of three steps of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Over the last quarter, Eastman developed two new processes which have resulted in two new invention reports. One process deals with carbonylation of benzyl ether which represents a model for coal liquefaction and the second focuses on the acceleration of carbonylation rates for propionic acid synthesis, via use of polar aprotic solvents. These two inventions are major improvements in the novel Mo-catalyzed homogeneous process for propionic acid synthesis technology, developed by Eastman. Over the last quarter, RTI completed three reaction cycles and two regeneration cycles as a part of long-term reaction regeneration cycle study on a 10% Nb{sub 2}O{sub 5}/Si0{sub 2} catalyst, for vapor phase condensation reaction of formaldehyde with propionic acid.

  16. Synthesis and properties of poly(methyl methacrylate-2-acrylamido-2-methylpropane sulfonic acid)/PbS hybrid composite

    SciTech Connect

    Preda, N.; Rusen, E.; Musuc, A.; Enculescu, M.; Matei, E.; Marculescu, B.; Fruth, V.; Enculescu, I.

    2010-08-15

    The synthesis of a new hybrid composite based on PbS nanoparticles and poly(methyl methacrylate-2-acrylamido-2-methylpropane sulfonic acid) [P(MMA-AMPSA)] copolymer is reported. The chemical synthesis consists in two steps: (i) a surfactant-free emulsion copolymerization between methyl methacrylate and 2-acrylamido-2-methylpropane sulfonic acid and (ii) the generation of PbS particles in the presence of the P(MMA-AMPSA) latex, from the reaction between lead nitrate and thiourea. The composite was studied by scanning electron microscopy (SEM), X-ray diffraction, FTIR spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The microstructure observed using SEM proves that the PbS nanoparticles are well dispersed in the copolymer matrix. The X-ray diffraction measurements demonstrate that the PbS nanoparticles have a cubic rock salt structure. It was also found that the inorganic semiconductor nanoparticles improve the thermal stability of the copolymer matrix.

  17. Association between body mass index and arsenic methylation efficiency in adult women from southwest U.S. and northwest Mexico

    SciTech Connect

    Gomez-Rubio, Paulina; Roberge, Jason; Arendell, Leslie; Harris, Robin B.; O'Rourke, Mary K.; Chen, Zhao; Cantu-Soto, Ernesto; Meza-Montenegro, Maria M.; Billheimer, Dean; Lu Zhenqiang; Klimecki, Walter T.

    2011-04-15

    Human arsenic methylation efficiency has been consistently associated with arsenic-induced disease risk. Interindividual variation in arsenic methylation profiles is commonly observed in exposed populations, and great effort has been put into the study of potential determinants of this variability. Among the factors that have been evaluated, body mass index (BMI) has not been consistently associated with arsenic methylation efficiency; however, an underrepresentation of the upper BMI distribution was commonly observed in these studies. This study investigated potential factors contributing to variations in the metabolism of arsenic, with specific interest in the effect of BMI where more than half of the population was overweight or obese. We studied 624 adult women exposed to arsenic in drinking water from three independent populations. Multivariate regression models showed that higher BMI, arsenic (+ 3 oxidation state) methyltransferase (AS3MT) genetic variant 7388, and higher total urinary arsenic were significantly associated with low percentage of urinary arsenic excreted as monomethylarsonic acid (%uMMA) or high ratio between urinary dimethylarsinic acid and uMMA (uDMA/uMMA), while AS3MT genetic variant M287T was associated with high %uMMA and low uDMA/uMMA. The association between BMI and arsenic methylation efficiency was also evident in each of the three populations when studied separately. This strong association observed between high BMI and low %uMMA and high uDMA/uMMA underscores the importance of BMI as a potential arsenic-associated disease risk factor, and should be carefully considered in future studies associating human arsenic metabolism and toxicity.

  18. Nonpremixed ignition, laminar flame propagation, and mechanism reduction of n-butanol, iso-butanol, and methyl butanoate

    SciTech Connect

    Lu, Wei; Kelley, A. P.; Law, C. K.

    2011-01-01

    The non-premixed ignition temperature of n-butanol (CH{sub 3}CH{sub 2}CH{sub 2}CH{sub 2}OH), iso-butanol ((CH{sub 3}){sub 2}CHCH{sub 2}OH) and methyl butanoate (CH{sub 3}CH{sub 2}CH{sub 2}COOCH{sub 3}) was measured in a liquid pool assembly by heated oxidizer in a stagnation flow for system pressures of 1 and 3 atm. In addition, the stretch-corrected laminar flame speeds of mixtures of airn-butanol/iso-butanol/methyl butanoate were determined from the outwardly propagating spherical flame at initial pressures of up to 2 atm, for an extensive range of equivalence ratio. The ignition temperature and laminar flame speeds of n-butanol and methyl butanoate were computationally simulated with three recently developed kinetic mechanisms in the literature. Dominant reaction pathways to ignition and flame propagation were identified and discussed through a chemical explosive mode analysis (CEMA) and sensitivity analysis. The detailed models were further reduced through a series of systematic strategies. The reduced mechanisms provided excellent agreement in both homogeneous and diffusive combustion environments and greatly improved the computation efficiency.

  19. Methylation of the estrogen receptor CpG island distinguishes spontaneous and plutonium-induced tumors from nitrosamine-induced lung tumors

    SciTech Connect

    Belinsky, S.A.; Baylin, S.B.; Issa, J.J.

    1995-12-01

    CpG islands located in the promoter region of genes constitute one mechanism for regulating transcription. These islands are normally free of methylation, regardless of the expression state of the gene. Hypermethylation of CpG islands, the addition of a methyl group to the internal cytosine within CpG dinucleotides, can cause silencing of a gene. Hypermethylation has been detected as an early event at specific chromosome loci during the development of colon cancer and represents one mechanism used by neoplatic cells to inactivate tumor suppressor genes. Recent studies have demonstrated this mechanism in inactivation of the VHL tumor suppressor gene in 19% of sporadic renal tumors and the p16 {sup INK4a} tumor suppressor gene in 30% of non-small cell lung cancers. A recent report indicates that the estrogen receptor gene could also be inactivated through methylation. In addition, estrogen receptor CpG island methylation arises as a direct function of age in normal colonic mucosa and is present in virtually all colonic tumors. In cultured colon cancer cells, methylation-associated loss of expression of the estrogen receptor gene results in deregulated growth, suggesting a role for the estrogen receptor in colon cancer development. These results provide further evidence that gene silencing through methylation could be a predominant epigenetic mechanism underlying the development of many different types of cancer. The purpose of the current investigation was to determine whether estrogen receptor CpG island methylation is involved in the development of lung cancer. The frequency for methylation of the estrogen receptor CpG island in rodent lung tumors is summarized.

  20. Phytoremediation of ionic and methyl mercury pollution. 1997 annual progress report

    SciTech Connect

    Meagher, R.B.

    1997-01-01

    'The long-term goal of this research is to manipulate single-gene traits into plants, enabling them to process heavy metals and remediate heavy-metal pollution by resistance, sequestration, removal, and management of these contaminants (Meagher and Rugh, 1996; Meagher et al., 1997). The working hypothesis behind this proposal was that transgenic plants expressing both the bacterial organo mercury lyase (merB) and the mercuric ion reductase gene (merA) will (A) remove the mercury from polluted sites and (B) prevent methyl mercury from entering the food chain. The authors have had a very successful first year either testing aspects of this hypothesis directly or preparing material needed for future experiments. The results are outlined below under goals A and B, which are explicit in this hypothesis. There were less than 10% of the funds remaining in any category as projected in the first 12 month budget at the end of the first year, with the exception of the equipment category which had 25% of the funds remaining ({approximately} $8,000). Much of this remaining equipment money is being spent this week on a mercury vapor analyzer. It might be useful to remember that at the time this grant was awarded, the authors had successfully engineered a small model plant, Arabidopsis thalianat to use a highly modified bacterial mercuric ion reductase gene, merA9, to detoxify ionic mercury (Hg(II)), reducing it to Hg(0) (Rugh et al., 1996). Seeds from these plants germinate, grow, and set seed at normal growth rates on levels of Hg(II) that are lethal to normal plants. In assays on transgenic seedlings suspended in a solution of Hg(II), 10 ng of Hg(0) was evolved per min per mg wet weight of plant tissue. However, at that time, they had no information on expression of merA in any other plant species, nor had they expressed merB in any plant.'

  1. Diffusional analysis of the adsorption of methyl iodide on silver exchanged mordenite

    SciTech Connect

    Jubin, R.T.; Counce, R.M.

    1997-08-01

    The removal of organic iodides from off-gas streams is an important step in controlling the release of radioactive iodine to the environment during the treatment of radioactive wastes or the processing of some irradiated materials. Nine-well accepted mass transfer models were evaluated for their ability to adequately explain the observed CH{sub 3}I uptake behavior onto the Ag{degrees}Z. Linear and multidimensional regression techniques were used to estimate the diffusion constants and other model parameters, which then permitted the selection of an appropriate mass transfer model. Although a number of studies have been conducted to evaluate the loading of both elemental and methyl iodide on silver-exchanged mordenite, these studies focused primarily on the macro scale (deep bed) while evaluating the material under a broad range of process conditions and contaminants for total bed loading at the time of breakthrough. A few studies evaluated equilibrium or maximum loading. Thus, to date, only bulk loading data exist for the adsorption of CH{sub 3}I onto Ag{degrees}Z. Hence this is believed to be the first study to quantify the controlling mass transfer mechanisms of this process, It can be concluded from the analysis of the experimental data obtained by the {open_quotes}single-pellet{close_quotes} type experiments and for the process conditions used in this study that the overall mass transfer rate associated with the adsorption of CH{sub 3}I onto Ag{degrees}Z is affected by both micropore and macropore diffusion. The macropore diffusion rate was significantly faster than the micropore diffusion, resulting in a two-step adsorption behavior which was adequately modeled by a bimodal pore distribution model. The micropore diffusivity was determined to be on the order of 2 x 10{sup -14} cm{sup 2}/s. The system was also shown to be isothermal under all conditions of this study. 21 refs., 6 figs., 8 tabs.

  2. Methyl chloride via oxyhydrochlorination of methane. Quarterly technical progress report No. 13, October--December 1994

    SciTech Connect

    1995-02-01

    The purpose of this contract is to develop a process for converting light alkane gases to methyl chloride via oxyhydrochlorination using highly selective, stable catalysts in fixed-bed reactors designed to remove the large amount of heat generated, so as to control the reaction temperature. Further, the objective is to obtain the engineering data base necessary for developing a commercially feasible process and to evaluate t economics of the process. Significant progress was made in six different technical areas during this quarter. These key highlights are: (1) Evaluation of catalyst samples from UCI led to the ordering of the OHC PDU catalyst batch. This catalyst batch arrived, was screened and found to be defective, and was reordered. (2) Natural gas containing higher hydrocarbons was used as a methane source. The reactant mixture formed oxygenates at temperatures lower than observed in the past. Burning at such low temperatures seems to create a product stream containing very little CH{sub 2}Cl{sub 2}. (3) Although it has not been decided if the PDU will use natural gas from the plant or methane or natural gas from cylinders as a methane feed source, it was concluded that an adsorption unit to remove sulfur and higher hydrocarbons is not necessary at this time. (4) PDU construction was completed in December. The bulk of insulation work was completed at the end of November. Much effort has been put into pressure testing the PDU`s systems. The startup team has become adept at finding and correcting such leaks. (5) SOP writing for the PDU was completed this quarter with communication with the software programmer to insure agreement between the software and SOP.

  3. Vapor phase tri-methyl-indium seeding system suitable for high temperature spectroscopy and thermometry

    SciTech Connect

    Whiddon, R.; Zhou, B.; Borggren, J.; Aldén, M.; Li, Z. S.

    2015-09-15

    Tri-methyl-indium (TMI) is used as an indium transport molecule to introduce indium atoms to reactive hot gas flows/combustion environments for spectroscopic diagnostics. A seeding system was constructed to allow the addition of an inert TMI laden carrier gas into an air/fuel mixture burning consequently on a burner. The amount of the seeded TMI in the carrier gas can be readily varied by controlling the vapor pressure through the temperature of the container. The seeding process was calibrated using the fluorescent emission intensity from the indium 6{sup 2}S{sub 1/2} → 5{sup 2}P{sub 1/2} and 6{sup 2}S{sub 1/2} → 5{sup 2}P{sub 3/2} transitions as a function of the calculated TMI seeding concentration over a range of 2–45 ppm. The response was found to be linear over the range 3–22.5 ppm; at concentrations above 25 ppm there is a loss of linearity attributable to self-absorption or loss of saturation of TMI vapor pressure in the carrier gas flow. When TMI was introduced into a post-combustion environment via an inert carrier gas, molecular transition from InH and InOH radicals were observed in the flame emission spectrum. Combined laser-induced fluorescence and absorption spectroscopy were applied to detect indium atoms in the TMI seeded flame and the measured atomic indium concentration was found to be at the ppm level. This method of seeding organometallic vapor like TMI to a reactive gas flow demonstrates the feasibility for quantitative spectroscopic investigations that may be applicable in various fields, e.g., chemical vapor deposition applications or temperature measurement in flames with two-line atomic fluorescence.

  4. Methyl-parathion decreases sperm function and fertilization capacity after targeting spermatocytes and maturing spermatozoa

    SciTech Connect

    Pina-Guzman, Belem; Sanchez-Gutierrez, M.; Marchetti, Francesco; Hernandez-Ochoa, I.; Solis-Heredia, M.J .; Quintanilla-Vega, B.

    2009-05-03

    Paternal germline exposure to organophosphorous pesticides (OP) has been associated with reproductive failures and adverse effects in the offspring. Methyl parathion (Me-Pa), a worldwide-used OP, has reproductive adverse effects and is genotoxic to sperm. Oxidative damage has been involved in the genotoxic and reproductive effects of OP. The purpose of this study was to determine the effects of Me-Pa on spermatozoa function and ability to fertilize. Male mice were exposed to Me-Pa (20 mg/kg bw, i.p.) and spermatozoa from epididymis-vas deferens were collected at 7 or 28 days post-treatment (dpt) to assess the effects on maturing spermatozoa and spermatocytes, respectively. DNA damage was evaluated by nick translation (NT-positive cells) and SCSA (percentDFI); lipoperoxidation (LPO) by malondialdehyde production; sperm function by spontaneous- and induced-acrosome reactions (AR); mitochondrial membrane potential (MMP) by using the JC-1 flurochrome; and, fertilization ability by an in vitro assay and in vivo mating. Results showed alterations in DNA integrity (percentDFI and NT-positive cells) at 7 and 28 dpt, in addition to decreased sperm quality and a decrease in induced-AR; reduced MMP and LPO was observed only at 7 dpt. We found negative correlations between LPO and all sperm alterations. Altered sperm functional parameters were associated with reduced fertilization rates at both times, evaluated either in vitro or in vivo. These results show that Me-Pa exposure of maturing spermatozoa and spermatocytes affects many sperm functional parameters that result in a decreased fertilizing capacity. Oxidative stress seems to be a likely mechanism ofthe detrimental effects of Me-Pa in male germ cells.

  5. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Tertiary Treatment

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Nikola Tesla STEM High School in Redmond, WA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  6. Polymorphism of inflammatory genes and arsenic methylation capacity are associated with urothelial carcinoma

    SciTech Connect

    Wu, Chia-Chang; Huang, Yung-Kai; Chung, Chi-Jung; Huang, Chao-Yuan; Pu, Yeong-Shiau; Shiue, Horng-Sheng; Lai, Li-An; Lin, Ying-Chin; Su, Chien-Tien; Hsueh, Yu-Mei

    2013-10-01

    Chronic exposure to arsenic can generate reactive oxidative species, which can induce certain proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-8 (IL-8). TNF-α, IL-6 and IL-8 have been shown to be involved in the development and progression of various cancers, including bladder cancer. This study aimed to investigate the joint effect of the polymorphism of TNF-α − 308 G/A, IL-6 − 174 G/C, IL-8 − 251 T/A and urinary arsenic profiles on urothelial carcinoma (UC) risk. This study evaluated 300 pathologically-confirmed cases of UC and 594 cancer-free controls. Urinary arsenic species were detected using high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. The polymorphism of TNF-α − 308 G/A, IL-6 − 174 G/C and IL-8 − 251 T/A was determined using polymerase chain reaction-restriction fragment length polymorphism. The joint effects on UC risk were estimated by odds ratios and 95% confidence intervals using unconditional logistic regression. We found that the TNF-α − 308 A/A and IL-8 − 251 T/T polymorphisms were significantly associated with UC. Moreover, significant dose–response joint effect of TNF-α − 308 A/A or IL-8 − 251 T/T genotypes and arsenic methylation indices were seen to affect UC risk. The present results also showed a significant increase in UC risk in subjects with the IL-8 − 251 T/T genotype for each SD increase in urinary total arsenic and MMA%. In contrast, a significant decrease in UC risk was found in subjects who carried the IL-8 − 251 T/T genotype for each SD increase in DMA%. - Highlights: • Joint effect of the TNF-α -308 A/A genotype and urinary total arsenic affected UC. • Joint effect of the IL-8 -251 T/T genotype and urinary total arsenic affected UC. • Urinary total arsenic level, TNF-α -308 A/A and IL-8 -251 T/T genotype affected UC.

  7. Photochemistry of Methyl Bromide on the α-Cr2O3(0001) Surface

    SciTech Connect

    Henderson, Michael A.

    2010-09-30

    The photochemical properties of the Cr-terminated α-Cr2O3(0001) surface were explored using methyl bromide (CH3Br) as a probe molecule. CH3Br adsorbed and desorbed molecularly from the Cr-terminated α-Cr2O3(0001) surface without detectable thermal decomposition. Temperature programmed desorption (TPD) revealed a CH3Br desorption state at 240 K for coverages up to 0.5 ML, followed by more weakly bound molecules desorbing at 175 K for coverages up to 1 ML. Multilayer exposures led to desorption at ~130 K. The CH3Br sticking coefficient was unity at 105 K for coverages up to monolayer saturation, but decreased as the multilayer formed. In contrast, pre-oxidation of the surface (using an oxygen plasma source) led to capping of surface Cr3+ sites and near complete removal of CH3Br TPD states above 150 K. The photochemistry of chemisorbed CH3Br was explored on the Cr-terminated surface using post-irradiation TPD and photon stimulated desorption (PSD). Irradiation of adsorbed CH3Br with broad band light from a Hg arc lamp resulted in both photodesorption and photodecomposition of the parent molecule at a combined cross section of ~10-22 cm2. Parent PSD was indicative of molecular photodesorption, but CH3 was also detected in PSD and Br atoms were left on the surface, both reflective of photo-induced CH3-Br bond dissociation. Use of a 385 nm cut-off filter effectively shut down the photodissociation pathway but not the parent molecule photodesorption process. From these observations it is inferred that d-to-d transitions in α-Cr2O3, occurring at photon energies <3 eV, are not responsible for photodecomposition of 2 adsorbed CH3Br. It is unclear to what extent band-to-band versus direct CH3Br photolysis play in CH3-Br bond dissociation initiated by more energetic photons.

  8. Methyl Formate Oxidation: Speciation Data, Laminar Burning Velocities, Ignition Delay Times and a Validated Chemical Kinetic Model

    SciTech Connect

    Dooley, S.; Burke, M. P.; Chaos, M.; Stein, Y.; Dryer, F. L.; Zhukov, V. P.; Finch, O.; Simmie, J. M.; Curran, H. J.

    2010-07-16

    The oxidation of methyl formate (CH{sub 3}OCHO) has been studied in three experimental environments over a range of applied combustion relevant conditions: 1. A variable-pressure flow reactor has been used to quantify reactant, major intermediate and product species as a function of residence time at 3 atm and 0.5% fuel concentration for oxygen/fuel stoichiometries of 0.5, 1.0, and 1.5 at 900 K, and for pyrolysis at 975 K. 2. Shock tube ignition delays have been determined for CH{sub 3}OCHO/O{sub 2}/Ar mixtures at pressures of ? 2.7, 5.4, and 9.2 atm and temperatures of 12751935 K for mixture compositions of 0.5% fuel (at equivalence ratios of 1.0, 2.0, and 0.5) and 2.5% fuel (at an equivalence ratio of 1.0). 3. Laminar burning velocities of outwardly propagating spherical CH{sub 3}OCHO/air flames have been determined for stoichiometries ranging from 0.81.6, at atmospheric pressure using a pressure-release-type high-pressure chamber. A detailed chemical kinetic model has been constructed, validated against, and used to interpret these experimental data. The kinetic model shows that methyl formate oxidation proceeds through concerted elimination reactions, principally forming methanol and carbon monoxide as well as through bimolecular hydrogen abstraction reactions. The relative importance of elimination versus abstraction was found to depend on the particular environment. In general, methyl formate is consumed exclusively through molecular decomposition in shock tube environments, while at flow reactor and freely propagating premixed flame conditions, there is significant competition between hydrogen abstraction and concerted elimination channels. It is suspected that in diffusion flame configurations the elimination channels contribute more significantly than in premixed environments.

  9. Using the apparent diffusion coefficient to identifying MGMT promoter methylation status early in glioblastoma: importance of analytical method

    SciTech Connect

    Rundle-Thiele, Dayle; Day, Bryan; Stringer, Brett; Fay, Michael; Martin, Jennifer; Jeffree, Rosalind L; Thomas, Paul; Bell, Christopher; Salvado, Olivier; Gal, Yaniv; Coulthard, Alan; Crozier, Stuart; Rose, Stephen

    2015-06-15

    Accurate knowledge of O{sup 6}-methylguanine methyltransferase (MGMT) gene promoter subtype in patients with glioblastoma (GBM) is important for treatment. However, this test is not always available. Pre-operative diffusion MRI (dMRI) can be used to probe tumour biology using the apparent diffusion coefficient (ADC); however, its ability to act as a surrogate to predict MGMT status has shown mixed results. We investigated whether this was due to variations in the method used to analyse ADC. We undertook a retrospective study of 32 patients with GBM who had MGMT status measured. Matching pre-operative MRI data were used to calculate the ADC within contrast enhancing regions of tumour. The relationship between ADC and MGMT was examined using two published ADC methods. A strong trend between a measure of ‘minimum ADC’ and methylation status was seen. An elevated minimum ADC was more likely in the methylated compared to the unmethylated MGMT group (U = 56, P = 0.0561). In contrast, utilising a two-mixture model histogram approach, a significant reduction in mean measure of the ‘low ADC’ component within the histogram was associated with an MGMT promoter methylation subtype (P < 0.0246). This study shows that within the same patient cohort, the method selected to analyse ADC measures has a significant bearing on the use of that metric as a surrogate marker of MGMT status. Thus for dMRI data to be clinically useful, consistent methods of data analysis need to be established prior to establishing any relationship with genetic or epigenetic profiling.

  10. Separation of Dimethyl Ether from Syn-Gas Components by Poly(dimethylsiloxane) and Poly(4-methyl-1-pentene) Membranes

    SciTech Connect

    Christopher J. Orme; Frederick F. Stewart

    2011-05-01

    Permeability and selectivity in gas transport through poly(4-methyl-1-pentene) (TPX) and poly(dimethylsiloxane) (PDMS) using variable temperature mixed gas experiments is reported. Selected gases include H2, CO, CH4, CO2, and dimethyl ether (DME). The DME data is the first to be reported through these membranes. In this paper, the chosen polymers reflect both rubbery and crystalline materials. Rubbery polymers tend to be weakly size sieving, which, in this work, has resulted in larger permeabilities, lower separation factors, and lower activation energies of permeation (Ep). Conversely, the crystalline TPX membranes showed much greater sensitivity to penetrant size; although the gas condensability also played a role in transport.

  11. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  12. Continuous wasteless ecologically safe technology of propylenecarbonate production in presence of phthalocyanine catalysts

    DOEpatents

    Afanasiev, Vladimir Vasilievich; Zefirov, Nikolai Serafimovich; Zalepugin, Dmitry Yurievich; Polyakov, Victor Stanislavovich; Tilkunova,Nataliya Alexandrovna; Tomilova, Larisa Godvigovna

    2009-09-08

    A continuous method of producing propylenecarbonate includes carboxylation of propylene oxide with carbon dioxide in presence of phthalocyanine catalyst on an inert carrier, using as the phthalocyanine catalyst at least one catalyst selected from the group consisting of not-substituted, methyl, ethyl, butyl, and tret butyl-substituted phthalocyanines of metals, including those containing counterions, and using as the carrier a hydrophobic carrier.

  13. Placental oxidative stress and decreased global DNA methylation are corrected by copper in the Cohen diabetic rat

    SciTech Connect

    Ergaz, Zivanit; Guillemin, Claire; Neeman-azulay, Meytal; Weinstein-Fudim, Liza; Stodgell, Christopher J.; Miller, Richard K.; Szyf, Moshe; Ornoy, Asher

    2014-05-01

    Fetal Growth Restriction (FGR) is a leading cause for long term morbidity. The Cohen diabetic sensitive rats (CDs), originating from Wistar, develop overt diabetes when fed high sucrose low copper diet (HSD) while the original outbred Sabra strain do not. HSD induced FGR and fetal oxidative stress, more prominent in the CDs, that was alleviated more effectively by copper than by the anti-oxidant vitamins C and E. Our aim was to evaluate the impact of copper or the anti-oxidant Tempol on placental size, protein content, oxidative stress, apoptosis and total DNA methylation. Animals were mated following one month of HSD or regular chow diet and supplemented throughout pregnancy with either 0, 1 or 2 ppm of copper sulfate or Tempol in their drinking water. Placental weight on the 21st day of pregnancy decreased in dams fed HSD and improved upon copper supplementation. Placental/fetal weight ratio increased among the CDs. Protein content decreased in Sabra but increased in CDs fed HSD. Oxidative stress biochemical markers improved upon copper supplementation; immunohistochemistry for oxidative stress markers was similar between strains and diets. Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. Placental global DNA methylation was decreased only among the CDs dams fed HSD. We conclude that FGR in this model is associated with smaller placentae, reduced DNA placental methylation, and increased oxidative stress that normalized with copper supplementation. DNA hypomethylation makes our model a unique method for investigating genes associated with growth, oxidative stress, hypoxia and copper. - Highlights: • Sensitive Cohen diabetic rats (CDs) had small placentae and growth restricted fetuses. • CDs dams fed high sucrose low copper diet had placental global DNA hypomethylation. • Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. • Oxidative stress parameters improved by Tempol and resolved by copper

  14. (E)-2-[(2-Bromophenylimino)methyl]-5-methoxyphenol: X-ray and DFT-calculated structures

    SciTech Connect

    Kosar, B. Albayrak, C.; Odabasoglu, M.; Bueyuekguengoer, O.

    2010-12-15

    The crystal structure of (E)-2-[(2-Bromophenylimino)methyl]-5-methoxyphenol is determined by using X-ray diffraction and then the molecular structure is investigated with density functional theory (DFT). X-Ray study shows that the title compound has a strong intramolecular O-H-N hydrogen bond and three dimensional crystal structure is primarily determined by C-H-{pi} and weak van der Waals interactions. The strong O-H-N bond is an evidence of the preference for the phenol-imine tautomeric form in the solid state. Optimized molecular geometry is calculated with DFT at the B3LYP/6-31G(d,p) level. The IR spectra of compound were recorded experimentally and calculated to compare with each other. The results from both experiment and theoretical calculations are compared in this study.

  15. High optical and switching performance electrochromic devices based on a zinc oxide nanowire with poly(methyl methacrylate) gel electrolytes

    SciTech Connect

    Chun, Young Tea; Chu, Daping; Neeves, Matthew; Placido, Frank; Smithwick, Quinn

    2014-11-10

    High performance electrochromic devices have been fabricated and demonstrated utilizing a solid polymer electrolyte and zinc oxide (ZnO) nanowire (NW) array counter electrode. The poly(methyl methacrylate) based polymer electrolyte was spin coated upon hydrothermally grown ZnO NW array counter electrodes, while electron beam evaporated NiO{sub x} thin films formed the working electrodes. Excellent optical contrast and switching speeds were observed in the fabricated devices with active areas of 2?cm{sup 2}, exhibiting an optical contrast of 73.11% at the wavelength of 470?nm, combined with a fast switching time of 0.2 s and 0.4 s for bleaching and coloration, respectively.

  16. Complexation of NpO2+ with N-methyl-iminodiacetic Acid: in Comparison with Iminodiacetic and Dipicolinic Acids

    SciTech Connect

    Tian, Guoxin; Rao, Linfeng

    2010-10-01

    Complexation of Np(V) with N-methyl-iminodiacetic acid (MIDA) in 1 M NaClO{sub 4} solution was studied with multiple techniques including potentiometry, spectrophotometry, and microcalorimetry. The 1:2 complex, NpO{sub 2}(MIDA){sub 2}{sup 3-} was identified for the first time in aqueous solution. The correlation between its optical absorption properties and symmetry was discussed, in comparison with Np(V) complexes with two structurally related nitrilo-dicarboxylic acids, iminodiacetic acid (IDA) and dipicolinic acid (DPA). The order of the binding strength (DPA > MIDA > IDA) is explained by the difference in the structural and electronic properties of the ligands. In general, the nitrilo-dicarboxylates form stronger complexes with Np(V) than oxy-dicarboxylates due to a much more favorable enthalpy of complexation.

  17. Reactions of methyl groups on a non-reducible metal oxide: The reaction of iodomethane on stoichiometric α-Cr2O3(0001)

    SciTech Connect

    Dong, Yujung; Brooks, John D.; Chen, Tsung-Liang; Mullins, David R.; Cox, David F.

    2015-06-10

    The reaction of iodomethane on the nearly stoichiometric α-Cr2O3(0001) surface produces gas phase ethylene, methane, and surface iodine adatoms. The reaction is first initiated by the dissociation of iodomethane into surface methyl fragments, -CH3, and iodine adatoms. Methyl fragments bound at surface Cr cation sites undergo a rate-limiting dehydrogenation reaction to methylene, =CH2. The methylene intermediates formed from methyl dehydrogenation can then undergo coupling reactions to produce ethylene via two principle reaction pathways: (1) direct coupling of methylene and (2) methylene insertion into the methyl surface bond to form surface ethyl groups which undergo β-H elimination to produce ethylene. The liberated hydrogen also combines with methyl groups to form methane. Iodine adatoms from the dissociation of iodomethane deactivate the surface by simple site blocking of the surface Cr3+ cations.

  18. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations

    SciTech Connect

    Tansel, Berrin Surita, Sharon C.

    2014-11-15

    Highlights: • In the digester gas, D4 and D5 comprised the 62% and 27% if siloxanes, respectively. • In landfill gas, the bulk of siloxanes were TMSOH (58%) followed by D4 (17%). • Methane utilization may be a possible mechanism for TMSOH formation in the landfills. • The geometric configurations of D4 and D5 molecules make them very stable. - Abstract: The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditions in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the Si–O bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the Si–O bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups.

  19. Design of highly ordered Ag-SrTiO{sub 3} nanotube arrays for photocatalytic degradation of methyl orange

    SciTech Connect

    Sun Yue; Liu Jiawen; Li Zhonghua

    2011-08-15

    Ag-SrTiO{sub 3} nanotube arrays were successfully prepared for the degradation of methyl orange (MO) under ultraviolet irradiation. In order to form highly ordered SrTiO{sub 3} nanotube arrays, the preparation of TiO{sub 2} nanotube arrays by anodic oxidation of titanium foil in different electrolytes was investigated. The selected organic solvents in electrolytes include glycerol, dimethyl sulfoxide and glycol. The results indicate that the morphology of TiO{sub 2} nanotube arrays prepared in glycol containing ammonium fluoride electrolyte is more regular. Then SrTiO{sub 3} nanotube arrays were synthesized by a hydrothermal method using TiO{sub 2} nanotube arrays as the precursor. In order to further improve the photocatalytic activity of SrTiO{sub 3} nanotube arrays, Ag nanoparticles were loaded on SrTiO{sub 3} nanotube arrays by two sets of experiments. The loaded Ag results in an enhancement of photocatalytic activity of SrTiO{sub 3} nanotube arrays. Moreover, the effect of pH on the photocatalytic degradation of MO was also studied. - Graphical abstract: Ag-SrTiO{sub 3} nanotube arrays were successfully prepared. The photocatalytic activity was evaluated by degradation of methyl orange under ultraviolet irradiation. Highlights: > TiO{sub 2} nanotube arrays prepared in glycol+NH{sub 4}F electrolyte are more regular. > Highly ordered Ag-SrTiO{sub 3} nanotube arrays were successfully synthesized. > Ag loading could enhance the photocatalytic activity of SrTiO{sub 3} nanotube arrays. > Ag-SrTiO{sub 3} nanotube arrays show excellent catalytic activity at a low pH value.

  20. Sub-5 nm Domains in Ordered Poly(cyclohexylethylene)-block-poly(methyl methacrylate) Block Polymers for Lithography.

    SciTech Connect

    Kennemur, Justin; Yao, Li; Bates, Frank Stephen; Hillmyer, Marc

    2014-01-01

    A series of poly(cyclohexylethylene)-block-poly- (methyl methacrylate) (PCHE PMMA) diblock copolymers with varying molar mass (4.9 kg/mol Mn 30.6 kg/mol) and narrow molar mass distribution were synthesized through a combination of anionic and atom transfer radical polymerization (ATRP) techniques. Heterogeneous catalytic hydrogenation of -(hydroxy)polystyrene (PS-OH) yielded -(hydroxy)poly(cyclohexylethylene) (PCHEOH) with little loss of hydroxyl functionality. PCHE-OH was reacted with -bromoisobutyryl bromide (BiBB) to produce an ATRP macroinitiator used for the polymerization of methyl methacrylate. PCHE PMMA is a glassy, thermally stable material with a large effective segment segment interaction parameter, eff = (144.4 6.2)/T (0.162 0.013), determined by meanfield analysis of order-to-disorder transition temperatures (TODT) measured by dynamic mechanical analysis and differential scanning calorimetry. Ordered lamellar domain pitches (9 D 33 nm) were identified by small-angle X-ray scattering from neat BCPs containing 43 52 vol % PCHE ( f PCHE). Atomic force microscopy was used to show 7.5 nm lamellar features (D = 14.8 nm) which are some of the smallest observed to date. The lowest molar mass sample (Mn = 4.9 kg/mol, f PCHE = 0.46) is characterized by TODT = 173 3 C and sub-5 nm nanodomains, which together with the sacrificial properties of PMMA and the high overall thermal stability place this material at the forefront of high- systems for advanced nanopatterning applications.

  1. Supramolecular organization of calix[4]pyrrole with a methyl-trialkylammonium anion exchanger leads to remarkable reversal of selectivity for sulfate extraction vs. nitrate

    SciTech Connect

    Borman, Christopher J; Custelcean, Radu; Hay, Benjamin; Bill, Nathan; Sessler, Jonathan L.; Moyer, Bruce A

    2011-01-01

    meso-Octamethylcalix[4]pyrrole (C4P) enhances sulfate selectivity in solvent extraction by Aliquat 336N, an effect ascribed to the supramolecular preorganization and thermodynamic stability imparted by insertion of the methyl group of the Aliquat cation into the cup of C4P in its cone conformation.

  2. On the Dissociation of Methyl Orange: Spectrophotometric Investigation in Aqueous Solutions from 10 to 90ºC and Theoretical Evidence for Intramolecular Dihydrogen Bonding

    SciTech Connect

    Boily, Jean F.; Seward, Terry M.

    2005-12-01

    The dissociation of methyl orange was investigated by spectrophotometry in aqueous solutions from 10 to 90°C and by quantum chemical calculations. Combined chemometric and thermodynamic analyses of the spectrophotometric data were used to simultaneously extract the thermodynamic stabilities and the spectrophotometric attributes of the dominant methyl orange species in solutions containing less than 20.00 mmol kg-1 perchloric acid and submicromolal concentrations of methyl orange. The analyses revealed the presence of only one monomeric deprotonated and one monomeric protonated species. The spectra did not reveal any evidence for the presence of tautomeric equilibria between the protonated azo and ammonium species in the experimental range studied. Thermodynamic analyses of the temperature dependent dissociation constants showed the reactions to be endothermic and enthalpy driven reaction with increasing acidity and increasing temperature. All molar absorption coefficients in the 275-375 nm range can be adequately reproduced in the 10-90°C range with a set of Gauss-Lorentz parameters and used to predict the absorption spectra for any desired condition. The dominant features of the spectrophotometric attributes of the methyl orange species could also be retrieved in Time Dependent-Density Functional Theory (TD-DFT) calculations. Topological analyses of the electron density also revealed the formation of a dihydrogen bond between the azo proton and an adjacent phenyl ring hydridic hydrogen which increases the stability of the azo molecules relative to the ammonium molecule.

