National Library of Energy BETA

Sample records for methane emission factors

  1. Methane emissions from MBT landfills

    SciTech Connect

    Heyer, K.-U. Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD

  2. EIA - Greenhouse Gas Emissions - Methane Emissions

    Gasoline and Diesel Fuel Update

    3. Methane Emissions 3.1. Total emissions The major sources of U.S. methane emissions are energy production, distribution, and use; agriculture; and waste management (Figure 17). U.S. methane emissions in 2009 totaled 731 MMTCO2e, 0.9 percent higher than the 2008 total of 724 MMTCO2e (Table 17). Methane emissions declined steadily from 1990 to 2001, as emissions from coal mining and landfills fell, then rose from 2002 to 2009 as a result of moderate increases in emissions related to energy,

  3. Methane emissions from rice fields: The effects of climatic and agricultural factors. Final report, March 1, 1994--April 30, 1997

    SciTech Connect

    Khalil, M.A.K.; Rasmussen, R.A.

    1997-10-01

    The work reported was performed for the purpose of refining estimates of methane emissions from rice fields. Research performed included methane flux measurements, evaluation of variables affecting emissions, compilation of a data base, and continental background measurements in China. The key findings are briefly described in this report. Total methane emissions, seasonal patterns, and spatial variability were measured for a 7-year periods. Temperature was found to be the most important variable studies affecting methane emissions. The data archives for the research are included in the report. 5 refs., 6 figs.

  4. Methane sources and emissions in Italy

    SciTech Connect

    Guidotti, G.R.; Castagnola, A.M.

    1994-12-31

    Methane emissions in Italy were assessed in the framework of the measures taken to follow out the commitments undertaken at the 1992 U.N. Conference for Environment and Development. Methane emissions of anthropic origin were estimated to be in the range of 1.6 to 2.3 million ton of methane per year. Some of these methane sources (natural gas production, transmission and distribution; rice paddies; managed livestock enteric fermentation and waste; solid waste landfills) are given here particular care as they mainly contribute to the total methane emission budget.

  5. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Workshops Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop The Advanced ...

  6. Estimating global and North American methane emissions with high...

    Office of Scientific and Technical Information (OSTI)

    methane emissions with high spatial resolution using GOSAT satellite data Citation Details In-Document Search Title: Estimating global and North American methane emissions ...

  7. Mitigation options for methane emissions from rice fields in the Philippines

    SciTech Connect

    Lantin, R.S.; Buendia, L.V.; Wassmann, R.

    1996-12-31

    The contribution of Philippine rice production to global methane emission and breakthroughs in methane emission studies conducted in the country are presented in this paper. A significant impact in the reduction of GHG emissions from agriculture can be achieved if methane emissions from ricefields can be abated. This study presents the contribution of Philippine rice cultivation to global methane emission and breakthroughs in methane emission studies in the country which address the issue of mitigation. Using the derived emission factors from local measurements, rice cultivation contributes 566.6 Gg of methane emission in the Philippines. This value is 62% of the total methane emitted from the agriculture sector. The emission factors employed which are 78% of the IPCC value for irrigated rice and 95% for rainfed rice were derived from measurements with an automatic system taken during the growth duration in the respective ecosystems. Plots drained for 2 weeks at midtillering and before harvest gave a significant reduction in methane emission as opposed to continuously flooded plots and plots drained before harvest. The cultivar Magat reduced methane emission by 50% as compared to the check variety IR72. The application of ammonium sulfate instead of urea reduced methane emission by 10% to 34%. Addition of 6 t ha{sup {minus}1} phosphogypsum in combination with urea reduced emission by 74% as opposed to plots applied with urea alone. It is also from the results of such measurements that abatement strategies are based as regards to modifying treatments such as water management, fertilization, and choice of rice variety. It is not easy to identify and recommend mitigation strategies that will fit a particular cropping system. However, the identified mitigation options provide focus for the abatement of methane emission from ricefields.

  8. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Controlling Methane Emissions in the Natural Gas Sector: A Review of Federal & State Regulatory Frameworks Governing Production, Processing, Transmission, and Distribution ...

  9. DOE Announces $13 Million to Quantify and Mitigate Methane Emissions...

    Energy.gov [DOE] (indexed site)

    to twelve multi-year research projects intended to develop cost efficient and effective ways to mitigate methane emissions from natural gas pipeline and storage infrastructure. ...

  10. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Rather, methane emission reductions from this sector have typically occurred as a co-benefit of policies that target air pollution (such as smog) and improve safety. In general, ...

  11. Valuing the ozone-related health benefits of methane emission controls

    DOE PAGES [OSTI]

    Sarofim, Marcus C.; Waldhoff, Stephanie T.; Anenberg, Susan C.

    2015-06-29

    Methane is a greenhouse gas that oxidizes to form ground-level ozone, itself a greenhouse gas and a health-harmful air pollutant. Reducing methane emissions will both slow anthropogenic climate change and reduce ozone-related mortality. We estimate the benefits of reducing methane emissions anywhere in the world for ozone-related premature mortality globally and for eight geographic regions. Our methods are consistent with those used by the US Government to estimate the social cost of carbon (SCC). We find that the global short- and long-term premature mortality benefits due to reduced ozone production from methane mitigation are (2011) $790 and $1775 per tonnemore » methane, respectively. These correspond to approximately 70 and 150 % of the valuation of methane’s global climate impacts using the SCC after extrapolating from carbon dioxide to methane using global warming potential estimates. Results for monetized benefits are sensitive to a number of factors, particularly the choice of elasticity to income growth used when calculating the value of a statistical life. The benefits increase for emission years further in the future. Regionally, most of the global mortality benefits accrue in Asia, but 10 % accrue in the United States. As a result, this methodology can be used to assess the benefits of methane emission reductions anywhere in the world, including those achieved by national and multinational policies.« less

  12. Valuing the ozone-related health benefits of methane emission controls

    SciTech Connect

    Sarofim, Marcus C.; Waldhoff, Stephanie T.; Anenberg, Susan C.

    2015-06-29

    Methane is a greenhouse gas that oxidizes to form ground-level ozone, itself a greenhouse gas and a health-harmful air pollutant. Reducing methane emissions will both slow anthropogenic climate change and reduce ozone-related mortality. We estimate the benefits of reducing methane emissions anywhere in the world for ozone-related premature mortality globally and for eight geographic regions. Our methods are consistent with those used by the US Government to estimate the social cost of carbon (SCC). We find that the global short- and long-term premature mortality benefits due to reduced ozone production from methane mitigation are (2011) $790 and $1775 per tonne methane, respectively. These correspond to approximately 70 and 150 % of the valuation of methane’s global climate impacts using the SCC after extrapolating from carbon dioxide to methane using global warming potential estimates. Results for monetized benefits are sensitive to a number of factors, particularly the choice of elasticity to income growth used when calculating the value of a statistical life. The benefits increase for emission years further in the future. Regionally, most of the global mortality benefits accrue in Asia, but 10 % accrue in the United States. As a result, this methodology can be used to assess the benefits of methane emission reductions anywhere in the world, including those achieved by national and multinational policies.

  13. Seasonal Production and Emission of Methane from Rice Fields, Final Report

    SciTech Connect

    Khalil, M. Aslam K.; Rasmussen,Reinhold A.

    2002-12-03

    B 139 - Methane (CH4) is a greenhouse gas regarded second only to carbon dioxide in its ability to cause global warming. Methane is important because of its relatively fast increase, and also because it is, per molecule, some 60 times more effective than carbon dioxide in causing global warming. The largest present anthropogenic sources of methane are rice fields, cattle and biomass burning. The global emissions from these sources are still not well known. In the middle 1980s there were few available data on methane emissions from rice fields leading to estimates of a global source between 100-280 Tg/yr. Extensive worldwide research during the last decade has shown that the global emissions from rice fields are more likely to be in the range of 30-80Tg/yr. While this work has led to a substantial reduction in the estimated emissions, the uncertainty is still quite large, and seriously affects our ability to include methane in integrated assessments for future climate change and environmental management.China dominated estimates of methane emissions from rice fields because it was, and is, the largest producer of rice, and major increases in rice production had taken place in the country over the last several decades. This report summarizes the work in Sichuan Province, China, in each of the following areas: the design of the experiment; the main results on methane emissions from rice fields, delineating the factors controlling emissions; production of methane in the soil; a survey of water management practices in sample of counties in Sichuan province; and results of ambient measurements including data from the background continental site. B139

  14. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice

    SciTech Connect

    Su, J.; Hu, C.; Yan, X.; Jin, Y.; Chen, Z.; Guan, Q.; Wang, Y.; Zhong, D.; Jansson, Georg C.; Wang, F.; Schnrer, Anna; Sun, Chuanxin

    2015-07-22

    Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7–17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25–100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades4. There is an urgent need to establish sustainable technologies for increasing rice production while reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement5. Despite proposed strategies to increase rice productivity and reduce methane emissions4,6, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2, conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased methane

  15. A Path to Reduce Methane Emissions from Gas Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A Path to Reduce Methane Emissions from Gas Systems A Path to Reduce Methane Emissions from Gas Systems July 29, 2014 - 3:33pm Addthis A researcher evaluates methane produced in a unique conservation process. Methane is both a potent greenhouse gas and valuable energy resource.| Photo courtesy of the Energy Department. A researcher evaluates methane produced in a unique conservation process. Methane is both a potent greenhouse gas and valuable energy resource.| Photo courtesy of the Energy

  16. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    SciTech Connect

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31

    prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

  17. Temporal patterns of methane emissions from wetland rice fields treated by different modes of N application

    SciTech Connect

    Wassmann, R.; Neue, H.U.; Lantin, R.S.; Aduna, J.B.; Alberto, M.C.R.; Andales, M.J.; Tan, M.J.; Hoffmann, H.; Papen, H.; Gon, H.A.C. D. van der

    1994-08-20

    Methane emission rates from wetland rice fields were determined in Los Banos (Philipppines) using an automatic system that allows continuous measurements over time. Methane emission was monitored in an irrigated Aquandic Epiaqualf planted to rice cultivar IR72. Urea fertilizer was applied using four modes: (1) broadcast 10 days after transplanting, (2) broadcast at transplanting, (3) broadcast and incorporated at final harrowing, and (4) deep placement as sulfur-coated granules. The treatments were laid out in a randomized complete block design with four replicates. Measurements were done in the 1991 wet season, 1992 dry season (four treatments), and the 1992 wet season (only treatment 3). Methane emission rates from the experimental plots showed pronounced season and diel variations. The diel pattern of methane emission rates followed a consistent pattern, with highest rates observed in the early afternoon and lowest rates in the early morning. Methane emission rate was generally highest at the ripening stage. The average methane emission rate during the 1992 dry season (190 mg CH{sub 4} m{sup {minus}2} d{sup {minus}1}) exceeded the average flux rates of the 1992 wet season (79 mg CH{sub 4} m{sup {minus}2} d{sup {minus}1}) by a factor of 2.4. The total methane emitted from these flooded rice fields amounted to 19 g CH{sub 4} m{sup {minus}2} in the dry season with rice yields of 5.2-6.3 ha{sup {minus}1} and 7 g CH{sub 4} m{sup {minus}2} in the wet season with rice yields of 2.4-3.3 t ha{sup {minus}1} regardless of the mode of N application. Significant amounts corresponding to 20% of the methane released under waterlogged conditions were released when the soil was drained after harvest. Emission rates increased sharply when the floodwater receded and macropores started to drain. Emission of methane stopped only when the soil became fully aerated. 25 refs., 5 figs., 1 tab.

  18. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional

  19. Understanding the nature of methane emission from rice ecosystems as basis of mitigation strategies

    SciTech Connect

    Buendia, L.V.; Neue, H.U.; Wassmann, R.

    1996-12-31

    Methane is considered as an important Greenhouse gas and rice fields are one of the major atmospheric methane sources. The paper aims to develop sampling strategies and formulate mitigation options based on diel (day and night) and seasonal pattern of methane emission. The study was conducted in 4 countries to measure methane flux using an automatic closed chamber system. A 24-hour bihourly methane emissions were continuously obtained during the whole growing season. Daily and seasonal pattern of methane fluxes from different rice ecosystems were evaluated. Diel pattern of methane emission from irrigated rice fields, in all sites, displayed similar pattern from planting to flowering. Fluxes at 0600, 1200, and 1800 h were important components of the total diel flux. A proposed sampling frequency to accurately estimate methane emission within the growing season was designed based on the magnitude of daily flux variation. Total methane emission from different ecosystems follow the order: deepwater rice > irrigated rice > rainfed rice. Application of pig manure increased total emission by 10 times of that without manure. Green manure application increased emission by 49% of that applied only with inorganic fertilizer. Removal of floodwater at 10 DAP and 35 DAP, within a period of 4 days, inhibited production and emission of methane. The level of variation in daily methane emission and seasonal emission pattern provides useful information for accurate determination of methane fluxes. Characterization of seasonal emission pattern as to ecologies, fertilizer amendments, and water management gives an idea of where to focus mitigation strategies for sustainable rice production.

  20. Critical Factors Driving the High Volumetric Uptake of Methane...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Critical Factors Driving the High Volumetric Uptake of Methane in Cu-3(btc)(2) Previous Next List Hulvey, Zeric; Vlaisavljevich, Bess; Mason, Jarad A.; Tsivion, Ehud; Dougherty,...

  1. Potential Cost-Effective Opportunities for Methane Emission Abatement

    SciTech Connect

    Warner, Ethan; Steinberg, Daniel; Hodson, Elke; Heath, Garvin

    2015-08-01

    The energy sector was responsible for approximately 84% of carbon dioxide equivalent (CO2e) greenhouse gas (GHG) emissions in the U.S. in 2012 (EPA 2014a). Methane is the second most important GHG, contributing 9% of total U.S. CO2e emissions. A large portion of those methane emissions result from energy production and use; the natural gas, coal, and oil industries produce approximately 39% of anthropogenic methane emissions in the U.S. As a result, fossil-fuel systems have been consistently identified as high priority sectors to contribute to U.S. GHG reduction goals (White House 2015). Only two studies have recently attempted to quantify the abatement potential and cost associated with the breadth of opportunities to reduce GHG emissions within natural gas, oil, and coal supply chains in the United States, namely the U.S. Environmental Protection Agency (EPA) (2013a) and ICF (2014). EPA, in its 2013 analysis, estimated the marginal cost of abatement for non-CO2 GHG emissions from the natural gas, oil, and coal supply chains for multiple regions globally, including the United States. Building on this work, ICF International (ICF) (2014) provided an update and re-analysis of the potential opportunities in U.S. natural gas and oil systems. In this report we synthesize these previously published estimates as well as incorporate additional data provided by ICF to provide a comprehensive national analysis of methane abatement opportunities and their associated costs across the natural gas, oil, and coal supply chains. Results are presented as a suite of marginal abatement cost curves (MACCs), which depict the total potential and cost of reducing emissions through different abatement measures. We report results by sector (natural gas, oil, and coal) and by supply chain segment - production, gathering and boosting, processing, transmission and storage, or distribution - to facilitate identification of which sectors and supply chain

  2. Table 11.3 Methane Emissions, 1980-2009 (Million Metric Tons of Methane)

    Energy Information Administration (EIA) (indexed site)

    Methane Emissions, 1980-2009 (Million Metric Tons of Methane) Year Energy Sources Waste Management Agricultural Sources Industrial Processes 9 Total 5 Coal Mining Natural Gas Systems 1 Petroleum Systems 2 Mobile Com- bustion 3 Stationary Com- bustion 4 Total 5 Landfills Waste- water Treatment 6 Total 5 Enteric Fermen- tation 7 Animal Waste 8 Rice Cultivation Crop Residue Burning Total 5 1980 3.06 4.42 NA 0.28 0.45 8.20 10.52 0.52 11.04 5.47 2.87 0.48 0.04 8.86 0.17 28.27 1981 2.81 5.02 NA .27

  3. Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gas Infrastructure R&D and Methane Emissions Mitigation Workshop November 12-13, 2014 Advanced Materials Manufacturing and Innovative Technologies for Natural Gas Pipeline Systems and Components Panel > November 12, 2014 > Pittsburgh, PA > By Daniel Ersoy, GTI Nat. Gas Infrastructure R&D /Methane Emissions Mitigation Workshop, Nov. 2014, Pittsburgh, PA 2 Nat. Gas Infrastructure R&D /Methane Emissions Mitigation Workshop, Nov. 2014, Pittsburgh, PA 2 GTI Company Overview

  4. Atmospheric Inverse Estimates of Methane Emissions from Central California

    SciTech Connect

    Zhao, Chuanfeng; Andrews, Arlyn E.; Bianco, Laura; Eluszkiewicz, Janusz; Hirsch, Adam; MacDonald, Clinton; Nehrkorn, Thomas; Fischer, Marc L.

    2008-11-21

    Methane mixing ratios measured at a tall-tower are compared to model predictions to estimate surface emissions of CH{sub 4} in Central California for October-December 2007 using an inverse technique. Predicted CH{sub 4} mixing ratios are calculated based on spatially resolved a priori CH{sub 4} emissions and simulated atmospheric trajectories. The atmospheric trajectories, along with surface footprints, are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. An uncertainty analysis is performed to provide quantitative uncertainties in estimated CH{sub 4} emissions. Three inverse model estimates of CH{sub 4} emissions are reported. First, linear regressions of modeled and measured CH{sub 4} mixing ratios obtain slopes of 0.73 {+-} 0.11 and 1.09 {+-} 0.14 using California specific and Edgar 3.2 emission maps respectively, suggesting that actual CH{sub 4} emissions were about 37 {+-} 21% higher than California specific inventory estimates. Second, a Bayesian 'source' analysis suggests that livestock emissions are 63 {+-} 22% higher than the a priori estimates. Third, a Bayesian 'region' analysis is carried out for CH{sub 4} emissions from 13 sub-regions, which shows that inventory CH{sub 4} emissions from the Central Valley are underestimated and uncertainties in CH{sub 4} emissions are reduced for sub-regions near the tower site, yielding best estimates of flux from those regions consistent with 'source' analysis results. The uncertainty reductions for regions near the tower indicate that a regional network of measurements will be necessary to provide accurate estimates of surface CH{sub 4} emissions for multiple regions.

  5. Top-down methane emissions estimates for the San Francisco Bay Area from 1990 to 2012

    SciTech Connect

    Fairley, David; Fischer, Marc L.

    2015-01-30

    Methane is a potent greenhouse gas (GHG) that is now included in both California State and San Francisco Bay Area (SFBA) bottom-up emission inventories as part of California's effort to reduce anthropogenic GHG emissions. Here we provide a top-down estimate of methane (CH4) emissions from the SFBA by combining atmospheric measurements with the comparatively better estimated emission inventory for carbon monoxide (CO). Local enhancements of CH4 and CO are estimated using measurements from 14 air quality sites in the SFBA combined together with global background measurements. Mean annual CH4 emissions are estimated from the product of Bay Area Air Quality Management District (BAAQMD) emission inventory CO and the slope of ambient local CH4 to CO. The resulting top-down estimates of CH4 emissions are found to decrease slightly from 1990 to 2012, with a mean value of 240 ± 60 GgCH4 yr⁻¹ (at 95% confidence) in the most recent (2009–2012) period, and correspond to reasonably a constant factor of 1.5–2.0 (at 95% confidence) times larger than the BAAQMD CH4 emission inventory. However, we note that uncertainty in these emission estimates is dominated by the variation in CH4:CO enhancement ratios across the observing sites and we expect the estimates could represent a lower-limit on CH4 emissions because BAAQMD monitoring sites focus on urban air quality and may be biased toward CO rather than CH4 sources.

  6. Top-down methane emissions estimates for the San Francisco Bay Area from 1990 to 2012

    DOE PAGES [OSTI]

    Fairley, David; Fischer, Marc L.

    2015-01-30

    Methane is a potent greenhouse gas (GHG) that is now included in both California State and San Francisco Bay Area (SFBA) bottom-up emission inventories as part of California's effort to reduce anthropogenic GHG emissions. Here we provide a top-down estimate of methane (CH4) emissions from the SFBA by combining atmospheric measurements with the comparatively better estimated emission inventory for carbon monoxide (CO). Local enhancements of CH4 and CO are estimated using measurements from 14 air quality sites in the SFBA combined together with global background measurements. Mean annual CH4 emissions are estimated from the product of Bay Area Air Qualitymore » Management District (BAAQMD) emission inventory CO and the slope of ambient local CH4 to CO. The resulting top-down estimates of CH4 emissions are found to decrease slightly from 1990 to 2012, with a mean value of 240 ± 60 GgCH4 yr⁻¹ (at 95% confidence) in the most recent (2009–2012) period, and correspond to reasonably a constant factor of 1.5–2.0 (at 95% confidence) times larger than the BAAQMD CH4 emission inventory. However, we note that uncertainty in these emission estimates is dominated by the variation in CH4:CO enhancement ratios across the observing sites and we expect the estimates could represent a lower-limit on CH4 emissions because BAAQMD monitoring sites focus on urban air quality and may be biased toward CO rather than CH4 sources.« less

  7. JISEA News: Study on Methane Emissions from Natural Gas Systems Indicates

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New Priorities - News Releases | NREL JISEA News: Study on Methane Emissions from Natural Gas Systems Indicates New Priorities Study findings published in Policy Forum of Journal Science February 18, 2014 A new study published in the journal Science says that the total impact of switching to natural gas depends heavily on leakage of methane (CH4) during the natural gas life cycle, and suggests that more can be done to reduce methane emissions and to improve measurement tools which help

  8. Methane emission from single cropping rice paddies amended different manures

    SciTech Connect

    Du Daodeng; Tao Zhan

    1996-12-31

    Methane emission fluxes were determined from single cropping rice paddies amended with different manures through a productively comparative experiment. The average fluxes in the whole growth season ranged from 3.92 to 10.96 mg/m{sup 2}.hr. The compost amended paddies gave the highest emission fluxes of 10.26 mg/m{sup 2}.hr, while the fluxes from the other manure amended paddies ranked as follows: horse dung biogas digester sediment 10.02, chemical fertilizer only 8.81, nightsoil biogas sediment 7.76, chicken dropping biogas digester sediment 4.48 and pig dung biogas digester sediment 3.92 mg/m{sup 2}.hr. The latter 3 sediments gave the significant less ({alpha} < 0.05) fluxes than compost. The highest fluxes peaks of all treated paddies appeared unanimously between the stages of the midtillering and the earing, with a half of total CH{sub 4} emissions were produced in this period which could be chosen as the key period for control of CH{sub 4} emission from the single cropping rice paddies. The positive correlation of the fluxes with the temperatures in 5 cm soil layers and the negative correlation of the fluxes with the rice yields, the soil N and P{sub 2}O{sub 5} contents were also observed.

  9. DOE Announces $13 Million to Quantify and Mitigate Methane Emissions from

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Natural Gas Infrastructure | Department of Energy Announces $13 Million to Quantify and Mitigate Methane Emissions from Natural Gas Infrastructure DOE Announces $13 Million to Quantify and Mitigate Methane Emissions from Natural Gas Infrastructure September 8, 2016 - 9:34am Addthis WASHINGTON, D.C.-The U.S. Department of Energy (DOE) today announced a total of $13 million to be awarded to twelve multi-year research projects intended to develop cost efficient and effective ways to mitigate

  10. Evaluation of methane emissions of some rice cultivars of Sri Lanka

    SciTech Connect

    Namaratne, S.Y.; Alwis, H.P.W. de

    1996-12-31

    A field experiment on three local rice cultivars, namely BG 300, BG 304 and AT 303, showed no statistically significant difference (p<0.05) among them with-respect to the methane flux emitted. The methane flux profiles of all three varieties indicated a more or less constant emission during the vegetative and reproductive periods, a peak emission during late flowering/early ripening stage and a dramatic increase in the flux during the late ripening period. The seasonal methane flux of BG 300, BG 304 and AT 303 were 200 {+-} 48, 156 {+-} 52 and 129 {+-} 40 g m{sup {minus}2}, respectively for a 92 day cropping period.

  11. IPCC Emission Factor Database | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Emission Factor Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IPCC Emission Factor Database AgencyCompany Organization: World Meteorological Organization,...

  12. WETCHIMP-WSL: Intercomparison of wetland methane emissions models over West Siberia

    DOE PAGES [OSTI]

    Bohn, T. J.; Melton, J. R.; Ito, A.; Kleinen, T.; Spahni, R.; Stocker, B. D.; Zhang, B.; Zhu, X.; Schroeder, R.; Glagolev, M. V.; et al

    2015-06-03

    Wetlands are the world's largest natural source of methane, a powerful greenhouse gas. The strong sensitivity of methane emissions to environmental factors such as soil temperature and moisture has led to concerns about potential positive feedbacks to climate change. This risk is particularly relevant at high latitudes, which have experienced pronounced warming and where thawing permafrost could potentially liberate large amounts of labile carbon over the next 100 years. However, global models disagree as to the magnitude and spatial distribution of emissions, due to uncertainties in wetland area and emissions per unit area and a scarcity of in situ observations.more » Recent intensive field campaigns across the West Siberian Lowland (WSL) make this an ideal region over which to assess the performance of large-scale process-based wetland models in a high-latitude environment. Here we present the results of a follow-up to the Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP), focused on the West Siberian Lowland (WETCHIMP-WSL). We assessed 21 models and 5 inversions over this domain in terms of total CH4 emissions, simulated wetland areas, and CH4 fluxes per unit wetland area and compared these results to an intensive in situ CH4 flux data set, several wetland maps, and two satellite surface water products. We found that (a) despite the large scatter of individual estimates, 12-year mean estimates of annual total emissions over the WSL from forward models (5.34 ± 0.54 Tg CH4 yr⁻¹), inversions (6.06 ± 1.22 Tg CH4 yr⁻¹), and in situ observations (3.91 ± 1.29 Tg CH4 yr⁻¹) largely agreed; (b) forward models using surface water products alone to estimate wetland areas suffered from severe biases in CH4 emissions; (c) the interannual time series of models that lacked either soil thermal physics appropriate to the high latitudes or realistic emissions from unsaturated peatlands tended to be dominated by a single environmental driver

  13. WETCHIMP-WSL: Intercomparison of wetland methane emissions models over West Siberia

    SciTech Connect

    Bohn, T. J.; Melton, J. R.; Ito, A.; Kleinen, T.; Spahni, R.; Stocker, B. D.; Zhang, B.; Zhu, X.; Schroeder, R.; Glagolev, M. V.; Maksyutov, S.; Brovkin, V.; Chen, G.; Denisov, S. N.; Eliseev, A. V.; Gallego-Sala, A.; McDonald, K. C.; Rawlins, M. A.; Riley, W. J.; Subin, Z. M.; Tian, H.; Zhuang, Q.; Kaplan, J. O.

    2015-06-03

    Wetlands are the world's largest natural source of methane, a powerful greenhouse gas. The strong sensitivity of methane emissions to environmental factors such as soil temperature and moisture has led to concerns about potential positive feedbacks to climate change. This risk is particularly relevant at high latitudes, which have experienced pronounced warming and where thawing permafrost could potentially liberate large amounts of labile carbon over the next 100 years. However, global models disagree as to the magnitude and spatial distribution of emissions, due to uncertainties in wetland area and emissions per unit area and a scarcity of in situ observations. Recent intensive field campaigns across the West Siberian Lowland (WSL) make this an ideal region over which to assess the performance of large-scale process-based wetland models in a high-latitude environment. Here we present the results of a follow-up to the Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP), focused on the West Siberian Lowland (WETCHIMP-WSL). We assessed 21 models and 5 inversions over this domain in terms of total CH4 emissions, simulated wetland areas, and CH4 fluxes per unit wetland area and compared these results to an intensive in situ CH4 flux data set, several wetland maps, and two satellite surface water products. We found that (a) despite the large scatter of individual estimates, 12-year mean estimates of annual total emissions over the WSL from forward models (5.34 ± 0.54 Tg CH4 yr⁻¹), inversions (6.06 ± 1.22 Tg CH4 yr⁻¹), and in situ observations (3.91 ± 1.29 Tg CH4 yr⁻¹) largely agreed; (b) forward models using surface water products alone to estimate wetland areas suffered from severe biases in CH4 emissions; (c) the interannual time series of models that lacked either soil thermal physics appropriate to the high latitudes or realistic emissions from

  14. Emission Factors (EMFAC) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    The EMission FACtors (EMFAC) model is used to calculate emission rates from all motor vehicles, such as passenger cars to heavy-duty trucks, operating on highways, freeways...

  15. Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Workshops » Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop The Advanced Manufacturing Office (AMO) at the U.S. Department of Energy (DOE)'s Office of Energy Efficiency and Renewable Energy and the Office of Fossil Energy (FE) hosted a workshop, November 12-13, 2014, in Coraopolis, Pennsylvania, as a follow-up to the President's Climate Action Plan and the DOE

  16. Nitrous oxide and methane emissions and nitrous oxide isotopic composition from waste incineration in Switzerland

    SciTech Connect

    Harris, Eliza; Zeyer, Kerstin; Kegel, Rainer; Müller, Beat; Emmenegger, Lukas; Mohn, Joachim

    2015-01-15

    plants with SNCR, which had considerable N{sub 2}O emissions, was measured using quantum cascade laser spectroscopy. The isotopic site preference of N{sub 2}O – the enrichment of {sup 14}N{sup 15}NO relative to {sup 15}N{sup 14}NO – was found to be 17.6 ± 0.8‰, with no significant difference between the two plants. Comparison to previous studies suggests SP of 17–19‰ may be characteristic for N{sub 2}O produced from SNCR. Methane emissions were found to be insignificant, with a maximum emission factor of 2.5 ± 5.6 g CH{sub 4} t{sup −1} (0.2 ± 0.5 g CH{sub 4} GJ{sup −1}), which is expected due to high incinerator temperatures and efficient combustion.

  17. Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions

    SciTech Connect

    He, Shaomei; Malfatti, Stephanie A.; McFarland, Jack W.; Anderson, Frank E.; Pati, Amrita; Huntemann, Marcel; Tremblay, Julien; Glavina del Rio, Tijana; Waldrop, Mark P.; Windham-Myers, Lisamarie; Tringe, Susannah G.

    2015-05-19

    Wetland restoration on peat islands previously drained for agriculture has potential to reverse land subsidence and sequester atmospheric carbon dioxide as peat accretes. However, the emission of methane could potentially offset the greenhouse gas benefits of captured carbon. As microbial communities play a key role in governing wetland greenhouse gas fluxes, we are interested in how microbial community composition and functions are associated with wetland hydrology, biogeochemistry, and methane emission, which is critical to modeling the microbial component in wetland methane fluxes and to managing restoration projects for maximal carbon sequestration. Here, we couple sequence-based methods with biogeochemical and greenhouse gas measurements to interrogate microbial communities from a pilot-scale restored wetland in the Sacramento-San Joaquin Delta of California, revealing considerable spatial heterogeneity even within this relatively small site. A number of microbial populations and functions showed strong correlations with electron acceptor availability and methane production; some also showed a preference for association with plant roots. Marker gene phylogenies revealed a diversity of major methane-producing and -consuming populations and suggested novel diversity within methanotrophs. Methanogenic archaea were observed in all samples, as were nitrate-, sulfate-, and metal-reducing bacteria, indicating that no single terminal electron acceptor was preferred despite differences in energetic favorability and suggesting spatial microheterogeneity and microniches. Notably, methanogens were negatively correlated with nitrate-, sulfate-, and metal-reducing bacteria and were most abundant at sampling sites with high peat accretion and low electron acceptor availability, where methane production was highest. Wetlands are the largest nonanthropogenic source of atmospheric methane but also a key global carbon reservoir. Characterizing belowground microbial communities

  18. Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions

    DOE PAGES [OSTI]

    He, Shaomei; Malfatti, Stephanie A.; McFarland, Jack W.; Anderson, Frank E.; Pati, Amrita; Huntemann, Marcel; Tremblay, Julien; Glavina del Rio, Tijana; Waldrop, Mark P.; Windham-Myers, Lisamarie; et al

    2015-05-19

    Wetland restoration on peat islands previously drained for agriculture has potential to reverse land subsidence and sequester atmospheric carbon dioxide as peat accretes. However, the emission of methane could potentially offset the greenhouse gas benefits of captured carbon. As microbial communities play a key role in governing wetland greenhouse gas fluxes, we are interested in how microbial community composition and functions are associated with wetland hydrology, biogeochemistry, and methane emission, which is critical to modeling the microbial component in wetland methane fluxes and to managing restoration projects for maximal carbon sequestration. Here, we couple sequence-based methods with biogeochemical and greenhousemore » gas measurements to interrogate microbial communities from a pilot-scale restored wetland in the Sacramento-San Joaquin Delta of California, revealing considerable spatial heterogeneity even within this relatively small site. A number of microbial populations and functions showed strong correlations with electron acceptor availability and methane production; some also showed a preference for association with plant roots. Marker gene phylogenies revealed a diversity of major methane-producing and -consuming populations and suggested novel diversity within methanotrophs. Methanogenic archaea were observed in all samples, as were nitrate-, sulfate-, and metal-reducing bacteria, indicating that no single terminal electron acceptor was preferred despite differences in energetic favorability and suggesting spatial microheterogeneity and microniches. Notably, methanogens were negatively correlated with nitrate-, sulfate-, and metal-reducing bacteria and were most abundant at sampling sites with high peat accretion and low electron acceptor availability, where methane production was highest. Wetlands are the largest nonanthropogenic source of atmospheric methane but also a key global carbon reservoir. Characterizing belowground microbial

  19. Reduction of ruminant methane emissions - a win-win-win opportunity for business, development, and the environment

    SciTech Connect

    Livingston, R.

