RADIATION PRESSURE DETECTION AND DENSITY ESTIMATE FOR 2011 MD
Micheli, Marco; Tholen, David J.; Elliott, Garrett T. E-mail: tholen@ifa.hawaii.edu
2014-06-10
We present our astrometric observations of the small near-Earth object 2011 MD (H ? 28.0), obtained after its very close fly-by to Earth in 2011 June. Our set of observations extends the observational arc to 73 days, and, together with the published astrometry obtained around the Earth fly-by, allows a direct detection of the effect of radiation pressure on the object, with a confidence of 5?. The detection can be used to put constraints on the density of the object, pointing to either an unexpectedly low value of ?=(640±330)kg m{sup ?3} (68% confidence interval) if we assume a typical probability distribution for the unknown albedo, or to an unusually high reflectivity of its surface. This result may have important implications both in terms of impact hazard from small objects and in light of a possible retrieval of this target.
Density-dependent covariant energy density functionals
Lalazissis, G. A.
2012-10-20
Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.
Phenomenological Relativistic Energy Density Functionals
Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.
2009-08-26
The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.
Wave-function functionals for the density
Slamet, Marlina; Pan Xiaoyin; Sahni, Viraht
2011-11-15
We extend the idea of the constrained-search variational method for the construction of wave-function functionals {psi}[{chi}] of functions {chi}. The search is constrained to those functions {chi} such that {psi}[{chi}] reproduces the density {rho}(r) while simultaneously leading to an upper bound to the energy. The functionals are thereby normalized and automatically satisfy the electron-nucleus coalescence condition. The functionals {psi}[{chi}] are also constructed to satisfy the electron-electron coalescence condition. The method is applied to the ground state of the helium atom to construct functionals {psi}[{chi}] that reproduce the density as given by the Kinoshita correlated wave function. The expectation of single-particle operators W={Sigma}{sub i}r{sub i}{sup n}, n=-2,-1,1,2, W={Sigma}{sub i}{delta}(r{sub i}) are exact, as must be the case. The expectations of the kinetic energy operator W=-(1/2){Sigma}{sub i}{nabla}{sub i}{sup 2}, the two-particle operators W={Sigma}{sub n}u{sup n}, n=-2,-1,1,2, where u=|r{sub i}-r{sub j}|, and the energy are accurate. We note that the construction of such functionals {psi}[{chi}] is an application of the Levy-Lieb constrained-search definition of density functional theory. It is thereby possible to rigorously determine which functional {psi}[{chi}] is closer to the true wave function.
Building a Universal Nuclear Energy Density Functional
U.S. Department of Energy (DOE) all webpages (Extended Search)
Building a Universal Nuclear Energy Density Functional Building a Universal Nuclear Energy Density Functional VaryMatrix.png Collaboration with mathematicians and computational...
Gedanken densities and exact constraints in density functional theory
Perdew, John P.; Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 ; Ruzsinszky, Adrienn; Sun, Jianwei; Burke, Kieron
2014-05-14
Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGAâs. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.
Building a Universal Nuclear Energy Density Functional
Bertulani, Carlos A.
2014-09-10
This grant had two components: Density functional theory and pairing and Nuclear reactions. This final report summarizes the activities for this SciDAC-2 project.
Universal Nuclear Energy Density Functional (Technical Report...
Office of Scientific and Technical Information (OSTI)
Country of Publication: United States Language: English Subject: 73 NUCLEAR PHYSICS AND RADIATION PHYSICS Nuclear structure; nuclear energy density functional Word Cloud ...
Uncertainty Quantification for Nuclear Density Functional Theory...
Office of Scientific and Technical Information (OSTI)
Uncertainty Quantification for Nuclear Density Functional Theory and Information Content of New Measurements Citation Details In-Document Search This content will become publicly...
Density functional theory for carbon dioxide crystal
Chang, Yiwen; Mi, Jianguo Zhong, Chongli
2014-05-28
We present a density functional approach to describe the solid?liquid phase transition, interfacial and crystal structure, and properties of polyatomic CO{sub 2}. Unlike previous phase field crystal model or density functional theory, which are derived from the second order direct correlation function, the present density functional approach is based on the fundamental measure theory for hard-sphere repulsion in solid. More importantly, the contributions of enthalpic interactions due to the dispersive attractions and of entropic interactions arising from the molecular architecture are integrated in the density functional model. Using the theoretical model, the predicted liquid and solid densities of CO{sub 2} at equilibrium triple point are in good agreement with the experimental values. Based on the structure of crystal-liquid interfaces in different planes, the corresponding interfacial tensions are predicted. Their respective accuracies need to be tested.
Periodic subsystem density-functional theory
Genova, Alessandro; Pavanello, Michele; Ceresoli, Davide
2014-11-07
By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of KohnâSham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with KohnâSham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.
Communication: Embedded fragment stochastic density functional theory
Neuhauser, Daniel; Baer, Roi; Rabani, Eran
2014-07-28
We develop a method in which the electronic densities of small fragments determined by Kohn-Sham density functional theory (DFT) are embedded using stochastic DFT to form the exact density of the full system. The new method preserves the scaling and the simplicity of the stochastic DFT but cures the slow convergence that occurs when weakly coupled subsystems are treated. It overcomes the spurious charge fluctuations that impair the applications of the original stochastic DFT approach. We demonstrate the new approach on a fullerene dimer and on clusters of water molecules and show that the density of states and the total energy can be accurately described with a relatively small number of stochastic orbitals.
