National Library of Energy BETA

Sample records for metering facilities initiatives

  1. RCRA facility stabilization initiative

    SciTech Connect

    Not Available

    1995-02-01

    The RCRA Facility Stabilization Initiative was developed as a means of implementing the Corrective Action Program`s management goals recommended by the RIS for stabilizing actual or imminent releases from solid waste management units that threaten human health and the environment. The overall goal of stabilization is to, as situations warrant, control or abate threats to human health and/or the environment from releases at RCRA facilities, and/or to prevent or minimize the further spread of contamination while long-term remedies are pursued. The Stabilization initiative is a management philosophy and should not be confused with stabilization technologies.

  2. Akwesasne Housing Authority - Go Solar Initiative: Net Metering

    Energy Saver

    Akwesasne Housing Authority Go Solar Initiative: Net Metering Indian Energy Webinar: Understanding the Energy Policy and Regulatory Environment Theresa Cole, Special Projects ...

  3. Facilities Initiatives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Facilities Initiatives Facilities Initiatives The Headquarters Office of Administration, Office of Logistics and Facility Operations, has several energy saving initiatives in place or in progress at their Headquarters' facilities in the Forrestal Building in Washington, DC, and Germantown Maryland. Many of these initiatives are part of their Energy Savings Performance Contract (ESPC). ESPCs allow Federal agencies to accomplish energy savings projects without up-front capital costs and without

  4. ODUSD (I&E) Facilities Energy Program Advanced Metering Policy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers the U.S. Department of Defense's (DoD's) metering policy, including implementation challenges and utility partnerships.

  5. Meters

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and RP-1 Agreement and Guide For Use and Utilization of the RadEye B20-ER Survey Meters The Rad Eye B20-ER is a pancake GM detector capable of measuring low levels of Alpha, Beta, and Gamma radiation. User authorization under this agreement is for use of the RadEye B20-ER radiation survey instrument for Process Knowledge surveys and user informational purposes only. These instruments cannot be used for official surveys. An RP-1 RCT must be contacted for official surveys or item release surveys.

  6. Gas-metering test and research facility to meet North Sea needs

    SciTech Connect

    Bosio, J.; Wilcox, P.; Sembsmoen, O. )

    1988-12-12

    A joint-venture, high-pressure, large-flow-rate facility to test, qualify, and research new natural-gas metering systems has been built by Den Norske Stats Oljeselskap A.S. (Statoil) and Total Marine Norsk A.S. Located near Haugesund in the Stavanger area, the lab, designated the Karsto Metering and Technology Laboratory, or K-Lab, is adjacent to Norway's first natural-gas-processing plant. It receives natural gas from across the Norwegian Trench from the Statfjord complex and after processing it sends it on to Emden, West Germany. The gas, which is produced in the North Sea, is transported to United Kingdom and the European continent through a high-pressure pipeline network. The importance of gas-metering technology has been emphasized by oil and gas companies as well as by national regulatory authorities.

  7. Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Separator | Department of Energy Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt009_es_rumierz_2012_p.pdf (745.7 KB) More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US

  8. Net Metering

    Energy.gov [DOE]

    Net metering is available to all "qualifying facilities" (QFs), as defined by the federal Public Utility Regulatory Policies Act of 1978 (PURPA), which pertains to renewable energy systems and co...

  9. Net Metering | Department of Energy

    Energy.gov [DOE] (indexed site)

    commercial) as long as the base requirements are met. All net-metered facilities must be behind a customer's meter, but only a minimal amount of load located on-site is required....

  10. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Kansas adopted the Net Metering and Easy Connection Act in May 2009, which established net metering for customers of investor-owned utilities (IOUs). 

  11. Net Metering

    Energy.gov [DOE]

    Note: Illinois is currently undergoing a rulemaking that would change its existing net metering rules. The proposed rules include provisions clarifying virtual net metering policies, facilitating...

  12. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas, hydropower, fu...

  13. Electric Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Metering Electric Metering Saving Money by Saving Energy The Department of Energy has installed meters in the James Forrestal Building that will enable DOE to measure electricity use and costs in its headquarters facility. You may explore this data further by visiting our Forrestal Metering Dashboard at the following website: http://forrestal.nrel.gov The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power

  14. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    who generate electricity using solar, wind, hydroelectric, geothermal, biomass, biogas, combined heat and power, or fuel cell technologies.* A net metering facility must be...

  15. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    NOTE: Although, this post is categorized as netmetering, the policy adopted by MS does not meet DSIRE's standards for a typical net metering policy. Net metering policy allows a customer to offset...

  16. Net Metering

    Energy.gov [DOE]

    Net metering is available to all customers of investor-owned utilities and rural electric cooperatives, exempting TVA utilities. Kentucky's requires the use of a single, bi-directional meter for...

  17. Net Metering

    Energy.gov [DOE]

    NOTE: On October 21, 2015, the NY Public Service Commission denied the Orange and Rockland Utility’s petition to cease offering net-metering and interconnections once the 6% net-metering cap was...

  18. Net Metering

    Energy.gov [DOE]

    New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives) to offer net metering at non-...

  19. Net Metering

    Energy.gov [DOE]

    NOTE: HB 8354/SB 2450 omnibus renewable energy bill enacted on June 2016 amended the net metering statute in the Rhode Island to i) establish community virtual net metering, ii) increase system...

  20. Plugging meter

    DOEpatents

    Nagai, Akinori

    1979-01-01

    A plugging meter for automatically measuring the impurity concentration in a liquid metal is designed to have parallel passages including a cooling passage provided with a plugging orifice and with a flow meter, and a by-pass passage connected in series to a main passage having another flow meter, so that the plugging points may be obtained from the outputs of both flow meters. The plugging meter has a program signal generator, a flow-rate ratio setter and a comparator, and is adapted to change the temperature of the plugging orifice in accordance with a predetermined pattern or gradient, by means of a signal representative of the temperature of plugging orifice and a flow-rate ratio signal obtained from the outputs of both flow meters. This plugging meter affords an automatic and accurate measurement of a multi-plugging phenomenon taking place at the plugging orifice.

  1. Net Metering

    Energy.gov [DOE]

    Missouri enacted legislation in June 2007 requiring all electric utilities—investor-owned utilities, municipal utilities, and electric cooperatives—to offer net metering to customers with systems...

  2. Net Metering

    Energy.gov [DOE]

    Net metering is available on a first-come, first-served basis until the cumulative generating capacity of net-metered systems equals 0.5% of a utility’s peak demand during 1996.* At least one-half...

  3. Recovery of Information from the Fast Flux Test Facility for the Advanced Fuel Cycle Initiative

    SciTech Connect

    Nielsen, Deborah L.; Makenas, Bruce J.; Wootan, David W.; Butner, R. Scott; Omberg, Ronald P.

    2009-09-30

    The Fast Flux Test Facility is the most recent Liquid Metal Reactor to operate in the United States. Information from the design, construction, and operation of this reactor was at risk as the facilities associated with the reactor are being shut down. The Advanced Fuel Cycle Initiative is a program managed by the Office of Nuclear Energy of the U.S. Department of Energy with a mission to develop new fuel cycle technologies to support both current and advanced reactors. Securing and preserving the knowledge gained from operation and testing in the Fast Flux Test Facility is an important part of the Knowledge Preservation activity in this program.

  4. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency

    SciTech Connect

    2015-03-02

    Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005.

  5. Net Metering

    Energy.gov [DOE]

    Note: On October 12th, 2015 the Hawaii PUC voted to end net metering in favor of 3 alternative options: a grid supply option, a self-supply option, and a time of use tariff. Customers with net...

  6. Net Metering

    Energy.gov [DOE]

    NOTE: On February 2016, the PA Public Service Commission (PUC) issued a final rulemaking order amending net metering regulations to provide clarity and to comply with the statutes. Changes include...

  7. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    In Delaware, net metering is available to any customer that generates electricity using solar, wind or hydro resources, anaerobic digesters, or fuel cells capable of being powered by renewable fu...

  8. Net Metering

    Energy.gov [DOE]

    Net metering in Virginia is available on a first-come, first-served basis until the rated generating capacity owned and operated by customer-generators reaches 1% of an electric distribution...

  9. Net Metering

    Energy.gov [DOE]

    With these regulations, renewable energy systems with a capacity up to 25 kilowatts (kW) are eligible for net metering. Overall enrollment is limited to 1.5% of a utility's retail sales from the...

  10. Net Metering

    Energy.gov [DOE]

    Utah law requires their only investor-owned utility, Rocky Mountain Power (RMP), and most electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wi...

  11. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

     NOTE: The program website listed above links to the Maryland Public Service Commission's Net Metering Working Group page, which contains a variety of information resources related to the ongoing...

  12. Net Metering

    Energy.gov [DOE]

    Iowa's statutes do not explicitly authorize the Iowa Utilities Board (IUB) to mandate net metering, but this authority is implicit through the board's enforcement of PURPA and Iowa Code § 476.41 ...

  13. Net Metering

    Energy.gov [DOE]

    Nevada's original net-metering law for renewable-energy systems was enacted in 1997 and amended in 2001, 2003, 2005, 2007, 2011, 2013, and 2015. Systems up to one megawatt (MW) in capacity that...

  14. Net Metering

    Energy.gov [DOE]

    Net excess generation (NEG) is credited to the customer's next monthly bill. The customer may choose to start the net metering period at the beginning of January, April, July or October to match...

  15. Net Metering

    Energy.gov [DOE]

    In April 2001, Arkansas enacted legislation (HB 2325) directing the Arkansas Public Service Commission (PSC) to establish net-metering rules for certain renewable-energy systems.* The PSC approved...

  16. Net Metering

    Energy.gov [DOE]

    In October 2008, Michigan enacted P.A. 295, requiring the Michigan Public Service Commission (MPSC) to establish a statewide net metering program for renewable energy systems. On May 26, 2009 the...

  17. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    North Dakota's net metering policy, adopted in 1991 by the state Public Service Commission (PSC), applies to renewable energy systems and combined heat and power (CHP) systems up to 100 kilowatts...

  18. Net Metering

    Energy.gov [DOE]

    Note: The California Public Utilities Commission (CPUC) issued a decision in April 2016 establishing rules for net metering PV systems paired with storage devices 10 kW or smaller. See below for...

  19. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    There is no stated limit on the aggregate capacity of net-metered systems in a utility's service territory. Any net excess generation (NEG) during a monthly billing period is carried over to the...

  20. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable energy facilities established on military property for on-site military consumption may net meter for systems up to 2.2 megawatts (MW, AC). Aggregate Capacity Limit...

  1. Community Net Energy Metering: How Novel Policies Expand Benefits of Net Metering to Non-Generators

    SciTech Connect

    Rose, James; Varnado, Laurel

    2009-04-01

    As interest in community solutions to renewable energy grows, more states are beginning to develop policies that encourage properties with more than one meter to install shared renewable energy systems. State net metering policies are evolving to allow the aggregation of multiple meters on a customer’s property and to dissolve conventional geographical boundaries. This trend means net metering is expanding out of its traditional function as an enabling incentive to offset onsite customer load at a single facility. This paper analyzes community net energy metering (CNEM) as an emerging vehicle by which farmers, neighborhoods, and municipalities may more easily finance and reap the benefits of renewable energy. Specifically, it aims to compare and contrast the definition of geographical boundaries among different CNEM models and examine the benefits and limitations of each approach. As state policies begin to stretch the geographic boundaries of net metering, they allow inventive solutions to encourage renewable energy investment. This paper attempts to initiate the conversation on this emerging policy mechanism and offers recommendations for further development of these policies.

  2. Saturation meter

    DOEpatents

    Gregurech, S.

    1984-08-01

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  3. Advanced Metering Infrastructure

    SciTech Connect

    2007-10-15

    The report provides an overview of the development of Advanced Metering Infrastructure (AMI). Metering has historically served as the cash register for the utility industry. It measured the amount of energy used and supported the billing of customers for that usage. However, utilities are starting to look at meters in a whole different way, viewing them as the point of contact with customers in supporting a number of operational imperatives. The combination of smart meters and advanced communications has opened up a variety of methods for utilities to reduce operating costs while offering new services to customers. A concise look is given at what's driving interest in AMI, the components of AMI, and the creation of a business case for AMI. Topics covered include: an overview of AMI including the history of metering and development of smart meters; a description of the key technologies involved in AMI; a description of key government initiatives to support AMI; an evaluation of the current market position of AMI; an analysis of business case development for AMI; and, profiles of 21 key AMI vendors.

  4. Metering in Federal Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Facilities » Operations & Maintenance » Metering in Federal Buildings Metering in Federal Buildings The U.S. Department of Energy is required by the Energy Policy Act of 2005 and Executive Order 13693 to establish guidelines for agencies to meter their federal buildings for energy (electricity, natural gas, and steam) and water use. To help agencies meet these metering requirements, the Federal Energy Management Program (FEMP) provides guidance materials, an implementation plan template,

  5. Palau- Net Metering

    Energy.gov [DOE]

    The Palau Net Metering Act of 2009 established net metering on the Island of Palau. Net metering was implemented in order to:

  6. Healthcare Energy Metering Guidance (Brochure)

    SciTech Connect

    Not Available

    2011-07-01

    This brochure is intended to help facility and energy managers plan and prioritize investments in energy metering. It offers healthcare-specific examples of metering applications, benefits, and steps that other health systems can reproduce. It reflects collaborative input from the U.S. Department of Energy national laboratories and the health system members of the DOE Hospital Energy Alliance's Benchmarking and Measurement Project Team.

  7. Initial Activation and Operation of the Power Conditioning System for the National Ignition Facility

    SciTech Connect

    Newton, M A; Kamm, R E; Fulkerson, E S; Hulsey, S D; Lao, N; Parrish, G L; Pendleton, D L; Petersen, D E; Polk, M; Tuck, J M; Ullery, G T; Moore, W B

    2003-08-20

    The NIF Power Conditioning System (PCS) resides in four Capacitor Bays, supplying energy to the Master and Power Amplifiers which reside in the two adjacent laser bays. Each capacitor bay will initially house 48 individual power conditioning modules, shown in Figure 2, with space reserved for expansion to 54 modules. The National Ignition Facility (NIF) Power Conditioning System (PCS) is a modular capacitive energy storage system that will be capable of storing nearly 400 MJ of electrical energy and delivering that energy to the nearly 8000 flashlamps in the NIF laser. The first sixteen modules of the power conditioning system have been built, tested and installed. Activation of the first nine power conditioning modules has been completed and commissioning of the first ''bundle'' of laser beamlines has begun. This paper will provide an overview of the power conditioning system design and describe the status and results of initial testing and activation of the first ''bundle'' of power conditioning modules.

  8. Prioritizing Building Water Meter Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Facilities » Water Efficiency » Prioritizing Building Water Meter Applications Prioritizing Building Water Meter Applications Executive Order 13693: Planning for Federal Sustainability in the Next Decade directs agencies to significantly improve water efficiency use and management by methods including installing water meters. Agencies are required to develop metering plans to inform how they will deploy meters through their building stock. Guidance on water metering is provided by the Federal

  9. Facilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Facilities Facilities World-class facilities provide unique problem-solving opportunities. Unique research facilities support data-driven, agile solutions. Los Alamos National Laboratory has a number of facilities that support work related to sensor technologies and solutions including: Center for Integrated Nanotechnologies Dual-Axis Radiographic Hydrodynamic Test Facility The Explosives Center Lujan Neutron Scattering Center Materials Science Laboratory National High Magnetic Field Laboratory

  10. Facilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy Safety Technologies Facilities Battery Abuse Testing Laboratory Cylindrical Boiling Facility ...

  11. BENCHMARK EVALUATION OF THE INITIAL ISOTHERMAL PHYSICS MEASUREMENTS AT THE FAST FLUX TEST FACILITY

    SciTech Connect

    John Darrell Bess

    2010-05-01

    The benchmark evaluation of the initial isothermal physics tests performed at the Fast Flux Test Facility, in support of Fuel Cycle Research and Development and Generation-IV activities at the Idaho National Laboratory, has been completed. The evaluation was performed using MCNP5 with ENDF/B-VII.0 nuclear data libraries and according to guidelines provided for inclusion in the International Reactor Physics Experiment Evaluation Project Handbook. Results provided include evaluation of the initial fully-loaded core critical, two neutron spectra measurements near the axial core center, 32 reactivity effects measurements (21 control rod worths, two control rod bank worths, six differential control rod worths, two shutdown margins, and one excess reactivity), isothermal temperature coefficient, and low-energy electron and gamma spectra measurements at the core center. All measurements were performed at 400 ºF. There was good agreement between the calculated and benchmark values for the fully-loaded core critical eigenvalue, reactivity effects measurements, and isothermal temperature coefficient. General agreement between benchmark experiment measurements and calculated spectra for neutrons and low-energy gammas at the core midplane exists, but calculations of the neutron spectra below the core and the low-energy gamma spectra at core midplane did not agree well. Homogenization of core components may have had a significant impact upon computational assessment of these effects. Future work includes development of a fully-heterogeneous model for comprehensive evaluation. The reactor physics measurement data can be used in nuclear data adjustment and validation of computational methods for advanced fuel cycle and nuclear reactor systems using Liquid Metal Fast Reactor technology.

  12. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005. Download the Metering Best Practices Guide. (3.82 MB) More Documents & Publications Improving Steam System Performance: A Sourcebook for Industry, Second Edition A

  13. Is revenue metering feasible

    SciTech Connect

    Taylor, N.R.

    1985-02-01

    Revenue metering for thermal systems has been in use for more than 100 years. There is an infinite variety of meters based on flow principles, but very limited choice of steam condensate meters. Progress is being made in the application of computer technology to thermal metering. Btu meters are showing substantial progress as the U.S. market increases. There is a lack of traceable standards, application guidelines and approved materials. Strongly needed are educational programs designed for the thermal metering technician. Costs of thermal measurements is, in general, out of balance with other utility type service meters.

  14. NASA's Solar Tower Test of the 1-Meter Aeroshell

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NASA's Solar Tower Test of the 1-Meter Aeroshell - Sandia Energy Energy Search Icon Sandia ... Applications National Solar Thermal Test Facility Nuclear Energy Systems ...

  15. Facilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... It also provides an outstanding controlled environment for Sandia's recent spent nuclear fuel combustion experiments. HPC Facilities CSRIBldghomepg The Computer Science Research ...

  16. Facilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    First Power for SWiFT Turbine Achieved during Recommissioning Facilities, News, Renewable Energy, SWIFT, Wind Energy, Wind News First Power for SWiFT Turbine Achieved during ...

  17. Canyon Disposal Initiative - Numerical Modeling of Contaminant Transport from Grouted Residual Waste in the 221-U Facility (U Plant)

    SciTech Connect

    Rockhold, Mark L.; White, Mark D.; Freeman, Eugene J.

    2004-10-12

    This letter report documents initial numerical analyses conducted by PNNL to provide support for a feasibility study on decommissioning of the canyon buildings at Hanford. The 221-U facility is the first of the major canyon buildings to be decommissioned. The specific objective of this modeling effort was to provide estimates of potential rates of migration of residual contaminants out of the 221-U facility during the first 40 years after decommissioning. If minimal contaminant migration is predicted to occur from the facility during this time period, then the structure may be deemed to provide a level of groundwater protection that is essentially equivalent to the liner and leachate collection systems that are required at conventional landfills. The STOMP code was used to simulate transport of selected radionuclides out of a canyon building, representative of the 221-U facility after decommissioning, for a period of 40 years. Simulation results indicate that none of the selected radionuclides that were modeled migrated beyond the concrete structure of the facility during the 40-year period of interest. Jacques (2001) identified other potential contaminants in the 221-U facility that were not modeled, however, including kerosene, phenol, and various metals. Modeling of these contaminants was beyond the scope of this preliminary effort due to increased complexity. Simulation results indicate that contaminant release from the canyon buildings will be diffusion controlled at early times. Advection is expected to become much more important at later times, after contaminants have diffused out of the facility and into the surrounding soil environment. After contaminants have diffused out of the facility, surface infiltration covers will become very important for mitigating further transport of contaminants in the underlying vadose zone and groundwater.

  18. Utility Metering- AGL Resources

    Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—discusses AGL Resources metering, including interruptible rate customers, large users, and meeting federal metering goals.

  19. LADWP- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    LADWP allows its customers to net meter their photovoltaic (PV), wind, and hybrid systems with a capacity of not more than one megawatt. LADWP will provide the necessary metering equipment unless...

  20. Smart Meter Company Boosting Production, Workforce

    Office of Energy Efficiency and Renewable Energy (EERE)

    A manufacturing facility in South Carolina is producing enough smart meters to reduce annual electricity use by approximately 1.7 million megawatt hours -- and through advanced manufacturing tax credits, just increased the facility's production capability by 20 percent and created 420 jobs.

  1. Initial electron-beam characterizations for the Los Alamos APEX Facility

    SciTech Connect

    Lumpkin, A.H.; Feldman, R.B.; Apgar, S.A.; Feldman, D.W.; O'Shea, P.G. ); Fiorito, R.B.; Rule, D.W. )

    1991-01-01

    The ongoing upgrade of the Los Alamos Free-Electron Laser (FEL) Facility involves the addition of a photoelectric injector (PEI) and acceleration capability to about 40 MeV. The electron-beam and high-speed diagnostics provide key measurements of charge, beam position and profile, divergence emittance, energy (centroid, spread, slew, and extraction efficiency), micropulse duration, and phase stability. Preliminary results on the facility include optical transition radiation interferometer measurements of divergence (1 to 2 mrad), FEL extraction efficiency (0.6 {plus minus} 0.2%), and drive laser phase stability (< 2 ps (rms)). 10 refs.

  2. Initial electron-beam characterizations for the Los Alamos APEX Facility

    SciTech Connect

    Lumpkin, A.H.; Feldman, R.B.; Apgar, S.A.; Feldman, D.W.; O`Shea, P.G.; Fiorito, R.B.; Rule, D.W.

    1991-12-31

    The ongoing upgrade of the Los Alamos Free-Electron Laser (FEL) Facility involves the addition of a photoelectric injector (PEI) and acceleration capability to about 40 MeV. The electron-beam and high-speed diagnostics provide key measurements of charge, beam position and profile, divergence emittance, energy (centroid, spread, slew, and extraction efficiency), micropulse duration, and phase stability. Preliminary results on the facility include optical transition radiation interferometer measurements of divergence (1 to 2 mrad), FEL extraction efficiency (0.6 {plus_minus} 0.2%), and drive laser phase stability (< 2 ps [rms]). 10 refs.

  3. Initial

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Initial operation of the first amplifier stage resulted in self-lasing due to an optical cavity between the polarizing beam-splitter cube and the 0 reflecting mirror a setup ...