  3. Global Proteome Response to Deletion of Genes Related to Mercury Methylation and Dissimilatory Metal Reduction Reveals Changes in Respiratory Metabolism in Geobacter sulfurreducens PCA

    DOE PAGES [OSTI]

    Qian, Chen; Johs, Alexander; Chen, Hongmei; Mann, Benjamin F.; Lu, Xia; Abraham, Paul E.; Hettich, Robert L.; Gu, Baohua

    2016-07-27

    Geobacter sulfurreducens PCA can reduce, sorb, and methylate mercury (Hg); however, the underlying biochemical mechanisms of these processes and interdependent metabolic pathways remain unknown. In this study, shotgun proteomics was used to compare global proteome profiles between wild-type G. sulfurreducens PCA and two mutant strains: a ΔhgcAB mutant, which is deficient in two genes known to be essential for Hg methylation and a ΔomcBESTZ mutant, which is deficient in five outer membrane c-type cytochromes and thus impaired in its ability for dissimilatory metal ion reduction. We were able to delineate the global response of G. sulfurreducens PCA in both mutantsmore » and identify cellular networks and metabolic pathways that were affected by the loss of these genes. Deletion of hgcAB increased the relative abundances of proteins implicated in extracellular electron transfer, including most of the c-type cytochromes, PilA-C, and OmpB, and is consistent with a previously observed increase in Hg reduction in the hgcAB mutant. Deletion of omcBESTZ was found to significantly increase relative abundances of various methyltransferases, suggesting that a loss of dissimilatory reduction capacity results in elevated activity among one-carbon metabolic pathways and thus increased methylation. We show that G. sulfurreducens PCA encodes only the folate branch of the Wood Ljungdahl pathway, and proteins associated with the folate branch were found at lower abundance in the ΔhgcAB mutant strain than the wild type. In conclusion, this observation supports the hypothesis that the function of HgcA and HgcB may be linked to one carbon metabolism through the folate branch of the Wood-Ljungdahl pathway by providing methyl groups required for Hg methylation.« less

  4. Development and validation of broad-range qualitative and clade-specific quantitative molecular probes for assessing mercury methylation in the environment

    DOE PAGES [OSTI]

    Christensen, Geoff A.; Wymore, Ann M.; King, Andrew J.; Podar, Mircea; Hurt, Jr., Richard A.; Santillan, Eugenio U.; Soren, Ally; Brandt, Craig C.; Brown, Steven D.; Palumbo, Anthony V.; et al

    2016-07-15

    Two genes, hgcA and hgcB, are essential for microbial mercury (Hg)-methylation. Detection and estimation of their abundance, in conjunction with Hg concentration, bioavailability and biogeochemistry is critical in determining potential hot spots of methylmercury (MeHg) generation in at-risk environments. We developed broad-range degenerate PCR primers spanning known hgcAB genes to determine the presence of both genes in diverse environments. These primers were tested against an extensive set of pure cultures with published genomes, including 13 Deltaproteobacteria, nine Firmicutes, and nine methanogenic Archaea. A distinct PCR product at the expected size was confirmed for all hgcAB+ strains tested via Sanger sequencing.more » Additionally, we developed clade-specific degenerate quantitative primers (qPCR) that targeted hgcA for each of the three dominant Hg-methylating clades. The clade-specific qPCR primers amplified hgcA from 64%, 88% and 86% of tested pure cultures of Deltaproteobacteria, Firmicutes and Archaea, respectively, and were highly specific for each clade. Amplification efficiencies and detection limits were quantified for each organism. Primer sensitivity varied among species based on sequence conservation. Finally, to begin to evaluate the utility of our primer sets in nature, we tested hgcA and hgcAB recovery from pure cultures spiked into sand and soil. These novel quantitative molecular tools designed in this study will allow for more accurate identification and quantification of the individual Hg-methylating groups of microorganisms in the environment. Here, the resulting data will be essential in developing accurate and robust predictive models of Hg-methylation potential, ideally integrating the geochemistry of Hg methylation to the microbiology and genetics of hgcAB.« less

  5. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    SciTech Connect

    Haddad, Rami, E-mail: rami.haddad@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montral, Qubec, Canada H3T 1E2 (Canada) [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montral, Qubec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montral, Qubec, Canada H3A 1A2 (Canada); Kasneci, Amanda, E-mail: amanda.kasneci@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montral, Qubec, Canada H3T 1E2 (Canada)] [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montral, Qubec, Canada H3T 1E2 (Canada); Mepham, Kathryn, E-mail: katherine.mepham@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montral, Qubec, Canada H3T 1E2 (Canada) [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montral, Qubec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montral, Qubec, Canada H3A 1A2 (Canada); Sebag, Igal A., E-mail: igal.sebag@mcgill.ca [Division of Cardiology, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montral, Qubec, Canada H3T 1E2 (Canada); and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 ?g/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.514.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ? Gestational DES changes cardiac SERCA2a and CASQ2 expression. ? Echocardiography identified systolic dysfunction and increased diastolic relaxation. ? DES increased DNMT

  6. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells

    SciTech Connect

    Vrba, Lukas; Jensen, Taylor J.; Garbe, James C.; Heimark, Ronald L.; Cress, Anne E.; Dickinson, Sally; Stampfer, Martha R.; Futscher, Bernard W.

    2009-12-23

    BACKGROUND: The microRNA-200 family participates in the maintenance of an epithelial phenotype and loss of its expression can result in epithelial to mesenchymal transition (EMT). Furthermore, the loss of expression of miR-200 family members is linked to an aggressive cancer phenotype. Regulation of the miR-200 family expression in normal and cancer cells is not fully understood. METHODOLOGY/ PRINCIPAL FINDINGS: Epigenetic mechanisms participate in the control of miR-200c and miR-141 expression in both normal and cancer cells. A CpG island near the predicted mir-200c/mir-141 transcription start site shows a striking correlation between miR-200c and miR-141 expression and DNA methylation in both normal and cancer cells, as determined by MassARRAY technology. The CpG island is unmethylated in human miR-200/miR-141 expressing epithelial cells and in miR-200c/miR-141 positive tumor cells. The CpG island is heavily methylated in human miR-200c/miR-141 negative fibroblasts and miR-200c/miR-141 negative tumor cells. Mouse cells show a similar inverse correlation between DNA methylation and miR-200c expression. Enrichment of permissive histone modifications, H3 acetylation and H3K4 trimethylation, is seen in normal miR-200c/miR-141-positive epithelial cells, as determined by chromatin immunoprecipitation coupled to real-time PCR. In contrast, repressive H3K9 dimethylation marks are present in normal miR-200c/miR-141-negative fibroblasts and miR-200c/miR-141 negative cancer cells and the permissive histone modifications are absent. The epigenetic modifier drug, 5-aza-2'-deoxycytidine, reactivates miR-200c/miR-141 expression showing that epigenetic mechanisms play a functional role in their transcriptional control. CONCLUSIONS/ SIGNIFICANCE: We report that DNA methylation plays a role in the normal cell type-specific expression of miR-200c and miR-141 and this role appears evolutionarily conserved, since similar results were obtained in mouse. Aberrant DNA methylation of the

  7. Studies on the binding of 5-N-methylated quindoline derivative to human telomeric G-quadruplex

    SciTech Connect

    Xu, Wei; Tan, Jia-Heng; Chen, Shuo-Bin; Hou, Jin-Qiang; Li, Ding; Huang, Zhi-Shu; Gu, Lian-Quan

    2011-03-18

    Research highlights: {yields} Hydrophobic interaction provided an important driving force for the interaction between ligand and G-quadruplex. {yields} Constrained water molecules were released from surface of G-tetrad upon the formation of the complex. {yields} The end-stacking mode for quindoline derivative was validated through UV-vis, ITC, steady-state, and time-resolved fluorescence experiment. {yields} The binding of compound 1 to quadruplex was found to be a temperature-dependent and enthalpy-entropy compensation process. -- Abstract: Quindoline derivatives as telomeric quadruplex ligands have shown good biological activity for telomerase inhibition. In the present study, we used spectroscopic and calorimetric methods to investigate the interactions between a quindoline derivative (5-methyl-11-(2-morpholinoethylamino)-10-H-indolo-[3,2-b]quinolin-5-ium iodide, compound 1) and human telomeric G-quadruplex. The thermodynamic studies using isothermal titration calorimetry (ITC) indicated that their binding process was temperature-dependent and enthalpy-entropy co-driven. The significant negative heat capacity was obtained experimentally from the temperature dependence of enthalpy changes, which was consistent with that from theoretical calculation, and all suggesting significant hydrophobic contribution to the molecular recognition process. Based on the results from UV-vis, ITC, steady-state and time-resolved fluorescence, their binding mode was determined as two ligand molecules stacking on the quartets on both ends of the quadruplex. These results shed light on rational design and development of quindoline derivatives as G-quadruplex binding ligands.

  8. Hydrothermal synthesis of Mn vanadate nanosheets and visible-light photocatalytic performance for the degradation of methyl blue

    SciTech Connect

    Pei, L.Z. Xie, Y.K.; Pei, Y.Q.; Jiang, Y.X.; Yu, H.Y.; Cai, Z.Y.

    2013-07-15

    Graphical abstract: - Highlights: Mn vanadate nanosheets have been synthesized by simple hydrothermal process. The formation of Mn vanadate nanosheets can be controlled by growth conditions. Mn vanadate nanosheets exhibit good photocatalytic activities for methyl blue. - Abstract: Mn vanadate nanosheets have been synthesized via a facile hydrothermal route using ammonium metavanadate and Mn acetate as the raw materials, polyvinyl pyrrolidone (PVP) as the surfactant. X-ray diffraction (XRD) shows that the Mn vanadate nanosheets are composed of monoclinic MnV{sub 2}O{sub 6} phase. Scanning electron microscopy (SEM) observation indicates that the nanosheets have the average thickness of about 50 nm, length of 210 ?m and width of 800 nm to 2 ?m. The growth process of the Mn vanadate nanosheets has also been discussed based on the analysis of the roles of the growth conditions on the formation of the Mn vanadate nanosheets. The nanosheets show good photocatalytic activities for the degradation of methylene blue (MB) under visible light irradiation. About 72.96% MB can be degraded after visible light irradiation for 1 h over 10 mg Mn vanadate nanosheets in 10 mL MB solution with the concentration of 10 mg L{sup ?1}.

  9. Effects of Turbulence on the Combustion Properties of Partially Premixed Flames of Canola Methyl Ester and Diesel Blends

    DOE PAGES [OSTI]

    Dhamale, N.; Parthasarathy, R. N.; Gollahalli, S. R.

    2011-01-01

    Canola methyl ester (CME) is a biofuel that is a renewable alternative energy resource and is produced by the transesterification of canola oil. The objective of this study was to document the effects of turbulence on the combustion characteristics of blends of CME and No 2 diesel fuel in a partially-premixed flame environment. The experiments were conducted with mixtures of pre-vaporized fuel and air at an initial equivalence ratio of 7 and three burner exit Reynolds numbers, 2700, 3600, and 4500. Three blends with 25, 50, and 75% volume concentration of CME were studied. The soot volume fraction was highestmore » for the pure diesel flames and did not change significantly with Reynolds number due to the mutually compensating effects of increased carbon input rate and increased air entrainment as the Reynolds number was increased. The global NOx emission index was highest and the CO emission index was the lowest for the pure CME flame, and varied non-monotonically with biofuel content in the blend The mean temperature and the NOx concentration at three-quarter flame height were generally correlated, indicating that the thermal mechanism of NOx formation was dominant in the turbulent biofuel flames also.« less

  10. Methylation of PLCD1 and adenovirus-mediated PLCD1 overexpression elicits a gene therapy effect on human breast cancer

    SciTech Connect

    Mu, Haixi; Wang, Na; Zhao, Lijuan; Li, Shuman; Li, Qianqian; Chen, Ling; Luo, Xinrong; Qiu, Zhu; Li, Lili; Ren, Guosheng; Xu, Yongzhu; Zhou, Xiangyang; Xiang, Tingxiu

    2015-03-15

    Our previous study showed that PLCD1 significantly decreases cell proliferation and affects cell cycle progression in breast cancer cells. In the present study, we aimed to investigate its functional and molecular mechanisms, and whether or not can become a new target for gene therapies. We found reduced PLCD1 protein expression in breast tumor tissues compared with paired surgical margin tissues. PLCD1 promoter CpG methylation was detected in 55 of 96 (57%) primary breast tumors, but not in surgical-margin tissues and normal breast tissues. Ectopic expression of PLCD1 inhibited breast tumor cell proliferation in vivo by inducing apoptosis and suppressed tumor cell migration by regulating cytoskeletal reorganization proteins including RhoA and phospho-cofilin. Furthermore, we found that PLCD1 induced p53 accumulation, increased p27 and p21 protein levels, and cleaved PARP. Finally, we constructed an adenoviral vector expressing PLCD1 (AdH5-PLCD1), which exhibited strong cytotoxicity in breast cancer cells. Our findings provide insights into the development of PLCD1 gene therapies for breast cancer and perhaps, other human cancers. - Highlights: • PLCD1 is downregulated via hypermethylation in breast cancer. • PLCD1 suppressed cell migration by regulating cytoskeletal reorganization proteins. • Adenovirus AdHu5-PLCD1 may be a novel therapeutic option for breast cancer.

  11. Photocatalytic degradation of methyl orange dye in water solutions in the presence of MWCNT/TiO{sub 2} composites

    SciTech Connect

    Da Dalt, S.; Alves, A.K.; Bergmann, C.P.

    2013-05-15

    Highlights: ? MWCNTs/TiO{sub 2} composites were obtained to degrade organic dyes in water. ? MWCNT/TiO{sub 2} composites were analyzed by photocatalysis and structural characterization. ? The photocatalytic shows efficient method for the degradation of dyes from aqueous effluents. - Abstract: The textile and dyestuff industries are the primary sources of the release of synthetic dyes into the environment and usually there are major pollutants in dye wastewaters. Because of their toxicity and slow degradation, these dyes are categorized as environmentally hazardous materials. In this context, carbon nanotubes/TiO{sub 2} (CNTs/TiO{sub 2}) composites were prepared using multi-walled CNTs (MWCNTs), titanium (IV) propoxide and commercial TiO{sub 2} (P25{sup }) as titanium oxide sources, to degrade the methyl orange dye in solution through photocatalyst activity using UV irradiation. The composites were prepared by solution processing followed by thermal treatment at 400, 500 and 600 C. The heterojunction between nanotubes and TiO{sub 2} was confirmed by XRD, specific surface area. The coating morphology was observed with SEM and TEM.

  12. Synthesis of 6-Methyl-9-n-propyldibenzothiophene-4-ol. Quarterly technical progress report No. 5, July 28--October 28, 1991

    SciTech Connect

    Not Available

    1991-10-28

    The material presented here has been described to some extent in Status Reports 12, 13, and 14 and covers the progress toward the synthesis of the modified target molecules 9-isopropyl-4-methoxy-6-methyldibenzothiophene (13) and 9-isopropyl-6-methyldibenzothiophene-4-ol (14). It is divided into three parts: (a) Dehydrogenation experiments On tetrahydrodibenzothiophene 12. (b) methoxyl methyl cleavage of 13 to 14 using boron tribromide. (c) isolation and purification of methoxydibenzothiophene 13.

  13. A CHRONIC INHALATION STUDY OF METHYL BROMIDE TOXICITY IN B6C3F1 MICE. (FINAL REPORT TO THE NATIONAL TOXICOLOGY PROGRAM)

    SciTech Connect

    HABER, S.B.

    1987-06-26

    This report provides a detailed account of a two year chronic inhalation study of methyl bromide toxicity in B6C3Fl mice conducted for the National Toxicology Program. Mice were randomized into three dose groups (10, 33 and 100 ppm methyl bromide) and one control group (0 ppm) per sex and exposed 5 days/week, 6 hours/day, for a total of 103 weeks. Endpoints included body weight; clinical signs and mortality, and at 6, 15 and 24 months of exposure, animals were sacrificed for organ weights, hematology and histopathology. In addition, a subgroup of animals in each dosage group was monitored for neurobehavioral and neuropathological changes. After only 20 weeks of exposure, 48% of the males and 12% of the females in the 100 ppm group had died. Exposures were terminated in that group and the surviving mice were observed for the duration of the study. Exposure of B6C3Fl mice to methyl bromide, even for only 20 weeks, produced significant changes in growth rate, mortality, organ weights and neurobehavioral functioning. These changes occurred in both males and females, but were more pronounced in males.

  14. Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: Potential implications for methylation-independent transcriptional repression

    SciTech Connect

    Horton, John R.; Zhang, Xing; Blumenthal, Robert M.; Cheng, Xiaodong

    2015-04-06

    DNA adenine methyltransferase (Dam) is widespread and conserved among the γ-proteobacteria. Methylation of the Ade in GATC sequences regulates diverse bacterial cell functions, including gene expression, mismatch repair and chromosome replication. Dam also controls virulence in many pathogenic Gram-negative bacteria. An unexplained and perplexing observation about Escherichia coli Dam (EcoDam) is that there is no obvious relationship between the genes that are transcriptionally responsive to Dam and the promoter-proximal presence of GATC sequences. Here, we demonstrate that EcoDam interacts with a 5-base pair non-cognate sequence distinct from GATC. The crystal structure of a non-cognate complex allowed us to identify a DNA binding element, GTYTA/TARAC (where Y = C/T and R = A/G). This element immediately flanks GATC sites in some Dam-regulated promoters, including the Pap operon which specifies pyelonephritis-associated pili. In addition, Dam interacts with near-cognate GATC sequences (i.e. 3/4-site ATC and GAT). All together, these results imply that Dam, in addition to being responsible for GATC methylation, could also function as a methylation-independent transcriptional repressor.

  15. Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: Potential implications for methylation-independent transcriptional repression

    DOE PAGES [OSTI]

    Horton, John R.; Zhang, Xing; Blumenthal, Robert M.; Cheng, Xiaodong

    2015-04-06

    DNA adenine methyltransferase (Dam) is widespread and conserved among the γ-proteobacteria. Methylation of the Ade in GATC sequences regulates diverse bacterial cell functions, including gene expression, mismatch repair and chromosome replication. Dam also controls virulence in many pathogenic Gram-negative bacteria. An unexplained and perplexing observation about Escherichia coli Dam (EcoDam) is that there is no obvious relationship between the genes that are transcriptionally responsive to Dam and the promoter-proximal presence of GATC sequences. Here, we demonstrate that EcoDam interacts with a 5-base pair non-cognate sequence distinct from GATC. The crystal structure of a non-cognate complex allowed us to identify amore » DNA binding element, GTYTA/TARAC (where Y = C/T and R = A/G). This element immediately flanks GATC sites in some Dam-regulated promoters, including the Pap operon which specifies pyelonephritis-associated pili. In addition, Dam interacts with near-cognate GATC sequences (i.e. 3/4-site ATC and GAT). All together, these results imply that Dam, in addition to being responsible for GATC methylation, could also function as a methylation-independent transcriptional repressor.« less

  16. The Vital Function of Fe3O4@Au nanocomposites for Hydrolase Biosensor Design and Its Application in Detection of Methyl Parathion

    SciTech Connect

    Zhao, Yuting; Zhang, Weiying; Lin, Yuehe; Du, Dan

    2013-02-04

    A nanocomposite of gold nanoparticles (AuNPs) decorating a magnetic Fe3O4 core was synthesized using cysteamine (SHNH2) as linker, and characterized by TEM, XPS, UV and electrochemistry. Then a hydrolase biosensor, based on self-assembly of methyl parathion hydrolase (MPH) on the Fe3O4@Au nanocomposite, was developed for sensitive and selective detection of the organophosphorus pesticide (OP) methyl parathion. The magnetic nanocomposite provides an easy way to construct the enzyme biosensor by simply exerting an external magnetic field, and also provides a simple way to renew the electrode surface by removing the magnet. Unlike inhibition-based enzyme biosensors, the hydrolase is not poisoned by OPs and thus is reusable for continuous measurement. AuNPs not only provide a large surface area, high loading efficiency and fast electron transfer, but also stabilize the enzyme through electrostatic interactions. The MPH biosensor shows rapid response and high selectivity for detection of methyl parathion, with a linear range from 0.5 to 1000 ng/mL and a detection limit of 0.1 ng/mL. It also shows acceptable reproducibility and stability. The simplicity and ease of operation of the proposed method has great potential for on-site detection of PS containing pesticides and provides a promising strategy to construct a robust biosensor.

  17. Structural and biochemical insights into 2′-O-methylation at the 3′-terminal nucleotide of RNA by Hen1

    SciTech Connect

    Chan, Chio Mui; Zhou, Chun; Brunzelle, Joseph S.; Huang, Raven H.

    2010-01-28

    Small RNAs of {approx}20-30 nt have diverse and important biological roles in eukaryotic organisms. After being generated by Dicer or Piwi proteins, all small RNAs in plants and a subset of small RNAs in animals are further modified at their 3'-terminal nucleotides via 2'-O-methylation, carried out by the S-adenosylmethionine-dependent methyltransferase (MTase) Hen1. Methylation at the 3' terminus is vital for biological functions of these small RNAs. Here, we report four crystal structures of the MTase domain of a bacterial homolog of Hen1 from Clostridium thermocellum and Anabaena variabilis, which are enzymatically indistinguishable from the eukaryotic Hen1 in their ability to methylate small single-stranded RNAs. The structures reveal that, in addition to the core fold of the MTase domain shared by other RNA and DNA MTases, the MTase domain of Hen1 possesses a motif and a domain that are highly conserved and are unique to Hen1. The unique motif and domain are likely to be involved in RNA substrate recognition and catalysis. The structures allowed us to construct a docking model of an RNA substrate bound to the MTase domain of bacterial Hen1, which is likely similar to that of the eukaryotic counterpart. The model, supported by mutational studies, provides insight into RNA substrate specificity and catalytic mechanism of Hen1.

  18. Solgel auto combustion synthesis of CoFe{sub 2}O{sub 4}/1-methyl-2-pyrrolidone nanocomposite with ethylene glycol: Its magnetic characterization

    SciTech Connect

    Topkaya, R.; Kurtan, U.; Junejo, Y.; Baykal, A.

    2013-09-01

    Graphical abstract: - Highlights: CoFe{sub 2}O{sub 4} was generated by solgel autocombustion using 1-methyl-2-pyrrolidone and ethylene glycol. The presence of spin-disordered surface layer on magnetic core was established. A linear dependence of the coercivity on temperature was fitted to Kneller's law. - Abstract: Magnetic nanoparticles were generated by solgel auto combustion synthesis of metal salts in the presence of 1-methyl-2-pyrrolidone, a functional solvent and ethylene glycol as usual solvent. The average crystallite size was obtained by using line profile fitting as 11 5 nm. The saturation magnetization value decreases with usage of the ethylene glycol in synthesis. The observed exchange bias effect further confirms the existence of the magnetically ordered core surrounded by spin-disordered surface layer and the ethylene glycol. Square-root temperature dependence of coercivity can be fitted to Kneller's law in the temperature range of 10400 K. The reduced remanent magnetization values lower than the theoretical value of 0.5 for non-interacting single domain particles indicate the CoFe{sub 2}O{sub 4}-1-methyl-2-pyrrolidone nanocomposite to have uniaxial anisotropy instead of the expected cubic anisotropy according to the StonerWohlfarth model.

  19. {sup 13}C-METHYL FORMATE: OBSERVATIONS OF A SAMPLE OF HIGH-MASS STAR-FORMING REGIONS INCLUDING ORION-KL AND SPECTROSCOPIC CHARACTERIZATION

    SciTech Connect

    Favre, Cécile; Bergin, Edwin A.; Crockett, Nathan R.; Neill, Justin L.; Carvajal, Miguel; Field, David; Jørgensen, Jes K.; Bisschop, Suzanne E.; Brouillet, Nathalie; Despois, Didier; Baudry, Alain; Kleiner, Isabelle; Margulès, Laurent; Huet, Thérèse R.; Demaison, Jean E-mail: miguel.carvajal@dfa.uhu.es

    2015-01-01

    We have surveyed a sample of massive star-forming regions located over a range of distances from the Galactic center for methyl formate, HCOOCH{sub 3}, and its isotopologues H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3}. The observations were carried out with the APEX telescope in the frequency range 283.4-287.4 GHz. Based on the APEX observations, we report tentative detections of the {sup 13}C-methyl formate isotopologue HCOO{sup 13}CH{sub 3} toward the following four massive star-forming regions: Sgr B2(N-LMH), NGC 6334 IRS 1, W51 e2, and G19.61-0.23. In addition, we have used the 1 mm ALMA science verification observations of Orion-KL and confirm the detection of the {sup 13}C-methyl formate species in Orion-KL and image its spatial distribution. Our analysis shows that the {sup 12}C/{sup 13}C isotope ratio in methyl formate toward the Orion-KL Compact Ridge and Hot Core-SW components (68.4 ± 10.1 and 71.4 ± 7.8, respectively) are, for both the {sup 13}C-methyl formate isotopologues, commensurate with the average {sup 12}C/{sup 13}C ratio of CO derived toward Orion-KL. Likewise, regarding the other sources, our results are consistent with the {sup 12}C/{sup 13}C in CO. We also report the spectroscopic characterization, which includes a complete partition function, of the complex H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3} species. New spectroscopic data for both isotopomers H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3}, presented in this study, have made it possible to measure this fundamentally important isotope ratio in a large organic molecule for the first time.

  20. Task 4.9 -- Value-added products from syngas. Semi-annual report, July 1--December 31, 1996

    SciTech Connect

    Olson, E.S.; Sharma, R.K.

    1997-08-01

    The work on advanced fuel forms in 1996 focused on the synthesis of higher alcohols from mixtures of hydrogen and carbon dioxide (syngas) from coal gasification. Initial work in this project utilized a novel molybdenum sulfide catalyst previously shown to be active for hydrodesulfurization reactions of coal liquids. A pressurized fixed-bed flow-through reactor was constructed, and the MoS{sub 2} catalysts were tested with syngas under a variety of conditions. Unfortunately, the catalysts, even with higher molybdenum loading and addition of promoters, failed to give alcohol products. A batch reactor test of the catalyst was also conducted, but did not produce alcohol products. Group VIII metals have been used previously in catalysts for syngas reactions. Ruthenium and rhodium catalysts were prepared by impregnation of a hydrotalcite support. Tests with these catalysts in flow-through reactors also did not produce the desired alcohol products. The formation of higher alcohols from smaller ones, such as methanol and ethanol, could be commercially important if high selectivity could be achieved. The methanol and ethanol would be derived from syngas and fermentation, respectively. Based on previous work in other laboratories, it was hypothesized that the hydrotalcite-supported MoS{sub 2} or Ru or Rh catalysts could catalyze the formation of butyl alcohols. Although the desired 1-butanol was obtained in batch reactions with the promoted ruthenium catalyst, the reaction was not as selective as desired. Product suitable for a lower-vapor-pressure gasoline oxygenate additive was obtained, but it may not be economical to market such products in competition with methyl tertiary-butyl ether (MTBE). Flow-through catalytic bed reactions were not successful.

  1. Photophysics and morphology of poly (3-dodecylthienylenevinylene)-[6,6]-phenyl-C{sub 61}-butyric acid methyl ester composite

    SciTech Connect

    Lafalce, E.; Toglia, P.; Jiang, X.; Zhang, C.

    2012-05-21

    A series of low band gap poly(3-dodecylthienylenevinylene) (PTV) with controlled morphological order have been synthesized and blended with the electron acceptor [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) for organic photovoltaic devices. Two polymers with the most and least side chain regioregularity were chosen in this work, namely the PTV010 and PTV55, respectively. Using photoluminescence, photo-induced absorption spectroscopy, and atomic force microscopy, we find no direct evidence of photoinduced charge transfer between the two constituents, independent of the bulk-heterojunction morphology of the film, although the possibility of formation of P{sup +}/C{sub 60}{sup -} charge transfer complex was not completely ruled out. The large exciton binding energy (E{sub b} = 0.6 eV) in PTV inhibits the photoinduced electron transfer from PTV to PCBM. In addition, excitons formed on polymer chains suffer ultrafast (

  2. Laboratory production of bromoform, methylene bromide, and methyl iodide by macroalgae and distribution in nearshore southern California waters

    SciTech Connect

    Manley, S.L. ); Goodwin, K.; North, W.J. )

    1992-12-01

    Production rates of bromoform (CHBr[sub 3]), methylene bromide (CH[sub 2]Br[sub 2]), and methyl iodide (CH[sub 3]I) were measured in the laboratory for 11 species of marine macroalgae. Production rates of the volatile bromomethanes extrapolated to a global scale suggest that marine macroalgae produce 2 [times] 10[sup 11] g Br yr[sup [minus]1] (1 [times] 10[sup 9] mol Br yr[sup [minus]1]), 98% of which is bromoform. Laminarians (kelps) produce 61% of this organic Br. These calculations suggest that marine macroalgae are important in the biogeochemical cycling of Br. Seawater concentrations of CHBr[sub 3], CH[sub 2]Br[sub 2], and CH[sub 3]I were determined from various southern California coastal locales. High concentrations were measured in seawater from the canopy and the bottom of a dense bed of Macrocystis as compared to other sites. Surface seawater concentrations of these halomethanes showed a strong cross-shore gradient with the highest concentration in the kelp canopy and the lowest at 5 km offshore. Seawater adjacent to decaying macroalgae on the bottom of a submarine canyon was not enriched in halomethanes relative to surface water. Water exiting a productive estuary was enriched only with CH[sub 2]Br[sub 2], although two algal species that are abundant there (Ulva and Enteromorpha) showed high laboratory production rates of both CHBr[sub 3] and CH[sub 2]Br[sub 2]. 21 refs., 2 figs., 2 tabs.

  3. The neurotoxic effects of N-methyl-N-nitrosourea on the electrophysiological property and visual signal transmission of rat's retina

    SciTech Connect

    Tao, Ye; Chen, Tao; Liu, Bei; Yang, Guo Qing; Peng, Guanghua; Zhang, Hua; Huang, Yi Fei

    2015-07-01

    The neurotoxic effects of N-methyl-N-nitrosourea (MNU) on the inner retinal neurons and related visual signal circuits have not been described in any animal models or human, despite ample morphological evidences about the MNU induced photoreceptor (PR) degeneration. With the helping of MEA (multielectrode array) recording system, we gained the opportunity to systemically explore the neural activities and visual signal pathways of MNU administrated rats. Our MEA research identified remarkable alterations in the electrophysiological properties and firstly provided instructive information about the neurotoxicity of MNU that affects the signal transmission in the inner retina. Moreover, the spatial electrophysiological functions of retina were monitored and found that the focal PRs had different vulnerabilities to the MNU. The MNU-induced PR dysfunction exhibited a distinct spatial- and time-dependent progression. In contrast, the spiking activities of both central and peripheral RGCs altered synchronously in response to the MNU administration. Pharmacological tests suggested that gap junctions played a pivotal role in this homogeneous response of RGCs. SNR analysis of MNU treated retina suggested that the signaling efficiency and fidelity of inner retinal circuits have been ruined by this toxicant, although the microstructure of the inner retina seemed relatively consolidated. The present study provided an appropriate example of MEA investigations on the toxicant induced pathological models and the effects of the pharmacological compounds on neuron activities. The positional MEA information would enrich our knowledge about the pathology of MNU induced RP models, and eventually be instrumental for elucidating the underlying mechanism of human RP. - Highlights: • We systemically explored the neural activities and visual signal pathways of MNU administrated retinas. • The focal photoreceptors had different vulnerabilities to the MNU administration.

  4. Accurate and Reliable Quantification of Total Microalgal Fuel Potential as Fatty Acid Methyl Esters by in situ Transesterfication

    SciTech Connect

    Laurens, L. M. L.; Quinn, M.; Van Wychen, S.; Templeton, D. W.; Wolfrum, E. J.

    2012-04-01

    In the context of algal biofuels, lipids, or better aliphatic chains of the fatty acids, are perhaps the most important constituents of algal biomass. Accurate quantification of lipids and their respective fuel yield is crucial for comparison of algal strains and growth conditions and for process monitoring. As an alternative to traditional solvent-based lipid extraction procedures, we have developed a robust whole-biomass in situ transesterification procedure for quantification of algal lipids (as fatty acid methyl esters, FAMEs) that (a) can be carried out on a small scale (using 4-7 mg of biomass), (b) is applicable to a range of different species, (c) consists of a single-step reaction, (d) is robust over a range of different temperature and time combinations, and (e) tolerant to at least 50% water in the biomass. Unlike gravimetric lipid quantification, which can over- or underestimate the lipid content, whole biomass transesterification reflects the true potential fuel yield of algal biomass. We report here on the comparison of the yield of FAMEs by using different catalysts and catalyst combinations, with the acid catalyst HCl providing a consistently high level of conversion of fatty acids with a precision of 1.9% relative standard deviation. We investigate the influence of reaction time, temperature, and biomass water content on the measured FAME content and profile for 4 different samples of algae (replete and deplete Chlorella vulgaris, replete Phaeodactylum tricornutum, and replete Nannochloropsis sp.). We conclude by demonstrating a full mass balance closure of all fatty acids around a traditional lipid extraction process.

  5. Acid-base properties, deactivation, and in situ regeneration of condensation catalysts for synthesis of methyl methacrylate

    SciTech Connect

    Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.

    1996-12-31

    Condensation reaction of a propionate with formaldehyde is a novel route for synthesis of methyl methacrylate (MMA). The reaction mechanism involves a proton abstraction from the propionate on the basic sites and activation of the aliphatic aldehyde on the acidic sites of the catalyst. The acid-base properties of ternary V-Si-P oxide catalysts and their relation to the NWA yield in the vapor phase condensation of formaldehyde with propionic anhydride has been studied for the first time. Five different V-Si-P catalysts with different atomic ratios of vanadium, silicon, and phosphorous were synthesized, characterized, and tested in a fixed-bed microreactor system. A V-Si-P 1:10:2.8 catalyst gave the maximum condensation yield of 56% based on HCHO fed at 300{degrees}C and 2 atm and at a space velocity of 290 cc/g cat{center_dot}h. A parameter called the ``q-ratio`` has been defined to correlate the condensation yields to the acid-base properties. The correlation of q-ratio with the condensation yield shows that higher q-ratios are more desirable. The long-term deactivation studies on the V-Si-P 1: 10:2.8 catalyst at 300{degrees}C and 2 atm and at a space velocity of 290 cc/g cat{center_dot}h show that the catalyst activity drops by a factor of nearly 20 over a 180 h period. The activity can be restored to about 78% of the initial activity by a mild oxidative regeneration at 300{degrees}C and 2 atm. The performance of V-Si-P catalyst has been compared to a Ta/SiO{sub 2} catalyst. The Ta- catalyst is more stable and has a higher on-stream catalyst life.

  6. Tris(Cyclopentadienyl)Uranium-t-Butyl: Synthesis, reactions, and mechanisms

    SciTech Connect

    Weydert, M.

    1993-04-01

    Compounds (RC{sub 5}H{sub 4}){sub 3}U(t-Bu) were prepared for R = H, Me, Et. Their decomposition products in aromatic solvents are consistent with a radical decomposition pathway induced by solvent-assisted U-C bond homolysis. NMR was used to study the reactions of (RC{sub 5}H{sub 4}){sub 3}UCl with t-BuLi (R = t-Bu, Me{sub 3}Si). Reactions of (MeC{sub 5}H{sub 4}){sub 3}U(t-Bu) with Lewis bases and fluorocarbons were studied. Analogous reaction chemistry between (RC{sub 5}H{sub 4}){sub 3}ThX systems and t-BuLi was also studied, and reactivity differences between U and Th are discussed. Synthesis of sterically crowded (RC{sub 5}H{sub 4}){sub 4}U compounds is next considered. Reaction of the trivalent (RC{sub 5}H{sub 4}){sub 3}U with (RC{sub 5}H{sub 4}){sub 2}Hg results in formation of (RC{sub 5}H{sub 4}){sub 4}U. Steric congestion, cyclopentadienyl ligand exchange, and electron transfer are discussed. (DLC)

  7. Tris(Cyclopentadienyl)Uranium-t-Butyl: Synthesis, reactions, and mechanisms

    SciTech Connect

    Weydert, M.

    1993-04-01

    Compounds (RC[sub 5]H[sub 4])[sub 3]U(t-Bu) were prepared for R = H, Me, Et. Their decomposition products in aromatic solvents are consistent with a radical decomposition pathway induced by solvent-assisted U-C bond homolysis. NMR was used to study the reactions of (RC[sub 5]H[sub 4])[sub 3]UCl with t-BuLi (R = t-Bu, Me[sub 3]Si). Reactions of (MeC[sub 5]H[sub 4])[sub 3]U(t-Bu) with Lewis bases and fluorocarbons were studied. Analogous reaction chemistry between (RC[sub 5]H[sub 4])[sub 3]ThX systems and t-BuLi was also studied, and reactivity differences between U and Th are discussed. Synthesis of sterically crowded (RC[sub 5]H[sub 4])[sub 4]U compounds is next considered. Reaction of the trivalent (RC[sub 5]H[sub 4])[sub 3]U with (RC[sub 5]H[sub 4])[sub 2]Hg results in formation of (RC[sub 5]H[sub 4])[sub 4]U. Steric congestion, cyclopentadienyl ligand exchange, and electron transfer are discussed. (DLC)

  8. N-butyl Cyanoacrylate Glue Embolization of Arterial Networks...

    Office of Scientific and Technical Information (OSTI)

    The rate of complete technical success was 80 % and partial success 20 %, with one nontarget embolization complication resulting in a minor change in treatment plan. No evidence of ...