Density Functional Theory Approach to Nuclear Fission (Conference...
Office of Scientific and Technical Information (OSTI)
Density Functional Theory Approach to Nuclear Fission Citation Details In-Document Search Title: Density Functional Theory Approach to Nuclear Fission You are accessing a document ...
Density Functional Theory Study of Surface Carbonate Formation...
Office of Scientific and Technical Information (OSTI)
Density Functional Theory Study of Surface Carbonate Formation on BaO(001) Citation Details In-Document Search Title: Density Functional Theory Study of Surface Carbonate Formation ...
Error Analysis in Nuclear Density Functional Theory (Journal...
Office of Scientific and Technical Information (OSTI)
Error Analysis in Nuclear Density Functional Theory Citation Details In-Document Search Title: Error Analysis in Nuclear Density Functional Theory Authors: Schunck, N ; McDonnell,...
Error Analysis in Nuclear Density Functional Theory (Journal...
Office of Scientific and Technical Information (OSTI)
Error Analysis in Nuclear Density Functional Theory Citation Details In-Document Search Title: Error Analysis in Nuclear Density Functional Theory You are accessing a document...
Pairing Nambu-Goldstone Modes within Nuclear Density Functional...
Office of Scientific and Technical Information (OSTI)
Pairing Nambu-Goldstone Modes within Nuclear Density Functional Theory Citation Details ... Title: Pairing Nambu-Goldstone Modes within Nuclear Density Functional Theory Authors: ...
Accuracy of density functionals for molecular electronics: The...
Office of Scientific and Technical Information (OSTI)
Accuracy of density functionals for molecular electronics: The Anderson junction Title: Accuracy of density functionals for molecular electronics: The Anderson junction Authors: ...
Probability Density Function Method for Langevin Equations with...
Office of Scientific and Technical Information (OSTI)
Probability Density Function Method for Langevin Equations with Colored Noise Citation Details In-Document Search Title: Probability Density Function Method for Langevin Equations ...
Orbital-optimized density cumulant functional theory
Sokolov, Alexander Yu. Schaefer, Henry F.
2013-11-28
In density cumulant functional theory (DCFT) the electronic energy is evaluated from the one-particle density matrix and two-particle density cumulant, circumventing the computation of the wavefunction. To achieve this, the one-particle density matrix is decomposed exactly into the mean-field (idempotent) and correlation components. While the latter can be entirely derived from the density cumulant, the former must be obtained by choosing a specific set of orbitals. In the original DCFT formulation [W. Kutzelnigg, J. Chem. Phys. 125, 171101 (2006)] the orbitals were determined by diagonalizing the effective Fock operator, which introduces partial orbital relaxation. Here we present a new orbital-optimized formulation of DCFT where the energy is variationally minimized with respect to orbital rotations. This introduces important energy contributions and significantly improves the description of the dynamic correlation. In addition, it greatly simplifies the computation of analytic gradients, for which expressions are also presented. We offer a perturbative analysis of the new orbital stationarity conditions and benchmark their performance for a variety of chemical systems.
The problem of the universal density functional and the density matrix functional theory
Bobrov, V. B. Trigger, S. A.
2013-04-15
The analysis in this paper shows that the Hohenberg-Kohn theorem is the constellation of two statements: (i) the mathematically rigorous Hohenberg-Kohn lemma, which demonstrates that the same ground-state density cannot correspond to two different potentials of an external field, and (ii) the hypothesis of the existence of the universal density functional. Based on the obtained explicit expression for the nonrel-ativistic particle energy in a local external field, we prove that the energy of the system of more than two non-interacting electrons cannot be a functional of the inhomogeneous density. This result is generalized to the system of interacting electrons. It means that the Hohenberg-Kohn lemma cannot provide justification of the universal density functional for fermions. At the same time, statements of the density functional theory remain valid when considering any number of noninteracting ground-state bosons due to the Bose condensation effect. In the framework of the density matrix functional theory, the hypothesis of the existence of the universal density matrix functional corresponds to the cases of noninteracting particles and to interaction in the Hartree-Fock approximation.
Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines
Jia, Weile; Fu, Jiyun; Cao, Zongyan; Wang, Long; Chi, Xuebin; Gao, Weiguo; Wang, Lin-Wang
2013-10-15
Plane wave pseudopotential (PWP) density functional theory (DFT) calculation is the most widely used method for material simulations, but its absolute speed stagnated due to the inability to use large scale CPU based computers. By a drastic redesign of the algorithm, and moving all the major computation parts into GPU, we have reached a speed of 12 s per molecular dynamics (MD) step for a 512 atom system using 256 GPU cards. This is about 20 times faster than the CPU version of the code regardless of the number of CPU cores used. Our tests and analysis on different GPU platforms and configurations shed lights on the optimal GPU deployments for PWP-DFT calculations. An 1800 step MD simulation is used to study the liquid phase properties of GaInP.
Building a Universal Nuclear Energy Density Functional
Carlson, Joe A.; Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James
2012-12-30
During the period of Dec. 1 2006 â Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: ï· First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; ï· Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; ï· Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.