  4. Metering Best Practices Applied in the National Renewable Energy Laboratory's Research Support Facility: A Primer to the 2011 Measured and Modeled Energy Consumption Datasets

    SciTech Connect

    Sheppy, M.; Beach, A.; Pless, S.

    2013-04-01

    Modern buildings are complex energy systems that must be controlled for energy efficiency. The Research Support Facility (RSF) at the National Renewable Energy Laboratory (NREL) has hundreds of controllers -- computers that communicate with the building's various control systems -- to control the building based on tens of thousands of variables and sensor points. These control strategies were designed for the RSF's systems to efficiently support research activities. Many events that affect energy use cannot be reliably predicted, but certain decisions (such as control strategies) must be made ahead of time. NREL researchers modeled the RSF systems to predict how they might perform. They then monitor these systems to understand how they are actually performing and reacting to the dynamic conditions of weather, occupancy, and maintenance.

  5. Campo Net Meter Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Campo Net Meter Project Michael Connolly Miskwish, MA Economist/Engineer Campo Kumeyaay Nation Location map Tribal Energy Planning  Current 50 MW project  Proposed 160 MW project  DOE energy grant  Land use planning, renewable energy zones overlay  Economic analysis  Transmission, queue, PPA  Energy Resource Agreement analysis  Tribal Net meter turbine planning California SGIP program  Self Generation Incentive Program  Requires utilities to allow net metering

  6. The Field Lysimeter Test Facility (FLTF) at the Hanford Site: Installation and initial tests

    SciTech Connect

    Gee, G.W.; Kirkham, R.R.; Downs, J.L.; Campbell, M.D.

    1989-02-01

    The objectives of this program are to test barrier design concepts and to demonstrate a barrier design that meets established performance criteria for use in isolating wastes disposed of near-surface at the Hanford Site. Specifically, the program is designed to assess how well the barriers perform in controlling biointrusion, water infiltration, and erosion, as well as evaluating interactions between environmental variables and design factors of the barriers. To assess barrier performance and design with respect to infiltration control, field lysimeters and small- and large-scale field plots are planned to test the performance of specific barrier designs under actual and modified (enhanced precipitation) climatic conditions. The Field Lysimeter Test Facility (FLTF) is located in the 600 Area of the Hanford Site just east of the 200 West Area and adjacent to the Hanford Meteorological Station. The FLTF data will be used to assess the effectiveness of selected protective barrier configurations in controlling water infiltration. The facility consists of 14 drainage lysimeters (2 m dia x 3 m deep) and four precision weighing lysimeters (1.5 m x 1.5 m x 1.7 m deep). The lysimeters are buried at grade and aligned in a parallel configuration, with nine lysimeters on each side of an underground instrument chamber. The lysimeters were filled with materials to simulate a multilayer protective barrier system. Data gathered from the FLTF will be used to compare key barrier components and to calibrate and test models for predicting long-term barrier performance.

  7. SRP- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: Salt River Project (SRP) modified its existing net-metering program for residential customers in February 2015. These changes are effective with the April 2015 billing cycle.

  8. Calibration Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities DOE supports the development, standardization, and maintenance of calibration facilities for environmental radiation sensors. Radiation standards at the facilities are primarily used to calibrate portable surface gamma-ray survey meters and borehole logging instruments used for uranium and other mineral exploration and remedial action measurements. Standards

  9. DC attenuation meter

    DOEpatents

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  10. Guam- Net Metering

    Energy.gov [DOE]

    Note: As of October 2015, the net metering program had around 700 customers. According to the Guam Daily Post, the program is expected to reach the current 1,000-customer cap in mid-2016. This cap...

  11. EWEB- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Eugene Water and Electric Board (EWEB) offers net metering for customers with renewable energy generation systems with an installed capacity of 25 kW or less. Eligible systems use solar power,...

  12. Austin Energy- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Austin Energy, the municipal utility of Austin Texas, offers net metering to its non-residential retail electricity customers for renewable energy systems up to 20 kilowatts (kW). Austin Energy o...

  13. Lesson Plan: Power Metering

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power Metering Project Grades: 9-12 Topic: Energy Basics Owner: ACTS This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency and...

  14. Idaho Power- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    In July 2013, the PUC issued an order in response to Idaho Power's application to modify its net metering program. The ruling removed a previously existing service capacity cap of 2.9 MW and chan...

  15. DIGITAL Q METER

    DOEpatents

    Briscoe, W.L.

    1962-02-13

    A digital Q meter is described for measuring the Q of mechanical or electrical devices. The meter comprises in combination a transducer coupled to an input amplifier, and an upper and lower level discriminator coupled to the amplifier and having their outputs coupled to an anticoincidence gate. The output of the gate is connected to a scaler. The lower level discriminator is adjusted to a threshold level of 36.8 percent of the operating threshold level of the upper level discriminator. (AEC)

  16. PSEG Long Island- Net Metering

    Energy.gov [DOE]

    Although PSEG Long Island’s net metering policy is not governed by the State’s net metering law, the provisions are similar to the State law. Net metering is available for residential, non-reside...

  17. Net Metering | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gas Wind Biomass Geothermal Electric Anaerobic Digestion Small Hydroelectric Tidal Energy Wave Energy No Ashland Electric - Net Metering (Oregon) Net Metering Oregon Commercial...

  18. Electric Metering | Department of Energy

    Office of Environmental Management (EM)

    The metering data will increase transparency of energy and building performance ... Estimated Savings The Forrestal electricity usage metering and awareness program has ...

  19. Schlumberger Electricity Metering | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Electricity Metering Jump to: navigation, search Name: Schlumberger Electricity Metering Place: Oconee, South Carolina Product: Manufacturer of electricity meters. Coordinates:...

  20. San Antonio City Public Service (CPS Energy)- Net Metering

    Energy.gov [DOE]

    Net metering is available to customers of CPS Energy. There is no aggregate capacity limit or maximum system size. There are also no commissioning fees or facilities charges for customers.

  1. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  2. Facility Floorplan

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    facility floorplan Facility Floorplan

  3. Elbow mass flow meter

    DOEpatents

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  4. Meters Roads N Streams

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    0 Meters Roads N Streams o Openwells E3i APT Site *. TES Plants (1) E2J Other Set-Asides lEI Hydric Soils . 370 o 370 Soils Soil Series and Phase DBaB DBaC .Pk .TrB DTrC DTrD .TuE...

  5. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    SciTech Connect

    John D. Bess

    2010-03-01

    experiments were of particular importance because they provide extensive information which can be directly applied to the design of large LMFBR’s. It should be recognized that the data presented in the initial report were evaluated only to the extent necessary to ensure that adequate data were obtained. Later reports provided further interpretation and detailed comparisons with prediction techniques. The conclusion of the isothermal physics measurements was that the FFTF nuclear characteristics were essentially as designed and all safety requirements were satisfied. From a nuclear point of view, the FFTF was qualified to proceed into power operation mode. The FFTF was completed in 1978 and first achieved criticality on February 9, 1980. Upon completion of the isothermal physics and reactor characterization programs, the FFTF operated for ten years from April 1982 to April 1992. Reactor operations of the FFTF were terminated and the reactor facility was then defueled, deactivated, and placed into cold standby condition. Deactivation of the reactor was put on hold from 1996 to 2000 while the U.S. Department of Energy examined alternative uses for the FFTF but then announced the permanent deactivation of the FFTF in December 2001. Its core support basket was later drilled in May 2005, so as to remove all remaining sodium coolant. On April 17, 2006, the American Nuclear Society designated the FFTF as a “National Nuclear Historic Landmark”.

  6. Flow metering valve

    DOEpatents

    Blaedel, K.L.

    1983-11-03

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  7. Flow metering valve

    DOEpatents

    Blaedel, Kenneth L.

    1985-01-01

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  8. Summary of activities at the Engineered Barriers Test Facility, October 1, 1995 to January 31, 1997, and initial data

    SciTech Connect

    Porro, I.; Keck, K.N.

    1997-03-01

    Replicates of two engineered barrier designs (a thick soil barrier and a bio/capillary barrier) were constructed in the test plots of the facility. Prior to placement of any soil in the test plots, instruments were calibrated and attached to plot instrument towers, which were then installed in the test plots. Soil from Spreading Area B was installed in the test plots in lifts and compacted. Instruments attached to the instrument tower were placed in shallow trenches dug in the lifts and buried. Each instrument was checked to make sure it functioned prior to installation of the next lift. Soil samples were collected from each lift in one plot during construction for later determination of physical and hydraulic properties. After completion of the test plots, the data acquisition system was finalized, and data collection began. Appropriate instrument calibration equations and equation coefficients are presented, and data reduction techniques are described. Initial data show test plot soils drying throughout the summer and early fall. This corresponds to low rainfall during this period. Infiltration of water into the test plots was first detected around mid-November with several subsequent episodes in December. Infiltration was verified by corresponding measurements from several different instruments [time domain reflectometry (TDR), neutron probe, thermocouple psychrometers, and heat dissipation sensors]. Tensiometer data does not appear to corroborate data from the other instruments. Test plots were warmer on the side closest to the access trench indicating a temperature effect from the trench. This resulted in greater soil moisture freezing with less and shallower infiltration on the far side of the plots than on the side closest to the trench. At the end of this monitoring period, infiltration in all but two of the test plots has reached the 155-cm depth. Infiltration in test plots B2 and S3 has reached only the 140-cm depth. The monitored infiltration events have

  9. Period meter for reactors

    DOEpatents

    Rusch, Gordon K.

    1976-01-06

    An improved log N amplifier type nuclear reactor period meter with reduced probability for noise-induced scrams is provided. With the reactor at low power levels a sampling circuit is provided to determine the reactor period by measuring the finite change in the amplitude of the log N amplifier output signal for a predetermined time period, while at high power levels, differentiation of the log N amplifier output signal provides an additional measure of the reactor period.

  10. Utility-Scale Smart Meter Deployments, Plans & Proposals | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Utility-Scale Smart Meter Deployments, Plans & Proposals Utility-Scale Smart Meter Deployments, Plans & Proposals The Edison Foundation's chart of plans and proposals for utility-scale smart meter deployments. Utility-Scale Smart Meter Deployments, Plans & Proposals (687.9 KB) More Documents & Publications Government Program Briefing: Smart Metering Comments of the New America Foundation's Open Technology Initiative 2014 Smart Grid System Report (August 2014

  11. N. Mariana Islands- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: The Commonwealth Utility Corporation issued a moratorium on net metering. However, Public Law 18-62 signed September 6, 2014 states that net metering should be available to all residential...

  12. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the limit on individual system size from 100 kilowatts (kW) to 1 MW . Net Excess Generation: The District's net-metering rules specify that metering equipment must be capable...

  13. Washington City Power- Net Metering

    Energy.gov [DOE]

    Washington City adopted a net-metering program, including interconnection procedures, in January 2008, and updated the policy in December 2014.* Net metering is available to any customer of...

  14. Montana Electric Cooperatives- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Montana Electric Cooperatives' Association (MECA) adopted model interconnection guidelines in 2001 and a revised net-metering policy in September 2008. Net metering is available in whole or...

  15. Federal Building Metering Guidance Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Federal Building Metering Guidance Overview  Metering is required for electricity, natural gas, steam, and water consumption per * Energy Policy Act of 2005 * National Energy Conservation Policy Act Section 543, as amended (42 U.S.C. § 8253) * Executive Order 13693, Planning for Federal Sustainability in the Next Decade  Federal Building Metering Guidance issued November 2014 stated the purpose of metering Federal buildings is to collect, analyze, and act on the energy performance data *

  16. Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Guidance defines which federal buildings are appropriate to meter, provides metering prioritization ...

  17. Fisher Controls introduces Snug Meter to gas industry

    SciTech Connect

    Share, J.

    1996-04-01

    Spurred by an industry demanding a sleeker look that will appeal to consumers, Fisher Controls International inc., has introduced a compact natural gas meter that not only is considerably smaller than existing models, but also incorporates features that company officials feel may set new standards. Termed the Snug meter, the four-chamber device is particularly designed for multi-dwelling buildings and is also the initial foray of Fisher--a recognized leader in North America for pressure-control and regulation equipment--into the meter industry. This paper reviews the design features of this new meter.

  18. Portable wastewater flow meter

    DOEpatents

    Hunter, Robert M.

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  19. Portable wastewater flow meter

    DOEpatents

    Hunter, Robert M.

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  20. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    31, 2010 Facility News Instruments on Mt. Pico to Supplement Measurements from Graciosa Island Bookmark and Share At an elevation of about 2225 meters-usually above the marine...

  1. High-Performance Computing Data Center Metering Protocol | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy High-Performance Computing Data Center Metering Protocol High-Performance Computing Data Center Metering Protocol Guide details the methods for measurement in High-Performance Computing (HPC) data center facilities and documents system strategies that have been used in Department of Energy data centers to increase data center energy efficiency. Download the guide. (1.34 MB) More Documents & Publications Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance

  2. Microwave fluid flow meter

    DOEpatents

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  3. GAS METERING PUMP

    DOEpatents

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  4. Metering Technology Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technology Corporation Jump to: navigation, search Name: Metering Technology Corporation Place: Scotts Valley, California Product: Engineering related to communicating meters....

  5. Federal Building Metering Implementation Plan Template | Department...

    Office of Environmental Management (EM)

    Implementation Plan Template Federal Building Metering Implementation Plan Template Document provides a template for a federal building metering implementation plan....

  6. Multiphase pumps and flow meters avoid platform construction

    SciTech Connect

    Elde, J.

    1999-02-01

    One of the newest wrinkles in efficiency in BP`s Eastern Trough Area Project (ETAP) is the system for moving multiphase oil, water and gas fluids from the Machar satellite field to the Marnock Central Processing Facility (CPF). Using water-turbine-driven multiphase pumps and multiphase flow meters, the system moves fluid with no need for a production platform. In addition, BP has designed the installation so it reduces and controls water coning, thereby increasing recoverable reserves. Both subsea multiphase booster stations (SMUBS) and meters grew out of extensive development work and experience at Framo Engineering AS (Framo) in multiphase meters and multiphase pump systems for subsea installation. Multiphase meter development began in 1990 and the first subsea multiphase meters were installed in the East Spar Project in Australia in 1996. By September 1998, the meters had been operating successfully for more than 1 year. A single multiphase meter installed in Marathon`s West Brae Project has also successfully operated for more than 1 year. Subsea meters for ETAP were installed and began operating in July 1998.

  7. Net Metering | Department of Energy

    Energy.gov [DOE] (indexed site)

    of retail renewable distributed generation and net metering. Details will be posted once a final order is issued. Eligibility and Availability In December 2005 the Colorado...

  8. Net Metering | Department of Energy

    Energy.gov [DOE] (indexed site)

    Anaerobic Digestion Fuel Cells using Renewable Fuels Program Info Sector Name State State North Carolina Program Type Net Metering Summary The North Carolina Utilities Commission...

  9. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    after 12312014) are eligible. Net-metered systems must be intended primarily to offset part or all of a customer's electricity requirements. Public utilities may not limit...

  10. Wavelength meter having elliptical wedge

    DOEpatents

    Hackel, Richard P.; Feldman, Mark

    1992-01-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10.sup.8. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing.

  11. Wavelength meter having elliptical wedge

    DOEpatents

    Hackel, R.P.; Feldman, M.

    1992-12-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10[sup 8]. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing. 7 figs.

  12. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    Energy Information Administration (EIA) (indexed site)

    United States" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "AMR meters",46829659,47321320,48330822,45965762,48685043 "Residential",41830781,42491242,43455437,41451888,43913225 "Commercial",4781167,4632744,4691018,4341105,4611877 "Industrial",216459,196132,185862,172692,159315 "Transportation",1252,1202,125,77,626 "AMI meters",58545938,53341422,43165183,37290373,20334525

  13. Advanced Metering Infrastructure Security Considerations | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Metering Infrastructure Security Considerations Advanced Metering Infrastructure Security Considerations The purpose of this report is to provide utilities implementing Advanced Metering Infrastructure (AMI) with the knowledge necessary to secure that implementation appropriately. We intend that utilities use this report to guide their planning, procurement, roll-out, and assessment of the security of Advanced Metering Infrastructure. Advanced Metering Infrastructure Security

  14. Advanced Sub-Metering Program

    Energy.gov [DOE]

    The program is designed to provide information about energy usage for each residences at a multi-residential buildings. Residences living in multi-residential buildings that are not sub-metered d...

  15. Valley Electric Association- Net Metering

    Energy.gov [DOE]

    The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

  16. Grays Harbor PUD- Net Metering

    Energy.gov [DOE]

    Washington's original net-metering law, which applies to all electric utilities, was enacted in 1998 and amended in 2006. Individual systems are limited to 100 kilowatts (kW) in capacity. Net...

  17. Blue Ridge EMC- Net Metering

    Energy.gov [DOE]

    The Blue Ridge Electric Membership Corporation offers net metering to its residential customers with solar photovoltaic, wind, or micro-hydro generators up to 25 kilowatts. There is no aggregate...

  18. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  19. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  20. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  1. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  2. Electric Meters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electricity & Fuel » Appliances & Electronics » Electric Meters Electric Meters The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. The basic unit of measure of electric power is the Watt. One

  3. Analysis of results from a loss-of-offsite-power-initiated ATWS experiment in the LOFT facility. [PWR

    SciTech Connect

    Varacalle, D.J. Jr.; Koizumi, Y.; Giri, A.H.; Koske, J.E.; Sanchez-Pope, A.E.

    1983-01-01

    An anticipated transient without scram (ATWS), initiated by loss-of-offsite power, was experimentally simulated in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). Primary system pressure was controlled using a scaled safety relief valve (SRV) representative of those in a commercial PWR, while reactor power was reduced by moderator reactivity feedback in a natural circulation mode. The experiment showed that reactor power decreases more rapidly when the primary pumps are tripped in a loss-of-offsite-power ATWS than in a loss-of-feedwater induced ATWS when the primary pumps are left on. During the experiment, the SRV had sufficient relief capacity to control primary system pressure. Natural circulation was effective in removing core heat at high temperature, pressure, and core power. The system transient response predicted using the RELAP5/MOD1 computer code showed good agreement with the experimental data.

  4. Analysis of results from a loss-of-offsite-power-initiated ATWS experiment in the LOFT Facility

    SciTech Connect

    Varacalle, D.J.; Giri, A.M.; Koizumi, Y.; Koske, J.E.

    1983-07-01

    An anticipated transient without scram (ATWS), initiated by loss-of-offsite power, was experimentally simulated in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). Primary system pressure was controlled using a scaled safety relief valve (SRV) representative of those in a commercial PWR, while reactor power was reduced by moderator reactivity feedback in a natural circulation mode. The experiment showed that reactor power decreases more rapidly when the primary pumps are tripped in a loss-of-offsite-power ATWS than in a loss-of-feedwater induced ATWS when the primary pumps are left on. During the experiment, the SRV had sufficient relief capacity to control primary system pressure. Natural circulation was effective in removing core heat at high temperature, pressure, and core power. The system transient response predicted using the RELAPS/MOD1 computer code showed good agreement with the experimental data.

  5. Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Use) | Department of Energy Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy. Download the Federal Building Metering

  6. Insert metering plates for gas turbine nozzles

    DOEpatents

    Burdgick, Steven S.; Itzel, Gary; Chopra, Sanjay; Abuaf, Nesim; Correia, Victor H.

    2004-05-11

    The invention comprises a metering plate which is assembled to an impingement insert for use in the nozzle of a gas turbine. The metering plate can have one or more metering holes and is used to balance the cooling flow within the nozzle. A metering plate with multiple holes reduces static pressure variations which result from the cooling airflow through the metering plate. The metering plate can be assembled to the insert before or after the insert is inserted into the nozzle.

  7. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    Energy Information Administration (EIA) (indexed site)

    Hawaii" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",33865,33662,57269,46871,44911,41201,28512,22820 "Residential",30803,32688,53083,44459,42324,38779,26141,21191 "Commercial",3062,974,4186,2412,2587,2394,2350,1629 "Industrial",0,0,0,0,0,28,21,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",29909,29489,30,758,9213,8713,8126,6571

  8. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    Energy Information Administration (EIA) (indexed site)

    Maine" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",17894,6822,6415,5210,4499,116826,103242,101084 "Residential",15963,6455,6075,4920,3375,101823,101363,99995 "Commercial",1828,307,240,190,822,14701,1577,749 "Industrial",103,60,100,100,302,302,302,340 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",741819,739583,735415,669482,193415,0,0,0

  9. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    Energy Information Administration (EIA) (indexed site)

    Nevada" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",52528,53483,38201,81499,78292,96058,81992,63856 "Residential",43410,44206,30907,72579,69795,85984,74356,59256 "Commercial",7661,7729,5975,7473,7374,9197,7333,4305 "Industrial",1457,1548,1319,1447,1123,877,303,295 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",1213192,1125193,1021241,555414,20665,0,0,0

  10. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    Energy Information Administration (EIA) (indexed site)

    Jersey" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",40233,38125,41827,35412,43254,27018,21054,8132 "Residential",37473,35775,28906,23442,31700,15987,11031,7263 "Commercial",1873,1455,10789,10095,9635,8772,8234,621 "Industrial",868,876,2122,1866,1909,2258,1789,236 "Transportation",19,19,10,9,10,1,0,12 "AMI meters",36345,34919,11533,11610,0,0,0,0

  11. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    Energy Information Administration (EIA) (indexed site)

    Vermont" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",42342,53266,44430,84409,81030,77963,71278,58477 "Residential",37948,48343,39930,76274,73703,71100,65176,53306 "Commercial",4394,4901,4481,8121,7325,6861,6100,5169 "Industrial",0,22,19,14,2,2,2,2 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",296824,271526,343769,123,0,0,0,0 "Residential",253659,229844,294918,116,0,0,0,0

  12. Scaling and design analyses of a scaled-down, high-temperature test facility for experimental investigation of the initial stages of a VHTR air-ingress accident

    SciTech Connect

    Arcilesi, David J.; Ham, Tae Kyu; Kim, In Hun; Sun, Xiaodong; Christensen, Richard N.; Oh, Chang H.

    2015-07-01

    A critical event in the safety analysis of the very high-temperature gas-cooled reactor (VHTR) is an air-ingress accident. This accident is initiated, in its worst case scenario, by a double-ended guillotine break of the coaxial cross vessel, which leads to a rapid reactor vessel depressurization. In a VHTR, the reactor vessel is located within a reactor cavity that is filled with air during normal operating conditions. Following the vessel depressurization, the dominant mode of ingress of an air–helium mixture into the reactor vessel will either be molecular diffusion or density-driven stratified flow. The mode of ingress is hypothesized to depend largely on the break conditions of the cross vessel. Since the time scales of these two ingress phenomena differ by orders of magnitude, it is imperative to understand under which conditions each of these mechanisms will dominate in the air ingress process. Computer models have been developed to analyze this type of accident scenario. There are, however, limited experimental data available to understand the phenomenology of the air-ingress accident and to validate these models. Therefore, there is a need to design and construct a scaled-down experimental test facility to simulate the air-ingress accident scenarios and to collect experimental data. The current paper focuses on the analyses performed for the design and operation of a 1/8th geometric scale (by height and diameter), high-temperature test facility. A geometric scaling analysis for the VHTR, a time scale analysis of the air-ingress phenomenon, a transient depressurization analysis of the reactor vessel, a hydraulic similarity analysis of the test facility, a heat transfer characterization of the hot plenum, a power scaling analysis for the reactor system, and a design analysis of the containment vessel are discussed.