    1997-12-31

    This paper describes research efforts of The Global Livestock Producers Program (GLPP) in establishing self-sustaining enterprises for cost-effective technologies (i.e., animal nutrition and genetic improvement) and global methane emissions reductions in developing world nations. The US Environmental Protection Agency has funded several studies to examine the possibilities of reducing ruminant methane emissions in India, Tanzania, Bangladesh, and Brazil. The results of the studies showed that: (1) many developing countries` production systems are inefficient, and (2) great potential exists for decreasing global methane emissions through increasing animal productivity. From this effort, the GLPP established livestock development projects in India, Zimbabwe, and Tanzania, and is developing projects for Bangladesh, Nepal, and Brazil. The GLPP has developed a proven methodology for assessing ruminant methane and incorporating methane emissions monitoring into viable projects.

  20. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect

    Don Augenstein

    2001-02-01

    The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  1. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data

    DOE PAGES [OSTI]

    Turner, A. J.; Jacob, D. J.; Wecht, K. J.; Maasakkers, J. D.; Biraud, S. C.; Boesch, H.; Bowman, K. W.; Deutscher, N. M.; Dubey, M. K.; Griffith, D. W. T.; et al

    2015-02-18

    We use 2009–2011 space-borne methane observations from the Greenhouse Gases Observing SATellite (GOSAT) to constrain global and North American inversions of methane emissions with 4° × 5° and up to 50 km × 50 km spatial resolution, respectively. The GOSAT data are first evaluated with atmospheric methane observations from surface networks (NOAA, TCCON) and aircraft (NOAA/DOE, HIPPO), using the GEOS-Chem chemical transport model as a platform to facilitate comparison of GOSAT with in situ data. This identifies a high-latitude bias between the GOSAT data and GEOS-Chem that we correct via quadratic regression. The surface and aircraft data are subsequently usedmore » for independent evaluation of the methane source inversions. Our global adjoint-based inversion yields a total methane source of 539 Tg a−1 and points to a large East Asian overestimate in the EDGARv4.2 inventory used as a prior. Results serve as dynamic boundary conditions for an analytical inversion of North American methane emissions using radial basis functions to achieve high resolution of large sources and provide full error characterization. We infer a US anthropogenic methane source of 40.2–42.7 Tg a−1, as compared to 24.9–27.0 Tg a−1 in the EDGAR and EPA bottom-up inventories, and 30.0–44.5 Tg a−1 in recent inverse studies. Our estimate is supported by independent surface and aircraft data and by previous inverse studies for California. We find that the emissions are highest in the South-Central US, the Central Valley of California, and Florida wetlands, large isolated point sources such as the US Four Corners also contribute. We attribute 29–44% of US anthropogenic methane emissions to livestock, 22–31% to oil/gas, 20% to landfills/waste water, and 11–15% to coal with an additional 9.0–10.1 Tg a−1 source from wetlands.« less

  2. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data

    DOE PAGES [OSTI]

    Turner, A. J.; Jacob, D. J.; Wecht, K. J.; Maasakkers, J. D.; Lundgren, E.; Andrews, A. E.; Biraud, S. C.; Boesch, H.; Bowman, K. W.; Deutscher, N. M.; et al

    2015-06-30

    We use 2009–2011 space-borne methane observations from the Greenhouse Gases Observing SATellite (GOSAT) to estimate global and North American methane emissions with 4° × 5° and up to 50 km × 50 km spatial resolution, respectively. GEOS-Chem and GOSAT data are first evaluated with atmospheric methane observations from surface and tower networks (NOAA/ESRL, TCCON) and aircraft (NOAA/ESRL, HIPPO), using the GEOS-Chem chemical transport model as a platform to facilitate comparison of GOSAT with in situ data. This identifies a high-latitude bias between the GOSAT data and GEOS-Chem that we correct via quadratic regression. Our global adjoint-based inversion yields a totalmore » methane source of 539 Tg a−1 with some important regional corrections to the EDGARv4.2 inventory used as a prior. Results serve as dynamic boundary conditions for an analytical inversion of North American methane emissions using radial basis functions to achieve high resolution of large sources and provide error characterization. We infer a US anthropogenic methane source of 40.2–42.7 Tg a−1, as compared to 24.9–27.0 Tg a−1 in the EDGAR and EPA bottom-up inventories, and 30.0–44.5 Tg a−1 in recent inverse studies. Our estimate is supported by independent surface and aircraft data and by previous inverse studies for California. We find that the emissions are highest in the southern–central US, the Central Valley of California, and Florida wetlands; large isolated point sources such as the US Four Corners also contribute. Using prior information on source locations, we attribute 29–44 % of US anthropogenic methane emissions to livestock, 22–31 % to oil/gas, 20 % to landfills/wastewater, and 11–15 % to coal. Wetlands contribute an additional 9.0–10.1 Tg a−1.« less

  3. DOE/AMO NG Infrastructure R & D & Methane emissions Mitigation workshop

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Proprietary and Confidential to NYSEARCH/NGA DOE/AMO NG INFRASTRUCTURE R & D & METHANE EMISSIONS MITIGATION WORKSHOP November 2014 David Merte & Daphne D'Zurko, NYSEARCH/NGA dmerte@northeastgas.org ddzurko@northeastgas.org NYSEARCH 2 NYSEARCH Program Research Areas * Improved Installation, Maintenance & Repair * Pipeline Integrity/Direct & Remote Assessment * Pipe Location * Leak Detection * Real-time Sensing and Inspection for Distribution * Environment/Reducing Greenhouse

  4. Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop November 12-13, 2014, Sheraton Pittsburgh Airport Hotel, Coraopolis, PA 15108 FINAL AGENDA Day 1 (Wednesday, November 12) 12:00-1:00 pm REGISTRATION 1:00-1:30 pm Welcome and Overviews Mark Johnson, Director, Advanced Manufacturing Office (AMO), DOE Office of Energy Efficiency and Renewable Energy Christopher J. Freitas, Senior Program Manager, Natural Gas Infrastructure, Office of Oil and Natural Gas, DOE Office of

  5. Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    November 12-13, 2014 DOE's Natural Gas Modernization Initiative Christopher Freitas, Program Manager, Natural Gas Midstream Infrastructure R&D, Office of Oil and Natural Gas, U.S. Dept. of Energy 3 Summary It is critical to minimize leakage Reducing natural gas leakage has multiple wins We know enough to act Natural Gas Modernization Initiative: DOE is working to drive innovation, better characterize emissions, address market barriers, and catalyze action 4 Interagency Methane Strategy

  6. UNDERSTANDING METHANE EMISSIONS SOURCES AND VIABLE MITIGATION MEASURES IN THE NATURAL GAS TRANSMISSION SYSTEMS: RUSSIAN AND U.S. EXPERIENCE

    SciTech Connect

    Ishkov, A.; Akopova, Gretta; Evans, Meredydd; Yulkin, Grigory; Roshchanka, Volha; Waltzer, Suzie; Romanov, K.; Picard, David; Stepanenko, O.; Neretin, D.

    2011-10-01

    This article will compare the natural gas transmission systems in the U.S. and Russia and review experience with methane mitigation technologies in the two countries. Russia and the United States (U.S.) are the world's largest consumers and producers of natural gas, and consequently, have some of the largest natural gas infrastructure. This paper compares the natural gas transmission systems in Russia and the U.S., their methane emissions and experiences in implementing methane mitigation technologies. Given the scale of the two systems, many international oil and natural gas companies have expressed interest in better understanding the methane emission volumes and trends as well as the methane mitigation options. This paper compares the two transmission systems and documents experiences in Russia and the U.S. in implementing technologies and programs for methane mitigation. The systems are inherently different. For instance, while the U.S. natural gas transmission system is represented by many companies, which operate pipelines with various characteristics, in Russia predominately one company, Gazprom, operates the gas transmission system. However, companies in both countries found that reducing methane emissions can be feasible and profitable. Examples of technologies in use include replacing wet seals with dry seals, implementing Directed Inspection and Maintenance (DI&M) programs, performing pipeline pump-down, applying composite wrap for non-leaking pipeline defects and installing low-bleed pneumatics. The research methodology for this paper involved a review of information on methane emissions trends and mitigation measures, analytical and statistical data collection; accumulation and analysis of operational data on compressor seals and other emission sources; and analysis of technologies used in both countries to mitigate methane emissions in the transmission sector. Operators of natural gas transmission systems have many options to reduce natural gas losses

  7. Module: Emission Factors for Deforestation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    www.leafasia.orgtoolstechnical-guidance-series-emission-factors-defo Cost: Free Language: English Module: Emission Factors for Deforestation Screenshot Logo: Module: Emission...

  8. DOE Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and Distribution System Operational Efficiency, Reducing Methane Emissions

    Energy.gov [DOE]

    Following the White House and the Department of Energy Capstone Methane Stakeholder Roundtable on July 29th, DOE announced a series of actions, partnerships, and stakeholder commitments to help modernize the nation’s natural gas transmission and distribution systems and reduce methane emissions. Through common-sense standards, smart investments, and innovative research, DOE seeks to advance the state of the art in natural gas system performance. DOE’s effort is part of the larger Administration’s Climate Action Plan Interagency Strategy to Reduce Methane Emissions.

  9. Estimating U.S. Methane Emissions from the Natural Gas Supply Chain. Approaches, Uncertainties, Current Estimates, and Future Studies

    SciTech Connect

    Heath, Garvin; Warner, Ethan; Steinberg, Daniel; Brandt, Adam

    2015-08-01

    A growing number of studies have raised questions regarding uncertainties in our understanding of methane (CH4) emissions from fugitives and venting along the natural gas (NG) supply chain. In particular, a number of measurement studies have suggested that actual levels of CH4 emissions may be higher than estimated by EPA" tm s U.S. GHG Emission Inventory. We reviewed the literature to identify the growing number of studies that have raised questions regarding uncertainties in our understanding of methane (CH4) emissions from fugitives and venting along the natural gas (NG) supply chain.

  10. Critical Factors Driving the High Volumetric Uptake of Methane...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    carried out to elucidate the mechanistic reasons for the high volumetric uptake of methane in the metal-organic framework Cu3(btc)2 (btc3- 1,3,5-benzenetricarboxylate; HKUST-1). ...

  11. Reduction of Non-CO2 Gas Emissions Through The In Situ Bioconversion of Methane

    SciTech Connect

    Scott, A R; Mukhopadhyay, B; Balin, D F

    2012-09-06

    The primary objectives of this research were to seek previously unidentified anaerobic methanotrophs and other microorganisms to be collected from methane seeps associated with coal outcrops. Subsurface application of these microbes into anaerobic environments has the potential to reduce methane seepage along coal outcrop belts and in coal mines, thereby preventing hazardous explosions. Depending upon the types and characteristics of the methanotrophs identified, it may be possible to apply the microbes to other sources of methane emissions, which include landfills, rice cultivation, and industrial sources where methane can accumulate under buildings. Finally, the microbes collected and identified during this research also had the potential for useful applications in the chemical industry, as well as in a variety of microbial processes. Sample collection focused on the South Fork of Texas Creek located approximately 15 miles east of Durango, Colorado. The creek is located near the subsurface contact between the coal-bearing Fruitland Formation and the underlying Pictured Cliffs Sandstone. The methane seeps occur within the creek and in areas adjacent to the creek where faulting may allow fluids and gases to migrate to the surface. These seeps appear to have been there prior to coalbed methane development as extensive microbial soils have developed. Our investigations screened more than 500 enrichments but were unable to convince us that anaerobic methane oxidation (AMO) was occurring and that anaerobic methanotrophs may not have been present in the samples collected. In all cases, visual and microscopic observations noted that the early stage enrichments contained viable microbial cells. However, as the levels of the readily substrates that were present in the environmental samples were progressively lowered through serial transfers, the numbers of cells in the enrichments sharply dropped and were eliminated. While the results were disappointing we acknowledge that

  12. Preferred emission factor techniques for army emission inventories

    SciTech Connect

    Polyak, L.M.; Robinson, D.L.; Alden, S.A.; Hopp, P.L.; Ruff, T.E.

    1997-12-31

    The Clean Air Act Amendments of 1990 (CAAA-90) present an unprecedented regulatory challenge to the Department of the Army and the entire US business community. Unlike previous legislation, which focused heavily on the substantive or emission control aspects of air quality management, this round of Amendments focused equal attention on the administrative aspects of air pollution control. Specifically, each new Title of the CAAA-90 is underpinned, either explicitly or implicitly, with the need to perform an emission inventory. The emission inventory is an implied prerequisite for determining the applicability of any of the emission control requirements of the 1990 Amendments, and it is the explicit center piece of the Title 5 operating permit program. Although the emission inventory is little more than a formal accounting of the number and type of emission sources and their associated air emissions, the resource requirements for preparing and maintaining the inventory can be substantial. The average contractor cost for preparing an initial emission inventory at an Army installation was over $100,000. Record keeping to support the inventory, and the annual inventory updates required for the Title 5 permit program will only expand these costs. In an effort to assist the Army community with the ongoing obligation to prepare these emission inventories, the US Army Center for Health Promotion and Preventive Medicine (USACHPPM) has compiled a list of preferred emission inventory techniques for the various emission sources found at Army installations. The USACHPPM guidance identifies emission sources most likely to be found at an Army installation, as well as the most effective and preferred emission factors associated with these sources. This guidance is designed to be widely disseminated, and may have relevant applications in the non-military community.

  13. Mapping pan-Arctic methane emissions at high spatial resolution using an adjoint atmospheric transport and inversion method and process-based wetland and lake biogeochemical models

    DOE PAGES [OSTI]

    Tan, Z.; Zhuang, Q.; Henze, D. K.; Frankenberg, C.; Dlugokencky, E.; Sweeney, C.; Turner, A. J.

    2015-11-18

    Understanding methane emissions from the Arctic, a fast warming carbon reservoir, is important for projecting changes in the global methane cycle under future climate scenarios. Here we optimize Arctic methane emissions with a nested-grid high-resolution inverse model by assimilating both high-precision surface measurements and column-average SCIAMACHY satellite retrievals of methane mole fraction. For the first time, methane emissions from lakes are integrated into an atmospheric transport and inversion estimate, together with prior wetland emissions estimated by six different biogeochemical models. We find that, the global methane emissions during July 2004June 2005 ranged from 496.4 to 511.5 Tg yr?1, with wetlandmoremethane emissions ranging from 130.0 to 203.3 Tg yr?1. The Arctic methane emissions during July 2004June 2005 were in the range of 14.630.4 Tg yr?1, with wetland and lake emissions ranging from 8.8 to 20.4 Tg yr?1 and from 5.4 to 7.9 Tg yr?1 respectively. Canadian and Siberian lakes contributed most of the estimated lake emissions. Due to insufficient measurements in the region, Arctic methane emissions are less constrained in northern Russia than in Alaska, northern Canada and Scandinavia. Comparison of different inversions indicates that the distribution of global and Arctic methane emissions is sensitive to prior wetland emissions. Evaluation with independent datasets shows that the global and Arctic inversions improve estimates of methane mixing ratios in boundary layer and free troposphere. The high-resolution inversions provide more details about the spatial distribution of methane emissions in the Arctic.less

  14. Evaluation of methane emissions from Palermo municipal landfill: Comparison between field measurements and models

    SciTech Connect

    Di Bella, Gaetano; Di Trapani, Daniele; Viviani, Gaspare

    2011-08-15

    Methane (CH{sub 4}) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH{sub 4} is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH{sub 4} emissions from landfill sites and the quantification of CH{sub 4} emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH{sub 4} diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH{sub 4} diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH{sub 4} contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH{sub 4} mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency.

  15. Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation

    SciTech Connect

    Ali, Muhammad Aslam; Lee, Chang Hoon; Kim, Sang Yoon; Kim, Pil Joo

    2009-10-15

    Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH{sub 4}) emission resulting from rice cultivation. In laboratory incubations, CH{sub 4} production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt{sup -1}), while observed CO{sub 2} production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH{sub 4} emission rates from the rice planted potted soils significantly decreased with the increasing levels (2-20 Mg ha{sup -1}) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha{sup -1} application level of the amendments, total seasonal CH{sub 4} emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH{sub 4} production rates as well as total seasonal CH{sub 4} flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens' activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH{sub 4} emissions as well as sustaining rice productivity.

  16. A Multi-tower Measurement Network Estimate of California's Methane Emissions

    SciTech Connect

    Jeong, Seongeun; Hsu, Ying-Kuang; Andrews, Arlyn E.; Bianco, Laura; Vaca, Patrick; Wilczak, James M.; Fischer, Marc L.

    2013-12-02

    We present an analysis of methane (CH{sub 4}) emissions using atmospheric observations from five sites in California’s Central Valley across different seasons (September 2010 to June 2011). CH{sub 4} emissions for spatial regions and source sectors are estimated by comparing measured CH{sub 4} mixing ratios with transport model (WRF-STILT) predictions based on two 0.1 degree CH{sub 4} (seasonally varying “California-specific” (CALGEM) and a static global (EDGAR42)) prior emission models. Region-specific Bayesian analyses indicate that for California’s Central Valley the CALGEM- and EDGAR42-based inversions provide consistent annual total CH{sub 4} emissions (32.87±2.09 vs. 31.60±2.17 Tg CO{sub 2}eq yr{sup -1}; 68% C.I., assuming uncorrelated errors between regions). Summing across all regions of California, optimized CH{sub 4} emissions are only marginally consistent between CALGEM- and EDGAR42-based inversions (48.35±6.47 vs. 64.97±11.85 Tg CO{sub 2}eq), because emissions from coastal urban regions (where landfill and natural gas emissions are much higher in EDGAR than CALGEM) are not strongly constrained by the measurements. Combining our results with those from a recent study of the South Coast air basin narrows the range of estimates to 43 – 57 Tg CO{sub 2}eq yr{sup -1} (1.3 - 1.8 times higher than the current state inventory). These results suggest that the combination of rural and urban measurements will be necessary to verify future changes in California’s total CH{sub 4} emissions.

  17. Large methane emission upon spring thaw from natural wetlands in the northern permafrost region

    SciTech Connect

    Song, Changchun [Chinese Academy of Sciences; Xu, Xiaofeng [ORNL; Sun, Xiaoxin [Chinese Academy of Sciences; Tian, Hanqin [Auburn University, Auburn, Alabama; Sun, Li [Chinese Academy of Sciences; Miao, Yuqing [Chinese Academy of Sciences; Wang, Xianwei [Chinese Academy of Sciences; Guo, Yuedong [Chinese Academy of Sciences

    2012-01-01

    The permafrost carbon climate feedback is one of the major mechanisms in controlling the climate ecosystem interactions in northern high latitudes. Of this feedback, methane (CH4) emission from natural wetlands is critically important due to its high warming potential. The freeze thaw transition has been confirmed to play an important role in annual CH4 budget, yet the magnitude of this effect is uncertain. An intensive field campaign was carried out in the Sanjiang Plain, Northeast China to estimate the CH4 emission in the spring freeze thaw transition period. The observation concluded that a large CH4 source was caused by spring thaw; the maximum hourly emission rate was 48.6 g C m 2 h 1, more than three orders of the regularly observed CH4 emission rate in the growing season. In some sporadically observed 'hot spots', the spring thawing effect contributed to a large CH4 source of 31.3 10.1 g C m 2, which is approximately 80% of the previously calculated annual CH4 emission in the same study area. If our results are typical for natural wetlands in the Northern Hemisphere permafrost region, we estimate a global CH4 source strength of 0.5 1.0 Tg C (1 Tg =1012 g) caused by spring thaw in the Northern Hemisphere permafrost region in the year 2011. Combining with available satellite and flask data, a regional extrapolation reaches a temporal pattern of CH4 emission during 2003 2009 which is consistent with recently observed changes in atmospheric CH4 concentration in the high latitudes. This suggests that the CH4 emission upon spring thaw in the high latitudes might be enhanced by the projected climate warming. These findings indicate that the spring thawing effect is an important mechanism in the permafrost carbon climate feedback and needs to be incorporated in Earth system models.

  18. Comparison of Propane and Methane Performance and Emissions in a Turbocharged Direct Injection Dual Fuel Engine

    SciTech Connect

    Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-01-01

    With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

  19. Natural Gas Methane Emissions in the United States Greenhouse Gas Inventory: Sources, Uncertainties and Opportunities for Improvement

    SciTech Connect

    Heath, Garvin; Warner, Ethan; Steinberg, Daniel; Brandt, Adam

    2015-11-19

    Presentation summarizing key findings of a Joint Institute for Strategic Energy Analysis Report at an Environmental Protection Agency workshop: 'Stakeholder Workshop on EPA GHG Data on Petroleum and Natural Gas Systems' on November 19, 2015. For additional information see the JISEA report, 'Estimating U.S. Methane Emissions from the Natural Gas Supply Chain: Approaches, Uncertainties, Current Estimates, and Future Studies' NREL/TP-6A50-62820.

  20. U.S. Natural Gas System Methane Emissions: State of Knowledge from LCAs, Inventories, and Atmospheric Measurements (Presentation)

    SciTech Connect

    Heath, G.

    2014-04-01

    Natural gas (NG) is a potential "bridge fuel" during transition to a decarbonized energy system: It emits less carbon dioxide during combustion than other fossil fuels and can be used in many industries. However, because of the high global warming potential of methane (CH4, the major component of NG), climate benefits from NG use depend on system leakage rates. Some recent estimates of leakage have challenged the benefits of switching from coal to NG, a large near-term greenhouse gas (GHG) reduction opportunity. During this presentation, Garvin will review evidence from multiple perspectives - life cycle assessments (LCAs), inventories and measurements - about NG leakage in the US. Particular attention will be paid to a recent article in Science magazine which reviewed over 20 years of published measurements to better understand what we know about total methane emissions and those from the oil and gas sectors. Scientific and policy implications of the state of knowledge will be discussed.

  1. Russian Policy on Methane Emissions in the Oil and Gas Sector: A Case Study in Opportunities and Challenges in Reducing Short-Lived Forcers

    SciTech Connect

    Evans, Meredydd; Roshchanka, Volha

    2014-08-04

    This paper uses Russian policy in the oil and gas sector as a case study in assessing options and challenges for scaling-up emission reductions. We examine the challenges to achieving large-scale emission reductions, successes that companies have achieved to date, how Russia has sought to influence methane emissions through its environmental fine system, and options for helping companies achieve large-scale emission reductions in the future through simpler and clearer incentives.

  2. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE PAGES [OSTI]

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.; Greene, S.; Thalasso, F.

    2014-09-12

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH4) and carbon dioxide (CO2) emissions from northern lakes. Here we assessed the relationship between CH4 and CO2 emission modes in 40 lakes along a latitudinal transect in Alaska to physicochemical limnology and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included Direct Ebullition, Diffusion, Storage flux, and a newly identified Ice-Bubble Storage (IBS) flux. We found that all lakes were net sources of atmospheric CH4 and CO2, but the climate warming impact of lake CH4more » emissions was two times higher than that of CO2. Ebullition and Diffusion were the dominant modes of CH4 and CO2 emissions respectively. IBS, ~ 10% of total annual CH4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH4 emissions from stratified, dystrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. Total CH4 emission was correlated with concentrations of phosphate and total nitrogen in lake water, Secchi depth and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH4 emissions from lakes by both supplying organic matter to methanogenesis directly from thawing permafrost and by enhancing nutrient availability to primary production, which can also fuel decomposition and methanogenesis.« less

  3. Development of the Electricity Carbon Emission Factors for Russia...

    OpenEI (Open Energy Information) [EERE & EIA]

    Russia Jump to: navigation, search Name Development of the Electricity Carbon Emission Factors for Russia AgencyCompany Organization European Bank for Reconstruction and...

  4. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE PAGES [OSTI]

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.; Greene, S.; Thalasso, F.

    2015-06-02

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH4) and carbon dioxide (CO2) emissions from northern lakes. Here we assessed the relationship between CH4 and CO2 emission modes in 40 lakes along a latitudinal transect in Alaska to lakes' physicochemical properties and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included direct ebullition, diffusion, storage flux, and a newly identified ice-bubble storage (IBS) flux. We found that all lakes were net sources of atmospheric CH4 and CO2, but the climate warming impact of lakemore » CH4 emissions was 2 times higher than that of CO2. Ebullition and diffusion were the dominant modes of CH4 and CO2 emissions, respectively. IBS, ~10% of total annual CH4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH4 emissions from stratified, mixotrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. The relationship between CO2 emissions and geographic parameters was weak, suggesting high variability among sources and sinks that regulate CO2 emissions (e.g., catchment waters, pH equilibrium). Total CH4 emission was correlated with concentrations of soluble reactive phosphorus and total nitrogen in lake water, Secchi depth, and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH4 emissions from lakes by both supplying organic matter to methanogenesis directly from

  5. Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin

    DOE PAGES [OSTI]

    Cui, Yu Yan; Brioude, Jerome; McKeen, Stuart A.; Angevine, Wayne M.; Kim, Si -Wan; Frost, Gregory J.; Ahmadov, Ravan; Peischl, Jeff; Bousserez, Nicolas; Liu, Zhen; et al

    2015-07-28

    Methane (CH4) is the primary component of natural gas and has a larger global warming potential than CO2. Some recent top-down studies based on observations showed CH4 emissions in California's South Coast Air Basin (SoCAB) were greater than those expected from population-apportioned bottom-up state inventories. In this study, we quantify CH4 emissions with an advanced mesoscale inverse modeling system at a resolution of 8 km × 8 km, using aircraft measurements in the SoCAB during the 2010 Nexus of Air Quality and Climate Change campaign to constrain the inversion. To simulate atmospheric transport, we use the FLEXible PARTicle-Weather Research andmore » Forecasting (FLEXPART-WRF) Lagrangian particle dispersion model driven by three configurations of the Weather Research and Forecasting (WRF) mesoscale model. We determine surface fluxes of CH4 using a Bayesian least squares method in a four-dimensional inversion. Simulated CH4 concentrations with the posterior emission inventory achieve much better correlations with the measurements (R2 = 0.7) than using the prior inventory (U.S. Environmental Protection Agency's National Emission Inventory 2005, R2 = 0.5). The emission estimates for CH4 in the posterior, 46.3 ± 9.2 Mg CH4/h, are consistent with published observation-based estimates. Changes in the spatial distribution of CH4 emissions in the SoCAB between the prior and posterior inventories are discussed. Missing or underestimated emissions from dairies, the oil/gas system, and landfills in the SoCAB seem to explain the differences between the prior and posterior inventories. Furthermore, we estimate that dairies contributed 5.9 ± 1.7 Mg CH4/h and the two sectors of oil and gas industries (production and downstream) and landfills together contributed 39.6 ± 8.1 Mg CH4/h in the SoCAB.« less

  6. Implications of Representative Concentration Pathway 4.5 Methane Emissions to Stabilize Radiative Forcing

    SciTech Connect

    Emanuel, William R.; Janetos, Anthony C.

    2013-02-01

    Increases in the abundance of methane (CH4) in the Earth’s atmosphere are responsible for significant radiative forcing of climate change (Forster et al., 2007; Wuebbles and Hayhoe, 2002). Since 1750, a 2.5 fold increase in atmospheric CH4 contributed 0.5 W/m2 to direct radiative forcing and an additional 0.2 W/m2 indirectly through changes in atmospheric chemistry. Next to water and carbon dioxide (CO2), methane is the most abundant greenhouse gas in the troposphere. Additionally, CH4 is significantly more effective as a greenhouse gas on a per molecule basis than is CO2, and increasing atmospheric CH4 has been second only to CO2 in radiative forcing (Forster et al., 2007). The chemical reactivity of CH4 is important to both tropospheric and stratospheric chemistry. Along with carbon monoxide, methane helps control the amount of the hydroxyl radical (OH) in the troposphere where oxidation of CH4 by OH leads to the formation of formaldehyde, carbon monoxide, and ozone.

  7. Exploiting coalbed methane and protecting the global environment

    SciTech Connect

    Yuheng, Gao

    1996-12-31

    The global climate change caused by greenhouse gases (GHGs) emission has received wide attention from all countries in the world. Global environmental protection as a common problem has confronted the human being. As a main component of coalbed methane, methane is an important factor influencing the production safety of coal mine and threatens the lives of miners. The recent research on environment science shows that methane is a very harmful GHG. Although methane gas has very little proportion in the GHGs emission and its stayed period is also very short, it has very obvious impact on the climate change. From the estimation, methane emission in the coal-mining process is only 10% of the total emission from human`s activities. As a clean energy, Methane has mature recovery technique before, during and after the process of mining. Thus, coalbed methane is the sole GHG generated in the human`s activities and being possible to be reclaimed and utilized. Compared with the global greenhouse effect of other GHGs emission abatement, coalbed methane emission abatement can be done in very low cost with many other benefits: (1) to protect global environment; (2) to improve obviously the safety of coal mine; and (3) to obtain a new kind of clean energy. Coal is the main energy in China, and coalbed contains very rich methane. According to the exploration result in recent years, about 30000{approximately}35000 billion m{sup 2} methane is contained in the coalbed below 2000 m in depth. China has formed a good development base in the field of reclamation and utilization of coalbed methane. The author hopes that wider international technical exchange and cooperation in the field will be carried out.

  8. Project identification for methane reduction options

    SciTech Connect

    Kerr, T.

    1996-12-31

    This paper discusses efforts directed at reduction in emission of methane to the atmosphere. Methane is a potent greenhouse gas, which on a 20 year timeframe may present a similar problem to carbon dioxide. In addition, methane causes additional problems in the form of smog and its longer atmospheric lifetime. The author discusses strategies for reducing methane emission from several major sources. This includes landfill methane recovery, coalbed methane recovery, livestock methane reduction - in the form of ruminant methane reduction and manure methane recovery. The author presents examples of projects which have implemented these ideas, the economics of the projects, and additional gains which come from the projects.

  9. Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes

    DOE PAGES [OSTI]

    Tian, Hanqin; Chen, Guangsheng; Lu, Chaoqun; Xu, Xiaofeng; Ren, Wei; Zhang, Bowen; Banger, Kamaljit; Tao, Bo; Pan, Shufen; Chu, Mingliang; et al

    2015-03-16

    Greenhouse gas (GHG)-induced climate change is among the most pressing sustainability challenges facing humanity today, posing serious risks for ecosystem health. Methane (CH4) and nitrous oxide (N2O) are the two most important GHGs after carbon dioxide (CO2), but their regional and global budgets are not well known. In this paper, we applied a process-based coupled biogeochemical model to concurrently estimate the magnitude and spatial and temporal patterns of CH4 and N2O fluxes as driven by multiple environmental changes, including climate variability, rising atmospheric CO2, increasing nitrogen deposition, tropospheric ozone pollution, land use change, and nitrogen fertilizer use.