Ions in solution: Density corrected density functional theory (DC-DFT)
Kim, Min-Cheol; Sim, Eunji; Burke, Kieron
2014-05-14
Standard density functional approximations often give questionable results for odd-electron radical complexes, with the error typically attributed to self-interaction. In density corrected density functional theory (DC-DFT), certain classes of density functional theory calculations are significantly improved by using densities more accurate than the self-consistent densities. We discuss how to identify such cases, and how DC-DFT applies more generally. To illustrate, we calculate potential energy surfaces of HOÂ·Cl{sup â} and HOÂ·H{sub 2}O complexes using various common approximate functionals, with and without this density correction. Commonly used approximations yield wrongly shaped surfaces and/or incorrect minima when calculated self consistently, while yielding almost identical shapes and minima when density corrected. This improvement is retained even in the presence of implicit solvent.
Density functional theory and conductivity studies of boron-based...
Office of Scientific and Technical Information (OSTI)
The receptors are also potentially beneficial to rechargeable lithium ion and lithium air batteries. We apply Density Functional Theory (DFT) to show that an oxalate-based ...
Efficient Real-Time Time-Dependent Density Functional Theory...
Office of Scientific and Technical Information (OSTI)
Efficient Real-Time Time-Dependent Density Functional Theory Method and its Application to a Collision of an Ion with a 2D Material Title: Efficient Real-Time Time-Dependent ...
Density Functional Theory with Dissipation: Transport through Single Molecules
Kieron Burke
2012-04-30
A huge amount of fundamental research was performed on this grant. Most of it focussed on fundamental issues of electronic structure calculations of transport through single molecules, using density functional theory. Achievements were: (1) First density functional theory with dissipation; (2) Pseudopotential plane wave calculations with master equation; (3) Weak bias limit; (4) Long-chain conductance; and (5) Self-interaction effects in tunneling.
Preface: Special Topic on Advances in Density Functional Theory
Yang, Weitao
2014-05-14
This Special Topic Issue on the Advances in Density Functional Theory, published as a celebration of the fifty years of density functional theory, contains a retrospective article, a perspective article, and a collection of original research articles that showcase recent theoretical advances in the field. It provides a timely discussion reflecting a cross section of our understanding, and the theoretical and computational developments, which have significant implications in broad areas of sciences and engineering.
Improved association in a classical density functional theory for water
Krebs, Eric J.; Schulte, Jeff B.; Roundy, David
2014-03-28
We present a modification to our recently published statistical associating fluid theory-based classical density functional theory for water. We have recently developed and tested a functional for the averaged radial distribution function at contact of the hard-sphere fluid that is dramatically more accurate at interfaces than earlier approximations. We now incorporate this improved functional into the association term of our free energy functional for water, improving its description of hydrogen bonding. We examine the effect of this improvement by studying two hard solutes (a hard hydrophobic rod and a hard sphere) and a Lennard-Jones approximation of a krypton atom solute. The improved functional leads to a moderate change in the density profile and a large decrease in the number of hydrogen bonds broken in the vicinity of the hard solutes. We find an improvement of the partial radial distribution for a krypton atom in water when compared with experiment.
Representing the thermal state in time-dependent density functional theory
Modine, N. A.; Hatcher, R. M.
2015-05-28
Classical molecular dynamics (MD) provides a powerful and widely used approach to determining thermodynamic properties by integrating the classical equations of motion of a system of atoms. Time-Dependent Density Functional Theory (TDDFT) provides a powerful and increasingly useful approach to integrating the quantum equations of motion for a system of electrons. TDDFT efficiently captures the unitary evolution of a many-electron state by mapping the system into a fictitious non-interacting system. In analogy to MD, one could imagine obtaining the thermodynamic properties of an electronic system from a TDDFT simulation in which the electrons are excited from their ground state by a time-dependent potential and then allowed to evolve freely in time while statistical data are captured from periodic snapshots of the system. For a variety of systems (e.g., many metals), the electrons reach an effective state of internal equilibrium due to electron-electron interactions on a time scale that is short compared to electron-phonon equilibration. During the initial time-evolution of such systems following electronic excitation, electron-phonon interactions should be negligible, and therefore, TDDFT should successfully capture the internal thermalization of the electrons. However, it is unclear how TDDFT represents the resulting thermal state. In particular, the thermal state is usually represented in quantum statistical mechanics as a mixed state, while the occupations of the TDDFT wavefunctions are fixed by the initial state in TDDFT. We work to address this puzzle by (A) reformulating quantum statistical mechanics so that thermodynamic expectations can be obtained as an unweighted average over a set of many-body pure states and (B) constructing a family of non-interacting (single determinant) TDDFT states that approximate the required many-body states for the canonical ensemble.
Nonlinear eigenvalue problems in Density Functional Theory calculations
Fattebert, J
2009-08-28
Developed in the 1960's by W. Kohn and coauthors, Density Functional Theory (DFT) is a very popular quantum model for First-Principles simulations in chemistry and material sciences. It allows calculations of systems made of hundreds of atoms. Indeed DFT reduces the 3N-dimensional Schroedinger electronic structure problem to the search for a ground state electronic density in 3D. In practice it leads to the search for N electronic wave functions solutions of an energy minimization problem in 3D, or equivalently the solution of an eigenvalue problem with a non-linear operator.
Bakosi, Jozsef; Ristorcelli, Raymond J
2010-01-01
Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.
Spin projection with double hybrid density functional theory
Thompson, Lee M.; Hratchian, Hrant P.
2014-07-21
A spin projected double-hybrid density functional theory is presented that accounts for different scaling of opposite and same spin terms in the second order correction. This method is applied to three dissociation reactions which in the unprojected formalism exhibit significant spin contamination with higher spin states. This gives rise to a distorted potential surface and can lead to poor geometries and energies. The projected method presented is shown to improve the description of the potential over unprojected double hybrid density functional theory. Comparison is made with the reference states of the two double hybrid functionals considered here (B2PLYP and mPW2PLYP) in which the projected potential surface is degraded by an imbalance in the description of dynamic and static correlation.