  9. Novel Fluorescent Cationic Phospholipid, O-4-Napthylimido-1-Butyl...

    Office of Scientific and Technical Information (OSTI)

    Language: ENGLISH Subject: 59 BASIC BIOLOGICAL SCIENCES; 60 APPLIED LIFE SCIENCES; ANHYDRIDES; CARDIOLIPIN; DNA; ENCAPSULATION; HYDRATION; LECITHINS; LIPIDS; MIXTURES; MORPHOLOGY...

  10. Using physiologically based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate.

    SciTech Connect

    Kirman, C R.; Sweeney, Lisa M.; Corley, Rick A.; Gargas, M L.

    2005-04-01

    Reference values, including an oral reference dose (RfD) and an inhalation reference concentration (RfC), were derived for propylene glycol methyl ether (PGME), and an oral RfD was derived for its acetate (PGMEA). These values were based upon transient sedation observed in F344 rats and B6C3F1 mice during a two-year inhalation study. The dose-response relationship for sedation was characterized using internal dose measures as predicted by a physiologically based pharmacokinetic (PBPK) model for PGME and its acetate. PBPK modeling was used to account for changes in rodent physiology and metabolism due to aging and adaptation, based on data collected during weeks 1, 2, 26, 52, and 78 of a chronic inhalation study. The peak concentration of PGME in richly perfused tissues was selected as the most appropriate internal dose measure based upon a consideration of the mode of action for sedation and similarities in tissue partitioning between brain and other richly perfused tissues. Internal doses (peak tissue concentrations of PGME) were designated as either no-observed-adverse-effect levels (NOAELs) or lowest-observed-adverse-effect levels (LOAELs) based upon the presence or absence of sedation at each time-point, species, and sex in the two year study. Distributions of the NOAEL and LOAEL values expressed in terms of internal dose were characterized using an arithmetic mean and standard deviation, with the mean internal NOAEL serving as the basis for the reference values, which was then divided by appropriate uncertainty factors. Where data were permitting, chemical-specific adjustment factors were derived to replace default uncertainty factor values of ten. Nonlinear kinetics are were predicted by the model in all species at PGME concentrations exceeding 100 ppm, which complicates interspecies and low-dose extrapolations. To address this complication, reference values were derived using two approaches which differ with respect to the order in which these extrapolations

  11. Properties of electrospun CdS and CdSe filled poly(methyl methacrylate) (PMMA) nanofibres

    SciTech Connect

    Mthethwa, T.P.; Moloto, M.J.; De Vries, A.; Matabola, K.P.

    2011-04-15

    Graphical abstract: SEM images of CdS/PMMA showing coiling as loading of CdS nanoparticles is increased. Thermal stability is increased with increase in %loading of both CdS and CdSe nanoparticles. Research highlights: {yields} TOPO-capped CdS and HDA-capped CdSe nanoparticles were synthesized and fully characterized. {yields} The nanoparticles were mixed with the polymer, PMMA using electrospinning technique using 2, 5 and 10% weight loadings. {yields} The mixture was spun to produce fibres with optical and thermal properties showing significant change and also the increase in loading causing bending or spiraling. {yields} Both TEM images for nanoparticles and SEM for fibres shows the morphology and sizes of the particles. -- Abstract: Electrospinning technique was used to fabricate poly(methyl methacrylate) (PMMA) fibres incorporating CdS and CdSe quantum dots (nanoparticles). Different nanoparticle loadings (2, 5 and 10 wt% with respect to PMMA) were used and the effect of the quantum dots on the properties of the fibres was studied. The optical properties of the hybrid composite fibres were investigated by photoluminescence and UV-vis spectrophotometry. Scanning electron microscopy (SEM), X-ray diffraction and FTIR spectrophotometry were also used to investigate the morphology and structure of the fibres. The optical studies showed that the size-tunable optical properties can be achieved in the polymer fibres by addition of quantum dots. SEM images showed that the morphologies of the fibres were dependent on the added amounts of quantum dots. A spiral type of morphology was observed with an increase in the concentration of CdS and CdSe nanoparticles. Less beaded structures and bigger diameter fibres were obtained at higher quantum dot concentrations. X-ray diffractometry detected the amorphous peaks of the polymer and even after the quantum dots were added and the FTIR analysis shows that there was no considerable interaction between the quantum dots and the

  12. Analytical Methodologies for Detection of Gamma-Valerolactone, Delta-Valerolactone, Acephate and Azinphos Methyl and Their Associated Metabolites in Complex Biological Matrices

    SciTech Connect

    Zink, E.; Clark, R.; Grant, K.; Campbell, J.; Hoppe, E.

    2005-01-01

    Non-invasive biomonitoring for chemicals of interest in law enforcement and similar monitoring of pesticides, together with their metabolites, can not only save money but can lead to faster medical attention for individuals exposed to these chemicals. This study describes methods developed for the analysis of gamma-valerolactone (GVL), delta-valerolactone (DVL), acephate, and azinphos methyl in saliva and serum. Liquid chromatography/mass spectrometry (LC/MS) operated in the negative and positive ion mode and gas chromatography/mass spectrometry (GC/MS) were used to analyze GVL and DVL. Although both analytical techniques worked well, lower detection limits were obtained with GC/MS. The lactones and their corresponding sodium salts were spiked into both saliva and serum. The lactones were isolated from saliva or serum using newly developed extraction techniques and then subsequently analyzed using GC/MS. The sodium salts of the lactones are nonvolatile and require derivatization prior to analysis by this method. N-methyl-N-(t-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA) was ultimately selected as the reagent for derivatization because the acidic conditions required for reactions with diazomethane caused the salts to undergo intramolecular cyclization to the corresponding lactones. In vitro studies were conducted using rat liver microsomes to determine other metabolites associated with these compounds. Azinphos methyl and acephate are classified as organophosphate pesticides, and are known to be cholinesterase inhibitors in humans and insects, causing neurotoxicity. For this reason they have both exposure and environmental impact implications. These compounds were spiked into serum and saliva and prepared for analysis by GC/MS. Continuation of this research would include analysis by GC/MS under positive ion mode to determine the parent ions of the unknown metabolites. Further research is planned through an in vivo analysis of the lactones and pesticides. These

  13. Analysis of methyl neodecanamide in lake water by reversed-phase high performance liquid chromatography and gas chromatography-mass spectrometry

    SciTech Connect

    Rasmussen, H.T.; Friedman, S.K.; Mustilli, A.J.; McDonough, R.; McPherson, B.P. )

    1994-01-01

    Methyl Neodecanamide (MNDA) has been quantified in lake water at levels of 0.1 to 1,000 ppm. Total recoveries from spiked placebos were 99.8 [+-] 2.3% at the 1,000 ppm level and 98.3 [+-] 4.3% at the 0.1 ppm level (based on 54 determinations at each level). Plots of actual concentrations vs. determined concentrations were linear from 0.07--0.13 and 700--1,300 ppm (r > 0.999). Stability of MNDA in lake water was verified by determining the composition by GC/MS immediately after dissolution and after 3 days.

  14. The structural organization of N-methyl-2-pyrrolidone + water mixtures: A densitometry, x-ray diffraction, and molecular dynamics study

    SciTech Connect

    Usula, M.; Marincola, F. Cesare; Porcedda, S.; Mocci, F.; Gontrani, L.; Caminiti, R.

    2014-03-28

    A combined approach of molecular dynamics simulations, wide angle X-ray scattering experiments, and density measurements was employed to study the structural properties of N-methyl-2-pyrrolidone (NMP) + water mixtures over the whole concentration range. Remarkably, a very good agreement between computed and experimental densities and diffraction patterns was achieved, especially if the effect of the mixture composition on NMP charges is taken into account. Analysis of the intermolecular organization, as revealed by the radial and spatial distribution functions of relevant solvent atoms, nicely explained the density maximum observed experimentally.

  15. Novel class of amino acid antagonists at non-N-methyl-D-aspartic acid excitatory amino acid receptors. Synthesis, in vitro and in vivo pharmacology, and neuroprotection

    SciTech Connect

    Krogsgaard-Larsen, P.; Ferkany, J.W.; Nielsen, E.O.; Madsen, U.; Ebert, B.; Johansen, J.S.; Diemer, N.H.; Bruhn, T.; Beattie, D.T.; Curtis, D.R. )

    1991-01-01

    The isoxazole amino acid 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionic acid (AMPA) (1), which is a highly selective agonist at the AMPA subtype of excitatory amino acid (EAA) receptors, has been used as a lead for the development of two novel EAA receptor antagonists. One of the compounds, 2-amino-3-(3-(carboxymethoxy)-5-methylisoxazol-4-yl)propionic acid (AMOA, 7), was synthesized via O-alkylation by ethyl chloroacetate of the amino acid protected AMPA derivative 4. The other compound, 2-amino-3-(2-(3-hydroxy-5-methylisoxazol-4-yl)-methyl-5-methyl-3-+ ++oxoisoxazolin -4-yl)propionic acid (AMNH, 14) was synthesized with use of 4-(chloromethyl)-3-methoxy-5-methylisoxazole (8) as the starting material. The intermediate 4-(chloromethyl)-2-(3-methoxy-5-methylisoxazol-4-yl)methyl-5-me thylisoxazolin- 3-one (11) was converted into the acetamidomalonate (12), which was stepwise deprotected to give 14. Compounds 7 and 14 were stable in aqueous solution at pH values close to physiological pH. Neither 7 nor 14 showed detectable affinities for the receptor, ion channel, or modulatory sites of the N-methyl-D-aspartic acid (NMDA) receptor complex. Quantitative receptor autoradiographic and conventional binding techniques were used to study the affinities of 7 and 14 for non-NMDA receptor sites. Both compounds were inhibitors of the binding of (3H)AMPA (IC50 = 90 and 29 microM, respectively). Compounds 14 and 7 were both very weak inhibitors of the high-affinity binding of radioactive kainic acid ((3H)KAIN). Compound 14, but not 7, was, however, shown to be an inhibitor of low-affinity (3H)KAIN binding as determined in the presence of 100 mM calcium chloride. In the rat cortical slice preparation, 7 was shown to antagonize excitation induced by 1 with some selectivity, whereas 14 proved to be a rather selective antagonist of KAIN-induced excitation.

  16. Heterogeneous catalytic process for alcohol fuels from syngas. Final technical report

    SciTech Connect

    Dombek, B.D.

    1996-03-01

    The primary objective of this project has been the pursuit of a catalyst system which would allow the selective production from syngas of methanol and isobutanol. It is desirable to develop a process in which the methanol to isobutanol weight ratio could be varied from 70/30 to 30/70. The 70/30 mixture could be used directly as a fuel additive, while, with the appropriate downstream processing, the 30/70 mixture could be utilized for methyl tertiary-butyl ether (MTBE) synthesis. The indirect manufacture of MTBE from a coal derived syngas to methanol and isobutanol process would appear to be a viable solution to MTBE feedstock limitations. To become economically attractive, a process fro producing oxygenates from coal-derived syngas must form these products with high selectivity and good rates, and must be capable of operating with a low-hydrogen-content syngas. This was to be accomplished through extensions of known catalyst systems and by the rational design of novel catalyst systems.

  17. Biodegradation of petroleum hydrocarbons in fractured, unsaturated dolomite at a field site

    SciTech Connect

    McLinn, E.L.; Rehm, B.W.

    1997-12-31

    Gasoline constituents were detected in unsaturated soil and rock during abandonment of a leaky underground storage tank (UST). The unsaturated sequence beneath the former UST consists of 90 feet of silty till, fractured dolomite, and friable sandstone. Pore gas probes were installed in each of the unsaturated units, both in the source area and in a background on-site location. Pore gas samples were collected to evaluate the nature, extent, and fate of residual hydrocarbons in the vadose zone. Pore gas from the till and dolomite in the source area was enriched in petroleum hydrocarbons and carbon dioxide, and was depleted in oxygen, relative to pore gas from the background area. During two years of ground water monitoring at the site, methyl tertiary butyl ether was periodically detected in the ground water beneath the source area as pulses of recharge passed through the unsaturated zone, but not other gasoline constituents were detected. Apparently, the most degradable fraction of the gasoline (aromatic hydrocarbons) is being attenuated in the vadose zone before the water table is reached.

  18. Synthesis of 6-Methyl-9-propyldibenzothiophene-4-ol amended to 9-isopropyl-6-methyldibenzothiophene-4-ol. Final technical report, July 25, 1991--January 25, 1993

    SciTech Connect

    Eisenbraun, E.J.

    1992-02-17

    This is a draft final technical report on Task 1 of a contract to synthesize 6-Methyl-9-propyldibenzothiophene-4-ol, as amended to 9- isopropyl-6-methyldibenzothiophene-4-ol. This report is a compilation of data presented in earlier reports. The first annual report dealt with an attempted synthesis of 4-methoxy-6-methyl-9- propyldibenzothiophene (the original target compound), the successful synthesis and delivery of 200 grams of the sulfide 1,4-diethyl-2- [(2{prime}-methoxyphenyl)-thio]benzene, and initial work on a new synthesis route for the preparation of the new target compound 9- isopropyl-6-methyldibenzothiophene-4-ol. The change to the new target compound and the new synthesis route became necessary when it was learned that the sulfide mixture could not be cyclized to the substituted dibenzothiophene mixture. The second annual report described the successful preparation of 45 g of the new target compound using the new synthesis route. Subsequently funds were provided to synthesize an additional 45 g of the new target using the same reaction scheme. This task was recently completed.

  19. Methyl mercury toxicity in plant cultures: modification of resistance and demethylation by light and/or 2,4-dichlorophenoxyacetic acid

    SciTech Connect

    Czuba, M.

    1987-04-01

    Cultures of Daucus carota, Ca-68-10, and Lactuca sativa, Le-67, were grown at increasing methyl mercury (MeHg) concentrations ranging from initial doses of 0.05 to 5.0 micrograms/ml per day for 4 days with or without 0.15 microgram/ml 2,4-dichlorophenoxyacetic acid (2,4-D) in the presence or absence of light. The presence of 2,4-D interacted with light synergistically in the expression of MeHg toxicity within the whole range of concentrations. Demethylation patterns increased or decreased depending on the species, the 2,4-D concentration in the medium, and methyl mercury concentration used in the treatment. Lettuce was more sensitive to this interaction than carrot. In lettuce, the presence of 2,4-D in the light lowered the concentration of total Hg (or MeHg) required to reduce growth by 50%, about 13 times relative to that in the dark (i.e., it sensitized the cells). In the absence of 2,4-D the pattern was reversed. In carrot the pattern was similar but less pronounced. This suggests that, in these cell populations, MeHg toxicity is partly a hormone-mediated and light-sensitive event.

  20. Poly(methyl methacrylate)/layered zinc sulfide nanocomposites: Preparation, characterization and the improvements in thermal stability, flame retardant and optical properties

    SciTech Connect

    Wang, Biao; Zhou, Keqing; Jiang, Saihua; Shi, Yongqian; Wang, Bibo; Gui, Zhou; Hu, Yuan

    2014-08-15

    Highlights: • Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method. • We prepare PMMA/LZnS nanocomposites by in situ bulk polymerization of MMA. • PMMA/LZnS nanocomposites were investigated by TGA, DSC, MCC, UV–vis and PL test. • The thermal stability, flame retardant and optical properties of PMMA are improved. - Abstract: Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method and poly(methyl methacrylate) (PMMA)/layered zinc sulfide nanocomposites were obtained by in situ bulk polymerization of methyl methacrylate (MMA). X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the as-synthesized layered zinc sulfide and PMMA/layered zinc sulfide nanocomposites. Microscale combustion calorimeter (MCC), differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA) were used to test the thermal properties of the composites. Ultraviolet visible (UV–vis) transmittance spectra and photoluminence (PL) spectra were obtained to investigate the optical properties of the composites. From the results, the thermal degradation temperature is increased by 20–50 °C, the peak of heat release rate (pHRR) and total heat release (THR) are both decreased by above 30%, and the photoluminence intensity is enhanced with the increasing loading of layered zinc sulfide.

  1. Enhanced hydrogenation activity and diastereomeric interactions of methyl pyruvate co-adsorbed with R-1-(1-naphthyl)ethylamine on Pd(111)

    DOE PAGES [OSTI]

    Mahapatra, Mausumi; Burkholder, Luke; Garvey, Michael; Bai, Yun; Saldin, Dilano K.; Tysoe, Wilfred T.

    2016-08-04

    Unmodified racemic sites on heterogeneous chiral catalysts reduce their overall enantioselectivity, but this effect is mitigated in the Orito reaction (methyl pyruvate (MP) hydrogenation to methyl lactate) by an increased hydrogenation reactivity. Here, this effect is explored on a R-1-(1-naphthyl)ethylamine (NEA)-modified Pd(111) model catalyst where temperature-programmed desorption experiments reveal that NEA accelerates the rates of both MP hydrogenation and H/D exchange. NEAþMP docking complexes are imaged using scanning tunneling microscopy supplemented by density functional theory calculations to allow the most stable docking complexes to be identified. The results show that diastereomeric interactions between NEA and MP occur predominantly by bindingmore » of the C=C of the enol tautomer of MP to the surface, while simultaneously optimizing C=O...H2N hydrogen-bonding interactions. In conclusion, the combination of chiral-NEA driven diastereomeric docking with a tautomeric preference enhances the hydrogenation activity since C=C bonds hydrogenate more easily than C=O bonds thus providing a rationale for the catalytic observations.« less

  2. INSIGHTS INTO SURFACE HYDROGENATION IN THE INTERSTELLAR MEDIUM: OBSERVATIONS OF METHANIMINE AND METHYL AMINE IN Sgr B2(N)

    SciTech Connect

    Halfen, D. T.; Ziurys, L. M.; Ilyushin, V. V. E-mail: lziurys@as.arizona.edu

    2013-04-10

    Multiple observations of methanimine (CH{sub 2}NH) and methyl amine (CH{sub 3}NH{sub 2}) have been performed toward Sgr B2(N) at 1, 2, and 3 mm using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory. In the frequency range 68-280 GHz, 23 transitions of CH{sub 2}NH and 170 lines of CH{sub 3}NH{sub 2} have been observed as individual, distinguishable features, although some are partially blended with other lines. For CH{sub 2}NH, the line profiles indicate V{sub LSR} = 64.2 {+-} 1.4 km s{sup -1} and {Delta}V{sub 1/2} = 13.8 {+-} 2.8 km s{sup -1}, while V{sub LSR} = 63.7 {+-} 1.6 km s{sup -1} and {Delta}V{sub 1/2} = 15.1 {+-} 3.0 km s{sup -1} for CH{sub 3}NH{sub 2}, parameters that are very similar to those of other organic species in Sgr B2(N). From these data, rotational diagrams were constructed for both species. In the case of CH{sub 2}NH, a rotational temperature of T{sub rot} = 44 {+-} 13 K and a column density of N{sub tot} = (9.1 {+-} 4.4) Multiplication-Sign 10{sup 14} cm{sup -2} were determined from the analysis. For CH{sub 3}NH{sub 2}, T{sub rot} = 159 {+-} 30 K and N{sub tot} = (5.0 {+-} 0.9) Multiplication-Sign 10{sup 15} cm{sup -2}, indicating that this species is present in much warmer gas than CH{sub 2}NH. The fractional abundances for CH{sub 2}NH and CH{sub 3}NH{sub 2} were established to be f (H{sub 2}) Almost-Equal-To 3.0 Multiplication-Sign 10{sup -10} and f (H{sub 2}) Almost-Equal-To 1.7 Multiplication-Sign 10{sup -9}, respectively. It has been proposed that CH{sub 2}NH is formed on grains via hydrogenation of HCN; further hydrogenation of CH{sub 2}NH on surfaces leads to CH{sub 3}NH{sub 2}. However, given the dissimilarity between the rotational temperatures and distributions of CH{sub 2}NH and CH{sub 3}NH{sub 2} in Sgr B2, it is improbable that these species are closely related synthetically, at least in this source. Both CH{sub 2}NH and CH{sub 3}NH{sub 2} are more likely created by neutral-neutral processes in

  3. Discovery of 5-[[4-[(2,3-Dimethyl-2H-indazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2-methyl-benzenesulfonamide (Pazopanib), a Novel and Potent Vascular Endothelial Growth Factor Receptor Inhibitor

    SciTech Connect

    Harris, Philip A.; Boloor, Amogh; Cheung, Mui; Kumar, Rakesh; Crosby, Renae M.; Davis-Ward, Ronda G.; Epperly, Andrea H.; Hinkle, Kevin W.; Hunter, III, Robert N.; Johnson, Jennifer H.; Knick, Victoria B.; Laudeman, Christopher P.; Luttrell, Deirdre K.; Mook, Robert A.; Nolte, Robert T.; Rudolph, Sharon K.; Szewczyk, Jerzy R.; Truesdale, Anne T.; Veal, James M.; Wang, Liping; Stafford, Jeffrey A.

    2009-05-18

    Inhibition of the vascular endothelial growth factor (VEGF) signaling pathway has emerged as one of the most promising new approaches for cancer therapy. We describe herein the key steps starting from an initial screening hit leading to the discovery of pazopanib, N{sup 4}-(2,3-dimethyl-2H-indazol-6-yl)-N{sup 4}-methyl-N{sup 2}-(4-methyl-3-sulfonamidophenyl)-2,4-pyrimidinediamine, a potent pan-VEGF receptor (VEGFR) inhibitor under clinical development for renal-cell cancer and other solid tumors.

  4. On the correlation between the photoexcitation pathways and the critical energies required for ablation of poly(methyl methacrylate): A molecular dynamics study

    SciTech Connect

    Conforti, Patrick F.; Prasad, Manish; Garrison, Barbara J.

    2008-05-15

    The energetics initiating ablation in poly(methyl methacrylate) (PMMA) are studied using molecular dynamics (MD) simulation. The critical energy to initiate ablation in PMMA following the absorption of photons is investigated for two penetration depths along a range of fluences using a coarse-grained, hybrid Monte Carlo-MD scheme. Both heating and direct bond scission are simulated separately after photon absorption with additional transformation of material occurring via chemical reactions following the photochemical bond cleavage. For a given type of absorption and reaction channel, a critical energy can well describe the amount of energy required to initiate ablation. The simulations show a decrease in the critical energy when a greater amount of photochemistry is introduced in the system. The simulations complement experimental studies and elucidate how enhanced photochemistry lowers ablation thresholds in polymer substrates.

  5. Broadband gain in poly(3-hexylthiophene):phenyl-C{sub 61}-butyric-acid-methyl-ester photodetectors enabled by a semicontinuous gold interlayer

    SciTech Connect

    Melancon, Justin M.; Živanović, Sandra R.

    2014-10-20

    Substantial broadband photoconductive gain has been realized for organic, thin-film photodetectors with a poly(3-hexylthiophene):phenyl-C{sub 61}-butyric-acid-methyl-ester (P3HT:PCBM) active layer at low bias voltages. External quantum efficiencies upwards of 1500% were achieved when a semicontinuous gold layer was introduced at the anode interface. Significant gain was also observed in the sub-band gap, near infrared region where the external quantum efficiency approached 100% despite the lack of a sensitizer. The gain response was highly dependent on the thickness of the active layer of the photodetector with the best results achieved with the thinnest devices. The gain is the result of the injection of secondary electrons due to hole charge trapping at the semicontinuous gold layer.

  6. Synthesis ofN-(2-chloro-5-methylthiophenyl)-N'-(3-methyl-thiophenyl)-N'-[3H3]methylguanidine, l brace [3H3]CNS-5161 r brace

    SciTech Connect

    Gibbs, Andrew R.; Morimoto, Hiromi; VanBrocklin, Henry F.; Williams, Philip G.; Biegon, Anat

    2001-09-28

    The preparation of the title compound, [{sup 3}H{sub 3}]CNS-5161, was accomplished in three steps starting with the production of [{sup 3}H{sub 3}]iodomethane (CT{sub 3}I). The intermediate N-[{sup 3}H{sub 3}]methyl-3-(thiomethylphenyl)cyanamide was prepared in 77% yield by the addition of CT{sub 3}I to 3-(thiomethylphenyl)cyanamide, previously treated with sodium hydride. Reaction of this tritiated intermediate with 2-chloro-5-thiomethylaniline hydrochloride formed the guanidine compound [{sup 3}H{sub 3}]CNS-5161. Purification by HPLC gave the desired labeled product in an overall yield of 9% with greater than 96% radiochemical purity and a final specific activity of 66 Ci mmol{sup -1}.

  7. Synthesis, characterization, and crystal structure of 2-amino-7-methyl-5-oxo-4-phenyl-4,5-dihydropyrano[3,2-c] pyran-3-carbonitrile

    SciTech Connect

    Sharma, S.; Banerjee, B.; Brahmachari, G.; Kant, Rajni; Gupta, V. K.

    2015-12-15

    2-Amino-7-methyl-5-oxo-4-phenyl-4,5-dihydropyrano[3,2-c] pyran-3-carbonitrile, C{sub 16}H{sub 12}N{sub 2}O{sub 3} is synthesized via one-pot multi-component reaction at room temperature using commercially available urea as inexpensive and environmentally benign organo-catalyst. Its structure is determined by single-crystal X-ray diffraction technique The crystals are monoclinic, a = 10.7357(12), b = 8.7774(8), c = 15.0759(16) Å, β = 103.575(11)°, Z = 4, sp. gr. P2{sub 1}/n, R = 0.0551 for 1696 observed reflections. The crystal structure is stabilized by N–H···N, C–H···O, and C–H···π interactions.

  8. Crystallization of lysozyme with (R)-, (S)- and (RS)-2-methyl-2,4-pentanediol

    SciTech Connect

    Stauber, Mark; Jakoncic, Jean; Berger, Jacob; Karp, Jerome M.; Axelbaum, Ariel; Sastow, Dahniel; Buldyrev, Sergey V.; Hrnjez, Bruce J.; Asherie, Neer

    2015-03-01

    Chiral control of crystallization has ample precedent in the small-molecule world, but relatively little is known about the role of chirality in protein crystallization. In this study, lysozyme was crystallized in the presence of the chiral additive 2-methyl-2,4-pentanediol (MPD) separately using the R and S enantiomers as well as with a racemic RS mixture. Crystals grown with (R)-MPD had the most order and produced the highest resolution protein structures. This result is consistent with the observation that in the crystals grown with (R)-MPD and (RS)-MPD the crystal contacts are made by (R)-MPD, demonstrating that there is preferential interaction between lysozyme and this enantiomer. These findings suggest that chiral interactions are important in protein crystallization.

  9. M-transfer activity of MCM-41 materials in 1-hexene isomerization reactions

    SciTech Connect

    Dominguez, J.M.; Hernandez, F.; Terres, E.; Toledo, A.; Navarrete, J.

    1996-10-01

    The gasoline reformulation scheme includes the use of oxygenated additives MTBE (methyl-ter-butyl-ether), TAME (ter-amyl-methyl-ether), ETBE (ethyl-ter-butyl-ether) and DIPE (di-isopropyl-ether), which have the iso-olefins (i-C{sub 3}{sup =}, i-C{sub 4}{sup =}, i-C{sub 5}{sup =}) as precursors. In this respect, olefin production from FCC units must be enhanced to cover the demand. A series of new catalytic materials with lower hydrogen transfer activity could enhance the olefin yield from the FCC reactors.

  10. K20E, an oxidative-coupling compound of methyl caffeate, exhibits anti-angiogenic activities through down-regulations of VEGF and VEGF receptor-2

    SciTech Connect

    Pan, Chun-Hsu; Lin, Wen-Hsin; Chien, Yi-Chung; Liu, Fon-Chang; Sheu, Ming-Jyh; Kuo, Yueh-Hsiung; Wu, Chieh-Hsi

    2015-01-15

    Anti-angiogenesis is one of the most popular clinical interventions for cancer chemotherapy. A series of synthesized derivative of methyl caffeate were used to evaluate the anti-angiogenic activity and to investigate possible pharmacological mechanisms in the present study. The most potent anti-angiogenic compound was evaluated in the experiments of murine allograft tumor model and Matrigel plug assay as well as cell models in the human umbilical vascular endothelial cells (HUVECs) and the LLC1 lung cancer cells. Our results suggested that K20E suppressed the tumor growth in the allograft tumor model and exhibited anti-angiogenic activity in Matrigel plug assay. Besides, HUVEC viability was found to be significantly reduced by arresting cell cycle at G{sub 2}/M phase and apoptosis. Cell migration, invasion, and tube formation of the HUVECs were also markedly suppressed by K20E treatment. K20E largely down-regulated the intracellular and secreted vascular endothelial growth factor (VEGF) in the LLC1 cancer cells. Besides, VEGF receptor-2 (VEGFR-2) and its downstream signaling cascades (AKT-mTOR and MEK1/2-ERK1/2) as well as gelatinases were all evidently reduced in the HUVECs treated with K20E. Inversely, K20E can up-regulate the expression levels of p53 and p21 proteins in the HUVECs. Based on these results, our study suggested that K20E possessed inhibiting angiogenesis through regulation of VEGF/VEGFR-2 and its downstream signaling cascades in the vascular endothelial cells (VECs). - Highlights: • K20E is an oxidative-coupling compound of methyl caffeate. • K20E exhibits anti-tumor and anti-angiogenesis effects. • K20E suppresses the expressions of VEGF and VEGF receptor-2 (VEGFR-2) proteins. • K20E deactivates VEGFR-2-mediated downstream signaling pathways to inhibit angiogenesis. • K20E up-regulates p53-p21 pathway to induce apoptosis and cell arrest at G2/M phase.

  11. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A.; Martinez, Rodolfo A.; Unkefer, Clifford J.

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  12. Direct photo-etching of poly(methyl methacrylate) using focused extreme ultraviolet radiation from a table-top laser-induced plasma source

    SciTech Connect

    Barkusky, Frank; Peth, Christian; Bayer, Armin; Mann, Klaus

    2007-06-15

    In order to perform material interaction studies with intense extreme ultraviolet (EUV) radiation, a Schwarzschild mirror objective coated with Mo/Si multilayers was adapted to a compact laser-based EUV plasma source (pulse energy 3 mJ at {lambda}=13.5 nm, plasma diameter {approx}300 {mu}m). By 10x demagnified imaging of the plasma a pulse energy density of {approx}75 mJ/cm{sup 2} at a pulse length of 6 ns can be achieved in the image plane of the objective. As demonstrated for poly(methyl methacrylate) (PMMA), photoetching of polymer surfaces is possible at this EUV fluence level. This paper presents first results, including a systematic determination of PMMA etching rates under EUV irradiation. Furthermore, the contribution of out-of-band radiation to the surface etching of PMMA was investigated by conducting a diffraction experiment for spectral discrimination from higher wavelength radiation. Imaging of a pinhole positioned behind the plasma accomplished the generation of an EUV spot of 1 {mu}m diameter, which was employed for direct writing of surface structures in PMMA.

  13. Stereochemical effects in the gas-phase pinacol rearrangement. 2. Ring contraction versus methyl migration in cis- and trans-1,2-dimethylcyclohexane-1,2-diol

    SciTech Connect

    de Petris, G.; Giacomello, P.; Pizzabiocca, A.; Renzi, G.; Speranza, M.

    1988-02-17

    The gas-phase pinacol rearrangement of cis- and trans-1,2-dimethylcyclohexane-1,2-diols, promoted by D/sub 3//sup +/, CH/sub 5//sup +//C/sub 2/H/sub 5//sup +/ and t-C/sub 4/H/sub 9//sup +/ ions, was studied by mass spectrometric and radiolytic methods in the pressure range 0.5-760 Torr. When product isomerization is inhibited, by using N(CH/sub 3/)/sub 3/ as a trapping reagent at high pressure, mixtures of 2,2-dimethylcyclohexanone and 1-acetyl-1-methylcyclopentane were recovered from the reaction. In methane, the trend of the measured relative rates for ring contraction (k/sub 5/), methyl or hydroxyl group migration (k/sub 6/) versus the rearrangement rate of pincaol itself (k/sub p/), is k/sub 6/(trans) approx. k/sub 5/(trans) greater than or equal to k/sub 5/(cis) > k/sub 6/(cis) greater than or equal to k/sub p/. No evidence for the formation of an intermediate carbenium ion was found. Stereochemical aspects of the mechanism are discussed and compared with solution data.

  14. Preparation of 3R- and 3S-methyl isomers of the myocardial imaging agent 15-(p-IODOPHENYL)-3-methylpentadecanoic acid ({open_quotes}BMIPP{close_quotes})

    SciTech Connect

    Lin, Q. |; Luo, J.; Mokler, F.

    1996-10-01

    Iodine-123-labeled racemic BMIPP is used for clinical evaluation of heart disease. To evaluate the expected importance of configuration of the asymmetric C-3 center, we have synthesized the 3R-isomer. 6-Phenylhexanoyl chloride was condensed with thiophene (Friedel-Crafts), followed by Wolff-Kishner reduction and subsequent acylation with the ethyl-3-R-methylglutaroyl chloride, Wolff-Kishner reduction and Raney-Ni ring opening. Para Thallation (TTFA)/KI provided 3R-BMIPP, m.p. 51-52{degrees}C, [{alpha}{sub D}] = +0.74{degrees}. The diastereomeric amide mixture was prepared by reaction of racemic 3-R,S-BMIPP with (S)-(-)-{alpha}-methylbenzylamine. Chromatographic separation and HCl hydrolysis (at 175{degrees}C) provided the 3R- and 3S- (m.p. 45-46{degrees}C, [{alpha}{sub D}] = -1.67{degrees}) BMIPP isomers. The more polar amide (m.p. 93-94{degrees}C) was identical with the amide from the synthetic 3R-BMIPP (m.p., HPLC, NMR). Availability of the 3R- and 3S-BMIPP isomers will permit preparation of the radioiodinated isomers and animal evaluation to determine the effects of the methyl group configuration on myocardial uptake and metabolism.

  15. Chikusetsusaponin IVa methyl ester induces cell cycle arrest by the inhibition of nuclear translocation of β-catenin in HCT116 cells

    SciTech Connect

    Lee, Kyung-Mi; Yun, Ji Ho; Lee, Dong Hwa; Park, Young Gyun; Son, Kun Ho; Nho, Chu Won; Kim, Yeong Shik

    2015-04-17

    We demonstrate that chikusetsusaponin IVa methyl ester (CME), a triterpenoid saponin from the root of Achyranthes japonica, has an anticancer activity. We investigate its molecular mechanism in depth in HCT116 cells. CME reduces the amount of β-catenin in nucleus and inhibits the binding of β-catenin to specific DNA sequences (TCF binding elements, TBE) in target gene promoters. Thus, CME appears to decrease the expression of cell cycle regulatory proteins such as Cyclin D1, as a representative target for β-catenin, as well as CDK2 and CDK4. As a result of the decrease of the cell cycle regulatory proteins, CME inhibits cell proliferation by arresting the cell cycle at the G0/G1 phase. Therefore, we suggest that CME as a novel Wnt/β-catenin inhibitor can be a putative agent for the treatment of colorectal cancers. - Highlights: • CME inhibits cell proliferation in HCT116 cells. • CME increases cell cycle arrest at G0/G1 phase and apoptosis. • CME attenuates cyclin D1 and regulates cell cycle regulatory proteins. • CME inhibits β-catenin translocation to nucleus.

  16. Synthesis and Coordination Properties of Trifluoromethyl Decorated Derivatives of 2,6-Bis[(diphenylphosphinoyl)methyl]pyridine N-Oxide Ligands with Lanthanide Ions

    SciTech Connect

    Pailloux, Sylvie; Shirima, Cornel Edicome; Ray, Alicia D.; Duesler, Eileen N.; Paine, Robert T.; Klaehn, John D.; McIlwain, Michael E; Hay, Benjamin

    2009-01-01

    Phosphinoyl Grignard-based substitutions on 2,6-bis(chloromethyl)pyridine followed by N-oxidation of the intermediate 2,6-bis(phosphinoyl)methyl pyridine compounds with mCPBA give the target trifunctional ligands 2,6-bis[bis-(2-trifluoromethyl-phenyl)-phosphinoylmethyl]-pyridine 1-oxide (2a) and 2,6-bis[bis-(3,5-bis-trifluoromethyl-phenyl)-phosphinoylmethyl]-pyridine 1-oxide (2b) in high yields. The ligands have been spectroscopically characterized, the molecular structures confirmed by single crystal X-ray diffraction methods and the coordination chemistry surveyed with lanthanide nitrates. Single crystal X-ray diffraction analyses are described for the coordination complexes Nd(2a)(NO3)3, Nd(2a)(NO3)3 (CH3CN)0.5, Eu(2a)(NO3)3 and Nd(2b)(NO3)3 (H2O)1.25; in each case the ligand binds in a tridentate mode to the Ln(III) cation. These structures are compared with the structures found for lanthanide coordination complexes of the parent NOPOPO ligand, [Ph2P(O)CH2]2C5H3NO.