  10. Ammonia and methane dairy emissions in the San Joaquin Valley of California from individual feedlot to regional scale

    DOE PAGES [OSTI]

    Miller, David J.; Sun, Kang; Tao, Lei; Nowak, John B.; Liu, Zhen; Diskin, Glenn; Sasche, Glen; Beyersdorf, Andreas; Ferrare, Richard; Scarino, Amy Jo; et al

    2015-09-27

    Agricultural ammonia (NH3) emissions are highly uncertain, with high spatiotemporal variability and a lack of widespread in situ measurements. Regional NH3 emission estimates using mass balance or emission ratio approaches are uncertain due to variable NH3 sources and sinks as well as unknown plume correlations with other dairy source tracers. We characterize the spatial distributions of NH3 and methane (CH4) dairy plumes using in situ surface and airborne measurements in the Tulare dairy feedlot region of the San Joaquin Valley, California, during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality 2013more » field campaign. Surface NH3 and CH4 mixing ratios exhibit large variability with maxima localized downwind of individual dairy feedlots. The geometric mean NH3:CH4 enhancement ratio derived from surface measurements is 0.15 ± 0.03 ppmv ppmv–1. Individual dairy feedlots with spatially distinct NH3 and CH4 source pathways led to statistically significant correlations between NH3 and CH4 in 68% of the 69 downwind plumes sampled. At longer sampling distances, the NH3:CH4 enhancement ratio decreases 20–30%, suggesting the potential for NH3 deposition as a loss term for plumes within a few kilometers downwind of feedlots. Aircraft boundary layer transect measurements directly above surface mobile measurements in the dairy region show comparable gradients and geometric mean enhancement ratios within measurement uncertainties, even when including NH3 partitioning to submicron particles. Individual NH3 and CH4 plumes sampled at close proximity where losses are minimal are not necessarily correlated due to lack of mixing and distinct source pathways. As a result, our analyses have important implications for constraining NH3 sink and plume variability influences on regional NH3 emission estimates and for improving NH3 emission inventory spatial allocations.« less

  11. Analysis of factors affecting methane-gas recovery from six landfills...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 09 BIOMASS FUELS; 54 ENVIRONMENTAL SCIENCES; METHANE; MATERIALS RECOVERY; AIR POLLUTION; CLIMATES; DATA PROCESSING; FIELD TESTS; GLOBAL ASPECTS; ...

  12. Carbon Dioxide Emission Factors for Coal

    Reports and Publications

    1994-01-01

    The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

  13. Controlling Methane Emissions in the Natural Gas Sector: A Review of Federal & State Regulatory Frameworks Governing Production, Processing, Transmission, and Distribution

    Office of Energy Efficiency and Renewable Energy (EERE)

    This paper examines a broad range of regulatory drivers, barriers and opportunities that influence investment decisions related to methane emissions from natural gas systems. Federal and state regulators of the natural gas industry are increasingly taking steps to use their existing authorities to help minimize venting and leakage of methane from infrastructure. A few state agencies are now regulating methane emissions directly and the Obama Administration is implementing an interagency Strategy to Reduce Methane Emissions from a broad range of sources, including natural gas infrastructure. While many regulations are already in place to improve public safety, fuel conservation, air quality, natural gas deliverability and even climate protection, companies often are constrained in the investments that they are willing or able to make in infrastructure modernization. For this reason, economic regulators are also focusing on these issues; FERC recently approved a new policy to enable cost recovery for investments in natural gas facilities to improve safety and environmental performance while many states are implementing pipeline replacement programs.

  14. Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin

    SciTech Connect

    Cui, Yu Yan; Brioude, Jerome; McKeen, Stuart A.; Angevine, Wayne M.; Kim, Si -Wan; Frost, Gregory J.; Ahmadov, Ravan; Peischl, Jeff; Bousserez, Nicolas; Liu, Zhen; Ryerson, Thomas B.; Wofsy, Steve C.; Santoni, Gregory W.; Kort, Eric A.; Fischer, Marc L.; Trainer, Michael

    2015-07-28

    Methane (CH4) is the primary component of natural gas and has a larger global warming potential than CO2. Some recent top-down studies based on observations showed CH4 emissions in California's South Coast Air Basin (SoCAB) were greater than those expected from population-apportioned bottom-up state inventories. In this study, we quantify CH4 emissions with an advanced mesoscale inverse modeling system at a resolution of 8 km 8 km, using aircraft measurements in the SoCAB during the 2010 Nexus of Air Quality and Climate Change campaign to constrain the inversion. To simulate atmospheric transport, we use the FLEXible PARTicle-Weather Research and Forecasting (FLEXPART-WRF) Lagrangian particle dispersion model driven by three configurations of the Weather Research and Forecasting (WRF) mesoscale model. We determine surface fluxes of CH4 using a Bayesian least squares method in a four-dimensional inversion. Simulated CH4 concentrations with the posterior emission inventory achieve much better correlations with the measurements (R2 = 0.7) than using the prior inventory (U.S. Environmental Protection Agency's National Emission Inventory 2005, R2 = 0.5). The emission estimates for CH4 in the posterior, 46.3 9.2 Mg CH4/h, are consistent with published observation-based estimates. Changes in the spatial distribution of CH4 emissions in the SoCAB between the prior and posterior inventories are discussed. Missing or underestimated emissions from dairies, the oil/gas system, and landfills in the SoCAB seem to explain the differences between the prior and posterior inventories. Furthermore, we estimate that dairies contributed 5.9 1.7 Mg CH4/h and the two sectors of oil and gas industries (production and downstream) and landfills together contributed 39.6 8.1 Mg CH4/h in the SoCAB.

  15. Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin

    SciTech Connect

    Cui, Yu Yan; Brioude, Jerome; McKeen, Stuart A.; Angevine, Wayne M.; Kim, Si -Wan; Frost, Gregory J.; Ahmadov, Ravan; Peischl, Jeff; Bousserez, Nicolas; Liu, Zhen; Ryerson, Thomas B.; Wofsy, Steve C.; Santoni, Gregory W.; Kort, Eric A.; Fischer, Marc L.; Trainer, Michael

    2015-07-28

    Methane (CH4) is the primary component of natural gas and has a larger global warming potential than CO2. Some recent top-down studies based on observations showed CH4 emissions in California's South Coast Air Basin (SoCAB) were greater than those expected from population-apportioned bottom-up state inventories. In this study, we quantify CH4 emissions with an advanced mesoscale inverse modeling system at a resolution of 8 km × 8 km, using aircraft measurements in the SoCAB during the 2010 Nexus of Air Quality and Climate Change campaign to constrain the inversion. To simulate atmospheric transport, we use the FLEXible PARTicle-Weather Research and Forecasting (FLEXPART-WRF) Lagrangian particle dispersion model driven by three configurations of the Weather Research and Forecasting (WRF) mesoscale model. We determine surface fluxes of CH4 using a Bayesian least squares method in a four-dimensional inversion. Simulated CH4 concentrations with the posterior emission inventory achieve much better correlations with the measurements (R2 = 0.7) than using the prior inventory (U.S. Environmental Protection Agency's National Emission Inventory 2005, R2 = 0.5). The emission estimates for CH4 in the posterior, 46.3 ± 9.2 Mg CH4/h, are consistent with published observation-based estimates. Changes in the spatial distribution of CH4 emissions in the SoCAB between the prior and posterior inventories are discussed. Missing or underestimated emissions from dairies, the oil/gas system, and landfills in the SoCAB seem to explain the differences between the prior and posterior inventories. Furthermore, we estimate that dairies contributed 5.9 ± 1.7 Mg CH4/h and the two sectors of oil and gas industries (production and downstream) and landfills together contributed 39.6 ± 8.1 Mg CH4/h in the SoCAB.

  16. Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes

    SciTech Connect

    Tian, Hanqin; Chen, Guangsheng; Lu, Chaoqun; Xu, Xiaofeng; Ren, Wei; Zhang, Bowen; Banger, Kamaljit; Tao, Bo; Pan, Shufen; Chu, Mingliang; Zhang, Chi; Bruhwiler, Lori; Wofsy, Steven

    2015-03-16

    Greenhouse gas (GHG)-induced climate change is among the most pressing sustainability challenges facing humanity today, posing serious risks for ecosystem health. Methane (CH4) and nitrous oxide (N2O) are the two most important GHGs after carbon dioxide (CO2), but their regional and global budgets are not well known. In this paper, we applied a process-based coupled biogeochemical model to concurrently estimate the magnitude and spatial and temporal patterns of CH4 and N2O fluxes as driven by multiple environmental changes, including climate variability, rising atmospheric CO2, increasing nitrogen deposition, tropospheric ozone pollution, land use change, and nitrogen fertilizer use.

  17. Effect of Environmental Factors on Sulfur Gas Emissions from Drywall

    SciTech Connect

    Maddalena, Randy

    2011-08-20

    Problem drywall installed in U.S. homes is suspected of being a source of odorous and potentially corrosive indoor pollutants. The U.S. Consumer Product Safety Commission's (CPSC) investigation of problem drywall incorporates three parallel tracks: (1) evaluating the relationship between the drywall and reported health symptoms; (2) evaluating the relationship between the drywall and electrical and fire safety issues in affected homes; and (3) tracing the origin and the distribution of the drywall. To assess the potential impact on human health and to support testing for electrical and fire safety, the CPSC has initiated a series of laboratory tests that provide elemental characterization of drywall, characterization of chemical emissions, and in-home air sampling. The chemical emission testing was conducted at Lawrence Berkeley National Laboratory (LBNL). The LBNL study consisted of two phases. In Phase 1 of this study, LBNL tested thirty drywall samples provided by CPSC and reported standard emission factors for volatile organic compounds (VOCs), aldehydes, reactive sulfur gases (RSGs) and volatile sulfur compounds (VSCs). The standard emission factors were determined using small (10.75 liter) dynamic test chambers housed in a constant temperature environmental chamber. The tests were all run at 25 C, 50% relative humidity (RH) and with an area-specific ventilation rate of {approx}1.5 cubic meters per square meter of emitting surface per hour [m{sup 3}/m{sup 2}/h]. The thirty samples that were tested in Phase 1 included seventeen that were manufactured in China in 2005, 2006 and 2009, and thirteen that were manufactured in North America in 2009. The measured emission factors for VOCs and aldehydes were generally low and did not differ significantly between the Chinese and North American drywall. Eight of the samples tested had elevated emissions of volatile sulfur-containing compounds with total RSG emission factors between 32 and 258 micrograms per square meter

  18. Evaluation of wetland methane emissions across North America using atmospheric data and inverse modeling

    DOE PAGES [OSTI]

    Miller, Scot M.; Commane, Roisin; Melton, Joe R.; Andrews, Arlyn E.; Benmergui, Joshua; Dlugokencky, Edward J.; Janssens-Maenhout, Greet; Michalak, Anna M.; Sweeney, Colm; Worthy, Doug E. J.

    2016-03-02

    Existing estimates of methane (CH4) fluxes from North American wetlands vary widely in both magnitude and distribution. In light of these differences, this study uses atmospheric CH4 observations from the US and Canada to analyze seven different bottom-up, wetland CH4 estimates reported in a recent model comparison project. We first use synthetic data to explore whether wetland CH4 fluxes are detectable at atmospheric observation sites. We find that the observation network can detect aggregate wetland fluxes from both eastern and western Canada but generally not from the US. Based upon these results, we then use real data and inverse modelingmore » results to analyze the magnitude, seasonality, and spatial distribution of each model estimate. The magnitude of Canadian fluxes in many models is larger than indicated by atmospheric observations. Many models predict a seasonality that is narrower than implied by inverse modeling results, possibly indicating an oversensitivity to air or soil temperatures. The LPJ-Bern and SDGVM models have a geographic distribution that is most consistent with atmospheric observations, depending upon the region and season. Lastly, these models utilize land cover maps or dynamic modeling to estimate wetland coverage while most other models rely primarily on remote sensing inundation data.« less

  19. Ammonia and methane dairy emissions in the San Joaquin Valley of California from individual feedlot to regional scale

    SciTech Connect

    Miller, David J.; Sun, Kang; Tao, Lei; Nowak, John B.; Liu, Zhen; Diskin, Glenn; Sasche, Glen; Beyersdorf, Andreas; Ferrare, Richard; Scarino, Amy Jo; Zondlo, Mark A.; Pan, Da

    2015-09-27

    Agricultural ammonia (NH3) emissions are highly uncertain, with high spatiotemporal variability and a lack of widespread in situ measurements. Regional NH3 emission estimates using mass balance or emission ratio approaches are uncertain due to variable NH3 sources and sinks as well as unknown plume correlations with other dairy source tracers. We characterize the spatial distributions of NH3 and methane (CH4) dairy plumes using in situ surface and airborne measurements in the Tulare dairy feedlot region of the San Joaquin Valley, California, during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality 2013 field campaign. Surface NH3 and CH4 mixing ratios exhibit large variability with maxima localized downwind of individual dairy feedlots. The geometric mean NH3:CH4 enhancement ratio derived from surface measurements is 0.15 ± 0.03 ppmv ppmv–1. Individual dairy feedlots with spatially distinct NH3 and CH4 source pathways led to statistically significant correlations between NH3 and CH4 in 68% of the 69 downwind plumes sampled. At longer sampling distances, the NH3:CH4 enhancement ratio decreases 20–30%, suggesting the potential for NH3 deposition as a loss term for plumes within a few kilometers downwind of feedlots. Aircraft boundary layer transect measurements directly above surface mobile measurements in the dairy region show comparable gradients and geometric mean enhancement ratios within measurement uncertainties, even when including NH3 partitioning to submicron particles. Individual NH3 and CH4 plumes sampled at close proximity where losses are minimal are not necessarily correlated due to lack of mixing and distinct source pathways. As a result, our analyses have

  20. Estimating U.S. Methane Emissions from the Natural Gas Supply...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    is to develop the empirical foundation for activity factor uncertainty estimation. 6. Transparency and credibility of inventory estimates can be improved by bolstering...

  1. Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug

    DOE PAGES [OSTI]

    Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; Chen, Jyh-Yuan; Dibble, Robert W.; Nishiyama, Atsushi; Moon, Ahsa; Ikeda, Yuji

    2012-01-01

    Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ, microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less

  2. Controlling Methane Emissions in the Natural Gas Sector. A Review of Federal and State Regulatory Frameworks Governing Production, Gathering, Processing, Transmission, and Distribution

    SciTech Connect

    Paranhos, Elizabeth; Kozak, Tracy G.; Boyd, William; Bradbury, James; Steinberg, D. C.; Arent, D. J.

    2015-04-23

    This report provides an overview of the regulatory frameworks governing natural gas supply chain infrastructure siting, construction, operation, and maintenance. Information was drawn from a number of sources, including published analyses, government reports, in addition to relevant statutes, court decisions and regulatory language, as needed. The scope includes all onshore facilities that contribute to methane emissions from the natural gas sector, focusing on three areas of state and federal regulations: (1) natural gas pipeline infrastructure siting and transportation service (including gathering, transmission, and distribution pipelines), (2) natural gas pipeline safety, and (3) air emissions associated with the natural gas supply chain. In addition, the report identifies the incentives under current regulatory frameworks to invest in measures to reduce leakage, as well as the barriers facing investment in infrastructure improvement to reduce leakage. Policy recommendations regarding how federal or state authorities could regulate methane emissions are not provided; rather, existing frameworks are identified and some of the options for modifying existing regulations or adopting new regulations to reduce methane leakage are discussed.

  3. Determination of the electron temperature by optical emission spectroscopy in a 13.56 MHz dusty methane plasma: Influence of the power

    SciTech Connect

    Massereau-Guilbaud, Veronique; Geraud-Grenier, Isabelle; Plain, Andre

    2009-12-01

    Optical emission spectroscopy is applied to the study of a radiofrequency (13.56 MHz) discharge in methane used to obtain hydrogenated carbon films and particles. The methane dissociation allows the creation of species in the plasma bulk as H{sub 2}, H, and CH. The emission lines of these species are studied as a function of time and of incident rf power. The electron temperature is determined from the two line radiance ratio method and the corona balance model using the Balmer lines (H{sub alpha}, H{sub beta}, and H{sub gamma}). The incident rf power enhancement in the range 40-120 W leads to the increase in the emission line intensities as the electron temperature decreases. The temporal variations of CH and hydrogen emission lines, of the dc self-bias voltage, and of the electron temperature are correlated both with the particle behavior and growth in the plasma, and with the coating that grows onto the powered electrode.

  4. Performance and Emissions Characteristics of Bio-Diesel (B100)-Ignited Methane and Propane Combustion in a Four Cylinder Turbocharged Compression Ignition Engine

    DOE PAGES [OSTI]

    Shoemaker, N. T.; Gibson, C. M.; Polk, A. C.; Krishnan, S. R.; Srinivasan, K. K.

    2011-10-05

    Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4 cylinder diesel engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane andmore » at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fuelling were limited to 70% at 2.5 bar bmep and 48% at 10 bar bmep, and corresponding values for B100-propane dual fuelling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bar bmep and the onset of engine knock at 10 bar bmep. Dual fuel BTEs approached straight B100 values at 10 bar bmep while they were significantly lower than B100 values at 2.5 bar bmep. In general dual fuelling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.« less

  5. Performance and Emissions Characteristics of Bio-Diesel (B100)-Ignited Methane and Propane Combustion in a Four Cylinder Turbocharged Compression Ignition Engine

    SciTech Connect

    Shoemaker, N. T.; Gibson, C. M.; Polk, A. C.; Krishnan, S. R.; Srinivasan, K. K.

    2011-10-05

    Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4 cylinder diesel engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane and at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fuelling were limited to 70% at 2.5 bar bmep and 48% at 10 bar bmep, and corresponding values for B100-propane dual fuelling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bar bmep and the onset of engine knock at 10 bar bmep. Dual fuel BTEs approached straight B100 values at 10 bar bmep while they were significantly lower than B100 values at 2.5 bar bmep. In general dual fuelling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.

  6. Emissions Of Greenhouse Gases From Rice Agriculture

    SciTech Connect

    M. Aslam K. Khalil

    2009-07-16

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small

  7. A Statement from U.S. Secretary of Energy Ernest Moniz on the Administration's Strategy to Cut Methane Emissions

    Energy.gov [DOE]

    “The Interagency Methane Strategy is a critical part of the President’s Climate Action Plan and the Department of Energy will play an integral, active part of these efforts. The Department is...

  8. GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities

    SciTech Connect

    Friedrich, Elena; Trois, Cristina

    2013-04-15

    Highlights: ► An average GHG emission factor for the collection and transport of municipal solid waste in South Africa is calculated. ► A range of GHG emission factors for different types of landfills (including dumps) in South Africa are calculated. ► These factors are compared internationally and their implications for South Africa and developing countries are discussed . ► Areas for new research are highlighted. - Abstract: Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm{sup 3} (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO{sub 2} equivalents (CO{sub 2} e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from −145 to 1016 kg CO{sub 2} e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO{sub 2} e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement

  9. Methane Stakeholder Roundtables | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Methane Stakeholder Roundtables Methane Stakeholder Roundtables April 24, 2014 - 3:00pm Addthis Methane Stakeholder Roundtables Advancing the Interagency Methane Strategy As directed by President Obama in his Climate Action Plan, the Department of Energy (DOE) collaborated with other Federal agencies to develop a Strategy to Reduce Methane Emissions, which was formally announced by the White House last month. To advance this strategy, DOE is now working with other Federal agencies and the White

  10. The future of methane

    SciTech Connect

    Howell, D.G.

    1995-12-31

    Natural gas, mainly methane, produces lower CO{sub 2}, CO, NO{sub x}, SO{sub 2} and particulate emissions than either oil or coal; thus further substitutions of methane for these fuels could help mitigate air pollution. Methane is, however, a potent greenhouse gas and the domestication of ruminants, cultivation of rice, mining of coal, drilling for oil, and transportation of natural gas have all contributed to a doubling of the amount of atmospheric methane since 1800. Today nearly 300,000 wells yearly produce ca. 21 trillion cubic feet of methane. Known reserves suggest about a 10 year supply at the above rates of recovery; and the potential for undiscovered resources is obscured by uncertainty involving price, new technologies, and environmental restrictions steming from the need to drill an enormous number of wells, many in ecologically sensitive areas. Until all these aspects of methane are better understood, its future role in the world`s energy mix will remain uncertain. The atomic simplicity of methane, composed of one carbon and four hydrogen atoms, may mask the complexity and importance of this, the most basic of organic molecules. Within the Earth, methane is produced through thermochemical alteration of organic materials, and by biochemical reactions mediated by metabolic processes of archaebacteria; some methane may even be primordial, a residue of planetary accretion. Methane also occurs in smaller volumes in landfills, rice paddies, termite complexes, ruminants, and even many humans. As an energy source, its full energy potential is controversial. Methane is touted by some as a viable bridge to future energy systems, fueled by the sun and uranium and carried by electricity and hydrogen.

  11. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: Strong N{sub 2}O hotspots at the working face

    SciTech Connect

    Harborth, Peter; Fu, Roland; Mnnich, Kai; Flessa, Heinz; Fricke, Klaus

    2013-10-15

    Highlights: ? First measurements of N{sub 2}O and CH{sub 4} emissions from an MBT landfill. ? High N{sub 2}O emissions from recently deposited material. ? N{sub 2}O emissions associated with aeration and the occurrence of nitrite and nitrate. ? Strong negative correlation between CH{sub 4} and N{sub 2}O production activity. - Abstract: Mechanical biological treatment (MBT) is an effective technique, which removes organic carbon from municipal solid waste (MSW) prior to deposition. Thereby, methane (CH{sub 4}) production in the landfill is strongly mitigated. However, direct measurements of greenhouse gas emissions from full-scale MBT landfills have not been conducted so far. Thus, CH{sub 4} and nitrous oxide (N{sub 2}O) emissions from a German MBT landfill in operation as well as their concentrations in the landfill gas (LFG) were measured. High N{sub 2}O emissions of 20200 g CO{sub 2} eq. m{sup ?2} h{sup ?1} magnitude (up to 428 mg N m{sup ?2} h{sup ?1}) were observed within 20 m of the working face. CH{sub 4} emissions were highest at the landfill zone located at a distance of 3040 m from the working face, where they reached about 10 g CO{sub 2} eq. m{sup ?2} h{sup ?1}. The MBT material in this area has been deposited several weeks earlier. Maximum LFG concentration for N{sub 2}O was 24.000 ppmv in material below the emission hotspot. At a depth of 50 cm from the landfill surface a strong negative correlation between N{sub 2}O and CH{sub 4} concentrations was observed. From this and from the distribution pattern of extractable ammonium, nitrite, and nitrate it has been concluded that strong N{sub 2}O production is associated with nitrification activity and the occurrence of nitrite and nitrate, which is initiated by oxygen input during waste deposition. Therefore, CH{sub 4} mitigation measures, which often employ aeration, could result in a net increase of GHG emissions due to increased N{sub 2}O emissions, especially at MBT landfills.

  12. Enhanced Renewable Methane Production System | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates biological methane production rates at least fivefold. Low cost Delivers near-pipeline-quality gas and eliminates carbon dioxide emissions PDF icon methane_production_system

  13. Methane Hydrates

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Special Report: Frozen Heat: A Global Outlook on Methane Hydrates The United Nations Environmental Programme released this new, two-volume report in March 2015. Frozen Heat: A ...

  14. Coal mine methane global review

    SciTech Connect

    2008-07-01

    This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

  15. Emission factors for leaks in refinery components in heavy liquid service

    SciTech Connect

    Taback, H.; Godec, M.

    1996-12-31

    The objective of this program was to provide sufficient screening data so that EPA can develop an official set of emission factors (expressed in lb/hr/component) for refinery components (valves, flanged connectors, non-flanged connectors, pumps, open-ended lines, and other) in heavy liquid (BL) service. To accomplish this, 211,000 existing HL screening values from Southern California refineries were compiled and compared with 2,500 new HL screening measurements taken at two refineries in the state of Washington. Since Southern California is an area in extreme non-attainment of the National Ambient Air Quality Standards (NAAQS) and therefore has tight emission control regulations, it was felt that its screening data may not be representative of refineries without tight emission controls. Thus, the Southern California screening data were compared to screening measurements at refineries in an area that is in attainment of the NAAQS and without emissions control, which is the case for those refineries in Washington. It was found that statistically there was no significant difference in emission factors between the two areas and, therefore, there appears to be no difference in emissions from heavy liquid components in areas with and without leak detection and repair (LDAR) programs. The new emission factors range from 1/7 to 1/3 times the current EPA emission factors. This program was sponsored by the American Petroleum Institute (API) and an API report will soon be released providing complete details.

  16. The Methane to Markets Coal Mine Methane Subcommittee meeting

    SciTech Connect

    2008-07-01

    The presentations (overheads/viewgraphs) include: a report from the Administrative Support Group; strategy updates from Australia, India, Italy, Mexico, Nigeria, Poland and the USA; coal mine methane update and IEA's strategy and activities; the power of VAM - technology application update; the emissions trading market; the voluntary emissions reduction market - creating profitable CMM projects in the USA; an Italian perspective towards a zero emission strategies; and the wrap-up and summary.

  17. ARM - Methane Background Information

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    WarmingMethane Background Information Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Methane Background Information What is Methane? Why Do We Use Methane? How is Methane Made? Where Do We Find Methane? Can Methane Be Dangerous? Does Methane Contribute to Climate Change? What is Methane?

  18. Determination of landfill gas composition and pollutant emission rates at fresh kills landfill. Volume 1. Project report. Final report

    SciTech Connect

    1995-12-07

    Air emissions of landfill gas pollutants at Fresh Kills Landfill, located in Staten Island, NY, were estimated based on three weeks of sampling of flow, concentration, and flux at passive vents, gas extraction wells, gas collection plant headers, and the landfill surface conducted by Radian Corporation in 1995. Emission rates were estimated for 202 pollutants, including hydrogen sulfide, mercury vapor, speciated volatile organic compounds, methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane recovery plant. Emission factors based on the results are presented.

  19. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities

    SciTech Connect

    Friedrich, Elena Trois, Cristina

    2013-11-15

    Highlights: • GHG emission factors for local recycling of municipal waste are presented. • GHG emission factors for two composting technologies for garden waste are included. • Local GHG emission factors were compared to international ones and discussed. • Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from −290 kg CO{sub 2} e (glass) to −19 111 kg CO{sub 2} e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO{sub 2} e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard.

  20. Scientists detect methane levels three times larger than expected...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    "We attribute this hot spot to fugitive leaks from coal-bed methane that actually preceded recent concerns about potential emissions from fracking," Dubey said. Scientists detect ...

  1. Source Apportionment of Stack Emissions from Research and Development Facilities Using Positive Matrix Factorization

    SciTech Connect

    Ballinger, Marcel Y.; Larson, Timothy V.

    2014-08-19

    Emissions from research and development (R&D) facilities are difficult to characterize due to the wide variety of processes used, changing nature of research, and large number of chemicals. Positive matrix factorization (PMF) was applied to volatile organic compounds (VOCs) concentrations measured in the main exhaust stacks of four different R&D buildings to identify the number and composition of major contributing sources. PMF identified from 9-11 source-related factors contributing to the stack emissions depending on the building. The factors that were similar between buildings were major contributors to trichloroethylene (TCE), acetone, and ethanol emissions. Several other factors had similar profiles for two or more buildings but not for all four. One factor for each building was a combination of p/m-xylene, o-xylene and ethylbenzene. At least one factor for each building was identified that contained a broad mix of many species and constraints were used in PMF to modify the factors to resemble more closely the off-shift concentration profiles. PMF accepted the constraints with little decrease in model fit. Although the PMF model predicted the profiles of the off-shift samples, the percent of total emissions was under-predicted by the model versus the measured data.

  2. Emission factors for several toxic air pollutants from fluidized-bed combustion of coal

    SciTech Connect

    Smith, A.E.

    1986-03-01

    Clean coal technologies such as fluidized-bed combustion have the potential to emit the same trace elements as conventional combustors. Since the US Environmental Protection Agency (EPA) is likely to promulgate National Emission Standards for Hazardous Air Pollutants for several trace elements, the feasibility of using fluidized-bed combustors to reduce sulfur dioxide emissions may depend in part on the relative amounts of trace elements emitted by fluidized-bed and conventional combustors. Emissions of trace elements from both atmospheric and pressurized fluidized-bed combustors were compared with those from conventional combustors by developing fluidized-bed emission factors from information available in the literature and comparing them with the emission factors for conventional combustors recommended in a literature search conducted for EPA. The comparisons are based on the mass of emission per unit of heat input for antimony, arsenic, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, mercury, nickel, vanadium, and zinc. When inaccuracies in the data were taken into account, the trace element emissions from atmospheric fluidized-bed combustion seem to be somewhat higher than those from a conventional utility boiler burning pulverized coal and somewhat lower than those from pressurized fluidized-bed combustion.

  3. Determining size-specific emission factors for environmental tobacco smoke particles

    SciTech Connect

    Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.; Sextro, Richard G.; Nazaroff, William W.

    2002-07-07

    Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured every minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.

  4. Determination of landfill gas composition and pollutant emission rates at fresh kills landfill. Volume 2. Appendices to project report. Final report

    SciTech Connect

    1995-12-07

    Air emissions of landfill gas pollutants at Fresh Kills Landfill, located in Staten Island, NY, were estimated based on three weeks of sampling of flow, concentration, and flux at passive vents, gas extraction wells, gas collection plant headers, and the landfill surface conducted by Radian Corporation in 1995. Emission rates were estimated for 202 pollutants, including hydrogen sulfide, mercury vapor, speciated volatile organic compounds, methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane recovery plant. Emission factors based on the results are presented.

  5. Small-Chamber Measurements of Chemical-Specific Emission Factors for Drywall

    SciTech Connect

    Maddalena, Randy; Russell, Marion; Apte, Michael G.

    2010-06-01

    Imported drywall installed in U.S. homes is suspected of being a source of odorous and potentially corrosive indoor pollutants. To support an investigation of those building materials by the Consumer Products Safety Commission (CPSC), Lawrence Berkeley National Laboratory (LBNL) measured chemical-specific emission factors for 30 samples of drywall materials. Emission factors are reported for 75 chemicals and 30 different drywall samples encompassing both domestic and imported stock and incorporating natural, synthetic, or mixed gypsum core material. CPSC supplied all drywall materials. First the drywall samples were isolated and conditioned in dedicated chambers, then they were transferred to small chambers where emission testing was performed. Four sampling and analysis methods were utilized to assess (1) volatile organic compounds, (2) low molecular weight carbonyls, (3) volatile sulfur compounds, and (4) reactive sulfur gases. LBNL developed a new method that combines the use of solid phase microextraction (SPME) with small emission chambers to measure the reactive sulfur gases, then extended that technique to measure the full suite of volatile sulfur compounds. The testing procedure and analysis methods are described in detail herein. Emission factors were measured under a single set of controlled environmental conditions. The results are compared graphically for each method and in detailed tables for use in estimating indoor exposure concentrations.

  6. Estimating carbon dioxide emission factors for the California electric power sector

    SciTech Connect

    Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

    2002-08-01

    The California Climate Action Registry (''Registry'') was initially established in 2000 under Senate Bill 1771, and clarifying legislation (Senate Bill 527) was passed in September 2001. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) has been asked to provide technical assistance to the California Energy Commission (CEC) in establishing methods for calculating average and marginal electricity emissions factors, both historic and current, as well as statewide and for sub-regions. This study is exploratory in nature. It illustrates the use of three possible approaches and is not a rigorous estimation of actual emissions factors. While the Registry will ultimately cover emissions of all greenhouse gases (GHGs), presently it is focusing on carbon dioxide (CO2). Thus, this study only considers CO2, which is by far the largest GHG emitted in the power sector. Associating CO2 emissions with electricity consumption encounters three major complications. First, electricity can be generated from a number of different primary energy sources, many of which are large sources of CO2 emissions (e.g., coal combustion) while others result in virtually no CO{sub 2} emissions (e.g., hydro). Second, the mix of generation resources used to meet loads may vary at different times of day or in different seasons. Third, electrical energy is transported over long distances by complex transmission and distribution systems, so the generation sources related to electricity usage can be difficult to trace and may occur far from the jurisdiction in which that energy is consumed. In other words, the emissions resulting from electricity consumption vary considerably depending on when and where it is used since this affects the generation sources providing the power. There is no practical way to identify where or how all the electricity used by a certain customer was generated, but by reviewing public sources of data the total emission burden of a customer's electricity

  7. Research on impacts of population-related factors on carbon emissions in Beijing from 1984 to 2012

    SciTech Connect

    Yang, Yayun; Zhao, Tao; Wang, Yanan Shi, Zhaohui

    2015-11-15

    Carbon emissions related to population factors have aroused great attention around the world. A multitude of literature mainly focused on single demographic impacts on environmental issues at the national level, and comprehensive studies concerning population-related factors at a city level are rare. This paper employed STIRPAT (Stochastic Impacts by Regression on Population, Affluence and Technology) model incorporating PLS (Partial least squares) regression method to examine the influence of population-related factors on carbon emissions in Beijing from 1984 to 2012. Empirically results manifest that urbanization is the paramount driver. Changes in population age structure have significantly positive impacts on carbon emissions, and shrinking young population, continuous expansion of working age population and aging population will keep on increasing environmental pressures. Meanwhile, shrinking household size and expanding floating population boost the discharge of carbon emissions. Besides, per capita consumption is an important contributor of carbon emissions, while industry energy intensity is the main inhibitory factor. Based upon these findings and the specific circumstances of Beijing, policies such as promoting clean and renewable energy, improving population quality and advocating low carbon lifestyles should be enhanced to achieve targeted emissions reductions. - Highlights: • We employed the STIRPAT model to identify population-related factors of carbon emissions in Beijing. • Urbanization is the paramount driver of carbon emissions. • Changes in population age structure exert significantly positive impacts on carbon emissions. • Shrinking household size, expanding floating population and improving consumption level increase carbon emissions. • Industry energy intensity decreases carbon emissions.