Gonis, A.; Zhang, X. G.; Stocks, G. M.; Nicholson, D. M.
2015-10-23
Density functional theory for the case of general, N-representable densities is reformulated in terms of density functional derivatives of expectation values of operators evaluated with wave functions leading to a density, making no reference to the concept of potential. The developments provide a complete solution of the v-representability problem by establishing a mathematical procedure that determines whether a density is v-representable and in the case of an affirmative answer determines the potential (within an additive constant) as a derivative with respect to the density of a constrained search functional. It also establishes the existence of an energy functional of themoreÂ Â» density that, for v-representable densities, assumes its minimum value at the density describing the ground state of an interacting many-particle system. The theorems of Hohenberg and Kohn emerge as special cases of the formalism.Â«Â less
Gonis, A.; Zhang, X. G.; Stocks, G. M.; Nicholson, D. M.
2015-10-23
Density functional theory for the case of general, N-representable densities is reformulated in terms of density functional derivatives of expectation values of operators evaluated with wave functions leading to a density, making no reference to the concept of potential. The developments provide a complete solution of the v-representability problem by establishing a mathematical procedure that determines whether a density is v-representable and in the case of an affirmative answer determines the potential (within an additive constant) as a derivative with respect to the density of a constrained search functional. It also establishes the existence of an energy functional of the density that, for v-representable densities, assumes its minimum value at the density describing the ground state of an interacting many-particle system. The theorems of Hohenberg and Kohn emerge as special cases of the formalism.
Bethe Ansatz Approach to the Kondo Effect within Density-Functional...
Office of Scientific and Technical Information (OSTI)
Bethe Ansatz Approach to the Kondo Effect within Density-Functional Theory Prev Next Title: Bethe Ansatz Approach to the Kondo Effect within Density-Functional Theory ...
Neutrinoless double-beta decay in covariant density functional theory
Ring, P.; Yao, J. M.; Song, L. S.; Hagino, K.; Meng, J.
2015-10-15
We use covariant density functional theory beyond mean field in order to describe neutrinoless double-beta decay in a fully relativistic way. The dynamic effects of particle-number and angular-momentum conservations as well as shape fluctuations of quadrupole character are taken into account within the generator coordinate method for both initial and final nuclei. The calculations are based on the full relativistic transition operator. The nuclear matrix elements (NMEâs) for a large number of possible transitions are investigated. The results are compared with various non-relativistic calculations, in particular also with the density functional theory based on the Gogny force. We find that the non-relativistic approximation is justified and that the total NMEâs can be well approximated by the pure axial-vector coupling term. This corresponds to a considerable reduction of the computational effort.
Finite-size instabilities in nuclear energy density functionals
Hellemans, V.; Heenen, P.-H.; Bender, M.
2012-10-20
The systematic lack of convergence of self-consistent mean-field calculations with certain parameterizations of the Skyrme energy density functional has been attributed to the appearance of finite-size instabilities. In this contribution, we investigate what happens at the instability associated with the C{sub 0}{sup {Delta}s}s{sub 0} Dot-Operator {Delta}s{sub 0} term in a high-spin state of the superdeformed band in {sup 194}Hg.
Differentiable but exact formulation of density-functional theory
Kvaal, Simen EkstrĂ¶m, Ulf; Helgaker, Trygve; Teale, Andrew M.; School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD
2014-05-14
The universal density functional F of density-functional theory is a complicated and ill-behaved function of the densityâin particular, F is not differentiable, making many formal manipulations more complicated. While F has been well characterized in terms of convex analysis as forming a conjugate pair (E, F) with the ground-state energy E via the HohenbergâKohn and Lieb variation principles, F is nondifferentiable and subdifferentiable only on a small (but dense) subset of its domain. In this article, we apply a tool from convex analysis, MoreauâYosida regularization, to construct, for any Î” > 0, pairs of conjugate functionals ({sup Î”}E, {sup Î”}F) that converge to (E, F) pointwise everywhere as Î” â 0{sup +}, and such that {sup Î”}F is (FrĂ©chet) differentiable. For technical reasons, we limit our attention to molecular electronic systems in a finite but large box. It is noteworthy that no information is lost in the MoreauâYosida regularization: the physical ground-state energy E(v) is exactly recoverable from the regularized ground-state energy {sup Î”}E(v) in a simple way. All concepts and results pertaining to the original (E, F) pair have direct counterparts in results for ({sup Î”}E, {sup Î”}F). The MoreauâYosida regularization therefore allows for an exact, differentiable formulation of density-functional theory. In particular, taking advantage of the differentiability of {sup Î”}F, a rigorous formulation of KohnâSham theory is presented that does not suffer from the noninteracting representability problem in standard KohnâSham theory.
Representing the thermal state in time-dependent density functional theory
Modine, N. A.; Hatcher, R. M.