  13. LINEAR COUNT-RATE METER

    DOEpatents

    Henry, J.J.

    1961-09-01

    A linear count-rate meter is designed to provide a highly linear output while receiving counting rates from one cycle per second to 100,000 cycles per second. Input pulses enter a linear discriminator and then are fed to a trigger circuit which produces positive pulses of uniform width and amplitude. The trigger circuit is connected to a one-shot multivibrator. The multivibrator output pulses have a selected width. Feedback means are provided for preventing transistor saturation in the multivibrator which improves the rise and decay times of the output pulses. The multivibrator is connected to a diode-switched, constant current metering circuit. A selected constant current is switched to an averaging circuit for each pulse received, and for a time determined by the received pulse width. The average output meter current is proportional to the product of the counting rate, the constant current, and the multivibrator output pulse width.

  14. Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals Through

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Data | Department of Energy Utilizing Sub-Metering to Drive Energy Project Approvals Through Data Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals Through Data This case study describes how Solutia uses sub-meters at all of its U.S. facilities to understand how equipment is running and to identify quick and inexpensive energy efficiency solutions, like reducing the run-time for a compressed air system at its Trenton, Michican plant. Solutia: Utilizing Sub-Metering to Drive

  15. Net Metering Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Net Metering Resources Net Metering Resources State net metering policies allow customers to produce onsite electricity and sell excess generation to the utility at a set price, which creates an incentive for private investment in distributed renewable energy technologies by providing value to the electricity generation that, during certain times of day or season, exceeds the customer's electricity demand. Find net metering resources below. DOE Resource Net Metering Policy Development in

  16. Net Metering and Interconnection Procedures-- Incorporating Best Practices

    SciTech Connect

    Jason Keyes, Kevin Fox, Joseph Wiedman, Staff at North Carolina Solar Center

    2009-04-01

    State utility commissions and utilities themselves are actively developing and revising their procedures for the interconnection and net metering of distributed generation. However, the procedures most often used by regulators and utilities as models have not been updated in the past three years, in which time most of the distributed solar facilities in the United States have been installed. In that period, the Interstate Renewable Energy Council (IREC) has been a participant in more than thirty state utility commission rulemakings regarding interconnection and net metering of distributed generation. With the knowledge gained from this experience, IREC has updated its model procedures to incorporate current best practices. This paper presents the most significant changes made to IREC’s model interconnection and net metering procedures.

  17. Facilities Initiatives | Department of Energy

    Office of Environmental Management (EM)

    Estimated reduction in electricity purchased per year: 510,000 KWh Estimated reduction in ... Estimated reduction in electricity purchased per year: 475,700 KWh Estimated reduction in ...

  18. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    Energy Information Administration (EIA) (indexed site)

    District of Columbia" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2103,2188,2991,4659,35987,29770,32000,3562 "Residential",935,1046,1722,3108,32964,27174,29415,892 "Commercial",1165,1139,1266,1548,3022,2595,2584,2670 "Industrial",3,3,3,3,1,1,1,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",277998,269876,246642,29650,0,0,0,0 "Residential",252040,245295,230705,27695,0,0,0,0

  19. Meters

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    HardwOOd %. EJ :1o,;"'a'" W. Monitoring wells :W o Wa"""'" :' m .y WWE:tI' s N Roads . et-Asld lidL:sndfili ;;;;>. Figure 28-1. Plant...

  20. NSA Atqasuk Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Inactive NSA Related Links Virtual Tour Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA Fact Sheet Images Information for Guest Scientists Contacts NSA Atqasuk Facility-Inactive Location: 70° 28' 19.11" N, 157° 24' 28.99" W Altitude: 20 meters The Atqasuk facility, which was part of the larger ARM Climate Research Facility (ARM) North Slope of Alaska site, was installed the summer of

  1. NSA Barrow Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Barrow Facility NSA Related Links Virtual Tour Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA Fact Sheet Images Information for Guest Scientists Contacts NSA Barrow Facility Location: 71° 19' 23.73" N, 156° 36' 56.70" W Altitude: 8 meters The Barrow facility was dedicated in July 1997 and chosen because the Arctic is particularly sensitive to climate changes. Barrow is located at the

  2. Federal Building Metering Guidance (per 42 U.S.C. 8253(e), Metering of Energy Use)

    SciTech Connect

    2014-11-01

    Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy.

  3. The practical equity implications of advanced metering infrastructure

    SciTech Connect

    Felder, Frank A.

    2010-07-15

    Reductions in advanced metering costs and the efficiency benefits of dynamic pricing make a compelling case to adopt both, particularly for industrial and commercial facilities. Regulators should seriously consider such policies for residential households as well. Regulators can take meaningful steps to mitigate, if not entirely offset, the possibility that some low-income ratepayers may have higher electricity bills with AM and DP. (author)

  4. Government Program Briefing: Smart Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document is adapted and updated from a memo delivered to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the U.S. Department of Energy (DOE) Project Officer in March 2008. This briefing piece provides an overview of the benefits, costs, and challenges of smart metering.

  5. Government Program Briefing: Smart Metering

    SciTech Connect

    Doris, E.; Peterson, K.

    2011-09-01

    This document is adapted and updated from a memo delivered to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the U.S. Department of Energy (DOE) Project Officer in March 2008. This briefing piece provides an overview of the benefits, costs, and challenges of smart metering.

  6. Operations and Maintenance Savings from Advanced Metering Infrastructure - Initial Results

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    U.S. Department of Energy |December 2012 Table of Contents Executive Summary ............................................................................................................... ii 1. Introduction ................................................................................................................... 1 1.1 Purpose and Scope...................................................................................................... 1 1.2 Organization of this

  7. Power-factor metering gains new interest

    SciTech Connect

    Womack, D.L.

    1980-01-01

    The combined effect of increased energy costs, advances in digital metering techniques, and regulatory pressures is stimulating utility interest in charging smaller customers the full cost of their burden on the electric system, by metering reactive power and billing for poor power factor. Oklahoma Gas and Electric Co. adopted the Q-meter method, made practical with the advent of magnetic-tape metering. Digital metering and new techniques now being developed will add more options for utilities interested in metering power factor. There are three commonly used methods of determining power factor, all of which require the use of the standard induction watthour meter, plus at least one other meter, to obtain a second value in the power triangle. In all cases, the third value, if required, is obtained by calculation.

  8. greenMeter | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    physics engine from the gMeter app, greenMeter computes power, fuel usagecost, crude oil consumption, and carbon emission (data can be shown in US or metric units). Thanks to...

  9. Laser Power Meter Version 1.0

    Energy Science and Technology Software Center

    2002-09-19

    Laser Power Meter integrates the digital output of a Newport 1835-C Laser Energy Meter and inserts the results into the file header of a WinSpec experimental file.

  10. Data Center Metering and Power Usage Effectiveness

    Energy.gov [DOE]

    Webinar will cover material from the Data Center Metering and Resource Guide, including how to diagnose data center type, necessary metering, and how to calculate power usage effectiveness (PUE).

  11. DOE Releases Federal Building Metering Guidance

    Office of Energy Efficiency and Renewable Energy (EERE)

    The guidance requires federal agencies to review, revise, and submit to FEMP its metering implementation plan within one year.

  12. Federal Metering Requirements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Metering Requirements Federal Metering Requirements Presentation-given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting-covers the 42 USC 8253 Energy Management Requirement; Executive Order 13514(g) High-Performance Sustainable Federal Buildings; federal metering needs, history, and status; and utility/agency opportunities. Download the Federal Metering Requirements presentation given by Brad Gustafson. (351.32 KB) More Documents & Publications Federal Utility

  13. Put a Meter on It: The Why and How of Submetering Energy Use in Buildings,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Data Centers, and Facilities | Department of Energy Put a Meter on It: The Why and How of Submetering Energy Use in Buildings, Data Centers, and Facilities Put a Meter on It: The Why and How of Submetering Energy Use in Buildings, Data Centers, and Facilities November 1, 2016 3:00PM to 4:00PM EDT While submeters on their own don't save energy, they play a crucial part in successful energy reduction efforts. Get the lowdown from our expert panelists on the best practices, benefits, and

  14. El Paso Electric - Net Metering | Department of Energy

    Energy.gov [DOE] (indexed site)

    Website http:www.epelectric.comtxbusinessrollback-net-metering-approved-in-... State Texas Program Type Net Metering Summary El Paso Electric (EPE) has offered net metering to...

  15. Long Island Smart Metering Pilot Project

    SciTech Connect

    None, None

    2012-03-30

    The Long Island Power Authority (LIPA) Smart Meter Pilots provided invaluable information and experience for future deployments of Advanced Metering Infrastructure (AMI), including the deployment planned as part of LIPA's Smart Grid Demonstration Project (DE-OE0000220). LIPA will incorporate lessons learned from this pilot in future deployments, including lessons relating to equipment performance specifications and testing, as well as equipment deployment and tracking issues. LIPA ultimately deployed three AMI technologies instead of the two that were originally contemplated. This enabled LIPA to evaluate multiple systems in field conditions with a relatively small number of meter installations. LIPA experienced a number of equipment and software issues that it did not anticipate, including issues relating to equipment integration, ability to upgrade firmware and software over the air (as opposed to physically interacting with every meter), and logistical challenges associated with tracking inventory and upgrade status of deployed meters. In addition to evaluating the technology, LIPA also piloted new Time-of-Use (TOU) rates to assess customer acceptance of time-differentiated pricing and to evaluate whether customers would respond by adjusting their activities from peak to non-peak periods. LIPA developed a marketing program to educate customers who received AMI in the pilot areas and to seek voluntary participation in TOU pricing. LIPA also guaranteed participating customers that, for their initial year on the rates, their electricity costs under the TOU rate would not exceed the amount they would have paid under the flat rates they would otherwise enjoy. 62 residential customers chose to participate in the TOU rates, and every one of them saved money during the first year. 61 of them also elected to stay on the TOU rate without the cost guarantee at the end of that year. The customer who chose not to continue on the rate was also the one who achieved the

  16. Innovation and Success in Solar Net Metering and Interconnection...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Net Metering and Interconnection Innovation and Success in Solar Net Metering and ... More Documents & Publications webinarinnovationnetmeteringinterconnection.doc ...

  17. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Florida" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",3474452,3395748,3755977,3637527,3231398,3216922,2579337,2416630 "Residential",3208228,3...

  18. A Million Meter Milestone | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A Million Meter Milestone A Million Meter Milestone March 4, 2011 - 2:36pm Addthis To see what installing the 1 millionth meter looked like, check out this video. Don Macdonald Don Macdonald Senior Advisor for Strategic Projects What does this mean for me? Smart meters allow consumers to take personal control and ownership of her energy usage in a way not possible before. As program manager for the Department of Energy's Recovery Act funded Smart Grid Investment Grant (SGIG) program, I've had

  19. Smart Meters on Tap for Owasso, Oklahoma

    Energy.gov [DOE]

    Saving 10 percent of annual energy and increasing response time for electrical emergencies? Find out how smart meters can make cities smarter.

  20. BPA Metering Services Editing and Estimating Procedures

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    an unmetered condition An unmetered event will be identified through one of the following methods: 1) The Field Forms application (via Metering Services email), 2) An email...

  1. City of St. George- Net Metering

    Energy.gov [DOE]

    The City of St. George Energy Services Department (SGESD) offers a net metering program to its customers, and updated program guidelines and fees in September 2015.* 

  2. Proton recoil scintillator neutron rem meter

    DOEpatents

    Olsher, Richard H.; Seagraves, David T.

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  3. Simplified Processing Method for Meter Data Analysis

    SciTech Connect

    Fowler, Kimberly M.; Colotelo, Alison H. A.; Downs, Janelle L.; Ham, Kenneth D.; Henderson, Jordan W.; Montgomery, Sadie A.; Vernon, Christopher R.; Parker, Steven A.

    2015-11-01

    Simple/Quick metered data processing method that can be used for Army Metered Data Management System (MDMS) and Logistics Innovation Agency data, but may also be useful for other large data sets. Intended for large data sets when analyst has little information about the buildings.

  4. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Radon Measurements to Help Scientists Estimate Carbon Dioxide Exchange Bookmark and Share Researchers installed a continuous 222Rn monitor at the base of the 60-meter tower at the SGP Central Facility. A sampling tube connected to the tower supplies air to the container, where the radon is measured. In November, ARM scientists and researchers from the National Oceanic and Atmospheric Administration's Climate Monitoring and Diagnostics Laboratory began a collaborative field campaign at the

  5. City of Tallahassee Innovative Energy Initiatives

    SciTech Connect

    Wilder, Todd; Moragne, Corliss L.

    2014-06-25

    The City of Tallahassee's Innovative Energy Initiatives program sought, first, to evaluate customer response and acceptance to in-home Smart Meter-enabled technologies that allow customers intelligent control of their energy usage. Additionally, this project is in furtherance of the City of Tallahassee's ongoing efforts to expand and enhance the City's Smart Grid capacity and give consumers more tools with which to effectively manage their energy consumption. This enhancement would become possible by establishing an "operations or command center" environment that would be designed as a dual use facility for the City's employees - field and network staff - and systems responsible for a Smart Grid network. A command center would also support the City's Office of Electric Delivery and Energy Reliability's objective to overcome barriers to the deployment of new technologies that will ensure a truly modern and robust grid capable of meeting the demands of the 2151 century.

  6. Laser Facilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Laser Facilities Current Schedule of Experiments Operation Schedule Janus Titan Europa COMET Facility Floorplan

  7. Reports on Initial Results of Smart Grid Investment Grant Projects...

    Office of Environmental Management (EM)

    expected benefits, and initial results for projects improving electric distribution system reliability; implementing advanced metering, customer systems, and time-based ...

  8. Regional Demos To Support Grid Modernization Initiative | Department...

    Energy Saver

    Addthis Regional Demos To Support Grid Modernization Initiative From behind-the-meter photovoltaic systems to nationwide transmission planning, the challenges facing America's ...

  9. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    Facilities Production Facilities Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for the irradiation of experiments with high-intensity gamma ray sources. The main features

  10. Smart Meters | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Smart Meters Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 16 January, 2013 - 11:09 SDG&E Customers Can Connect Home Area Network Devices With Smart...

  11. meter data | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    by Graham7781(2017) Super contributor 26 June, 2013 - 09:17 NREL's Energy Databus storing big energy data campus databus energy meter data NREL OpenEI Tool The Energy Databus began...

  12. U.S. Virgin Islands- Net Metering

    Energy.gov [DOE]

    In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energ...

  13. Green Pricing and Net Metering Programs 2010

    Annual Energy Outlook

    294 2,971 650 Rhode Island 2 136 58 194 172 September 2012 U.S. Energy Information Administration | Green Pricing and Net Metering Programs 2010 6 Table 2. Estimated U.S. net ...

  14. Green Pricing and Net Metering Programs 2010

    Annual Energy Outlook

    www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Green Pricing and Net Metering Programs 2010 i This report was prepared by ...

  15. Green Pricing and Net Metering Programs 2010

    Annual Energy Outlook

    30,060 27,750 Vermont 2 4,453 239 4,692 4,936 September 2012 U.S. Energy Information Administration | Green Pricing and Net Metering Programs 2010 4 Table 1. Estimated U.S. ...

  16. Farmington Electric Utility System- Net Metering

    Energy.gov [DOE]

    Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity. This option is available for photovoltaic (PV), wind, hydro...

  17. Murray City Power- Net Metering Pilot Program

    Energy.gov [DOE]

    Under a pilot program, Murray City Power offers net metering to customers that generate electricity using photovoltaic (PV), wind-electric or hydroelectric systems with a maximum capacity of 10...

  18. June 25 Webinar to Explore Net Metering

    Energy.gov [DOE]

    Register for the Net Metering webinar, which will be held on Wednesday, June 25, 2014, from 11 a.m. to 12:30 p.m. Mountain time.

  19. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    New Hampshire" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",222183,69251,61857,59512,53293,50098,48310,46505 "Residential",218780,67647,60510...

  20. Working With Your Utility to Obtain Metering Services

    Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers the government metering requirement, the U.S. Department of Defense (DoD) metering directive, and customer metering services available from utilities.

  1. RWE Metering GmbH | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GmbH Jump to: navigation, search Name: RWE Metering GmbH Place: Germany Product: Smart metering subsidiary of Germany's second largest utility RWE AG. References: RWE Metering...

  2. How to Read Residential Electric and Natural Gas Meters | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    How to Read Residential Electric and Natural Gas Meters How to Read Residential Electric and Natural Gas Meters An electromechanical electric meter on the side of a house. | Photo...

  3. High resolution time interval meter

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  4. Metering Best Practices: A Guide to Achieving Utility Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Guide describes information...

  5. 2010 Assessment of Demand Response and Advanced Metering - Staff...

    Energy.gov [DOE] (indexed site)

    2010 Assessment of Demand Response and Advanced Metering - Staff Report. The Federal Energy Regulatory Commission's 2010 Demand Response and Advanced Metering Survey (2010 FERC ...

  6. Smart Meters Help Balance Energy Consumption at Solar Decathlon...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Smart Meters Help Balance Energy Consumption at Solar Decathlon Smart Meters Help Balance Energy Consumption at Solar Decathlon September 28, 2011 - 10:57am Addthis The Team...

  7. CBEI: Virtual Refrigerant Charge Sensing and Load Metering -...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review Presenter: James Braun, Purdue ...

  8. Demand Response and Smart Metering Policy Actions Since the Energy...

    Office of Environmental Management (EM)

    Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the ...

  9. Insights from Smart Meters: Identifying Specific Actions, Behaviors...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Insights from Smart Meters: Identifying Specific Actions, Behaviors, and Characteristics That Drive Savings in Behavior-Based Programs In this report, we use smart meter data to ...

  10. Metering Best Practices: A Guide to Achieving Utility Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Guide describes information ...

  11. National Solar Thermal Test Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers National Solar Thermal Test Facility HomeTag:National Solar Thermal Test Facility Molten Nitrate Salt Initial Flow Testing is a ...

  12. ARM - SGP Extended Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Extended Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  13. ARM - SGP Intermediate Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Intermediate Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  14. ARM - SGP Central Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  15. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A-OK in Oklahoma: SGP Reconfiguration is Right on Track Bookmark and Share ARM staff meet milestones in completing instrument upgrades A new extended facility site (39) was installed, including 3-channel microwave radiometer. A new extended facility site (39) was installed, including 3-channel microwave radiometer. As part of the next-generation ARM Facility initiative set forth in the 2014 Decadal Vision, the Southern Great Plains (SGP) site in Oklahoma has been undergoing a reconfiguration to

  16. Determining initial enrichment, burnup, and cooling time of pressurized-water reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    DOE PAGES [OSTI]

    Favalli, Andrea; Vo, D.; Grogan, Brandon R.; Jansson, Peter; Liljenfeldt, Henrik; Mozin, Vladimir; Schwalbach, P.; Sjoland, A.; Tobin, Stephen J.; Trellue, Holly; et al

    2016-02-26

    The purpose of the Next Generation Safeguards Initiative (NGSI)–Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuelmore » assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/137Cs, 134Cs/137Cs, 106Ru/137Cs, and 144Ce/137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity’s behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. Furthermore, the results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.« less

  17. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Delaware" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",118318,116714,114296,113252,405728,56702,110087,20750 "Residential",106626,105342,103234,102397,364709,52679,106326,20361 "Commercial",11496,11207,10828,10619,40773,3989,3637,389 "Industrial",196,165,234,236,246,34,124,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",307168,307904,297247,297308,100,72000,48603,0

  18. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Idaho" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",183892,177493,168685,163567,142759,151004,146779,88220 "Residential",160763,155125,147140,142398,122329,133724,128395,82814 "Commercial",22512,21730,20916,20529,19850,17042,17904,5401 "Industrial",617,638,629,640,580,238,480,5 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",576309,548969,542009,536130,353867,225474,49380,0

  19. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Iowa" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",756473,744438,722583,713567,710239,697696,559054,139256 "Residential",655474,646196,624355,620170,615649,612354,495955,124347 "Commercial",99632,97104,97466,93000,92968,85137,62661,14851 "Industrial",1356,1134,762,397,1622,205,438,58 "Transportation",11,4,0,0,0,0,0,0 "AMI meters",161963,150555,143163,128116,121751,74120,48847,14946

  20. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Louisiana" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",399663,371841,357579,344263,342766,331557,283997,203389 "Residential",371003,344167,330690,318544,316995,309010,267588,192187 "Commercial",25678,24657,24380,24208,24551,21202,14922,9945 "Industrial",2982,3017,2509,1511,1220,1345,1487,1257 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",400098,396398,220128,40063,34087,12021,3597,2

  1. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Maryland" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",319494,611045,877019,903093,889901,875440,845154,725634 "Residential",281386,549148,799807,823936,815476,804226,782901,659322 "Commercial",37868,61658,76998,78818,74100,71203,62242,66226 "Industrial",238,239,214,339,325,11,11,0 "Transportation",2,0,0,0,0,0,0,86 "AMI meters",1608027,1159371,498806,912,896,1034,810,0

  2. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Mississippi" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",236654,273118,136678,116456,144254,103645,91623,24243 "Residential",197928,237034,117623,101376,130228,90425,80463,20942 "Commercial",37012,32633,16705,12952,12658,11393,10084,2156 "Industrial",1714,3451,2350,2128,1368,1827,1076,1145 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",445502,363360,274884,153279,48308,9465,1610,0

  3. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Montana" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",467870,520018,495676,489407,482732,481682,397693,347611 "Residential",405276,448313,430824,429479,423471,417166,345119,304959 "Commercial",58023,67155,61129,57161,56837,62129,51022,41698 "Industrial",4539,4550,3723,2767,2424,2387,1552,954 "Transportation",32,0,0,0,0,0,0,0 "AMI meters",80864,18851,18830,17593,11991,6459,3532,212

  4. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Mexico" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",243727,214695,229210,220279,228503,244759,216434,112719 "Residential",217140,192195,206606,198130,207663,226923,209009,110488 "Commercial",25863,21811,21656,21246,19675,16998,7022,2000 "Industrial",724,689,948,903,1165,838,403,231 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",83802,108505,80808,72506,46139,24384,6215,0

  5. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Dakota" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",281284,274775,171896,165282,181060,149553,123861,41003 "Residential",229712,225851,141249,139162,154904,129384,111817,37069 "Commercial",44264,42282,26052,22916,23171,18971,11124,3873 "Industrial",7308,6642,4595,3204,2985,1198,920,61 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",100537,85007,72431,64037,42676,25380,11406,14500

  6. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Dakota" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",160541,162490,163750,181907,193350,89054,66943,33995 "Residential",138247,140673,143049,159847,171557,79340,60552,31632 "Commercial",20871,20385,19257,20260,19532,8695,5801,2011 "Industrial",1423,1432,1444,1800,2261,1019,590,352 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",160557,152199,127805,102671,95155,22793,16820,0

  7. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Tennessee" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",709716,730599,309569,320041,45373,43870,43861,46240 "Residential",613484,643429,276292,285239,41482,41208,41115,40438 "Commercial",95689,85467,32375,34115,3830,2629,2711,5802 "Industrial",543,1703,902,687,61,33,35,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",1184894,1094256,515971,336940,0,0,0,0

  8. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Utah" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",969524,947887,931692,903266,912616,851283,791097,374299 "Residential",880637,861955,849405,821766,814440,772961,722710,361979 "Commercial",84742,81853,78179,77565,92519,77666,67851,12272 "Industrial",4145,4079,4100,3935,5657,656,536,48 "Transportation",0,0,8,0,0,0,0,0 "AMI meters",46185,44150,22480,35163,17080,12860,2485,1

  9. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    West Virginia" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",513140,520857,464502,473117,474077,436376,438764,448444 "Residential",431517,439830,394660,399243,402817,387552,389596,381604 "Commercial",78717,78280,67228,70415,67890,47130,47431,66840 "Industrial",2906,2747,2614,3459,3370,1694,1737,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",6792,116,81,0,0,95,0,0

  10. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Wyoming" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",228950,225895,210204,206764,147885,175769,139584,26178 "Residential",183907,181206,166730,162523,114344,141179,114795,24873 "Commercial",37536,37340,36283,37200,27897,29852,20219,1204 "Industrial",7507,7349,7176,7041,5644,4738,4570,101 "Transportation",0,0,15,0,0,0,0,0 "AMI meters",85136,84587,79675,77029,72260,10442,8609,0

  11. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Alaska" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",251619,232888,233270,230916,221262,139874,58993,27057 "Residential",217995,204000,206539,204690,195920,124976,51007,24817 "Commercial",32890,28129,26000,25582,24807,14408,7529,2220 "Industrial",734,759,731,644,535,490,457,20 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",25553,12272,3766,3408,3213,3106,2753,4

  12. Liquid metal Flow Meter - Final Report

    SciTech Connect

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  13. Initiatives | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ATLAS Support Center Center for Computational Excellence Coordinating Panel for Advanced Detectors Publications News & Events Upcoming Events Press Releases Feature Stories In the News Videos Downloads About HEP at Work Career Opportunities Staff Directory About HEP at Work Career Opportunities Staff Directory Argonne National Laboratory High Energy Physics Research Facilities Capabilities Initiatives Publications News & Events Initiatives ATLAS Support Center Center for Computational

  14. Huntington Resource Recovery Facility Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  15. Wheelabrator Sherman Energy Facility Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Sherman Energy Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Sherman Energy Facility Biomass Facility Facility Wheelabrator Sherman Energy Facility Sector...