  8. Electromagnetic vacuum of complex media: Dipole emission versus light propagation, vacuum energy, and local field factors

    SciTech Connect

    Donaire, M.

    2011-02-15

    We offer a unified approach to several phenomena related to the electromagnetic vacuum of a complex medium made of point electric dipoles. To this aim, we apply the linear response theory to the computation of the polarization field propagator and study the spectrum of vacuum fluctuations. The physical distinction among the local density of states which enter the spectra of light propagation, total dipole emission, coherent emission, total vacuum energy, and Schwinger-bulk energy is made clear. Analytical expressions for the spectrum of dipole emission and for the vacuum energy are derived. Their respective relations with the spectrum of external light and with the Schwinger-bulk energy are found. The light spectrum and the Schwinger-bulk energy are determined by the Dyson propagator. The emission spectrum and the total vacuum energy are determined by the polarization propagator. An exact relationship of proportionality between both propagators is found in terms of local field factors. A study of the nature of stimulated emission from a single dipole is carried out. Regarding coherent emission, it contains two components. A direct one which is transferred radiatively and directly from the emitter into the medium and whose spectrum is that of external light. And an indirect one which is radiated by induced dipoles. The induction is mediated by one (and only one) local field factor. Regarding the vacuum energy, we find that in addition to the Schwinger-bulk energy the vacuum energy of an effective medium contains local field contributions proportional to the resonant frequency and to the spectral line width.

  9. Linear regression analysis of emissions factors when firing fossil fuels and biofuels in a commercial water-tube boiler

    SciTech Connect

    Sharon Falcone Miller; Bruce G. Miller

    2007-12-15

    This paper compares the emissions factors for a suite of liquid biofuels (three animal fats, waste restaurant grease, pressed soybean oil, and a biodiesel produced from soybean oil) and four fossil fuels (i.e., natural gas, No. 2 fuel oil, No. 6 fuel oil, and pulverized coal) in Penn State's commercial water-tube boiler to assess their viability as fuels for green heat applications. The data were broken into two subsets, i.e., fossil fuels and biofuels. The regression model for the liquid biofuels (as a subset) did not perform well for all of the gases. In addition, the coefficient in the models showed the EPA method underestimating CO and NOx emissions. No relation could be studied for SO{sub 2} for the liquid biofuels as they contain no sulfur; however, the model showed a good relationship between the two methods for SO{sub 2} in the fossil fuels. AP-42 emissions factors for the fossil fuels were also compared to the mass balance emissions factors and EPA CFR Title 40 emissions factors. Overall, the AP-42 emissions factors for the fossil fuels did not compare well with the mass balance emissions factors or the EPA CFR Title 40 emissions factors. Regression analysis of the AP-42, EPA, and mass balance emissions factors for the fossil fuels showed a significant relationship only for CO{sub 2} and SO{sub 2}. However, the regression models underestimate the SO{sub 2} emissions by 33%. These tests illustrate the importance in performing material balances around boilers to obtain the most accurate emissions levels, especially when dealing with biofuels. The EPA emissions factors were very good at predicting the mass balance emissions factors for the fossil fuels and to a lesser degree the biofuels. While the AP-42 emissions factors and EPA CFR Title 40 emissions factors are easier to perform, especially in large, full-scale systems, this study illustrated the shortcomings of estimation techniques. 23 refs., 3 figs., 8 tabs.

  10. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires

    SciTech Connect

    Yokelson, Robert J.; Burling, Ian R.; Gilman, Jessica; Warneke, Carsten; Stockwell, Chelsea E.; de Gouw, Joost A.; Akagi, Sheryl; Urbanski, Shawn; Veres, Patrick; Roberts, James M.; Kuster, W. C.; Reardon, James; Griffith, David WT; Johnson, Timothy J.; Hosseini, SeyedEhsan; Miller, J. Wayne; Cocker, David R.; Jung, H.; Weise, David

    2013-01-07

    Vegetative fuels commonly consumed in prescribed fires were collected from five locations in the southeastern and southwestern U.S. and burned in a series of 77 fires at the U.S. Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5) emissions were measured by gravimetric filter sampling with subsequent analysis for elemental carbon (EC), organic carbon (OC), and 38 elements. The trace gas emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP FTIR) spectrometer, proton-transfer-reaction mass spectrometry (PTR-MS), proton-transfer ion-trap mass spectrometry (PIT-MS), negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS), and gas chromatography with MS detection (GC-MS). 204 trace gas species (mostly non-methane organic compounds (NMOC)) were identified and quantified with the above instruments. An additional 152 significant peaks in the unit mass resolution mass spectra were quantified, but either could not be identified or most of the signal at that molecular mass was unaccounted for by identifiable species. As phase II of this study, we conducted airborne and ground-based sampling of the emissions from real prescribed fires mostly in the same land management units where the fuels for the lab fires were collected. A broad variety, but smaller number of species (21 trace gas species and PM2.5) was measured on 14 fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. These extensive field measurements of emission factors (EF) for temperate biomass burning are useful both for modeling and to examine the representativeness of our lab fire EF. The lab/field EF ratio for the pine understory fuels was not statistically different from one, on average. However, our lab EF for smoldering compounds emitted by burning the semi

  11. Field Derived Emission Factors For Formaldehyde and other Volatile Organic Compounds in FEMA Temporary Housing Units

    SciTech Connect

    Parthasarathy, Srinandini; Maddalena, Randy L.; Russell, Marion L.; Apte, Michael G.

    2010-10-01

    Sixteen previously occupied temporary housing units (THUs) were studied to assess emissions of volatile organic compounds. The whole trailer emission factors wereevaluated for 36 VOCs including formaldehyde. Indoor sampling was carried out in the THUs located in Purvis staging yard in Mississippi, USA. Indoor temperature andrelative humidity (RH) were also measured in all the trailers during sampling. Indoor temperatures were varied (increased or decreased) in a selection of THUs using theheating, ventilation and air conditioning (HVAC) systems. Indoor temperatures during sampling ranged from 14o C to 33o C, and relative humidity (RH) varied between 35percentand 74percent. Ventilation rates were increased in some trailers using bathroom fans and vents during some of the sampling events. Ventilation rates measured during some aselection of sampling events varied from 0.14 to 4.3 h-1. Steady state indoor formaldehyde concentrations ranged from 10 mu g-m-3 to 1000 mu g-m-3. The formaldehyde concentrations in the trailers were of toxicological significance. The effects of temperature, humidity and ventilation rates were also studied. A linearregression model was built using log of percentage relative humidity, inverse of temperature (in K-1), and inverse log ACH as continuous independent variables, trailermanufacturer as a categorical independent variable, and log of the chemical emission factors as the dependent variable. The coefficients of inverse temperature, log relativehumidity, log inverse ACH with log emission factor were found to be statistically significant for all the samples at the 95percent confidence level. The regression model wasfound to explain about 84percent of the variation in the dependent variable. Most VOC concentrations measured indoors in the Purvis THUs were mostly found to be belowvalues reported in earlier studies by Maddalena et al.,1,2 Hodgson et al.,3 and Hippelein4. Emissions of TMPB-DIB (a plasticizer found in vinyl products) were found

  12. Developing an emission factor for hazardous air pollutants for an F-16 using JP-8 fuel. Master's thesis

    SciTech Connect

    Van Schaack, D.J.

    1994-09-01

    The 1990 Clean Air Act amendments drastically changed the legislation of hazardous air pollutants (HAPs) or air toxics. Title 3 of the act which specifically addresses HAPs now lists 189 substances which may require regulation as air toxics. Consequently, the reporting of HAP emissions from all Air Force operations will be required in the future. However, the Department of Defense (DoD) does not have methods available to report this information. This thesis develops emission factors for selected HAPs from an F-16 CD aircraft/F110 engine operating on JP-8 fuel. The methodology included: determining which HAPs should be selected, using past aircraft emission studies to estimate HAP concentrations for the F110 engine using JP-8 fuel selecting an emission factor formula to calculate emission factors for each HAP, testing the developed emission factors on an airfield operation. The estimated emission factors for each HAP for the F110 engine are low for all engine modes mainly because the F110 is a newer engine with high combustion efficiency. The resultant emission inventory shows that many HAPs would be classified as major sources under current Title 3 legislation. Thus, it is important to assess airfield operations to ensure they remain in compliance with the upcoming Title 3 legislation.

  13. State-level Greenhouse Gas Emission Factors for Electricity Generation, Updated 2002

    Reports and Publications

    2002-01-01

    This report documents the preparation of updated state-level electricity coefficients for carbon dioxide (CO ), methane (CH ), and nitrous oxide (NO), which represent a three-year weighted average for 1998-2000.

  14. Methane Credit | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Methane Credit Jump to: navigation, search Name: Methane Credit Place: Charlotte, North Carolina Zip: 28273 Product: Specialises in utilising methane produced on municipal landfill...

  15. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life

  16. Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors (Transportation Energy Futures Series)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DEMAND Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors TRANSPORTATION ENERGY FUTURES SERIES: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL

  17. Methane flux from mangrove sediments along the southwestern coast of Puerto Rico

    SciTech Connect

    Sotomayor, D.; Corredor, J.E.; Morell, J.M. )

    1994-03-01

    Although the sediments of coastal marine mangrove forests have been considered a minor source of atmospheric methane, these estimate have been based on sparse data from similar areas. We have gathered evidence that shows that external nutrient and freshwater loading in mangrove sediments may have a significant effect on methane flux. Experiments were performed to examine methane fluxes from anaerobic sediments in a mangrove forest subjected to secondary sewage effluents on the southwestern coast of Puerto Rico. Emission rates were measured in situ using a static chamber technique, and subsequent laboratory analysis of samples was by gas chromatography using a flame ionization detector. Results indicate that methane flux rates were lowest at the landward fringe nearest to the effluent discharge, higher in the seaward fringe occupied by red mangroves, and highest in the transition zone between black and red mangrove communities, with average values of 4 mg CH[sub 4] m[sup [minus]2] d[sup [minus]1], 42 mg CH[sub 4] m[sup [minus]2] d[sup [minus]1], and 82 mg CH[sub 4] m[sup [minus]2] d[sup [minus]1], respectively. Overall mean values show these sediments may emit as much as 40 times more methane than unimpacted pristine areas. Pneumatophores of Aviciennia germinans have been found to serve as conduits to the atmosphere for this gas. Fluctuating water level overlying the mangrove sediment is an important environmental factor controlling seasonal and interannual CH[sub 4] flux variations. Environmental controls such as freshwater inputs and increased nutrient loading influence in situ methane emissions from these environments. 34 refs., 3 figs., 3 tabs.

  18. ARM - Methane Gas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Methane Gas Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Methane Gas Methane gas is another naturally occurring greenhouse gas. It is produced as a result of microbial activity in the absence of oxygen. Pre-industrial concentrations of methane were about 700 ppb and in 1994 they were up

  19. Methane Hydrate Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FY 2011 Methane Hydrate Program Report to Congress July 2012 United States Department of Energy Washington, DC 20585 Department of Energy | July 2012 FY 2011 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report entitled U.S. Department of Energy FY 2011 Methane

  20. Heat pipe methanator

    DOEpatents

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  1. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    DOE PAGES [OSTI]

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-02-23

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resultedmore » in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels.« less

  2. Methane Hydrate | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Methane Hydrate Methane Hydrate Types of Methane Hydrate Deposits Types of Methane Hydrate Deposits Methane hydrate is a cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas. If methane hydrate is either warmed or depressurized, it will revert back to water and natural gas. When brought to the earth's surface, one cubic meter of gas hydrate releases 164 cubic meters of natural gas. Hydrate deposits may be several hundred meters thick and

  3. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2004-01-01

    Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in

  4. ARPA-E Announces $60 Million for Disruptive Technologies to Cut Emissions, Boost Energy Efficiency

    Energy.gov [DOE]

    Two New Programs Aim to Detect and Measure Methane Emissions and Develop Energy Efficient Heating and Cooling Systems

  5. Fact #825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gases Plus Nitrogen Oxide Emission Standards, Model Years 2017-2025 Fact 825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus Nitrogen Oxide Emission Standards, Model Years ...

  6. Methane Hydrate Field Program

    SciTech Connect

    2013-12-31

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

  7. Methane Hydrate Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fiscal Year 2012 Methane Hydrate Program Report to Congress August 2013 United States Department of Energy Washington, DC 20585 Department of Energy | August 2013 Fiscal Year 2012 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the actions taken to carry out methane hydrate research. I am pleased to submit the enclosed report, entitled U.S.

  8. Methane Hydrate Field Studies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Since 2001, DOE has conducted field trials of exploration and production technology in the Alaska North Slope. Although Alaska methane hydrate resources are smaller than marine deposits and...

  9. Black Carbon Concentrations and Diesel Vehicle Emission FactorsDerived from Coefficient of Haze Measurements in California:1967-2003

    SciTech Connect

    Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.

    2007-10-01

    We have derived ambient black carbon (BC) concentrations and estimated emission factors for on-road diesel vehicles from archived Coefficient of Haze (COH) data that was routinely collected beginning in 1967 at 11 locations in the San Francisco Bay Area. COH values are a measure of the attenuation of light by particles collected on a white filter, and available data indicate they are proportional to BC concentrations measured using the conventional aethalometer. Monthly averaged BC concentrations are up to five times greater in winter than summer, and, consequently, so is the population's exposure to BC. The seasonal cycle in BC concentrations is similar for all Bay Area sites, most likely due to area-wide decreased pollutant dispersion during wintertime. A strong weekly cycle is also evident, with weekend concentrations significantly lower than weekday concentrations, consistent with decreased diesel traffic volume on weekends. The weekly cycle suggests that, in the Bay Area, diesel vehicle emissions are the dominant source of BC aerosol. Despite the continuous increase in diesel fuel consumption in California, annual Bay Area average BC concentrations decreased by a factor of {approx}3 from the late 1960s to the early 2000s. Based on estimated annual BC concentrations, on-road diesel fuel consumption, and recent measurements of on-road diesel vehicle BC emissions, diesel BC emission factors decreased by an order of magnitude over the study period. Reductions in the BC emission factor reflect improved engine technology, emission controls and changes in diesel fuel composition. A new BC monitoring network is needed to continue tracking ambient BC trends because the network of COH monitors has recently been retired.

  10. Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003

    SciTech Connect

    Tast, CynthiaL; Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.; Fairley, David

    2007-11-09

    We have derived ambient black carbon (BC) concentrations and estimated emission factors for on-road diesel vehicles from archived Coefficient of Haze (COH) data that was routinely collected beginning in 1967 at 11 locations in the San Francisco Bay Area. COH values are a measure of the attenuation of light by particles collected on a white filter, and available data indicate they are proportional to BC concentrations measured using the conventional aethalometer. Monthly averaged BC concentrations are up to five times greater in winter than summer, and, consequently, so is the population?s exposure to BC. The seasonal cycle in BC concentrations is similar for all Bay Area sites, most likely due to area-wide decreased pollutant dispersion during wintertime. A strong weekly cycle is also evident, with weekend concentrations significantly lower than weekday concentrations, consistent with decreased diesel traffic volume on weekends. The weekly cycle suggests that, in the Bay Area, diesel vehicle emissions are the dominant source of BC aerosol. Despite the continuous increase in diesel fuel consumption in California, annual Bay Area average BC concentrations decreased by a factor of ~;;3 from the late 1960s to the early 2000s. Based on estimated annual BC concentrations, on-road diesel fuel consumption, and recent measurements of on-road diesel vehicle BC emissions, diesel BC emission factors decreased by an order of magnitude over the study period. Reductions in the BC emission factor reflect improved engine technology, emission controls and changes in diesel fuel composition. A new BC monitoring network is needed to continue tracking ambient BC trends because the network of COH monitors has recently been retired.

  11. Marine methane cycle simulations for the period of early global warming

    SciTech Connect

    Elliott, S.; Maltrud, M.; Reagan, M.T.; Moridis, G.J.; Cameron-Smith, P.J.

    2011-01-02

    Geochemical environments, fates, and effects are modeled for methane released into seawater by the decomposition of climate-sensitive clathrates. A contemporary global background cycle is first constructed, within the framework of the Parallel Ocean Program. Input from organics in the upper thermocline is related to oxygen levels, and microbial consumption is parameterized from available rate measurements. Seepage into bottom layers is then superimposed, representing typical seabed fluid flow. The resulting CH{sub 4} distribution is validated against surface saturation ratios, vertical sections, and slope plume studies. Injections of clathrate-derived methane are explored by distributing a small number of point sources around the Arctic continental shelf, where stocks are extensive and susceptible to instability during the first few decades of global warming. Isolated bottom cells are assigned dissolved gas fluxes from porous-media simulation. Given the present bulk removal pattern, methane does not penetrate far from emission sites. Accumulated effects, however, spread to the regional scale following the modeled current system. Both hypoxification and acidification are documented. Sensitivity studies illustrate a potential for material restrictions to broaden the perturbations, since methanotrophic consumers require nutrients and trace metals. When such factors are considered, methane buildup within the Arctic basin is enhanced. However, freshened polar surface waters act as a barrier to atmospheric transfer, diverting products into the deep return flow. Uncertainties in the logic and calculations are enumerated including those inherent in high-latitude clathrate abundance, buoyant effluent rise through the column, representation of the general circulation, and bacterial growth kinetics.

  12. State-level Greenhouse Gas Emission Factors for Electricity Generation, Updated

    Reports and Publications

    2001-01-01

    To assist reporters in estimating emissions and emission reductions, The Energy Information Administration (EIA) has made available in the instructions to Forms EIA-1605 and EIA-1605EZ emission coefficients for most commonly used fossil fuels and electricity. These coefficients were based on 1992 emissions and generation data. In 1999, updated coefficients were prepared based on the most recent data (1998) then available; however, the updated coefficients were not included in the instructions for the 1999 data year. This year, they have been updated again, but based on three years worth of data (1997, 1998, and 1999) rather than a single year.

  13. Methanation assembly using multiple reactors

    DOEpatents

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  14. Fact #825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus Nitrogen

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Oxide Emission Standards, Model Years 2017-2025 | Department of Energy 5: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus Nitrogen Oxide Emission Standards, Model Years 2017-2025 Fact #825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus Nitrogen Oxide Emission Standards, Model Years 2017-2025 The Environmental Protection Agency finalized Tier 3 emission standards in a rule issued in March 2014. One effect of the rule is a decrease in the combined amount of non-methane organic gases

  15. Emission factors for domestic use of L.P. gas in the metropolitan area of Mexico City

    SciTech Connect

    Molina, M.M.; Schifter, I.; Ontiveros, L.E.; Salinas, A.; Moreno, S.; Melgarejo, L.A.; Molina, R.; Krueger, B.

    1998-12-31

    One of the main problems found in air pollution in the Metropolitan Area of Mexico City (MAMC) is the presence of high concentrations of ozone at ground level in the atmosphere. The official Mexican standard for ozone concentration in the air (0.11 ppm, one hour, once every 3 years) has been exceeded more than 300 days per year. Ozone is formed due to the emissions of nitrogen oxides and hydrocarbons originated from either combustion processes or vapors emanating from fuel handling operations. The results of an evaluation of several domestic devices like stoves and water heaters with L.P. gas as fuel are presented. A method for the evaluation of hydrocarbon emission was developed. A prototype of domestic installation was constructed. The prototype includes L.P. gas tank, domestic stove, water heater, piping and instrumentation. Several combinations of stoves and water heaters were evaluated. The sampling and analysis of hydrocarbons were performed using laboratory equipment originally designed for the evaluation of combustion and evaporative emissions in automobiles: a SHED camera (sealed room equipped with an hydrocarbon analyzer) was used to measure leaks in the prototype of domestic installation and a Constant Volume Sampler (CVS) for the measurement of incomplete combustion emissions. Emission factors were developed for each domestic installation.

  16. An active atmospheric methane sink in high Arctic mineral cryosols

    SciTech Connect

    Lau, Maggie C.Y.; Stackhouse, B.; Layton, Alice C.; Chauhan, Archana; Vishnivetskaya, T. A.; Chourey, Karuna; Mykytczuk, N. C.S.; Bennett, Phil C.; Lamarche-Gagnon, G.; Burton, N.; Renholm, J.; Hettich, R. L.; Pollard, W. H.; Omelon, C. R.; Medvigy, David M.; Pffifner, Susan M.; Whyte, L. G.; Onstott, T. C.

    2015-04-14

    The transition of Arctic carbon-rich cryosols into methane (CH₄)-emitting wetlands due to global warming is a rising concern. However, the spatially predominant mineral cryosols and their CH₄ emission potential are poorly understood. Fluxes measured in situ and estimated under laboratory conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH₄-oxidizing bacteria; (2) the atmospheric CH⁺ uptake flux increases with ground temperature; and, as a result, (3) the atmospheric CH₄ sink strength will increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrated that acidic mineral cryosols have previously unrecognized potential of negative CH₄ feedback.

  17. An active atmospheric methane sink in high Arctic mineral cryosols

    DOE PAGES [OSTI]

    Lau, Maggie C.Y.; Stackhouse, B.; Layton, Alice C.; Chauhan, Archana; Vishnivetskaya, T. A.; Chourey, Karuna; Mykytczuk, N. C.S.; Bennett, Phil C.; Lamarche-Gagnon, G.; Burton, N.; et al

    2015-01-01

    The transition of Arctic carbon-rich cryosols into methane (CH₄)-emitting wetlands due to global warming is a rising concern. However, the spatially predominant mineral cryosols and their CH₄ emission potential are poorly understood. Fluxes measured in situ and estimated under laboratory conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH₄-oxidizing bacteria; (2) the atmospheric CH⁺ uptake flux increases with ground temperature; and, as a result, (3) the atmospheric CH₄ sink strength will increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrated that acidic mineralmore » cryosols have previously unrecognized potential of negative CH₄ feedback.« less

  18. An active atmospheric methane sink in high Arctic mineral cryosols

    SciTech Connect

    Lau, Maggie C.Y.; Stackhouse, B.; Layton, Alice C.; Chauhan, Archana; Vishnivetskaya, T. A.; Chourey, Karuna; Mykytczuk, N. C.S.; Bennett, Phil C.; Lamarche-Gagnon, G.; Burton, N.; Renholm, J.; Hettich, R. L.; Pollard, W. H.; Omelon, C. R.; Medvigy, David M.; Pffifner, Susan M.; Whyte, L. G.; Onstott, T. C.

    2015-01-01

    The transition of Arctic carbon-rich cryosols into methane (CH₄)-emitting wetlands due to global warming is a rising concern. However, the spatially predominant mineral cryosols and their CH₄ emission potential are poorly understood. Fluxes measured in situ and estimated under laboratory conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH₄-oxidizing bacteria; (2) the atmospheric CH⁺ uptake flux increases with ground temperature; and, as a result, (3) the atmospheric CH₄ sink strength will increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrated that acidic mineral cryosols have previously unrecognized potential of negative CH₄ feedback.

  19. Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles

    SciTech Connect

    Ban-Weiss, George A.; Lunden, Melissa M.; Kirchstetter, Thomas W.; Harley, Robert A.

    2009-04-10

    Average particle number concentrations and size distributions from {approx}61,000 light-duty (LD) vehicles and {approx}2500 medium-duty (MD) and heavy-duty (HD) trucks were measured during the summer of 2006 in a San Francisco Bay area traffic tunnel. One of the traffic bores contained only LD vehicles, and the other contained mixed traffic, allowing pollutants to be apportioned between LD vehicles and diesel trucks. Particle number emission factors (particle diameter D{sub p} > 3 nm) were found to be (3.9 {+-} 1.4) x 10{sup 14} and (3.3 {+-} 1.3) x 10{sup 15} kg{sup -1} fuel burned for LD vehicles and diesel trucks, respectively. Size distribution measurements showed that diesel trucks emitted at least an order of magnitude more particles for all measured sizes (10 < D{sub p} < 290 nm) per unit mass of fuel burned. The relative importance of LD vehicles as a source of particles increased as D{sub p} decreased. Comparing the results from this study to previous measurements at the same site showed that particle number emission factors have decreased for both LD vehicles and diesel trucks since 1997. Integrating size distributions with a volume weighting showed that diesel trucks emitted 28 {+-} 11 times more particles by volume than LD vehicles, consistent with the diesel/gasoline emission factor ratio for PM{sub 2.5} mass measured using gravimetric analysis of Teflon filters, reported in a companion paper.

  20. MOBILE4. 1: Highway-vehicle mobile-source emission-factor model (Apple MacIntosh version) (for microcomputers). Model-Simulation

    SciTech Connect

    Not Available

    1991-08-01

    MOBILE4.1 is the latest revision to EPA's highway vehicle mobile source emission factor model. Relative to MOBILE4, it contains numerous revisions and provides the user with additional options for modeling highway vehicle emission factors. it will calculate emission factors for hydrocarbons (HC), carbon monoxide, (CO), and oxides of nitrogen (NOx) from highway motor vehicles. It calculates emission factors for eight individual vehicle types, in two regions of the country (low and high altitude). The emission factors depend on various conditions such as ambient temperature, fuel volatility, speed, and mileage accrual rates. It will estimate emission factors for any calendar year between 1960 and 2020 inclusive. The 25 most recent model years are considered in operation in each calendar year. EPA is requiring that states and others preparing emission inventories for nonattainment areas for CO and ozone to use MOBILE4.1 in the development of the base year 1990 emission inventories required under the Clean Air Act of 1990.

  1. Enzymatic Oxidation of Methane

    SciTech Connect

    Sirajuddin, S; Rosenzweig, AC

    2015-04-14

    Methane monooxygenases (MMOs) are enzymes that catalyze the oxidation of methane to methanol in methanotrophic bacteria. As potential targets for new gas-to-liquid methane bioconversion processes, MMOs have attracted intense attention in recent years. There are two distinct types of MMO, a soluble, cytoplasmic MMO (sMMO) and a membrane-bound, particulate MMO (pMMO). Both oxidize methane at metal centers within a complex, multisubunit scaffold, but the structures, active sites, and chemical mechanisms are completely different. This Current Topic review article focuses on the overall architectures, active site structures, substrate reactivities, proteinprotein interactions, and chemical mechanisms of both MMOs, with an emphasis on fundamental aspects. In addition, recent advances, including new details of interactions between the sMMO components, characterization of sMMO intermediates, and progress toward understanding the pMMO metal centers are highlighted. The work summarized here provides a guide for those interested in exploiting MMOs for biotechnological applications.

  2. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS FIRED COMBUSTION SYSTEMS

    SciTech Connect

    Glenn England; Oliver Chang; Stephanie Wien

    2002-02-14

    This report provides results from the second year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operation. Detailed emission rate and chemical speciation tests results for a gas turbine, a process heater, and a commercial oil/gas fired boiler are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods. A series of pilot tests were conducted to identify the constraints to reduce the size of current research dilution sampler for future stack emission tests. Based on the test results, a bench prototype compact dilution sampler developed and characterized in GE EER in August 2002.

  3. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting Minutes May 15, 2014 Washington, DC...

  4. Oklahoma Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook

    Production (Billion Cubic Feet) Oklahoma Coalbed Methane Production (Billion Cubic Feet) ... Referring Pages: Coalbed Methane Estimated Production Oklahoma Coalbed Methane Proved ...

  5. Science on the Hill: Methane cloud hunting

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Methane cloud hunting Science on the Hill: Methane cloud hunting Los Alamos researchers go ... Science on the Hill: Methane cloud hunting When our team from Los Alamos National ...

  6. Methane Hydrate Program Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program Reports Methane Hydrate Program Reports PDF icon Secretary of Energy Advisory Board Task Force Report on Methane Hydrate PDF icon FY14 Methane Hydrate Report to Congress ...

  7. ARM - Measurement - Methane concentration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Methane concentration The amount of methane, a greenhouse gas, per unit of volume. Categories Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  8. ARM - Measurement - Methane flux

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Methane flux Vertical flux of methane near the surface due to turbulent transport. Categories Surface Properties, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  9. Completed Methane Hydrate Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Completed Methane Hydrate Projects Active Projects | Completed Projects Completed Methane Hydrate Projects Project Number Project Name Primary Performer DE-FE0002911 Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues U.S. Geological Survey at Woods Hole DE-FE0013565 Hydrate Evolution in Response to Ongoing Environmental Shifts University of Oregon DE-FE0013889 THCM Coupled Model for Hydrate-bearing Sediments: Data Analysis and Design of New

  10. Electrochemical methane sensor

    DOEpatents

    Zaromb, S.; Otagawa, T.; Stetter, J.R.

    1984-08-27

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  11. The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased...

    OpenEI (Open Energy Information) [EERE & EIA]

    Outputs include: The tool outputs greenhouse gas emissions (carbon dioxide, methane, nitrous oxide, and carbon dioxide equivalent) for each facility as well as total...

  12. The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport...

    OpenEI (Open Energy Information) [EERE & EIA]

    Outputs include: The tool outputs greenhouse gas emissions (including carbon dioxide, methane, nitrous oxide, carbon dioxide equivalent, and biogenic carbon dioxide) for each...

  13. Scientists detect methane levels three times larger than expected over Four

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Corners region Methane levels larger over Four Corners region Scientists detect methane levels three times larger than expected over Four Corners region Study is first to show space-based techniques can successfully verify international regulations on fossil energy emissions. December 22, 2014 Scientists detect methane levels three times larger than expected over Four Corners region Study is first to show space-based techniques can successfully verify international regulations on fossil

  14. Capture and Use of Coal Mine Ventilation Air Methane

    SciTech Connect

    Deborah Kosmack

    2008-10-31

    CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

  15. Compilation of air-pollutant emission factors. Volume 1. Stationary-point and area sources, Fourth Edition. Supplement A

    SciTech Connect

    Joyner, W.M.

    1986-10-01

    In the supplement to the Fourth Edition of AP-42, new or revised emissions data are presented for Bituminous and subbituminous coal combustion; Anthracite coal combustion; Fuel oil combustion; Natural gas combustion; Wood waste combustion in boilers; Lignite combustion; Sodium carbonate; Primary aluminum production; Coke production; Primary copper smelting; Ferroalloy production; Iron and steel production; Primary lead smelting; Zinc smelting; Secondary aluminum operations; Gray iron foundries; Secondary lead smelting; Asphaltic concrete plants; Bricks and related clay products; Portland cement manufacturing; Concrete batching; Glass manufacturing; Lime manufacturing; Construction aggregate processing; Taconite ore processing; Western surface coal mining; Chemical wood pulping; Appendix C.1, Particle-size distribution data and sized emission factors for selected sources; and Appendix C.2, Generalized particle size distributions.

  16. Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors

    SciTech Connect

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-01

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  17. Transportation Energy Futures Series. Effects of the Built Environment on Transportation. Energy Use, Greenhouse Gas Emissions, and Other Factors

    SciTech Connect

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-15

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  18. Coalbed Methane | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Coalbed Methane Coalbed Methane Coalbed methane is natural gas found in coal deposits. It was once considered a nuisance and mine safety hazard, but today has become a valuable part of the U.S. energy portfolio. A major reason for this is resource characterization and the establishment of efficient recovery methods pioneered by Office of Fossil Energy R&D. Fossil Energy Research Benefits - Coalbed Methane (920.32 KB) More Documents & Publications Before the Senate Energy and Natural

  19. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect

    Glenn C. England

    2004-10-20

    ambient air to dilute the stack gas sample followed by 80-90 seconds residence time to allow aerosol formation and growth to stabilize prior to sample collection and analysis. More accurate and complete emissions data generated using the methods developed in this program will enable more accurate source-receptor and source apportionment analysis for PM2.5 National Ambient Air Quality Standards (NAAQS) implementation and streamline the environmental assessment of oil, gas and power production facilities. The overall goals of this program were to: (1) Develop improved dilution sampling technology and test methods for PM2.5 mass emissions and speciation measurements, and compare results obtained with dilution and traditional stationary source sampling methods. (2) Develop emission factors and speciation profiles for emissions of fine particulate matter, especially organic aerosols, for use in source-receptor and source apportionment analyses. (3) Identify and characterize PM2.5 precursor compound emissions that can be used in source-receptor and source apportionment analyses.