2015-05-28
Classical molecular dynamics (MD) provides a powerful and widely used approach to determining thermodynamic properties by integrating the classical equations of motion of a system of atoms. Time-Dependent Density Functional Theory (TDDFT) provides a powerful and increasingly useful approach to integrating the quantum equations of motion for a system of electrons. TDDFT efficiently captures the unitary evolution of a many-electron state by mapping the system into a fictitious non-interacting system. In analogy to MD, one could imagine obtaining the thermodynamic properties of an electronic system from a TDDFT simulation in which the electrons are excited from their ground state bymoreÂ Â» a time-dependent potential and then allowed to evolve freely in time while statistical data are captured from periodic snapshots of the system. For a variety of systems (e.g., many metals), the electrons reach an effective state of internal equilibrium due to electron-electron interactions on a time scale that is short compared to electron-phonon equilibration. During the initial time-evolution of such systems following electronic excitation, electron-phonon interactions should be negligible, and therefore, TDDFT should successfully capture the internal thermalization of the electrons. However, it is unclear how TDDFT represents the resulting thermal state. In particular, the thermal state is usually represented in quantum statistical mechanics as a mixed state, while the occupations of the TDDFT wave functions are fixed by the initial state in TDDFT. Two key questions involve (1) reformulating quantum statistical mechanics so that thermodynamic expectations can be obtained as an unweighted average over a set of many-body pure states and (2) constructing a family of non-interacting (single determinant) TDDFT states that approximate the required many-body states for the canonical ensemble. In Section II, we will address these questions by first demonstrating that thermodynamic
Representing the thermal state in time-dependent density functional theory
Modine, N. A.; Hatcher, R. M.
2015-05-28
Classical molecular dynamics (MD) provides a powerful and widely used approach to determining thermodynamic properties by integrating the classical equations of motion of a system of atoms. Time-Dependent Density Functional Theory (TDDFT) provides a powerful and increasingly useful approach to integrating the quantum equations of motion for a system of electrons. TDDFT efficiently captures the unitary evolution of a many-electron state by mapping the system into a fictitious non-interacting system. In analogy to MD, one could imagine obtaining the thermodynamic properties of an electronic system from a TDDFT simulation in which the electrons are excited from their ground state by a time-dependent potential and then allowed to evolve freely in time while statistical data are captured from periodic snapshots of the system. For a variety of systems (e.g., many metals), the electrons reach an effective state of internal equilibrium due to electron-electron interactions on a time scale that is short compared to electron-phonon equilibration. During the initial time-evolution of such systems following electronic excitation, electron-phonon interactions should be negligible, and therefore, TDDFT should successfully capture the internal thermalization of the electrons. However, it is unclear how TDDFT represents the resulting thermal state. In particular, the thermal state is usually represented in quantum statistical mechanics as a mixed state, while the occupations of the TDDFT wave functions are fixed by the initial state in TDDFT. Two key questions involve (1) reformulating quantum statistical mechanics so that thermodynamic expectations can be obtained as an unweighted average over a set of many-body pure states and (2) constructing a family of non-interacting (single determinant) TDDFT states that approximate the required many-body states for the canonical ensemble. In Section II, we will address these questions by first demonstrating that thermodynamic expectations
Current density partitioning in time-dependent current density functional theory
Mosquera, MartĂn A.; Wasserman, Adam; Department of Physics, Purdue University, West Lafayette, Indiana 47907
2014-05-14
We adapt time-dependent current density functional theory to allow for a fragment-based solution of the many-electron problem of molecules in the presence of time-dependent electric and magnetic fields. Regarding a molecule as a set of non-interacting subsystems that individually evolve under the influence of an auxiliary external electromagnetic vector-scalar potential pair, the partition 4-potential, we show that there are one-to-one mappings between this auxiliary potential, a sharply-defined set of fragment current densities, and the total current density of the system. The partition electromagnetic (EM) 4-potential is expressed in terms of the real EM 4-potential of the system and a gluing EM 4-potential that accounts for exchange-correlation effects and mutual interaction forces between fragments that are required to yield the correct electron dynamics. We prove the zero-force theorem for the fragmented system, establish a variational formulation in terms of action functionals, and provide a simple illustration for a charged particle in a ring.
Sublinear scaling for time-dependent stochastic density functional theory
Gao, Yi; Neuhauser, Daniel; Baer, Roi; Rabani, Eran
2015-01-21
A stochastic approach to time-dependent density functional theory is developed for computing the absorption cross section and the random phase approximation (RPA) correlation energy. The core idea of the approach involves time-propagation of a small set of stochastic orbitals which are first projected on the occupied space and then propagated in time according to the time-dependent Kohn-Sham equations. The evolving electron density is exactly represented when the number of random orbitals is infinite, but even a small number (â16) of such orbitals is enough to obtain meaningful results for absorption spectrum and the RPA correlation energy per electron. We implement the approach for silicon nanocrystals using real-space grids and find that the overall scaling of the algorithm is sublinear with computational time and memory.
Progress at the interface of wave-function and density-functional theories
Gidopoulos, Nikitas I.
2011-04-15
The Kohn-Sham (KS) potential of density-functional theory (DFT) emerges as the minimizing effective potential in a variational scheme that does not involve fixing the unknown single-electron density. Using Rayleigh Schroedinger (RS) perturbation theory (PT), we construct ab initio approximations for the energy difference, the minimization of which determines the KS potential directly - thereby bypassing DFT's traditional algorithm to search for the density that minimizes the total energy. From second-order RS PT, we obtain variationally stable energy differences to be minimized, solving the severe problem of variational collapse of orbital-dependent exchange-correlation functionals based on second-order RS PT.