  17. Emissions characteristics of ethyl and methyl ester of rapeseed oil compared with low sulfur diesel control fuel in a chassis dynamometer test of a pickup truck

    SciTech Connect

    Peterson, C.; Reece, D.

    1996-05-01

    Comprehensive tests were performed on an on-road vehicle in cooperation with the Los Angeles County Metropolitan Transit Authority emissions test facility. All tests were with a transient chassis dynamometer. Tests included both a double arterial cycle of 768 s duration and an EPA heavy duty vehicle cycle of 1,060 s duration. The test vehicle was a 1994 pickup truck with a 5.9-L turbocharged and intercooled, direct injection diesel engine. Rapeseed methyl (RME) and ethyl esters (REE) and blends were compared with low sulfur diesel control fuel. Emissions data include all regulated emissions: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter (PM). In these tests the average of 100% RME and 100% REE reduced HC (52.4%), CO (47.6%), NO{sub x} (10.0%), and increases in CO{sub 2} (0.9%) and PM (9.9%) compared to the diesel control fuel. Also, 100% REE reduced HC (8.7%), CO (4.3%), and NO{sub x} (3.4%) compared to 100% RME. 33 refs., 1 figs., 8 tabs.

  18. Pump-beam-induced optical damage depended on repetition frequency and pulse width in 4-dimethylamino-N Prime -methyl-4 Prime -stilbazolium tosylate crystal

    SciTech Connect

    Matsukawa, Takeshi; Nawata, Kouji; Notake, Takashi; Qi Feng; Kawamata, Hiroshi; Minamide, Hiroaki

    2013-07-08

    We investigated the dependence of optical damage to an organic nonlinear optical crystal of 4-dimethylamino-N Prime -methyl-4 Prime -stilbazolium tosylate (DAST) on the repetition frequency and pulse width of the pump beam used to cause the thermal damage. For a pump beam with a pulse width of 15 ns at a wavelength of 1064 nm, the highest damage threshold of 8.0 J/cm{sup 2} was measured for repetition frequencies in the range from 10 to 40 Hz. On the other hand, DAST crystals were easily damaged under the repetition rates from 50 to 100 Hz. For 600-ps pulses, a higher damage threshold that was a factor of 11 to 28 times higher in terms of peak intensity was obtained compared with that of 15-ns pulses. In both the cases of 15-ns pulse duration and 600-ps duration, we demonstrated that the thermal effects in DAST crystals dominated the optical damage, which depended on thermal accumulation and dissipation.

  19. Molecular and crystal structures of 4'-hydroxy derivative of (3R,6R)-3-methyl-6-isopropyl-2-(4-phenylbenzylidene)cyclohexanone

    SciTech Connect

    Kutulya, L. A.; Kulishov, V. I.; Shishkina, S. V.; Tolochko, A. S.; Roshal', A. D.; Shishkin, O. V.

    2008-05-15

    The molecular and crystal structures of the 4-hydroxy derivative of (3R,6R)-3-methyl-6-isopropyl-2-(4-phenylbenzylidene)cyclohexanone are determined by X-ray diffraction analysis. Single crystals are orthorhombic, a = 9.147(2) A, b = 12.959(2) A, c = 15.695(5) A, V = 1860.4(7) A{sup 3}, Z = 4, and space group P2{sub 1}2{sub 1}2{sub 1}. The cyclohexanone ring in the crystal structure has an asymmetric chair conformation. The puckering parameters are as follows: the puckering amplitude S is 0.91, and the puckering angles {theta} and {psi} are equal to 20.2{sup o} and 10.4{sup o}, respectively. It is established that the enone fragment and the cyclohexanone ring in molecules are flattened considerably. In the crystal structure, the molecules are linked by the hydrogen bonds (bond length, 1.85 A). The structural features and the strength of the hydrogen bonds for the compound under investigation and its analogue with one benzene ring are compared using the X-ray diffraction and IR spectroscopic data.

  20. Dynamic heterogeneity of DNA methylation and hydroxymethylation in embryonic stem cell populations captured by single-cell 3D high-content analysis

    SciTech Connect

    Tajbakhsh, Jian; Stefanovski, Darko; Tang, George; Wawrowsky, Kolja; Liu, Naiyou; Fair, Jeffrey H.

    2015-03-15

    Cell-surface markers and transcription factors are being used in the assessment of stem cell fate and therapeutic safety, but display significant variability in stem cell cultures. We assessed nuclear patterns of 5-hydroxymethylcytosine (5hmC, associated with pluripotency), a second important epigenetic mark, and its combination with 5-methylcytosine (5mC, associated with differentiation), also in comparison to more established markers of pluripotency (Oct-4) and endodermal differentiation (FoxA2, Sox17) in mouse embryonic stem cells (mESC) over a 10-day differentiation course in vitro: by means of confocal and super-resolution imaging together with 3D high-content analysis, an essential tool in single-cell screening. In summary: 1) We did not measure any significant correlation of putative markers with global 5mC or 5hmC. 2) While average Oct-4 levels stagnated on a cell-population base (0.015 lnIU/day), Sox17 and FoxA2 increased 22-fold and 3-fold faster, respectively (Sox17: 0.343 lnIU/day; FoxA2: 0.046 lnIU/day). In comparison, global DNA methylation levels increased 4-fold faster (0.068 lnIU/day), and global hydroxymethylation declined at 0.046 lnIU/day, both with a better explanation of the temporal profile. 3) This progression was concomitant with the occurrence of distinct nuclear codistribution patterns that represented a heterogeneous spectrum of states in differentiation; converging to three major coexisting 5mC/5hmC phenotypes by day 10: 5hmC{sup +}/5mC{sup −}, 5hmC{sup +}/5mC{sup +}, and 5hmC{sup −}/5mC{sup +} cells. 4) Using optical nanoscopy we could delineate the respective topologies of 5mC/5hmC colocalization in subregions of nuclear DNA: in the majority of 5hmC{sup +}/5mC{sup +} cells 5hmC and 5mC predominantly occupied mutually exclusive territories resembling euchromatic and heterochromatic regions, respectively. Simultaneously, in a smaller subset of cells we observed a tighter colocalization of the two cytosine variants, presumably

  1. Dietary administration of sodium arsenite to rats: Relations between dose and urinary concentrations of methylated and thio-metabolites and effects on the rat urinary bladder epithelium

    SciTech Connect

    Suzuki, Shugo; Arnold, Lora L.; Pennington, Karen L.; Chen, Baowei; Naranmandura, Hua; Le, X. Chris; Cohen, Samuel M.

    2010-04-15

    Based on epidemiological data, chronic exposure to high levels of inorganic arsenic in drinking water is carcinogenic to humans, inducing skin, urinary bladder and lung tumors. In vivo, inorganic arsenic is metabolized to organic methylated arsenicals including the highly toxic dimethylarsinous acid (DMA{sup III}) and monomethylarsonous acid (MMA{sup III}). Short-term treatment of rats with 100 mug/g trivalent arsenic (As{sup III}) as sodium arsenite in the diet or in drinking water induced cytotoxicity and necrosis of the urothelial superficial layer, with increased cell proliferation and hyperplasia. The objectives of this study were to determine if these arsenic-induced urothelial effects are dose responsive, the dose of arsenic at which urothelial effects are not detected, and the urinary concentrations of the arsenical metabolites. We treated female F344 rats for 5 weeks with sodium arsenite at dietary doses of 0, 1, 10, 25, 50, and 100 ppm. Cytotoxicity, cell proliferation and hyperplasia of urothelial superficial cells were increased in a dose-responsive manner, with maximum effects found at 50 ppm As{sup III}. There were no effects at 1 ppm As{sup III}. The main urinary arsenical in As{sup III}-treated rats was the organic arsenical dimethylarsinic acid (DMA{sup V}). The thio-metabolites dimethylmonothioarsinic acid (DMMTA{sup V}) and monomethylmonothioarsinic acid (MMMTA{sup V}) were also found in the urine of As{sup III}-treated rats. The LC{sub 50} concentrations of DMMTA{sup V} for rat and human urothelial cells in vitro were similar to trivalent oxygen-containing arsenicals. These data suggest that dietary As{sup III}-induced urothelial cytotoxicity and proliferation are dose responsive, and the urothelial effects have a threshold corresponding to the urinary excretion of measurable reactive metabolites.

  2. Atomic resolution experimental phase information reveals extensive disorder and bound 2-methyl-2,4-pentanediol in Ca 2+ -calmodulin

    SciTech Connect

    Lin, Jiusheng; van den Bedem, Henry; Brunger, Axel T.; Wilson, Mark A.

    2016-01-01

    Calmodulin (CaM) is the primary calcium signaling protein in eukaryotes and has been extensively studied using various biophysical techniques. Prior crystal structures have noted the presence of ambiguous electron density in both hydrophobic binding pockets of Ca2+-CaM, but no assignment of these features has been made. In addition, Ca2+-CaM samples many conformational substates in the crystal and accurately modeling the full range of this functionally important disorder is challenging. In order to characterize these features in a minimally biased manner, a 1.0 Å resolution single-wavelength anomalous diffraction data set was measured for selenomethionine-substituted Ca2+-CaM. Density-modified electron-density maps enabled the accurate assignment of Ca2+-CaM main-chain and side-chain disorder. These experimental maps also substantiate complex disorder models that were automatically built using low-contour features of model-phased electron density. Furthermore, experimental electron-density maps reveal that 2-methyl-2,4-pentanediol (MPD) is present in the C-terminal domain, mediates a lattice contact between N-terminal domains and may occupy the N-terminal binding pocket. The majority of the crystal structures of target-free Ca2+-CaM have been derived from crystals grown using MPD as a precipitant, and thus MPD is likely to be bound in functionally critical regions of Ca2+-CaM in most of these structures. The adventitious binding of MPD helps to explain differences between the Ca2+-CaM crystal and solution structures and is likely to favor more open conformations of the EF-hands in the crystal.

  3. "Seeing" Mercury Methylation in Progress

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Plants and microorganisms in the ecosystem can play an important role in the chemical ... One is the native species that has an essential role in the ecosystem, including housing ...

  4. Word Pro - Untitled1

    Energy Information Administration (EIA) (indexed site)

    chemical compounds composed of carbon, hydrogen, and oxygen. The series of molecules vary in chain length and are composed of a hydrocarbon plus a hydroxyl group: CH 3 -(CH 2 )n-OH (e.g., metha- nol, ethanol, and tertiary butyl alcohol). See Fuel Ethanol. Alternative Fuel: Alternative fuels, for transportation applications, include the following: methanol; denatured ethanol, and other alcohols; fuel mixtures contain- ing 85 percent or more by volume of methanol, denatured ethanol, and other

  5. Task 4.9 -- Value-added products from syngas

    SciTech Connect

    Olson, E.S.; Sharma, R.K.

    1997-02-01

    oxygenate additive was obtained, but it may not be economical to market such products in competition with methyl tertiary-butyl-ether. Flow-through catalytic bed reactions were not successful.

  6. Quercetin 3-O-methyl ether protects FL83B cells from copper induced oxidative stress through the PI3K/Akt and MAPK/Erk pathway

    SciTech Connect

    Tseng, Hsiao-Ling; Li, Chia-Jung; Huang, Lin-Huang; Chen, Chun-Yao; Tsai, Chun-Hao; Lin, Chun-Nan; Department of Biological Science and Technology, School of Medicine, China Medical University, Taichung, Taiwan ; Hsu, Hsue-Yin

    2012-10-01

    Quercetin is a bioflavonoid that exhibits several biological functions in vitro and in vivo. Quercetin 3-O-methyl ether (Q3) is a natural product reported to have pharmaceutical activities, including antioxidative and anticancer activities. However, little is known about the mechanism by which it protects cells from oxidative stress. This study was designed to investigate the mechanisms by which Q3 protects against Cu{sup 2+}-induced cytotoxicity. Exposure to Cu{sup 2+} resulted in the death of mouse liver FL83B cells, characterized by apparent apoptotic features, including DNA fragmentation and increased nuclear condensation. Q3 markedly suppressed Cu{sup 2+}-induced apoptosis and mitochondrial dysfunction, characterized by reduced mitochondrial membrane potential, caspase-3 activation, and PARP cleavage, in Cu{sup 2+}-exposed cells. The involvement of PI3K, Akt, Erk, FOXO3A, and Mn-superoxide dismutase (MnSOD) was shown to be critical to the survival of Q3-treated FL83B cells. The liver of both larval and adult zebrafish showed severe damage after exposure to Cu{sup 2+} at a concentration of 5 μM. Hepatic damage induced by Cu{sup 2+} was reduced by cotreatment with Q3. Survival of Cu{sup 2+}-exposed larval zebrafish was significantly increased by cotreatment with 15 μM Q3. Our results indicated that Cu{sup 2+}-induced apoptosis in FL83B cells occurred via the generation of ROS, upregulation and phosphorylation of Erk, overexpression of 14-3-3, inactivation of Akt, and the downregulation of FOXO3A and MnSOD. Hence, these results also demonstrated that Q3 plays a protective role against oxidative damage in zebrafish liver and remarked the potential of Q3 to be used as an antioxidant for hepatocytes. Highlights: ► Protective effects of Q3 on Cu{sup 2+}-induced oxidative stress in vitro and in vivo. ► Cu{sup 2+} induced apoptosis in FL83B cells via ROS and the activation of Erk. ► Q3 abolishes Cu{sup 2+}-induced apoptosis through the PI3K/Akt and MAPK

  7. Spatiotemporal temperature and density characterization of high-power atmospheric flashover discharges over inert poly(methyl methacrylate) and energetic pentaerythritol tetranitrate dielectric surfaces

    SciTech Connect

    Tang, V.; Grant, C. D.; McCarrick, J. F.; Zaug, J. M.; Glascoe, E. A.; Wang, H.

    2012-03-01

    A flashover arc source that delivered up to 200 mJ on the 100s-of-ns time-scale to the arc and a user-selected dielectric surface was characterized for studying high-explosive kinetics under plasma conditions. The flashover was driven over thin pentaerythritol tetranitrate (PETN) and poly(methyl methacrylate) (PMMA) dielectric films and the resultant plasma was characterized in detail. Time- and space-resolved temperatures and electron densities of the plasma were obtained using atomic emission spectroscopy. The hydrodynamics of the plasma was captured through fast, visible imaging. Fourier transform infrared spectroscopy (FTIR) was used to characterize the films pre- and post-shot for any chemical alterations. Time-resolved infrared spectroscopy (TRIR) provided PETN depletion data during the plasma discharge. For both types of films, temperatures of 1.6-1.7 eV and electron densities of {approx}7-8 x 10{sup 17}/cm{sup 3}{approx}570 ns after the start of the discharge were observed with temperatures of 0.6-0.7 eV persisting out to 15 {mu}s. At 1.2 {mu}s, spatial characterization showed flat temperature and density profiles of 1.1-1.3 eV and 2-2.8 x 10{sup 17}/cm{sup 3} for PETN and PMMA films, respectively. Images of the plasma showed an expanding hot kernel starting from radii of {approx}0.2 mm at {approx}50 ns and reaching {approx}1.1 mm at {approx}600 ns. The thin films ablated or reacted several hundred nm of material in response to the discharge. First TRIR data showing the in situ reaction or depletion of PETN in response to the flashover arc were successfully obtained, and a 2-{mu}s, 1/e decay constant was measured. Preliminary 1 D simulations compared reasonably well with the experimentally determined plasma radii and temperatures. These results complete the first steps to resolving arc-driven PETN reaction pathways and their associated kinetic rates using in situ spectroscopy techniques.

  8. Determination of the effective diffusivity of water in a poly (methyl methacrylate) membrane containing carbon nanotubes using kinetic Monte Carlo simulations

    SciTech Connect

    Mermigkis, Panagiotis G.; Tsalikis, Dimitrios G.; Mavrantzas, Vlasis G.

    2015-10-28

    A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrix and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, D{sub eff}, of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, D{sub eff} is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for D{sub eff} as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on D{sub eff} (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate

  9. Two new coordination polymers constructed by naphthalene-1,4-dicarboxylic acid and 2,4-diamino-6-methyl-triazine

    SciTech Connect

    Li, Yamin; Xiao, Changyu; Zhang, Xudong; Xu, Yanhui; Li, Junrui; Lun, Huijie; Chen, Qi

    2013-08-15

    Two new transition metal coordination complexes, ([MnO(nda)](H{sub 2}dmt)(H{sub 2}O)){sub n} (1), [Ag{sub 5}(nda){sub 2.5}(dmt)]{sub n} (2), (H{sub 2}nda=naphthalene-1,4-dicarboxylic acid, dmt=2,4-diamine-6-methyl-1,3,5-triazine) have been hydrothermally synthesized by the reactions of H{sub 2}nda and dmt with the homologous MnCl{sub 2}·4H{sub 2}O and AgNO{sub 3}, respectively, and characterized by single-crystal X-ray diffraction, IR spectra, elemental analysis, thermogravimetric analysis (TGA). The compound 1 exhibits a 3D network comprising 1D metal chain (MnO(CO{sub 2}){sub 2}){sub n} connected by the ligand nda{sup 2−}, featuring a four-connected uninodal diamond -like topology. In compound 2, it is firstly observed that decanuclear silver units as secondary building units to construct 3D network by the ligands dmt and nda{sup 2−}, with a rare 2-nodal (3,8)-connected tfz-d topology ((4{sup 3}){sub 2}(4{sup 6}.6{sup 18}.8{sup 4})). The interactions within each Mn(II)—Mn(II) pair of compound 1 are antiferromagnetic (g=2.07, J=−1.42(1) cm{sup −1}, zj′=−0.73(2) cm{sup −1}). In addition, compound 2 exhibits photoluminescent property at about 472 nm (λ{sub ex}=394 nm). - Graphical abstract: Two new transition metal coordination complexes 1–2 have been hydrothermally synthesized and characterized by single-crystal X-ray diffraction, IR spectra, elemental analysis thermogravimetric analysis (TGA). Highlights: • The compound 1 exhibits a 3D network with four-connected uninodal diamond-like topology. • The first 3D network of 2 with a rare tfz-d topology consists of decanuclear silver clusters as secondary building units. • The magnetic measurement indicates the compound 1 shows antiferromagnetic interactions. • The photoluminescent property of 2 has been measured.

  10. Location of MTBE and toluene in the channel system of the zeolite mordenite: Adsorption and host-guest interactions

    SciTech Connect

    Arletti, Rossella; Martucci, Annalisa; Alberti, Alberto; Pasti, Luisa; Nassi, Marianna; Bagatin, Roberto

    2012-10-15

    This paper reports a study of the location of Methyl Tertiary Butyl Ether (MTBE) and toluene molecules adsorbed in the pores of the organophylic zeolite mordenite from an aqueous solution. The presence of these organic molecules in the zeolite channels was revealed by structure refinement performed by the Rietveld method. About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the cavities of mordenite, representing 75% and 80% of the total absorption capacity of this zeolite. In both cases a water molecule was localized inside the side pocket of mordenite. The saturation capacity determined by the adsorption isotherms, obtained by batch experiments, and the weight loss given by thermogravimetric (TG) analyses were in very good agreement with these values. The interatomic distances obtained after the structural refinements suggest MTBE could be connected to the framework through a water molecule, while toluene could be bonded to framework oxygen atoms. The rapid and high adsorption of these hydrocarbons into the organophylic mordenite zeolite makes this cheap and environmental friendly material a suitable candidate for the removal of these pollutants from water. - graphical abstract: Location of MTBE (a) and toluene (b) in mordenite channels (projection along the [001] direction). Highlights: Black-Right-Pointing-Pointer We investigated the MTBE and toluene adsorption process into an organophilic zeolite mordenite. Black-Right-Pointing-Pointer The presence of MTBE and toluene in mordenite was determined by X-ray diffraction studies. Black-Right-Pointing-Pointer About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the zeolite cavities. Black-Right-Pointing-Pointer MTBE is connected to the framework through a water molecule. Black-Right-Pointing-Pointer Toluene is directly bonded to framework oxygen atoms.

  11. Fuel cycle evaluations of biomass-ethanol and reformulated gasoline. Volume 1

    SciTech Connect

    Tyson, K.S.

    1993-11-01

    The US Department of Energy (DOE) is using the total fuel cycle analysis (TFCA) methodology to evaluate energy choices. The National Energy Strategy (NES) identifies TFCA as a tool to describe and quantify the environmental, social, and economic costs and benefits associated with energy alternatives. A TFCA should quantify inputs and outputs, their impacts on society, and the value of those impacts that occur from each activity involved in producing and using fuels, cradle-to-grave. New fuels and energy technologies can be consistently evaluated and compared using TFCA, providing a sound basis for ranking policy options that expand the fuel choices available to consumers. This study is limited to creating an inventory of inputs and outputs for three transportation fuels: (1) reformulated gasoline (RFG) that meets the standards of the Clean Air Act Amendments of 1990 (CAAA) using methyl tertiary butyl ether (MTBE); (2) gasohol (E10), a mixture of 10% ethanol made from municipal solid waste (MSW) and 90% gasoline; and (3) E95, a mixture of 5% gasoline and 95% ethanol made from energy crops such as grasses and trees. The ethanol referred to in this study is produced from lignocellulosic material-trees, grass, and organic wastes -- called biomass. The biomass is converted to ethanol using an experimental technology described in more detail later. Corn-ethanol is not discussed in this report. This study is limited to estimating an inventory of inputs and outputs for each fuel cycle, similar to a mass balance study, for several reasons: (1) to manage the size of the project; (2) to provide the data required for others to conduct site-specific impact analysis on a case-by-case basis; (3) to reduce data requirements associated with projecting future environmental baselines and other variables that require an internally consistent scenario.

  12. Ethanol Demand in United States Production of Oxygenate-limited Gasoline

    SciTech Connect

    Hadder, G.R.

    2000-08-16

    Ethanol competes with methyl tertiary butyl ether (MTBE) to satisfy oxygen, octane, and volume requirements of certain gasolines. However, MTBE has water quality problems that may create significant market opportunities for ethanol. Oak Ridge National Laboratory (ORNL) has used its Refinery Yield Model to estimate ethanol demand in gasolines with restricted use of MTBE. Reduction of the use of MTBE would increase the costs of gasoline production and possibly reduce the gasoline output of U.S. refineries. The potential gasoline supply problems of an MTBE ban could be mitigated by allowing a modest 3 vol percent MTBE in all gasoline. In the U.S. East and Gulf Coast gasoline producing regions, the 3 vol percent MTBE option results in costs that are 40 percent less than an MTBE ban. In the U.S. Midwest gasoline producing region, with already high use of ethanol, an MTBE ban has minimal effect on ethanol demand unless gasoline producers in other regions bid away the local supply of ethanol. The ethanol/MTBE issue gained momentum in March 2000 when the Clinton Administration announced that it would ask Congress to amend the Clean Air Act to provide the authority to significantly reduce or eliminate the use of MTBE; to ensure that air quality gains are not diminished as MTBE use is reduced; and to replace the existing oxygenate requirement in the Clean Air Act with a renewable fuel standard for all gasoline. Premises for the ORNL study are consistent with the Administration announcement, and the ethanol demand curve estimates of this study can be used to evaluate the impact of the Administration principles and related policy initiatives.

  13. Sorbents for High Temperature Removal of Arsenic from Coal-Derived Synthesis Gas

    SciTech Connect

    Alptekin, G.O.; Copeland, R.; Dubovik, M.; Gershanovich, Y.

    2002-09-20

    Gasification technologies convert coal and other heavy feedstocks into synthesis gas feed streams that can be used in the production of a wide variety of chemicals, ranging from hydrogen through methanol, ammonia, acetic anhydride, dimethyl ether (DME), methyl tertiary butyl ether (MTBE), high molecular weight liquid hydrocarbons and waxes. Syngas can also be burned directly as a fuel in advanced power cycles to generate electricity with very high efficiency. However, the coal-derived synthesis gas contains a myriad of trace contaminants that may poison the catalysts that are used in the downstream manufacturing processes and may also be regulated in power plant emissions. Particularly, the catalysts used in the conversion of synthesis gas to methanol and other liquid fuels (Fischer-Tropsch liquids) have been found to be very sensitive to the low levels of poisons, especially arsenic, that are present in the synthesis gas from coal. TDA Research, Inc. (TDA) is developing an expendable high capacity, low-cost chemical absorbent to remove arsenic from coal-derived syngas. Unlike most of the commercially available sorbents that physically adsorb arsenic, TDA's sorbent operates at elevated temperatures and removes the arsenic through chemical reaction. The arsenic content in the coal gas stream is reduced to ppb levels with the sorbent by capturing and stabilizing the arsenic gas (As4) and arsenic hydrides (referred to as arsine, AsH3) in the solid state. To demonstrate the concept of high temperature arsenic removal from coal-derived syngas, we carried out bench-scale experiments to test the absorption capacity of a variety of sorbent formulations under representative conditions. Using on-line analysis techniques, we monitored the pre- and post-breakthrough arsine concentrations over different sorbent samples. Some of these samples exhibited pre-breakthrough arsine absorption capacity over 40% wt. (capacity is defined as lb of arsenic absorbed/lb of sorbent), while

  14. Graphene composite for improvement in the conversion efficiency of flexible poly 3-hexyl-thiophene:[6,6]-phenyl C{sub 71} butyric acid methyl ester polymer solar cells

    SciTech Connect

    Chauhan, A. K., E-mail: akchau@barc.gov.in, E-mail: akc.barc@gmail.com; Gusain, Abhay; Jha, P.; Koiry, S. P.; Saxena, Vibha; Veerender, P.; Aswal, D. K.; Gupta, S. K. [Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2014-03-31

    The solution of thin graphene-sheets obtained from a simple ultrasonic exfoliation process was found to chemically interact with [6,6]-phenyl C{sub 71} butyric acid methyl ester (PCBM) molecules. The thinner graphene-sheets have significantly altered the positions of highest occupied molecular orbital and lowest unoccupied molecular orbital of PCBM, which is beneficial for the enhancement of the open circuit voltage of the solar cells. Flexible bulk heterojunction solar cells fabricated using poly 3-hexylthiophene (P3HT):PCBM-graphene exhibited a power conversion efficiency of 2.51%, which is a ?2-fold increase as compared to those fabricated using P3HT:PCBM. Inclusion of graphene-sheets not only improved the open-circuit voltage but also enhanced the short-circuit current density owing to an improved electron transport.

  15. Mesoporous tertiary oxides via a novel amphiphilic approach

    SciTech Connect

    Bennett, Natasha; Hall, Simon R. E-mail: Annela.Seddon@bristol.ac.uk; Seddon, Annela M. E-mail: Annela.Seddon@bristol.ac.uk; Hallett, James E.; Kockelmann, Winfried; Ting, Valeska P.; Sadasivan, Sajanikumari; Tooze, Robert P.

    2016-01-01

    We report a facile biomimetic sol-gel synthesis using the sponge phase formed by the lipid monoolein as a structure-directing template, resulting in high phase purity, mesoporous dysprosium- and gadolinium titanates. The stability of monoolein in a 1,4-butanediol and water mixture complements the use of a simple sol-gel metal oxide synthesis route. By judicious control of the lipid/solvent concentration, the sponge phase of monoolein can be directly realised in the pyrochlore material, leading to a porous metal oxide network with an average pore diameter of 10 nm.

  16. Process for tertiary oil recovery using tall oil pitch

    DOEpatents

    Radke, Clayton J.

    1985-01-01

    Compositions and process employing same for enhancing the recovery of residual acid crudes, particularly heavy crudes, by injecting a composition comprising caustic in an amount sufficient to maintain a pH of at least about 11, preferably at least about 13, and a small but effective amount of a multivalent cation for inhibiting alkaline silica dissolution with the reservoir. Preferably a tall oil pitch soap is included and particularly for the heavy crudes a polymeric mobility control agent.

  17. Process for tertiary oil recovery using tall oil pitch

    DOEpatents

    Radke, C.J.

    1983-07-25

    A process and compositions for enhancing the recovery of acid crudes are disclosed. The process involves injecting caustic solutions into the reservoir to maintain a pH of 11 to 13. The fluid contains an effective amount of multivalent cation for inhibiting alkaline silica dissolution with the reservoir. A tall oil pitch soap is added as a polymeric mobility control agent. (DMC)

  18. A fragile X male with a broad smear on southern blot analysis representing 100-500 CGG repeats and no methylation at the EagI site of the FMR-1 gene

    SciTech Connect

    Lachiewicz, A.M.; Spiridigliozzi, G.A.; McConkie-Rosell, A.

    1996-08-09

    Fragile X DNA studies were carried out on all obligate carriers of a large fragile X family with 10 mentally retarded individuals. One 64-year-old carrier man with an altered FMR-1 allele was not described as being mentally retarded or as having any limitations in function. He was married, raised 8 children, and worked as an auto mechanic. On examination, he had macrocephaly and mild macroorchidism but few of the other typical physical findings of males with fragile X syndrome. His Full Scale IQ is 73, and his Vineland Adaptive Behavior Composite is 73. On the Woodcock-Johnson Psycho-Educational Battery-Revised, he achieved standard scores of 64 in Reading, 55 in Math, and 83 in Knowledge. His DNA findings showed a broad smear on Southern blot analysis of 100-500 CGG repeats and no methylation at the EagI site upstream of the FMR-1 protein coding region. His FMR-1 protein production is 12% of normal. His daughters all have large premutations, with somatic instability in the size of the CGG repeat lengths. They all have evidence of academic underachievement and 2 have physical characteristics frequently described in individuals with fragile X. 21 refs., 3 figs.

  19. The Dependence of Donor:Acceptor Ratio on the Photovoltaic Performances of Blended poly (3-octylthiophene-2,5-diyl) and (6,6)-phenyl C{sub 71} butyric acid methyl ester Bulk Heterojunction Organic Solar Cells

    SciTech Connect

    Fauzia, Vivi; Umar, Akrajas Ali; Salleh, Muhamad Mat; Yahya, Muhammad

    2010-10-24

    Bulk heterojunction organic solar cells using blended poly (3-octylthiophene-2,5-diyl)(P3OT) and (6,6)-phenyl C{sub 71} butyric acid methyl ester (PC{sub 71}BM) have been fabricated. P3OT and PC{sub 71}BM were used as the electron donor (D) and acceptor (A), respectively. Both materials were mixed and dissolved in dichlorobenzene with three different D:A ratios i.e. 1:3, 1:1 and 3:1 (weight) while maintained at the concentration of 2 wt%(26 mg/ml). The blended thin films were sandwiched between the indium tin oxide (ITO) coated glass and the aluminum film. This paper reports the influence of donor:acceptor ratio on the performance of solar cell devices measured by current-voltage measurement both in the dark and under 1.5 AM solar illumination. It was found that all devices showed the photovoltaic effect with poor diode behavior and the donor:acceptor ratio significantly influenced on the performance of bulk heterojunction organic solar cells.

  20. Physicochemical properties and toxicities of hydrophobicpiperidinium and pyrrolidinium ionic liquids

    SciTech Connect

    Salminen, Justin; Papaiconomou, Nicolas; Kumar, R. Anand; Lee,Jong-Min; Kerr, John; Newman, John; Prausnitz, John M.

    2007-06-25

    Some properties are reported for hydrophobic ionic liquids (IL) containing 1-methyl-1-propyl pyrrolidinium [MPPyrro]{sup +}, 1-methyl-1-butyl pyrrolidinium [MBPyrro]{sup +}, 1-methyl-1-propyl piperidinium [MPPip]{sup +}, 1-methyl-1-butyl piperidinium [MBPip]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPyrro]{sup +} and 1-methyl-1-octylpiperidinium [MOPip]{sup +} cations. These liquids provide new alternatives to pyridinium and imidazolium ILs. High thermal stability of an ionic liquid increases safety in applications like rechargeable lithium-ion batteries and other electrochemical devices. Thermal properties, ionic conductivities, viscosities, and mutual solubilities with water are reported. In addition, toxicities of selected ionic liquids have been measured using a human cancer cell-line. The ILs studied here are sparingly soluble in water but hygroscopic. We show some structure-property relationships that may help to design green solvents for specific applications. While ionic liquids are claimed to be environmentally-benign solvents, as yet few data have been published to support these claims.

  1. Reactive formulations for a neutralization of toxic industrial chemicals

    DOEpatents

    Tucker, Mark D.; Betty, Rita G.

    2006-10-24

    Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.

  2. Electron Solvation Dynamics and Reactivity in Ionic Liquids Observed by Picosecond RadiolysisTechniques

    SciTech Connect

    Wishart J. F.; Funston, A.M.; Szreder, T.; Cook, A.R.; Gohdo, M.

    2012-01-01

    On time scales of a nanosecond or less, radiolytically-generated excess electrons in ionic liquids undergo solvation processes and reactions that determine all subsequent chemistry and the accumulation of radiolytic damage. Using picosecond pulse radiolysis detection methods, we observed and quantified the solvation response of the electron in 1-methyl-1-butyl-pyrrolidinium bis(trifluoromethylsulfonyl)amide and used it to understand electron scavenging by a typical solute, duroquinone.

  3. Dehydrogenation links LPG to more octanes

    SciTech Connect

    Gussow, S.; Spence, D.C.; White, E.A.

    1980-01-01

    Air Products and Chemicals Inc.'s Houdry Catofin process, a new application of well-known Houdry catalytic dehydrogenation technology, is an adiabatic, fixed-bed, multireactor catalytic process which produces propylene, isobutylene, and mixed n-butylenes by dehydrogenation of the corresponding saturates. The process is very flexible in that propylene, isobutylene, and mixed n-butylenes can be produced either separately or simultaneously from the corresponding saturates. The process will be used to prepare purity propylene at a Morelos, Mex., plant, which is now in the engineering stage. Five variations of the procedure for producing propylene; methyl tert.-butyl ether; propylene and alkylate; methyl tert.-butyl ether and alkylate; and methyl tert.-butyl ether, alkylate, and 1-butylene are compared with respect to typical product yields, costs and values for process economics, the dehydrogenation route to the three products, manufacturing costs, the sensitivity of return on investment to feedstock costs, and the return on investment, which varies from a low of 11.5% for the third case to a high of 14.4% for the fourth case. The Catofin process is discussed.

  4. METHYL CYANIDE OBSERVATIONS TOWARD MASSIVE PROTOSTARS

    SciTech Connect

    Rosero, V.; Hofner, P.; Kurtz, S.; Bieging, J.; Araya, E. D.

    2013-07-01

    We report the results of a survey in the CH{sub 3}CN J = 12 {yields} 11 transition toward a sample of massive proto-stellar candidates. The observations were carried out with the 10 m Submillimeter Telescope on Mount Graham, AZ. We detected this molecular line in 9 out of 21 observed sources. In six cases this is the first detection of this transition. We also obtained full beam sampled cross-scans for five sources which show that the lower K-components can be extended on the arcminute angular scale. The higher K-components, however, are always found to be compact with respect to our 36'' beam. A Boltzmann population diagram analysis of the central spectra indicates CH{sub 3}CN column densities of about 10{sup 14} cm{sup -2}, and rotational temperatures above 50 K, which confirms these sources as hot molecular cores. Independent fits to line velocity and width for the individual K-components resulted in the detection of an increasing blueshift with increasing line excitation for four sources. Comparison with mid-infrared (mid-IR) images from the SPITZER GLIMPSE/IRAC archive for six sources show that the CH{sub 3}CN emission is generally coincident with a bright mid-IR source. Our data clearly show that the CH{sub 3}CN J = 12 {yields} 11 transition is a good probe of the hot molecular gas near massive protostars, and provide the basis for future interferometric studies.

  5. Phytoremediation of Ionic and Methyl Mercury Pollution

    SciTech Connect

    Meagher, Richard B.

    2004-12-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems.

  6. Phytoremediation of Ionic and Methyl Mercury Pollution

    SciTech Connect

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to control the chemical speciation, electrochemical state, transport, and aboveground binding of mercury in order to manage this toxicant.

  7. Glossary - U.S. Energy Information Administration (EIA)

    Energy Information Administration (EIA) (indexed site)

    petroleum Alcohol: The family name of a group of organic chemical compounds composed of carbon, hydrogen, and oxygen. The series of molecules vary in chain length and are composed of a hydrocarbon plus a hydroxyl group; CH(3)-(CH(2))n-OH (e.g., methanol, ethanol, and tertiary butyl alcohol). Alkylate: The product of an alkylation reaction. It usually refers to the high-octane product from alkylation units. This alkylate is used in blending high octane gasoline. Alkylation: A refining process for

  8. Weekly Petroleum Status Report

    Energy Information Administration (EIA) (indexed site)

    5 Alcohol. The family name of a group of organic chemical compounds composed of carbon, hydrogen, and oxygen. The series of molecules vary in chain length and are composed of a hydrocarbon plus a hydroxyl group; CH3-(CH2)n-OH (e.g., methanol, ethanol, and tertiary butyl alcohol). Alkylate. The product of an alkylation reaction. It usually refers to the high octane product from alkylation units. This alkylate is used in blending high octane gasoline. Alkylation. A refning process for chemically

  9. Deetherification process

    DOEpatents

    Smith, Jr., Lawrence A.