  20. Direct Aromaization of Methane

    SciTech Connect

    George Marcelin

    1997-01-15

    The thermal decomposition of methane offers significant potential as a means of producing higher unsaturated and aromatic hydrocarbons when the extent of reaction is limited. Work in the literature previous to this project had shown that cooling the product and reacting gases as the reaction proceeds would significantly reduce or eliminate the formation of solid carbon or heavier (Clo+) materials. This project studied the effect and optimization of the quenching process as a means of increasing the amount of value added products during the pyrolysis of methane. A reactor was designed to rapidly quench the free-radical combustion reaction so as to maximize the yield of aromatics. The use of free-radical generators and catalysts were studied as a means of lowering the reaction temperature. A lower reaction temperature would have the benefits of more rapid quenching as well as a more feasible commercial process due to savings realized in energy and material of construction costs. It was the goal of the project to identify promising routes from methane to higher hydrocarbons based on the pyrolysis of methane.

  1. An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors

    SciTech Connect

    Townsend, Aaron K.; Webber, Michael E.

    2012-07-15

    This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.

  2. Fluxes of methane between landfills and the atmosphere: Natural and engineered controls

    SciTech Connect

    Bogner, J.; Meadows, M.; Czepiel, P.

    1997-08-01

    Field measurement of landfill methane emissions indicates natural variability spanning more than 2 seven orders of magnitude, from approximately 0.0004 to more than 4000 g m{sub -2} day{sup -1}. This wide range reflects net emissions resulting from production (methanogenesis), consumption (methanotrophic oxidation), and gaseous transport processes. The determination of an {open_quotes}average{close_quotes} emission rate for a given field site requires sampling designs and statistical techniques which consider spatial and temporal variability. Moreover, particularly at sites with pumped gas recovery systems, it is possible for methanotrophic microorganisms in aerated cover soils to oxidize all of the methane from landfill sources below and, additionally, to oxidize methane diffusing into cover soils from atmospheric sources above. In such cases, a reversed soil gas concentration gradient is observed in shallow cover soils, indicating bidirectional diffusional transport to the depth of optimum methane oxidation. Rates of landfill methane oxidation from field and laboratory incubation studies range up to 166 g m{sup -2} day{sup -1} among the highest for any natural setting, providing an effective natural control on net emissions. Estimates of worldwide landfill methane emissions to the atmosphere have ranged from 9 to 70 Tg yr{sup -1}, differing mainly in assumed methane yields from estimated quantities of landfilled refuse. At highly controlled landfill sites in developed countries, landfill methane is often collected via vertical wells or horizontal collectors. Recovery of landfill methane through engineered systems can provide both environmental and energy benefits by mitigating subsurface migration, reducing surface emissions, and providing an alternative energy resource for industrial boiler use, on-site electrical generation, or upgrading to a substitute natural gas.

  3. Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Louisiana--North Coalbed Methane ... Coalbed Methane Proved Reserves as of Dec. 31 North Louisiana Coalbed Methane Proved ...

  4. Land and Water Use, CO2 Emissions, and Worker Radiological Exposure Factors for the Nuclear Fuel Cycle

    SciTech Connect

    Brett W Carlsen; Brent W Dixon; Urairisa Pathanapirom; Eric Schneider; Bethany L. Smith; Timothy M. AUlt; Allen G. Croff; Steven L. Krahn

    2013-08-01

    The Department of Energy Office of Nuclear Energy’s Fuel Cycle Technologies program is preparing to evaluate several proposed nuclear fuel cycle options to help guide and prioritize Fuel Cycle Technology research and development. Metrics are being developed to assess performance against nine evaluation criteria that will be used to assess relevant impacts resulting from all phases of the fuel cycle. This report focuses on four specific environmental metrics. • land use • water use • CO2 emissions • radiological Dose to workers Impacts associated with the processes in the front-end of the nuclear fuel cycle, mining through enrichment and deconversion of DUF6 are summarized from FCRD-FCO-2012-000124, Revision 1. Impact estimates are developed within this report for the remaining phases of the nuclear fuel cycle. These phases include fuel fabrication, reactor construction and operations, fuel reprocessing, and storage, transport, and disposal of associated used fuel and radioactive wastes. Impact estimates for each of the phases of the nuclear fuel cycle are given as impact factors normalized per unit process throughput or output. These impact factors can then be re-scaled against the appropriate mass flows to provide estimates for a wide range of potential fuel cycles. A companion report, FCRD-FCO-2013-000213, applies the impact factors to estimate and provide a comparative evaluation of 40 fuel cycles under consideration relative to these four environmental metrics.

  5. Closing the Gaps in the Budgets of Methane and Nitrous Oxide

    SciTech Connect

    Khalil, Aslam; Rice, Andrew; Rasmussen, Reinhold

    2013-11-22

    Together methane and nitrous oxide contribute almost 40% of the estimated increase in radiative forcing caused by the buildup of greenhouse gases during the last 250 years (IPCC, 2007). These increases are attributed to human activities. Since the emissions of these gases are from biogenic sources and closely associated with living things in the major terrestrial ecosystems of the world, climate change is expected to cause feedbacks that may further increase emissions even from systems normally classified as natural. Our results support the idea that while past increases of methane were driven by direct emissions from human activities, some of these have reached their limits and that the future of methane changes may be determined by feedbacks from warming temperatures. The greatly increased current focus on the arctic and the fate of the carbon frozen in its permafrost is an example of such a feedback that could exceed the direct increases caused by future human activities (Zimov et al. 2006). Our research was aimed at three broad areas to address open questions about the global budgets of methane and nitrous oxide. These areas of inquiry were: The processes by which methane and nitrous oxide are emitted, new sources such as trees and plants, and integration of results to refine the global budgets both at present and of the past decades. For the process studies the main research was to quantify the effect of changes in the ambient temperature on the emissions of methane and nitrous oxide from rice agriculture. Additionally, the emissions of methane and nitrous oxide under present conditions were estimated using the experimental data on how fertilizer applications and water management affect emissions. Rice was chosen for detailed study because it is a prototype system of the wider terrestrial source, its role in methane emissions is well established, it is easy to cultivate and it represents a major anthropogenic source. Here we will discuss the highlights of the

  6. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2003-01-01

    Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and

  7. Incentives for Methane Mitigation and Energy-Efficiency Improvements in Case of Ukraine’s Natural Gas Transmission System

    SciTech Connect

    Roshchanka, Volha; Evans, Meredydd

    2014-06-01

    Reducing methane losses is a concern for climate change policy and energy policy. The energy sector is the major source of methane emissions into the atmosphere. Reducing methane emissions and avoiding combustion can be very cost-effective, but various barriers prevent such energy-efficiency measures from taking place. To date, few examples of industry-wide improvements exist. One example of substantial investments into upgrading natural gas transmission system comes from Ukraine. The Ukrainian transmission company, Ukrtransgaz, reduced its own system’s natural gas consumption by 68 percent in 2011 compared to the level in 2005. Evaluating reductions in methane emissions is challenging because of lack of accurate data and gaps in accounting methodologies. At the same time, Ukraine’s transmission system has undergone improvements that, at the very least, have contained methane emissions, if not substantially reduced them. In this paper, we describe recent developments in Ukraine’s natural gas transmission system and analyze the incentives that forced the sector to pay close attention to its methane losses. Ukraine is one of most energy-intensive countries, among the largest natural gas consumers in the world, and a significant emitter of methane. The country is also dependent on imports of natural gas. A combination of steep increases in the price of imported natural gas, and comprehensive domestic environmental and energy policies, regional integration policy, and international environmental agreements has created conditions for successful methane emission and combustion reductions. Learning about such case studies can help us design better policies elsewhere.

  8. Coal Bed Methane Primer

    SciTech Connect

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  9. Methane conversion to methanol

    SciTech Connect

    Noble, R.D.; Falconer, J.L.

    1992-06-01

    The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

  10. Methane conversion to methanol

    SciTech Connect

    Noble, R.D.; Falconer, J.L.

    1992-01-01

    The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

  11. Buildings Energy Data Book: 3.4 Commercial Environmental Emissions

    Buildings Energy Data Book

    6 2009 Methane Emissions for U.S. Commercial Buildings Energy Production, by Fuel Type (1) Fuel Type Petroleum 0.5 Natural Gas 26.8 Coal 0.3 Wood 0.4 Electricity (2) 50.5 Total 78.5 Note(s): Source(s): MMT CO2 Equivalent 1) Sources of emissions include oil and gas production, processing, and distribution; coal mining; and utility and site combustion. Carbon Dioxide equivalent units are calculated by converting methane emissions to carbon dioxide emissions (methane's global warming potential is

  12. Methane/nitrogen separation process

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Pinnau, Ingo; Segelke, Scott

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  13. Methane/nitrogen separation process

    DOEpatents

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  14. Source Characterization and Temporal Variation of Methane Seepage from Thermokarst Lakes on the Alaska North Slope in Response to Arctic Climate Change

    SciTech Connect

    None, None

    2012-09-30

    The goals of this research were to characterize the source, magnitude and temporal variability of methane seepage from thermokarst lakes (TKL) within the Alaska North Slope gas hydrate province, assess the vulnerability of these areas to ongoing and future arctic climate change and determine if gas hydrate dissociation resulting from permafrost melting is contributing to the current lake emissions. Analyses were focused on four main lake locations referred to in this report: Lake Qalluuraq (referred to as Lake Q) and Lake Teshekpuk (both on Alaska's North Slope) and Lake Killarney and Goldstream Bill Lake (both in Alaska's interior). From analyses of gases coming from lakes in Alaska, we showed that ecological seeps are common in Alaska and they account for a larger source of atmospheric methane today than geologic subcap seeps. Emissions from the geologic source could increase with potential implications for climate warming feedbacks. Our analyses of TKL sites showing gas ebullition were complemented with geophysical surveys, providing important insight about the distribution of shallow gas in the sediments and the lake bottom manifestation of seepage (e.g., pockmarks). In Lake Q, Chirp data were limited in their capacity to image deeper sediments and did not capture the thaw bulb. The failure to capture the thaw bulb at Lake Q may in part be related to the fact that the present day lake is a remnant of an older, larger, and now-partially drained lake. These suggestions are consistent with our analyses of a dated core of sediment from the lake that shows that a wetland has been present at the site of Lake Q since approximately 12,000 thousand years ago. Chemical analyses of the core indicate that the availability of methane at the site has changed during the past and is correlated with past environmental changes (i.e. temperature and hydrology) in the Arctic. Discovery of methane seeps in Lake Teshekpuk in the northernmost part of the lake during 2009

  15. EIA-Voluntary Reporting of Greenhouse Gases Program - Emission...

    Energy Information Administration (EIA) (indexed site)

    Emission Factors Voluntary Reporting of Greenhouse Gases Program Emission Factors and Global Warming Potentials The greenhouse gas emission factors and global warming potentials ...

  16. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2012 Houston, TX PDF icon July 26, 2012 Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting...

  17. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Office of Environmental Management (EM)

    Washington, DC PDF icon July 16, 2013 Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting...

  18. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Energy Saver

    DC PDF icon March 27-28, 2014, Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes, March 2010 Methane Hydrate Advisory...

  19. Methane Power Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Inc Jump to: navigation, search Logo: Methane Power Inc. Name: Methane Power Inc. Address: 121 Edinburgh South Drive Place: Cary, NC Zip: 27511 Sector: Renewable Energy...

  20. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Energy.gov [DOE] (indexed site)

    June 6th - 7th, 2013 Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee Meeting...

  1. Florida Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook

    Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane Estimated Production Florida Coalbed Methane Proved Reserves, Reserves Changes, and ...

  2. Methane Hydrate Advisory Committee Charter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Charter Methane Hydrate Advisory Committee Charter Methane Hydrate Advisory Committee Charter Methane Hydrate Advisory Committee Charter (140.43 KB) More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes, March 2010 Methane Hydrate Advisory Committee Meeting Minutes, January

  3. Minimising greenhouse gas emissions from fossil fuels

    SciTech Connect

    Freund, P.

    1997-07-01

    Combustion of fossil fuels is the main anthropogenic source of carbon dioxide, the principal greenhouse gas. Generation of electricity is the single largest user of fossil fuels, world-wide. If there is international agreement about the need to make substantial reductions in greenhouse gas emissions, then having access to suitable, effective technology would be important. This would help avoid the need for precipitate action, such as radical changes in the energy supply systems. Capture and disposal of greenhouse gases from flue gases can achieve substantial reductions in greenhouse gas emissions. This can be realized with known technology. In this paper, the range of options will be summarized and steps needed to achieve further progress will be identified. Emissions of other gases, such as methane, are also expected to influence the climate. Methane is emitted from many anthropogenic sources; the IEA Greenhouse Gas programme is investigating ways of reducing these emissions. Opportunities for abatement of methane emissions associated with coal mining will be described. Reduction in emissions from drainage gas is relatively straightforward and can, in appropriate circumstances, generate useful income for the none operator. More substantial amounts of methane are discharged in mine ventilation air but these are more difficult to deal with. In this paper, a summary will be given of recent progress in reducing methane emissions. Opportunities will be examined for further research to progress these technologies.

  4. Methane activation using noble gases in a dielectric barrier discharge reactor

    SciTech Connect

    Jo, Sungkwon; Hoon Lee, Dae; Seok Kang, Woo; Song, Young-Hoon

    2013-08-15

    The conversion of methane is measured in a planar-type dielectric barrier discharge reactor using three different noble gasesHe, Ne, and Aras additives. The empirical results obtained clearly indicate that methane activation is considerably affected by thy type of noble gas used. Through 0-D calculations, the discharge parameters inside the reactor, i.e., electron temperature and electron density, are estimated using experiment results. A comparison of the discharge characteristics and experimental results shows that the electron temperature is an important factor in achieving high methane activation and the mixture with Ar gas shows the highest methane conversion. These results are constructed using the mechanisms of energy and charge transfer from excited and ionized noble gas atoms to methane molecules, considering the number density of active atoms of noble gases. Finally, electron temperatures obtained for gas mixtures having different reactant compositions and concentrations are analyzed to estimate methane activation.

  5. Effects of uncertainty in SAPRC90 rate constants and selected product yields on reactivity adjustment factors for alternative fuel vehicle emissions. Final report

    SciTech Connect

    Bergin, M.S.; Russell, A.G.; Yang, Y.J.; Milford, J.B.; Kirchner, F.; Stockwell, W.R.

    1996-07-01

    Tropospheric ozone is formed in the atmosphere by a series of reactions involving volatile organic compounds (VOCs) and nitrogen oxides (NO{sub x}). While NOx emissions are primarily composed of only two compounds, nitrogen oxide (NO) and nitrogen dioxide (NO{sub 2}), there are hundreds of different VOCs being emitted. In general, VOCs promote ozone formation, however, the rate and extent of ozone produced by the individual VOCs varies considerably. For example, it is widely acknowledged that formaldehyde (HCHO) is a very reactive VOC, and produces ozone rapidly and efficiently under most conditions. On the other hand, VOCs such as methane, ethane, propane, and methanol do not react as quickly, and are likely to form less urban ozone than a comparable mass of HCHO. The difference in ozone forming potential is one of the bases for the use of alternative fuels. The fuels considered in this study included compressed natural gas, LPG, mixtures of methanol and gasoline, ethanol and gasoline, and a reformulated gasoline.

  6. Quantification of the Potential Gross Economic Impacts of Five Methane Reduction Scenarios

    Office of Energy Efficiency and Renewable Energy (EERE)

    This study assessed five potential methane reduction scenarios from natural gas transmission, storage, and distribution (TS&D) infrastructure using published literature on the costs and the estimated quantity of methane reduced. The results show that implementation of these five measures could support approximately 85,000 jobs annually from 2015 to 2019 and reduce CH4 emissions from natural gas TS&D by over 40%. Based on standard input/output analysis methodology, measures are estimated to support over $8 billion in GDP annually over the same time period and allow producers to recover approximately $912 million annually in captured gas. Mitigation of methane emission reductions through repair, replacement and new technologies are found to support economic development and jobs. The study also found that a portfolio approach to infrastructure modernization may be appropriate to meaningfully improve safety, maintain or create high levels of employment, and significant losses of methane from across TS&D segments of natural gas systems.

  7. TITAN'S TRANSPORT-DRIVEN METHANE CYCLE

    SciTech Connect

    Mitchell, Jonathan L.

    2012-09-10

    The mechanisms behind the occurrence of large cloud outbursts and precipitation on Titan have been disputed. A global- and annual-mean estimate of surface fluxes indicated only 1% of the insolation, or {approx}0.04 W m{sup -2}, is exchanged as sensible and/or latent fluxes. Since these fluxes are responsible for driving atmospheric convection, it has been argued that moist convection should be quite rare and precipitation even rarer, even if evaporation globally dominates the surface-atmosphere energy exchange. In contrast, climate simulations indicate substantial cloud formation and/or precipitation. We argue that the top-of-atmosphere (TOA) radiative imbalance is diagnostic of horizontal heat transport by Titan's atmosphere, and thus constrains the strength of the methane cycle. Simple calculations show the TOA radiative imbalance is {approx}0.5-1 W m{sup -2} in Titan's equatorial region, which implies 2-3 MW of latitudinal heat transport by the atmosphere. Our simulation of Titan's climate suggests this transport may occur primarily as latent heat, with net evaporation at the equator and net accumulation at higher latitudes. Thus, the methane cycle could be 10-20 times previous estimates. Opposing seasonal transport at solstices, compensation by sensible heat transport, and focusing of precipitation by large-scale dynamics could further enhance the local, instantaneous strength of Titan's methane cycle by a factor of several. A limited supply of surface liquids in regions of large surface radiative imbalance may throttle the methane cycle, and if so, we predict more frequent large storms over the lakes district during Titan's northern summer.

  8. Coalbed Methane Production

    Energy Information Administration (EIA) (indexed site)

    Methane Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012 2013 2014 View History U.S. 1,914 1,886 1,763 1,655 1,466 1,404 1989-2014 Alabama 105 102 98 91 62 78 1989-2014 Alaska 0 0 0 0 0 0 2005-2014 Arkansas 3 3 4 2 2 2 2005-2014 California 0 0 0 0 0 0 2005-2014 Colorado 498 533 516 486 444 412 1989-2014 Florida 0 0 0 0 0 0 2005-2014 Kansas 43 41 37 34 30 27

  9. Coalbed Methane Production

    Gasoline and Diesel Fuel Update

    Methane Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012 2013 2014 View History U.S. 1,914 1,886 1,763 1,655 1,466 1,404 1989-2014 Alabama 105 102 98 91 62 78 1989-2014 Alaska 0 0 0 0 0 0 2005-2014 Arkansas 3 3 4 2 2 2 2005-2014 California 0 0 0 0 0 0 2005-2014 Colorado 498 533 516 486 444 412 1989-2014 Florida 0 0 0 0 0 0 2005-2014 Kansas 43 41 37 34 30 27

  10. Utilization of fuel cells to beneficially use coal mine methane. Final report

    SciTech Connect

    Brown, J.T.; O`Brien, D.G.; Miller, A.R.; Atkins, R.; Sanders, M.

    1996-03-01

    DOE has been given the responsibility to encourage industry to recover and use methane that is currently being released to the atmosphere. At this time the only method being employed at the Left Fork Mine to remove methane is the mine ventilation system. The methane content was measured at one one-hundredth of a percent. To prevent this methane from being vented to the atmosphere, degasification wells are proposed. To use the coal mine methane, it is proposed to use phosphoric-acid fuel cells to convert methane to electric power. These fuel cells contain (1) a steam reformer to convert the methane to hydrogen (and carbon dioxide), (2) the fuel cell stack, and (3) a power conditioner that provides 200 kW of 60 Hz alternating current output. The environmental impacts and benefits of using this technology ware summarized in the report. The study indicates the methane emission reduction that could be achieved on a national and Global level. The important point being that this technology is economically viable as is demonstrated in the report.

  11. methane hydrates | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    methane hydrates methane-hydrates.jpg Maintaining a focused vision on what's next is one trait that makes NETL a lab of the future, and methane hydrates are one "cool" part of that vision. Found in Arctic and deep-water marine environments, methane hydrates are an untapped abundant source of natural gas. A hydrate comprises a crystal structure in which frozen water creates a cage that traps molecules of primarily methane (natural gas). NETL researchers are exploring and developing

  12. Science on the Hill: Methane cloud hunting

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Methane cloud hunting Methane cloud hunting Los Alamos researchers go hunting for methane gas over the Four Corners area of northwest New Mexico and find a strange daily pattern. July 12, 2015 methane map Methane, the primary component of natural gas, is also a potent greenhouse gas, trapping energy in the atmosphere. Last year NASA released satellite images showing a hot spot in the area where New Mexico, Colorado, Utah and Arizona meet, prompting scientists to go in search of the sources.

  13. Methane Hydrate Advisory Committee Meeting

    Energy.gov [DOE] (indexed site)

    Methane Hydrate Advisory Committee Meeting May 15, 2014 11:00am - 12:30pm (EDT) Public Access U.S. Department of Energy Forrestal Building, Room 3G-043 1000 Independence Ave., SW...

  14. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect

    Rachor, Ingke; Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria

    2011-05-15

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity

  15. May 15, 2014 Methane Hydrates Committee Meeting Agenda | Department...

    Office of Environmental Management (EM)

    May 15, 2014 Methane Hydrates Committee Meeting Agenda May 15, 2014 Methane Hydrates Committee Meeting Agenda May 15, 2014 Methane Hydrates Committee Meeting Agenda PDF icon...

  16. Methane Hydrate Advisory Committee Meeting Minutes, March 2010...

    Energy Saver

    March 2010 Methane Hydrate Advisory Committee Meeting Minutes, March 2010 Methane Hydrate Advisory Committee Meeting Minutes March 2010 Washington, DC PDF icon Methane Hydrate...

  17. Methane Hydrate Advisory Committee Meeting Minutes, January 2010...

    Energy.gov [DOE] (indexed site)

    0 Atlanta, GA Methane Hydrate Advisory Committee Meeting Minutes, January 2010 More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes, March 2010 Methane...

  18. Methane Hydrate Advisory Committee Meeting Minutes, June 6th...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee...

  19. China United Coalbed Methane Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Coalbed Methane Co Ltd Jump to: navigation, search Name: China United Coalbed Methane Co Ltd Place: Beijing Municipality, China Zip: 100011 Product: Coal bed methane developer in...

  20. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  1. Methane Hydrates and Climate Change | Department of Energy

    Energy Saver

    Hydrates and Climate Change Methane Hydrates and Climate Change Methane hydrates store huge volumes of methane formed by the bacterial decay of organic matter or leaked from ...

  2. Texas (with State Offshore) Coalbed Methane Production (Billion...

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) Texas (with State Offshore) Coalbed Methane Production ... Referring Pages: Coalbed Methane Estimated Production Texas Coalbed Methane Proved ...

  3. New Mexico Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) New Mexico Coalbed Methane Production (Billion Cubic Feet) ... Referring Pages: Coalbed Methane Estimated Production New Mexico Coalbed Methane Proved ...

  4. New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Annual Energy Outlook

    Proved Reserves (Billion Cubic Feet) New Mexico Coalbed Methane Proved Reserves (Billion ... Coalbed Methane Proved Reserves as of Dec. 31 New Mexico Coalbed Methane Proved Reserves, ...

  5. Methane Hydrate Research and Development Act of 2000 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research and Development Act of 2000 Methane Hydrate Research and Development Act of 2000 Methane Hydrate Research and Development Act of 2000 PDF icon Methane Hydrate Research and ...

  6. North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 ... Coalbed Methane Proved Reserves as of Dec. 31 North Dakota Coalbed Methane Proved ...

  7. Microbial conversion of biomass to methane

    SciTech Connect

    Chynoweth, D.P.

    1981-01-01

    Laboratory studies have investigated the anaerobic digestion of a variety of feedstocks including sea kelp, water hyacinth, terrestrial herbaceous and woody plants, sewage sludge, municipal solid waste, and biomass-organic waste blends. The results of these and other studies are used to illustrate key factors which influence methane production rates and yields, including feed organic composition, nutrients, inoculum, temperature, retention time, feed concentration, particle size, and mixing. A new process recently developed which combines biological and thermal operations for conversion of biomass to substitute natural gas is described.

  8. Methane generation from animal wastes

    SciTech Connect

    Fulton, E.L.

    1980-06-01

    The conversion of manure to biogas via anaerobic digestion is described. The effluent resulting from the conversion retains fertilizer value and is environmentally acceptable. Discussion is presented under the headings: methane formation in the digester; the Tarleton State Poultry Waste to Methane production system; operating experience at Tarleton State; economics of biogas production from poultry waste; construction cost and biogas value; energy uses; feed and waste processing; and advantages of anaerobic digestion. (DMC)

  9. Modeling the impediment of methane ebullition bubbles by seasonal lake ice

    DOE PAGES [OSTI]

    Greene, S.; Walter Anthony, K. M.; Archer, D.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.

    2014-07-15

    Microbial methane (CH4) ebullition (bubbling) from anoxic lake sediments comprises a globally significant flux to the atmosphere, but ebullition bubbles in temperate and polar lakes can be trapped by winter ice cover and later released during spring thaw. This "ice-bubble storage" (IBS) constitutes a novel mode of CH4 emission. Before bubbles are encapsulated by downward-growing ice, some of their CH4 dissolves into the lake water, where it may be subject to oxidation. We present field characterization and a model of the annual CH4 cycle in Goldstream Lake, a thermokarst (thaw) lake in interior Alaska. We find that summertime ebullition dominatesmore » annual CH4 emissions to the atmosphere. Eighty percent of CH4 in bubbles trapped by ice dissolves into the lake water column in winter, and about half of that is oxidized. The ice growth rate and the magnitude of the CH4 ebullition flux are important controlling factors of bubble dissolution. Seven percent of annual ebullition CH4 is trapped as IBS and later emitted as ice melts. In a future warmer climate, there will likely be less seasonal ice cover, less IBS, less CH4 dissolution from trapped bubbles, and greater CH4 emissions from northern lakes.« less

  10. Modeling the impediment of methane ebullition bubbles by seasonal lake ice

    DOE PAGES [OSTI]

    Greene, S.; Walter Anthony, K. M.; Archer, D.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.

    2014-12-08

    Microbial methane (CH4) ebullition (bubbling) from anoxic lake sediments comprises a globally significant flux to the atmosphere, but ebullition bubbles in temperate and polar lakes can be trapped by winter ice cover and later released during spring thaw. This "ice-bubble storage" (IBS) constitutes a novel mode of CH4 emission. Before bubbles are encapsulated by downward-growing ice, some of their CH4 dissolves into the lake water, where it may be subject to oxidation. We present field characterization and a model of the annual CH4 cycle in Goldstream Lake, a thermokarst (thaw) lake in interior Alaska. We find that summertime ebullition dominatesmore » annual CH4 emissions to the atmosphere. Eighty percent of CH4 in bubbles trapped by ice dissolves into the lake water column in winter, and about half of that is oxidized. The ice growth rate and the magnitude of the CH4 ebullition flux are important controlling factors of bubble dissolution. Seven percent of annual ebullition CH4 is trapped as IBS and later emitted as ice melts. In a future warmer climate, there will likely be less seasonal ice cover, less IBS, less CH4 dissolution from trapped bubbles, and greater CH4 emissions from northern lakes.« less

  11. Methane Hydrate Annual Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Annual Reports Methane Hydrate Annual Reports Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of Methane Hydrate research. Listed are the Annual Reports per Fiscal Year. FY 14 Methane Hydrate Program Report to Congress (10.92 MB) FY 13 Methane Hydrates Annual Report to Congress (960.13 KB) FY 12 Methane Hydrates Annual Report to Congress (1.09 MB) FY 11 Methane Hydrates Annual Report to Congress (953.09 KB) FY

  12. Methane Hydrate Reservoir Simulator Code Comparison Study

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Annual Reports Methane Hydrate Annual Reports Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of Methane Hydrate research. Listed are the Annual Reports per Fiscal Year. FY 14 Methane Hydrate Program Report to Congress (10.92 MB) FY 13 Methane Hydrates Annual Report to Congress (960.13 KB) FY 12 Methane Hydrates Annual Report to Congress (1.09 MB) FY 11 Methane Hydrates Annual Report to Congress (953.09 KB) FY

  13. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    SciTech Connect

    Kirchman, David L.

    2012-03-29

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (Methane in the Arctic Shelf or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (metagenomes ). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in

  14. METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy

    Energy.gov [DOE] (indexed site)

    METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy Advisory Committee Charter - - - - ---- ---- ------ 1. Committee's Official Designation. Methane Hydrate Advisory...

  15. File:Methane.pdf | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Methane.pdf Jump to: navigation, search File File history File usage File:Methane.pdf Size of this preview: 448 600 pixels. Go to page 1 2 3 4 5 Go next page next page ...

  16. Methane Gas Conversion Property Tax Exemption

    Office of Energy Efficiency and Renewable Energy (EERE)

    Under Iowa's methane gas conversion property tax exemption, real and personal property used to decompose waste and convert the waste to gas, collect the methane or other gases, convert the gas to...

  17. Miscellaneous States Coalbed Methane Proved Reserves (Billion...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  18. Methane Hydrate Production Feasibility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Production Feasibility Methane Hydrate Production Feasibility The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the

  19. Method for the photocatalytic conversion of methane

    DOEpatents

    Noceti, R.P.; Taylor, C.E.; D`Este, J.R.

    1998-02-24

    A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time. 3 figs.

  20. Method for the photocatalytic conversion of methane

    DOEpatents

    Noceti, Richard P.; Taylor, Charles E.; D'Este, Joseph R.

    1998-01-01

    A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time.

  1. Emissions of greenhouse gases in the United States 1995

    SciTech Connect

    1996-10-01

    This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

  2. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect

    Glenn C. England; Stephanie Wien; Mingchih O. Chang

    2002-08-01

    This report provides results from the first year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operations. Detailed emission rate and chemical speciation test results for a refinery gas-fired process heater and plans for cogeneration gas turbine tests and pilot-scale tests are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods to compare PM2.5 mass and chemical speciation. Test plans are presented for a gas turbine facility that will be tested in the fourth quarter of 2002. A preliminary approach for pilot-scale tests is presented that will help define design constraints for a new dilution sampler design that is smaller, lighter, and less costly to use.

  3. EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions

    Gasoline and Diesel Fuel Update

    2. Carbon Dioxide Emissions 2.1. Total carbon dioxide emissions Annual U.S. carbon dioxide emissions fell by 419 million metric tons in 2009 (7.1 percent), to 5,447 million metric tons (Figure 9 and Table 6). The annual decrease-the largest over the 19-year period beginning with the 1990 baseline-puts 2009 emissions 608 million metric tons below the 2005 level, which is the Obama Administration's benchmark year for its goal of reducing U.S. emissions by 17 percent by 2020. The key factors

  4. Methane generation from waste materials

    SciTech Connect

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  5. Methane production by attached film

    DOEpatents

    Jewell, William J.

    1981-01-01

    A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

  6. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    DOE PAGES [OSTI]

    Archer, D.

    2014-06-03

    A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbonmore » (Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time

  7. Development and utilization strategies for recovery and utilization of coal mine methane

    SciTech Connect

    Byrer, C.W.; Layne, A.W.; Guthrie, H.D.

    1995-10-01

    The U.S. Department of Energy (DOE), at its Morgantown Energy Technology Center, has been involved in natural gas research since the 1970`s. DOE has assessed the potential of gas in coals throughout the U.S. and promoted research and development for recovery and use of methane found in minable and unminable coalbeds. DOE efforts have focused on the use of coal mine methane for regional economic gas self-sufficiency, energy parks, self-help initiatives, and small-power generation. This paper focuses on DOE`s past and present efforts to more effectively and efficiently recover and use this valuable domestic energy source. The Climate Change Action Plan (CCAP) (1) lists a series of 50 voluntary initiatives designed to reduce greenhouse gas emissions, such as methane from mining operations, to their 1990 levels. Action No. 36 of the CCAP expands the DOE research, development, and demonstration (RD&D) efforts to broaden the range of cost-effective technologies and practices for recovering methane associated with coal mining operations. The major thrust of Action No. 36 is to reduce methane emissions associated with coal mining operations from target year 2000 levels by 1.5 MMT of carbon equivalent. Crosscutting activities in the DOE Natural Gas Program supply the utilization sectors will address RD&D to reduce methane emissions released from various mining operations, focusing on recovery and end use technology systems to effectively drain, capture, and utilize the emitted gas. Pilot projects with industry partners will develop and test the most effective methods and technology systems for economic recovery and utilization of coal mine gas emissions in regions where industry considers efforts to be presently non-economic. These existing RD&D programs focus on near-term gas recovery and gathering systems, gas upgrading, and power generation.