Hole Localization in Molecular Crystals from Hybrid Density Functional Theory
Sai, Na; Barbara, Paul F.; Leung, Kevin
2011-06-02
We use first-principles computational methods to examine hole trapping in organic molecular crystals. We present a computational scheme based on the tuning of the fraction of exact exchange in hybrid density functional theory to eliminate the many-electron self-interaction error. With small organic molecules, we show that this scheme gives accurate descriptions of ionization and dimer dissociation. We demonstrate that the excess hole in perfect molecular crystals forms self-trapped molecular polarons. The predicted absolute ionization potentials of both localized and delocalized holes are consistent with experimental values.
Towards the island of stability with relativistic energy density functionals
Prassa, V.; Niksic, T.; Lalazissis, G. A.; Vretenar, D.
2012-10-20
Relativistic energy density functionals (REDF) provide a complete and accurate, global description of nuclear structure phenomena. Modern semi-empirical functionals, adjusted to the nuclear matter equation of state and to empirical masses of deformed nuclei, are applied to studies of shapes of superheavy nuclei. The theoretical framework is tested in a comparison to empirical masses, quadrupole deformations, and energy barriers of actinide nuclei. The model is used in a self-consistent mean-field calculation of spherical, axial and triaxial shapes of superheavy nuclei, alpha-decay energies and lifetimes. The effect of explicit treatment of collective correlations is analyzed in calculations that consistently use a collective Hamiltonian model based on REDFs.
Uncertainty Quantification and Propagation in Nuclear Density Functional Theory
Schunck, N; McDonnell, J D; Higdon, D; Sarich, J; Wild, S M
2015-03-17
Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going eff orts seek to better root nuclear DFT in the theory of nuclear forces, energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in fi nite nuclei. In this paper, we review recent eff orts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statistical analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.
Electronic properties of graphene nanoribbons: A density functional investigation
Kumar, Sandeep Sharma, Hitesh
2015-05-15
Density functional theory calculations have been performed on graphene nano ribbons (GNRs) to investigate the electronic properties as a function of chirality, size and hydrogenation on the edges. The calculations were performed on GNRs with armchair and zigzag configurations with 28, 34, 36, 40, 50, 56, 62, 66 carbon atoms. The structural stability of AGNR and ZGNR increases with the size of nanoribbon where as hydrogenation of GNR tends to lowers their structural stability. All GNRs considered have shown semiconducting behavior with HOMO-LUMO gap decreasing with the increase in the GNR size. The hydrogenation of GNR decreases its HOMO-LUMO gap significantly. The results are in agreement with the available experimental and theoretical results.
Density functional theory based generalized effective fragment potential method
Nguyen, Kiet A. E-mail: ruth.pachter@wpafb.af.mil; Pachter, Ruth E-mail: ruth.pachter@wpafb.af.mil; Day, Paul N.
2014-06-28
We present a generalized Kohn-Sham (KS) density functional theory (DFT) based effective fragment potential (EFP2-DFT) method for the treatment of solvent effects. Similar to the original Hartree-Fock (HF) based potential with fitted parameters for water (EFP1) and the generalized HF based potential (EFP2-HF), EFP2-DFT includes electrostatic, exchange-repulsion, polarization, and dispersion potentials, which are generated for a chosen DFT functional for a given isolated molecule. The method does not have fitted parameters, except for implicit parameters within a chosen functional and the dispersion correction to the potential. The electrostatic potential is modeled with a multipolar expansion at each atomic center and bond midpoint using Stone's distributed multipolar analysis. The exchange-repulsion potential between two fragments is composed of the overlap and kinetic energy integrals and the nondiagonal KS matrices in the localized molecular orbital basis. The polarization potential is derived from the static molecular polarizability. The dispersion potential includes the intermolecular D3 dispersion correction of Grimme et al. [J. Chem. Phys. 132, 154104 (2010)]. The potential generated from the CAMB3LYP functional has mean unsigned errors (MUEs) with respect to results from coupled cluster singles, doubles, and perturbative triples with a complete basis set limit (CCSD(T)/CBS) extrapolation, of 1.7, 2.2, 2.0, and 0.5 kcal/mol, for the S22, water-benzene clusters, water clusters, and n-alkane dimers benchmark sets, respectively. The corresponding EFP2-HF errors for the respective benchmarks are 2.41, 3.1, 1.8, and 2.5 kcal/mol. Thus, the new EFP2-DFT-D3 method with the CAMB3LYP functional provides comparable or improved results at lower computational cost and, therefore, extends the range of applicability of EFP2 to larger system sizes.
Building A Universal Nuclear Energy Density Functional (UNEDF)
Carlson, Joe, Los Alamos National Laboratory, Los Alamos, NM; Furnstahl, Dick, Ohio State University, Columbus, OH; Horoi, Mihai, Central Michigan University, Mount Pleasant, MI; Lusk, Rusty, Argonne National Laboratory, Argonne, IL; Nazarewicz, Witek, University of Tennessee, Knoxville, TN; Ng, Esmond, Berkeley National Laboratory, Berkeley, CA; Thompson, Ian, Lawrence Livermore National Laboratory, Livermore, CA; Vary, James, Iowa State University, Ames, Iowa
2012-09-30
During the period of Dec. 1 2006 ĂąÂÂ Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory. The main physics areas of UNEDF, defined at the beginning of the project, were: ab initio structure; ab initio functionals; DFT applications; DFT extensions; reactions.