  16. Societal Benefits of smart metering investments

    SciTech Connect

    Neenan, Bernard; Hemphill, Ross C.

    2008-10-15

    Implementing smart metering involves complex interactions that may generate many new sources of benefits. It is a potentially powerful enabler, one with considerable - but still speculative - potential that is highly dependent on how the technology is utilized by utilities and supported by their regulators. (author)

  17. ARM - NSA Atqasuk Facility-Inactive

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Atqasuk Facility-Inactive NSA Related Links Virtual Tour Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA Fact Sheet Images Information for Guest Scientists Contacts NSA Atqasuk Facility-Inactive Location: 70° 28' 19.11" N, 157° 24' 28.99" W Altitude: 20 meters The Atqasuk facility, which was part of the larger ARM Climate Research Facility (ARM) North Slope of Alaska site, was

  18. Ashton Extended Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ashton Extended Facility Map

  19. Byron Extended Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Byron Extended Facility Map

  20. Development of the prototype Munitions Case Moisture Meter, Model ORNL-1

    SciTech Connect

    Agouridis, D.C.; Gayle, T.M.; Griest, W.H.

    1993-02-24

    There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental results on empty cccs in laboratory conditions demonstrate satisfactory performance of the instrument. Additional work is needed to bring the prototype to its optimum usefulness and accuracy for field measurements. This includes: Calibration of the meter scale with full-up munitions; Data and evaluation procedures to adjust the performance of the meter for different environmental conditions such as temperature and humidity; and Studies of the dielectric properties of moist ccc materials, as a function of frequency and temperature, are needed for adjustment of the meter for optimal performance.

  1. Development of the prototype Munitions Case Moisture Meter, Model ORNL-1. Final report

    SciTech Connect

    Agouridis, D.C.; Gayle, T.M.; Griest, W.H.

    1993-02-24

    There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental results on empty cccs in laboratory conditions demonstrate satisfactory performance of the instrument. Additional work is needed to bring the prototype to its optimum usefulness and accuracy for field measurements. This includes: Calibration of the meter scale with full-up munitions; Data and evaluation procedures to adjust the performance of the meter for different environmental conditions such as temperature and humidity; and Studies of the dielectric properties of moist ccc materials, as a function of frequency and temperature, are needed for adjustment of the meter for optimal performance.

  2. User Facilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    User Facilities User Facilities User facility agreements allow Los Alamos partners and other entities to conduct research at our unique facilities. In 2011, LANL hosted more than 1,200 users at CINT, LANSCE, and NHMFL. Users came from across the DOE complex, from international academia, and from industrial companies from 45 states across the U.S. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, LANL can implement user facility

  3. User Facilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Collaboration User Facilities collaborationassetsimagesicon-collaboration.jpg User Facilities A new research frontier awaits Our door is open and we thrive on mutually...

  4. New Technologies Bring New Opportunities for Meter Reader | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Technologies Bring New Opportunities for Meter Reader New Technologies Bring New Opportunities for Meter Reader September 22, 2011 - 2:03pm Addthis Brian Andrews is a former meter reader who now works with smart meter and intelligent grid projects. | Image courtesy of CenterPoint Energy. Brian Andrews is a former meter reader who now works with smart meter and intelligent grid projects. | Image courtesy of CenterPoint Energy. Liisa O'Neill Liisa O'Neill Former New Media Specialist,

  5. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Rhode Island" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",480329,471388,470428,467346,457508,458475,451138,450668 "Residential",468728,461380,461788,460721,409497,407884,406169,400631 "Commercial",11601,10008,8640,6625,47728,50591,44969,50037 "Industrial",0,0,0,0,283,0,0,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",247,211,211,205,0,0,0,0 "Residential",0,0,0,0,0,0,0,0

  6. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  7. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    2003-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  8. SOLVENT DISPERSION AND FLOW METER CALCULATION RESULTS

    SciTech Connect

    Nash, C.; Fondeur, F.; Peters, T.

    2013-06-21

    Savannah River National Laboratory (SRNL) found that the dispersion numbers for the six combinations of CSSX:Next Generation Solvent (NGS) “blend” and pure NGS versus salt solution, caustic wash, and strip aqueous solutions are all good. The dispersion numbers are indications of processability with centrifugal contactors. A comparison of solvent physical and thermal properties shows that the Intek™ solvent flow meter in the plant has a reading biased high versus calibrated flow when NGS is used, versus the standard CSSX solvent. The flow meter, calibrated for CSSX solvent, is predicted to read 2.8 gpm of NGS in a case where the true flow of NGS is 2.16 gpm.

  9. The 800-meter sample toroidal field conductor

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    800-meter sample toroidal field conductor was transferred to a container ship at the port of Charleston, S.C., on May 28, 2014 for its voyage to La Spezia, Italy. Photo: US ITER INSIDE: ITER Site Progress View from DOE US ITER Systems Update Hearing on Fusion Energy Disruption Mitigation Team Reviews Progress Engaging Industry, Universities and Labs Central Solenoid Fabrication Upcoming Events US ITER Ships Over 30,000 Pounds of Magnet System Hardware to Europe ITER is a unique international

  10. Periodic review enhances LPG metering performance

    SciTech Connect

    Van Orsdol, F.G.

    1988-01-25

    Because of the loss of experienced personnel throughout the industry, the author says one must start over teaching the basics of liquid measurement. Warren Petroleum Co., a division of Chevron U.S.A. Inc., has developed a checklist review method for its metering systems, complete with enough explanation to allow the reviewer to understand why each item is important. Simultaneously, it continues with more in-depth and theoretical training in training course. This article describes the review process.

  11. Coriolis Meters for Hydrogen Dispensing Measurement

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Coriolis Meters for Hydrogen Dispensing Measurement John Daly NA Lead Flow Specialist GE Measurement and Control Solutions Flow Technologies at GE MS Clamp-on Ultrasonic * Install on existing pipes * Low over cost of ownership * Focused on liquid but also for gas Wetted Ultrasonic * Higher accuracy * Difficult applications * Very low operational costs * Strong performance for liquid and gas Coriolis * Direct mass measurement * High accuracy over wide range * Liquid and Gas * Pipes up to 12"

  12. High Performance Computing Data Center Metering Protocol

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Performance Computing Data Center Metering Protocol Prepared for: U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Federal Energy Management Program Prepared by: Thomas Wenning Michael MacDonald Oak Ridge National Laboratory September 2010 ii Introduction Data centers in general are continually using more compact and energy intensive central processing units, but the total number and size of data centers continues to increase to meet progressive computing

  13. Advanced Metering Plan for Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings

    SciTech Connect

    Pope, Jason E.; Olson, Norman J.; Berman, Marc J.; Schielke, Dale R.

    2011-08-17

    This updated Advanced Metering Plan for monitoring whole building energy use in Pacific Northwest National Laboratory (PNNL) EMS4 buildings on the PNNL campus has been prepared in accordance with the requirements of the Energy Policy Act of 2005 (EPAct 2005), Section 103, U.S. Department of Energy (DOE) Order 430.2B, and Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Federal Energy Management Program, October 2007 (Sullivan et al. 2007). The initial PNNL plan was developed in July 2007 (Olson 2007), updated in September 2008 (Olson et al. 2008), updated in September 2009 (Olson et al. 2009), and updated again in August 2010 (Olson et al. 2010).

  14. How to Read Your Electric Meter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Your Electric Meter How to Read Your Electric Meter The difference between one month's reading and the next is the amount of energy units that have been used for that billing...

  15. The Intersection of Net Metering and Retail Choice: An Overview...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Intersection of Net Metering and Retail Choice: An Overview of Policy, Practice and Issues The Intersection of Net Metering and Retail Choice: An Overview of Policy, Practice and ...

  16. Stick-on Electricity Meter - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Find More Like This Return to Search Stick-on Electricity Meter Lawrence Berkeley National ... J., Lanzisera, S. "COTS-based stick-on electricity meters for building submetering," IEEE ...

  17. Meter and Relay Craftsman - Journeyman | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Meter and Relay Craftsman - Journeyman Meter and Relay Craftsman - Journeyman Submitted by admin on Sun, 2016-06-26 00:15 Job Summary Organization Name Department Of Energy Agency ...

  18. SCE&G - Net Metering | Department of Energy

    Energy.gov [DOE] (indexed site)

    of net metering programs offered by the IOUs. South Carolina Electric & Gas (SCE&G) designed two net-metering options for its South Carolina customers. These options are...

  19. Genesis of a three-phase subsea metering system. [Oil and gas metering systems for subsea operations

    SciTech Connect

    Dowty, E.L.; Hatton, G.J.; Durrett, M.G. ); Dean, T.L.; Jiskoot, R.J.J.

    1993-08-01

    Periodic well flow testing is necessary to monitor well and reservoir performance over time to optimize decisions on well production rates and new well requirements through improved reservoir models, to determine the timing of well workovers, and to identify when wells become uneconomical to produce. A dedicated test separator' conventionally is used to meter individual wells. Fluids from a well are separated into the three component phases (oil, gas, and water) in a large vessel, and the flow rate of each phase is measured on the respective outlet lines from the vessel. The same method currently is used for subsea satellite developments by providing a dedicated test pipeline' from the subsea field to carry a selected well's production to a test separator for metering on the host platform. The capital cost of these systems rises rapidly with distance. Greater distances between the wellhead and flow test system increase the cost of the test pipeline and require larger and hence more expensive slug catchers and risers. Clearly, a subsea-based well-test system could result in large capital cost savings by eliminating the need for conventional test systems. This paper tracks the development of one subsea well test system from conception to field testing on the Tartan. A platform in the North Sea. This work defines the design requirements of the system, reviews system development and fabrication, describes modifications made as a result of initial field tests, and reports the results of topside tests completed through Dec. 1990.

  20. Facility Representatives

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2011-03-01

    This standard, DOE-STD-1063, Facility Representatives, defines the duties, responsibilities and qualifications for Department of Energy (DOE) Facility Representatives, based on facility hazard classification; risks to workers, the public, and the environment; and the operational activity level. This standard provides the guidance necessary to ensure that DOE’s hazardous nuclear and non-nuclear facilities have sufficient staffing of technically qualified facility representatives (FRs) to provide day-to-day oversight of contractor operations.

  1. Aggregate Net Metering Opportunities for Local Governments | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Aggregate Net Metering Opportunities for Local Governments Aggregate Net Metering Opportunities for Local Governments This guide summarizes the variations in state laws that determine whether or not meter aggregation is an option for local governments, explores the unique opportunities that it can extend to public-sector photovoltaic projects, and describes the important details that must be considered when promoting or pursuing such a policy. Aggregate net metering is the practice of

  2. Overcoming Net Metering and Interconnection Objections: New Jersey MSR Partnership

    SciTech Connect

    Not Available

    2005-09-01

    This fact sheet explains how the New Jersey MSR Partnership successfully revised net metering rules to make solar installations easier.

  3. Coriolis Meters for Hydrogen Dispensing Measurement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Coriolis Meters for Hydrogen Dispensing Measurement Coriolis Meters for Hydrogen Dispensing Measurement This presentation by John Daly of GE Measurement and Control Solutions was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013. csd_workshop_14_daly.pdf (572.19 KB) More Documents & Publications 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report Report on RFI DE-FOA-000753: High-Accuracy Hydrogen Meters Metering Best

  4. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Colorado" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1719454,1643794,1552727,1622740,1636242,1495425,1410712,231119 "Residential",1561074,1491944,1425970,1502253,1517327,1387937,1306346,206747 "Commercial",152693,146263,121673,115391,115899,106007,102596,23667 "Industrial",5687,5587,5084,5096,3016,1481,1770,705 "Transportation",0,0,0,0,0,0,0,0 "AMI

  5. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Connecticut" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1453004,1469876,1481357,1496432,1536716,1530906,1534171,1478640 "Residential",1307338,1324280,1334604,1350835,1393474,1391016,1394732,1343996 "Commercial",140814,141213,142227,141092,138781,138239,137617,132856 "Industrial",4852,4383,4526,4505,4461,1651,1822,1788 "Transportation",0,0,0,0,0,0,0,0 "AMI

  6. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Georgia" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",470136,627008,613969,521331,487830,435276,317642,295425 "Residential",407551,556807,552232,467749,440914,393533,292233,269843 "Commercial",60005,68008,59406,51774,44378,39314,23245,24111 "Industrial",2580,2193,2331,1808,2538,2429,2164,1471 "Transportation",0,0,0,0,0,0,0,0 "AMI

  7. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Illinois" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1018377,997408,973664,998081,1002378,973505,851285,549055 "Residential",905665,888394,869121,894434,902092,872418,773309,493378 "Commercial",109744,105317,101051,100648,97601,98067,75669,54444 "Industrial",2710,3382,3492,2999,2685,3018,2305,1227 "Transportation",258,315,0,0,0,2,2,6 "AMI

  8. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Indiana" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1199243,1251574,1284613,1095102,1059678,1038172,951160,382580 "Residential",1070706,1115322,1167245,990346,965867,947409,868170,371539 "Commercial",123315,131027,113006,102278,91550,88929,81696,10751 "Industrial",4728,4729,4362,2478,2261,1834,1294,290 "Transportation",494,496,0,0,0,0,0,0 "AMI

  9. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Kansas" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",135823,349836,335293,320708,400083,308859,300734,53919 "Residential",115628,303782,289091,276856,343492,264664,260503,41763 "Commercial",18934,44125,41789,39968,52910,41425,38520,10237 "Industrial",1261,1929,4413,3884,3681,2770,1711,1919 "Transportation",0,0,0,0,0,0,0,0 "AMI

  10. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Kentucky" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",520625,532871,607590,548321,495475,529171,526410,445146 "Residential",459091,465927,534181,484008,439680,479635,480572,422463 "Commercial",60064,65386,71883,62353,54453,48318,44688,22493 "Industrial",1470,1558,1526,1960,1342,1218,1150,190 "Transportation",0,0,0,0,0,0,0,0 "AMI

  11. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Massachusetts" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2869249,2815732,2753089,2717020,2634758,2605159,2389547,2327751 "Residential",2618243,2579059,2527224,2500177,2325333,2300444,2103743,2072453 "Commercial",245237,234458,224070,215022,306584,303458,284904,253942 "Industrial",5746,2215,1795,1821,2841,1257,900,1356 "Transportation",23,0,0,0,0,0,0,0 "AMI

  12. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Michigan" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",354444,337976,324455,314211,359361,333902,272851,189606 "Residential",306626,292051,283561,272718,318011,299426,246630,174020 "Commercial",46331,44463,41134,40083,38141,32779,24761,14476 "Industrial",1487,1462,1390,1410,3209,1697,1460,1110 "Transportation",0,0,0,0,0,0,0,0 "AMI

  13. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Minnesota" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1910556,1913337,1922706,1909106,1985873,1874104,1718448,363947 "Residential",1722688,1730915,1735168,1733724,1805096,1709999,1567837,333575 "Commercial",177021,172309,176721,165245,170062,162297,149294,29352 "Industrial",10821,10087,10817,10137,10715,1808,1317,1020 "Transportation",26,26,0,0,0,0,0,0 "AMI

  14. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Missouri" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1925736,1920471,1935078,1917474,1959937,1921343,1933413,1546006 "Residential",1701539,1696195,1709394,1698061,1736715,1705866,1728577,1372572 "Commercial",216604,216779,219525,213325,217255,210496,199759,167190 "Industrial",7537,7497,6159,6088,5967,4981,5077,6243 "Transportation",56,0,0,0,0,0,0,1 "AMI

  15. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Nebraska" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",542577,535042,523950,503996,484383,454089,399845,380008 "Residential",462384,451388,444819,430631,415589,392296,349786,333774 "Commercial",49197,69711,67398,62997,59285,52508,44771,43230 "Industrial",30996,13943,11733,10368,9509,9285,5288,3004 "Transportation",0,0,0,0,0,0,0,0 "AMI

  16. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    York" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",3467586,3052524,2515127,2328801,2223645,2164329,1701366,1534285 "Residential",3044860,2848664,2295268,2140229,2044476,2005137,1555371,1410652 "Commercial",421467,202417,218735,187424,178662,158992,145798,123436 "Industrial",1095,1255,1124,1148,507,199,196,196 "Transportation",164,188,0,0,0,1,1,1 "AMI

  17. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Carolina" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",3592602,3708639,3613936,3768269,4027965,3718103,3521887,2048869 "Residential",3207225,3322965,3255122,3396907,3656223,3322323,3250613,1878066 "Commercial",381477,381832,355716,368487,369622,393894,268784,169438 "Industrial",3900,3842,3098,2875,2120,1886,2490,1365 "Transportation",0,0,0,0,0,0,0,0 "AMI

  18. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Ohio" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1200096,1068626,948564,727112,622965,563380,512000,277489 "Residential",1083593,976072,867682,680331,582725,525578,475653,257499 "Commercial",108652,86314,75747,44209,37864,35575,34425,18264 "Industrial",7831,6221,5135,2572,2376,2227,1922,1726 "Transportation",20,19,0,0,0,0,0,0 "AMI

  19. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Oklahoma" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",372720,385000,430870,427117,459002,392071,400426,277880 "Residential",323195,332981,377207,376188,400471,342530,351012,244516 "Commercial",47792,49803,51627,49838,54788,48517,48392,33162 "Industrial",1733,2216,2036,1091,3743,1024,1022,202 "Transportation",0,0,0,0,0,0,0,0 "AMI

  20. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Oregon" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",187890,183897,173477,180073,180305,182669,179104,91950 "Residential",171874,168007,158650,161735,163234,167965,167090,86244 "Commercial",14716,14848,13699,17315,15885,13539,10954,5115 "Industrial",1300,1042,1128,1023,1186,1165,1060,591 "Transportation",0,0,0,0,0,0,0,0 "AMI

  1. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Pennsylvania" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",822579,1508995,2093902,2358735,2338527,2232621,2203630,1526540 "Residential",680993,1283786,1854282,2111101,2092893,1998214,1993991,1396097 "Commercial",133489,217043,231143,238676,237244,228706,203914,128444 "Industrial",8034,8104,8400,8890,8322,5694,5718,1999 "Transportation",63,62,77,68,68,7,7,0 "AMI

  2. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Carolina" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1819320,1848300,1816190,1809822,1897976,1700354,1510892,963079 "Residential",1597883,1621880,1600626,1596247,1678999,1490280,1348053,862204 "Commercial",220338,225016,213938,212061,218049,209287,161774,99865 "Industrial",1099,1404,1626,1514,928,787,1065,1010 "Transportation",0,0,0,0,0,0,0,0 "AMI

  3. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Texas" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2305298,2278989,2649814,2362245,2609078,3758758,2513848,1019510 "Residential",2092754,2073428,2396415,2160965,2378327,3560320,2294696,942621 "Commercial",176555,178381,230398,177755,219325,186979,214217,74475 "Industrial",35989,27180,23001,23525,11426,11459,4935,2414 "Transportation",0,0,0,0,0,0,0,0 "AMI

  4. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Virginia" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2902638,2978913,3094379,3079891,3159249,3047610,3053272,2934487 "Residential",2670605,2742598,2851174,2841255,2930873,2825185,2842167,2730183 "Commercial",229930,234244,240960,236618,226654,220991,209453,204144 "Industrial",2103,2071,2245,2018,1722,1434,1652,160 "Transportation",0,0,0,0,0,0,0,0 "AMI

  5. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Washington" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1736282,1715708,1681481,1656936,1611285,1326509,1346041,1143057 "Residential",1542833,1525473,1494345,1474547,1436056,1177320,1203954,1014025 "Commercial",185136,182666,182010,177498,170267,144934,137882,124770 "Industrial",8313,7569,5126,4891,4962,4255,4205,4261 "Transportation",0,0,0,0,0,0,0,1 "AMI

  6. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Arizona" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",465753,380098,339368,314854,246497,666915,500476,354452 "Residential",421384,342033,307265,287712,225362,631062,480824,351548 "Commercial",43384,26918,23326,21051,17703,35711,19592,2898 "Industrial",985,11147,8777,6091,3432,142,60,6 "Transportation",0,0,0,0,0,0,0,0 "AMI

  7. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    California" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",868579,827670,580957,431858,1696965,345864,238634,181180 "Residential",736745,699209,481305,319842,1520278,278976,221857,167236 "Commercial",118539,115318,90939,97104,164498,57736,15597,12701 "Industrial",13222,13070,8699,14912,12189,9152,1178,1241 "Transportation",73,73,14,0,0,0,2,2 "AMI

  8. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Alabama" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",332650,329079,1582760,137399,1546233,1175077,110675,105694 "Residential",286796,281898,1381543,121843,1352435,1029039,98707,92194 "Commercial",45661,46368,195291,15383,188053,142132,11957,11999 "Industrial",193,813,5926,173,5745,3906,11,1501 "Transportation",0,0,0,0,0,0,0,0 "AMI

  9. Table 12. Advanced metering, 2007 through 2014

    Energy Information Administration (EIA) (indexed site)

    Arkansas" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",248444,230418,261023,262683,318606,300790,239851,109188 "Residential",222458,205920,231422,236070,287123,272669,223219,105408 "Commercial",23607,22594,22467,19931,24091,21425,11089,3772 "Industrial",2379,1904,7134,6682,7392,6696,5543,8 "Transportation",0,0,0,0,0,0,0,0 "AMI

  10. Automatic ranging circuit for a digital panel meter

    DOEpatents

    Mueller, Theodore R.; Ross, Harley H.