  8. Enhancement of a laminar premixed methane/oxygen/nitrogen flame speed using femtosecond-laser-induced plasma

    SciTech Connect

    Yu Xin; Peng Jiangbo; Yi Yachao; Zhao Yongpeng; Chen Deying; Yu Junhua [National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080 (China); Institute of Opto-electronics, Harbin Institute of Technology, Harbin 150080 (China); Yang Peng; Sun Rui [Institute of Combustion Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2010-07-05

    We first investigate the effects of femtosecond-laser-induced plasma on the flame speed of a laminar premixed methane/oxygen/nitrogen flame with a wide range of the equivalence ratios (0.8-1.05) at atmospheric pressure. It is experimentally found that the flame speed increases 20.5% at equivalence ratios 1.05. The self-emission spectra from the flame and the plasma are studied and an efficient production of active radicals under the action of femtosecond (fs)-laser pulses has been observed. Based on the experimental data obtained, the presence of oxygen atom and hydrocarbon radicals is suggested to be a key factor enhancing flame speed.

  9. Turbulent burning rates of methane and methane-hydrogen mixtures

    SciTech Connect

    Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2009-04-15

    Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

  10. Methane and carbon dioxide production from simulated anaerobic degradation of cattle carcasses

    SciTech Connect

    Yuan Qi; Saunders, Samuel E.; Bartelt-Hunt, Shannon L.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer This study evaluates methane and carbon dioxide production after land burial of cattle carcasses. Black-Right-Pointing-Pointer Disposal of animal mortalities is often overlooked in evaluating the environmental impacts of animal production. Black-Right-Pointing-Pointer we quantify annual emissions from cattle carcass disposal in the United States as 1.6 Tg CO{sub 2} equivalents. - Abstract: Approximately 2.2 million cattle carcasses require disposal annually in the United States. Land burial is a convenient disposal method that has been widely used in animal production for disposal of both daily mortalities as well as during catastrophic mortality events. To date, greenhouse gas production after mortality burial has not been quantified, and this study represents the first attempt to quantify greenhouse gas emissions from land burial of animal carcasses. In this study, anaerobic decomposition of both homogenized and unhomogenized cattle carcass material was investigated using bench-scale reactors. Maximum yields of methane and carbon dioxide were 0.33 and 0.09 m{sup 3}/kg dry material, respectively, a higher methane yield than that previously reported for municipal solid waste. Variability in methane production rates were observed over time and between reactors. Based on our laboratory data, annual methane emissions from burial of cattle mortalities in the United States could total 1.6 Tg CO{sub 2} equivalents. Although this represents less than 1% of total emissions produced by the agricultural sector in 2009, greenhouse gas emissions from animal carcass burial may be significant if disposal of swine and poultry carcasses is also considered.

  11. Coalbed Methane (CBM) is natural

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Coalbed Methane (CBM) is natural gas found in coal deposits. It was once considered a nuisance and mine safety hazard, but today has become a valuable part of the U.S. energy portfolio. A major reason for this is resource characterization and the establishment of efficient recovery methods pioneered by Office of Fossil Energy (FE) research and development. CBM proved reserves and production have grown nearly every year since 1989. Today it accounts for 9 percent of total domestic natural gas

  12. Utilization of coal mine methane for methanol and SCP production. Topical report, May 5, 1995--March 4, 1996

    SciTech Connect

    1998-12-31

    The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resources (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.

  13. The Use of Positive Matrix Factorization with Conditional Probability Functions in Air Quality Studies: An Application to Hydrocarbon Emissions in Houston, Texas

    SciTech Connect

    Xie, YuLong; Berkowitz, Carl M.

    2006-06-01

    As part of a study to identify groups of compounds (source categories) associated with different processing facilities, a multivariate receptor model called Positive Matrix Factorization (PMF) was applied to hourly average concentrations of volatile organic compounds (VOCs) measured at five Photochemical Assessment Monitoring Stations (PAMS) located near the Ship Channel in Houston, Texas. The observations were made between June and October, 2003, and limited to nighttime measurements (21:00 pm 6:00 am) in order to remove the complexity of photochemical processing and associated changes in the concentrations of primary and secondary VOCs. Six to eight volatile organic compounds source categories were identified for the five Ship Channel sites. The dominant source categories were found to be those associated with petrochemical, chemical industries and fuel evaporation. In contrast, source categories associated with on-road vehicles were found to be relatively insignificant. Although evidence of biogenic emissions was found at almost all the sites, this broad category was significant only at the Wallisville site, which was also the site furthest away from the Ship Channels area and closest to the northeast forest of Texas. Natural gas, accumulation and fuel evaporation sources were found to contribute most to the ambient VOCs, followed by the petrochemical emission of highly reactive ethene and propylene. Solvent / paint industry and fuel evaporation and emission from refineries were next in importance while the on-road vehicle exhaust generally contributed less than 10% of the total ambient VOCs. Specific geographic areas associated with each source category were identified through the use of a Conditional Probability Function (CPF) analysis that related elevated concentrations of key VOCs in each category to a network of grids superimposed on the source inventories of the VOCs.

  14. Methane Hydrate Program Annual Report to Congress

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FY 2010 Methane Hydrate Program Annual Report to Congress September 2011 U.S. Department of ENERGY United States Department of Energy Washington, DC 20585 Department of Energy | September 2011 FY 2010 Methane Hydrate Program Annual Report to Congress | Page 2 Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report

  15. The estimation of N{sub 2}O emissions from municipal solid waste incineration facilities: The Korea case

    SciTech Connect

    Park, Sangwon; Choi, Jun-Ho; Park, Jinwon

    2011-08-15

    The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO{sub 2}), methane (CH{sub 4}), and nitrous oxide (N{sub 2}O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N{sub 2}O emission factors from MSW incineration plants, and calculate the N{sub 2}O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N{sub 2}O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment. The average of the N{sub 2}O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153 g-N{sub 2}O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N{sub 2}O emissions from MSW incineration comprised 19% of the total N{sub 2}O emissions.

  16. Modeling Methane Adsorption in Interpenetrating Porous Polymer...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Modeling Methane Adsorption in Interpenetrating Porous Polymer Networks Previous Next List Richard L. Martin, Mahdi Niknam Shahrak, Joseph A. Swisher, Cory M. Simon, Julian P....

  17. Capping methane leaks a win-win

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Capping methane leaks a win-win Capping methane leaks a win-win As special correspondent Kathleen McCleery explains, that's why both environmentalists and the energy industry are trying to find ways to capture leaks from oil and gas facilities. November 13, 2015 Capping methane leaks a win-win Methane, the primary component of natural gas, is also a potent greenhouse gas, trapping energy in the atmosphere. Last year NASA released satellite images showing a hot spot in the area where New Mexico,

  18. New Methane Hydrate Research: Investing in Our Energy Future...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    New Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ...

  19. DOE/AMO NG Infrastructure R & D & Methane emissions Mitigation...

    Energy Saver

    Installation, Maintenance & Repair * Pipeline IntegrityDirect & Remote Assessment * ... in performing routine and emergency gas pipeline inspections and surveys (at "tree-top" ...

  20. Remote sensing of fugitive methane emissions from oil and gas...

    Energy Saver

    ... sys- tems corresponds to 0.7% of the U.S. crude oil production (0.5%-1.7% at the 95% ... (e.g., enteric fermentation in live- stock), were temporally constant to a ...

  1. New analyses reveal higher Four Corners methane emissions than...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Looking at fossil mining industry as a whole is key December 1, 2014 Los Alamos National ... New Mexico and Utah-an extensive coal-mining region-covers about 2,500 square miles, ...

  2. Potential Cost-Effective Opportunities for Methane Emission Abatement

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and 165,000t CO 2 e, respectively (EPA 2013a). The primary policy drivers for cast iron and bare steel pipeline replacement programs include safety, reliability, economic...

  3. Coal companies hope to receive carbon credits for methane reductions

    SciTech Connect

    2007-09-30

    Each year, underground coal mining in the USA liberates 2.4 million tonnes of coal mine methane (CMM), of which less than 30% is recovered and used. One barrier to CMM recovery is cost. Drainage, collection, and utilization systems are complex and expensive to install. Two coal mines have improved the cost equation, however, by signing on to earn money for CMM emissions they are keeping out of the atmosphere. Jim Walter Resources and PinnOak Resources have joined a voluntary greenhouse gas reduction trading program called the Chicago Climate Exchange (CCX) to turn their avoided emissions into carbon credits. The example they set may encourage other coal mining companies to follow suit, and may bring new projects on the line that would otherwise have not gone forward. 2 refs., 1 fig.

  4. Methane Hydrate Advisory Committee Meeting Minutes, October 2011...

    Office of Environmental Management (EM)

    October 2011 Methane Hydrate Advisory Committee Meeting Minutes, October 2011 Methane Hydrate Advisory Committee Meeting Minutes October 2011 Washington, DC PDF icon Advisory...

  5. Landfill Methane Project Development Handbook | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Methane Project Development Handbook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Landfill Methane Project Development Handbook AgencyCompany Organization: United...

  6. US EPA Landfill Methane Outreach Program | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EPA Landfill Methane Outreach Program Jump to: navigation, search Name US EPA Landfill Methane Outreach Program AgencyCompany Organization United States Environmental Protection...

  7. Data from Innovative Methane Hydrate Test on Alaska's North Slope...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Data from Innovative Methane Hydrate Test on Alaska's North Slope Now Available on NETL Website Data from Innovative Methane Hydrate Test on Alaska's North Slope Now Available on ...

  8. Florida Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Florida Coalbed Methane Proved Reserves, Reserves Changes, and ...

  9. ,"Florida Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Florida Coalbed Methane Proved Reserves (Billion ... 7:23:10 AM" "Back to Contents","Data 1: Florida Coalbed Methane Proved Reserves (Billion ...

  10. Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion...

    Energy Information Administration (EIA) (indexed site)

    Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ...312016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, State Offshore

  11. ,"Lower 48 Federal Offshore Coalbed Methane Proved Reserves ...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion ... to Contents","Data 1: Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion ...

  12. Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion...

    Energy Information Administration (EIA) (indexed site)

    Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ...2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore U.S.

  13. ,"Texas (with State Offshore) Coalbed Methane Proved Reserves...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Texas (with State Offshore) Coalbed Methane Proved Reserves ... to Contents","Data 1: Texas (with State Offshore) Coalbed Methane Proved Reserves ...

  14. ,"Alaska (with Total Offshore) Coalbed Methane Proved Reserves...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Alaska (with Total Offshore) Coalbed Methane Proved Reserves ... to Contents","Data 1: Alaska (with Total Offshore) Coalbed Methane Proved Reserves ...

  15. ,"Louisiana--State Offshore Coalbed Methane Proved Reserves ...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion ... to Contents","Data 1: Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion ...

  16. ,"Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Federal Offshore--Texas Coalbed Methane Proved Reserves ... AM" "Back to Contents","Data 1: Federal Offshore--Texas Coalbed Methane Proved Reserves ...

  17. ,"Louisiana (with State Offshore) Coalbed Methane Proved Reserves...

    Energy Information Administration (EIA) (indexed site)

    for" ,"Data 1","Louisiana (with State Offshore) Coalbed Methane Proved Reserves ... Contents","Data 1: Louisiana (with State Offshore) Coalbed Methane Proved Reserves ...

  18. ,"Texas--State Offshore Coalbed Methane Proved Reserves (Billion...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Texas--State Offshore Coalbed Methane Proved Reserves (Billion ... "Back to Contents","Data 1: Texas--State Offshore Coalbed Methane Proved Reserves (Billion ...

  19. New York Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Annual Energy Outlook

    Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 New York Coalbed Methane Proved Reserves, Reserves Changes, ...

  20. Louisiana--South Onshore Coalbed Methane Proved Reserves (Billion...

    Energy Information Administration (EIA) (indexed site)

    South Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  1. Alaska (with Total Offshore) Coalbed Methane Proved Reserves...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  2. U.S. Coalbed Methane Proved Reserves Extensions (Billion Cubic...

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Extensions (Billion ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  3. U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries...

    Energy Information Administration (EIA) (indexed site)

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Coalbed Methane Proved ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  4. ,"Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves (Billion Cubic ...

  5. U.S. Coalbed Methane Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) U.S. Coalbed Methane Production (Billion Cubic Feet) ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  6. Texas--RRC District 5 Coalbed Methane Proved Reserves (Billion...

    Energy Information Administration (EIA) (indexed site)

    5 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  7. Texas--RRC District 1 Coalbed Methane Proved Reserves (Billion...

    Energy Information Administration (EIA) (indexed site)

    1 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  8. Towards a Computational Model of a Methane Producing Archaeum...

    Office of Scientific and Technical Information (OSTI)

    Towards a Computational Model of a Methane Producing Archaeum Citation Details In-Document Search Title: Towards a Computational Model of a Methane Producing Archaeum Authors: ...

  9. Texas--RRC District 9 Coalbed Methane Proved Reserves (Billion...

    Energy Information Administration (EIA) (indexed site)

    9 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  10. U.S. Coalbed Methane Proved Reserves Revision Increases (Billion...

    Energy Information Administration (EIA) (indexed site)

    Increases (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Revision Increases ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  11. ,"Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves (Billion Cubic ...

  12. Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  13. U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion...

    Energy Information Administration (EIA) (indexed site)

    Decreases (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Revision Decreases ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  14. Texas--RRC District 8 Coalbed Methane Proved Reserves (Billion...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  15. U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  16. U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic...

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Adjustments (Billion ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  17. Mississippi (with State off) Coalbed Methane Proved Reserves...

    Energy Information Administration (EIA) (indexed site)

    Mississippi (with State off) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  18. ,"Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves (Billion Cubic ...

  19. U.S. Coalbed Methane Proved Reserves Acquisitions (Billion Cubic...

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Acquisitions ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  20. Process for separating nitrogen from methane using microchannel...

    Office of Scientific and Technical Information (OSTI)

    Process for separating nitrogen from methane using microchannel process technology Citation Details In-Document Search Title: Process for separating nitrogen from methane using ...

  1. ,"Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","Colorado Coalbed Methane Proved Reserves (Billion Cubic ...

  2. Texas--RRC District 6 Coalbed Methane Proved Reserves (Billion...

    Energy Information Administration (EIA) (indexed site)

    6 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  3. ,"North Dakota Coalbed Methane Proved Reserves (Billion Cubic...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","North Dakota Coalbed Methane Proved Reserves ... 9:22:44 AM" "Back to Contents","Data 1: North Dakota Coalbed Methane Proved Reserves ...

  4. ,"Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Louisiana--North Coalbed Methane Proved Reserves (Billion ... "Back to Contents","Data 1: Louisiana--North Coalbed Methane Proved Reserves (Billion ...

  5. Methane and Methanotrophic Bacteria as a Biotechnological Platform...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Methane and Methanotrophic Bacteria as a Biotechnological Platform Methane and Methanotrophic Bacteria as a Biotechnological Platform Breakout Session 2-B: NewEmerging Pathways ...

  6. Plasma catalytic reforming of methane

    SciTech Connect

    Bromberg, L.; Cohn, D.R.; Rabinovich, A.; Alexeev, N.

    1998-08-01

    Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This paper describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius) and high degree of dissociation and substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (50% H{sub 2}, 17% CO and 33% N{sub 2}, for partial oxidation/water shifting) can be efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2--3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H{sub 2} with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content ({approximately} 1.5%) with power densities of {approximately} 30 kW (H{sub 2} HHV)/liter of reactor, or {approximately} 10 m{sup 3}/hr H{sub 2} per liter of reactor. Power density should further increase with increased power and improved design.

  7. Systems level insights into alternate methane cycling modes in a freshwater lake via community transcriptomics, metabolomics and nano-SIMS analysis

    SciTech Connect

    Lidstrom, Mary E.; Chistoserdova, Ludmila; Kalyuzhnaya, Marina G.; Orphan, Victoria J.; Beck, David A.

    2014-08-07

    The research conducted as part of this project contributes significantly to the understanding of the microbes and their activities involved in methane metabolism in freshwater lake sediments and in the environment in a more global sense. Significant new insights have been gained into the identity of the species that are most active in methane oxidation. New concepts have been developed based on the new data on how these organisms metabolize methane, impacting not only environmental microbiology but also biotechnology, including biotechnology of next generation biofuels. Novel approaches have been developed for studying functional microbial communities, via holistic approaches, such as metagenomics, metatrancriptomics and metabolite analysis. As a result, a novel outlook has been obtained at how such communities operate in nature. Understanding methane-oxidizing communities in lakes and other environments is of significant benefit to the public, in terms of methane emission mitigation and in terms of potential biotechnological applications.

  8. Effect of silane concentration on the supersonic combustion of a silane/methane mixture

    SciTech Connect

    Northam, G.B.; Mc Lain, A.G.; Pellett, G.L.; Diskin, G.S.

    1986-01-01

    A series of direct connect combustor tests was conducted to determine the effect of silane concentration on the supersonic combustion characteristics of silane/methane mixtures. Shock tube ignition delay data indicated more than an order of magnitude reduction in ignition delay times for both 10 and 20 percent silane/methane mixtures as compared to methane. The ignition delay time of the 10 percent mixture was only a factor of 2.3 greater than that of the 20 percent mixture. Supersonic combustion tests were conducted with the fuel injected into a model scramjet combustor. The combustor was mounted at the exit of a Mach 2 nozzle and a hydrogen fired heater was used to provide a variation in test gas total temperature. Tests using the 20 percent silane/methane mixture indicated considerable combustion enhancement when compared to methane alone. This mixture had an autoignition total temperature of 1650 R. The addition of 20 percent silane to methane resulted in a pyrophoric fuel with good supersonic combustion performance. Reducing the silane concentration below this level, however, yielded a less pyrophoric fuel that exhibited poor supersonic combustion performance.

  9. Methane

    Energy Saver

    ... implications for resource use efficiency, worker and public safety, air pollution, and human health (4), and for the climate impact of NG as a large and growing source of energy. ...

  10. Four Critical Needs to Change the Hydrate Energy Paradigm from Assessment to Production: The 2007 Report to Congress by the U.S. Federal methane Hydrate Advisory Committee

    SciTech Connect

    Mahajan,D.; Sloan, D.; Brewer, P.; Dutta, N.; Johnson, A.; Jones, E.; Juenger, K.; Kastner, M.; Masutani, S.; Swenson, R.; Whelan, J.; Wilson, s.; Woolsey, R.

    2009-03-11

    This work summarizes a two-year study by the U.S. Federal Methane Hydrate Advisory Committee recommending the future needs for federally-supported hydrate research. The Report was submitted to the US Congress on August 14, 2007 and includes four recommendations regarding (a) permafrost hydrate production testing, (b) marine hydrate viability assessment (c) climate effect of hydrates, and (d) international cooperation. A secure supply of natural gas is a vital goal of the U.S. national energy policy because natural gas is the cleanest and most widely used of all fossil fuels. The inherent cleanliness of natural gas, with the lowest CO2 emission per unit of heat energy of any fossil fuel, means substituting gas for coal and fuel oil will reduce emissions that can exacerbate the greenhouse effect. Both a fuel and a feedstock, a secure and reasonably priced supply of natural gas is important to industry, electric power generators, large and small commercial enterprises, and homeowners. Because each volume of solid gas hydrate contains as much as 164 standard volumes of methane, hydrates can be viewed as a concentrated form of natural gas equivalent to compressed gas but less concentrated than liquefied natural gas (LNG). Natural hydrate accumulations worldwide are estimated to contain 700,000 TCF of natural gas, of which 200,000 TCF are located within the United States. Compared with the current national annual consumption of 22 TCF, this estimate of in-place gas in enormous. Clearly, if only a fraction of the hydrated methane is recoverable, hydrates could constitute a substantial component of the future energy portfolio of the Nation (Figure 1). However, recovery poses a major technical and commercial challenge. Such numbers have sparked interest in natural gas hydrates as a potential, long-term source of energy, as well as concerns about any potential impact the release of methane from hydrates might have on the environment. Energy-hungry countries such as India and

  11. May 15, 2014 Methane Hydrates Committee Meeting Agenda | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy May 15, 2014 Methane Hydrates Committee Meeting Agenda May 15, 2014 Methane Hydrates Committee Meeting Agenda May 15, 2014 Methane Hydrates Committee Meeting Agenda Meeting Agenda (443.71 KB) More Documents & Publications Advisory Committee Meeting Minutes, May 7, 2015 Report of the Task Force on Methane Hydrates Presentations from the May 7, 2015 Advisory Committee Meeting

  12. Department of Energy Advance Methane Hydrates Science and Technology Projects

    Energy.gov [DOE]

    Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

  13. Arkansas Coalbed Methane Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Arkansas Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 3 3 3 3 2010's 3 4 2 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Arkansas Coalbed Methane Proved Reserves, Reserves Changes, and

  14. Kansas Coalbed Methane Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Kansas Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 17 25 38 47 43 2010's 41 37 34 30 27 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Kansas Coalbed Methane Proved Reserves, Reserves Changes,

  15. Kentucky Coalbed Methane Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Kentucky Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane Production

  16. Quantification of the Potential Gross Economic Impacts of Five Methane Reduction Scenarios

    SciTech Connect

    Keyser, David; Warner, Ethan; Curley, Christina

    2015-04-23

    Methane (CH4) is a potent greenhouse gas that is released from the natural gas supply chain into the atmosphere as a result of fugitive emissions1 and venting2 . We assess five potential CH4 reduction scenarios from transmission, storage, and distribution (TS&D) using published literature on the costs and the estimated quantity of CH4 reduced. We utilize cost and methane inventory data from ICF (2014) and Warner et al. (forthcoming) as well as data from Barrett and McCulloch (2014) and the American Gas Association (AGA) (2013) to estimate that the implementation of these measures could support approximately 85,000 jobs annually from 2015 to 2019 and reduce CH4 emissions from natural gas TS&D by over 40%. Based on standard input/output analysis methodology, measures are estimated to support over $8 billion in GDP annually over the same time period and allow producers to recover approximately $912 million annually in captured gas.

  17. International Cooperation in Methane Hydrates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Oil & Gas » Methane Hydrate » International Cooperation in Methane Hydrates International Cooperation in Methane Hydrates In 1982 the multi-national Deep Sea Drilling Program (DSDP) recovered the first subsea substantial methane hydrate deposits, which spurred methane hydrate research in the US and other countries. The successor programs, the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling Program (IODP) sampled hydrate deposits off Oregon (ODP 204, 2002) and in the Cascadia

  18. METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF

    DOEpatents

    Frazer, J.W.

    1959-08-18

    A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

  19. COMPILATION AND ANALYSES OF EMISSIONS INVENTORIES FOR THE NOAA ATMOSPHERIC CHEMISTRY PROJECT. PROGRESS REPORT, AUGUST 1997.

    SciTech Connect

    BENKOVITZ,C.M.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen (NO{sub x}) for circa 1985 and 1990 and Non-Methane Volatile Organic Compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry (IGAC) Program. The 1985 NO{sub x} inventory was compiled using default data sets of global emissions that were refined via the use of more detailed regional data sets; this inventory is being distributed to the scientific community at large as the GEIA Version 1A inventory. Global emissions of NO{sub x} for 1985 are estimated to be 21 Tg N y{sup -1}, with approximately 84% originating in the Northern Hemisphere. The 1990 inventories of NO{sub x} and NMVOCs were compiled using unified methodologies and data sets in collaboration with the Netherlands National Institute of Public Health and Environmental Protection (Rijksinstituut Voor Volksgezondheid en Milieuhygiene, RIVM) and the Division of Technology for Society of the Netherlands Organization for Applied Scientific Research, (IMW-TNO); these emissions will be used as the default estimates to be updated with more accurate regional data. The NMVOC inventory was gridded and speciated into 23 chemical categories. The resulting global emissions for 1990 are 31 Tg N yr{sup -1} for NO{sub x} and 173 Gg NMVOC yr{sup -1}. Emissions of NO{sub x} are highest in the populated and industrialized areas of eastern North America and across Europe, and in biomass burning areas of South America, Africa, and Asia. Emissions of NMVOCs are highest in biomass burning areas of South America, Africa, and Asia. The 1990 NO{sub x} emissions were gridded to 1{sup o} resolution using surrogate data, and were given seasonal, two-vertical-level resolution and speciated into NO and NO{sub 2} based on proportions derived from the 1985 GEIA Version 1B inventory. Global NMVOC

  20. Ohio Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 - No Data Reported; -- ...

  1. Utah Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) Utah Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 74 83 103...

  2. Montana Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) Montana Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 12 13...

  3. Methane storage capabilities of diamond analogues

    SciTech Connect

    Haranczyk, M; Lin, LC; Lee, K; Martin, RL; Neaton, JB; Smit, B

    2013-01-01

    Methane can be an alternative fuel for vehicular usage provided that new porous materials are developed for its efficient adsorption-based storage. Herein, we search for materials for this application within the family of diamond analogues. We used density functional theory to investigate structures in which tetrahedral C atoms of diamond are separated by-CC-or-BN-groups, as well as ones involving substitution of tetrahedral C atoms with Si and Ge atoms. The adsorptive and diffusive properties of methane are studied using classical molecular simulations. Our results suggest that the all-carbon structure has the highest volumetric methane uptake of 280 VSTP/V at p = 35 bar and T = 298 K. However, it suffers from limited methane diffusion. Alternatively, the considered Si and Ge-containing analogies have fast diffusive properties but their adsorption is lower, ca. 172-179 VSTP/V, at the same conditions.

  4. Virginia Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) Virginia Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 56 81...

  5. Pennsylvania Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) Pennsylvania Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 5...

  6. Wyoming Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook

    Production (Billion Cubic Feet) Wyoming Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 133 278...

  7. Methane Hydrates R&D Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    they contain perhaps more organic carbon that all the world's oil, gas, and coal combined. ... Fire in the Ice: A periodical highlighting the National Methane Hydrate R&D Program http:...

  8. Discovery of New Materials to Capture Methane | U.S. DOE Office...

    Office of Science (SC)

    Discovery of New Materials to Capture Methane Predicted materials could economically produce high-purity methane from natural gas systems and separate methane from coal mine ...

  9. Explosive photodissociation of methane induced by ultrafast intense laser

    SciTech Connect

    Kong Fanao; Luo Qi; Xu Huailiang; Sharifi, Mehdi; Song Di; Chin, See Leang

    2006-10-07

    A new type of molecular fragmentation induced by femtosecond intense laser at the intensity of 2x10{sup 14} W/cm{sup 2} is reported. For the parent molecule of methane, ethylene, n-butane, and 1-butene, fluorescence from H (n=3{yields}2), CH (A {sup 2}{delta}, B {sup 2}{sigma}{sup -}, and C {sup 2}{sigma}{sup +}{yields}X {sup 2}{pi}), or C{sub 2} (d {sup 3}{pi}{sub g}{yields}a {sup 3}{pi}{sub u}) is observed in the spectrum. It shows that the fragmentation is a universal property of neutral molecule in the intense laser field. Unlike breaking only one or two chemical bonds in conventional UV photodissociation, the fragmentation caused by the intense laser undergoes vigorous changes, breaking most of the bonds in the molecule, like an explosion. The fragments are neutral species and cannot be produced through Coulomb explosion of multiply charged ion. The laser power dependence of CH (A{yields}X) emission of methane on a log-log scale has a slope of 10{+-}1. The fragmentation is thus explained as multiple channel dissociation of the superexcited state of parent molecule, which is created by multiphoton excitation.

  10. Integrated solar thermochemical reaction system for steam methane reforming

    SciTech Connect

    Zheng, Feng; Diver, Rich; Caldwell, Dustin D.; Fritz, Brad G.; Cameron, Richard J.; Humble, Paul H.; TeGrotenhuis, Ward E.; Dagle, Robert A.; Wegeng, Robert S.

    2015-06-05

    Solar-aided upgrade of the energy content of fossil fuels, such as natural gas, can provide a near-term transition path towards a future solar-fuel economy and reduce carbon dioxide emission from fossil fuel consumption. Both steam and dry reforming a methane-containing fuel stream have been studied with concentrated solar power as the energy input to drive the highly endothermic reactions but the concept has not been demonstrated at a commercial scale. Under a current project with the U.S. Department of Energy, PNNL is developing an integrated solar thermochemical reaction system that combines solar concentrators with micro- and meso-channel reactors and heat exchangers to accomplish more than 20% solar augment of methane higher heating value. The objective of our three-year project is to develop and prepare for commercialization such solar reforming system with a high enough efficiency to serve as the frontend of a conventional natural gas (or biogas) combined cycle power plant, producing power with a levelized cost of electricity less than 6¢/kWh, without subsidies, by the year 2020. In this paper, we present results from the first year of our project that demonstrated a solar-to-chemical energy conversion efficiency as high as 69% with a prototype reaction system.

  11. Integrated solar thermochemical reaction system for steam methane reforming

    DOE PAGES [OSTI]

    Zheng, Feng; Diver, Rich; Caldwell, Dustin D.; Fritz, Brad G.; Cameron, Richard J.; Humble, Paul H.; TeGrotenhuis, Ward E.; Dagle, Robert A.; Wegeng, Robert S.

    2015-06-05

    Solar-aided upgrade of the energy content of fossil fuels, such as natural gas, can provide a near-term transition path towards a future solar-fuel economy and reduce carbon dioxide emission from fossil fuel consumption. Both steam and dry reforming a methane-containing fuel stream have been studied with concentrated solar power as the energy input to drive the highly endothermic reactions but the concept has not been demonstrated at a commercial scale. Under a current project with the U.S. Department of Energy, PNNL is developing an integrated solar thermochemical reaction system that combines solar concentrators with micro- and meso-channel reactors and heatmore » exchangers to accomplish more than 20% solar augment of methane higher heating value. The objective of our three-year project is to develop and prepare for commercialization such solar reforming system with a high enough efficiency to serve as the frontend of a conventional natural gas (or biogas) combined cycle power plant, producing power with a levelized cost of electricity less than 6¢/kWh, without subsidies, by the year 2020. In this paper, we present results from the first year of our project that demonstrated a solar-to-chemical energy conversion efficiency as high as 69% with a prototype reaction system.« less

  12. Mitigating greenhouse gas emissions: Voluntary reporting

    SciTech Connect

    1997-10-01

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  13. FETC Programs for Reducing Greenhouse Gas Emissions

    SciTech Connect

    Ruether, J.A.

    1998-02-01

    Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called `greenhouse gases.` Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth`s atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide.

  14. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    SciTech Connect

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  15. Inhibition of the fermentation of propionate to methane by hydrogen, acetate, and propionate

    SciTech Connect

    Fukuzaki, Satoshi; Nishio, Naomichi; Shobayashi, Manabu; Nagai, Shiro )

    1990-03-01

    Inhibition of the fermentation of propionate to methane and carbon dioxide by hydrogen, acetate, and propionate was analyzed with a mesophilic propionate-acclimatized sludge that consisted of numerous flocs (size, 150 to 300 {mu}). The acclimatized sludge could convert propionate to methane and carbon dioxide stoichiometrically without accumulating hydrogen and acetate in a propionate-minimal medium. Inhibition of propionate utilization by propionate could be analyzed by a second-order substrate inhibition model. For inhibition by hydrogen and acetate to propionate utilization, a noncompetitive product inhibition model was used. It could be concluded that the increase in undissociated propionic acid concentration was a key factor in inhibition of propionate utilization and that hydrogen and acetate cooperatively inhibited propionate degradation, suggesting that hydrogenotrophic and acetoclastic methanogens might play an important role in enhancing propionate degradation to methane and carbon dioxide.

  16. New Methane Hydrate Research: Investing in Our Energy Future | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped

  17. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    SciTech Connect

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01

    streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

  18. Synthesis and characterization of complexes of rare earth picrates and rac-bis(ethylsulfinyl)methane

    SciTech Connect

    Andrade Da Silva, M.A.; Zaim, M.H.; Isolani, P.C.

    1995-12-31

    The compound {beta}-dissulfoxide bis(ethylsufinyl)methane (besm) was prepared by oxidation of bis(ethylthio)methane with hydrogen peroxide in acetic acid, and obtained as a mixture of its meso and d,1 diastereomers. An analytical sample was obtained by recrystallization from chloroform-diethyl ether. The racemic-bis(ethylsulfinyl)methane was characterized and studied by CHS elemental analysis, high resolution mass spectrometry, infrared spectra, {sup 1}H and {sup 13}C NMR. A series of compounds with composition RE(pic){sub 3}2rac-besm [RE = La, Ce, Nd, Eu, Gd, Er, Tm, Yb, Lu and Y; pic = picrate and rac-besm = racemic-bis(ethylsulfinyl)methane] were synthesized and characterized by CHNS elemental analysis and rare earths complexometric titration with EDTA, conductance measurements, X-ray powder patterns, infrared spectra, visible absorption of the neodymium and emission spectra of the europium materials. The coordination polyhedron around the Eu{sup 3+} center is probably a dodecahedron with coordination number eight. 19 refs., 2 figs., 4 tabs.