Native defects in Tl6SI4: Density functional calculations
Shi, Hongliang; Du, Mao -Hua
2015-05-05
In this study, Tl6SI4 is a promising room-temperature semiconductor radiation detection material. Here, we report density functional calculations of native defects and dielectric properties of Tl6SI4. Formation energies and defect levels of native point defects and defect complexes are calculated. Donor-acceptor defect complexes are shown to be abundant in Tl6SI4. High resistivity can be obtained by Fermi level pinning by native donor and acceptor defects. Deep donors that are detrimental to electron transport are identified and methods to mitigate such problem are discussed. Furthermore, we show that mixed ionic-covalent character of Tl6SI4 gives rise to enhanced Born effective charges andmoreÂ Â» large static dielectric constant, which provides effective screening of charged defects and impurities.Â«Â less
Density Functional Studies of Methanol Decomposition on Subnanometer Pd Clusters
Mehmood, Faisal; Greeley, Jeffrey P.; Curtiss, Larry A.
2009-12-31
A density functional theory study of the decomposition of methanol on subnanometer palladium clusters (primarily Pd4) is presented. Methanol dehydrogenation through C-H bond breaking to form hydroxymethyl (CH2OH) as the initial step, followed by steps involving formation of hydroxymethylene (CHOH), formyl (CHO), and carbon monoxide (CO), is found to be the most favorable reaction pathway. A competing dehydrogenation pathway with O-H bond breaking as the first step, followed by formation of methoxy (CH3O) and formaldehyde (CH2O), is slightly less favorable. In contrast, pathways involving C-O bond cleavage are much less energetically favorable, and no feasible pathways involving C-O bond formation to yield dimethyl ether (CH3OCH3) are found. Comparisons of the results are made with methanol decomposition products adsorbed on more extended Pd surfaces; all reaction intermediates are found to bind slightly more strongly to the clusters than to the surfaces.
Descriptions of carbon isotopes within the energy density functional theory
Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana; Tammam, M.
2014-10-24
Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations.
Self-interaction corrections in density functional theory
Tsuneda, Takao; Hirao, Kimihiko
2014-05-14
Self-interaction corrections for Kohn-Sham density functional theory are reviewed for their physical meanings, formulations, and applications. The self-interaction corrections get rid of the self-interaction error, which is the sum of the Coulomb and exchange self-interactions that remains because of the use of an approximate exchange functional. The most frequently used self-interaction correction is the Perdew-Zunger correction. However, this correction leads to instabilities in the electronic state calculations of molecules. To avoid these instabilities, several self-interaction corrections have been developed on the basis of the characteristic behaviors of self-interacting electrons, which have no two-electron interactions. These include the von WeizsĂ€cker kinetic energy and long-range (far-from-nucleus) asymptotic correction. Applications of self-interaction corrections have shown that the self-interaction error has a serious effect on the states of core electrons, but it has a smaller than expected effect on valence electrons. This finding is supported by the fact that the distribution of self-interacting electrons indicates that they are near atomic nuclei rather than in chemical bonds.
Density functional and neutron diffraction studies of lithium polymer electrolytes.
Baboul, A. G.
1998-06-26
The structure of PEO doped with lithium perchlorate has been determined using neutron diffraction on protonated and deuterated samples. The experiments were done in the liquid state. Preliminary analysis indicates the Li-O distance is about 2.0 {angstrom}. The geometries of a series of gas phase lithium salts [LiCF{sub 3}SO{sub 3}, Li(CF{sub 3}SO{sub 2}){sub 2}N, Li(CF{sub 3}SO{sub 2}){sub 2}CH, LiClO{sub 4}, LiPF{sub 6}, LiAsF{sub 6}] used in polymer electrolytes have been optimized at B3LYP/6-31G(d) density functional level of theory. All local minima have been identified. For the triflate, imide, methanide, and perchlorate anions, the lithium cation is coordinated to two oxygens and have binding energies of ca 141 kcal/mol at the B3LYP/6-311+G(3df,2p)/B3LYP/6-31G* level of theory. For the hexafluoroarsenate and hexafluorophosphate the lithium cation is coordinated to three oxygens and have binding energies of ca. 136 kcal/mol.
Parameterizing deep convection using the assumed probability density function method
Storer, R. L.; Griffin, B. M.; Hoft, Jan; Weber, J. K.; Raut, E.; Larson, Vincent E.; Wang, Minghuai; Rasch, Philip J.
2015-01-06
Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection.These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.
Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory
Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.
2015-04-02
The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K_{1 }values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO_{2}^{2+} complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K_{1} values are significantly overestimated. Accurate predictions of the absolute log K_{1} values (root mean square deviation from experiment < 1.0 for log K_{1} values ranging from 0 to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.
Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory
Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.
2015-04-02
The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO22+ complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root mean square deviation from experiment < 1.0 for log K1 values ranging from 0moreÂ Â» to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.Â«Â less
Parameterizing deep convection using the assumed probability density function method
Storer, R. L.; Griffin, B. M.; HĂ¶ft, J.; Weber, J. K.; Raut, E.; Larson, V. E.; Wang, M.; Rasch, P. J.
2015-01-06
Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method. The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and midlatitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing ismoreÂ Â» weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.Â«Â less
Parameterizing deep convection using the assumed probability density function method
Storer, R. L.; Griffin, B. M.; HĂ¶ft, J.; Weber, J. K.; Raut, E.; Larson, V. E.; Wang, M.; Rasch, P. J.
2014-06-11
Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method. The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing ismoreÂ Â» weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.Â«Â less
Parameterizing deep convection using the assumed probability density function method
Storer, R. L.; Griffin, B. M.; Höft, J.; Weber, J. K.; Raut, E.; Larson, V. E.; Wang, M.; Rasch, P. J.