    1976-01-01

    This invention relates to a range changing circuit that operates in conjunction with a digital panel meter of fixed sensitivity. The circuit decodes the output of the panel meter and uses that information to change the gain of an input amplifier to the panel meter in order to insure that the maximum number of significant figures is always displayed in the meter. The circuit monitors five conditions in the meter and responds to any of four combinations of these conditions by means of logic elements to carry out the function of the circuit.

  11. ARM: Three Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ARM: Three Meter Tower: video camera Citation Details In-Document Search Title: ARM: Three Meter Tower: video camera Three Meter Tower: video camera Authors: Scott Smith ; Martin...

  12. ARM: Three Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Three Meter Tower: video camera Citation Details In-Document Search Title: ARM: Three Meter Tower: video camera Three Meter Tower: video camera Authors: Scott Smith ; Martin...

  13. ARM: Forty Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Forty Meter Tower: video camera Citation Details In-Document Search Title: ARM: Forty Meter Tower: video camera Forty Meter Tower: video camera Authors: Scott Smith ; Martin...

  14. ORISE: Facilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ORISE Facilities Unique laboratories and training centers among the assets managed on behalf of the U.S. Department of Energy The Oak Ridge Institute for Science and Education (ORISE) is home to a number of on- and off-site facilities that support the U.S. Department of Energy's (DOE) science education and research mission. From on-site medical laboratories to radiation emergency medicine training facilities, ORISE facilities are helping to address national needs in the following areas:

  15. Facility Safety

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  16. Facility Safety

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  17. Logic elements for reactor period meter

    DOEpatents

    McDowell, William P.; Bobis, James P.

    1976-01-01

    Logic elements are provided for a reactor period meter trip circuit. For one element, first and second inputs are applied to first and second chopper comparators, respectively. The output of each comparator is O if the input applied to it is greater than or equal to a trip level associated with each input and each output is a square wave of frequency f if the input applied to it is less than the associated trip level. The outputs of the comparators are algebraically summed and applied to a bandpass filter tuned to f. For another element, the output of each comparator is applied to a bandpass filter which is tuned to f to give a sine wave of frequency f. The outputs of the filters are multiplied by an analog multiplier whose output is 0 if either input is 0 and a sine wave of frequency 2f if both inputs are a frequency f.

  18. Wheelabrator Millbury Facility Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Facility Wheelabrator Millbury Facility Sector Biomass Facility Type Municipal Solid Waste Location Worcester County, Massachusetts Coordinates 42.4096528, -71.8571331...

  19. Design of an Open Smart Energy Gateway for Smart Meter Data Management

    SciTech Connect

    Page, Janie; McParland, Chuck; Piette, Mary Ann; Czarnecki, Stephen

    2015-03-01

    With the widespread deployment of electronic interval meters, commonly known as smart meters, came the promise of real-time data on electric energy consumption. Recognizing an opportunity to provide consumers access to their near real-time energy consumption data directly from their installed smart meter, we designed a mechanism for capturing those data for consumer use via an open smart energy gateway (OpenSEG). By design, OpenSEG provides a clearly defined boundary for equipment and data ownership. OpenSEG is an open-source data management platform to enable better data management of smart meter data. Effectively, it is an information architecture designed to work with the ZigBee Smart Energy Profile 1.x (SEP 1.x). It was specifically designed to reduce cyber-security risks and provide secure information directly from smart meters to consumers in near real time, using display devices already owned by the consumers. OpenSEG stores 48 hours of recent consumption data in a circular cache using a format consistent with commonly available archived (not real-time) consumption data such as Green Button, which is based on the Energy Services Provider Interface (ESPI) data standard. It consists of a common XML format for energy usage information and a data exchange protocol to facilitate automated data transfer upon utility customer authorization. Included in the design is an application program interface by which users can acquire data from OpenSEG for further post processing. A sample data display application is included in the initial software product. The data display application demonstrates that OpenSEG can help electricity use data to be retrieved from a smart meter and ported to a wide variety of user-owned devices such as cell phones or a user-selected database. This system can be used for homes, multi-family buildings, or small commercial buildings in California.

  20. Method and apparatus for reading meters from a video image

    DOEpatents

    Lewis, Trevor J.; Ferguson, Jeffrey J.

    1997-01-01

    A method and system to enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relatively non-intrusive manner without making any complicated or expensive electronic connections, and without requiring intensive manpower.

  1. De Minimis Thresholds for Federal Building Metering Appropriateness

    SciTech Connect

    Henderson, Jordan W.

    2015-03-31

    The U.S. Department of Energy (DOE) is required by statute and Presidential Memorandum to establish guidelines for agencies to meter their Federal buildings for energy (electricity, natural gas, and steam) and water. See 42 U.S.C. § 8253(e). DOE issued guidance in February 2006 on the installation of electric meters in Federal buildings. A recent update to the 2006 guidance accounts for more current metering practices within the Federal Government. The updated metering guidance specifies that all Federal buildings shall be considered “appropriate” for energy or water metering unless identified for potential exclusion. In developing the updated guidance to carry out the statue, Congress also directed DOE to (among other things) establish exclusions from the metering requirements based on the de minimis quantity of energy use of a Federal building, industrial process, or structure. This paper discusses the method used to identify de minimis values.

  2. CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Review | Department of Energy Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review Presenter: James Braun, Purdue University View the Presentation CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review (2.39 MB) More Documents & Publications CBEI: FDD for Advanced RTUs - 2015 Peer Review Control and Diagnostics for Rooftop Units - 2014 BTO Peer Review CBEI: Coordinating

  3. Secretary Chu Announces Two Million Smart Grid Meters Installed Nationwide

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Million Smart Grid Meters Installed Nationwide Secretary Chu Announces Two Million Smart Grid Meters Installed Nationwide August 31, 2010 - 12:00am Addthis Columbus, OH - At an event today at Battelle headquarters in Columbus, Ohio, U.S. Energy Secretary Steven Chu announced that two million smart grid meters have been installed across the country, helping to reduce energy costs for families and businesses. As a result of funding from the Recovery Act, smart grid

  4. Energy Secretary Chu Announces Five Million Smart Meters Installed

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nationwide as Part of Grid Modernization Effort | Department of Energy Five Million Smart Meters Installed Nationwide as Part of Grid Modernization Effort Energy Secretary Chu Announces Five Million Smart Meters Installed Nationwide as Part of Grid Modernization Effort June 13, 2011 - 12:00am Addthis Washington, DC - At a White House Grid Modernization event today, U.S. Department of Energy Secretary Steven Chu announced that more than five million smart meters have been installed nationwide

  5. Insights from Smart Meters: The Potential for Peak Hour Savings...

    Energy Saver

    Technical Report Technical Report Appendix More Documents & Publications Insights from Smart Meters: Identifying Specific Actions, Behaviors, and Characteristics That Drive Savings ...

  6. Multiphase Flow Metering: An Overview Manoj Kumar KM, Senior...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... and overall smart algorithms are critical to meet the requirements. The multiphase flow meter prototyped by GE has been rigorously tested at the in-house multiphase flow ...

  7. Nevada Renewable Energy Application For Net Metering Customers...

    OpenEI (Open Energy Information) [EERE & EIA]

    Renewable Energy Application For Net Metering Customers Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Nevada Renewable Energy Application For Net...

  8. Fuel Quality and Metering: Current Status and Future Needs |...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Current Status and Future Needs Fuel Quality and Metering: Current Status and Future Needs These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. ...

  9. Vermont Construction and Operation of Net Metering Systems Rules...

    OpenEI (Open Energy Information) [EERE & EIA]

    rule is applicable to all net metered installations in Vermont, and applies to every person, firm, company, corporation and municipality engaged in the construction or operation...

  10. Vermont Construction and Operation of Net Metering Systems Rule...

    OpenEI (Open Energy Information) [EERE & EIA]

    rule is applicable to all net metered installations in Vermont, and applies to every person, firm, company, corporation and municipality engaged in the construction or operation...

  11. Cyprus Smart metering demo (Smart Grid Project) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Installation of 3000 smart meters with the required infrastructure for full functionality evaluation of the best practice approach for full roll out. References "EU Smart Grid...

  12. Smart Meters and a Smarter Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Smart Meters and a Smarter Grid Smart Meters and a Smarter Grid May 16, 2011 - 4:40pm Addthis Andrea Spikes Former Communicator at DOE's National Renewable Energy Laboratory Have you heard of smart meters? Do you understand them? If so, you've had a leg up on me until now. I've heard of smart meters here and there from the odd news article or website, but to me the grapevine has been more like an invisible beehive: all buzz and no honey. Where are they? Why don't I have one yet, and will I have

  13. Wavelength meter having single mode fiber optics multiplexed inputs

    DOEpatents

    Hackel, R.P.; Paris, R.D.; Feldman, M.

    1993-02-23

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  14. Wavelength meter having single mode fiber optics multiplexed inputs

    DOEpatents

    Hackel, Richard P.; Paris, Robert D.; Feldman, Mark

    1993-01-01

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  15. Cost benefit analysis for the implementation of smart metering...

    OpenEI (Open Energy Information) [EERE & EIA]

    with pilot project (Smart Grid Project) Jump to: navigation, search Project Name Cost benefit analysis for the implementation of smart metering with pilot project Country...

  16. Extreme Adaptive Optics for the Thirty Meter Telescope (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Extreme Adaptive Optics for the Thirty Meter Telescope Direct detection of extrasolar Jovian planets is a major scientific motivation for the construction of future ...

  17. webinar_080713_solar_net_metering_connection.mp3 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Innovation and Success in Solar Net Metering and Interconnection Residential Photovoltaic Solar Panels Procuring and Implementing Solar Projects on Public Buildings: How to Avoid ...

  18. Improvements in Shallow (Two-Meter) Temperature Measurements...

    OpenEI (Open Energy Information) [EERE & EIA]

    Center for Geothermal Energy has been working on improvements in shallow (two-meter) temperature surveys in two areas: overcoming limitations posed by difficult ground...

  19. Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nissan North America: How Sub-Metering Changed the Way a Plant Does Business Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology to Identify Potential Reductions ...

  20. Facility Representatives

    Energy Saver

    Program Manager Office of the Departmental Representative to the Defense Nuclear Facilities Safety Board (DOE DR-1) DOE Headquarters, Forrestal Building 1000 Independence ...

  1. Beamlines & Facilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Imaging Group: Beamlines The X-ray Micrscopy and Imaging Group operates several beamlines and facilities. The bending magnet beamline (2-BM) entertaines 2 general user programs in...

  2. Shallow (2-meter) temperature surveys in Colorado

    DOE Data Explorer

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Geothermal Development Associates, Reno, Nevada Publication Date: 2012 Title: Colorado 2m Survey Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: Shallow temperature surveys are useful in early-stage geothermal exploration to delineate surface outflow zones, with the intent to identify the source of upwelling, usually a fault. Detailed descriptions of the 2-meter survey method and equipment design can be found in Coolbaugh et al. (2007) and Sladek et al. (2007), and are summarized here. The survey method was devised to measure temperature as far below the zone of solar influence as possible, have minimal equilibration time, and yet be portable enough to fit on the back of an all-terrain vehicle (ATV); Figure 2). This method utilizes a direct push technology (DPT) technique where 2.3 m long, 0.54” outer diameter hollow steel rods are pounded into the ground using a demolition hammer. Resistance temperature devices (RTD) are then inserted into the rods at 2-meter depths, and allowed to equilibrate for one hour. The temperatures are then measured and recorded, the rods pulled out of the ground, and re-used at future sites. Usually multiple rods are planted over the course of an hour, and then the sampler returns back to the first station, measures the temperatures, pulls the rods, and so on, to eliminate waiting time. At Wagon Wheel Gap, 32 rods were planted around the hot springs between June 20 and July 1, 2012. The purpose was to determine the direction of a possible upflow fault or other structure. Temperatures at 1.5m and 2m depths were measured and recorded in the attribute table of this point shapefile. Several anomalous temperatures suggest that outflow is coming from a ~N60W striking fault or shear zone that contains the quartz-fluorite-barite veins of the adjacent patented mining claims. It should be noted that temperatures at 2m

  3. Analysis of road pricing, metering and the priority treatment of high occupancy vehicles using system dynamics. Master's thesis

    SciTech Connect

    Castillo, W.

    1992-01-01

    Transportation Systems Management (TSM) employs various techniques such as road pricing, metering and the priority treatment of high occupancy vehicles (HOVs) in an effort to make more efficient use of existing transportation facilities. Efficiency is improved in terms of moving more people through the facility while simultaneously reducing the number of vehicles using the facility. This report uses a hypothetical toll facility and examines four computer modeling approaches to determine which of the approaches are valid in terms of predicting the behavior of trip makers seeking to use the facility in response to various combinations of TSM techniques. Once an approach has been determined to be valid, seven different combination of TSM techniques, or strategies, are compared to a base strategy to determine what strategy or strategies are most affective in achieving the goals of TSM.

  4. Petascale Initiative

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Petascale Initiative Exascale Computing APEX TOKIO: Total Knowledge of I/O Home » R & D » Archive » Petascale Initiative Petascale Initiative Alice Koniges (third from left) led the Computational Science and Engineering Petascale Initiative, which paired post-doctoral researchers with high-impact projects at NERSC. Post-docs pictured above are (from left) are Jihan Kim, Filipe Maia, Robert Preissl, Brian Austin, Wangyi (Bobby) Liu , Kirsten Fagnan and Praveen Narayanan. (Not pictured:

  5. Facility Safety

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  6. Facility Representatives

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2006-04-06

    REPLACED BY DOE-STD-1063 | SUPERSEDING DOE-STD-1063-2000 (MARCH 2000) The purpose of the DOE Facility Representative Program is to ensure that competent DOE staff personnel are assigned to oversee the day-to-day contractor operations at DOE’s hazardous nuclear and non-nuclear facilities.

  7. Excess Facilities overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Specifically, it describes the initial facilities that will be addressed as part of this effort. Projects include: Alpha 4 Biology Complex Building 3026 Building 7500 Building 3038 ...

  8. Waste Treatment Facility Passes Federal Inspection, Completes...

    Office of Environmental Management (EM)

    Completes Final Milestone, Begins Startup Waste Treatment Facility Passes Federal ... The Idaho site today initiated the controlled, phased startup of a new waste treatment ...

  9. Asset Revitalization Initiative ARI

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Asset Revitalization Initiative ( ARI ) Mission * Community * Reuse ARI is a DOE-wide effort to advance the beneficial reuse of the agency's unique and diverse mix of assets, including land, facilities, infrastructure, equipment, technologies, natural resources, and highly skilled workforce. ARI promotes an efficient business environment to encourage collaboration between public and private resources. ARI integrates DOE missions with community interests. ARI is... Our Vision By 2020: Operations

  10. Facility Safety

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. This Page Change is limited in scope to changes necessary to invoke DOE-STD-1104, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Document, and revised DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis as required methods. DOE O 420.1C Chg 1, dated 2-27-15, supersedes DOE O 420.1C.

  11. Gas Utilization Facility Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gas Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type...

  12. Total Energy Facilities Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  13. Projects & Initiatives

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Expand Finance & Rates Involvement & Outreach Expand Involvement & Outreach Doing Business Expand Doing Business Skip navigation links Initiatives Columbia River Treaty Non...

  14. Facility Safety

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2002-05-20

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  15. Facility Safety

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  16. Facility Safety

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  17. Facility Safety

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  18. Working with SRNL - Our Facilities - Glovebox Facilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    SRNL Our Facilities - Glovebox Facilities Govebox Facilities are sealed, protectively-lined compartments with attached gloves, allowing workers to safely handle dangerous materials...

  19. Federal metering data analysis needs and existing tools

    SciTech Connect

    Henderson, Jordan W.; Fowler, Kimberly M.

    2015-07-01

    Agencies have been working to improve their metering data collection, management, and analysis efforts over the last decade (since EPAct 2005) and will continue to address these challenges as new requirements and data needs come into place. Unfortunately there is no “one-size-fits-all” solution. As agencies continue to expand their capabilities to use metered consumption data to reducing resource use and improve operations, the hope is that shared knowledge will empower others to follow suit. This paper discusses the Federal metering data analysis needs and some existing tools.

  20. SLAC Accelerator Test Facilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    FACET & TF Careers & Education Archived FACET User Facility Quick Launch About FACET & Test Facilities Expand About FACET & Test Facilities FACET & Test Facilities User Portal...

  1. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    8, 2016 [Facility News] Workshop Features ARM Data Bookmark and Share giri_blog In November 2015, the First Workshop on Data Science, held in São Paulo, Brazil, was attended by 65 scientific experts to discuss national and international initiatives for data science that contribute to solving challenges in the context of open data science in Brazil. During the 2-day conference, Giri Palanisamy, ARM Data Services and Strategy Team Manager at Oak Ridge National Laboratory, hosted a training course

  2. Application for a Certificate of Public Good for Net Metered...

    OpenEI (Open Energy Information) [EERE & EIA]

    Certificate of Public Good for Net Metered Power Systems that are Non-Photovoltaic Systems Up to 150 kW (AC) in Capacity Jump to: navigation, search OpenEI Reference LibraryAdd to...

  3. Energy Secretary Chu Announces Five Million Smart Meters Installed...

    Energy.gov [DOE] (indexed site)

    Washington, DC - At a White House Grid Modernization event today, U.S. Department of Energy Secretary Steven Chu announced that more than five million smart meters have been ...

  4. Non-Invasive Energy Meter - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    flow systems (e.g., solar systems) using a simple technique that senses when the system is running and then estimates the BTU energy production. Current energy meters must be ...

  5. ARRA Program Celebrates Milestone 600,000 Smart Meter Installations

    Energy.gov [DOE]

    On April 11, 2012, DOE Recovery Act funding recipient Sacramento Municipal Utility District (SMUD) celebrated a major milestone in the development of a regional smart grid in California: the installation of over 600,000 smart meters.

  6. Smart Meters Helping Oklahoma Consumers Save Hundreds During...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Utility-provided meters give consumers real-time information on how their energy use affects their energy costs. With a two-tiered pricing system, you get a discount during lower ...

  7. The Need for Essential Consumer Protections: Smart metering proposals...

    Energy Saver

    and the move to time-based pricing. August 2010 The Need for Essential Consumer Protections: Smart metering proposals and the move to time-based pricing. August 2010 There is ...

  8. Metering Best Practices: A Guide to Achieving Utility Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... some types of fluid (gas, liquid and steam) flow meters, ... The orifice element is typically a thin, circular metal disk ... check impeller blades and bearings wear or damage. 4.5.2 ...

  9. NREL: Energy Systems Integration Facility - Systems Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Systems Integration Systems integration considers the relationships among electricity, thermal, and fuel systems and data and information networks to ensure optimal interoperability across the energy spectrum. The Energy Systems Integration Facility's suite of systems integration laboratories provides advanced capabilities for research, development, and demonstration of key components of future energy systems. Photo of a man and a power quality meter system in a laboratory. The Energy Systems

  10. Facility Environmental Vulnerability Assessment

    SciTech Connect

    Van Hoesen, S.D.

    2001-07-09

    From mid-April through the end of June 2001, a Facility Environmental Vulnerability Assessment (FEVA) was performed at Oak Ridge National Laboratory (ORNL). The primary goal of this FEVA was to establish an environmental vulnerability baseline at ORNL that could be used to support the Laboratory planning process and place environmental vulnerabilities in perspective. The information developed during the FEVA was intended to provide the basis for management to initiate immediate, near-term, and long-term actions to respond to the identified vulnerabilities. It was expected that further evaluation of the vulnerabilities identified during the FEVA could be carried out to support a more quantitative characterization of the sources, evaluation of contaminant pathways, and definition of risks. The FEVA was modeled after the Battelle-supported response to the problems identified at the High Flux Beam Reactor at Brookhaven National Laboratory. This FEVA report satisfies Corrective Action 3A1 contained in the Corrective Action Plan in Response to Independent Review of the High Flux Isotope Reactor Tritium Leak at the Oak Ridge National Laboratory, submitted to the Department of Energy (DOE) ORNL Site Office Manager on April 16, 2001. This assessment successfully achieved its primary goal as defined by Laboratory management. The assessment team was able to develop information about sources and pathway analyses although the following factors impacted the team's ability to provide additional quantitative information: the complexity and scope of the facilities, infrastructure, and programs; the significantly degraded physical condition of the facilities and infrastructure; the large number of known environmental vulnerabilities; the scope of legacy contamination issues [not currently addressed in the Environmental Management (EM) Program]; the lack of facility process and environmental pathway analysis performed by the accountable line management or facility owner; and poor

  11. The Need for Essential Consumer Protections: Smart Metering Proposals and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Move to Time-Based Pricing | Department of Energy Metering Proposals and the Move to Time-Based Pricing The Need for Essential Consumer Protections: Smart Metering Proposals and the Move to Time-Based Pricing There is a widespread consensus that the U.S. distribution and transmission systems for vital electricity service need to be modernized and upgraded to handle not only load growth, but the integration of renewable resources and the potential for a significant increase in

  12. WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential

    WindExchange

    Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California

  13. WINDExchange: Community-Scale 50-Meter Wind Maps

    WindExchange

    Community-Scale 50-Meter Wind Maps The U.S. Department of Energy provides 50-meter (m) height, high-resolution wind resource maps for most of the states and territories of Puerto Rico and the Virgin Islands in the United States. Counties, towns, utilities, and schools use community-scale wind resource maps to locate and quantify the wind resource, identifying potentially windy sites determining a potential site's economic and technical viability. Map of the updated wind resource assessment

  14. Icing rate meter estimation of in-cloud cable icing

    SciTech Connect

    McComber, P.; Druez, J.; Laflamme, J.