  19. Sensitivity of Multi-gas Climate Policy to Emission Metrics

    SciTech Connect

    Smith, Steven J.; Karas, Joseph F.; Edmonds, James A.; Eom, Jiyong; Mizrahi, Andrew H.

    2013-04-01

    Multi-gas greenhouse emission targets require that different emissions be combined into an aggregate total. The Global Warming Potential (GWP) index is currently used for this purpose, despite various criticisms of the underlying concept. It is not possible to uniquely define a single metric that perfectly captures the different impacts of emissions of substances with widely disparate atmospheric lifetimes, which leads to a wide range of possible index values. We examine the sensitivity of emissions and climate outcomes to the value of the index used to aggregate methane emissions using a technologically detailed integrated assessment model. We find that the sensitivity to index value is of order 4-14% in terms of methane emissions and 2% in terms of total radiative forcing, using index values between 4 and 70 for methane, with larger regional differences in some cases. The sensitivity to index value is much higher in economic terms, with total 2-gas mitigation cost decreasing 4-5% for a lower index and increasing 10-13% for a larger index, with even larger changes if the emissions reduction targets are small. The sensitivity to index value also depends on the assumed maximum amount of mitigation available in each sector. Evaluation of the maximum mitigation potential for major sources of non-CO2 greenhouse gases would greatly aid analysis

  20. Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...

    Energy Information Administration (EIA) (indexed site)

    Offshore--Texas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 ... Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore, Gulf of ...

  1. Solubility of methane in water under natural conditions: a laboratory...

    Office of Scientific and Technical Information (OSTI)

    302sup 0F. Also the solubility of crude oil and water in methane has been determined ... Increasing pressure increases the solubility of crude oil in methane gas. At an elevated ...

  2. ,"New York Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    ...","Frequency","Latest Data for" ,"Data 1","New York Coalbed Methane Proved Reserves ... 8:49:43 AM" "Back to Contents","Data 1: New York Coalbed Methane Proved Reserves ...

  3. ,"New Mexico--West Coalbed Methane Proved Reserves (Billion Cubic...

    Energy Information Administration (EIA) (indexed site)

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico--West Coalbed Methane Proved ... 8:49:40 AM" "Back to Contents","Data 1: New Mexico--West Coalbed Methane Proved ...

  4. ,"New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Coalbed Methane Proved Reserves ... 9:00:33 AM" "Back to Contents","Data 1: New Mexico Coalbed Methane Proved Reserves ...

  5. ,"New Mexico--East Coalbed Methane Proved Reserves (Billion Cubic...

    Energy Information Administration (EIA) (indexed site)

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico--East Coalbed Methane Proved ... 8:49:39 AM" "Back to Contents","Data 1: New Mexico--East Coalbed Methane Proved ...

  6. Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  7. Louisiana (with State Offshore) Coalbed Methane Proved Reserves...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  8. Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  9. Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  10. Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves...

    Energy Information Administration (EIA) (indexed site)

    4 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  11. Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  12. Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  13. Montana Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  14. Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  15. Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  16. Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  17. Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  18. Texas--RRC District 2 Onshore Coalbed Methane Proved Reserves...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 2 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  19. Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  20. Texas (with State Offshore) Coalbed Methane Proved Reserves ...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  1. Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  2. Texas--RRC District 3 Onshore Coalbed Methane Proved Reserves...

    Energy Information Administration (EIA) (indexed site)

    3 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 3 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  3. ,"U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves (Billion Cubic ... "Back to Contents","Data 1: U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)" ...

  4. Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  5. West Virginia Coalbed Methane Proved Reserves (Billion Cubic...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) West Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  6. Texas--RRC District 10 Coalbed Methane Proved Reserves (Billion...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 10 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  7. Direct use of methane in coal liquefaction

    DOEpatents

    Sundaram, M.S.; Steinberg, M.

    1985-06-19

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.

  8. Direct use of methane in coal liquefaction

    DOEpatents

    Sundaram, Muthu S.; Steinberg, Meyer

    1987-01-01

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.

  9. Technologies to characterize natural gas emissions tested in field

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    experiments Natural gas emissions tested in field experiments Technologies to characterize natural gas emissions tested in field experiments A new collaborative science program is pioneering the development of ultra-sensitive methane-sensing technology. October 28, 2013 The Rocky Mountain Oilfield Test Center, RMOTC, which includes a small areas with active oil and gas production. The Rocky Mountain Oilfield Test Center, RMOTC, which includes a small areas with active oil and gas production.

  10. Impact of mammalian megaherbivores on global methane examined

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    function and potential climate effects resulting from methane concentration changes. ... Panel on Climate Change (IPCC) inventories for climate model simulations. ...

  11. 7.4 Landfill Methane Utilization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7.4 Landfill Methane Utilization 7.4 Landfill Methane Utilization A chapter on Landfill Methane Utilization from the Clean Energy Strategies for Local Governments publication. 7.4_landfill_methane_utilization.pdf (484.59 KB) More Documents & Publications CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities Powering Microturbines With Landfill Gas, October 2002 Barriers to CHP with Renewable Portfolio Standards, Draft White Paper, September 2007

  12. Report of the Task Force on Methane Hydrates

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report presents the findings and recommendations for the Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates.

  13. Draft Report of the Task Force on Methane Hydrates

    Energy.gov [DOE]

    This report presents the findings and recommendations for the Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates.

  14. DOE/NETL Methane Hydrate Projects | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Methane Hydrate Projects Active Projects | Completed Projects Active Methane Hydrate Projects Project Number Project Name Primary Performer DE-FE0023919 Deepwater Methane Hydrate Characterization and Scientific Assessment University of Texas at Austin DE-FE0025387 Support for Methane Hydrate Research on the Alaska North Slope Petrotechnical Resources of Alaska DE-FE0009897 Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications

  15. Alabama Coalbed Methane Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Alabama Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 23 1990's 36 68 89 103 108 109 98 111 123 108 2000's 109 111 117 98 121 113 114 114 107 105 2010's 102 98 91 62 78 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane

  16. Method for removal of methane from coalbeds

    DOEpatents

    Pasini, III, Joseph; Overbey, Jr., William K.

    1976-01-01

    A method for removing methane gas from underground coalbeds prior to mining the coal which comprises drilling at least one borehole from the surface into the coalbed. The borehole is started at a slant rather than directly vertically, and as it descends, a gradual curve is followed until a horizontal position is reached where the desired portion of the coalbed is intersected. Approaching the coalbed in this manner and fracturing the coalbed in the major natural fraction direction cause release of large amounts of the trapped methane gas.

  17. Methane recovery from landfill in China

    SciTech Connect

    Gaolai, L.

    1996-12-31

    GEF has approved a special project for a demonstration project for Methane Recovery from the Urban Refuse Land Fill. This paper will introduce the possibility of GHG reduction from the landfill in China, describe the activities of the GEF project, and the priorities for international cooperation in this field. The Global Environment Facility (GEF) approved the project, China Promoting Methane Recovery and Unlization from Mixed Municipal Refuse, at its Council meeting in last April. This project is the first one supported by international organization in this field.

  18. Volume and accessibility of entrained (solution) methane in deep geopressured reservoirs - tertiary formations of the Texas Gulf Coast. Final report

    SciTech Connect

    Gregory, A.R.; Dodge, M.M.; Posey, J.S.; Morton, R.A.

    1980-10-01

    The objective of this project was to appraise the total volume of in-place methane dissolved in formation waters of deep sandstone reservoirs of the onshore Texas Gulf Coast within the stratigraphic section extending from the base of significant hydrocarbon production (8000 ft)* to the deepest significant sandstone occurrence. The area of investigation is about 50,000 mi/sup 2/. Factors that determine the total methane resource are reservoir bulk volume, porosity, and methane solubility; the latter is controlled by the temperature, pressure, and salinity of formation waters. Regional assessment of the volume and the distribution of potential sandstone reservoirs was made from a data base of 880 electrical well logs, from which a grid of 24 dip cross sections and 4 strike cross sections was constructed. Solution methane content in each of nine formations or divisions of formations was determined for each subdivision. The distribution of solution methane in the Gulf Coast was described on the basis of five reservoir models. Each model was characterized by depositional environment, reservoir continuity, porosity, permeability, and methane solubility.

  19. Towards eliminating systematic errors caused by the experimental conditions in Biochemical Methane Potential (BMP) tests

    SciTech Connect

    Strömberg, Sten; Nistor, Mihaela; Liu, Jing

    2014-11-15

    Highlights: • The evaluated factors introduce significant systematic errors (10–38%) in BMP tests. • Ambient temperature (T) has the most substantial impact (∼10%) at low altitude. • Ambient pressure (p) has the most substantial impact (∼68%) at high altitude. • Continuous monitoring of T and p is not necessary for kinetic calculations. - Abstract: The Biochemical Methane Potential (BMP) test is increasingly recognised as a tool for selecting and pricing biomass material for production of biogas. However, the results for the same substrate often differ between laboratories and much work to standardise such tests is still needed. In the current study, the effects from four environmental factors (i.e. ambient temperature and pressure, water vapour content and initial gas composition of the reactor headspace) on the degradation kinetics and the determined methane potential were evaluated with a 2{sup 4} full factorial design. Four substrates, with different biodegradation profiles, were investigated and the ambient temperature was found to be the most significant contributor to errors in the methane potential. Concerning the kinetics of the process, the environmental factors’ impact on the calculated rate constants was negligible. The impact of the environmental factors on the kinetic parameters and methane potential from performing a BMP test at different geographical locations around the world was simulated by adjusting the data according to the ambient temperature and pressure of some chosen model sites. The largest effect on the methane potential was registered from tests performed at high altitudes due to a low ambient pressure. The results from this study illustrate the importance of considering the environmental factors’ influence on volumetric gas measurement in BMP tests. This is essential to achieve trustworthy and standardised results that can be used by researchers and end users from all over the world.

  20. Department of Energy Announces 22 New Projects to Enable Emissions Reductions and Improve Energy Efficiency

    Energy.gov [DOE]

    The Energy Department’s Advanced Research Projects Agency-Energy (ARPA-E) today announced $60 million in funding for 22 innovative new projects aimed at detecting and measuring methane emissions and developing localized thermal management systems that reduce the energy needed to heat and cool buildings. The projects are funded through ARPA-E’s two newest programs: Methane Observation Networks with Innovative Technology to Obtain Reductions (MONITOR) and Delivering Efficient Local Thermal Amenities (DELTA).

  1. Formation and retention of methane in coal

    SciTech Connect

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  2. Generating power with drained coal mine methane

    SciTech Connect

    2005-09-01

    The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

  3. Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water

    SciTech Connect

    Song Jin

    2007-05-31

    Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

  4. RECOVERY AND UTILIZATION OF COALMINE METHANE: PILOT-SCALE DEMONSTRATION PHASE

    SciTech Connect

    George Steinfeld; Jennifer Hunt

    2004-09-28

    A fuel cell demonstration was conducted on coalmine methane to demonstrate the utilization of methane emissions associated with underground coal mining operations in a carbonate Direct FuelCell{reg_sign} (DFC{reg_sign}) power plant. FuelCell Energy (FCE) conducted the demonstration with support from the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) and in cooperation with Northwest Fuel Development, the operator of the Rose Valley test site in Hopedale, Ohio. The fuel cell power plant, a first generation sub megawatt power plant, was operated on CMM between August 1, 2003 and December 13, 2003. The direct fuel cell operated on low-Btu CMM with 42% methane content and achieved performance levels comparable to natural gas on a Btu feed basis. During this period 1456 hours on-load operation was achieved. The total power generated using CMM was 134 megawatt-hours (MWh) of electricity. The power generated was connected to the American Electric Power grid by a 69-kilovolt (kV) transformer. The maximum power level achieved was 140 kW. Efficiency of power generation was 40% based on the lower heating value (LHV) of the CMM. Compression and drying of the CMM resulted in additional parasitic load, which reduced the overall efficiency to 36 % LHV. In future applications, on-board compression and utilization of the saturated CMM without drying will be investigated in order to reduce the auxiliary power requirements. By comparison, the internal combustion engines operating on CMM at the Hopedale site operate at an over efficiency of 20%. The over-all efficiency for the fuel cell is therefore 80% higher than the internal combustion engine (36% vs. 20%). Future operation of a 250 kW Fuel Cell Power Plant on CMM will utilize 18,400,000 cubic feet of methane per year. This will be equivalent to: (a) avoiding 7428 metric tons of CO{sub 2} emissions, (b) avoiding 16.4 million pounds of CO{sub 2} emissions, (c) removing 1640 cars off the road for one

  5. Thermodynamic properties and diffusion of water + methane binary mixtures

    SciTech Connect

    Shvab, I.; Sadus, Richard J.

    2014-03-14

    Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methane concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.

  6. Modeling Methane Adsorption in Interpenetrating Porous Polymer Networks

    SciTech Connect

    Martin, RL; Shahrak, MN; Swisher, JA; Simon, CM; Sculley, JP; Zhou, HC; Smit, B; Haranczyk, M

    2013-10-03

    Porous polymer networks (PPNs) are a class of porous materials of particular interest in a variety of energy-related applications because of their stability, high surface areas, and gas uptake capacities. Computationally derived structures for five recently synthesized PPN frameworks, PPN-2, -3, -4, -5, and -6, were generated for various topologies, optimized using semiempirical electronic structure methods, and evaluated using classical grand canonical Monte Carlo simulations. We show that a key factor in modeling the methane uptake performance of these materials is whether, and how, these material frameworks interpenetrate and demonstrate a computational approach for predicting the presence, degree, and nature of interpenetration in PPNs that enables the reproduction of experimental adsorption data.

  7. Effect of bubble size and density on methane conversion to hydrate

    SciTech Connect

    Leske, J.; Taylor, C.E.; Ladner, E.P.

    2007-03-01

    Research is underway at NETL to understand the physical properties of methane hydrates. One area of investigation is the storage of methane as methane hydrates. An economical and efficient means of storing methane in hydrates opens many commercial opportunities such as transport of stranded gas, off-peak storage of line gas, etc.We have observed during our investigations that the ability to convert methane to methane hydrate is enhanced by foaming of the methanewater solution using a surfactant. The density of the foam, along with the bubble size, is important in the conversion of methane to methane hydrate.

  8. Cross Sections for Electron Collisions with Methane

    SciTech Connect

    Song, Mi-Young Yoon, Jung-Sik; Cho, Hyuck; Itikawa, Yukikazu; Karwasz, Grzegorz P.; Kokoouline, Viatcheslav; Nakamura, Yoshiharu; Tennyson, Jonathan

    2015-06-15

    Cross section data are compiled from the literature for electron collisions with methane (CH{sub 4}) molecules. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, excitations of rotational and vibrational states, dissociation, ionization, and dissociative attachment. The data derived from swarm experiments are also considered. For each of these processes, the recommended values of the cross sections are presented. The literature has been surveyed through early 2014.

  9. Enhanced carbon monoxide utilization in methanation process

    DOEpatents

    Elek, Louis F.; Frost, Albert C.

    1984-01-01

    Carbon monoxide - containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is subsequently reacted with steam or hydrogen to form methane. Surprisingly, hydrogen and water vapor present in the feed gas do not adversely affect CO utilization significantly, and such hydrogen actually results in a significant increase in CO utilization.

  10. Process for separating nitrogen from methane using microchannel process technology

    DOEpatents

    Tonkovich, Anna Lee; Qiu, Dongming; Dritz, Terence Andrew; Neagle, Paul; Litt, Robert Dwayne; Arora, Ravi; Lamont, Michael Jay; Pagnotto, Kristina M.

    2007-07-31

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  11. Methane and Methanotrophic Bacteria as a Biotechnological Platform |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Methane and Methanotrophic Bacteria as a Biotechnological Platform Methane and Methanotrophic Bacteria as a Biotechnological Platform Breakout Session 2-B: New/Emerging Pathways Methane and Methanotrophic Bacteria as a Biotechnological Platform Dr. Lori Giver, Vice President of Biological Engineering, Calysta Energy, Inc. giver_bioenergy_2015.pdf (1.68 MB) More Documents & Publications CX-100166 Categorical Exclusion Determination Biobased Chemicals Landscape in

  12. Enhanced Renewable Methane Production System Benefits Wastewater Treatment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Plants, Farms, and Landfills - Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Enhanced Renewable Methane Production System Benefits Wastewater Treatment Plants, Farms, and Landfills Argonne National Laboratory Contact ANL About This Technology <p> Argonne&rsquo;s Enhanced Renewable Methane Production System &mdash; Process Schematic.</p> Argonne's Enhanced Renewable Methane Production System - Process Schematic.

  13. DOE Announces $2 Million Funding for Methane Hydrates Projects | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 2 Million Funding for Methane Hydrates Projects DOE Announces $2 Million Funding for Methane Hydrates Projects November 7, 2005 - 12:43pm Addthis Seeks to Unlock World's Biggest Potential Source of "Ice That Burns" WASHINGTON, DC - The Department of Energy (DOE) today announced a total of $2 million in funding to five research projects that will assess the energy potential, safety, and environmental aspects of methane hydrate exploration and development. Termed the

  14. Western States Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Western States Coalbed Methane Production (Billion Cubic Feet) Western States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 4 14 33 51 77 89 108 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Production

  15. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    DOE PAGES [OSTI]

    Archer, D.

    2015-05-21

    (soil-freezing) part of the cycle rather than during deglacial transgression (warming and thawing). The atmospheric flux response to a warming climate is small, relative to the rest of the methane sources to the atmosphere in the global budget, because of the ongoing flooding of the continental shelf. The increased methane flux due to ocean warming could be completely counteracted by a sea level rise of tens of meters on millennial timescales due to the loss of ice sheets, decreasing the efficiency of bubble transit through the water column. The model results give no indication of a mechanism by which methane emissions from the Siberian continental shelf could have a significant impact on the near-term evolution of Earth's climate, but on millennial timescales the release of carbon from hydrate and permafrost could contribute significantly to the fossil fuel carbon burden in the atmosphere–ocean–terrestrial carbon cycle.« less

  16. UPGRADING METHANE USING ULTRA-FAST THERMAL SWING ADSORPTION

    SciTech Connect

    Anna Lee Tonkovich

    2004-01-01

    The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the feasibility of upgrading low-Btu methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys' modular microchannel process technology. The project is on schedule and under budget. For Task 1.1, the open literature, patent information, and vendor contacts were surveyed to identify adsorbent candidates for experimental validation and subsequent demonstration in an MPT-based ultra-fast TSA separation for methane upgrading. The leading candidates for preferential adsorption of methane over nitrogen are highly microporous carbons. A Molecular Gate{trademark} zeolite from Engelhard Corporation has emerged as a candidate. For Task 1.2, experimental evaluation of adsorbents was initiated, and data were collected on carbon (MGN-101) from PICA, Inc. This carbon demonstrated a preferential capacity for methane over nitrogen, as well as a reasonable thermal swing differential capacity for a 90% methane and 10% nitrogen mixture. A similar methane swing capacity at 2 psig was measured. The mixture composition is relevant because gob gas contains nearly 85% methane and must be purified to 97% methane for pipeline quality.

  17. High Methane Storage Capacity in Aluminum Metal-Organic Frameworks...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    High Methane Storage Capacity in Aluminum Metal-Organic Frameworks Previous Next List Felipe Gndara, Hiroyasu Furukawa, Seungkyu Lee, and Omar M. Yaghi, J. Am. Chem. Soc., 136,...

  18. ,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and...

    Energy Information Administration (EIA) (indexed site)

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"06301989"...

  19. Minimizing the formation of coke and methane on Co nanoparticles...

    Office of Scientific and Technical Information (OSTI)

    that leads to high hydrogen selectivity and low methane formation on Co-based catalysts. ... We gratefully acknowledge the financial support from U. S. Department of Energy (DOE), ...

  20. Rapid Production of Methane Hydrates | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... The high velocities of both the water and gas feeds within the small mixing zone ... methane content), cold energy storage, transportation fuels, and desalination processes. ...

  1. Table 16. Coalbed methane proved reserves, reserves changes,...

    Energy Information Administration (EIA) (indexed site)

    Coalbed methane proved reserves, reserves changes, and production, 2014" "billion cubic feet" ,,"Changes in Reserves During 2014" ,"Published",,,..."New Reservoir" ...

  2. Table 15. Coalbed methane proved reserves and production, 2010...

    Energy Information Administration (EIA) (indexed site)

    Coalbed methane proved reserves and production, 2010-14" "billion cubic feet" ,,"Reserves",,,,,,"Production" "State and Subdivision",,2010,2011,2012,2013,2014,,2010,2011,2012,2013,...

  3. Geochemistry of clathrate-derived methane in Arctic Ocean waters

    SciTech Connect

    Elliott, S.M.; Reagan, M.T.; Moridis, G.J.; Cameron-Smith, P.J.

    2010-03-15

    Alterations to the composition of seawater are estimated for microbial oxidation of methane from large polar clathrate destabilizations, which may arise in the coming century. Gas fluxes are taken from porous flow models of warming Arctic sediment. Plume spread parameters are then used to bracket the volume of dilution. Consumption stoichiometries for the marine methanotrophs are based on growth efficiency and elemental/enzyme composition data. The nutritional demand implied by extra CH{sub 4} removal is compared with supply in various high latitude water masses. For emissions sized to fit the shelf break, reaction potential begins at one hundred micromolar and falls to order ten a thousand kilometers downstream. Oxygen loss and carbon dioxide production are sufficient respectively to hypoxify and acidify poorly ventilated basins. Nitrogen and the monooxygenase transition metals may be depleted in some locations as well. Deprivation is implied relative to existing ecosystems, along with dispersal of the excess dissolved gas. Physical uncertainties are inherent in the clathrate abundance, patch size, outflow buoyancy and mixing rate. Microbial ecology is even less defined but may involve nutrient recycling and anaerobic oxidizers.

  4. Presentations from the March 27th - 28th Methane Hydrates Advisory...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the March 27th - 28th Methane Hydrates Advisory Committee Meeting Presentations from the March 27th - 28th Methane Hydrates Advisory Committee Meeting PDF icon International Gas ...

  5. U.S. Coalbed Methane Proved Reserves Sales (Billion Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  6. U.S. Coalbed Methane Proved Reserves New Field Discoveries (Billion...

    Energy Information Administration (EIA) (indexed site)

    U.S. Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  7. Texas--RRC District 8A Coalbed Methane Proved Reserves (Billion...

    Energy Information Administration (EIA) (indexed site)

    A Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  8. Texas--RRC District 7C Coalbed Methane Proved Reserves (Billion...

    Energy Information Administration (EIA) (indexed site)

    C Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  9. Texas--RRC District 7B Coalbed Methane Proved Reserves (Billion...

    Energy Information Administration (EIA) (indexed site)

    B Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  10. DIRECT DECOMPOSITION OF METHANE TO HYDROGEN ON METAL LOADED ZEOLITE CATALYST

    SciTech Connect

    Lucia M. Petkovic; Daniel M. Ginosar; Kyle C. Burch; Harry W. Rollins

    2005-08-01

    The manufacture of hydrogen from natural gas is essential for the production of ultra clean transportation fuels. Not only is hydrogen necessary to upgrade low quality crude oils to high-quality, low sulfur ultra clean transportation fuels, hydrogen could eventually replace gasoline and diesel as the ultra clean transportation fuel of the future. Currently, refinery hydrogen is produced through the steam reforming of natural gas. Although efficient, the process is responsible for a significant portion of refinery CO2 emissions. This project is examining the direct catalytic decomposition of methane as an alternative to steam reforming. The energy required to produce one mole of hydrogen is slightly lower and the process does not require water-gas-shift or pressure-swing adsorption units. The decomposition process does not produce CO2 emissions and the product is not contaminated with CO -- a poison for PEM fuel cells. In this work we examined the direct catalytic decomposition of methane over a metal modified zeolite catalyst and the recovery of catalyst activity by calcination. A favorable production of hydrogen was obtained, when compared with previously reported nickel-zeolite supported catalysts. Reaction temperature had a strong influence on catalyst activity and on the type of carbon deposits. The catalyst utilized at 873 and 973 K could be regenerated without any significant loss of activity, however the catalyst utilized at 1073 K showed some loss of activity after regeneration.

  11. A Community Emissions Data System (CEDS) for Historical Emissions

    SciTech Connect

    Smith, Steven J.; Zhou, Yuyu; Kyle, G. Page; Wang, Hailong; Yu, Hongbin

    2015-04-21

    Historical emission estimates for anthropogenic aerosol and precursor compounds are key data needed for Earth system models, climate models, and atmospheric chemistry and transport models; both for general analysis and assessment and also for model validation through comparisons with observations. Current global emission data sets have a number of shortcomings, including timeliness and transparency. Satellite and other earth-system data are increasingly available in near real-time, but global emission estimates lag by 5-10 years. The CEDS project will construct a data-driven, open source framework to produce annually updated emission estimates. The basic methodologies to be used for this system have been used for SO2 (Smith et al. 2011, Klimont, Smith and Cofala 2013), and are designed to complement existing inventory efforts. The goal of this system is to consistently extend current emission estimates both forward in time to recent years and also back over the entire industrial era. The project will produce improved datasets for global and (potentially) regional model, allow analysis of trends across time, countries, and sectors of emissions and emission factors, and facilitate improved scientific analysis in general. Consistent estimation of uncertainty will be an integral part of this system. This effort will facilitate community evaluation of emissions and further emission-related research more generally.

  12. Methanation process utilizing split cold gas recycle

    DOEpatents

    Tajbl, Daniel G.; Lee, Bernard S.; Schora, Jr., Frank C.; Lam, Henry W.

    1976-07-06

    In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

  13. Colorado Coalbed Methane Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Colorado Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12 1990's 26 48 82 125 179 226 274 312 401 432 2000's 451 490 520 488 520 515 477 519 497 498 2010's 533 516 486 444 412 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed

  14. Methane Hydrate Advisory Committee (MHAC) Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrate Advisory Committee (MHAC) Meeting May 7, 2015 1:00 - 3:00PM (EDT) Via Teleconference MEETING SUMMARY Attached are the meeting agenda and the list of attendees; a quorum of Committee members was present. DFO Welcome and Introductions - Paula A. Gant, DFO The meeting was called to order at 1:00PM EDT by Paula A. Gant, Deputy Assistant Secretary (DAS) for Oil and Gas within the U.S. Department of Energy (DOE) and Designated Federal Officer (DFO) for the Methane Hydrate Advisory Committee

  15. MethaneHydrateRD_FC.indd

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    gas is an important energy resource for the United States, providing nearly one-quarter of total energy use. The Department of Energy's Office of Fossil Energy (FE) has played a major role in developing technologies to help tap new, unconventional sources of natural gas. FOSSIL ENERGY RESEARCH BENEFITS Methane Hydrate R&D "The (DOE) Program has supported and managed a high-quality research portf olio that has enabled signifi cant progress toward the (DOE) Program's long-term

  16. Enhanced Microbial Pathways for Methane Production from Oil Shale

    SciTech Connect

    Paul Fallgren

    2009-02-15

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  17. Emissions of greenhouse gases in the United States 1997

    SciTech Connect

    1998-10-01

    This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

  18. Methane production from grape skins. Final technical report

    SciTech Connect

    Yunghans, W.N.

    1981-10-09

    Methane production from grape pomace was measured for a 50-day digestion period. Gas production was calculated to be 2400 ft/sup 3//10 d/ton at 53% methane content. Microorganisms particularly a fungus which grows on grape pomace and lignin was isolated. Lignin content of pomace was measured at approximately 60%. Lignin is slowly digested and may represent a residue which requires long term digestion. Research is continuing on isolation of anaerobic methane bacteria and codigestion of pomace with enzymes as cellulase and pectinase. The sewage sludge functioned adequately as a mixed source of organisms capable of digesting grape pomace. A sediment from stored grape juice produced significant amounts of methane and represents a nutrient substrate for additional studies on continuous flow methane production. 3 figs.

  19. METHANE AND NITROGEN ABUNDANCES ON PLUTO AND ERIS

    SciTech Connect

    Tegler, S. C.; Cornelison, D. M.; Abernathy, M. R.; Bovyn, M. J.; Burt, J. A.; Evans, D. E.; Maleszewski, C. K.; Thompson, Z.; Grundy, W. M.; Romanishin, W.; Vilas, F. E-mail: David.Cornelison@nau.ed E-mail: wjr@nhn.ou.ed

    2010-12-10

    We present spectra of Eris from the MMT 6.5 m Telescope and Red Channel Spectrograph (5700-9800 A, 5 A pixel{sup -1}) on Mt. Hopkins, AZ, and of Pluto from the Steward Observatory 2.3 m Telescope and Boller and Chivens Spectrograph (7100-9400 A, 2 A pixel{sup -1}) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis in methane and nitrogen solubilities in one another as expressed in the phase diagram of Prokhvatilov and Yantsevich, and comparing methane bands in our Eris and Pluto spectra and methane bands in our laboratory spectra of methane and nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are {approx}10% and {approx}90% and Pluto's bulk methane and nitrogen abundances are {approx}3% and {approx}97%. Such abundances for Pluto are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with a laboratory ice mixture consisting of 40% methane and 60% argon. Although we cannot rule out an argon-rich surface, it seems more likely that nitrogen is the dominant species on Eris because the nitrogen ice 2.15 {mu}m band is seen in spectra of Pluto and Triton.

  20. Dense ceramic membranes for methane conversion

    SciTech Connect

    Balachandran, U.; Mieville, R.L.; Ma, B.; Udovich, C.A.

    1996-05-01

    This report focuses on a mechanism for oxygen transport through mixed- oxide conductors as used in dense ceramic membrane reactors for the partial oxidation of methane to syngas (CO and H{sub 2}). The in-situ separation of O{sub 2} from air by the membrane reactor saves the costly cryogenic separation step that is required in conventional syngas production. The mixed oxide of choice is SrCo{sub 0.5}FeO{sub x}, which exhibits high oxygen permeability and has been shown in previous studies to possess high stability in both oxidizing and reducing conditions; in addition, it can be readily formed into reactor configurations such as tubes. An understanding of the electrical properties and the defect dynamics in this material is essential and will help us to find the optimal operating conditions for the conversion reactor. In this paper, we discuss the conductivities of the SrFeCo{sub 0.5}O{sub x} system that are dependent on temperature and partial pressure of oxygen. Based on the experimental results, a defect model is proposed to explain the electrical properties of this system. The oxygen permeability of SrFeCo{sub 0.5}O{sub x} is estimated by using conductivity data and is compared with that obtained from methane conversion reaction.

  1. Compilation and analyses of emissions inventories for the NOAA atmospheric chemistry project. Progress report, August 1997

    SciTech Connect

    Benkovitz, C.M.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen for circa 1985 and 1990 and non-methane volatile organic compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity of the International Global Atmospheric Chemistry program. Global emissions of NOx for 1985 are estimated to be 21 Tg N/yr, with approximately 84% originating in the Northern Hemisphere. The global emissions for 1990 are 31 Tg N/yr for NOx and 173 Gg NMVOC/yr. Ongoing research activities for this project continue to address emissions of both NOx and NMVOCs. Future tasks include: evaluation of more detailed regional emissions estimates and update of the default 1990 inventories with the appropriate estimates; derivation of quantitative uncertainty estimates for the emission values; and development of emissions estimates for 1995.

  2. Trace Gas Emissions Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Collections under the broad heading of Trace Gas Emissions are organized as Fossil-Fuel CO2 Emissions, Land-Use CO2 Emissions, Soil CO2 Emissions, and Methane.