    1985-01-01

    Ethers such as isobutyl tertiary butyl ether are dissociated into their component alcohols and isolefins by heat stabilized catalyst compositions prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  10. Petroleum Supply Monthly

    Energy Information Administration (EIA) (indexed site)

    7 August 2016 Alcohol. The family name of a group of organic chemical compounds composed of carbon, hydrogen, and oxygen. The series of molecules vary in chain length and are composed of a hydrocarbon plus a hydroxyl group; CH3-(CH2)n-OH (e.g., methanol, ethanol, and tertiary butyl alcohol). Alkylate. The product of an alkylation reaction. It usually refers to the high octane product from alkylation units. This alkylate is used in blending high octane gasoline. Alkylation. A refning process for

  11. Deetherification process

    DOEpatents

    Smith, L.A. Jr.

    1985-11-05

    Ethers such as isobutyl tertiary butyl ether are dissociated into their component alcohols and isoolefins by heat stabilized catalyst compositions prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  12. THE SEARCH FOR A COMPLEX MOLECULE IN A SELECTED HOT CORE REGION: A RIGOROUS ATTEMPT TO CONFIRM TRANS-ETHYL METHYL ETHER TOWARD W51 e1/e2

    SciTech Connect

    Carroll, P. Brandon; McGuire, Brett A.; Blake, Geoffrey A.; Apponi, A. J.; Ziurys, L. M.; Remijan, Anthony

    2015-01-20

    An extensive search has been conducted to confirm transitions of trans-ethyl methyl ether (tEME, C{sub 2}H{sub 5}OCH{sub 3}), toward the high-mass star forming region W51 e1/e2 using the 12 m Telescope of the Arizona Radio Observatory at wavelengths from 2 mm and 3 mm. In short, we cannot confirm the detection of tEME toward W51 e1/e2 and our results call into question the initial identification of this species by Fuchs et al. Additionally, re-evaluation of the data from the original detection indicates that tEME is not present toward W51 e1/e2 in the abundance reported by Fuchs and colleagues. Typical peak-to-peak noise levels for the present observations of W51 e1/e2 were between 10 and 30 mK, yielding an upper limit of the tEME column density of ≤1.5 × 10{sup 15} cm{sup –2}. This would make tEME at least a factor of two times less abundant than dimethyl ether (CH{sub 3}OCH{sub 3}) toward W51 e1/e2. We also performed an extensive search for this species toward the high-mass star forming region Sgr B2(N-LMH) with the National Radio Astronomy Observatory 100 m Green Bank Telescope. No transitions of tEME were detected and we were able to set an upper limit to the tEME column density of ≤4 × 10{sup 14} cm{sup –2} toward this source. Thus, we are able to show that tEME is not a new molecular component of the interstellar medium and that an exacting assessment must be carried out when assigning transitions of new molecular species to astronomical spectra to support the identification of large organic interstellar molecules.

  13. ICAM-1 and AMPK regulate cell detachment and apoptosis by N-methyl-N Prime -nitro-N-nitrosoguanidine, a widely spread environmental chemical, in human hormone-refractory prostate cancers

    SciTech Connect

    Chen, Yi-Cheng; Lu, Pin-Hsuan; Hsu, Jui-Ling; Yu, Chia-Chun; Guh, Jih-Hwa

    2011-12-15

    Poly(ADP-ribose) polymerase-1 (PARP-1), a sensor of DNA damage, plays a crucial role in the regulation of DNA repair. PARP-1 hyperactivation causes DNA damage and cell death. The underlying mechanism is complicated and is through diverse pathways. The understanding of responsible signaling pathways may offer implications for effective therapies. After concentration-response determination of N-Methyl-N Prime -Nitro-N-Nitrosoguanidine (MNNG, a PARP-1 activating agent and an environmental mutagen) in human hormone-refractory prostate cancers, the data showed that concentrations below 5 {mu}M did not change cell survival but cause a time-dependent up-regulation of intracellular adhesion molecule-1 (ICAM-1) in mRNA, total protein and cell surface levels. Detection of phosphorylation and degradation of I{kappa}B-{alpha} and nuclear translocation of NF-{kappa}B showed that MNNG induced the activation of NF-{kappa}B that was responsible for the ICAM-1 up-regulation since PDTC (a NF-{kappa}B inhibitor) significantly abolished this effect. However, higher concentrations (e.g., 10 {mu}M) of MNNG induced a 61% detachment of the cells which were apoptosis associated with the activation of AMP-activated protein kinase (AMPK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Further identification showed that both AMPK and JNK other than p38 MAPK functionally contributed to cell death. The remaining 39% attached cells were survival associated with high ICAM-1 expression. In conclusion, the data suggest that NF-{kappa}B-dependent up-regulation of ICAM-1 plays a key role on cell attachment and survival; whereas, activation of AMPK and JNK participates in cytotoxic signaling pathways in detached cells caused by PARP-1 activation. Highlights: Black-Right-Pointing-Pointer Low level of DNA damage helps cell attachment and survival via ICAM-1 upregulation. Black-Right-Pointing-Pointer High level of DNA damage causes AMPK- and JNK-involved cell detachment

  14. Extraction of rare earth oxides using supercritical carbon dioxide modified with Tri-n-butyl phosphate–nitric acid adducts

    DOE PAGES [OSTI]

    Baek, Donna L.; Fox, Robert V.; Case, Mary E.; Sinclair, Laura K.; Schmidt, Alex B.; McIlwain, Patrick R.; Mincher, Bruce J.; Wai, Chien M.

    2016-06-14

    A new tri-n-butylphosphate–nitric acid (TBP–HNO3) adduct was prepared by combining TBP and fuming (90%) HNO3. The adduct was characterized, and its phase-equilibrium behavior in supercritical carbon dioxide is reported. Supercritical carbon dioxide (sc-CO2) was modified with this new adduct [TBP(HNO3)5.2(H2O)1.7], and the extraction efficacies of selected rare earth oxides (Y, Ce, Eu, Tb, and Dy) at 338 K and 34.5 MPa were compared with those obtained using an adduct formed from concentrated (70%) HNO3 and TBP [TBP(HNO3)1.7(H2O)0.6]. All rare earth oxides tested with both adduct species could be extracted with the exception of cerium oxide. Furthermore, the water and acidmore » concentrations in the different adducts were found to play a significant role in rare earth oxide extraction efficiency.« less

  15. Development of candidate chemical simulant list: the evaluation of candidate chemical simulants which may be used in chemically hazardous operations. Final report 15 Jun-15 Dec 82

    SciTech Connect

    Not Available

    1982-12-01

    The objectives of this task were threefold: (1) to provide additional data for the proposed candidate simulates dipentene, methyl benzoate and benzyl alcohol by means of in-depth literature searches encompassing both computerized data bases and a manual search of the older literature; (2) to fully evaluate twelve possible candidate simulants under more flexible simulant criteria; and (3) to develop a list of candidate simulants in the low and non-volatile categories. Computerized literature searches were conducted for the twelve possible candidate simulants under more flexible intake simulant criteria as well as for dimethyl methylphosphonate, a compound selected for evaluation by the USAF. The twelve possible candidates included: cyclohexanone, n-dodecanethiol, methyl salicylate, dihexyl ether, dypnone, n-aminopropyl morpholine, n-(2-hydroxyethyl) morpholine, butyl salicylate, di(2-ethyl hexyl) ether, 2-undecanol, 2-hydroxyethyl-n-octyl sulfide and n,n-diethyl-m-toluamide. Full assessments of the potential health hazards associated with exposure to n-dodecanethiol, methyl salicylate, butyl salicylate and n,n-diethyl-m-toluamide were completed. All of these compounds meet the majority of USAF criteria for candidate simulants. Cyclohexanone was disqualified for reasons of toxicity, while the available toxicological data for the seven remaining candidates were considered inadequate for full assessment of hazard.

  16. Property:CapRockAge | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Amedee Geothermal Area + Tertiary + B Beowawe Hot Springs Geothermal Area + Tertiary + Brady Hot Springs Geothermal Area + Tertiary + D Desert Peak Geothermal Area + Tertiary + G...

  17. Method for measuring surface temperature

    DOEpatents

    Baker, Gary A.; Baker, Sheila N.; McCleskey, T. Mark

    2009-07-28

    The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  18. CASTING SLIPS FOR FABRICATION OF REFRACTORY METAL WARE

    DOEpatents

    Stoddard, S.D.; Nuckolls, D.E.; Cowan, R.E.

    1962-09-01

    A composition is given for slip casting tungsten metal. The composition consists essentially of tungsten metal with an average particle size of 0.9 micron, an organic vehicle such as methyl chloroform, o-xylene, n-butyl acetate, isobutyl acetate, and 1, 1, 2, 2-tetrachlorethane, and a suspending agent such as ethyl cellulose, with the approximate ratio of said vehicle to the tungsten metal being 12 cc of a solution containing from 5 to about 20 grams of said ethyl cellulose in 400 cc of said organic vehicle per 100 grams of metal. (AEC)

  19. Testing of a model to estimate vapor concentration of various organic chemicals. Master's thesis

    SciTech Connect

    Bakalyar, S.M.

    1990-01-01

    A model developed by Dr. Parker C. Reist to predict the build-up and decay rates of vapor concentrations following a chemical spill and clean-up was tested. The chemicals tested were: acetone, butyl acetate, ethyl acetate, hexane, methylene chloride, methyl ethyl ketone, and toluene. The evaporation rates of these chemicals were determined both by prediction, using a model developed by I. Kawamura and D. Mackay, and empirically and these rates were used in the Reist model. Chamber experiments were done to measure actual building-up and decay of vapor concentrations for simulated spills and simulated clean-up.

  20. An example of regioselective esterification by intramolecular acyl transfer from a tertiary amine

    SciTech Connect

    Waddell, T.G.; Rambalakos, T.; Christie, K.R. )

    1990-07-20

    Despite the fact that the famous antimarlarial quinine (1) has been known for 170 years, there is still considerable interest in its chemical and biological properties. Much of the most recent attention is due to the utility of quinine as a chiral resolving agent and catalyst. Important and new chemistry of quinine may yet be discovered. To this point, the authors became interested in constructing quinine derivatives which have built into their structures electrophilic centers which might make covalent bonds with cellular protein or nucleic acid nucleophilic sites. In order to preserve the noncovalent binding properties of quinine, functionalization and derivatization of the remote vinyl group were desired. In an esterification step of the derivatization, a structurally hindered ester was formed, to our surprise. The mechanism for this regioselective reaction are discussed.

  1. Tertiary nitrogen heterocyclic material to reduce moisture-induced damage in asphalt-aggregate mixtures

    DOEpatents

    Plancher, Henry; Petersen, Joseph C.

    1982-01-01

    Asphalt-aggregate roads crack when subjected to freezing and thawing cycles. Herein, the useful life of asphalts are substantially improved by a minor amount of a moisture damage inhibiting agent selected from compounds having a pyridine moiety, including acid salts of such compounds. A shale oil fraction may serve as the source of the improving agent and may simply be blended with conventional petroleum asphalts.

  2. Well log and seismic character of tertiary terumbu carbonate, South China Sea, Indonesia

    SciTech Connect

    May, J.A.

    1985-09-01

    The Esso Exploration and Production Inc. Natuna DAlpha block lies approximately 125 mi (200 km) northeast of Natuna Island in the Indonesian portion of the South China Sea. The block contains a large Miocene platform carbonate complex called the L-structure. The Terumbu Formation L-structure, situated in front of and isolated from a much larger carbonate shelf, is similar to the carbonate atolls developed in front of the barrier-reef complex offshore of Belize. The lower platform and upper platform have a similar log character. The detrital facies is composed of fore-reef talus, pelagic, and hemipelagic carbonates. By mapping the Terumbu carbonate facies, the growth history of the L-structure is revealed.

  3. Ionic liquid-assisted sonochemical preparation of CeO2 nanoparticles for CO oxidation

    DOE PAGES [OSTI]

    Alammar, Tarek; Noei, Heshmat; Wang, Yuemin; Grünert, Wolfgang; Mudring, Anja -Verena

    2014-10-10

    CeO2 nanoparticles were synthesized via a one-step ultrasound synthesis in different kinds of ionic liquids based on bis(trifluoromethanesulfonylamide, [Tf2N]–, in combination with various cations including 1-butyl-3-methylimidazolium ([C4mim]+), 1-ethyl-2,3-dimethylimidazolium ([Edimim]+), butyl-pyridinium([Py4]+), 1-butyl-1-methyl-pyrrolidinium ([Pyrr14]+), and 2-hydroxyethyl-trimethylammonium ([N1112OH]+). Depending on synthetic parameters, such as ionic liquid, Ce(IV) precursor, heating method, and precipitator, formed ceria exhibits different morphologies, varying from nanospheres, nanorods, nanoribbons, and nanoflowers. The morphology, crystallinity, and chemical composition of the obtained materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and N2 adsorption. The structural and electronic propertiesmore » of the as-prepared CeO2 samples were probed by CO adsorption using IR spectroscopy under ultrahigh vacuum conditions. The catalytic activities of CeO2 nanoparticles were investigated in the oxidation of CO. CeO2 nanospheres obtained sonochemically in [C4mim][Tf2N] exhibit the best performance for low-temperature CO oxidation. As a result, the superior catalytic performance of this material can be related to its mesoporous structure, small particle size, large surface area, and high number of surface oxygen vacancy sites.« less

  4. Ozone-forming potential of a series of oxygenated organic compounds

    SciTech Connect

    Japar, S.M.; Wallington, T.J.; Rudy, S.J.; Chang, Tai Y. )

    1991-03-01

    An incremental reactivity approach has been used to assess the relative ozone-forming potentials of various important oxygenated fuels/fuel additives, i.e., tert-butyl alcohol (TBA), dimethyl ether (DME), diethyl ether (DEE), methyl tert-butyl ether (MTBE), and ethyl tert-butyl ether (ETBE), in a variety of environments. Calculations were performed using a single-cell trajectory model, combined with the Lurmann-Carter-Coyner chemical mechanism, with (NMOC)/(NO{sub x}) ratios ranging from 4 to 20. This work provides the first quantitative assessment of the air quality impact of release of these important oxygenated compounds. ETBE and DEE are the two most reactive compounds on a per carbon equivalent basis, while TBA is the least reactive species. At a (NMOC)/(NO{sub x}) ratio of 8, which is generally typical of polluted urban areas in the United States, TBA, DME, MTBE, and ETBE all have incremental reactivities less than or equal to that of the urban NMHC mix. Thus, use of these additives in fuels may have a beneficial impact on urban ozone levels.

  5. A roadmap to uranium ionic liquids: Anti-crystal engineering

    DOE PAGES [OSTI]

    Yaprak, Damla; Spielberg, Eike T.; Bäcker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja -Verena

    2014-04-15

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO22+ unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim tomore » establish structure–property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. As a result, these materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery.« less

  6. Synthesis of 6-Methyl-9-propyldibenzothiophene-4-ol

    SciTech Connect

    Eisenbraun, E.J.

    1991-02-15

    The synthesis route for preparing the title compound, has been carried out on a small scale for the preparation of a mixture of isomers. Alternative routes for the cyclization are being explored. (DLC)

  7. Total and methyl mercury in selected Great Lakes tributaries

    SciTech Connect

    Hurley, J.P.; Cowell, S.E.; Shafer, M.M.

    1995-12-31

    Eleven Lake Michigan tributaries were chosen to investigate the effects of chemical and physical conditions in rivers on mercury partitioning and transport. Preliminary results from 1994 indicate that mean unfiltered Hg{sub T} ranged from about 1-2 ng L{sup -1} in the Manistique and Muskegon R. to 10-30 ng L{sup -1} in the St. Joseph and Fox R. Highest Hg{sub T} fluxes were generally associated with increased particle loads. Preliminary estimates from a subset of Lake Michigan tributaries also suggest that methylmercury loading from riverine inputs may be important. Additional work on 19 Lake Superior tributaries in Spring 1993 reveal that MeHg and DOC are correlated. Results from these tributaries are consistent with our {open_quotes}Background Trace Metals in Wisconsin Rivers{close_quotes} study, where greater yields of Hg{sub T} were observed with increased particle loading and elevated MeHg yields were observed from watersheds with significant forest and wetland regions.

  8. Substantial improvements in methyl ketone production in E. coli...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 26; Journal Issue: C; Journal ID: ISSN 1096-7176 Publisher: Elsevier Sponsoring Org: USDOE Office of Science (SC), Biological and ...

  9. Lithium Methyl Carbonate as a Reaction Product of Metallic Lithiumand...

    Office of Scientific and Technical Information (OSTI)

    Visit OSTI to utilize additional information resources in energy science and technology. A ... Sponsoring Org: USDOE. Assistant Secretary for Energy Efficiency andRenewable Energy. ...

  10. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Related Information: Issue Date: December 2, 2013 Research Org: National Renewable Energy Laboratory (NREL), Golden, CO. Sponsoring Org: USDOE Office of Energy ...

  11. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Storage of samples should ideally be in an inert (nitrogen) atmosphere and at least at -20C. 10. Procedure 10.1 Preparation of the samples for transesterification 10.1.1 Label ...

  12. Synthesis and crystal structure studies of ethyl 5-methyl-1,...

    Office of Scientific and Technical Information (OSTI)

    investigated by single crystal X-ray diffraction method. It crystallizes in monoclinic class under the space group P2sub 1c with cell parameters a 8.4593(4) , b15.6284(6)...

  13. EPA`s proposed renewable oxygenate requirement (ROR): Pros and cons

    SciTech Connect

    Czeskleba, H.M.

    1995-12-31

    In December 1993, the US Environmental Protection Agency (EPA) released its final rule that sets for the details for requirements to sell reformulated gasoline (RFG) in certain ozone non-attainment areas. At the same time, EPA also issued a proposed rule to require that 30% of the oxygen required in RFG be based on a renewable oxygenate. Renewables include ethanol and its ether derivatives such as ethyl tertiary butyl ether (ETBE). The RFG rule is a final rule, while the Renewable Oxygenate Requirement (ROR) rule is a proposed rule yet to be finalized and subject to revision. Included in this paper are brief reviews of Ashland petroleum Company`s ethanol usage, oxygenated fuel and reformulated gasoline blending economics, and some comments on the EPA proposed renewable oxygenate requirement.

  14. Radiation chemistry of alternative fuel oxygenates -- Substituted ethers

    SciTech Connect

    Mezyk, S. P.; Cooper, W. J.; Bartels, D. M.; Tobien, T.; O'Shea, K. E.

    1999-11-15

    The electron beam process, an advanced oxidation and reduction technology, is based in the field of radiation chemistry. Fundamental to the development of treatment processes is an understanding of the underlying chemistry. The authors have previously evaluated the bimolecular rate constants for the reactions of methyl tert-butyl ether (MTBE) and with this study have extended their studies to include ethyl tert-butyl ether (ETBE), di-isopropyl ether (DIPE) and tert-amyl methyl ether (TAME) with the hydroxyl radical, hydrogen atom and solvated electron using pulse radiolysis. For all of the oxygenates the reaction with the hydroxyl radical appears to be of primary interest in the destruction of the compounds in water. The rates with the solvated electron are limiting values as the rates appear to be relatively low. The hydrogen atom rate constants are relatively low, coupled with the low yield in radiolysis, they concluded that these are of little significance in the destruction of the alternative fuel oxygenates (and MTBE).

  15. Process for producing high purity isoolefins and dimers thereof by dissociation of ethers

    DOEpatents

    Smith, Jr., Lawrence A.; Jones, Jr., Edward M.; Hearn, Dennis

    1984-01-01

    Alkyl tertiary butyl ether or alkyl tertiary amyl ether is dissociated by vapor phase contact with a cation acidic exchange resin at temperatures in the range of 150.degree. to 250.degree. F. at LHSV of 0.1 to 20 to produce a stream consisting of unreacted ether, isobutene or isoamylene and an alcohol corresponding to the alkyl radical. After the alcohol is removed, the ether/isoolefin stream may be fractionated to obtain a high purity isoolefin (99+%) or the ether/isoolefin stream can be contacted in liquid phase with a cation acidic exchange resin to selectively dimerize the isoolefin in a highly exothermic reaction, followed by fractionation of the dimerization product to produce high purity diisoolefin (97+%). In the case where the alkyl is C.sub.3 to C.sub.6 and the corresponding alcohol is produced on dissociation of the ether, combined dissociation-distillation may be carried out such that isoolefin is the overhead product and alcohol the bottom.

  16. Process for producing high purity isoolefins and dimers thereof by dissociation of ethers

    DOEpatents

    Smith, L.A. Jr.; Jones, E.M. Jr.; Hearn, D.

    1984-05-08

    Alkyl tertiary butyl ether or alkyl tertiary amyl ether is dissociated by vapor phase contact with a cation acidic exchange resin at temperatures in the range of 150 to 250 F at LHSV of 0.1 to 20 to produce a stream consisting of unreacted ether, isobutene or isoamylene and an alcohol corresponding to the alkyl radical. After the alcohol is removed, the ether/isoolefin stream may be fractionated to obtain a high purity isoolefin (99+%) or the ether/isoolefin stream can be contacted in liquid phase with a cation acidic exchange resin to selectively dimerize the isoolefin in a highly exothermic reaction, followed by fractionation of the dimerization product to produce high purity diisoolefin (97+%). In the case where the alkyl is C[sub 3] to C[sub 6] and the corresponding alcohol is produced on dissociation of the ether, combined dissociation-distillation may be carried out such that isoolefin is the overhead product and alcohol the bottom. 2 figs.

  17. Functionalization of benzylic carbon-hydrogen bonds. Mechanism and scope of the catalytic synthesis of indoles with [Ru(dmpe)[sub 2

    SciTech Connect

    Hsu, G.C.; Kosar, W.P.; Jones, W.D. )

    1994-01-01

    A unique route for the synthesis of indoles from o-tolyl isocyanides using Ru(dmpe)[sub 2](H)-(naphthyl) and Ru(dmpe)[sub 2]H[sub 2] as catalysts has been examined. The scope of this method for indole preparation has been examined with a variety of o-tolyl isocyanides, including 3-, 4-, and 5-R-o-tolyl isocyanides (where R = methyl, methoxy, or fluoro), 2,6-xylyl isocyanide, 2,6-diethylphenyl isocyanide, 2-ethylphenyl isocyanide, o-tolyl isocyanide, and 6-ethyl-o-tolyl isocyanide. The mechanism of indole formation has been investigated using kinetic and isotope effect experiments to differentiate key product-determining steps of the cycle. Results are consistent with a mechanism involving irreversible CNR coordination prior to intramolecular oxidative addition of the o-methyl C-H bond. Competitive isotope effect studies using d[sub 0]- and [alpha],[alpha],[alpha],[alpha]',[alpha]',[alpha]', 3, 5-d[sub 8]-labeled 4-tert-butyl-2,6-xylyl isocyanides indicate virtually no isotope effect (k[sub H]/k[sub D] = 1.08) when the selection of which bond to active is intermolecular. Use of 4-tert-butyl-2,6-xylyl-[alpha],[alpha],[alpha]-d[sub 8] isocyanide shows that C-H activation is faster than C-D activation (k[sub H]/k[sub D] = 2.6) in an intramolecular competition, where the choice of C-H and C-D bonds to activate is within one xylyl isocyanide. The reaction with 2,6-diethylphenyl isocyanide to give 3-methyl-7-ethylindole is first order in [Ru(dmpe)[sub 2](H)(naphthyl)] and zero order in [CNR]. 27 refs., 5 figs., 3 tabs.

  18. pH-sensitive methacrylic copolymer gels and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-05-15

    The present invention provides novel gel forming methacrylic blocking copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol)methyl ether polymer. The polymers may be used for drug and gene delivery, protein separation, as structural supplements, and more.

  19. Injectible bodily prosthetics employing methacrylic copolymer gels

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  20. Volume and accessibility of entrained (solution) methane in deep geopressured reservoirs - tertiary formations of the Texas Gulf Coast. Final report

    SciTech Connect

    Gregory, A.R.; Dodge, M.M.; Posey, J.S.; Morton, R.A.

    1980-10-01

    The objective of this project was to appraise the total volume of in-place methane dissolved in formation waters of deep sandstone reservoirs of the onshore Texas Gulf Coast within the stratigraphic section extending from the base of significant hydrocarbon production (8000 ft)* to the deepest significant sandstone occurrence. The area of investigation is about 50,000 mi/sup 2/. Factors that determine the total methane resource are reservoir bulk volume, porosity, and methane solubility; the latter is controlled by the temperature, pressure, and salinity of formation waters. Regional assessment of the volume and the distribution of potential sandstone reservoirs was made from a data base of 880 electrical well logs, from which a grid of 24 dip cross sections and 4 strike cross sections was constructed. Solution methane content in each of nine formations or divisions of formations was determined for each subdivision. The distribution of solution methane in the Gulf Coast was described on the basis of five reservoir models. Each model was characterized by depositional environment, reservoir continuity, porosity, permeability, and methane solubility.

  1. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect

    Allison, M. Lee; Chidsey, Jr., Thomas

    1999-11-03

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million bbl of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO-) flood 2 project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  2. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect

    Chidsey Jr., Thomas C.

    2003-02-06

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  3. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah.

    SciTech Connect

    Chidsey, T.C. Jr.; Lorenz, D.M.; Culham, W.E.

    1997-10-15

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide- (CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  4. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    SciTech Connect

    Thomas C. Chidsey, Jr.

    2002-11-01

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which exhibits a characteristic set of reservoir properties obtained from outcrop analogs, cores, and geophysical logs. The Anasazi and Runway fields were selected for geostatistical modeling and reservoir compositional simulations. Models and simulations incorporated variations in carbonate lithotypes, porosity, and permeability to accurately predict reservoir responses. History matches tied previous production and reservoir pressure histories so that future reservoir performances could be confidently predicted. The simulation studies showed that despite most of the production being from the mound-core intervals, there were no corresponding decreases in the oil in place in these intervals. This behavior indicates gravity drainage of oil from the supra-mound intervals into the lower mound-core intervals from which the producing wells' major share of production arises. The key to increasing ultimate recovery from these fields (and similar fields in the basin) is to design either waterflood or CO{sub 2}-miscible flood projects capable of forcing oil from high-storage-capacity but low-recovery supra-mound units into the high-recovery mound-core units. Simulation of Anasazi field shows that a CO{sub 2} flood is technically superior to a waterflood and economically feasible. For Anasazi field, an optimized CO{sub 2} flood is predicted to recover a total 4.21 million barrels (0.67 million m3) of oil representing in excess of 89 percent of the original oil in place. For Runway field, the best CO{sub 2} flood is predicted to recover a total of 2.4 million barrels (0.38 million m3) of oil representing 71 percent of the original oil in place. If the CO{sub 2} flood performed as predicted, it is a financially robust process for increasing the reserves in the many small fields in the Paradox Basin. The results can be applied to other fields in the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent.

  5. Geochemical reconnaissance for uranium in middle tertiary ash-flow tuffs of the Morey Peak Quadrangle, northern Nye County, Nevada

    SciTech Connect

    Evans, K.C.

    1981-01-01

    Rock and water samples were collected from the Morey Peak 15' quadrangle in the northern Hot Creek Range, Nye County, Nevada. The water was analyzed for trace element content. The rock samples were analyzed for oxide composition, selected trace element composition, and K-U-Th content. Water sampled from springs, hot springs, and creeks had temperatures ranging between 8 and 60/sup 0/C, conductance between 100 and 1800 mhos, pH between 5.4 and 8.7, and Eh between -106 and -301 mv. Factor analysis of the sample set reveals a U-Li-Se association and also identifies oxidized galena in solution. This analysis suggests that water need only be analyzed for copper, lithium, selenium, uranium, and vanadium in an uranium exploration program. Oxide analyses of these samples show gross similarities to other volcanic suites in central Nevada. Correlation coefficients indicate that in this area uranium is independent of any of the tested variables. Factor analyses suggest that there is an association between beryllium and uranium, arsenic and uranium, and selenium and uranium. The K-U-Th analyses yielded a wide variance of measurements. Potassium content ranges between 0 and 7.66%, thorium between 0 and 39.09 ppM, and uranium between 0.04 and 1744 ppM. Disequilibrium plots suggest that the mineralization present in the Corral Canyon area is late.

  6. Fission track thermochronologic constraints on the timing and nature of major Middle Tertiary extension, Ruby Mountains - East Humboldt Range, Nevada

    SciTech Connect

    Dokka, R.K.; Mahaffie, M.J.; Snoke, A.W.

    1985-01-01

    Fission Track (FT) apatite, zircon, and sphene ages were determined from both mylonitic and non-mylonitic rocks of the Ruby Mountains-East Humboldt Range metamorphic core complex. The analyzed sample suite included various mylonitic orthogneisses as well as amphibolitic orthogneisses from the non-mylonitic infrastructural core. Porphyritic biotite granodiorite of the Oligocene Harrison Pass pluton was also dated. FT ages are concordant and range in age from 27 - 24 Ma. These dates reflect rapid cooling of the lower plate from temperatures above 250/sup 0/C to below 100/sup 0/C during the early Miocene. The general concordance of the FT dates with /sup 40/Ar//sup 39/Ar biotite and hornblende plateau ages from the same sample suite suggest an even more pronounced cooling history. This rapid cooling history is considered to reflect large-scale tectonic denudation (intracrustal thinning), a manifestation of intense crustal extension. Mylonitic rocks that originally formed along ductile shear zones in the middle crust (10-15 km) were quickly brought near the surface and juxtaposed against brittly distended rocks deformed under upper crustal conditions. FT data firmly establish the upper age limit on the timing of mylonitization during the shear zone deformation. This rapid cooling interval also coincides with the inferred age of extensive landscape disruption and the development of an alluvial fan-lacustrine system which included the periodic emplacement of landslide deposits (megabreccias).

  7. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-11-02

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  8. Solvent-extraction and purification of uranium(VI) and molybdenum(VI) by tertiary amines from acid leach solutions

    SciTech Connect

    La Gamma, Ana M.G.; Becquart, Elena T.; Chocron, Mauricio

    2008-07-01

    Considering international interest in the yellow-cake price, Argentina is seeking to exploit new uranium ore bodies and processing plants. A study of similar plants would suggest that solvent- extraction with Alamine 336 is considered the best method for the purification and concentration of uranium present in leaching solutions. In order to study the purification of these leach liquors, solvent-extraction tests under different conditions were performed with simulated solutions which containing molybdenum and molybdenum-uranium mixtures. Preliminary extraction tests carried out on mill acid-leaching liquors are also presented. (authors)

  9. Ionic liquid-assisted sonochemical preparation of CeO2 nanoparticles for CO oxidation

    SciTech Connect

    Alammar, Tarek; Noei, Heshmat; Wang, Yuemin; Grünert, Wolfgang; Mudring, Anja -Verena

    2014-10-10

    CeO2 nanoparticles were synthesized via a one-step ultrasound synthesis in different kinds of ionic liquids based on bis(trifluoromethanesulfonylamide, [Tf2N], in combination with various cations including 1-butyl-3-methylimidazolium ([C4mim]+), 1-ethyl-2,3-dimethylimidazolium ([Edimim]+), butyl-pyridinium([Py4]+), 1-butyl-1-methyl-pyrrolidinium ([Pyrr14]+), and 2-hydroxyethyl-trimethylammonium ([N1112OH]+). Depending on synthetic parameters, such as ionic liquid, Ce(IV) precursor, heating method, and precipitator, formed ceria exhibits different morphologies, varying from nanospheres, nanorods, nanoribbons, and nanoflowers. The morphology, crystallinity, and chemical composition of the obtained materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and N2 adsorption. The structural and electronic properties of the as-prepared CeO2 samples were probed by CO adsorption using IR spectroscopy under ultrahigh vacuum conditions. The catalytic activities of CeO2 nanoparticles were investigated in the oxidation of CO. CeO2 nanospheres obtained sonochemically in [C4mim][Tf2N] exhibit the best performance for low-temperature CO oxidation. As a result, the superior catalytic performance of this material can be related to its mesoporous structure, small particle size, large surface area, and high number of surface oxygen vacancy sites.

  10. The HD molecule in small and medium cages of clathrate hydrates: Quantum dynamics studied by neutron scattering measurements and computation

    SciTech Connect

    Colognesi, Daniele; Celli, Milva; Ulivi, Lorenzo; Powers, Anna; Xu, Minzhong; Bačić, Zlatko

    2014-10-07

    We report inelastic neutron scattering (INS) measurements on molecular hydrogen deuteride (HD) trapped in binary cubic (sII) and hexagonal (sH) clathrate hydrates, performed at low temperature using two different neutron spectrometers in order to probe both energy and momentum transfer. The INS spectra of binary clathrate samples exhibit a rich structure containing sharp bands arising from both the rotational transitions and the rattling modes of the guest molecule. For the clathrates with sII structure, there is a very good agreement with the rigorous fully quantum simulations which account for the subtle effects of the anisotropy, angular and radial, of the host cage on the HD microscopic dynamics. The sH clathrate sample presents a much greater challenge, due to the uncertainties regarding the crystal structure, which is known only for similar crystals with different promoter, but nor for HD (or H{sub 2}) plus methyl tert-butyl ether (MTBE-d12)

  11. Argentina set for privatization

    SciTech Connect

    Chynoweth, E.

    1992-12-09

    Buyers are lining up for Argentina's two big state-controlled petrochemical groups, Buenos Aires-based Petroquimica General Mosconi (PGM) and Petroquimica Bahia Blance (PBB). However, feedstock supply contracts with government-owned oil group Yacientos Petroliferos Fiscales (YPG) and gas group Gas del Estado hold the key to both sales. Shell Compania Argentina Petroleo SA (CAPSA), Perez Companc, and Global Petroleum have already bought PGM tender documentation. Shell says it will bid for PGM if the feedstock contract with YPF is acceptable. In addition to price and volume, Shell says the length is critical; it wants a 15-year deal, but would settle for 11. YPF initially sought a five-year contract. PGM, which produces 300,000 m.t./year of aromatics, plus oxo alcohols, methanol, and methyl tert-butyl ether, has sales of $150 million/year.

  12. Delayed cure bismaleimide resins

    DOEpatents

    Adams, Johnnie E.; Jamieson, Donald R.

    1984-08-07

    Polybismaleimides prepared by delayed curing of bis-imides having the formula ##STR1## wherein R.sub.1 and R.sub.2 each independently is H, C.sub.1-4 -alkyl, C.sub.1-4 -alkoxy, Cl or Br, or R.sub.1 and R.sub.2 together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R.sub.1 and R.sub.2 are not t-butyl or t-butoxy; X is O, S or Se; n is 1-3; and the --(CH.sub.2).sub.n -- group, optionally, is substituted by 1-3 methyl groups or by fluorine.

  13. Bismaleimide compounds

    DOEpatents

    Adams, J.E.; Jamieson, D.R.

    1986-01-14

    Bismaleimides of the formula shown in the diagram wherein R[sub 1] and R[sub 2] each independently is H, C[sub 1-4]-alkyl, C[sub 1-4]-alkoxy, Cl or Br, or R[sub 1] and R[sub 2] together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R[sub 1] and R[sub 2] are not t-butyl or t-butoxy; X is O, S or Se; n is 1--3; and the alkylene bridging group, optionally, is substituted by 1--3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

  14. Bismaleimide compounds

    DOEpatents

    Adams, Johnnie E.; Jamieson, Donald R.

    1986-01-14

    Bismaleimides of the formula ##STR1## wherein R.sub.1 and R.sub.2 each independently is H, C.sub.1-4 -alkyl, C.sub.1-4 -alkoxy, C1 or Br, or R.sub.1 and R.sub.2 together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R.sub.1 and R.sub.2 are not t-butyl or t-butoxy; X is O, S or Se; n is 1-3; and the alkylene bridging group, optionally, is substituted by 1-3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

  15. Ordered, microphase-separated, noncharged-charged diblock copolymers via the sequential ATRP of styrene and styrenic imidazolium monomers

    SciTech Connect

    Shi, ZX; Newell, BS; Bailey, TS; Gin, DL

    2014-12-15

    A series of imidazolium-based noncharged-charged diblock copolymers (1) was synthesized by the direct, sequential ATRP of styrene and styrenic imidazolium bis(trifluoromethyl)sulfonamide monomers with methyl, n-butyl, and n-decyl side-chains. Small-angle X-ray scattering studies on initial examples of 1 with a total of 50 repeat units and styrene:imidazolium-styrene repeat unit ratios of 25:25, 20:30, and 15:35 showed that their ability to form ordered nanostructures (i.e., sphere and cylinder phases) in their neat states depends on both the block ratio and the length of the alkyl side-chain on the imidazolium monomer. To our knowledge, the synthesis of imidazolium-based BCPs that form ordered, phase-separated nanostructures via direct ATRP of immiscible co-monomers is unprecedented. (C) 2014 Elsevier Ltd. All rights reserved.