    1994-12-31

    In many northern countries, the design and reliability of power transmission lines are closely related to atmospheric icing overloads. It is becoming increasingly important to have reliable instrument systems to warn of icing conditions before icing loads become sufficient to damage the power transmission network. Various instruments are presently being developed to provide better monitoring of icing conditions. One such instrument is the icing rate meter (IRM) which counts icing and de-icing cycles per unit time on a standard probe and can be used to estimate the icing rate on nearby cables. The calibration presently used was originally based on experiments conducted in a cold room. Even though this calibration has shown that the IRM estimation already offers an improvement over model prediction based on standard meteorological parameters, it can certainly be improved further with appropriate field data. For this purpose, the instrument was tested on an icing test site at Mt. Valin (altitude 902 m) Quebec, Canada. In this paper measurements from twelve in-cloud icing events during the 1991--92 winter are divided into one hour periods of icing to provide the experimental icing rate data. The icing rates measured on a 12.5 mm and a 35 mm cables are then compared with the number of IRM signals, also for one hour periods, in relation to initial ice load, temperature, wind velocity and direction. From this analysis, a better calibration for the IRM instrument is suggested. The improvement of the IRM estimation is illustrated by making a comparison with measurements, of the icing load estimation with the old and new calibrations for two complete icing events.

  15. Facility Safety

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  16. Facility Safety

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  17. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  18. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Meters and a Smarter Power Grid Tips: Smart Meters and a Smarter Power Grid The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- ...

  19. Metering Best Practices. A Guide to Achieving Utility Resource Efficiency, Release 3.0

    SciTech Connect

    Parker, Steven A.; Hunt, W. D.; McMordie Stoughton, Kate; Boyd, Brian K.; Fowler, Kimberly M.; Koehler, Theresa M.; Sandusky, William F.; Sullivan, Greg P.; Pugh, Ray

    2015-04-05

    DOE FEMP guide for metering best practices aligned with the DOE Metering Guidance revision required by the 12/2013 Presidential Memo.

  20. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and equipment -- including a smart meter at your home -- working together to ... and equipment -- including a smart meter at your home -- working together to ...

  1. A Meter-Scale Plasma Wakefield Accelerator (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: A Meter-Scale Plasma Wakefield Accelerator Citation Details In-Document Search Title: A Meter-Scale Plasma Wakefield Accelerator No abstract prepared. Authors:...

  2. REDUCING PRODUCED WATER WITH DENSITY AND CONDUCTIVITY METERS

    SciTech Connect

    Jason T. Smith

    2004-08-01

    The work performed was an attempt to reduce the amount of produced water by using the well bore as an oil-water separator. The use of a flow meter, density meter and/or conductivity meter controlling a pumping unit would be used to achieve this goal. The natural physical differences between oil and water are easily detected inside the production stream with proper equipment. A coriolis mass meter, conductivity meter, data recorder, timer and relays were purchased and housed in a purpose-built field cabinet. The metering unit was hooked to four wells over the course of the project, Spencer No.8, Applegate Gray Unit No.1 (AGU No.1), Vollmer No.4 and Mohr No.1. All are located in the Illinois Basin, three with artificial lift pumps and one flowing well. Depth of producing formations ranges from a maximum of 846.13 m (2776 ft) to minimum of 316.69 m (1039 ft). All wells were completed in one formation of Mississippian or Pennsylvanian age. The data recorded were analyzed to determine what events could be detected. Events included pure oil or higher oil-cut fluid reaching the pump or reaching the metering equipment, the pump operating under capacity, and the well ''pumped down''. Based on how much oil and water is present in a fluid column, the pressure the fluid column imparts on a formation can be calculated. By knowing the amount of oil and water in a well bore and the maximum height water can reach, production equipment can be configured to only produce oil. However, the configuration may not be profitable. It became apparent during the course of this research the wells tested do not have an oil-water contact deep enough so traditional pumping equipment can be configured to recover oil by the proposed method. This method may work more successfully in deeper basins. Other interesting anomalies were also detected in the data.

  3. Rotor instrumentation circuits for the Sandia 34-meter vertical axis wind turbine

    SciTech Connect

    Sutherland, H.J.; Stephenson, W.A.

    1988-07-01

    Sandia National Laboratories has erected a research oriented, 34-meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas, which has been designated the Sandia 34-m VAWT Test Bed. To meet present and future research needs, the machine was equipped with a large array of sensors. This manuscript details the sensors initially placed on the rotor, their respective instrumentation circuits, and the provisions incorporated into the design of the rotor instrumentation circuits for future research. This manuscript was written as a reference manual for the rotor instrumentation of the Test Bed. 16 refs., 8 figs., 7 tabs.

  4. Liquid Effluent Retention Facility (LERF) Final Hazard Category Determination

    SciTech Connect

    HUTH, L.L.

    2001-06-06

    the Category 3 threshold quantities is 10 rem-equivalent man at 30 meters (98 feet) (DOE 1992, DOE 1997). The calculated 12 hour consequences to an individual located at 30 meters (98 feet) for two credible scenarios, spray release and a pool release, are 3.50 rem and 1.32 rem, respectively, which based upon the original hazard categorization criteria (DOE 1992) classified the Liquid Effluent Retention Facility as a Radiological Facility. Comparison of the calculated 24 hour consequences to an individual located at 30 meters (98 feet) for two credible scenarios, spray release and a pool release, 7.00 rem and 2.64 rem respectively, confirmed the Liquid Effluent Retention Facility classification as a Radiological Facility under the current hazard categorization criteria (DOE 1997). Both result in dose consequence values less than the allowable, 10 rem, meeting the requirements for categorizing the Liquid Effluent Retention Facility as a Radiological Facility.

  5. Mobile Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    govSitesMobile Facility AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 MAOS AMF Fact Sheet Images Contacts AMF Deployments McMurdo Station, Antarctica, 2015-2016 Pearl Harbor, Hawaii, to San Francisco, California, 2015 Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010

  6. The AGS Ggamma Meter and Calibrating the Gauss Clock

    SciTech Connect

    Ahrens, Leif

    2014-03-31

    During AGS Polarized Proton acceleration periods, one output from the AGS Ggamma Meter, namely the energy (or Ggamma) calculated from the magnetic field in the AGS main magnets and the beam radius- both measured in particular instant, is used to figure out the times in the AGS magnet acceleration cycle when the beam passes through a particular set of depolarizing resonances. The resonance set occur whenever a particle’s Ggamma (energy*(G/m) becomes nearly equal to n*Qx (i.e. any integer multiplied by the horizontal betatron tune). This deliverable is why the machinery is referred to as the ''Ggamma Meter'' rather than the AGS energy meter. The Ggamma Meter takes as inputs a set of measurements of frequency (F(t)), radius (r(t)), and gauss clock counts (GCC(t)). The other energy (GgammaBr) assumes the field when the gauss clock starts counting is known. The change in field to time t is given by the measured accumulated gauss clock counts multiplied by the gauss clock calibration (gauss/GCC). In order to deal with experimental data, this calibration factor gets an added ad hoc complication, namely a correction dependent on the rate of change the counting rate. The Ggamma meter takes GCC(t) and together with the past history for this cycle calculates B(t).

  7. Compensated count-rate circuit for radiation survey meter

    DOEpatents

    Todd, R.A.

    1980-05-12

    A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for couting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensation circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.

  8. Compensated count-rate circuit for radiation survey meter

    DOEpatents

    Todd, Richard A.

    1981-01-01

    A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for counting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensated circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.

  9. Behind the Scenes at Berkeley Lab - The Mechanical Fabrication Facility

    SciTech Connect

    Wells, Russell; Chavez, Pete; Davis, Curtis; Bentley, Brian

    2013-05-17

    Part of the Behind the Scenes series at Berkeley Lab, this video highlights the lab's mechanical fabrication facility and its exceptional ability to produce unique tools essential to the lab's scientific mission. Through a combination of skilled craftsmanship and precision equipment, machinists and engineers work with scientists to create exactly what's needed - whether it's measured in microns or meters.

  10. Behind the Scenes at Berkeley Lab - The Mechanical Fabrication Facility

    ScienceCinema

    Wells, Russell; Chavez, Pete; Davis, Curtis; Bentley, Brian

    2014-09-15

    Part of the Behind the Scenes series at Berkeley Lab, this video highlights the lab's mechanical fabrication facility and its exceptional ability to produce unique tools essential to the lab's scientific mission. Through a combination of skilled craftsmanship and precision equipment, machinists and engineers work with scientists to create exactly what's needed - whether it's measured in microns or meters.

  11. SCB initiator

    DOEpatents

    Bickes, Jr., Robert W. (Albuquerque, NM); Renlund, Anita M. (Albuquerque, NM); Stanton, Philip L. (Albuquerque, NM)

    1994-01-01

    A detonator for high explosives initiated by mechanical impact includes a cylindrical barrel, a layer of flyer material mechanically covering the barrel at one end, and a semiconductor bridge ignitor including a pair of electrically conductive pads connected by a semiconductor bridge. The bridge is in operational contact with the layer, whereby ignition of said bridge forces a portion of the layer through the barrel to detonate the explosive. Input means are provided for igniting the semiconductor bridge ignitor.

  12. SCB initiator

    DOEpatents

    Bickes Jr., Robert W.; Renlund, Anita M.; Stanton, Philip L.

    1994-11-01

    A detonator for high explosives initiated by mechanical impact includes a cylindrical barrel, a layer of flyer material mechanically covering the barrel at one end, and a semiconductor bridge ignitor including a pair of electrically conductive pads connected by a semiconductor bridge. The bridge is in operational contact with the layer, whereby ignition of said bridge forces a portion of the layer through the barrel to detonate the explosive. Input means are provided for igniting the semiconductor bridge ignitor.

  13. Research Facilities | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Facilities Our state-of-the-art facilities are available to industry entrepreneurs, engineers, scientists, and universities for researching and developing their energy technologies. Our researchers and technicians who operate these labs and facilities are ready to work with you and share their expertise. Alphabetical Listings Laboratories Test and User Facilities Popular Facilities Energy Systems Integration Facility Integrated Biorefinery Research Facility Process Development

  14. Smart preamplifier for real-time turbine meter diagnostics

    SciTech Connect

    Breter, J.C.

    1995-12-31

    A new, dual-purpose device for turbine meters, which functions as a traditional signal preamplifier and accomplishes real-time performance diagnostics, is now available. This smart preamplifier (patent pending) utilizes high speed microprocessor technology to continuously monitor and analyze the rotation of a turbine meter rotor. Continuous monitoring allows the device to detect rotational anomalies that can lead to erroneous measurements as they occur. The smart preamplifier works on liquid or gas turbine meters that use a variable reluctance pickup coil for signal generation. This paper will discuss the technology and capabilities of the smart preamplifier. To simplify this discussion, it is assumed that the signal generated will be via a non-rimmed rotor. Thus, the term ``blade`` is used throughout. However, all discussions relevant to signal generation are also true for a rimmed rotor using either buttons or slots for signal generation.

  15. Advanced Metering Implementations - A Perspective from Federal Sector

    SciTech Connect

    Eaarni, Shankar

    2014-08-11

    Federal mandate (EPACT 2005) requires that federal buildings install advanced electrical meters-meters capable of providing data at least daily and measuring the consumption of electricity at least hourly. This work presents selected advanced metering implementations to understand some of the existing practices related to data capture and to understand how the data is being translated into information and knowledge that can be used to improve building energy and operational performance to meet federal energy reduction mandates. This study highlights case studies to represent some of the various actions that are being taken based on the data that are being collected to improve overall energy performance of these buildings. Some of these actions include- individualized tenant billing and energy forecasting, benchmarking, identifying energy conservation measures, measurement and verification.

  16. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Tronox Facility in Savannah, Georgia. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Kiatreungwattana, K.; Geiger, J.; Healey, V.; Mosey, G.

    2013-03-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Tronox Facility site in Savannah, Georgia, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  17. Verifying energy savings with minimal metered data: The Hunter heat pump analysis

    SciTech Connect

    Parker, S.A.

    1995-03-01

    In November 1992, Hunter Army Air Field (AAF) completed the installation of 489 air-source heat pumps -- a new heat pump and air-handling unit for each residence. The air-source heat pumps replaced older, less efficient, air-conditioning systems, fuel oil-fired furnaces, and fan coil units. Hunter AAF originally contacted to upgrade the old family housing heating, ventilating, and air-conditioning (HVAC) systems with high efficiency air-conditioning systems and natural gas furnaces, but an alternative proposal and following energy studies indicated that heat pumps were a more life-cycle cost-effective alternative. Six months after the heat pumps were installed, Hunter`s energy bills appeared to be increasing, not decreasing as expected. In early 1994, Pacific Northwest Laboratory` (PNL) began an analysis to determine if there were any energy savings resulting from the heat pump installation as predicted by previous energy studies. The problem is that the HVAC systems are not specifically submetered to support verifying the resulting energy savings and, as is the case with most federal facilities, even the homes are not individually metered. Savings verification needed to be accomplished with die existing and available metered data. This data consisted primarily of monthly electric submeter readings from the two housing subdivision meters, historical fuel oil delivery records for family housing, and monthly base-wide electric bills. The objective of the study is to verify the change in energy consumption in family housing and, to the extent possible, identify how much of the change in consumption is attributable to the new HVAC system and how much is probably attributable to other factors, such as the weather.

  18. ARM - Guest Instrument Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PlainsGuest Instrument Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts Guest Instrument Facility ARM's Guest Instrument Facility at the SGP site near Lamont, Oklahoma. ARM's Guest

  19. NREL: Research Facilities - Webmaster

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Your name: Your email address: Your message: Send Message Printable Version Research Facilities Home Laboratories Test & User Facilities Laboratories & Facilities by Technology...

  20. Facilities | Bioenergy | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Facilities At NREL's state-of-the-art bioenergy research facilities, researchers design ... facility to develop, test, evaluate, and demonstrate bioenergy processes and technologies. ...

  1. Preliminary Closure Plan for the Immobilized Low Activity Waste (ILAW) Disposal Facility

    SciTech Connect

    BURBANK, D.A.

    2000-08-31

    This document describes the preliminary plans for closure of the Immobilized Low-Activity Waste (ILAW) disposal facility to be built by the Office of River Protection at the Hanford site in southeastern Washington. The facility will provide near-surface disposal of up to 204,000 cubic meters of ILAW in engineered trenches with modified RCRA Subtitle C closure barriers.

  2. Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat July 26, 2011 - 4:27pm Addthis Small business owner Steve Kaplan told ABC News’ “Show Me the Money” on Good Morning America that he's saving over $320 per month compared to last summer, which they calculated could result in $1,300 a year. Small business owner Steve Kaplan told ABC News' "Show Me the Money" on

  3. Recessed impingement insert metering plate for gas turbine nozzles

    DOEpatents

    Itzel, Gary Michael; Burdgick, Steven Sebastian

    2002-01-01

    An impingement insert sleeve is provided that is adapted to be disposed in a coolant cavity defined through a stator vane. The insert has a generally open inlet end and first and second diametrically opposed, perforated side walls. A metering plate having at least one opening defined therethrough for coolant flow is mounted to the side walls to generally transverse a longitudinal axis of the insert, and is disposed downstream from said inlet end. The metering plate improves flow distribution while reducing ballooning stresses within the insert and allowing for a more flexible insert attachment.

  4. Wintertime current meter measurements from the East China Sea

    SciTech Connect

    Trump, C.L.; Burt, W.V.

    1981-09-01

    An array of three current meters were anchored on the continental shelf of the East China Sea during the last half of February 1975 as part of the Japanese Air Mass Transformation Experiment, AMTEX-75. The results indicate that the currents are dominated by the rotational semidiurnal M/sub 2/ tidal component superimposed on a slow mean drift to the northeast. Differences in direction of several days duration between two of the current meters suggest the presence of transient mesoscale eddies or meanders in the flow regime.

  5. EDD-7 Electric Charge Point Meter test results

    SciTech Connect

    Mersman, C.R.

    1993-09-01

    The results of tests evaluating the electric switching portion of the EDD-7 Electric Charge Point Meter (ECPM) are presented. The ECPM is a modified parking meter that allows the purchase of 120 or 240 volt electric power. The ECPM is designed to make electricity available at any vehicle parking location. The test results indicate that the ECPM operated without failure thru a series of over current and ground fault tests at three different test temperatures. The magnitude of current required to trip the over current protection circuitry varied with temperature while the performance of the ground fault interruption circuitry did not change significantly with the test temperature.

  6. The Need for Essential Consumer Protections: Smart metering proposals and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the move to time-based pricing. August 2010 | Department of Energy metering proposals and the move to time-based pricing. August 2010 The Need for Essential Consumer Protections: Smart metering proposals and the move to time-based pricing. August 2010 There is widespread consensus that the U.S. distribution and transmission systems for vital electricity service need to be modernized and upgraded. This modernization has been recently promoted under the rubric of the Smart Grid. The Smart Grid

  7. WINDExchange: Residential-Scale 30-Meter Wind Maps

    WindExchange

    Residential-Scale 30-Meter Wind Maps The U.S. Department of Energy provides 30-meter (m) height, high-resolution wind resource maps for the United States. Businesses, farms, and homeowners use residential-scale wind resource maps to identify wind sites that may be appropriate for small-scale wind projects. A wind resource map of the United States. Go to the California wind resource map. Go to the Washington wind resource map. Go to the Oregon wind resource map. Go to the Idaho wind resource map.

  8. Uncertainty quantification in application of the enrichment meter principle for nondestructive assay of special nuclear material

    SciTech Connect

    Burr, Tom; Croft, Stephen; Jarman, Kenneth D.

    2015-09-05

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings, and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically quantify total uncertainty in terms of “random” and “systematic” components, and then specify error bars for the total mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed and achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we propose improvements over GUM for NDA by illustrating UQ challenges that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using low-resolution NaI spectra and applying the enrichment meter principle to estimate the U-235 mass in an item. The case study illustrates how to update the current American Society for Testing and Materials guide for application of the enrichment meter principle using gamma spectra from a NaI detector.

  9. Uncertainty quantification in application of the enrichment meter principle for nondestructive assay of special nuclear material

    DOE PAGES [OSTI]

    Burr, Tom; Croft, Stephen; Jarman, Kenneth D.

    2015-09-05

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings, and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically quantify total uncertainty in terms of “random” and “systematic” components, and then specify error bars for the total mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed andmore » achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we propose improvements over GUM for NDA by illustrating UQ challenges that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using low-resolution NaI spectra and applying the enrichment meter principle to estimate the U-235 mass in an item. The case study illustrates how to update the current American Society for Testing and Materials guide for application of the enrichment meter principle using gamma spectra from a NaI detector.« less

  10. Research Facility,

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Delivering the Data As a general condition for use of the ARM Climate Research Facility, users are required to include their data in the ARM Data Archive. All data acquired must be of sufficient quality to be useful and must be documented such that users will be able to clearly understand the meaning and organization of the data. Final, quality-assured data sets are stored in the Data Archive and are freely accessible to the general scientific community. Upon conclusion of the field campaign,

  11. Support - Facilities - Radiation Effects Facility / Cyclotron...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    During experiments at the Radiation Effects Facility users are assisted by the experienced ... shops are available to the users of the Radiation Effects Facility for design, ...

  12. Radiation Effects Facility - Facilities - Cyclotron Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Radiation Effects Facility Typical DUT(device under test) set-up at the end of the Radiation Effects beamline. The Radiation Effects Facility is available for commercial, ...

  13. Harrisburg Facility Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleHarrisburgFacilityBiomassFacility&oldid397545" Feedback Contact needs updating Image needs updating...

  14. Brookhaven Facility Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleBrookhavenFacilityBiomassFacility&oldid397235" Feedback Contact needs updating Image needs updating...

  15. Energy Systems Integration Facility (ESIF): Facility Stewardship...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Systems Integration Facility (ESIF) Facility Stewardship Plan Revision 2.0 ... laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable ...

  16. Private sector initiatives in energy conservation

    SciTech Connect

    Rebholz, A.F.

    1983-06-01

    As an example of private sector initiatives in energy conservation, Prudential's energy management program is highlighted. In Phase I specific hours of operation were permitted, temperatures were maintained at a prescribed level, and lighting standards were reduced. In Phase II, inefficient HVAC systems were upgraded, timing switches and energy management computers were installed, solar film was applied to windows, and metering utilities were separated. An energy consumption tracking system called PACE was also instrumented to maintain the achieved objectives by monthly measuring.

  17. Glass Furnace Combustion and Melting Research Facility.

    SciTech Connect

    Connors, John J.; McConnell, John F.; Henry, Vincent I.; MacDonald, Blake A.; Gallagher, Robert J.; Field, William B.; Walsh, Peter M.; Simmons, Michael C.; Adams, Michael E.; Leadbetter, James M.; Tomasewski, Jack W.; Operacz, Walter J.; Houf, William G.; Davis, James W.; Marvin, Bart G.; Gunner, Bruce E.; Farrell, Rick G.; Bivins, David P.; Curtis, Warren; Harris, James E.