  3. Methane Recovery from Hydrate-bearing Sediments

    SciTech Connect

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with

  4. Studying methane migration mechanisms at Walker Ridge, Gulf of Mexico, via 3D methane hydrate reservoir modeling

    SciTech Connect

    Nole, Michael; Daigle, Hugh; Mohanty, Kishore; Cook, Ann; Hillman, Jess

    2015-12-15

    We have developed a 3D methane hydrate reservoir simulator to model marine methane hydrate systems. Our simulator couples highly nonlinear heat and mass transport equations and includes heterogeneous sedimentation, in-situ microbial methanogenesis, the influence of pore size contrast on solubility gradients, and the impact of salt exclusion from the hydrate phase on dissolved methane equilibrium in pore water. Using environmental parameters from Walker Ridge in the Gulf of Mexico, we first simulate hydrate formation in and around a thin, dipping, planar sand stratum surrounded by clay lithology as it is buried to 295mbsf. We find that with sufficient methane being supplied by organic methanogenesis in the clays, a 200x pore size contrast between clays and sands allows for a strong enough concentration gradient to significantly drop the concentration of methane hydrate in clays immediately surrounding a thin sand layer, a phenomenon that is observed in well log data. Building upon previous work, our simulations account for the increase in sand-clay solubility contrast with depth from about 1.6% near the top of the sediment column to 8.6% at depth, which leads to a progressive strengthening of the diffusive flux of methane with time. By including an exponentially decaying organic methanogenesis input to the clay lithology with depth, we see a decrease in the aqueous methane supplied to the clays surrounding the sand layer with time, which works to further enhance the contrast in hydrate saturation between the sand and surrounding clays. Significant diffusive methane transport is observed in a clay interval of about 11m above the sand layer and about 4m below it, which matches well log observations. The clay-sand pore size contrast alone is not enough to completely eliminate hydrate (as observed in logs), because the diffusive flux of aqueous methane due to a contrast in pore size occurs slower than the rate at which methane is supplied via organic methanogenesis

  5. A PHOTOMETRIC SYSTEM FOR DETECTION OF WATER AND METHANE ICES ON KUIPER BELT OBJECTS

    SciTech Connect

    Trujillo, Chadwick A.; Sheppard, Scott S.; Schaller, Emily L. E-mail: sheppard@dtm.ciw.edu

    2011-04-01

    We present a new near-infrared photometric system for detection of water ice and methane ice in the solar system. The system consists of two medium-band filters in the K-band region of the near-infrared, which are sensitive to water ice and methane ice, plus continuum observations in the J band and Y band. The primary purpose of this system is to distinguish between three basic types of Kuiper Belt Objects (KBOs)-those rich in water ice, those rich in methane ice, and those with little absorbance. In this work, we present proof-of-concept observations of 51 KBOs using our filter system, 21 of which have never been observed in the near-infrared spectroscopically. We show that our custom photometric system is consistent with previous spectroscopic observations while reducing telescope observing time by a factor of {approx}3. We use our filters to identify Haumea collisional family members, which are thought to be collisional remnants of a much larger body and are characterized by large fractions of water ice on their surfaces. We add 2009 YE{sub 7} to the Haumea collisional family based on our water ice band observations (J - H{sub 2}O = -1.03 {+-} 0.27) which indicate a high amount of water ice absorption, our calculated proper orbital elements, and the neutral optical colors we measured, V - R = 0.38 {+-} 0.04, which are all consistent with the rest of the Haumea family. We identify several objects dynamically similar to Haumea as being distinct from the Haumea family as they do not have water ice on their surfaces. In addition, we find that only the largest KBOs have methane ice, and Haumea itself has significantly less water ice absorption than the smaller Haumea family members. We find no evidence for other families in the Kuiper Belt.

  6. Lower 48 States Coalbed Methane Proved Reserves New Field Discoveries

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) States Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane New Field Discoveries Lower 48 States Coalbed Methane Proved Reserves,

  7. New Mexico Coalbed Methane Proved Reserves New Field Discoveries (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane New Field Discoveries New Mexico Coalbed Methane Proved Reserves, Reserves

  8. Alaska (with Total Offshore) Coalbed Methane Production (Billion Cubic

    Gasoline and Diesel Fuel Update

    Feet) Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Alaska Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane Production

  9. California (with State off) Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production California Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane Production

  10. California (with State off) Coalbed Methane Proved Reserves (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 California Coalbed Methane

  11. California - Coastal Region Coalbed Methane Proved Reserves (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 CA, Coastal Region Onshore Coalbed Methane Proved Reserves, Reserves Changes, and

  12. California - Los Angeles Basin Onshore Coalbed Methane Proved Reserves

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 CA, Los Angeles Basin Onshore Coalbed Methane Proved Reserves,

  13. California--State Offshore Coalbed Methane Proved Reserves (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 CA, State Offshore Coalbed Methane Proved Reserves, Reserves

  14. Federal Offshore California Coalbed Methane Proved Reserves (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Federal Offshore California Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore, Pacific (California) Coalbed Methane

  15. Methane recovery from animal manures: A current opportunities casebook

    SciTech Connect

    1995-08-01

    This Casebook examines some of the current opportunities for the recovery of methane from the anaerobic digestion of animal manures US livestock operations currently employ four types of anaerobic digester technology: Slurry, plug flow, complete mix, and covered lagoon. An introduction to the engineering economies of these technologies is provided, and possible end-use applications for the methane gas generated by the digestion process are discussed. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Regression models, which can be used to estimate digester cost and internal rate of return, are developed from the evaluations.

  16. Wyoming Coalbed Methane Proved Reserves New Field Discoveries (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane New Field Discoveries Wyoming Coalbed Methane Proved Reserves, Reserves

  17. Oklahoma Coalbed Methane Proved Reserves New Field Discoveries (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane New Field Discoveries Oklahoma Coalbed Methane Proved Reserves, Reserves

  18. Utah Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane New Field Discoveries Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production

  19. Louisiana (with State Offshore) Coalbed Methane Production (Billion Cubic

    Gasoline and Diesel Fuel Update

    Feet) Production (Billion Cubic Feet) Louisiana (with State Offshore) Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 1 1 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Louisiana Coalbed Methane Proved

  20. Mississippi (with State off) Coalbed Methane Production (Billion Cubic

    Gasoline and Diesel Fuel Update

    Feet) Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Mississippi Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane Production

  1. Economic analysis of vertical wells for coalbed methane recovery

    SciTech Connect

    Not Available

    1981-04-01

    Previous economic studies of the recovery and utilization of methane from coalbeds using vertical wells were based on drainage in advance of mining where a single seam is drained with well spacing designed for rapid predrainage. This study extends the earlier work and shows that methane recovery costs can be reduced significantly by increasing well spacing and draining multiple coalbeds. A favorable return on investment can be realized in many geologic settings using this method. Sensitivity of recovery economics to certain development costs and parametric variations are also examined as are the economics of three methane utilization options.

  2. Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas. A Novel Process Combining CO Methanation, Water-Gas Shift, and CO2 Capture

    SciTech Connect

    Lebarbier, Vanessa M.C.; Dagle, Robert A.; Kovarik, Libor; Albrecht, Karl O.; Li, Xiaohong S.; Li, Liyu; Taylor, Charles E.; Bao, Xinhe; Wang, Yong

    2013-07-08

    Synthetic natural gas (SNG) production from syngas is under investigation again due to the desire for less dependency from imports and the opportunity for increasing coal utilization and reducing green house gas emission. CO methanation is highly exothermic and substantial heat is liberated which can lead to process thermal imbalance and deactivation of the catalyst. As a result, conversion per pass is limited and substantial syngas recycle is employed in conventional processes. Furthermore, the conversion of syngas to SNG is typically performed at moderate temperatures (275 to 325°C) to ensure high CH4 yields since this reaction is thermodynamically limited. In this study, the effectiveness of a novel integrated process for the SNG production from syngas at high temperature (i.e. 600°C) was investigated. This integrated process consists of combining a CO methanation nickel-based catalyst with a high temperature CO2 capture sorbent in a single reactor. Integration with CO2 separation eliminates the reverse-water-gas shift and the requirement for a separate water-gas shift (WGS) unit. Easing of thermodynamic constraint offers the opportunity of enhancing yield to CH4 at higher operating temperature (500-700ºC) which also favors methanation kinetics and improves the overall process efficiency due to exploitation of reaction heat at higher temperatures. Furthermore, simultaneous CO2 capture eliminates green house gas emission. In this work, sorption-enhanced CO methanation was demonstrated using a mixture of a 68% CaO/32% MgAl2O4 sorbent and a CO methanation catalyst (Ni/Al2O3, Ni/MgAl2O4, or Ni/SiC) utilizing a syngas ratio (H2/CO) of 1, gas-hour-space velocity (GHSV) of 22 000 hr-1, pressure of 1 bar and a temperature of 600°C. These conditions resulted in ~90% yield to methane, which was maintained until the sorbent

  3. Ruminant methane reduction through livestock development in Tanzania. Final report for US Department of Energy and US Initiative on Joint Implementation--Activities Implemented Jointly

    SciTech Connect

    Livingston, Roderick

    1999-07-01

    This project was designed to help develop the US Initiative on Joint Implementation activities in Eastern Africa. It has been communicated in meetings with representatives from the Ministry of Environment of Tanzania and the consultant group that developed Tanzania's National Climate Change Action Plan, the Centre for Energy, Environment, Science and Technology, that this project fits very well with the developmental and environmental goals of the Government of Tanzania. The goal of the Activities Implemented Jointly ruminant livestock project is to reduce ruminant methane emissions in Eastern Africa. The project plans a sustainable cattle multiplication unit (CMU) at Mabuki Ranch in the Mwanza Region of Tanzania. This CMU will focus on raising genetically improved animals to be purchased by farmers, developmental organizations, and other CMUs in Tanzania. Through the purchase of these animals farmers will raise their income generation potential and reduce ruminant methane emissions.

  4. The Secretary of Energy Advisory Board (SEAB) Task Force on Methane

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrates | Department of Energy Methane Hydrates The Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates The Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates is composed of SEAB members and independent experts charged with recommending a framework for DOE methane hydrate research programs. Purpose of the Task Force: The purpose of this task force is to provide a framework for DOE's pre-commercial methane hydrate research effort, in particular, the

  5. Waste management activities and carbon emissions in Africa

    SciTech Connect

    Couth, R.; Trois, C.

    2011-01-15

    This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries.

  6. Lower 48 States Coalbed Methane Production (Billion Cubic Feet...

    Annual Energy Outlook

    Production (Billion Cubic Feet) Lower 48 States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

  7. West Virginia Coalbed Methane Production (Billion Cubic Feet...

    Annual Energy Outlook

    Production (Billion Cubic Feet) West Virginia Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 30...

  8. Louisiana--North Coalbed Methane Production (Billion Cubic Feet...

    Annual Energy Outlook

    Production (Billion Cubic Feet) Louisiana--North Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

  9. Methane storage in advanced porous materials | Center for Gas...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Methane storage in advanced porous materials Previous Next List Trevor A. Makal, Jian-Rong Li, Weigang Lu and Hong-Cai Zhou, Chem. Soc. Rev., 2012,41, 7761-7779 DOI: 10.1039...

  10. Commodity chemicals from natural gas by methane chlorination

    SciTech Connect

    Che, S.C.; Minet, R.G.; Giacobbe, F.; Mullick, S.L.

    1987-01-01

    Ethylene and vinyl chloride monomer (VCM) can be produced from natural gas through methane chlorination by reacting methane and chlorine at 900/sup 0/C or higher. Experimental results indicate total ethylene equivalent yield from methane of 45%(wt) and marginal process economics. Fundamental kinetic modeling predicts improved C/sub 2/ yields of up to 70%(wt) at optimum reaction conditions. This optimum condition established the basis for the process design study to evaluate the potential for producing ethylene and VCM from natural gas. HCl by-product is recycled for economic viability. Using the Kel-Chlor process for recycling HCl, the proposed plant produces 27,200 TPA of C/sub 2/H/sub 4/ and 383,800 TPA of VCM. The Midwest is an ethylene consumption area requiring imports of ethylene derivatives from other regions. A methane chlorination plant located on a Midwestern natural gas pipeline network has a good commercial potential.

  11. Texas--RRC District 10 Coalbed Methane Production (Billion Cubic...

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) Texas--RRC District 10 Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

  12. Texas--RRC District 2 Onshore Coalbed Methane Production (Billion...

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) Texas--RRC District 2 Onshore Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  13. Texas--RRC District 3 Onshore Coalbed Methane Production (Billion...

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) Texas--RRC District 3 Onshore Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  14. New Mexico--West Coalbed Methane Production (Billion Cubic Feet...

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) New Mexico--West Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's ...

  15. New Mexico--West Coalbed Methane Proved Reserves (Billion Cubic...

    Annual Energy Outlook

    Proved Reserves (Billion Cubic Feet) New Mexico--West Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  16. New Mexico--East Coalbed Methane Proved Reserves (Billion Cubic...

    Gasoline and Diesel Fuel Update

    Proved Reserves (Billion Cubic Feet) New Mexico--East Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  17. New Mexico--East Coalbed Methane Production (Billion Cubic Feet...

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) New Mexico--East Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's ...

  18. Biomass Gasification and Methane Digester Property Tax Exemption

    Energy.gov [DOE]

    In order to be eligible for the exemption, methane digester equipment must be certified by the Michigan Department of Agriculture (MDA) and the farm must be verified as compliant under the Michig...

  19. EIA - Greenhouse Gas Emissions - Nitrous Oxide Emissions

    Gasoline and Diesel Fuel Update

    4. Nitrous Oxide Emissions 4.1 Total emissions U.S. nitrous oxide emissions in 2009 were 4 MMTCO2e (1.7 percent) below their 2008 total (Table 22). Sources of U.S. nitrous oxide emissions include agriculture, energy use, industrial processes, and waste management (Figure 22). The largest source is agriculture (73 percent), and the majority of agricultural emissions result from nitrogen fertilization of agricultural soils (87 percent of the agriculture total) and management of animal waste (13

  20. NREL Research Helps Convert Overabundant Methane into Useful Products |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bioenergy | NREL Research Helps Convert Overabundant Methane into Useful Products March 18, 2016 Photo of a fermentation vessel cultivating our bacteria to produce lactic acid. Using fermentation vessels such as the one pictured here, NREL researchers have discovered how to cultivate genetically engineered methanotrophic bacteria to produce lactic acid, a high-value precursor to bioplastics. Photo by Holly Smith, NREL Methane is Earth's second most abundant greenhouse gas (GHG) after carbon

  1. Impact of mammalian megaherbivores on global methane examined

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    December » Impact of mammalian megaherbivores on global methane examined Impact of mammalian megaherbivores on global methane examined Examining the past consequences of large herbivore loss yields insights into contemporary ecosystem function. December 21, 2015 Artist's depiction of the late Pleistocene landscape with some of the megaherbivores that became extinct. Artist's depiction of the late Pleistocene landscape with some of the megaherbivores that became extinct. Communications Office

  2. Methane Hydrate R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    R&D Methane Hydrate R&D Natural gas is an important energy resource for the United States, providing nearly one-quarter of total energy use. The Department of Energy's Office of Fossil Energy has played a major role in developing technologies to help tap new, unconventional sources of natural gas. Fossil Energy Research Benefits - Methane Hydrate (1.01 MB) More Documents & Publications Idaho Operations AMWTP Fact Sheet Greenpower Trap Mufflerl System CERTIFIED REALTY SPECIALIST

  3. Membrane-augmented cryogenic methane/nitrogen separation

    DOEpatents

    Lokhandwala, K.

    1997-07-15

    A membrane separation process is described which is combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C{sub +2} hydrocarbons that might otherwise freeze and plug the cryogenic equipment. 10 figs.

  4. Membrane-augmented cryogenic methane/nitrogen separation

    DOEpatents

    Lokhandwala, Kaaeid

    1997-01-01

    A membrane separation process combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C.sub.3+ hydrocarbons that might otherwise freeze and plug the cryogenic equipment.

  5. Miscellaneous States Coalbed Methane Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Miscellaneous States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 1 1 1 1 2010's 1 1 1 3 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production

  6. Montana Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 11 -30 17 10 -3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Adjustments

  7. Montana Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 2010's 3 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Extensions

  8. New Mexico Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) New Mexico Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -9 2010's 261 -170 56 41 701 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Adjustments

  9. New Mexico Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) New Mexico Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 37 2010's 42 80 60 22 68 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Extensions

  10. Ownership questions can stymie development of coalbed methane

    SciTech Connect

    Counts, R.A. )

    1990-01-01

    Although the technology exists for commercial recovery of coalbed methane, production has been hindered because of the legal quandary as to ownership. The author discusses how claims to ownership of coalbed methane can and have been made by the coal owner or lessee, the oil and gas owner or lessee, the surface owner, or any combination thereof. The federal perspective on this question of ownership is described and several state rulings are assessed.

  11. Arkansas Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 22 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Acquisitions

  12. Arkansas Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 1 0 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Adjustments

  13. Arkansas Coalbed Methane Proved Reserves Sales (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 31 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Sales

  14. Colorado Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 1,021 0 0 60 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Acquisitions

  15. Colorado Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 106 73 181 75 66 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Adjustments

  16. Colorado Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 48 2010's 184 220 22 2 34 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Extensions

  17. Colorado Coalbed Methane Proved Reserves Sales (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 1,034 0 82 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Sales

  18. Methane Hydrate Advisory Committee Meetings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Meetings Methane Hydrate Advisory Committee Meetings October 19, 2016 Advisory Committee Meeting Federal Register Notice for October 19, 2016 Meeting Methane Hydrate Committee Meeting Agenda Presentations from the Advisory Committee Meeting May 7, 2015 Advisory Committee Meeting Presentations from the Advisory Committee Meeting May 21, 2014 Committee Recommendations to Secretary of Energy Advisory Committee Meeting Minutes, May 7, 2015 Federal Register Notice for May 7, 2015 Meeting May 15, 2014

  19. Wyoming Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 59 123 36 0 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Acquisitions

  20. Wyoming Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -4 2010's 329 98 -32 -84 -50 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Adjustments

  1. Wyoming Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 226 2010's 180 370 80 182 67 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Extensions

  2. Wyoming Coalbed Methane Proved Reserves Sales (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 111 2010's 82 194 162 0 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Sales

  3. New Mexico Coalbed Methane Proved Reserves Sales (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) New Mexico Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 33 2010's 12 221 0 440 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Sales

  4. Ohio Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Revision Decreases (Billion Cubic Feet) Ohio Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Revision Decreases

  5. Oklahoma Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 11 1 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Acquisitions

  6. Oklahoma Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 2010's 27 27 764 -200 160 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Adjustments

  7. Oklahoma Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 22 2010's 2 1 1 1 21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Extensions

  8. Oklahoma Coalbed Methane Proved Reserves Sales (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6 2010's 6 40 21 3 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Sales

  9. Pennsylvania Coalbed Methane Proved Reserves Adjustments (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Adjustments (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's -1 1 120 68 8 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Adjustments

  10. Pennsylvania Coalbed Methane Proved Reserves Extensions (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Extensions (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 34 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Extensions

  11. Pennsylvania Coalbed Methane Proved Reserves Sales (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 17 2010's 0 1 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Sales

  12. Utah Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 125 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Acquisitions

  13. Utah Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 8 9 7 -3 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Adjustments

  14. Utah Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 4 2 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Extensions

  15. Utah Coalbed Methane Proved Reserves Sales (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 130 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Sales

  16. Virginia Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 534 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Acquisitions

  17. Virginia Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 1 26 49 -12 341 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Adjustments

  18. Virginia Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 302 2010's 30 57 3 71 179 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Extensions

  19. Virginia Coalbed Methane Proved Reserves Sales (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 334 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Sales

  20. West Virginia Coalbed Methane Proved Reserves Sales (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) West Virginia Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 50 17 0 99 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Sales

  1. Method of determining methane and electrochemical sensor therefor

    DOEpatents

    Zaromb, Solomon; Otagawa, Takaaki; Stetter, Joseph R.

    1986-01-01

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about about 1.4 volts versus R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  2. NREL Research Helps Convert Overabundant Methane into Useful Products -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    News Releases | NREL Research Helps Convert Overabundant Methane into Useful Products March 18, 2016 Photo of a fermentation vessel cultivating our bacteria to produce lactic acid. Using fermentation vessels such as the one pictured here, NREL researchers have discovered how to cultivate genetically engineered methanotrophic bacteria to produce lactic acid, a high-value precursor to bioplastics. Photo by Holly Smith, NREL Methane is Earth's second most abundant greenhouse gas (GHG) after

  3. Kansas Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Kansas Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -3 2010's -22 -6 53 -35 -24 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Adjustments

  4. Kansas Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Kansas Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 7 2010's 1 3 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Extensions

  5. Kentucky Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Kentucky Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Adjustments

  6. Coal bed methane potential in Venezuela-The forgotten resource

    SciTech Connect

    Vasquez-Herrera, A.R.; Bereskin, S.R.; McLennan, J.D.

    1996-08-01

    In nations already possessing riches of hydrocarbons situated in conventional reservoirs, evaluation of coal-bearing sequences for potential gas is logically delayed or ignored. Nonetheless, Venezuelan coals have long been recognized as stratigraphically associated with oil accumulations, but because coalbed methane (CBM) is a relatively new worldwide phenomenon, CBM potential has not been widely assessed in the country. Two general areas contain vast accumulations of coal for potential CBM activity: (1) the Maracaibo basin, containing the Guasare (northwest), Lobatera-Santo Domingo (southwest) and Urumaco (northeast) districts; and (2) the Oficina basin in eastern Venezuela possessing abundant accumulations related to the Faja Petrolifera de Orinoco (Orinoco Oil Belt). In both basins, high volatile bituminous and lignitic coals of mostly Oligo-Miocene age are abundantly found. Older coals are also present especially in the Maracaibo area. Two factors represent powerful incentives for CBM exploitation: addition of known reserves for economic considerations, and aid in bringing heavy crude oil to the surface by additional gas lift and oil viscosity reduction. Other favorable factors important for CBM methodology include: (1) abundant coals lying above known conventional reservoir targets; (2).6 - 1% vitrinite reflectance measurements in the Orinoco Oil Belt; (3) many coals occurring above 1500 m; (4) documented mine explosions especially in the 1920s and 1930s; (5) a strong tectonic overprint to perhaps add shear fractures to already cleated coals; (6) individual coal thickness up to 12 m with averages in the .8 m range; and (7) gas shows while drilling coal-rich intervals.

  7. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    DOEpatents

    Tonkovich, Anna Lee Y.; Litt, Robert D.; Dongming, Qiu; Silva, Laura J.; Lamont, Micheal Jay; Fanelli, Maddalena; Simmons, Wayne W.; Perry, Steven

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  8. Fuel-based motor vehicle emission inventory

    SciTech Connect

    Singer, B.C.; Harley, R.A.

    1996-06-01

    A fuel-based methodology for calculating motor vehicle emission inventories is presented. In the fuel-based method, emission factors are normalized to fuel consumption and expressed as grams of pollutant emitted per gallon of gasoline burned. Fleet-average emission factors are calculated from the measured on-road emissions of a large, random sample of vehicles. Using this method, a fuel-based motor vehicle CO inventory was calculated for the South Coast Air Basin in California for summer 1991. Emission factors were calculated from remote sensing measurements of more than 70,000 in-use vehicles. Results of the study are presented and a conclusion is provided. 40 refs., 4 figs., 6 tabs.

  9. ZERO EMISSION COAL POWER, A NEW CONCEPT

    SciTech Connect

    H. -J. ZIOCK; K. S. LACKNER; D. P. HARRISON

    2001-04-01

    The Zero Emission Coal Alliance (ZECA) is developing an integrated zero emission process that generates clean energy carriers (electricity or hydrogen) from coal. The process exothermically gasifies coal using hydrogen to produce a methane rich intermediate state. The methane is subsequently reformed using water and a CaO based sorbent. The sorbent supplies the energy needed to drive the reforming reaction and simultaneously removes the generated CO{sub 2} by producing CaCO{sub 3}. The resulting hydrogen product stream is split, approximately 1/2 going to gasify the next unit of coal, and the other half being the product. This product stream could then be split a second time, part being cleaned up with a high temperature hydrogen separation membrane to produce pure hydrogen, and the remainder used to generate electricity via a solid oxide fuel cell (SOFC). The inevitable high temperature waste heat produced by the SOFC would in turn be used to regenerate the CaO by calcining the CaCO{sub 3} product of the reforming stage thereby generating a pure stream of CO{sub 2}. The CO{sub 2} will be dealt with a mineral sequestration process discussed in other papers presented at this conference. The SOFC has the added advantage of doubling as an oxygen separation membrane, thereby keeping its exhaust stream, which is predominantly steam, free of any air. This exhaust stream is largely recycled back to the reforming stage to generate more hydrogen, with a slipstream being extracted and condensed. The slipstream carries with it the other initial contaminants present in the starting coal. Overall the process is effectively closed loop with zero gaseous emissions to the atmosphere. The process also achieves very high conversion efficiency from coal energy to electrical energy ({approximately} 70%) and naturally generates a pure stream of CO{sub 2} ready for disposal via the mineral sequestration process.

  10. Shift conversion and methanation in coal gasification: bench-scale evaluation of a sulfur-resistant catalyst. Final report. [Iridium-promoted nickel catalysts supported or aluminium oxide

    SciTech Connect

    Wood, B. J.; McCarty, J. G.; Sheridan, D.; Ablow, C. M.; Wise, H.

    1980-10-24

    The results of this study demonstrate that the Ir-promoted Ni/Al/sub 2/O/sub 3/ catalyst possesses several valuable and superior characteristics when used for catalytic methanation under typical industrial conditions. These properties include: higher activity by a factor of > 2 than that of the unpromoted Ni/Al/sub 2/O/sub 3/ catalyst; enhanced resistance to deactivation by hydrogen sulfide during exposure to contaminated feedstock, as manifested by the prolonged high methanation activity and extended service lifetime; and high resistance to carbon fouling.

  11. Field Exploration of Methane Seep Near Atqasuk

    SciTech Connect

    Katey Walter, Dennis Witmer, Gwen Holdmann

    2008-12-31

    Methane (CH{sub 4}) in natural gas is a major energy source in the U.S., and is used extensively on Alaska's North Slope, including the oilfields in Prudhoe Bay, the community of Barrow, and the National Petroleum Reserve, Alaska (NPRA). Smaller villages, however, are dependent on imported diesel fuel for both power and heating, resulting in some of the highest energy costs in the U.S. and crippling local economies. Numerous CH{sub 4} gas seeps have been observed on wetlands near Atqasuk, Alaska (in the NPRA), and initial measurements have indicated flow rates of 3,000-5,000 ft{sup 3} day{sup -1} (60-100 kg CH{sub 4} day{sup -1}). Gas samples collected in 1996 indicated biogenic origin, although more recent sampling indicated a mixture of biogenic and thermogenic gas. In this study, we (1) quantified the amount of CH{sub 4} generated by several seeps and evaluated their potential use as an unconventional gas source for the village of Atqasuk; (2) collected gas and analyzed its composition from multiple seeps several miles apart to see if the source is the same, or if gas is being generated locally from isolated biogenic sources; and (3) assessed the potential magnitude of natural CH{sub 4} gas seeps for future use in climate change modeling.

  12. Catalytic reduction of SO{sub 2} with methane over molybdenum catalyst. Technical report, March 1--May 31, 1995

    SciTech Connect

    Wiltowski, T.

    1995-12-31

    One of the primary concerns in coal utilization is the emission of sulfur compounds, especially SO{sub 2}. This project deals with catalytic reduction of SO{sub 2} with methane using molybdenum sulfide catalyst supported on different activated carbons: Darco TRS, ROZ-3, and an activated carbon prepared from Illinois coal IBC-110. The work conducted during this quarter included preparation of activated carbons from Illinois coal, preparation of the catalysts on these supports, and experiments on SO{sub 2} reduction with methane at different feed ratio SO{sub 2}: CH{sub 4}. It was found that at the feed ratio 1:1, 10% MoS{sub 2} supported on Darco TRS catalyst has highest activity at low temperatures; at higher temperatures, the catalysts 15% and 20% MoS{sub 2} supported on Darco TRS exhibit high activity in both SO{sub 2} conversion (> 90%) and yield of elemental sulfur (97.4% for 20% MoS{sub 2} at 600 C). For catalyst supported on ROZ-3, this having 10% of MOS{sub 2} showed high activity in the reaction. To determine the effect of feed ratio on the reaction, the catalysts with 15% loading of MoS{sub 2} supported on Darco TRS and ROZ-3 were used. For catalyst supported on ROZ-3 activated carbon, the effect of feed ratio is dramatic, especially at the higher temperatures at which the conversion of SO{sub 2} increases more than twice when the feed contains excess of methane. For catalyst supported on Darco TRS activated carbons, there is practically no difference in SO{sub 2} conversion for feed ratios 1:1 and 1:2 (with respect for methane).

  13. Methane Hydrate Field Program. Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    SciTech Connect

    Collett, Tim; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta; Myers, Greg; Divins, David; Morell, Margo

    2013-12-31

    This topical report represents a pathway toward better understanding of the impact of marine methane hydrates on safety and seafloor stability and future collection of data that can be used by scientists, engineers, managers and planners to study climate change and to assess the feasibility of marine methane hydrate as a potential future energy resource. Our understanding of the occurrence, distribution and characteristics of marine methane hydrates is incomplete; therefore, research must continue to expand if methane hydrates are to be used as a future energy source. Exploring basins with methane hydrates has been occurring for over 30 years, but these efforts have been episodic in nature. To further our understanding, these efforts must be more regular and employ new techniques to capture more data. This plan identifies incomplete areas of methane hydrate research and offers solutions by systematically reviewing known methane hydrate “Science Challenges” and linking them with “Technical Challenges” and potential field program locations.

  14. State-of-the-art report on methane fermentation of biomass

    SciTech Connect

    Woods, S.L.; Vause, K.H.; Skrinde, R.T.

    1980-09-01

    Research and development on biogas have emphasized technologies for expediting natural methane generation from anaerobic digestion of biomass. This indepth study reviews the status of biogas technology in developing countries and assesses the feasibility and desirability of expanding biogas production. First, based on an extensive review of the literature, the principal technical, social, economic, and environmental issues associated with methane production from farm-and feedlot-scale biogas plants and from marine biomass, urban refuse, and landfill are delineated. The microbiological processes underlying anaerobic digestion and the influences of various environmental factors (e.g., mixing, heating, toxicity, pH, retention time, nutrients) on the digestion process are then described. Raw materials available for biogas, different biogas plant designs (e.g., Chinese, Indian, Philippine, and bag), and the maintenance, operation, and safety of biogas plants are discussed. Next, the composition, fuel value, and processing of biogas are examined; attention is also given to the uses of sludge by-products. The ecological, health, and sociocultural implications of constructing and operating biogas plants in developing countries are reviewed and the status of biogas technology is described. The authors conclude that in both developed and developing countries the energy value obtained through biogas generation is only slightly greater than the costs involved. Thus, a major factor in implementing biogas projects is reclamation of by-products for animal feed and fertilizer. In rural areas where kerosene is expensive and labor inexpensive, a very simple biogas system prod

  15. Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?

    SciTech Connect

    Paull, C.K.; Ussler, W. III; Borowski, W.S.

    1993-09-01

    Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

  16. 242-A Evaporator/plutonium uranium extraction (PUREX) effluent treatment facility (ETF) nonradioactive air emission test report

    SciTech Connect

    Hill, J.S., Westinghouse Hanford

    1996-05-10

    This report shows the methods used to test the stack gas outlet concentration and emission rate of Volatile Organic Compounds as Total Non-Methane Hydrocarbons in parts per million by volume,grams per dry standard cubic meter, and grams per minute from the PUREX ETF stream number G6 on the Hanford Site. Test results are shown in Appendix B.1.

  17. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  18. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    SciTech Connect

    DeLuchi, M.A. |

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  19. Production of methane by anaerobic fermentation of waste materials

    SciTech Connect

    Hitzman, D.O.

    1989-01-17

    This patent describes an apparatus for producing methane by anaerobic fermentation of waste material, comprising: cavity means in the earth for holding a quantity of the waste material; means for covering a quantity of the waste material in the cavity means and thereby separating the quantity of the waste material from the atmosphere; first conduit means communicating between the waste material in the cavity means and a location remote from the cavity means for conveying gas comprising carbon dioxide and methane from the cavity means to the location; gas separation means communicating with the first conduit means at the location for separating carbon dioxide from methane, the first conduit means including at least one pipe having a plurality of apertures therein and disposed in the cavity means extending into and in fluid flow communication with the waste material for receiving gas liberated by the anaerobic fermentation of the waste material and comprising carbon dioxide and methane, through the apertures therein for conveyance via the first conduit means to the gas separation means; second conduit means communicating between the gas separation means and the waste material in the cavity means for conveying carbon dioxide from the gas separation means to the waste material; and third conduit means communicating with the gas separation means for conveying methane from the gas separation means.

  20. Greenhouse gas emissions from forest, land use and biomass burning in Tanzania

    SciTech Connect

    Matitu, M.R.

    1994-12-31

    Carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) gases are the main contributors to the greenhouse effect that consequently results in global warming. This paper examines the sources and sinks of these gases from/to forest, land use and biomass burning and their likely contribution to climate change using IPCC/OECD methodology. Emissions have been calculated in mass units of carbon and nitrogen Emissions and uptake have been summed for each gas and the emissions converted to full molecular weights. Mismanagement of forests and land misuse have contributed much to greenhouse gas emissions in Tanzania. For example, cultivation methods, forest clearing, burning of savannah grass and indiscriminate logging (non-sustainable logging) have contributed significantly to greenhouse gas emissions. These categories contribute more than 90% of total CO{sub 2} emissions. However, the study shows that shifting cultivation, savannah burning and forest clearing for conversion to permanent crop land and pasture are the main contributors.