  16. Low-temperature superacid catalysis: Reactions of n-butane catalyzed by iron- and manganese-promoted sulfated zirconia

    SciTech Connect

    Cheung, T.K.; D`Itri, J.L.; Gates, B.C.

    1995-02-01

    Environmental concerns are leading to the replacement of aromatic hydrocarbons in gasoline with high-octane-number branched paraffins and oxygenated compounds such as methyl t-butyl ether, which is produced from methanol and isobutylene. The latter can be formed from n-butane by isomerization followed by dehydrogenation. To meet the need for improved catalysts for isomerization of n-butane and other paraffins, researchers identified solid acids that are noncorrosive and active at low temperatures. Sulfated zirconia catalyzes the isomerization of n-butane even at 25{degrees}C, and the addition of Fe and Mn promoters increases its activity by three orders of magnitude. Little is known about this new catalyst. Here the authors provide evidence of its performance for n-butane conversion, demonstrating that isomerization is accompanied by disproportionation and other, less well understood, acid-catalyzed reactions and undergoes rapid deactivation associated with deposition of carbonaceous material. 10 refs., 3 figs.

  17. APPLICATIONS OF LAYERED DOUBLE HYDROXIDES IN REMOVING OXYANIONS FROM OIL REFINING AND COAL MINING WASTEWATER

    SciTech Connect

    Song Jin; Paul Fallgren

    2006-03-01

    Western Research Institute (WRI), in conjunction with the U.S. Department of Energy (DOE), conducted a study of using the layered double hydroxides (LDH) as filter material to remove microorganisms, large biological molecules, certain anions and toxic oxyanions from various waste streams, including wastewater from refineries. Results demonstrate that LDH has a high adsorbing capability to those compounds with negative surface charge. Constituents studied include model bacteria, viruses, arsenic, selenium, vanadium, diesel range hydrocarbons, methyl tert-butyl ether (MTBE), mixed petroleum constituents, humic materials and anions. This project also attempted to modify the physical structure of LDH for the application as a filtration material. Flow characterizations of the modified LDH materials were also investigated. Results to date indicate that LDH is a cost-effective new material to be used for wastewater treatment, especially for the treatment of anions and oxyanions.

  18. Ecofuel plans MTBE plant in Italy

    SciTech Connect

    Alperowicz, N.

    1992-04-29

    Ecofuel (Milan), an ENI company, is evaluating construction of a new methyl tert-butyl ether (MTBE) plant in Italy, but has shelved plans for a world-scale MTBE unit in Mexico. The Italian unit is tied to ethylene expansion now under way. Later this year EniChem (Milan), a sister company, is due to complete construction of a 360,000-m.t./year cracker at Brindisi. The C{sub 4} stream available there and from the existing cracker at Priolo in Sicily should provide enough feed for a unit of up to 100,000 m.t./year of MTBE capacity. Some of the feedstock could also come from the Ravenna cracker.

  19. High temperature chemically resistant polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  20. High temperature concrete composites containing organosiloxane crosslinked copolymers

    DOEpatents

    Zeldin, Arkady; Carciello, Neal; Kukacka, Lawrence; Fontana, Jack

    1980-01-01

    This invention relates to high temperature polymer concrete composites comprising about 10-30% by weight of a liquid monomer mixture consisting essentially of an organosiloxane polymer crosslinked with an olefinically unsaturated monomer selected from the group consisting of styrene, methyl methacrylate, trimethylolpropane trimethacrylate, triallyl cyanurate, n-phenylmalimide, divinyl benzene and mixtures theroef; and about 70-90% by weight of an inert inorganic filler system containing silica sand and preferably a member selected from the group consisting of portland cement, Fe.sub.2 O.sub.3, carbon black and mixtures thereof; and optionally a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide and other organic peroxides to initiate crosspolymerization of the monomer mixture in the presence of the inorganic filler.

  1. High temperature concrete composites containing organosiloxane crosslinked copolymers

    DOEpatents

    Zeldin, A.; Carciello, N.; Kukacka, L.; Fontana, J.

    High temperature polymer concrete composites comprising about 10 to 30% by weight of a liquid monomer mixture is described. It consists essentially of an organosiloxane polymer crosslinked with an olefinically unsaturated monomer selected from the group consisting of styrene, methyl methacrylate, trimethylolpropane trimethacrylate, triallyl cyanurate, n-phenylmalimide, divinyl benzene and mixtures thereof. About 70 to 90% by weight of an inert inorganic filler system containing silica sand and portland cement, Fe/sub 2/O/sub 3/, carbon black or mixtures thereof. Optionally a free radical initiator such as di-tert-butyl peroxide, azobisisobyutyronitrile, benzoyl peroxide, lauryl peroxide and other organic peroxides are used to initiate crosspolymerization of the monomer mixture in the presence of the inorganic filler.

  2. Synthesis of 6-Methyl-9-n-propyldibenzothiophene-4-ol ammended to 6-Methyl-9-(1-methylethyl)-dibenzothiophene-4-ol

    SciTech Connect

    Not Available

    1992-02-28

    The material presented below is taken from Status Reports 15, 16 and 17 and covers the progress made toward the synthesis of the modified target molecules 9-isopropyl-4-methoxy-6 methyldibenzothiophene (13) and 9-isopropyl-6methyldibenzothiophene-4-ol (14).

  3. Carbocation Stability in H-ZSM5 at High Temperature

    SciTech Connect

    Ferguson, Glen A.; Cheng, Lei; Bu, Lintao; Kim, Seonah; Robichaud, David J.; Nimlos, Mark R.; Curtiss, Larry A.; Beckham, Gregg T.

    2015-10-26

    Zeolites are common catalysts for multiple industrial applications, including alcohol dehydration to produce olefins, and given their commercial importance, reaction mechanisms in zeolites have long been proposed and studied. Some proposed reaction mechanisms for alcohol dehydration exhibit noncyclic carbocation intermediates or transition states that resemble carbocations, and several previous studies suggest that the tert-butyl cation is the only noncyclic cation more stable than the corresponding chemisorbed species with the hydrocarbon bound to the framework oxygen (i.e., an alkoxide). To determine if carbocations can exist at high temperatures in zeolites, where these catalysts are finding new applications for biomass vapor-phase upgrading (~500 °C), the stability of carbocations and the corresponding alkoxides were calculated with two ONIOM embedding methods (M06-2X/6-311G(d,p):M06-2X/3-21G) and (PBE-D3/6-311G(d,p):PBE-D3/3-21G) and plane-wave density functional theory (DFT) using the PBE functional corrected with entropic and Tkatchenko–Scheffler van der Waals corrections. Additionally, the embedding methods tested are unreliable at finding minima for primary carbocations, and only secondary or higher carbocations can be described with embedding methods consistent with the periodic DFT results. The relative energy between the carbocations and alkoxides differs significantly between the embedding and the periodic DFT methods. The difference is between ~0.23 and 14.30 kcal/mol depending on the molecule, the model, and the functional chosen for the embedding method. At high temperatures, the pw-DFT calculations predict that the allyl, isopropyl, and sec-butyl cations exhibit negligible populations while acetyl and tert-butyl cations exhibit significant populations (>10%). Furthermore, the periodic DFT results indicate that mechanisms including secondary and tertiary carbocations intermediates or carbocations stabilized by adjacent oxygen or double bonds are

  4. N-(N-[2-(3,5-Difluorophenyl)acetyl]-(S)-alanyl)-(S)-phenylglycine tert-butyl ester (DAPT): an inhibitor of γ-secretase, revealing fine electronic and hydrogen-bonding features

    SciTech Connect

    Czerwinski, Andrzej; Valenzuela, Francisco; Afonine, Pavel; Dauter, Miroslawa; Dauter, Zbigniew

    2010-12-01

    The title compound, C{sub 23}H{sub 26}F{sub 2}N{sub 2}O{sub 4}, is a dipeptidic inhibitor of γ-secretase, one of the enzymes involved in Alzheimer’s dis@@ease. The mol@@ecule adopts a compact conformation, without intra@@molecular hydrogen bonds. In the crystal structure, one of the amide N atoms forms the only inter@@molecular N—H⋯O hydrogen bond; the second amide N atom does not form hydrogen bonds. High-resolution synchrotron diffraction data permitted the unequivocal location and refinement without restraints of all H atoms, and the identification of the characteristic shift of the amide H atom engaged in the hydrogen bond from its ideal position, resulting in a more linear hydrogen bond. Significant residual densities for bonding electrons were revealed after the usual SHELXL refinement, and modeling of these features as additional inter@@atomic scatterers (IAS) using the program PHENIX led to a significant decrease in the R factor from 0.0411 to 0.0325 and diminished the r.m.s. deviation level of noise in the final difference Fourier map from 0.063 to 0.037 e Å{sup −3}.

  5. Reaction Pathways and Energetics of Etheric C−O Bond Cleavage Catalyzed by Lanthanide Triflates

    SciTech Connect

    Assary, Rajeev S.; Atesin, Abdurrahman C.; Li, Zhi; Curtiss, Larry A.; Marks, Tobin J.

    2013-07-15

    Efficient and selective cleavage of etheric C−O bonds is crucial for converting biomass into platform chemicals and liquid transportation fuels. In this contribution, computational methods at the DFT B3LYP level of theory are employed to understand the efficacy of lanthanide triflate catalysts (Ln(OTf)3, Ln = La, Ce, Sm, Gd, Yb, and Lu) in cleaving etheric C−O bonds. In agreement with experiment, the calculations indicate that the reaction pathway for C−O cleavage occurs via a C−H → O−H proton transfer in concert with weakening of the C−O bond of the coordinated ether substrate to ultimately yield a coordinated alkenol. The activation energy for this process falls as the lanthanide ionic radius decreases, reflecting enhanced metal ion electrophilicity. Details of the reaction mechanism for Yb(OTf)3-catalyzed ring opening are explored in depth, and for 1-methyl-d3-butyl phenyl ether, the computed primary kinetic isotope effect of 2.4 is in excellent agreement with experiment (2.7), confirming that etheric ring-opening pathway involves proton transfer from the methyl group alpha to the etheric oxygen atom, which is activated by the electrophilic lanthanide ion. Calculations of the catalytic pathway using eight different ether substrates indicate that the more rapid cleavage of acyclic versus cyclic ethers is largely due to entropic effects, with the former C−O bond scission processes increasing the degrees of freedom/particles as the transition state is approached.

  6. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Institute of Chemistry, Hebrew University; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Leone, Stephen R.

    2011-07-19

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?]ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  7. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; L.Vaghjiani, Ghanshyam; Leone, Stephen R.

    2012-03-16

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1- Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  8. Effect of Unburned Methyl Esters on the NOx Conversion of Fe-Zeolite SCR Catalyst

    SciTech Connect

    Williams, A.; Ratcliff, M.; Pedersen, D.; McCormick, R.; Cavataio, G.; Ura, J.

    2010-03-01

    Engine and flow reactor experiments were conducted to determine the impact of biodiesel relative to ultra-low-sulfur diesel (ULSD) on inhibition of the selective catalytic reduction (SCR) reaction over an Fe-zeolite catalyst. Fe-zeolite SCR catalysts have the ability to adsorb and store unburned hydrocarbons (HC) at temperatures below 300 C. These stored HCs inhibit or block NO{sub x}-ammonia reaction sites at low temperatures. Although biodiesel is not a hydrocarbon, similar effects are anticipated for unburned biodiesel and its organic combustion products. Flow reactor experiments indicate that in the absence of exposure to HC or B100, NO{sub x} conversion begins at between 100 and 200 C. When exposure to unburned fuel occurs at higher temperatures (250-400 C), the catalyst is able to adsorb a greater mass of biodiesel than of ULSD. Experiments show that when the catalyst is masked with ULSD, NO{sub x} conversion is inhibited until it is heated to 400 C. However, when masked with biodiesel, NO{sub x} conversion is observed to begin at temperatures as low as 200 C. Engine test results also show low-temperature recovery from HC storage. Engine tests indicate that, overall, the SCR system has a faster recovery from HC masking with biodiesel. This is at least partially due to a reduction in exhaust HCs, and thus total HC exposure with biodiesel.

  9. Type II restriction-modification system methylation subunit of Alicyclobacillus acidocaldarius

    SciTech Connect

    Lee, Brady D; Newby, Deborah T; Lacey, Jeffrey A; Thompson, David N; Thompson, Vicki S; Apel, William A; Roberto, Francisco F; Reed, David W

    2015-05-12

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods for modulating or altering recombination inside or outside of a cell using isolated and/or purified polypeptides and/or nucleic acid sequences from Alicyclobacillus acidocaldarius.

  10. Type II restriction-modification system methylation subunit of Alicyclobacillus acidocaldarius

    DOEpatents

    Lee, Brady D; Newby, Deborah T; Lacey, Jeffrey A; Thompson, David N; Thompson, Vicki S; Apel, William A; Roberto, Francisco F; Reed, David W

    2013-10-29

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods for modulating or altering recombination inside or outside of a cell using isolated and/or purified polypeptides and/or nucleic acid sequences from Alicyclobacillus acidocaldarius.

  11. Arsenic methylation and lung and bladder cancer in a case-control study in northern Chile

    SciTech Connect

    Melak, Dawit; Ferreccio, Catterina; Kalman, David; Parra, Roxana; Acevedo, Johanna; Pérez, Liliana; Cortés, Sandra; Smith, Allan H.; Yuan, Yan; Liaw, Jane; Steinmaus, Craig

    2014-01-15

    In humans, ingested inorganic arsenic is metabolized to monomethylarsenic (MMA) then to dimethylarsenic (DMA), although this process is not complete in most people. The trivalent form of MMA is highly toxic in vitro and previous studies have identified associations between the proportion of urinary arsenic as MMA (%MMA) and several arsenic-related diseases. To date, however, relatively little is known about its role in lung cancer, the most common cause of arsenic-related death, or about its impacts on people drinking water with lower arsenic concentrations (e.g., < 200 μg/L). In this study, urinary arsenic metabolites were measured in 94 lung and 117 bladder cancer cases and 347 population-based controls from areas in northern Chile with a wide range of drinking water arsenic concentrations. Lung cancer odds ratios adjusted for age, sex, and smoking by increasing tertiles of %MMA were 1.00, 1.91 (95% confidence interval (CI), 0.99–3.67), and 3.26 (1.76–6.04) (p-trend < 0.001). Corresponding odds ratios for bladder cancer were 1.00, 1.81 (1.06–3.11), and 2.02 (1.15–3.54) (p-trend < 0.001). In analyses confined to subjects only with arsenic water concentrations < 200 μg/L (median = 60 μg/L), lung and bladder cancer odds ratios for subjects in the upper tertile of %MMA compared to subjects in the lower two tertiles were 2.48 (1.08–5.68) and 2.37 (1.01–5.57), respectively. Overall, these findings provide evidence that inter-individual differences in arsenic metabolism may be an important risk factor for arsenic-related lung cancer, and may play a role in cancer risks among people exposed to relatively low arsenic water concentrations. - Highlights: • Urine arsenic metabolites were measured in cancer cases and controls from Chile. • Higher urine %MMA values were associated with increased lung and bladder cancer. • %MMA-cancer associations were seen at drinking water arsenic levels < 200 μg/L.

  12. Aromatase imaging with [N-methyl-C-11]vorozole PET in healthy men and women

    DOE PAGES [OSTI]

    Biegon, Anat; Fowler, Joanna S.; Alexoff, David L.; Kim, Sung Won; Logan, Jean; Pareto, Deborah; Schlyer, David; Wang, Gene-Jack

    2015-02-19

    Aromatase, the last and obligatory enzyme catalyzing estrogen biosynthesis from androgenic precursors, can be labeled in vivo with ¹¹C-vorozole. Aromatase inhibitors are widely used in breast cancer and other endocrine conditions. The present study aims to provide baseline information defining aromatase distribution in healthy men and women, against which its perturbation in pathological situations can be studied. Methods: ¹¹C-vorozole (111-296 MBq/subject) was injected I.V in 13 men and 20 women (age range 23 to 67). PET data were acquired over a 90 minute period. Each subject had 4 scans, 2/day separated by 2-6 weeks, including brain and torso or pelvismore » scans. Young women were scanned at 2 discrete phases of the menstrual cycle (midcycle and late luteal). Men and postmenopausal women were also scanned following pretreatment with a clinical dose of the aromatase inhibitor letrozole (“blocking” studies). Time activity curves were obtained and standard uptake values (SUV) calculated for major organs including brain, heart, lungs, liver, kidneys, spleen, muscle, bone and male and female reproductive organs (penis, testes, uterus, ovaries). Organ and whole body radiation exposures were calculated using Olinda software. Results: Liver uptake was higher than all other organs, but was not blocked by pretreatment with letrozole. Mean SUVs in men were higher than in women, and brain uptake was blocked by letrozole. Male brain SUVs were also higher than all other organs (ranging from 0.48±0.05 in lungs to 1.5±0.13 in kidneys). Mean ovarian SUVs (3.08±0.7) were comparable to brain levels and higher than all other organs. Furthermore, ovarian SUVs In young women around the time of ovulation (midcycle) were significantly higher than those measured in the late luteal phase, while aging and cigarette smoking reduced ¹¹C-vorozole uptake. Conclusions: PET with ¹¹C-vorozole is useful for assessing physiological changes in estrogen synthesis capacity in the human body. Baseline levels in breasts, lungs and bones are low, supporting further investigation of this tracer as a new tool for detection of aromatase-overexpressing primary tumors or metastases in these organs and optimization of treatment in cancer and other disorders in which aromatase inhibitors are useful.« less

  13. Aromatase imaging with [N-methyl-C-11]vorozole PET in healthy men and women

    SciTech Connect

    Biegon, Anat; Fowler, Joanna S.; Alexoff, David L.; Kim, Sung Won; Logan, Jean; Pareto, Deborah; Schlyer, David; Wang, Gene-Jack

    2015-02-19

    Aromatase, the last and obligatory enzyme catalyzing estrogen biosynthesis from androgenic precursors, can be labeled in vivo with ¹¹C-vorozole. Aromatase inhibitors are widely used in breast cancer and other endocrine conditions. The present study aims to provide baseline information defining aromatase distribution in healthy men and women, against which its perturbation in pathological situations can be studied. Methods: ¹¹C-vorozole (111-296 MBq/subject) was injected I.V in 13 men and 20 women (age range 23 to 67). PET data were acquired over a 90 minute period. Each subject had 4 scans, 2/day separated by 2-6 weeks, including brain and torso or pelvis scans. Young women were scanned at 2 discrete phases of the menstrual cycle (midcycle and late luteal). Men and postmenopausal women were also scanned following pretreatment with a clinical dose of the aromatase inhibitor letrozole (“blocking” studies). Time activity curves were obtained and standard uptake values (SUV) calculated for major organs including brain, heart, lungs, liver, kidneys, spleen, muscle, bone and male and female reproductive organs (penis, testes, uterus, ovaries). Organ and whole body radiation exposures were calculated using Olinda software. Results: Liver uptake was higher than all other organs, but was not blocked by pretreatment with letrozole. Mean SUVs in men were higher than in women, and brain uptake was blocked by letrozole. Male brain SUVs were also higher than all other organs (ranging from 0.48±0.05 in lungs to 1.5±0.13 in kidneys). Mean ovarian SUVs (3.08±0.7) were comparable to brain levels and higher than all other organs. Furthermore, ovarian SUVs In young women around the time of ovulation (midcycle) were significantly higher than those measured in the late luteal phase, while aging and cigarette smoking reduced ¹¹C-vorozole uptake. Conclusions: PET with ¹¹C-vorozole is useful for assessing physiological changes in estrogen synthesis capacity in the human body. Baseline levels in breasts, lungs and bones are low, supporting further investigation of this tracer as a new tool for detection of aromatase-overexpressing primary tumors or metastases in these organs and optimization of treatment in cancer and other disorders in which aromatase inhibitors are useful.

  14. The Structural Basis for Tight Control of PP2A Methylation and...

    Office of Scientific and Technical Information (OSTI)

    Our studies suggested mechanisms of LCMT-1 in tight control of PP2A function, important ... Country of Publication: United States Language: ENGLISH Subject: 59 BASIC BIOLOGICAL ...

  15. Aromatase imaging with [N-methyl-C-11]vorozole PET in healthy men and women

    SciTech Connect

    Biegon, Anat; Fowler, Joanna S.; Alexoff, David L.; Kim, Sung Won; Logan, Jean; Pareto, Deborah; Schlyer, David; Wang, Gene-Jack

    2015-02-19

    Aromatase, the last and obligatory enzyme catalyzing estrogen biosynthesis from androgenic precursors, can be labeled in vivo with C-vorozole. Aromatase inhibitors are widely used in breast cancer and other endocrine conditions. The present study aims to provide baseline information defining aromatase distribution in healthy men and women, against which its perturbation in pathological situations can be studied. Methods: C-vorozole (111-296 MBq/subject) was injected I.V in 13 men and 20 women (age range 23 to 67). PET data were acquired over a 90 minute period. Each subject had 4 scans, 2/day separated by 2-6 weeks, including brain and torso or pelvis scans. Young women were scanned at 2 discrete phases of the menstrual cycle (midcycle and late luteal). Men and postmenopausal women were also scanned following pretreatment with a clinical dose of the aromatase inhibitor letrozole (blocking studies). Time activity curves were obtained and standard uptake values (SUV) calculated for major organs including brain, heart, lungs, liver, kidneys, spleen, muscle, bone and male and female reproductive organs (penis, testes, uterus, ovaries). Organ and whole body radiation exposures were calculated using Olinda software. Results: Liver uptake was higher than all other organs, but was not blocked by pretreatment with letrozole. Mean SUVs in men were higher than in women, and brain uptake was blocked by letrozole. Male brain SUVs were also higher than all other organs (ranging from 0.480.05 in lungs to 1.50.13 in kidneys). Mean ovarian SUVs (3.080.7) were comparable to brain levels and higher than all other organs. Furthermore, ovarian SUVs In young women around the time of ovulation (midcycle) were significantly higher than those measured in the late luteal phase, while aging and cigarette smoking reduced C-vorozole uptake. Conclusions: PET with C-vorozole is useful for assessing physiological changes in estrogen synthesis capacity in the human body. Baseline levels in breasts, lungs and bones are low, supporting further investigation of this tracer as a new tool for detection of aromatase-overexpressing primary tumors or metastases in these organs and optimization of treatment in cancer and other disorders in which aromatase inhibitors are useful.

  16. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted...

    Office of Scientific and Technical Information (OSTI)

    The complexation between EMG30 and LiCFsub 3SOsub 3 were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR) Authors: Nazir, Khuzaimah ; Aziz, Ahmad ...

  17. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report, February 9, 1996--February 8, 1997

    SciTech Connect

    Chidsey, T.C. Jr.

    1997-08-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The Anasazi field was selected for the initial geostatistical modeling and reservoir simulation. A compositional simulation approach is being used to model primary depletion, waterflood, and CO{sub 2}-flood processes. During this second year of the project, team members performed the following reservoir-engineering analysis of Anasazi field: (1) relative permeability measurements of the supra-mound and mound-core intervals, (2) completion of geologic model development of the Anasazi reservoir units for use in reservoir simulation studies including completion of a series of one-dimensional, carbon dioxide-displacement simulations to analyze the carbon dioxide-displacement mechanism that could operate in the Paradox basin system of reservoirs, and (3) completion of the first phase of the full-field, three-dimensional Anasazi reservoir simulation model, and the start of the history matching and reservoir performance prediction phase of the simulation study.

  18. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Allison, M.L.

    1995-07-14

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  19. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report

    SciTech Connect

    Chidsey, T.C. Jr.

    1997-02-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, mule, Blue Hogan, heron North, and Runway) within the Navajo Nation of southeastern utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The reservoir engineering component of the work completed to date included analysis of production data and well tests, comprehensive laboratory programs, and preliminary mechanistic reservoir simulation studies. A comprehensive fluid property characterization program was completed. Mechanistic reservoir production performance simulation studies were also completed.

  20. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Final technical progress report, October 1--December 31, 1995

    SciTech Connect

    Allison, M.L.

    1996-01-15

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meeting, and publication in newsletters and various technical or trade journals. Five activities continued this quarter as part of the geological and reservoir characterization of carbonate mound buildups in the Paradox basin: (1) regional facies evaluation, (2) evaluation of outcrop analogues, (3) field-scale geologic analysis, (4) reservoir analysis, and (5) technology transfer.

  1. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, July 1--September 30, 1995

    SciTech Connect

    Allison, M.L.

    1995-12-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals. Four activities continued this quarter as part of the geological and reservoir characterization of carbonate mound buildups in the Paradox basin: (1) field studies, (2) development well completion operations, (3) reservoir analysis and modeling, and (4) technology transfer. This paper reviews the status.

  2. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Technical progress report, January 1--March 31, 1996

    SciTech Connect

    Allison, M.L.

    1996-04-30

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}-)flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  3. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Allison, M.L.

    1995-05-30

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  4. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Quarterly report, October 1--December 31, 1996

    SciTech Connect

    Allison, M.L.

    1997-02-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals. Three activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buidups in the Paradox basin: (1) interpretation of new seismic data in the Mule field area, (2) reservoir engineering analysis of the Anasazi field, and (3) technology transfer.

  5. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah, Class II

    SciTech Connect

    Chidsey, Thomas C.

    2000-07-28

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m{sup 3}) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  6. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Annual report, February 9, 1997--February 8, 1998

    SciTech Connect

    Chidsey, T.C. Jr.

    1998-03-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. At least 200 million barrels (31,800,000 m{sup 3}) of oil are at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. This study utilized representative core and modern geophysical logs to characterize and grade each of the five fields for suitability of enhanced recovery projects. The typical vertical sequence or cycle of lithofacies from each field, as determined from conventional core, was tied to its corresponding log response. The diagenetic fabrics and porosity types found in the various hydrocarbon-bearing rocks of each field can be an indicator of reservoir flow capacity, storage capacity, and potential for water- and/or CO{sub 2}-flooding. Diagenetic histories of the various Desert Creek reservoirs were determined from 50 representative samples selected from the conventional cores of each field. Thin sections were also made of each sample for petrographic description.

  7. Structural Determinants of Nitroxide Motion in Spin-labeled Proteins: Tertiary Contact and Solvent-inaccessible Sties in Helix G of T4 Lysozyme

    SciTech Connect

    Guo,Z.; Cascio, D.; Hideg, K.; Kalai, T.; Hubbell, W.

    2007-01-01

    A nitroxide side chain (R1) has been substituted at single sites along a helix-turn-helix motif in T4 lysozyme (residues 114-135). Together with previously published data, the new sites reported complete a continuous scan through the motif. Mutants with R1 at sites 115 and 118 were selected for crystallographic analysis to identify the structural origins of the corresponding two-component EPR spectra. At 115, R1 is shown to occupy two rotamers in the room temperature crystal structure, one of which has not been previously reported. The two components in the EPR spectrum apparently arise from differential interactions of the two rotamers with the surrounding structure, the most important of which is a hydrophobic interaction of the nitroxide ring. Interestingly, the crystal structure at 100 K reveals a single rotamer, emphasizing the possibility of rotamer selection in low-temperature crystal structures. Residue 118 is at a solvent-inaccessible site in the protein core, and the structure of 118R1, the first reported for the R1 side chain at a buried site, reveals how the side chain is accommodated in an overpacked core.

  8. All-acrylic multigraft copolymers: Effect of side chain molecular weight and volume fraction on mechanical behavior

    SciTech Connect

    Goodwin, Andrew; Wang, Weiyu; Kang, Nam -Goo; Wang, Yangyang; Hong, Kunlun; Mays, Jimmy

    2015-08-21

    We present in this paper the synthesis of poly(n-butyl acrylate)-g-poly(methyl methacrylate) (PnBA-g-PMMA) multigraft copolymers via a grafting-through (macromonomer) approach. The synthesis was performed using two controlled polymerization techniques. The PMMA macromonomer was obtained by high-vacuum anionic polymerization followed by the copolymerization of n-butyl acrylate and PMMA macromonomer using reversible addition–fragmentation chain transfer (RAFT) polymerization to yield the desired all-acrylic multigraft structures. The PnBA-g-PMMA multigraft structures exhibit randomly spaced branch points with various PMMA contents, ranging from 15 to 40 vol %, allowing an investigation into how physical properties vary with differences in the number of branch points and molecular weight of grafted side chains. The determination of molecular weight and polydispersity indices of both the PMMA macromonomer and the graft copolymers was carried out using size exclusion chromatography with triple detection, and the structural characteristics of both the macromonomer and PnBA-g-PMMA graft materials were characterized by 1H and 13C NMR. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed for monitoring the macromonomer synthesis. Thermal characteristics of the materials were analyzed using differential scanning calorimetry and thermogravimetric analysis. The mechanical performance of the graft materials was characterized by rheology and dynamic mechanical analysis, revealing that samples with PMMA content of 25–40 vol % exhibit superior elastomeric properties as compared to materials containing short PMMA side chains or <25 vol % PMMA. In conclusion, atomic force microscopy showed a varying degree of microphase separation between the glassy and rubbery components that is strongly dependent on PMMA side chain molecular weight.

  9. All-acrylic multigraft copolymers: Effect of side chain molecular weight and volume fraction on mechanical behavior

    DOE PAGES [OSTI]

    Goodwin, Andrew; Wang, Weiyu; Kang, Nam -Goo; Wang, Yangyang; Hong, Kunlun; Mays, Jimmy

    2015-08-21

    We present in this paper the synthesis of poly(n-butyl acrylate)-g-poly(methyl methacrylate) (PnBA-g-PMMA) multigraft copolymers via a grafting-through (macromonomer) approach. The synthesis was performed using two controlled polymerization techniques. The PMMA macromonomer was obtained by high-vacuum anionic polymerization followed by the copolymerization of n-butyl acrylate and PMMA macromonomer using reversible addition–fragmentation chain transfer (RAFT) polymerization to yield the desired all-acrylic multigraft structures. The PnBA-g-PMMA multigraft structures exhibit randomly spaced branch points with various PMMA contents, ranging from 15 to 40 vol %, allowing an investigation into how physical properties vary with differences in the number of branch points and molecular weightmore » of grafted side chains. The determination of molecular weight and polydispersity indices of both the PMMA macromonomer and the graft copolymers was carried out using size exclusion chromatography with triple detection, and the structural characteristics of both the macromonomer and PnBA-g-PMMA graft materials were characterized by 1H and 13C NMR. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed for monitoring the macromonomer synthesis. Thermal characteristics of the materials were analyzed using differential scanning calorimetry and thermogravimetric analysis. The mechanical performance of the graft materials was characterized by rheology and dynamic mechanical analysis, revealing that samples with PMMA content of 25–40 vol % exhibit superior elastomeric properties as compared to materials containing short PMMA side chains or <25 vol % PMMA. In conclusion, atomic force microscopy showed a varying degree of microphase separation between the glassy and rubbery components that is strongly dependent on PMMA side chain molecular weight.« less

  10. Presentations

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bill Kramer | Tertiary Storage January 28, 1997 | Author(s): Keith Fitzgerald, Harvard Holmes | Download File: Tertiary-Storage.pdf | pdf | 173 KB Report on Graphics Packages...

  11. Preparation and Characterization of Paints and Coatings from Soy and Corn Oils

    SciTech Connect

    Larock, Richard C.

    2009-02-26

    This project was highly successful. A series of new waterborne polyurethane (PU)/acrylic hybrid latexes were successfully synthesized by the emulsion polymerization of acrylic monomers (butyl acrylate and methyl methacrylate) in the presence of a soybean oil-based waterborne PU dispersion using potassium persulfate as an initiator. The waterborne PU dispersion was synthesized by a polyaddition reaction of toluene 2,4-diisocyanate and a soybean oil-based polyol (SOL). The resulting hybrid latexes, containing 15-60 wt % SOL as a renewable resource, are very stable and exhibit uniform particle sizes of {approx}125 nm as determined by transmittance electronic microscopy. The structure, thermal, and mechanical properties of the resulting hybrid latex films have been investigated by Fourier transform infrared spectroscopy, solid state {sup 13}C NMR spectroscopy, dynamic mechanical analysis, extraction, and mechanical testing. Grafting copolymerization of the acrylic monomers onto the PU network occurs during the emulsion polymerization, leading to a significant increase in the thermal and mechanical properties of the resulting hybrid latexes. This work provides a new way of utilizing renewable resources to prepare environmentally friendly hybrid latexes with high performance for coating applications. In addition, a novel soybean oil-based vinyl-containing waterborne polyurethane (VPU) dispersion has been successfully synthesized from toluene 2,4-diisocyanate, dimethylol propionic acid and a 90:10 mixture of chlorinated soybean oil-based polyol and acrylated epoxidized soybean oil (AESO). Then, a series of VPU/acrylic grafted latexes were prepared by emulsion graft copolymerization of acrylic monomers (40 wt% butyl acrylate and 60 wt% methyl methacrylate) in the presence of the VPU dispersion using potassium persulfate as an initiator. The structure, morphology, and thermal and mechanical properties of the resulting latexes, containing 15-60 wt% soybean oil-based polyols

  12. Structure–activity relationships of imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human insulin-degrading enzyme

    SciTech Connect

    Charton, Julie; Dumont, Julie; Liang, Wenguang G.; Leroux, Florence; Deprez, Benoit

    2015-10-30

    Insulin degrading enzyme (IDE) is a zinc metalloprotease that degrades small amyloid peptides such as amyloid-â and insulin. So far the dearth of IDE-specific pharmacological inhibitors impacts the understanding of its role in the physiopathology of Alzheimer's disease, amyloid-â clearance, and its validation as a potential therapeutic target. Hit 1 was previously discovered by high-throughput screening. Here we describe the structure-activity study, that required the synthesis of 48 analogues. We found that while the carboxylic acid, the imidazole and the tertiary amine were critical for activity, the methyl ester was successfully optimized to an amide or a 1,2,4-oxadiazole. Along with improving their activity, compounds were optimized for solubility, lipophilicity and stability in plasma and microsomes. The docking or co-crystallization of some compounds at the exosite or the catalytic site of IDE provided the structural basis for IDE inhibition. The pharmacokinetic properties of best compounds 44 and 46 were measured in vivo. As a result, 44 (BDM43079) and its methyl ester precursor 48 (BDM43124) are useful chemical probes for the exploration of IDE's role.

  13. Synthesis of 6-Methyl-9-n-propyldibenzo thiophene-4-ol ammended to 6-Methyl-9-(1-methylethyl)-dibenzo thiophene-4-ol. Quarterly technical progress report No. 6, October 28, 1991--January 26, 1992

    SciTech Connect

    Not Available

    1992-02-28

    The material presented below is taken from Status Reports 15, 16 and 17 and covers the progress made toward the synthesis of the modified target molecules 9-isopropyl-4-methoxy-6 methyldibenzothiophene (13) and 9-isopropyl-6methyldibenzothiophene-4-ol (14).

  14. Effects of temperature and acidic pre-treatment on Fenton-driven oxidation of MTBE-spent granular activated carbon

    SciTech Connect

    Kan, E.; Huling, S.G.

    2009-03-01

    The effects of temperature and acidic pretreatment on Fenton-driven chemical oxidation of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC, derived from bituminous coal) were investigated. Limiting factors in MTBE removal in GAC include the heterogeneous distribution of amended Fe, and slow intraparticle diffusive transport of MTBE and hydrogen peroxide (H{sub 2}O{sub 2}) into the 'reactive zone'. Acid pretreatment of GAC before Fe amendment altered the surface chemistry of the GAC, lowered the pH point of zero charge, and resulted in greater penetration and more uniform distribution of Fe in GAC. This led to a condition where Fe, MTBE, and H{sub 2}O{sub 2} coexisted over a larger volume of the GAC contributing to greater MTBE oxidation and removal. H{sub 2}O{sub 2} reaction and MTBE removal in GAC increased with temperature. Modeling H{sub 2}O{sub 2} transport and reaction in GAC indicated that H{sub 2}O{sub 2} penetration was inversely proportional with temperature and tortuosity, and occurred over a larger fraction of the total volume of small GAC particles (0.3 mm diameter) relative to large particles (1.2 mm diameter). Acidic pretreatment of GAC, Fe-amendment, elevated reaction temperature, and use of small GAC particles are operational parameters that improve Fenton-driven oxidation of MTBE in GAC. 29 refs., 6 figs., 1 tab.

  15. Selecting activated carbon for water and wastewater treatability studies

    SciTech Connect

    Zhang, W.; Chang, Q.G.; Liu, W.D.; Li, B.J.; Jiang, W.X.; Fu, L.J.; Ying, W.C.