    2004-08-01

    solution of proprietary glass production problems. As a consequence of the substantial increase in scale and scope of the initial furnace concept in response to industry recommendations, constraints on funding of industrial programs by DOE, and reorientation of the Department's priorities, the OIT Glass Program is unable to provide the support for construction of such a facility. However, it is the present investigators' hope that a group of industry partners will emerge to carry the project forward, taking advantage of the detailed furnace design presented in this report. The engineering, including complete construction drawings, bill of materials, and equipment specifications, is complete. The project is ready to begin construction as soon as the quotations are updated. The design of the research melter closely follows the most advanced industrial practice, firing by natural gas with oxygen. The melting area is 13 ft x 6 ft, with a glass depth of 3 ft and an average height in the combustion space of 3 ft. The maximum pull rate is 25 tons/day, ranging from 100% batch to 100% cullet, continuously fed, with variable batch composition, particle size distribution, and raft configuration. The tank is equipped with bubblers to control glass circulation. The furnace can be fired in three modes: (1) using a single large burner mounted on the front wall, (2) by six burners in a staggered/opposed arrangement, three in each breast wall, and (3) by down-fired burners mounted in the crown in any combination with the front wall or breast-wall-mounted burners. Horizontal slots are provided between the tank blocks and tuck stones and between the breast wall and skewback blocks, running the entire length of the furnace on both sides, to permit access to the combustion space and the surface of the glass for optical measurements and sampling probes. Vertical slots in the breast walls provide additional access for measurements and sampling. The furnace and tank are to be fully instrumented

  18. Microsoft Word - eMeter 10-11-01 Response to DOE RFI.doc

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Addressing Policy and Logistical Challenges to smart grid Implementation: Response to Department of Energy RFI November 1, 2010 eMeter Strategic Consulting Background eMeter is a smart grid software company that provides smart network application platform (SNAP) software to integrate smart meters and smart grid communications networks and devices with utility IT systems. eMeter also provides smart grid application software such as meter data management (MDM) and consumer engagement software.

  19. Kent County Waste to Energy Facility Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    County Waste to Energy Facility Biomass Facility Jump to: navigation, search Name Kent County Waste to Energy Facility Biomass Facility Facility Kent County Waste to Energy...

  20. Stockton Regional Water Control Facility Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Stockton Regional Water Control Facility Biomass Facility Jump to: navigation, search Name Stockton Regional Water Control Facility Biomass Facility Facility Stockton Regional...

  1. Tribal Programs, Special Initiatives, and Cooperative Agreements |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Programs, Special Initiatives, and Cooperative Agreements Tribal Programs, Special Initiatives, and Cooperative Agreements EM is involved in the cleanup of nuclear waste at nationwide sites and facilities. The waste, a result of the production of nuclear weapons, has affected sovereign Tribal nations located near these facilities. These Tribal nations have been impacted by different types of waste contamination, and their participation in the EM mission is critical.

  2. Hydrostatic bearings for a turbine fluid flow metering device

    DOEpatents

    Fincke, J.R.

    1982-05-04

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

  3. Hydrostatic bearings for a turbine fluid flow metering device

    DOEpatents

    Fincke, James R.

    1982-01-01

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  4. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    December 4, 2010 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of the ARM mobile facilities, aerial facility, and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility. Facility availability is as follows: ARM Mobile Facility 2 (AMF2) available FY2013 ARM Mobile Facility 1 (AMF1) available March 2015

  5. Sandia Lightning Simulation Facility Building 888. Hazards assessment document

    SciTech Connect

    Banda, Z.; Barnett, B.

    1994-10-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Sandia Lightning Simulation Facility, Building 888. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 23 meters. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 65 meters.

  6. Sandia Administrative Micrographics Facility, Building 802: Hazards assessment document

    SciTech Connect

    Swihart, A.

    1994-12-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Sandia Administrative Micrographics Facility, Building 802. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 33 meters. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 75 meters.

  7. Nuclear Safety Workshop Agenda - Post Fukushima Initiatives and...

    Energy.gov [DOE] (indexed site)

    of Energy's (DOE) nuclear facilities and identify opportunities for improvement. Nuclear Safety Workshop Agenda - Post Fukushima Initiatives and Results More Documents &...

  8. Openness initiative

    SciTech Connect

    Duncan, S.S.

    1995-12-31

    Although antinuclear campaigns seem to be effective, public communication and education efforts on low-level radioactive waste have mixed results. Attempts at public information programs on low-level radioactive waste still focus on influencing public opinion. A question then is: {open_quotes}Is it preferable to have a program focus on public education that will empower individuals to make informed decisions rather than trying to influence them in their decisions?{close_quotes} To address this question, a case study with both quantitative and qualitative data will be used. The Ohio Low-Level Radioactive Waste Education Program has a goal to provide people with information they want/need to make their own decisions. The program initiated its efforts by conducting a statewide survey to determine information needed by people and where they turned for that information. This presentation reports data from the survey and then explores the program development process in which programs were designed and presented using the information. Pre and post data from the programs reveal attitude and knowledge shifts.

  9. Data acquisition at the Bevalac - an example: the HISS facility

    SciTech Connect

    McParland, C.

    1983-06-01

    The Heavy Ion Spectrometer System (HISS) is a relativistic heavy ion research facility at the Bevalac accelerator complex, Lawrence Berkeley Laboratory (LBL). This spectrometer can provide fields of up to 30K gauss within a volume of more than 3 cubic meters. This facility is equipped with a number of large, flexible detector systems. Over the last four years, a loosely coupled data acquisition and analysis system has been written for use at this facility. This system will be described in detail with particular emphasis on development of high data rate capabilities.

  10. Manufacturing Demonstration Facilities Workshop Agenda, March 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Workshop Agenda, March 2012 Manufacturing Demonstration Facilities Workshop Agenda, March 2012 mdf_workshop_agenda.pdf (263.06 KB) More Documents & Publications Manufacturing Demonstration Facility Workshop Critical Materials Workshop Agenda Innovative Manufacturing Initiatives Recognition Day Agenda

  11. ITEP Greening Tribal Operations and Facilities Trainings

    Energy.gov [DOE]

    The Institute for Tribal Environmental Professionals (ITEP) is offering our Greening Tribal Operations and Facilities training course for employees of federally-recognized tribes. This course focuses on providing you with the tools necessary to reduce your waste stream and initiate environmentally sustainable practices in your tribal day-to-day operations, as well as tribally owned facilities, such as hotels, casinos, and resorts.

  12. Photo of the Week: The Mirror Fusion Test Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Mirror Fusion Test Facility Photo of the Week: The Mirror Fusion Test Facility July 19, 2013 - 4:17pm Addthis This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an experimental magnetic confinement fusion device built using a magnetic mirror at Lawrence Livermore National Laboratory (LLNL). The MFTF functioned as the primary research center for mirror fusion devices. The design consisted of a 64-meter-long vacuum vessel fitted with 26 coil magnets bonding the center of the vessel

  13. Characterization of emergency preparedness at DOE contractor facilities

    SciTech Connect

    Gillings, J.C.; Murphy, B.L.; Corbit, C.D.; MacLellan, J.A.; Essig, T.H.; Higby, D.P.; Hooker, C.D.; Laughlin, G.J.; Stoetzel, G.A.; Swinth, K.L.

    1984-07-01

    A study of emergency preparedness capabilities at DOE facilities was initiated following the incident at the Three Mile Island (TMI) Nuclear Power Station. It was designed to parallel but expand on a study on emergency preparedness instrumentation that was conducted in 1970 by Pacific Northwest Laboratory. The 1970 survey findings led to the publication of four reports on performance criteria for radiological emergency instrumentation. Three of these reports - BNWL-1635 (Selby et al. 1972), BNWL-1742 (Anderson et al. 1974) and BNWL-1857 (Andersen et al. 1976) - addressed the criteria for emergency instrumentation at reactors, mixed oxide fuel fabrication plants, and fuel reprocessing plants, respectively. The fourth report, BNWL-1991 (Bramson et al. 1976), addressed evaluation testing and calibration methodology for these instruments. This report is presented in three parts. Part One is a review of the BNWL documents to determine whether they are applicable to state-of-the-art instrument capabilities. The Appendix to Part One provides a comparison between the instrument performance criteria established in BNWL-1991 to applicable American National Standards Institute (ANSI) standards for portable survey and contamination meters, installed radiation and area monitors, effluent monitors, calibration techniques, criticality detection systems, alarm systems, and direct reading dosimeters. Part Two compares the 1970 survey results with the 1980 survey results to identify trends in emergency preparedness. Part Three is a discussion of the results of the 1980 emergency preparedness survey and the supporting data for each of the 15 modules. 8 references. (ACR)

  14. Microdrill Initiative - Initial Market Evaluation

    SciTech Connect

    Spears & Associates, Inc

    2003-07-01

    The U.S. Department of Energy (DOE) is launching a major research and development initiative to create a small, fast, inexpensive and environmentally friendly rig for drilling 5000 feet boreholes to investigate potential oil and gas reservoirs. DOE wishes to get input from petroleum industry operators, service companies and equipment suppliers on the operation and application of this coiled-tubing-based drilling unit. To that end, DOE has asked Spears & Associates, Inc. (SAI) to prepare a special state-of-the-market report and assist during a DOE-sponsored project-scoping workshop in Albuquerque near the end of April 2003. The scope of the project is four-fold: (1) Evaluate the history, status and future of demand for very small bore-hole drilling; (2) Measure the market for coiled tubing drilling and describe the state-of-the-art; (3) Identify companies and individuals who should have an interest in micro drilling and invite them to the DOE workshop; and (4) Participate in 3 concurrent workshop sessions, record and evaluate participant comments and report workshop conclusions.

  15. Working with SRNL - Our Facilities- High and Intermediate Level...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and the closure of SRS' radioactive waste storage tanks. The facility also supports other initiatives requiring the study or manipulation of highly radioactive samples and items

  16. Excellence Award in the 2012 Facilities Environmental, Safety...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Excellence Award in the 2012 Facilities Environmental, Safety and Health Go Green Initiative - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator ...

  17. How to Read Residential Electric and Natural Gas Meters | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy How to Read Residential Electric and Natural Gas Meters How to Read Residential Electric and Natural Gas Meters An electromechanical electric meter on the side of a house. | Photo courtesy of ©iStockphoto/epantha An electromechanical electric meter on the side of a house. | Photo courtesy of ©iStockphoto/epantha A digital electric meter on the side of a house. | Photo courtesy of ©iStockphoto/nbehmans A digital electric meter on the side of a house. | Photo courtesy of

  18. Dead-time compensation for a logarithmic display rate meter

    DOEpatents

    Larson, J.A.; Krueger, F.P.

    1987-10-05

    An improved circuit is provided for application to a radiation survey meter that uses a detector that is subject to dead time. The circuit compensates for dead time over a wide range of count rates by producing a dead-time pulse for each detected event, a live-time pulse that spans the interval between dead-time pulses, and circuits that average the value of these pulses over time. The logarithm of each of these values is obtained and the logarithms are subtracted to provide a signal that is proportional to a count rate that is corrected for the effects of dead time. The circuit produces a meter indication and is also capable of producing an audible indication of detected events. 5 figs.

  19. Dead-time compensation for a logarithmic display rate meter

    DOEpatents

    Larson, John A.; Krueger, Frederick P.

    1988-09-20

    An improved circuit is provided for application to a radiation survey meter that uses a detector that is subject to dead time. The circuit compensates for dead time over a wide range of count rates by producing a dead-time pulse for each detected event, a live-time pulse that spans the interval between dead-time pulses, and circuits that average the value of these pulses over time. The logarithm of each of these values is obtained and the logarithms are subtracted to provide a signal that is proportional to a count rate that is corrected for the effects of dead time. The circuit produces a meter indication and is also capable of producing an audible indication of detected events.

  20. Metered Evaporator for Tokamak Wall Conditioning --- Inventor(s): Charles

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    H. Skinner, Dennis Mansfield, Henry Kugel, Hans Schneider and Lane Roquemore | Princeton Plasma Physics Lab Metered Evaporator for Tokamak Wall Conditioning --- Inventor(s): Charles H. Skinner, Dennis Mansfield, Henry Kugel, Hans Schneider and Lane Roquemore A novel lithium evaporator for the controlled introduction of lithium into tokamaks for wall conditioning is described. The concept uses a Li granule injector with a heated in-vessel yttrium crucible to evaporate a controlled amount of

  1. Fuel Quality and Metering: Current Status and Future Needs

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    & Metering Current Status and Future Needs DOE Tank Safety Workshop Sandia National Labs April 29, 2010 John Mough CA Department of Food & Agriculture, Division of Measurement Standards What does the Dept of Food & Agriculture have to do with Hydrogen?? The Division of Measurement Standards is the Weights and Measures arm of California The Division of Measurement Standards is charged with enforcing the quality standards for Gasoline, Diesel, Motor Oil, Coolants, Brake Fluid, ATF, and

  2. Hydrostatic bearings for a turbine fluid flow metering device

    DOEpatents

    Fincke, J.R.

    1980-05-02

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  3. Smart Meter Investments Support Rural Economy in Arkansas

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Smart Meter Investments Support Rural Economy in Arkansas Woodruff Electric Cooperative (Woodruff) serves customers in seven eastern Arkansas counties. The proportion of residents living in poverty in those counties is more than double the national average. As a member-owned rural electric cooperative, Woodruff is connected to its customers and engaged in economic development efforts to bring more jobs and higher incomes to local communities. In order to bring the capital investment and its

  4. Designing and Operating Through Compromise: Architectural Analysis of CKMS for the Advanced Metering Infrastructure

    SciTech Connect

    Duren, Mike; Aldridge, Hal; Abercrombie, Robert K; Sheldon, Frederick T

    2013-01-01

    Compromises attributable to the Advanced Persistent Threat (APT) highlight the necessity for constant vigilance. The APT provides a new perspective on security metrics (e.g., statistics based cyber security) and quantitative risk assessments. We consider design principals and models/tools that provide high assurance for energy delivery systems (EDS) operations regardless of the state of compromise. Cryptographic keys must be securely exchanged, then held and protected on either end of a communications link. This is challenging for a utility with numerous substations that must secure the intelligent electronic devices (IEDs) that may comprise complex control system of systems. For example, distribution and management of keys among the millions of intelligent meters within the Advanced Metering Infrastructure (AMI) is being implemented as part of the National Smart Grid initiative. Without a means for a secure cryptographic key management system (CKMS) no cryptographic solution can be widely deployed to protect the EDS infrastructure from cyber-attack. We consider 1) how security modeling is applied to key management and cyber security concerns on a continuous basis from design through operation, 2) how trusted models and key management architectures greatly impact failure scenarios, and 3) how hardware-enabled trust is a critical element to detecting, surviving, and recovering from attack.

  5. Revenue-metering device for HVDC systems. Final report

    SciTech Connect

    Schweitzer, E.O. III; Ando, M.; Aliaga, A.; Baker, R.; Seamans, D.

    1984-05-01

    This final report describes a digital dc revenue metering device for HVDC systems developed by Washington State University researchers under a contract with the Electric Power Research Institute. The device was installed at the Sylmar Converter Station of the Los Angeles Department of Water and Power in November 1981, and has been operating satisfactorily for over 20 months. It uses voltage and current measurements from existing voltage dividers, current transductors, and a current shunt. The energy-computation algorithms are implemented using digital signal processing principles in a single eight-bit microprocessor (Motorola MC6809). The algorithms accommodate the different characteristics of the sensors, and tolerate the unavailability of some of the sensors, with some loss in accuracy. Comparisons of the dc Revenue Meter energy measurements with the ac revenue meter measurements plus the station losses reveal a 0.1 percent difference in one pole and a one percent difference in the other pole, for a net difference of about one-half percent.

  6. The US Department of Energy`s facility reuse at the Rocky Flats Environmental Technology Site

    SciTech Connect

    1998-08-01

    This audit was initiated to determine whether the Rocky Flats Environmental Technology Site was maximizing its reuse of excess facilities.

  7. Sandia National Laboratories: Facilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Facilities Bioscience Computing and Information Science Electromagnetics Facilities Electromagnetic Environments Simulator (EMES) Mode Stirred Chamber Lightning Facility Electrostatic Discharge (ESD) Laboratory Other Facilities and Capabilities Programs & Capabilities Partnership Opportunities EM News & Reports Contact Information Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Facilities

  8. CMI Unique Facility: Ferromagnetic Materials Characterization Facility |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Critical Materials Institute Ferromagnetic Materials Characterization Facility The Ferromagnetic Materials Characterization Facility is one of more than a dozen unique facilities developed by the Critical Materials Institute, an Energy Innovation Hub of the U.S. Department of Energy. CMI ferromagnetic materials characterization facility at The Ames Laboratory. In the search for substitute materials to replace rare earths in permanent magnets, whenever promising materials are identified,

  9. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Office of Environmental Management (EM)

    Tips: Smart Meters and a Smarter Power Grid Tips: Smart Meters and a Smarter Power Grid The Smart Grid will consist of controls, computers, automation, and new technologies and...

  10. Final Report - Integration of Behind-the-Meter PV Fleet Forecasts...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Final Report - Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System ...

  11. Nissan North America: How Sub-Metering Changed the Way a Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    North America: How Sub-Metering Changed the Way a Plant Does Business Nissan North America: How Sub-Metering Changed the Way a Plant Does Business This case study describes how ...

  12. Lead Coolant Test Facility Development Workshop

    SciTech Connect

    Paul A. Demkowicz

    2005-06-01

    A workshop was held at the Idaho National Laboratory on May 25, 2005, to discuss the development of a next generation lead or lead-alloy coolant test facility. Attendees included representatives from the Generation IV lead-cooled fast reactor (LFR) program, Advanced Fuel Cycle Initiative, and several universities. Several participants gave presentations on coolant technology, existing experimental facilities for lead and lead-alloy research, the current LFR design concept, and a design by Argonne National Laboratory for an integral heavy liquid metal test facility. Discussions were focused on the critical research and development requirements for deployment of an LFR demonstration test reactor, the experimental scope of the proposed coolant test facility, a review of the Argonne National Laboratory test facility design, and a brief assessment of the necessary path forward and schedule for the initial stages of this development project. This report provides a summary of the presentations and roundtable discussions.

  13. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    20, 2010 Facility News ARM Mobile Facility Blogs from Steamboat Springs Bookmark and Share This month, team members for the second ARM Mobile Facility (AMF2) are in Steamboat...

  14. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    April 7, 2011 Facility News Review Panel States ARM Facility "Without Peer" Bookmark and ... The latest ARM Facility review was conducted in mid-February by a six-member review panel ...

  15. United States- Land Based and Offshore Annual Average Wind Speed at 100 Meters

    Energy.gov [DOE]

    Full-size, high resolution version of the 100-meter land-based and offshore wind speed resource map.

  16. Status of Net Metering: Assessing the Potential to Reach Program Caps

    SciTech Connect

    Heeter, J.; Gelman, R.; Bird, L.

    2014-09-01

    Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

  17. Status of Net Metering: Assessing the Potential to Reach Program Caps (Poster)

    SciTech Connect

    Heeter, J.; Bird, L.; Gelman, R.

    2014-10-01

    Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

  18. Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals Through Data

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals Through Data Solutia, Inc. has a long history with sub-metering, dating back to the construction of some of its frst manufacturing plants in the late 1950s by its then parent company, Monsanto. A progressive technology, sub-metering is the installation of metering devices to measure actual energy consumption for individual pieces of equipment or other loads. As part of its aggressive corporate sustainability goals, Solutia

  19. DOE Publishes New Report on the Performance of Flicker Meters | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Report on the Performance of Flicker Meters DOE Publishes New Report on the Performance of Flicker Meters February 23, 2016 - 9:46am Addthis The U.S. Department of Energy (DOE) has published a report on the performance of newly commercially available flicker meters. The purpose of the study was simply to report on the availability and performance of these meters. Flicker is garnering increased attention across the lighting community, and gaining a better understanding of why

  20. McKay Bay Facility Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass Facility Facility McKay Bay Facility Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  1. Presidential Initiatives | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Home Presidential Initiatives Bratislava Nuclear Security Initiative: President Putin and President Bush agreed to pursue an initiative on nuclear security cooperation at a February 2005 summit in Bratislava, Slovak Republic. This agreement includes for the first time a comprehensive joint action plan for the cooperation on security upgrades of Russian nuclear facilities at Rosatom and Ministry of Defense sites, and cooperation in the areas of nuclear regulatory development,

  2. National User Facilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    National User Facilities Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Berkeley Lab's User Facilities-Engines of Discovery Berkeley Lab's User Facilities provide state-of-the-art resources for scientists across the nation and around the world. About 10,000 researchers a year use these facilities, representing nearly one third of the total for all Department of Energy

  3. Metering Plan: Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings

    SciTech Connect

    Pope, Jason E.

    2012-07-25

    This Plan presents progress toward the metering goals shared by all national laboratories and discusses PNNL's contemporary approach to the installation of new meters. In addition, the Plan discusses the data analysis techniques with which PNNL is working to mature using endless data streams made available as a result of increased meter deployment.

  4. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    30, 2009 Facility News ARM Aerial Facility Leads International Discussions on Aircraft Research Bookmark and Share Five research aircraft participated in the VAMOS...

  5. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    (BERAC) published findings and recommendations from their assessment of the effectiveness of ARM Climate Research Facility as a national scientific user facility. Based on...

  6. Facilities | Photovoltaic Research | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the facilities below in their research and development to provide foundational support for the photovoltaic (PV) industry and PV users. Photo of the Solar Research Energy Facility. ...

  7. Facilities, Partnerships, and Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy Safety Technologies Facilities Battery Abuse Testing Laboratory Cylindrical Boiling Facility ...

  8. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    13, 2014 Facility News Characterizing Ice Nuclei Over Southern Great Plains Bookmark and Share Placed on the upper platform of the SGP Guest Instrument Facility, this filter...

  9. ARM Climate Research Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman ... DOESC-ARM-14-003 ARM Climate Research Facility Quarterly Ingest Report First Quarter: ...

  10. ARM Climate Research Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    8 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman ... DOESC-ARM-14-028 ARM Climate Research Facility Quarterly Ingest Report Fourth Quarter: ...

  11. ARM Climate Research Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman ... DOESC-ARM-15-003 ARM Climate Research Facility Quarterly Ingest Report First Quarter: ...

  12. ARM Climate Research Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DOESC-ARM-15-020 ARM Climate Research Facility Quarterly Ingest Report Second Quarter: ... maintained by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. ...

  13. ARM Climate Research Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman April ... DOESC-ARM-14-014 ARM Climate Research Facility Quarterly Ingest Report Second Quarter: ...

  14. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Journal Special Issue Includes Mobile Facility Data from Germany Bookmark and Share The ARM Mobile Facility operated in Heselbach, Germany, as part of the COPS surface network. The ...

  15. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of instruments collecting data for the ARM Mobile Facility field campaign at Point Reyes National Seashore. Since March 2005, the ARM Mobile Facility (AMF) has been at Point...

  16. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the SGP site, and will begin in March for the ARM Mobile Facility deployment in Point Reyes, California. Launches for the ARM Climate Research Facility Tropical Western Pacific...

  17. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    a number of other guest instruments at the ARM Mobile Facility deployment site at Point Reyes National Seashore in California. The ARM Mobile Facility's (AMF's) inaugural field...

  18. Facilities | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Additionally, the 4 Tesla Magnet Facility reuses hospital MRI magnets to provide benchmarking for new muon experiments that will be performed at Fermilab. 4 Tesla Magnet Facility ...

  19. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Interferometers Compared for ARM Mobile Facility Deployment in China Bookmark and Share ... Mobile Facility in 2008 for a field campaign to study Aerosol Indirect Effects in China. ...

  20. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    January 11, 2007 Facility News ARM Mobile Facility Moves to China in 2008 for Study of ... China generates exceptionally high amounts of aerosol particles whose influence on the ...

  1. Facilities | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced Photon Source...

  2. NREL: Biomass Research - Facilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

  3. ARM - NSA Barrow Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Barrow Facility NSA Related Links Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA...

  4. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    November 9, 2012 Facility News Unmanned Aircraft Test Flights Completed at Oliktok Point ... for the ARM Facility to evaluate various unmanned aerial systems (UAS) in the frigid ...

  5. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    May 15, 2008 Facility News National User Facility Organization Meets to Discuss Progress and Ideas Bookmark and Share In late April, the ARM Technical Director attended an annual...

  6. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    March 15, 2010 Facility News Closing in on Aircraft Campaign in California Bookmark and ... and Radiative Effects Study (CARES) in California, the ARM Aerial Facility is putting the ...

  7. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    February 28, 2006 Facility News Network of Infrared Thermometers Nearly Complete at SGP Bookmark and Share Red dots indicate extended facilities at SGP with the new IRTs ...

  8. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    15, 2005 Facility News Aging, Overworked Computer Network at SGP Gets Overhauled Bookmark and Share This aerial map of instruments deployed at the SGP Central Facility provides...

  9. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to our new ARM News Center. The RSS feed will alert readers to the latest ARM science and ARM Climate Research Facility news, events, feature stories, facility updates,...

  10. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    facility use by total visitor days and facility to track actual visitors and active user research computer accounts. Historical data show an apparent relationship between the...

  11. PUREX facility hazards assessment

    SciTech Connect

    Sutton, L.N.

    1994-09-23

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

  12. Assessing the Security Vulnerabilities of Correctional Facilities

    SciTech Connect

    Morrison, G.S.; Spencer, D.S.

    1998-10-27

    The National Institute of Justice has tasked their Satellite Facility at Sandia National Laboratories and their Southeast Regional Technology Center in Charleston, South Carolina to devise new procedures and tools for helping correctional facilities to assess their security vulnerabilities. Thus, a team is visiting selected correctional facilities and performing vulnerability assessments. A vulnerability assessment helps to identi~ the easiest paths for inmate escape, for introduction of contraband such as drugs or weapons, for unexpected intrusion fi-om outside of the facility, and for the perpetration of violent acts on other inmates and correctional employees, In addition, the vulnerability assessment helps to quantify the security risks for the facility. From these initial assessments will come better procedures for performing vulnerability assessments in general at other correctional facilities, as well as the development of tools to assist with the performance of such vulnerability assessments.

  13. ARM - SGP Radiometric Calibration Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Radiometric Calibration Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Radiometric Calibration Facility The Radiometric Calibration Facility (RCF) provides shortwave radiometer

  14. Reports on Initial Results of Smart Grid Investment Grant Projects

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (December 2012) | Department of Energy Reports on Initial Results of Smart Grid Investment Grant Projects (December 2012) Reports on Initial Results of Smart Grid Investment Grant Projects (December 2012) DOE is implementing the Smart Grid Investment Grant (SGIG) program under the American Recovery and Reinvestment Act of 2009. The SGIG program involves 99 projects that are deploying smart grid technologies, tools, and techniques for electric transmission, distribution, advanced metering,

  15. Guide to research facilities

    SciTech Connect

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  16. The KFM, A Homemade Yet Accurate and Dependable Fallout Meter

    SciTech Connect

    Kearny, C.H.

    2001-11-20

    The KFM is a homemade fallout meter that can be made using only materials, tools, and skills found in millions of American homes. It is an accurate and dependable electroscope-capacitor. The KFM, in conjunction with its attached table and a watch, is designed for use as a rate meter. Its attached table relates observed differences in the separations of its two leaves (before and after exposures at the listed time intervals) to the dose rates during exposures of these time intervals. In this manner dose rates from 30 mR/hr up to 43 R/hr can be determined with an accuracy of {+-}25%. A KFM can be charged with any one of the three expedient electrostatic charging devices described. Due to the use of anhydrite (made by heating gypsum from wallboard) inside a KFM and the expedient ''dry-bucket'' in which it can be charged when the air is very humid, this instrument always can be charged and used to obtain accurate measurements of gamma radiation no matter how high the relative humidity. The heart of this report is the step-by-step illustrated instructions for making and using a KFM. These instructions have been improved after each successive field test. The majority of the untrained test families, adequately motivated by cash bonuses offered for success and guided only by these written instructions, have succeeded in making and using a KFM. NOTE: ''The KFM, A Homemade Yet Accurate and Dependable Fallout Meter'', was published by Oak Ridge National Laboratory report in1979. Some of the materials originally suggested for suspending the leaves of the Kearny Fallout Meter (KFM) are no longer available. Because of changes in the manufacturing process, other materials (e.g., sewing thread, unwaxed dental floss) may not have the insulating capability to work properly. Oak Ridge National Laboratory has not tested any of the suggestions provided in the preface of the report, but they have been used by other groups. When using these instructions, the builder can verify the

  17. MSET modeling of Crystal River-3 venturi flow meters.

    SciTech Connect

    Bockhorst, F. K.; Gross, K. C.; Herzog, J. P.; Wegerich, S. W.

    1998-01-05

    The analysis of archived Crystal River-3 feedwater flow data reveals a slow and steady degradation of the flow meter measurements during the 1992/1993 operating cycle. MSET can reliably estimate the true flow rate and quantify the degree of departure between the indicated signal and the true flow rate with high accuracy. The MSET computed flow rate could, in principle, be used to provide an improved estimate of the reactor power and hence avoid the revenue loss associated with derating the reactor based on a faulty feedwater flow rate indication.

  18. Breckinridge Project, initial effort

    SciTech Connect

    1982-01-01

    This report presents an overview of the Breckinridge Project and summarizes the results achieved during the development phase of the project performed under a Cooperative Agreement with the United States Department of Energy. The Breckinridge Project provides for the design, construction and operation of a 50,000 barrel per day coal liquefaction facility in Breckinridge County, Kentucky. The development of the basic technology used in the Breckinridge Project dates back to the late 1950's and the invention by Hydrocarbon Research, Inc., (HRI) of the ebullated-bed reactor and the H-OIL process. The H-COAL process is based on the H-OIL technology. This coal liquefaction process produces clean low-sulfur petroleum substitutes suitable for most types of hydrocarbon-based fuel and chemical uses regardless of the sulfur content of the coal. A large H-COAL Pilot Plant in operation at Catlettsburg, Kentucky, is converting 220 tons of coal per day into 600 barrels of distillate products by catalytic hydrogenation. The estimated capital cost of the commercial facility is $3.17 billion, and the associated out-of-pocket operating cost is $18 per barrel, both in January 1981 dollars. Financial analysis shows the project to be an attractive investment under certain leveraged conditions which are possible through the assistance of the Synthetic Fuels Corporation. Ashland Synthetic Fuels, Inc. is currently working with the Synthetic Fuels Corporation and potential partners to develop financing for the commercial venture. Critical permits are being obtained and an Environmental Impact Statement is being prepared pursuant to initiating site preparation in early 1983. Commercial operations are expected to start up in early 1988.

  19. History | Argonne Leadership Computing Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Leadership Computing The Argonne Leadership Computing Facility (ALCF) was established at Argonne National Laboratory in 2004 as part of a U.S. Department of Energy (DOE) initiative dedicated to enabling leading-edge computational capabilities to advance fundamental discovery and understanding in a broad range of scientific and engineering disciplines. Supported by the Advanced Scientific Computing Research (ASCR) program within DOE's Office of Science, the ALCF is one half of the DOE Leadership

  20. Vids4Grids: Smart Meters and Super Cables | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vids4Grids: Smart Meters and Super Cables Vids4Grids: Smart Meters and Super Cables March 14, 2011 - 4:46pm Addthis This episode of Vids 4 Grids will take us to Itron's smart meter factory in West Union, SC where we will learn the role smart meters play in the Smart Grid. Deborah J. Buterbaugh Energy Project Specialist at National Energy Technology Laboratory What does this mean for me? Smart meters allow consumers to get real time information about their energy usage. Super cables help provide

  1. The effect of initial temperature on flame acceleration and deflagration-to-detonation transition phenomenon

    SciTech Connect

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L.; Tagawa, H.; Malliakos, A.

    1998-05-01

    The High-Temperature Combustion Facility at BNL was used to conduct deflagration-to-detonation transition (DDT) experiments. Periodic orifice plates were installed inside the entire length of the detonation tube in order to promote flame acceleration. The orifice plates are 27.3-cm-outer diameter, which is equivalent to the inner diameter of the tube, and 20.6-cm-inner diameter. The detonation tube length is 21.3-meters long, and the spacing of the orifice plates is one tube diameter. A standard automobile diesel engine glow plug was used to ignite the test mixture at one end of the tube. Hydrogen-air-steam mixtures were tested at a range of temperatures up to 650K and at an initial pressure of 0.1 MPa. In most cases, the limiting hydrogen mole fraction which resulted in DDT corresponded to the mixture whose detonation cell size, {lambda}, was equal to the inner diameter of the orifice plate, d (e.g., d/{lambda}=1). The only exception was in the dry hydrogen-air mixtures at 650K where the DDT limit was observed to be 11 percent hydrogen, corresponding to a value of d/{lambda} equal to 5.5. For a 10.5 percent hydrogen mixture at 650K, the flame accelerated to a maximum velocity of about 120 mIs and then decelerated to below 2 mIs. By maintaining the first 6.1 meters of the vessel at the ignition end at 400K, and the rest of the vessel at 650K, the DDT limit was reduced to 9.5 percent hydrogen (d/{lambda}=4.2). This observation indicates that the d/{lambda}=1 DDT limit criteria provides a necessary condition but not a sufficient one for the onset of DDT in obstacle laden ducts. In this particular case, the mixture initial condition (i.e., temperature) resulted in the inability of the mixture to sustain flame acceleration to the point where DDT could occur. It was also observed that the distance required for the flame to accelerate to the point of detonation initiation, referred to as the run-up distance, was found to be a function of both the hydrogen mole fraction

  2. NREL: Energy Systems Integration Facility - Prototype and Component

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Development Prototype and Component Development To support prototype and component development, the Energy Systems Integration Facility can accommodate research, development, and demonstration of power system components such as PV inverters, residential smart meters, and appliances for physical testing or simulation using state-of-the-art hardware-in-the-loop technologies. Equipment can be developed, tested, and evaluated under normal and abnormal conditions at scale. Capability Details The

  3. The magnetic flywheel flow meter: Theoretical and experimental contributions

    SciTech Connect

    Buchenau, D. Galindo, V.; Eckert, S.

    2014-06-02

    The development of contactless flow meters is an important issue for monitoring and controlling of processes in different application fields, like metallurgy, liquid metal casting, or cooling systems for nuclear reactors and transmutation machines. Shercliff described in his book “The Theory of Electromagnetic Flow Measurement, Cambridge University Press, 1962” a simple and robust device for contact-less measurements of liquid metal flow rates which is known as magnetic flywheel. The sensor consists of several permanent magnets attached on a rotatable soft iron plate. This arrangement will be placed closely to the liquid metal flow to be measured, so that the field of the permanent magnets penetrates into the fluid volume. The flywheel will be accelerated by a Lorentz force arising from the interaction between the magnetic field and the moving liquid. Steady rotation rates of the flywheel can be taken as a measure for the mean flow rate inside the fluid channel. The present paper provides a detailed theoretical description of the sensor in order to gain a better insight into the functional principle of the magnetic flywheel. Theoretical predictions are confirmed by corresponding laboratory experiments. For that purpose, a laboratory model of such a flow meter was built and tested on a GaInSn-loop under various test conditions.

  4. LLNL current meter array--concept and system description

    SciTech Connect

    Mantrom, D.D.

    1994-11-15

    A measurement capability using a horizontal array of 10 S4 current meters mounted on a stiff floating structure with 35 m aperture has been developed to support interpretation of radar imaging of surface effects associated with internal waves. This system has been fielded three times and most recently, has collected data alongside the sea-surface footprint of a land-fixed radar imaging ship-generated internal waves. The underlying need for this measurement capability is described. The specifications resulting from this need are presented and the engineering design and deployment procedures of the platform and systems that resulted are described The current meter data are multiplexed along with meteorological and system status data on board the floating platform and are telemetered to a shore station and on to a data acquisition system. The raw data are recorded, and are then processed to form space-time images of current and strain rate (a spatial derivative of the current field). Examples of raw and processed data associated with ship-generated internal waves are presented.

  5. Energy Consumption Series: Assessment of energy use in multibuilding facilities

    SciTech Connect

    Not Available

    1993-08-01

    This study originally had two primary objectives: (1) to improve EIA`s estimates of district heat consumption for commercial buildings in the CBECS sample that lacked individual metering and (2) to provide a basis for estimating primary fuel consumption by central plants serving commercial buildings. These objectives were expanded to include additional questions relating to these central plants. Background information is provided on the CBECS and on district heating and cooling, which is the most important type of energy-related service provided by multibuilding facilities with central physical plants. Chapters 2 and 3 present data results on multibuilding facilities from the 1989 CBECS and the pilot Facility Survey. Chapter 2 presents the characteristics of multibuilding facilities and the individual buildings located on these facilities. Chapter 3 provides estimates of energy inputs and outputs of multibuilding facilities with central physical plants. Chapter 4 assesses the quality of the pilot Facility Survey and includes recommendations for future work in this area. The appendices provide more detailed information on the Facility Survey itself, in particular the limitations on the use of these results. Appendix B, ``Data Quality``, provides detailed information relating to the limitations of the data and the conclusions presented in this report. As a pilot study, the 1989 Facility Survey has some serious flaws and limitations which are recognized in this report.

  6. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    22, 2011 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of an ARM mobile facility (AMF), the ARM aerial facility (AAF), and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility, with availability as follows: AMF2 available December 2013 AMF1 available March 2015 AAF available between June and October

  7. Facilities | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Facilities Argonne's Chemical Sciences and Engineering (CSE) division maintains a number of state-of-the-art facilities for advanced chemistry research. These facilities are dedicated to two main purposes: the analysis and creation of next-generation battery materials, and the analysis and generation of advanced catalysts for electrochemistry. More information on the full suite of CSE facilities can be found below. Advanced Electron Paramagnetic Resonance (EPR) Facility The Solar Energy

  8. Renewable Energy Project Development and Financing: Facility Scale

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Facility Scale Detailed Hypothetical Example of How to Use Renewable Power in Your Small to Medium-Sized Tribal Facilities Course Outline What we will cover...  About the DOE Office of Indian Energy Education InitiativeFacility-Scale Process: Hypothetical Example - Project development and financing concepts - Project development and financing process and decision points - Facility-scale project as an investment (or commitment to an alternative utility payment) - How to pay for

  9. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Energy.gov [DOE] (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt009esrumierz2012

  10. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Energy.gov [DOE] (indexed site)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt009esrumierz2011

  11. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon esarravt009rumierz2010p.pdf More...

  12. National Ignition Facility & Photon Science HOW NIF WORKS

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    9 National Ignition Facility & Photon Science HOW NIF WORKS beam me up: how niF works In the National Ignition Facility (NIF), 192 laser beams travel a long path, about 1,500 meters, from their birth at the master oscillator-a device that generates the single pulse that seeds the entire NIF laser system-to the center of the target chamber. As the beams move through NIF's amplifiers, their energy increases exponentially. From beginning to end, the beams' total energy grows from one- billionth

  13. Massachusetts Large Blade Test Facility Final Report

    SciTech Connect

    Rahul Yarala; Rob Priore

    2011-09-02

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  14. Decommissioning an Active Historical Reactor Facility at the Savannah River Site - 13453

    SciTech Connect

    Bergren, Christopher L.; Long, J. Tony; Blankenship, John K.; Adams, Karen M.

    2013-07-01

    action for the In Situ Decommissioning (ISD) of the 105-C Disassembly Basin. ISD consisted of stabilization/isolation of remaining contaminated water, sediment, activated reactor equipment, and scrap metal by filling the DB with underwater non-structural grout to the appropriate (-4.877 meter) grade-level, thence with dry area non-structural grout to the final -10 centimeter level. The roof over the DB was preserved due to its potential historical significance and to prevent the infiltration of precipitation. Forced evaporation was the form of treatment implemented to remove the approximately 9.1 M liters of contaminated basin water. Using specially formulated grouts, irradiated materials and sediment were treated by solidification/isolation thus reducing their mobility, reducing radiation exposure and creating an engineered barrier thereby preventing access to the contaminants. Grouting provided a low permeability barrier to minimize any potential transport of contaminants to the aquifer. Efforts were made to preserve the historical significance of the Reactor in accordance with the National Historic Preservation Act. ISD provides a cost effective means to isolate and contain residual radioactivity from past nuclear operations allowing natural radioactive decay to reduce hazards to manageable levels. This method limits release of radiological contamination to the environment, minimizes radiation exposure to workers, prevents human/animal access to the hazardous substances, and allows for ongoing monitoring of the decommissioned facility. Field construction was initiated in August 2011; evaporator operations commenced January 2012 and ended July 2012 with over 9 M liters of water treated/removed. Over 8,525 cubic meters of grout were placed, completing in August 2012. The project completed with an excellent safety record, on schedule and under budget. (authors)

  15. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  16. CRAD, Facility Safety- Nuclear Facility Design

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Design.

  17. Gas flow meter and method for measuring gas flow rate

    DOEpatents

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  18. Working with SRNL - Our Facilities - EMRL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Materials Research Laboratory High temperature salt corrosion - SunShot Hollow-glass Microspheres Working with SRNL Our Facilities - Energy Materials Research Laboratory (EMRL) The Energy Materials Research Laboratory at the Savannah River National Laboratory (SRNL) creates a cross-disciplinary laboratory facility that lends itself to the integration of research and application of advanced materials that is focused on major laboratory and national initiatives. It drives innovation in

  19. ORPS Facility Registration Form

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ORPS FACILITY REGISTRATION FORM Submit completed form to: U.S. Department of Energy AU User Support EMAIL: ORPSsupport@hq.doe.gov PHONE: 800-473-4375 FAX: 301-903-9823 Note:  Only one facility per form  Type or print all entries 1. TYPE OF CHANGE  Add a Facility (Complete Section 1.A, then go to Section 2)  Change a Facility (Complete Section 1.B, then go to Section)  Delete a Facility (Complete Section 1.C, then go to Section 2) A. Add a New Facility Use this section if you are

  20. Canyon Facilities - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    About Us Projects & Facilities Canyon Facilities About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental

  1. Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center

    SciTech Connect

    Robichaud, R.; Fields, J.; Roberts, J. O.

    2012-02-01

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projects where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.

  2. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    March 22, 2007 Facility News GEWEX News Features Dust Data from ARM Mobile Facility ... The AMF recorded a major dust storm that passed through the area in March, and combined ...

  3. Technology Transitions Facilities Database

    Energy.gov [DOE]

    The types of R&D facilities at the DOE Laboratories available to the public typically fall into three broad classes depending on the mode of access: Designated User Facilities, Shared R&D...

  4. Jupiter Laser Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Jupiter Laser Facility The commissioning of the Titan Petawatt-Class laser to LLNL's Jupiter Laser Facility (JLF) has provided a unique platform for the use of petawatt (PW)-class ...

  5. ARM Climate Research Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    9 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman April ... DOESC-ARM-14-009 ARM Climate Research Facility Quarterly Value-Added Product Report First ...

  6. ARM Climate Research Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman January ... DOESC-ARM-14-002 ARM Climate Research Facility Quarterly Value-Added Product Report First ...

  7. ARM Climate Research Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman ... DOESC-ARM-11-023 ARM Climate Research Facility Quarterly Value-Added Product Report ...

  8. ARM Climate Research Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman July ... DOESC-ARM-14-023 ARM Climate Research Facility Quarterly Ingest Report Third Quarter: ...

  9. ARM Climate Research Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    0 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman July 2014 ... DOESC-ARM-14-020 ARM Climate Research Facility Quarterly Value-Added Product Report Third ...

  10. ARM Climate Research Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman February ... DOESC-ARM-12-002 ARM Climate Research Facility Quarterly Value-Added Product Report First ...

  11. ARM Climate Research Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman ... DOESC-ARM-11-021 ARM Climate Research Facility Quarterly Value-Added Product Report Third ...

  12. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    April 30, 2008 Facility News ARM Outreach Materials Chosen for Earth Day Display in Washington DC Bookmark and Share Posters for the ARM Mobile Facility and ARM Education and...

  13. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Data Available from ARM Mobile Facility Deployment in China Bookmark and Share The Study of Aerosol Indirect Effects in China was anchored by the ARM Mobile Facility in Shouxian ...

  14. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    facility use by total visitor days-broken down by institution type, gender, race, citizenship, visitor role, visit purpose, and facility-for actual visitors and for active user...

  15. ARM - Facility News Article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Farewell to Dan Nelson, SGP Facilities Manager Bookmark and Share Dan Nelson Dan Nelson Dan Nelson, long-time facilities manager at the ARM Southern Great Plains site, is heading...

  16. Facilities | Jefferson Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    JLab Buildings Facilities Management & Logistics is responsible for performing or specifying performance of all Jefferson Lab facility maintenance. A D D I T I O N A L L I N K S:...

  17. Enterprise SRS Future Initiatives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Future Initiatives Enterprise SRS Future Initiatives SRS has a sound heritage based on innovation and expertise with a willingness to take on complex challenges to improve and enhance the security of our nation. The expertise and technical capabilities of SRNL, combined with the SRS infrastructure, facilities, and safety culture, make SRS a prime location for the deployment of innovative solutions to address the nation's most pressing issues in clean energy, national security and environmental

  18. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air

    SciTech Connect

    2010-09-08

    The transpired solar collector was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for the this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

  19. Innovative Manufacturing Initiatives Recognition Day Agenda | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Initiatives Recognition Day Agenda Innovative Manufacturing Initiatives Recognition Day Agenda imi_recogitionday_agenda.pdf (76.67 KB) More Documents & Publications Innovative Manufacturing Initiative Recognition Day Manufacturing Demonstration Facilities Workshop Agenda, March 2012 Critical Materials Workshop Agenda

  20. Deployable telescope having a thin-film mirror and metering structure

    DOEpatents

    Krumel, Leslie J.; Martin, Jeffrey W.

    2010-08-24

    A deployable thin-film mirror telescope comprises a base structure and a metering structure. The base structure houses a thin-film mirror, which can be rolled for stowage and unrolled for deployment. The metering structure is coupled to the base structure and can be folded for stowage and unfolded for deployment. In the deployed state, the unrolled thin-film mirror forms a primary minor for the telescope and the unfolded metering structure positions a secondary minor for the telescope.