    2007-10-15

    A series of follow-up investigations were performed to produce data for improving the four-indicator carbon selection method that we developed to identify high-potential activated carbons effective for removing specific organic water pollutants. The carbon's pore structure and surface chemistry are dependent on the raw material and the activation process. Coconut carbons have relatively more small pores than large pores; coal and apricot nutshell/walnut shell fruit carbons have the desirable pore structures for removing adsorbates of all sizes. Chemical activation, excessive activation, and/or thermal reactivation enlarge small pores, resulting in reduced phenol number and higher tannic acid number. Activated carbon's phenol, iodine, methylene blue, and tannic acid numbers are convenient indicators of its surface area and pore volume of pore diameters < 10, 10-15, 15-28, and > 28 angstrom, respectively. The phenol number of a carbon is also a good indicator of its surface acidity of oxygen-containing organic functional groups that affect the adsorptive capacity for aromatic and other small polar organics. The tannic acid number is an indicator of carbon's capacity for large, high-molecular-weight natural organic precursors of disinfection by-products in water treatment. The experimental results for removing nitrobenzene, methyl-tert-butyl ether, 4,4-bisphenol, humic acid, and the organic constituents of a biologically treated coking-plant effluent have demonstrated the effectiveness of this capacity-indicator-based method of carbon selection.

  16. Advanced quadrupole ion trap instrumentation for low level vehicle emissions measurements. CRADA final report for number ORNL93-0238

    SciTech Connect

    McLuckey, S.A.; Buchanan, M.V.; Asano, K.G.; Hart, K.J.; Goeringer, D.E.; Dearth, M.A.

    1997-09-01

    Quadrupole ion trap mass spectrometry has been evaluated for its potential use in vehicle emissions measurements in vehicle test facilities as an analyzer for the top 15 compounds contributing to smog generation. A variety of ionization methods were explored including ion trap in situ chemical ionization, atmospheric sampling glow discharge ionization, and nitric oxide chemical ionization in a glow discharge ionization source coupled with anion trap mass spectrometer. Emphasis was placed on the determination of hydrocarbons and oxygenated hydrocarbons at parts per million to parts per billion levels. Ion trap in situ water chemical ionization and atmospheric sampling glow discharge ionization were both shown to be amenable to the analysis of arenes, alcohols, aldehydes and, to some degree, alkenes. Atmospheric sampling glow discharge also generated molecular ions of methyl-t-butyl ether (MTBE). Neither of these ionization methods, however, were found to generate diagnostic ions for the alkanes. Nitric oxide chemical ionization, on the other hand, was found to yield diagnostic ions for alkanes, alkenes, arenes, alcohols, aldehydes, and MTBE. The ability to measure a variety of hydrocarbons present at roughly 15 parts per billion at measurement rates of 3 Hz was demonstrated. These results have demonstrated that the ion trap has an excellent combination of sensitivity, specificity, speed, and flexibility with respect to the technical requirements of the top 15 analyzer.

  17. Shock tube ignition of ethanol, isobutene and MTBE: Experiments and modeling

    SciTech Connect

    Curran, H.J.; Dunphy, M.P.; Simmie, J.M.; Westbrook, C.K.; Pitz, W.J.

    1991-11-22

    The ignition of ethanol, isobutene and methyl tert-butyl ether (MTBE) has been studied experimentally in a shock tube and computationally with a detailed chemical kinetic model. Experimental results, consisting of ignition delay measurements, were obtained for a range of fuel/oxygen mixtures diluted in Argon, with temperatures varying over a range of 1100--1900 K. The numerical model consisted of a detailed kinetic reaction mechanism with more than 400 elementary reactions, chosen to describe reactions of each fuel and the smaller hydrocarbon and other species produced during their oxidation. The overall agreement between experimental and computed results was excellent, particularly for mixtures with greater than 0.3% fuel. The greatest sensitivity in the computed results was found to falloff parameters in the dissociation reactions of isobutene, ethane, methane, and ethyl and vinyl radicals, to the C{sub 3}H{sub 4} and C{sub 3}H{sub 5} reaction submechanisms in the model, and to the reactions in the H{sub 2}-O{sub 2}-Co submechanism.

  18. Encapsulation and Characterization of Proton-Bound Amine Homodimers in a Water Soluble, Self-Assembled Supramolecular Host

    SciTech Connect

    Pluth, Michael; Fiedler, Dorothea; Mugridge, Jeffrey; Bergman, Robert; Raymond, Kenneth

    2008-10-01

    Cyclic amines can be encapsulated in a water-soluble self-assembled supramolecular host upon protonation. The hydrogen bonding ability of the cyclic amines, as well as the reduced degrees of rotational freedom, allows for the formation of proton-bound homodimers inside of the assembly which are otherwise not observable in aqueous solution. The generality of homodimer formation was explored with small N-alkyl aziridines, azetidines, pyrrolidines and piperidines. Proton-bound homodimer formation is observed for N-alkylaziridines (R = methyl, isopropyl, tert-butyl), N-alkylazetidines (R = isopropyl, tertbutyl), and N-methylpyrrolidine. At high concentration, formation of a proton-bound homotrimer is observed in the case of N-methylaziridine. The homodimers stay intact inside the assembly over a large concentration range, thereby suggesting cooperative encapsulation. Both G3(MP2)B3 and G3B3 calculations of the proton-bound homodimers were used to investigate the enthalpy of the hydrogen bond in the proton-bound homodimers and suggest that the enthalpic gain upon formation of the proton-bound homodimers may drive guest encapsulation.

  19. Antiandrogenic properties of parabens and other phenolic containing small molecules in personal care products

    SciTech Connect

    Chen Jiangang; Ahn, Ki Chang; Gee, Nancy A.; Gee, Shirley J.; Hammock, Bruce D.; Lasley, Bill L. . E-mail: bllasley@ucdavis.edu

    2007-06-15

    To identify the androgenic potency of commonly used antimicrobials, an in vitro androgen receptor-mediated transcriptional activity assay was employed to evaluate the androgenic/antiandrogenic activity of parabens and selected other antimicrobials containing a phenolic moiety. This cell-based assay utilizes a stably transfected cell line that lacks critical steroid metabolizing enzymes and is formatted in a 96-well format. At a concentration of 10 {mu}M, methyl-, propyl- and butyl-4-hydroxybenzoate (parabens) inhibited testosterone (T)-induced transcriptional activity by 40%, 33% and 19%, respectively (P < 0.05), while 4-hydroxybenzoic acid, the major metabolite of parabens, had no effect on T-induced transcriptional activity. Triclosan inhibited transcriptional activity induced by T by more than 92% at a concentration of 10 {mu}M, and 38.8% at a concentration of 1.0 {mu}M (P < 0.05). Thirty-four percent of T-induced transcriptional activity was inhibited by thymol at 10 {mu}M (P < 0.05). Cell proliferation and/or cytotoxicity were not observed in any of the treatments. None of the compounds appeared to be androgenic when tested individually without T. The data presented in this report demonstrate that some widely used antimicrobial compounds have antiandrogenic properties and warrant further investigation to fully understand their potential impact on human reproductive health.

  20. Eastman, AP start on coal unit

    SciTech Connect

    1995-10-25

    Eastman Chemical and Air Products and Chemicals (AP) have started construction of a $214-million, coal-to-methanol demonstration unit at Eastmans site in Kingsport, TN. The project is part of the Department of Energy`s clean coal technology program and is receiving $93 million in federal support. The demonstration unit-which will have a methanol capacity of 260 tons/day-will use novel catalyst technology for converting coal-derived synthesis gas (syngas) to methanol. Unlike conventional technology that processes syngas through a fixed bed of dry catalyst particles, the liquid-phase methanol process converts the syngas in a single vessel containing catalysts suspended in mineral oil. The companies say the innovation allows the process to better able handle the gases from coal gasifiers and is more stable and reliable than existing processes. Eastman says it will use the methanol produced by the plant as a chemical feedstock. It currently uses methanol as an intermediate in making acetic anhydride and dimethyl terephthalate. In addition, the companies say the methanol will be evaluated as a feedstock in making methyl tert-butyl ether for reformulated fuels. Eastman also says it will evaluate coproducing dimethyl ether (DME) with the methanol. DME can be used as a fuel additive or blended with methanol for a chemical feedstock, according to Eastman.

  1. Vicarious nucleophilic substitution to prepare 1,3-diamino-2,4,6-trinitrobenzene or 1,3,5-triamino-2,4,6-trinitrobenzene

    DOEpatents

    Mitchell, Alexander R. (Livermore, CA); Pagoria, Philip F. (Livermore, CA); Schmidt, Robert D. (Livermore, CA)

    1996-01-01

    The present invention relates to a process to produce 1,3-diamino-2,4,6-trinitrobenzene (DATB) or 1,3,5-triamino-2,4,6,-trinitrobenzene (TATB) by: (a) reacting at ambient pressure and a temperature of between about 0.degree. and 50.degree. C. for between about 0.1 and 24 hr, a trinitroaromatic compound of structure V: ##STR1## wherein X, Y, and Z are each independently selected from --H, or --NH.sub.2, with the proviso that at least 1 or 2 of X, Y, and Z are hydrogen, with an amount effective to produce DATB or TATB of 1,1,1-trialkylhydrazinium halide wherein alkyl is selected from methyl, ethyl, propyl or butyl and halide is selected from chloride, bromide or iodide. in the presence of a strong base selected from sodium butoxide, potassium butoxide, potassium propoxide, sodium propoxide, sodium ethoxide, potassium ethoxide, sodium methoxide, potassium methoxide, and combinations thereof; in a solvent selected from the group consisting of methanol, ethanol, propanol, butanol, dimethylsulphoxide, N-methylpyrrolidone, hexamethylphosphoramide, dimethylformide, dimethylacetamide and mixtures thereof, provided that when alcohols are present primarily DATB and picramide is formed; and (b) isolating the DATB or TATB produced. DATB and TATB are useful specialty explosives. TATB is also used for the preparation of benzenehexamine, a starting material for the synthesis of novel materials (optical imaging devices, liquid crystals, ferromagnetic compounds).

  2. Vicarious nucleophilic substitution to prepare 1,3-diamino-2,4,6-trinitrobenzene or 1,3,5-triamino-2,4,6-trinitrobenzene

    DOEpatents

    Mitchell, A.R.; Pagoria, P.F.; Schmidt, R.D.

    1996-10-29

    The present invention relates to a process to produce 1,3-diamino-2,4,6-trinitrobenzene (DATB) or 1,3,5-triamino-2,4,6,trinitrobenzene (TATB) by: (a) reacting at ambient pressure and a temperature of between about 0 and 50 C for between about 0.1 and 24 hr, a trinitroaromatic compound of the structure shown within where X, Y, and Z are each independently selected from --H, or --NH{sub 2}, with the proviso that at least 1 or 2 of X, Y, and Z are hydrogen, with an amount effective to produce DATB or TATB, or 1,1,1-trialkylhydrazinium halide wherein alkyl is selected from methyl, ethyl, propyl or butyl and halide is selected from chloride, bromide or iodide, in the presence of a strong base selected from sodium butoxide, potassium butoxide, potassium propoxide, sodium propoxide, sodium ethoxide, potassium ethoxide, sodium methoxide, potassium methoxide, and combinations thereof; in a solvent selected from the group consisting of methanol, ethanol, propanol, butanol, dimethylsulfoxide, N-methylpyrrolidone, hexamethylphosphoramide, dimethylformide, dimethylacetamide and mixtures thereof, provided that when alcohols are present primarily DATB and picramide is formed; and (b) isolating the DATB or TATB produced. DATB and TATB are useful specialty explosives. TATB is also used for the preparation of benzenehexamine, a starting material for the synthesis of novel materials (optical imaging devices, liquid crystals, ferromagnetic compounds).

  3. Molecular simulation study of dynamical properties of room temperature ionic liquids with carbon pieces

    DOE PAGES [OSTI]

    Feng, Guang; Zhao, Wei; Cummings, Peter T.; Li, Song

    2016-03-29

    Room temperature ionic liquids (RTILs) with dispersed carbon pieces exhibit distinctive physiochemical properties. In order to explore the molecular mechanism, RTILs/carbon pieces mixture we investigated it by molecular dynamics (MD) simulation in this work. Rigid and flexible carbon pieces in the form of graphene with different thicknesses and carbon nanotubes in different sizes were dispersed in a representative RTIL 1-butyl-3-methyl-imidazolium dicyanamide ([Bmim][DCA]). Our study demonstrated that the diffusion coefficients of RTILs in the presence of flexible carbons are similar to those of bulk RTILs at varying temperatures, which is in contrast to the decreased diffusion of RTILs in the presencemore » of rigid carbons. In addition, interfacial ion number density at rigid carbon surfaces was higher than that at flexible ones, which is correlated with the accessible external surface area of carbon pieces. The life time of cation-anion pair in the presence of carbon pieces also exhibited a dependence on carbon flexibility. RTILs with dispersed rigid carbon pieces showed longer ion pair life time than those with flexible ones, in consistence with the observation in diffusion coefficients. Furthermore, this work highlights the necessity of including the carbon flexibility when performing MD simulation of RTILs in the presence of dispersed carbon pieces in order to obtain the reliable dynamical and interfacial structural properties.« less

  4. Conformations of organophosphine oxides

    SciTech Connect

    De Silva, Nuwan; Zahariev, Federico; Hay, Benjamin P.; Gordon, Mark S.; Windus, Theresa L.

    2015-07-17

    The conformations of a series of organophosphine oxides, OP(CH3)2R, where R = methyl, ethyl, isopropyl, tert-butyl, vinyl, and phenyl, are predicted using the MP2/cc-pVTZ level of theory. Comparison of potential energy surfaces for rotation about P–C bonds with crystal structure data reveals a strong correlation between predicted location and energetics of minima and histograms of dihedral angle distributions observed in the solid state. In addition, the most stable conformers are those that minimize the extent of steric repulsion between adjacent rotor substituents, and the torsional barriers tend to increase with the steric bulk of the rotating alkyl group. MM3 force field parameters were adjusted to fit the MP2 results, providing a fast and accurate model for predicting organophosphine oxides shapes—an essential part of understanding the chemistry of these compounds. As a result, the predictive power of the modified MM3 model was tested against MP2/cc-pVTZ conformations for triethylphosphine oxide, OP(CH2CH3)3, and triphenylphosphine oxide, OP(Ph)3.

  5. Conformations of organophosphine oxides

    DOE PAGES [OSTI]

    De Silva, Nuwan; Zahariev, Federico; Hay, Benjamin P.; Gordon, Mark S.; Windus, Theresa L.

    2015-07-17

    The conformations of a series of organophosphine oxides, OP(CH3)2R, where R = methyl, ethyl, isopropyl, tert-butyl, vinyl, and phenyl, are predicted using the MP2/cc-pVTZ level of theory. Comparison of potential energy surfaces for rotation about P–C bonds with crystal structure data reveals a strong correlation between predicted location and energetics of minima and histograms of dihedral angle distributions observed in the solid state. In addition, the most stable conformers are those that minimize the extent of steric repulsion between adjacent rotor substituents, and the torsional barriers tend to increase with the steric bulk of the rotating alkyl group. MM3 forcemore » field parameters were adjusted to fit the MP2 results, providing a fast and accurate model for predicting organophosphine oxides shapes—an essential part of understanding the chemistry of these compounds. As a result, the predictive power of the modified MM3 model was tested against MP2/cc-pVTZ conformations for triethylphosphine oxide, OP(CH2CH3)3, and triphenylphosphine oxide, OP(Ph)3.« less

  6. Synthesis of 6-Methyl-9-propyldibenzothiophene-4-ol. Technical progress report No. 2, October 25, 1990--January 25, 1991

    SciTech Connect

    Eisenbraun, E.J.

    1991-02-15

    The synthesis route for preparing the title compound, has been carried out on a small scale for the preparation of a mixture of isomers. Alternative routes for the cyclization are being explored. (DLC)

  7. Kinetic Model Development for the Combustion of Particulate Matter from Conventional and Soy Methyl Ester Diesel Fuels

    SciTech Connect

    Strzelec, Andrea

    2009-12-01

    The primary objective of this research has been to investigate how the oxidation characteristics of diesel particulate matter (PM) are affected by blending soy-based biodiesel fuel with conventional ultra low sulfur diesel (ULSD) fuel. PM produced in a light duty engine from different biodiesel-conventional fuel blends was subjected to a range of physical and chemical measurements in order to better understand the mechanisms by which fuel-related changes to oxidation reactivity are brought about. These observations were then incorporated into a kinetic model to predict PM oxidation. Nanostructure of the fixed carbon was investigated by HR-TEM and showed that particulates from biodiesel had a more open structure than particulates generated from conventional diesel fuel, which was confirmed by BET surface area measurements. Surface area evolution with extent of oxidation reaction was measured for PM from ULSD and biodiesel. Biodiesel particulate has a significantly larger surface area for the first 40% of conversion, at which point the samples become quite similar. Oxidation characteristics of nascent PM and the fixed carbon portion were measured by temperature programmed oxidation (TPO) and it was noted that increased biodiesel blending lowered the light-off temperature as well as the temperature where the peak rate of oxidation occurred. A shift in the oxidation profiles of all fuels was seen when the mobile carbon fraction was removed, leaving only the fixed carbon, however the trend in temperature advantage of the biofuel blending remained. The mobile carbon fraction was measured by temperature programmed desorption found to generally increase with increasing biodiesel blend level. The relative change in the light-off temperatures for the nascent and fixed carbon samples was found to be related to the fraction of mobile carbon. Effective Arrhenius parameters for fixed carbon oxidation were directly measured with isothermal, differential oxidation experiments. Normalizing the reaction rate to the total carbon surface area available for reaction allowed for the definition of a single reaction rate with constant activation energy (112.5 {+-} 5.8 kJ/mol) for the oxidation of PM, independent of its fuel source. A kinetic model incorporating the surface area dependence of fixed carbon oxidation rate and the impact of the mobile carbon fraction was constructed and validated against experimental data.

  8. Structure of trans-methyl 2-phenylhexahydro-2H-isoxazolo (2,3-a)-pyridine-3-carboxylate

    SciTech Connect

    Ul-Haque, M.; Horne, W.; Ali, S.A. )

    1993-02-01

    The title compound, a 1,3-dipolar cycloaddition product, crystallizes in the monoclinic space group P2[sub 1]/c, with a = 8.199(3), b = 16.908(1), c = 10.248(2) [angstrom],[beta] = 93.58(2)[degrees] and Z = 4. The structure was solved by direct methods and refined by full matrix least squares methods to R = 0.038 for 1687 observed reflections. The stereochemistry of this compound was found to have the [open quotes]ee[close quotes] conformation in the solid state as well as in solution. The piperidine ring in the molecule is in the chair form and the isoxazolidine ring adopts an envelope conformation.

  9. Tetra-methyl substituted copper (II) phthalocyanine as a hole injection enhancer in organic light-emitting diodes

    SciTech Connect

    Wang, Yu-Long; Xu, Jia-Ju; Lin, Yi-Wei; Chen, Qian; Shan, Hai-Quan; Xu, Zong-Xiang E-mail: val.roy@cityu.edu.hk; Yan, Yan; Roy, V. A. L. E-mail: val.roy@cityu.edu.hk

    2015-10-15

    We have enhanced hole injection and lifetime in organic light-emitting diodes (OLEDs) by incorporating the isomeric metal phthalocyanine, CuMePc, as a hole injection enhancer. The OLED devices containing CuMePc as a hole injection layer (HIL) exhibited higher luminous efficiency and operational lifetime than those using a CuPc layer and without a HIL. The effect of CuMePc thickness on device performance was investigated. Atomic force microscope (AFM) studies revealed that the thin films were smooth and uniform because the mixture of CuMePc isomers depressed crystallization within the layer. This may have caused the observed enhanced hole injection, indicating that CuMePc is a promising HIL material for highly efficient OLEDs.

  10. Initial Effects of NOx on Idodine and Methyl Iodine Loading of AgZ and Aerogels

    SciTech Connect

    Bruffey, Stephanie H.; Jubin, Robert Thomas

    2015-03-31

    This initial evaluation provides insight into the effect of NO on the adsorption of both I2 and CH3I onto reduced silver-exchanged mordenite (Ag0Z). It was determined that adsorption of CH3I onto Ag0Z occurs at approximately 50% of the rate of I2 adsorption onto Ag0Z, although total iodine capacities are comparable. Addition of 1% NO to the simulated off-gas stream results in very similar loading behaviors and iodine capacities for both iodine species. This is most likely an effect of CH3I oxidation to I2 by NO prior to contact with the sorbent bed. Completion of tests including NO2 in the simulated off-gas stream was delayed due to vendor NO2 production schedules. A statistically designed test matrix is partially completed, and upon conclusion of the suggested experiments, the effects of temperature, NO, NO2, and water vapor on the sorption of CH3I and I2 onto Ag0Z will be able to be statistically resolved. This work represents progress towards that aim.

  11. The first astrophysical detection, terahertz spectrum, and database for the monodeuterated species of methyl formate HCOOCH{sub 2}D

    SciTech Connect

    Coudert, L. H.; Drouin, B. J.; Tercero, B.; Cernicharo, J.; Guillemin, J.-C.; Motiyenko, R. A.; Margulès, L.

    2013-12-20

    Based on new measurements carried out in the laboratory from 0.77 to 1.2 THz and on a line-frequency analysis of these new data, along with previously published data, we build a line list for HCOOCH{sub 2}D that leads to its first detection in the Orion KL nebula. The observed lines, both in space and in the laboratory, involve the cis D-in-plane and trans D-out-of-plane conformations of HCOOCH{sub 2}D and the two tunneling states arising from the large-amplitude motion connecting the two trans configurations. The model used in the line position calculation accounts for both cis and trans conformations, as well as the large-amplitude motion.

  12. Low Temperature Autoignition of C8H16O2 Ethyl and Methyl Esters in a Motored Engine

    Office of Energy Efficiency and Renewable Energy (EERE)

    The alkyl chain of fatty acid esters experience the typical paraffin-like low temperature oxidation sequence; the alkyl chain length of fatty acid esters has a crucial impact on the ignition behavior of fatty acid esters

  13. Multiply Methyl-Branched Fatty Acids and Diacids in the Polar Lipids of a Microaerophilic Subsurface Microbial Community

    SciTech Connect

    Hedrick, David B.; Peacock, Aaron D.; Long, Philip E.; White, David C.

    2008-09-01

    A previously unreported series of di- and trimethylated fatty acids, as well as saturated and monounsaturated diacids were identified in polar lipids isolated from environmental subsurface sediment samples. Mechanisms are proposed for their formation, but their origin and role in cell membranes remains unknown.

  14. Translational and internal energy distributions of methyl and hydroxyl radicals produced by 157 nm photodissociation of amorphous solid methanol

    SciTech Connect

    Hama, Tetsuya; Yokoyama, Masaaki; Yabushita, Akihiro; Kawasaki, Masahiro; Wickramasinghe, Piyumie; Guo Wei; Loock, Hans-Peter; Ashfold, Michael N. R.; Western, Colin M.

    2009-12-14

    Methanol is typically observed within water-rich interstellar ices and is a source of interstellar organic species. Following the 157 nm photoexcitation of solid methanol at 90 K, desorbed CH{sub 3}(v=0) and OH(v=0,1) radicals have been observed in situ, near the solid surface, using resonance-enhanced multiphoton ionization (REMPI) detection methods. Time-of-flight and rotationally resolved REMPI spectra of the desorbed species were measured, and the respective fragment internal energy and kinetic energy distributions were obtained. Photoproduction mechanisms for CH{sub 3} and OH radicals from solid methanol are discussed. The formation of O({sup 1}D and {sup 3}P) atoms and H{sub 2}O was investigated, but the yield of these species was found to be negligible. CH{sub 3} products arising following the photoexcitation of water-methanol mixed ice showed similar kinetic and internal energy distributions to those from neat methanol ice.

  15. Synthesis and crystal structure studies of ethyl 5-methyl-1, 3-diphenyl-1H-pyrazole-4-carboxylate

    SciTech Connect

    Chandra,; Babu, E. A. Jithesh; Mahendra, M.; Srikantamurthy, N.; Umesha, K. B.

    2014-04-24

    The title compound, C{sub 19}H{sub 18}N{sub 2}O{sub 2}, was investigated by single crystal X-ray diffraction method. It crystallizes in monoclinic class under the space group P2{sub 1}/c with cell parameters a= 8.4593(4) Å, b=15.6284(6) Å, c=12.4579(5) Å, α=90°, β=98.241(3)°, γ=90° and Z=2. The ethoxycarbonyl group is slightly twisted from the pyrazole ring, and adopts syn-periplanar conformation. The crystal structure is stabilized by intermolecular C-H….O hydrogen bonds, which help in stabilizing the crystal structure.

  16. EA-1157: Methyl Chloride via Oxyhydrochlorination of Methane: A Building Black for Chemicals and Fuels from Natural Gas, Carrollton, Kentucky

    Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to advance Oxyhydrochlorination technology to an integrated engineering-scale process.

  17. Nonphosphate Degradation Products of Tributyl Phosphate and Their Reactivities in Purex Media Under Extreme Conditions

    SciTech Connect

    Tashiro, Yoshikazu; Kodama, Ryuji; Sugai, Hiroshi; Suzuki, Katsuhiko; Matsuoka, Shingo

    2000-01-15

    The chemical degradation of tributyl phosphate (TBP) in liquid systems, where TBP was in contact with aqueous solutions containing nitric acid and/or uranyl nitrate, was studied experimentally to clarify the mechanisms of the formation and successive reactions of nonphosphate products under atmospheric pressure. Butyl nitrate, propionic acid, acetic acid, butric acid, and butyl alcohol were formed as the nonphosphate butyl products derived from the butyl-groups of TBP in an open system. The total amount of these products almost equals the amount of the major intermediate phosphate products reduced, i.e., di- and monobutyl phosphates and phosphoric acid. Butyl alcohol was found to be the precursor of the other nonphosphate products.Even when the extremely degraded solvent was further contacted with 10 M nitric acid at 90 deg. C, no significant heat evolution was observed at atmospheric pressure. Only butyl alcohol changed into carboxylic acids by exothermic oxidative reactions.

  18. Biomass IBR Fact Sheet: Archer Daniels Midland

    Office of Energy Efficiency and Renewable Energy (EERE)

    Archer Daniels Midland will develop a pilot plant to demonstrate the continuous production of cellulosic ethanol and butyl acrylate from densified corn stover.

  19. Platts 2nd Annual Renewable Chemicals Conference

    Annual Energy Outlook

    Topsoe, INEOS Bio, Iogen, POET * Cane, Energy crops, Waste * Quality and standards * ... butyl rubber, PET Gevo, Butamax, Cathay, Green, Cobalt Adipic Acid nylon, polyurethane ...

  20. 2015 Fuel & Lubricant Technologies Annual Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    comprise this report. 2015 ANNUAL REPORT FUEL AND LUBRICANT TECHNOLOGIES ii Nomenclature ... AVFL Advanced VehicleFuelLubricants AW antiwear Bench. benchmark BHT butylated hydroxy ...

  1. Preferential selection of isomer binding from chiral mixtures: alternate binding modes observed for the E and Z isomers of a series of 5-substituted 2,4-diaminofuro[2,3-d]pyrimidines as ternary complexes with NADPH and human dihydrofolate reductase

    SciTech Connect

    Cody, Vivian; Piraino, Jennifer; Pace, Jim; Li, Wei; Gangjee, Aleem

    2010-12-01

    The structures of six chirally mixed E/Z-isomers of 5-substituted 2,4-diaminofuro[2,3-d]pyrimidines reveals only one isomer is bound in the active site of human DHFR. The configuration of all but one C9-analogue is observed as the E-isomer. The crystal structures of six human dihydrofolate reductase (hDHFR) ternary complexes with NADPH and a series of mixed E/Z isomers of 5-substituted 5-[2-(2-methoxyphenyl)-prop-1-en-1-yl]furo[2,3-d]pyrimidine-2,4-diamines substituted at the C9 position with propyl, isopropyl, cyclopropyl, butyl, isobutyl and sec-butyl (E2E7, Z3) were determined and the results were compared with the resolved E and Z isomers of the C9-methyl parent compound. The configuration of all of the inhibitors, save one, was observed as the E isomer, in which the binding of the furopyrimidine ring is flipped such that the 4-amino group binds in the 4-oxo site of folate. The Z3 isomer of the C9-isopropyl analog has the normal 2,4-diaminopyrimidine ring binding geometry, with the furo oxygen near Glu30 and the 4-amino group interacting near the cofactor nicotinamide ring. Electron-density maps for these structures revealed the binding of only one isomer to hDHFR, despite the fact that chiral mixtures (E:Z ratios of 2:1, 3:1 and 3:2) of the inhibitors were incubated with hDHFR prior to crystallization. Superposition of the hDHFR complexes with E2 and Z3 shows that the 2?-methoxyphenyl ring of E2 is perpendicular to that of Z3. The most potent inhibitor in this series is the isopropyl analog Z3 and the least potent is the isobutyl analog E6, consistent with data that show that the Z isomer makes the most favorable interactions with the active-site residues. The isobutyl moiety of E6 is observed in two orientations and the resultant steric crowding of the E6 analog is consistent with its weaker activity. The alternative binding modes observed for the furopyrimidine ring in these E/Z isomers suggest that new templates can be designed to probe these binding

  2. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    Allison, M.L.

    1996-08-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide (CO{sub 2}-)flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  3. Presentations

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1997 | Author(s): Bill Kramer | Tertiary Storage January 28, 1997 | Author(s): Keith Fitzgerald, Harvard Holmes | Download File: Tertiary-Storage.pdf | pdf | 173 KB Report on...

  4. Geologic Setting of the Chena Hot Springs Geothermal System,...

    OpenEI (Open Energy Information) [EERE & EIA]

    diorite, tonalite,granodiorite, and granite of both mid-Cretaceous andEarly Tertiary ages. 40Ar39Ar step heat analyses ofbiotite from the CHS pluton shows flat Tertiary...

  5. P 1607 Cover 1.eps

    National Nuclear Security Administration (NNSA)

    Structural Relationships of Pre-Tertiary Rocks in the Nevada Test Site Region, Southern ... of Pre-Tertiary Rocks in the Nevada Test Site Region, Southern Nevada By James C. ...

  6. Iron optimization for Fenton-driven oxidation of MTBE-spent granular activated carbon

    SciTech Connect

    Scott G. Huling; Patrick K. Jones; Tony R. Lee

    2007-06-01

    Fenton-driven chemical oxidation of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) was accomplished through the addition of iron (Fe) and hydrogen peroxide (H{sub 2}O{sub 2}) (15.9 g/L; pH 3). The GAC used was URV, a bituminous-coal based carbon. The Fe concentration in GAC was incrementally varied (1020-25 660 mg/kg) by the addition of increasing concentrations of Fe solution (FeSO4{center_dot}7H{sub 2}O). MTBE degradation in Fe-amended GAC increased by an order of magnitude over Fe-unamended GAC and H{sub 2}O{sub 2} reaction was predominantly (99%) attributed to GAC-bound Fe within the porous structure of the GAC. Imaging and microanalysis of GAC particles indicated limited penetration of Fe into GAC. The optimal Fe concentration was 6710 mg/kg (1020 mg/kg background; 5690 mg/kg amended Fe) and resulted in the greatest MTBE removal and maximum Fe loading oxidation efficiency (MTBE oxidized (g)/Fe loaded to GAC(mg/Kg)). At lower Fe concentrations, the H{sub 2}O{sub 2} reaction was Fe limited. At higher Fe concentrations, the H{sub 2}O{sub 2} reaction was not entirely Fe limited, and reductions in GAC surface area, GAC pore volume, MTBE adsorption, and Fe loading oxidation efficiency were measured. Results are consistent with nonuniform distribution of Fe, pore blockage in H{sub 2}O{sub 2} transport, unavailable Fe, and limitations in H{sub 2}O{sub 2} diffusive transport, and emphasize the importance of optimal Fe loading. 22 refs., 6 figs., 2 tabs.

  7. Leaching behavior of copper from waste printed circuit boards with Brnsted acidic ionic liquid

    SciTech Connect

    Huang, Jinxiu; Chen, Mengjun Chen, Haiyan; Chen, Shu; Sun, Quan

    2014-02-15

    Highlights: A Brnsted acidic ILs was used to leach Cu from WPCBs for the first time. The particle size of WPCBs has significant influence on Cu leaching rate. Cu leaching rate was higher than 99% under the optimum leaching conditions. The leaching process can be modeled with shrinking core model, and the E{sub a} was 25.36 kJ/mol. - Abstract: In this work, a Brnsted acidic ionic liquid, 1-butyl-3-methyl-imidazolium hydrogen sulfate ([bmim]HSO{sub 4}), was used to leach copper from waste printed circuit boards (WPCBs, mounted with electronic components) for the first time, and the leaching behavior of copper was discussed in detail. The results showed that after the pre-treatment, the metal distributions were different with the particle size: Cu, Zn and Al increased with the increasing particle size; while Ni, Sn and Pb were in the contrary. And the particle size has significant influence on copper leaching rate. Copper leaching rate was higher than 99%, almost 100%, when 1 g WPCBs powder was leached under the optimum conditions: particle size of 0.10.25 mm, 25 mL 80% (v/v) ionic liquid, 10 mL 30% hydrogen peroxide, solid/liquid ratio of 1/25, 70 C and 2 h. Copper leaching by [bmim]HSO{sub 4} can be modeled with the shrinking core model, controlled by diffusion through a solid product layer, and the kinetic apparent activation energy has been calculated to be 25.36 kJ/mol.

  8. Inverse antagonist activities of parabens on human oestrogen-related receptor ? (ERR?): In vitro and in silico studies

    SciTech Connect

    Zhang, Zhaobin; Sun, Libei; Hu, Ying; Jiao, Jian; Hu, Jianying

    2013-07-01

    Parabens are p-hydroxybenzoic acid esters that have been used extensively as preservatives in foods, cosmetics, drugs and toiletries. These intact esters are commonly detected in human breast cancer tissues and other human samples, thus arousing concern about the involvement of parabens in human breast cancer. In this study, an in vitro nuclear receptor coactivator recruiting assay was developed and used to evaluate the binding activities of parabens, salicylates and benzoates via antagonist competitive binding on the human oestrogen-related receptor ? (ERR?), which is known as both a diagnostic biomarker and a treatment target of breast cancer. The results showed that all of the test parabens (methyl-, ethyl-, propyl-, butyl- and benzylparaben) possessed clear inverse antagonist activities on ERR?, with a lowest observed effect level (LOEL) of 10{sup ?7} M and the 50% relative effective concentrations (REC50) varying from 3.09 10{sup ?7} to 5.88 10{sup ?7} M, whereas the salicylates possessed much lower activities and the benzoates showed no obvious activity. In silico molecular docking analyses showed that parabens fitted well into the active site of ERR?, with hydrogen bonds forming between the p-hydroxyl group of parabens and the Glu275/Arg316 of ERR?. As the paraben levels reported in breast cancer tissues are commonly higher than the LOELs observed in this study, parabens may play some role via ERR? in the carcinogenesis of human breast cancer. In addition, parabens may have significant effects on breast cancer patients who are taking tamoxifen, as ERR? is regarded as a treatment target for tamoxifen. - Highlights: An oestrogen-related receptor ? coactivator recruiting assay was developed. Strong binding activities of parabens with oestrogen-related receptor ? were found. The paraben levels reported in breast cancer tissues were higher than their LOELs. Parabens may play some role via ERR? in the carcinogenesis of human breast cancer. Parabens

  9. Superacid catalysis of light hydrocarbon conversion. DOE PETC third quarterly report, February 25, 1994--May 24, 1994

    SciTech Connect

    Gates, B.C.

    1995-12-31

    Environmental concerns are leading to the replacement of aromatic hydrocarbons in gasoline by high-octane-number branched paraffins and oxygenated compounds such as methyl t-butyl ether. The ether is produced from methanol and isobutylene, and the latter can be formed from n-butane by isomerization followed by dehydrogenation. Paraffin isomerization reactions are catalyzed by very strong acids such as aluminum chloride supported on alumina. The aluminum chloride-containing catalysts are corrosive, and their disposal is expensive. Alternatively, hydroisomerization is catalyzed by zeolite-supported metals at high temperatures, but high temperatures do not favor branched products at equilibrium. Thus there is a need for improved catalysts and processes for the isomerization of n-butane and other straight-chain paraffins. Consequently, researchers have sought for solid acids that are noncorrosive and active enough to catalyze isomerization of paraffins at low temperatures. For example, sulfated zirconia catalyzes isomerization of n-butane at temperatures as low as 25{degrees}C. The addition of iron and manganese promoters has been reported to increase the activity of sulfated zirconia for n-butane isomerization by three orders of magnitude. Although the high activity of this catalyst is now established, the reaction network is not known, and the mechanism has not been investigated. The goal of this work is to investigate low-temperature reactions of light paraffins catalyzed by solid superacids of the sulfated zirconia type. The present report is concerned with catalysis of n-butane conversion catalyzed by the Fe- and Mn- promoted sulfated zirconia described in the previous report in this series.

  10. Superacid catalysis of light hydrocarbon conversion. Final report, August 26, 1993--August 26, 1996

    SciTech Connect

    Gates, B.C.

    1996-12-31

    Motivated by the goal of finding improved catalysts for low- temperature conversion of light alkanes into fuel components or precursors of fuel components, the researchers have investigated sulfated zirconia and promoted sulfated zirconia for conversion of butane, propane, and ethane. Catalyst performance data for sulfated zirconia promoted with iron and manganese show that it is the most active noncorrosive, nonhalide catalyst known for n-butane isomerization, and it is an excellent candidate catalyst for new low- temperature n-butane isomerization processes to make isobutane, which can be converted by established technology into methyl t-butyl ether (MTBE). Various transition metals have been found to work as promoters of sulfated zirconia for n-butane isomerization. The combination of iron and manganese is the best known combination of promoters yet discovered. The iron- and manganese-promoted sulfated zirconia is also a catalyst for conversion of propane and of ethane. Ethane is converted into ethylene and butanes in the presence of the iron- and manganese-promoted sulfated zirconia; propane is also converted into butane, among other products. However, the activities of the catalyst for these reactions are orders of magnitude less than the activity for n-butane conversion, and there is no evidence that the catalyst would be of practical value for conversion of alkanes lighter than butane. The product distribution data for ethane and propane conversion provide new insights into the nature of the catalyst and its acidity. These data suggest the involvement of Olah superacid chemistry, whereby the catalyst protonates the alkane itself, giving carbonium ions (as transition states). The mechanism of protonation of the alkane may also pertain to the conversion of butane, but there is good evidence that the butane conversion also proceeds via alkene intermediates by conventional mechanisms of carbenium ion formation and rearrangement.

  11. Predicted concentrations in new relocatable classrooms of volatile organic compounds emitted from standard and alternate interior finish materials

    SciTech Connect

    Hodgson, Alfred T.; Fisk, William J.; Shendell, Derek G.; Apte, Michael G.

    2001-07-01

    Relocatable classrooms (RCs) are widely employed by California school districts to satisfy rapidly expanding space requirements due to population growth and class size reduction policies. There is public concern regarding indoor environmental quality (IEQ) in schools, particularly in RCs, but very little data to support or dispel these concerns. Several studies are investigating various aspects of IEQ in California schools. This laboratory-based study focused on evaluating the emissions of toxic and/or odorous volatile organic compounds (VOCs), including formaldehyde and acetaldehyde, from materials used to finish the interiors of new RCs. Furthermore, the study implemented a procedure for VOC source reduction by testing and selecting lower-emitting materials as substitutes for standard materials. In total, 17 standard and alternate floor coverings, wall panels and ceiling panels were quantitatively tested for emissions of VOCs using smallscale environmental chambers. Working with the largest northern California manufacturer of conventional RCs and two school districts, specifications were developed for four new RCs to be produced in early summer 2001. Two of these will be predominantly finished with standard materials. Alternate carpet systems, an alternate wall panel covering and an alternate ceiling panel were selected for the two other RCs based on the results of the laboratory study and considerations of cost and anticipated performance and maintenance. Particular emphasis was placed on reducing the concentrations of VOCs on California agency lists of toxic compounds. Indoor concentrations of toxic and odorous VOCs were estimated for the four classrooms by mass balance using the measured VOC emission factors, exposed surface areas of the materials in the RCs, and three ventilation rate scenarios. Results indicate that reductions in the concentrations of formaldehyde, acetaldehyde phenol, di(ethylene glycol) butyl ether, vinyl acetate, 1,2,4-trimethylbenzene

  12. The origin and fate of organic pollutants from the combustion of alternative fuels

    SciTech Connect

    1995-06-01

    The overall objective of this project is to determine the impact of alternative fuels on air quality, particularly ozone formation. The objective will be met through three steps: (1) qualitative identification of alternative fuel combustion products, (2) quantitative measurement of specific emission levels of these products, and (3) determination of the fate of the combustion products in the atmosphere. The alternative fuels of interest are methanol, ethanol, natural gas, and LP gas. The role of the University of Dayton Research Institute (UDRI) in this project is two-fold. First, fused silica flow reactor instrumentation is being used to obtain both qualitative identification and quantitative data on the thermal degradation products from the fuel-lean (oxidative), stoichiometric, and fuel-rich (pyrolytic) decomposition of methanol, ethanol, liquefied petroleum gas, and natural gas. Secondly, a laser photolysis/laser-induced fluorescence (LP/LIF) apparatus is being used to determine the rates and mechanisms of reaction of selected degradation products under atmospheric conditions. This draft final report contains the results of the second year of the study. The authors initially discuss the results of their flow reactor studies. This is followed by a discussion of the initial results from their LP/LIF studies of the reaction of hydroxyl (OH) radicals with methanol and ethanol. In the coming year, they plan to obtain quantitative data on the oxidation of methyl-t-butyl-ether and reformulated gasoline under fuel-lean, stoichiometric, and fuel-rich conditions. They also plan to conduct a mechanistic analysis of the reaction of OH with acetaldehyde and formaldehyde over an extended temperature range.

  13. Numerical study of the effect of oxygenated blending compounds on soot formation in shock tubes

    SciTech Connect

    Boehm, H.; Braun-Unkhoff, M.

    2008-04-15

    This numerical study deals with the influence of blends on the amount of soot formed in shock tubes, which were simulated by assuming a homogeneous plug flow reactor model. For this purpose, first, the reaction model used here was validated against experimental results previously obtained in the literature. Then, the soot volume fractions of various mixtures of methyl tert-butyl ether (MTBE)-benzene, isobutene-benzene, methanol-benzene, and ethanol-benzene diluted in argon were simulated and compared to the results of benzene-argon pyrolysis at 1721 K and 5.4 MPa. For MTBE, isobutene, methanol, and ethanol, small amounts of additives to benzene-argon mixtures promoted soot formation, for the shock tube model assumed, while higher concentrations of these additives led to smaller soot volume fractions in comparison to pure benzene-argon pyrolysis. The most significant soot promotion effect was found for the additives MTBE and isobutene. The channel for MTBE decomposition producing isobutene and methanol is very effective at temperatures beyond 1200 K. Thus, both MTBE-benzene and isobutene-benzene mixtures diluted in argon showed rather similar behavior in regard to soot formation. Special emphasis was directed toward the causes for the concentration-dependent influence of the blends on the amount of soot formed. Aromatic hydrocarbons and acetylene were identified as key gas-phase species that determine the trends in the formation of soot of various mixtures. From reaction flux analysis for phenanthrene, it was deduced that the combinative routes including phenyl species play a major role in forming PAHs, especially at early reaction times. It is found that the additives play an important role in providing material to grow side chains, such as by reaction channels including phenylacetylene or benzyl, which are confirmed to form aromatic hydrocarbons and thus to influence the amount of soot formed, particularly when the concentrations of the blends are increased

  14. Synthesis, Protonation, and Reduction of Ruthenium–Peroxo Complexes with Pendent Nitrogen Bases

    SciTech Connect

    Tronic, Tristan A.; Kaminsky, Werner; Coggins, Michael K.; Mayer, James M.

    2012-10-15

    Cyclopentadienyl and pentamethylcyclopentadienyl ruthenium(II) complexes have been synthesized with cyclic (RPCH2NR'CH2)2 ligands, with the goal of using these [CpR"Ru(PR2NR'2)]+ complexes for catalytic O2 reduction to H2O (R = t-butyl, phenyl; R' = benzyl, phenyl; R" = methyl, H). In each compound, the Ru is coordinated to the two phosphines, positioning the amines of the ligand in the second coordination sphere where they may act as proton relays to a bound dioxygen ligand. The phosphine, amine, and cyclopentadienyl substituents have been systematically varied in order to understand the effects of each of these parameters on the properties of the complexes. These CpR"Ru(PR2NR'2)+ complexes react with O2 to form η2-peroxo complexes, which have been characterized by NMR, IR, and X-ray crystallography. The peak reduction potentials of the O2 ligated complexes have been shown by cyclic voltammetry to vary as much as 0.1 V upon varying the phosphine and amine. In the presence of acid, protonation of these complexes occurs at the pendent amine, forming a hydrogen bond between the protonated amine and the bound O2. The ruthenium–peroxo complexes decompose upon reduction, precluding catalytic O2 reduction. Finally, the irreversible reduction potentials of the protonated O2 complexes depend on the basicity of the pendent amine, giving insight into the role of the proton relay in facilitating reduction.

  15. LOW POWER UPCONVERSION FOR SOLAR FUELS PHOTOCHEMISTRY

    SciTech Connect

    Castellano, Felix N.

    2013-08-05

    Earth abundant copper(I) diimine complexes represent a renewable and economically feasible alternative to commonly used heavy metal containing chromophores. In the metal-to-ligand charge transfer (MLCT) excited state, copper(I) diimine complexes typically undergo a significant structural rearrangement, leading to molecules with large Stokes shifts and very short excited state lifetimes, thereby limiting their usefulness as sensitizers in bimolecular electron and triplet energy transfer reactions. Strategically placed bulky substituents on the coordinating phenanthroline ligands have proven useful in restricting the transiently produced excited state Jahn-Teller distortion, leading to longer-lived excited states. By combining bulky sec-butyl groups in the 2- and 9- positions with methyl groups in the 3-,4-, 7-, and 8- positions, a remarkably long-lived (2.8 ?s in DCM) copper(I) bis-phenanthroline complex, [Cu(dsbtmp)2]+, has been synthesized and characterized. Unlike other copper(I) diimine complexes, [Cu(dsbtmp)2]+ also retains a ?s lifetime in coordinating solvents such as acetonitrile and water as a result of the cooperative sterics inherent in the molecular design. Preliminary results on the use of this complex in hydrogen-forming homogeneous photocatalysis is presented. Photon upconversion based on sensitized triplet-triplet annihilation (TTA) represents a photochemical means to generate high-energy photons (or high-energy chemical products) from low-energy excitation, having potential applications in solar energy conversion and solar fuels producing devices. For the first time, synthetically facile and earth abundant Cu(I) MLCT sensitizers have been successfully incorporated into two distinct photochemical upconversion schemes, affording both red-to-green and orange-to-blue wavelength conversions. Preliminary results on aqueous-based photochemical upconversion as well as intramolecular Sn(IV) porphyrins containing axially coordinated aromatic hydrocarbon

  16. Experimental study and chemical analysis of n-heptane homogeneous charge compression ignition combustion with port injection of reaction inhibitors

    SciTech Connect

    Lue, Xingcai; Ji, Libin; Zu, Linlin; Hou, Yuchun; Huang, Cheng; Huang, Zhen

    2007-05-15

    The control of ignition timing in the homogeneous charge compression ignition (HCCI) of n-heptane by port injection of reaction inhibitors was studied in a single-cylinder engine. Four suppression additives, methanol, ethanol, isopropanol, and methyl tert-butyl ether (MTBE), were used in the experiments. The effectiveness of inhibition of HCCI combustion with various additives was compared under the same equivalence ratio of total fuel and partial equivalence ratio of n-heptane. The experimental results show that the suppression effectiveness increases in the order MTBE < isopropanol << ethanol < methanol. But ethanol is the best additive when the operating ranges, indicated thermal efficiency, and emissions are considered. For ethanol/n-heptane HCCI combustion, partial combustion may be observed when the mole ratio of ethanol to that of total fuel is larger than 0.20; misfires occur when the mole ratio of ethanol to that of total fuel larger than 0.25. Moreover, CO emissions strongly depend on the maximum combustion temperature, while HC emissions are mainly dominated by the mole ratio of ethanol to that of total fuel. To obtain chemical mechanistic informations relevant to the ignition behavior, detailed chemical kinetic analysis was conducted. The simulated results also confirmed the retarding of the ignition timing by ethanol addition. In addition, it can be found from the simulation that HCHO, CO, and C{sub 2}H{sub 5}OH could not be oxidized completely and are maintained at high levels if the partial combustion or misfire occurs (for example, for leaner fuel/air mixture). (author)

  17. Nucleophilic substitutions of 1-alkenylcyclopropyl esters and 1-alkynylcyclopropyl chlorides catalyzed by palladium (0)

    SciTech Connect

    Stolle, A. |; Ollivier, J.; Salauen, J.

    1992-05-20

    The 1-ethenylcyclopropylsulfonates 2e,f and 2-cyclopropylideneethyl esters 10b,c, readily available from cyclopropanone hemiacetal 1, undergo regioselective Pd(0) catalyzed nucleophilic substitution via the unsymmetric 1,1-dimethylene-{pi}-allyl complex 23. With stabilized anions (enolates of malonic ester, {beta}-dicarbonyl compounds, {beta}-sulfonyl ester, and Schiff bases as well as acetate anion, sulfonamide anion, etc.) the nucleophilic substitution occurs at the terminal vinylic position exclusively, providing cyclopropylideneethyl derivatives as building blocks of high synthetic potential. Competition experiments have disclosed that 1-ethenylcyclopropyl tosylate (2e) and cyclopropylideneethyl acetate (10b) are more reactive than dimethylallyl acetates 19 and 22, respectively. Use of chiral phosphines as ligands in the palladium catalyst can provide optically active methylenecyclopropane derivatives. With phenyl-, methyl-, and even n-butylzinc chloride as nucleophiles, the reaction apparently proceeds with initial transfer of the organic residue to palladium, followed by reductive elimination entailing tertiary substitution on the cyclopropane ring exclusively; the same type of product is obtained with azide and bis(trimethylsilyl)amide. But the site of hydride attack to yield reduction products depends on the hydride source. 1-Alkynylcyclopropyl chlorides 12, 13, and 14 react only with organozinc chlorides (nonstabilized nucleophiles) to provide mixtures of ethenylidenecyclopropanes 65 and alkynylcyclopropanes 66, via the {sigma}-palladium complexes 69 and 70, while chloride 15 undergoes mainly reduction. Other transition metal catalysts (Ni, Mo) also induce substitutions, but with poorer regioselectivity. 81 refs., 9 figs., 3 tabs.

  18. L-[METHYL-{sup 11}C] Methionine Positron Emission Tomography for Target Delineation in Malignant Gliomas: Impact on Results of Carbon Ion Radiotherapy

    SciTech Connect

    Mahasittiwat, Pawinee; Mizoe, Jun-etsu Hasegawa, Azusa; Ishikawa, Hiroyuki; Yoshikawa, Kyosan; Mizuno, Hideyuki; Yanagi, Takeshi; Takagi, Ryou D.D.S.; Pattaranutaporn, Pittayapoom; Tsujii, Hirohiko

    2008-02-01

    Purpose: To assess the importance of {sup 11}C-methionine (MET)-positron emission tomography (PET) for clinical target volume (CTV) delineation. Methods and Materials: This retrospective study analyzed 16 patients with malignant glioma (4 patients, anaplastic astrocytoma; 12 patients, glioblastoma multiforme) treated with surgery and carbon ion radiotherapy from April 2002 to Nov 2005. The MET-PET target volume was compared with gross tumor volume and CTV, defined by using computed tomography/magnetic resonance imaging (MRI). Correlations with treatment results were evaluated between positive and negative extended volumes (EVs) of the MET-PET target for CTV. Results: Mean volumes of the MET-PET targets, CTV1 (defined by means of high-intensity volume on T2-weighted MRI), and CTV2 (defined by means of contrast-enhancement volume on T1-weighted MRI) were 6.35, 264.7, and 117.7 cm{sup 3}, respectively. Mean EVs of MET-PET targets for CTV1 and CTV2 were 0.6 and 2.2 cm{sup 3}, respectively. The MET-PET target volumes were included in CTV1 and CTV2 in 13 (81.3%) and 11 patients (68.8%), respectively. Patients with a negative EV for CTV1 had significantly greater survival rate (p = 0.0069), regional control (p = 0.0047), and distant control time (p = 0.0267) than those with a positive EV. Distant control time also was better in patients with a negative EV for CTV2 than those with a positive EV (p = 0.0401). Conclusions: For patients with malignant gliomas, MET-PET has a possibility to be a predictor of outcome in carbon ion radiotherapy. Direct use of MET-PET fused to planning computed tomography will be useful and yield favorable results for the therapy.

  19. Differential and integral cross sections for the rotationally inelastic scattering of methyl radicals with H{sub 2} and D{sub 2}

    SciTech Connect

    Tkáč, Ondřej; Orr-Ewing, Andrew J.; Ma, Qianli; Dagdigian, Paul J.; Rusher, Cassandra A.; Greaves, Stuart J.

    2014-05-28

    Comparisons are presented of experimental and theoretical studies of the rotationally inelastic scattering of CD{sub 3} radicals with H{sub 2} and D{sub 2} collision partners at respective collision energies of 680 ± 75 and 640 ± 60 cm{sup −1}. Close-coupling quantum-mechanical calculations performed using a newly constructed ab initio potential energy surface (PES) provide initial-to-final CD{sub 3} rotational level (n, k → n′, k′) integral and differential cross sections (ICSs and DCSs). The DCSs are compared with crossed molecular beam and velocity map imaging measurements of angular scattering distributions, which serve as a critical test of the accuracy of the new PES. In general, there is very good agreement between the experimental measurements and the calculations. The DCSs for CD{sub 3} scattering from both H{sub 2} and D{sub 2} peak in the forward hemisphere for n′ = 2–4 and shift more to sideways and backward scattering for n′ = 5. For n′ = 6–8, the DCSs are dominated by backward scattering. DCSs for a particular CD{sub 3} n → n′ transition have a similar angular dependence with either D{sub 2} or H{sub 2} as collision partner. Any differences between DCSs or ICSs can be attributed to mass effects because the PES is unchanged for CD{sub 3}−H{sub 2} and CD{sub 3}–D{sub 2} collisions. Further comparisons are drawn between the CD{sub 3}–D{sub 2} scattering and results for CD{sub 3}–He presented in our recent paper [O. Tkáč, A. G. Sage, S. J. Greaves, A. J. Orr-Ewing, P. J. Dagdigian, Q. Ma, and M. H. Alexander, Chem. Sci. 4, 4199 (2013)]. These systems have the same reduced mass, but are governed by different PESs.

  20. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A.; Martinez, Rodolfo A.; Unkefer, Clifford J.

    2010-02-16

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group.

  1. Crystal structure of 4-[benzylideneamino]-3-thiophen-2-yl-methyl-4,5-dihydro-1H-[1,2,4] triazole-5-one

    SciTech Connect

    Tanak, H.

    2013-12-15

    The crystal structure of the title compound C{sub 14}H{sub 12}N{sub 4}OS was determined by the X-ray diffraction method. The compound crystallizes in the triclinic space group P-bar1 with Z = 2. The molecule is not planar: the dihedral angle between the triazole and thiophene rings is 73.98(2)°, and that between the triazole and benzene rings is 4.05(2)°. The thiophene ring is disordered over two positions, which are approximately parallel and oppositely oriented. The major component refined to a site-occupancy factor of 0.573(3). An intramolecular C-H...O hydrogen bond generates an S(6) ring motif. In the crystal, molecules are linked together by two pairs of N-H...O interactions (to the same O atom as acceptor), forming inversion dimers. The crystal packing is also stabilized by π-π interactions [centroid-centroid distance is 3.978 Å].

  2. Direct observation of electron transfer across a lipid bilayer: laser photolysis of an asymmetric vesicle system containing chlorophyll, methyl viologen, and EDTA

    SciTech Connect

    Ford, W.E.; Tollin, G.

    1980-01-01

    Electron transfer across lipid bilayer vesicle walls was examined by laser flash photolysis to determine the mechanisms of charge transport across the membrane. The discussion is restricted to vesicles whose walls contain phosphatidylcholine, chlorophyll a, and valinomycin. (ACR)

  3. Synthesis of 2'-deoxy-2'-[.sup.18F]fluoro-5-methyl-1-B-D-arabinofuranosyluracil (.sup.18F-FMAU)

    DOEpatents

    Li, Zibo; Cai, Hancheng; Conti, Peter S

    2014-12-16

    The present invention relates to methods of synthesizing .sup.18F-FMAU. In particular, .sup.18F-FMAU is synthesized using one-pot reaction conditions in the presence of Friedel-Crafts catalysts. The one-pot reaction conditions are incorporated into a fully automated cGMP-compliant radiosynthesis module, which results in a reduction in synthesis time and simplifies reaction conditions. The one-pot reaction conditions are also suitable for the production of 5-substituted thymidine or cytidine analogs. The products from the one-pot reaction (e.g. the labeled thymidine or cytidine analogs) can be used as probes for imaging tumor proliferative activity. More specifically, these [.sup.18F]-labeled thymidine or cytidine analogs can be used as a PET tracer for certain medical conditions, including, but not limited to, cancer disease, autoimmunity inflammation, and bone marrow transplant.

  4. Extension of structure-reactivity correlations for the hydrogen abstraction reaction to methyl radical and comparison to chlorine atom, bromine atom, and hydroxyl radical

    DOE PAGES [OSTI]

    Poutsma, Marvin L.

    2016-06-07

    In this study, we presented structure-reactivity correlations for the gas-phase rate constants for hydrogen abstraction from sp3-hybridized carbon by three electrophilic radicals (X• + HCR3 → XH + •CR3; X = Cl•, HO•, and Br); the reaction enthalpy effect was represented by the independent variable ΔrH and the polar effect by the independent variables F and R, the Hammett-Taft constants for field/inductive and resonance effects. Here we present a parallel treatment for the less electronegative CH3•. In spite of a limited and scattered data base, the resulting least-squares fit [log k437(CH3•) = 0.0251(ΔrH) + 0.96(ΣF) 0.56(ΣR) – 19.15] was modestlymore » successful and useful for initial predictions. As expected, the polar effect appears to be minor and its directionality, i.e., the philicity of CH3, may depend on the nature of the substituents.« less

  5. [Research and workshop on alternative fuels for aviation. Final report

    SciTech Connect

    1999-09-01

    The Renewable Aviation Fuels Development Center (RAFDC) at Baylor University was granted U. S. Department of Energy (US DOE) and Federal Aviation Administration (FAA) funds for research and development to improve the efficiency in ethanol powered aircraft, measure performance and compare emissions of ethanol, Ethyl Tertiary Butyl Ether (ETBE) and 100 LL aviation gasoline. The premise of the initial proposal was to use a test stand owned by Engine Components Inc. (ECI) based in San Antonio, Texas. After the grant was awarded, ECI decided to close down its test stand facility. Since there were no other test stands available at that time, RAFDC was forced to find additional support to build its own test stand. Baylor University provided initial funds for the test stand building. Other obstacles had to be overcome in order to initiate the program. The price of the emission testing equipment had increased substantially beyond the initial quote. Rosemount Analytical Inc. gave RAFDC an estimate of $120,000.00 for a basic emission testing package. RAFDC had to find additional funding to purchase this equipment. The electronic ignition unit also presented a series of time consuming problems. Since at that time there were no off-the-shelf units of this type available, one had to be specially ordered and developed. FAA funds were used to purchase a Super Flow dynamometer. Due to the many unforeseen obstacles, much more time and effort than originally anticipated had to be dedicated to the project, with much of the work done on a volunteer basis. Many people contributed their time to the program. One person, mainly responsible for the initial design of the test stand, was a retired engineer from Allison with extensive aircraft engine test stand experience. Also, many Baylor students volunteered to assemble the. test stand and continue to be involved in the current test program. Although the program presented many challenges, which resulted in delays, the RAFDC's test stand is

  6. Search for: All records | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    pathway in E. coli for the high-yield production of 3-methyl-3-buten-1-ol, 3-methyl-2-buten-1-ol, and 3-methyl-1-butanol, three C5 alcohols that serve as potential biofuels. ...

  7. Effects of support on bifunctional methanol oxidation pathways catalyzed by polyoxometallate keggin clusters

    SciTech Connect

    Liu, Haichao; Iglesia, Enrique

    2003-12-26

    H5PV2Mo10O40 polyoxometallate Keggin clusters supported on ZrO2, TiO2, SiO2, and Al2O3 are effective catalysts for CH3OH oxidation reactions to form HCHO, methyl formate (MF), and dimethoxymethane (DMM). Rates and selectivities and the structure of supported clusters depend on the surface properties of the oxide supports. Raman spectroscopy showed that Keggin structures remained essentially intact on ZrO2, TiO2, and SiO2 after treatment in air at 553 K, but decomposed to MoOx and VOx oligomers on Al2O3. Accessible protons per Keggin unit (KU) were measured during CH3OH oxidation by titration with 2,6-di-tert-butyl pyridine. For similar KU surface densities (0.28 0.37 KU/nm2), the number of accessible protons was larger on SiO2 than on ZrO2 and TiO2 and much smaller on Al2O3 supports, even though residual dimethyl ether (DME) synthesis rates after titrant saturation indicated that the fractional dispersion of KU was similar on the first three supports. These effects of support on structure and on H+ accessibility reflect varying extents of interaction between polyoxometallate clusters and supports. Rates of CH3OH oxidative dehydrogenation per KU were higher on ZrO2 and TiO2 than on SiO2 at similar KU surface densities (0.28 0.37 KU/nm2) and dispersion, indicating that redox properties of Keggin clusters depend on the identity of the support used to disperse them. ZrO2 and TiO2 supports appear to enhance the reducibility of anchored polyoxometallate clusters. Rates were much lower on Al2O3, because structural degradation led to less reactive MoOx and VOx domains. CH3OH reactions involve primary oxidation to form HCHO and subsequent secondary reactions to form DMM and MF. These reactions involve HCHO CH3OH acetalization steps leading to methoxymethanol (CH3OCH2OH) or hemiacetal intermediates, which condense with CH3OH on acid sites to form DMM or dehydrogenate to form MF. COx formation rates are much lower than those of other reactions, and DME forms in parallel

  8. Method for cleaning solution used in nuclear fuel reprocessing

    DOEpatents

    Tallent, Othar K. (Oak Ridge, TN); Crouse, David J. (Oak Ridge, TN); Mailen, James C. (Oak Ridge, TN)

    1982-01-01

    Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.

  9. GETO2FAC

    Energy Science and Technology Software Center

    2005-05-01

    An implementation of a model that accounts for diffusion limited oxidation effects [Ref.1] in the chemical aging response of butyl o-ring seals. Given the oxygen concentration, this model calculates a chemical aging parameter that regulates how the butyl material relaxes with time [Ref.2] inside a chemical aging constitutive model. This implementation is in the form of a subroutine that is called by a Sandia developed multi-strategy iterative code for solid mechanics analysis code called JAS3D.

  10. Method for cleaning solution used in nuclear fuel reprocessing

    DOEpatents

    Tallent, O.K.; Crouse, D.J.; Mailen, J.C.

    1980-12-17

    Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.

  11. Preparation of Propylene Glycol Fatty Acid Ester or Other Glycol...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    uses methyl esters of vegetable oils that are referred to as "biodiesel" fuels. One particularly useful biodiesel is soybean oil biodiesel (methyl soyate) that is projected to be ...

  12. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine ...

  13. Non-phosphate degradation products of tributyl phosphate

    SciTech Connect

    Tashiro, Y.; Kodama, R.; Sugai, H.

    1995-12-01

    Tributyl phosphate(TBP) was compulsively degraded with nitric acid and/or uranium nitrate at elevated temperature around 105{degrees}C. Experimental results indicates major non-phosphate degradation products are butyl nitrate (C{sub 4}H{sub 9}NO{sub 3}), propionic acid (C{sub 2}H{sub 5}COOH), acetic acid (CH{sub 3}COOH), butyric acid (C{sub 3}H{sub 7}COOH) and butyl alcohol (C{sub 4}H{sub 9}OH) in ascending order of quantity. Degrading rate in uranium free system is less than that in uranium coexisting system. Carboxylic acids were not produced in uranium free system, and only acetic acid was identified in case of without supplying nitric acid from aqueous phase. Moreover, from the experimental study on the reactivity of each non-phosphate product with nitric acid, carboxylic acids were identified as byproducts of butyl alcohol and butyl nitrate, and each carboxylic acid was stable in these degrading conditions. Finally, butyl alcohol is considered as one of intermediate products to butyl nitrate and carboxylic acids. From this study, the non-phosphate degradation products of TBP is identified and the degrading reaction pass is proposed. Extraction behavior of each non-phosphate product and reactivity of degraded TBP are also elucidated.

  14. Synthesis of acrylates and Methacrylates from Coal-Derived Syngas

    SciTech Connect

    1997-05-12

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the U.S. Department of Energy, Federal Energy Technology Center. This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Eastman has focused on the propionate synthesis step. The resultant Mo catalysts work efficiently at much less severe conditions (170{degrees}C and 30 atm) than the conventional Ni catalysts (270{degrees} C and 180 atm). Bechtel has performed an extensive cost analysis which shows that Eastman`s propionate synthesis step is competitive with other technologies to produce the anhydride. Eastman and Bechtel have also compared the RTI- Eastman-Bechtel three-step methanol route to five other process routes to MMA. The results show that the product MMA can be produced at 520/lb, for a 250 Mlb/year MMA plant, and this product cost is competitive to all other process routes to MMA, except propyne carbonylation. In the second step, RTI and Eastman have developed active and stable V-SI-P tertiary metal oxide catalysts, Nb/Si0{sub 2}, and Ta/Si0{sub 2} catalysts for condensation of propionic anhydride or propionic acid with formaldehyde. RTI has demonstrated a novel correlation among the catalyst acid-base properties, condensation reaction yield, and long-term catalyst performance. Eastman and Bechtel have used the RTI experimental results of a 20 percent Nb/Si0{sub 2} catalyst, in terms of reactant conversions, MAA selectivities, and MAA yield, for their economic analysis. Recent research focuses on enhancing the condensation reaction yields, a better understanding of the acid-base property correlation and enhancing the catalyst lifetime.

  15. Subsurface Stratigraphy, Structure, and Alteration in the Senator...

    OpenEI (Open Energy Information) [EERE & EIA]

    protolith, contains a downward-increasing component (up to at least 15 vol.%) of brick-red, Tertiary tuffaceous volcanic rock and its comminuted equivalent. The alluvium is...

  16. Energetic

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... It must saturate at finite amplitude in a transition from its linear behavior, either through tertiary instability also transient, modification of the electrostatic structure ...

  17. untitled

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    GAME CHANGING TECHNOLOGY OF POLYMERIC-SURFACTANTS FOR TERTIARY OIL RECOVERY IN THE ILLINOIS BASIN 10123-03.Final September 30, 2014 PI: Dr. Yongchun Tang Power Environmental...

  18. Spin Equilibria in Monomeric Manganocenes: Solid State Magnetic and EXAFS Studies

    SciTech Connect

    Walter, M. D.; Sofield, C. D.; Booth, C. H.; Andersen, R. A.

    2009-02-09

    Magnetic susceptibility measurements and X-ray data confirm that tert-butyl-substituted manganocenes [(Me{sub 3}C){sub n}C{sub 5}H{sub 5?n}]{sub 2}Mn (n = 1, 2) follow the trend previously observed with the methylated manganocenes; that is, electron-donating groups attached to the Cp ring stabilize the low-spin (LS) electronic ground state relative to Cp{sub 2}Mn and exhibit higher spin-crossover (SCO) temperatures. However, introducing three CMe{sub 3} groups on each ring gives a temperature-invariant high-spin (HS) state manganocene. The origin of the high-spin state in [1,2,4-(Me{sub 3}C){sub 3}C{sub 5}H{sub 2}]{sub 2}Mn is due to the significant bulk of the [1,2,4-(Me{sub 3}C){sub 3}C{sub 5}H{sub 2}]{sup -} ligand, which is sufficient to generate severe inter-ring steric strain that prevents the realization of the low-spin state. Interestingly, the spin transition in [1,3-(Me{sub 3}C){sub 2}C{sub 5}H{sub 3}]{sub 2}Mn is accompanied by a phase transition resulting in a significant irreversible hysteresis ({Delta}T{sub c} = 16 K). This structural transition was also observed by extended X-ray absorption fine-structure (EXAFS) measurements. Magnetic susceptibility studies and X-ray diffraction data on SiMe{sub 3}-substituted manganocenes [(Me{sub 3}Si){sub n}C{sub 5}H{sub 5-n}]{sub 2}Mn (n = 1, 2, 3) show high-spin configurations in these cases. Although tetra- and hexasubstituted manganocenes are high-spin at all accessible temperatures, the disubstituted manganocenes exhibit a small low-spin admixture at low temperature. In this respect it behaves similarly to [(Me{sub 3}C)(Me{sub 3}Si)C{sub 5}H{sub 3}]{sub 2}Mn, which has a constant low-spin admixture up to 90 K and then gradually converts to high-spin. Thermal spin-trapping can be observed for [(Me{sub 3}C)(Me{sub 3}Si)C{sub 5}H{sub 3}]{sub 2}Mn on rapid cooling.

  19. Supramolecular Catalysis of Orthoformate Hydrolysis in Basic Solution: An Enzyme-Like Mechanism

    SciTech Connect

    Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2008-04-17

    Magnetic susceptibility measurements and X-ray data confirm that tert-butyl substituted manganocenes [(Me{sub 3}C){sub n}C{sub 5}H{sub 5-n}]{sub 2}Mn (n= 1, 2) follow the trend previously observed with the methylated manganocenes, i.e., electron donating groups attached to the Cp ring stabilize the low-spin (LS) electronic ground state relative to Cp{sub 2}Mn and exhibit higher spin-crossover (SCO) temperatures. However, introducing three CMe3 groups on each ring gives a temperature invariant high-spin (HS) state manganocene. The origin of the high-spin state in [1,2,4-(Me{sub 3}C){sub 3}C{sub 5}H{sub 2}]{sub 2}Mn is due to the significant bulk of the [1,2,4-(Me{sub 3}C){sub 3}C{sub 5}H{sub 2}]{sup -} ligand, which is sufficient to generate severe inter-ring steric strain that prevents the realization of the low-spin state. Interestingly, the spin transition in [1,3-(Me{sub 3}C){sub 2}C{sub 5}H{sub 3}]{sub 2}Mn is accompanied by a phase transition resulting in a significant irreversible hysteresis ({Delta}T{sub c} = 16 K). This structural transition was also observed by extended X-ray absorption fine-structure (EXAFS) measurements. Magnetic susceptibility studies and X-ray diffraction data on SiMe{sub 3} substituted manganocenes [(Me{sub 3}Si){sub n}C{sub 5}H{sub 5-n}]{sub 2}Mn (n= 1, 2, 3) show high-spin configuration in these cases. Although tetra- and hexasubstituted manganocenes are high-spin at all accessible temperatures, the disubstituted manganocenes exhibit a small low-spin admixture at low temperature. In this respect it behaves similarly to [(Me{sub 3}C)(Me{sub 3}Si)C{sub 5}H{sub 3}]{sub 2}Mn, which has a constant low-spin admixture up to 90 K and then gradually converts to high-spin. Thermal spin-trapping can be observed for [(Me{sub 3}C)(Me{sub 3}Si)C{sub 5}H{sub 3}]{sub 2}Mn on rapid cooling.

  20. Middlesex FUSRAP Site - A Path to Site-Wide Closure - 13416

    SciTech Connect

    Miller, David M.; Edge, Helen

    2013-07-01

    The road-map to obtaining closure of the Middlesex Sampling Plant FUSRAP site in Middlesex, New Jersey (NJ) has required a multi-faceted approach, following the CERCLA Process. Since 1998, the US ACE, ECC, and other contractors have completed much of the work required for regulatory acceptance of site closure with unrestricted use. To date, three buildings have been decontaminated, demolished, and disposed of. Two interim storage piles have been removed and disposed of, followed by the additional removal and disposal of over 87,000 tons of radiologically and chemically-impacted subsurface soils by the summer of 2008. The US ACE received a determination from the EPA for the soils Operable Unit, (OU)-1, in September 2010 that the remedial excavations were acceptable, and meet the criteria for unrestricted use as required by the 2004 Record of Decision (ROD) for OU-1. Following the completion of OU-1, the project delivery team performed additional field investigation of the final Operable Unit for Middlesex, OU-2, Groundwater. As of December 2012, the project delivery team has completed a Supplemental Remedial Investigation, which will be followed with a streamlined Feasibility Study, Proposed Plan, and ROD. Several years of historical groundwater data was available from previous investigations and the FUSRAP Environmental Surveillance Program. Historical data indicated sporadic detections of Volatile Organic Compounds (VOCs), primarily trichloroethylene (TCE), carbon tetrachloride (CT), and methyl tert-butyl ether (MTBE), with no apparent trend or pattern indicating extent or source of the VOC impact. In 2008, the project delivery team initiated efforts to re-assess the Conceptual Site Model (CSM) for groundwater. The bedrock was re-evaluated as a leaky multi-unit aquifer, and a plan was developed for additional investigations for adequate bedrock characterization and delineation of groundwater contaminated primarily by CT, TCE, and tetrachloroethene (PCE). The