2015-01-06
Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and midlatitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak.more »The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less
Density functional studies of methanol decomposition on subnanometer Pd clusters.
Mehmood, F.; Greeley, J.; Curtiss, L. A.
2009-12-31
A density functional theory study of the decomposition of methanol on subnanometer palladium clusters (primarily Pd{sub 4}) is presented. Methanol dehydrogenation through C-H bond breaking to form hydroxymethyl (CH{sub 2}OH) as the initial step, followed by steps involving formation of hydroxymethylene (CHOH), formyl (CHO), and carbon monoxide (CO), is found to be the most favorable reaction pathway. A competing dehydrogenation pathway with O-H bond breaking as the first step, followed by formation of methoxy (CH{sub 3}O) and formaldehyde (CH{sub 2}O), is slightly less favorable. In contrast, pathways involving C-O bond cleavage are much less energetically favorable, and no feasible pathways involving C-O bond formation to yield dimethyl ether (CH{sub 3}OCH{sub 3}) are found. Comparisons of the results are made with methanol decomposition products adsorbed on more extended Pd surfaces; all reaction intermediates are found to bind slightly more strongly to the clusters than to the surfaces.
Symmetry Energy as a Function of Density and Mass
Danielewicz, Pawel; Lee, Jenny
2007-10-26
Energy in nuclear matter is, in practice, completely characterized at different densities and asymmetries, when the density dependencies of symmetry energy and of energy of symmetric matter are specified. The density dependence of the symmetry energy at subnormal densities produces mass dependence of nuclear symmetry coefficient and, thus, can be constrained by that latter dependence. We deduce values of the mass dependent symmetry coefficients, by using excitation energies to isobaric analog states. The coefficient systematic, for intermediate and high masses, is well described in terms of the symmetry coefficient values of a{sub a}{sup V} = (31.5-33.5) MeV for the volume coefficient and a{sub a}{sup S} = (9-12) MeV for the surface coefficient. These two further correspond to the parameter values describing density dependence of symmetry energy, of L{approx}95 MeV and K{sub sym}{approx}25 MeV.
Salerno, K. Michael; Frischknecht, Amalie L.; Stevens, Mark J.
2016-04-08
Here, negatively charged nanoparticles (NPs) in 1:1, 1:2, and 1:3 electrolyte solutions are studied in a primitive ion model using molecular dynamics (MD) simulations and classical density functional theory (DFT). We determine the conditions for attractive interactions between the like-charged NPs. Ion density profiles and NPâNP interaction free energies are compared between the two methods and are found to be in qualitative agreement. The NP interaction free energy is purely repulsive for monovalent counterions, but can be attractive for divalent and trivalent counterions. Using DFT, the NP interaction free energy for different NP diameters and charges is calculated. The depthmoreÂ Â» and location of the minimum in the interaction depend strongly on the NPsâ charge. For certain parameters, the depth of the attractive well can reach 8â10 kBT, indicating that kinetic arrest and aggregation of the NPs due to electrostatic interactions is possible. Rich behavior arises from the geometric constraints of counterion packing at the NP surface. Layering of counterions around the NPs is observed and, as secondary counterion layers form the minimum of the NPâNP interaction free energy shifts to larger separation, and the depth of the free energy minimum varies dramatically. We find that attractive interactions occur with and without NP overcharging.Â«Â less
Zinc surface complexes on birnessite: A density functional theory study
Kwon, Kideok D.; Refson, Keith; Sposito, Garrison
2009-01-05
Biogeochemical cycling of zinc is strongly influenced by sorption on birnessite minerals (layer-type MnO2), which are found in diverse terrestrial and aquatic environments. Zinc has been observed to form both tetrahedral (Zn{sup IV}) and octahedral (Zn{sup VI}) triple-corner-sharing surface complexes (TCS) at Mn(IV) vacancy sites in hexagonal birnessite. The octahedral complex is expected to be similar to that of Zn in the Mn oxide mineral, chalcophanite (ZnMn{sub 3}O{sub 7} {center_dot} 3H{sub 2}O), but the reason for the occurrence of the four-coordinate Zn surface species remains unclear. We address this issue computationally using spin-polarized Density Functional Theory (DFT) to examine the Zn{sub IV}-TCS and Zn{sup VI}-TCS species. Structural parameters obtained by DFT geometry optimization were in excellent agreement with available experimental data on Zn-birnessites. Total energy, magnetic moments, and electron-overlap populations obtained by DFT for isolated Zn{sup IV}-TCS revealed that this species is stable in birnessite without a need for Mn(III) substitution in the octahedral sheet and that it is more effective in reducing undersaturation of surface O at a Mn vacancy than is Zn{sub VI}-TCS. Comparison between geometry-optimized ZnMn{sub 3}O{sub 7} {center_dot} 3H{sub 2}O (chalcophanite) and the hypothetical monohydrate mineral, ZnMn{sub 3}O{sub 7} {center_dot} H{sub 2}O, which contains only tetrahedral Zn, showed that the hydration state of Zn significantly affects birnessite structural stability. Finally, our study also revealed that, relative to their positions in an ideal vacancy-free MnO{sub 2}, Mn nearest to Zn in a TCS surface complex move toward the vacancy by 0.08-0.11 {angstrom}, while surface O bordering the vacancy move away from it by 0.16-0.21 {angstrom}, in agreement with recent X-ray absorption spectroscopic analyses.
Density Functional Theory Calculations of Mass Transport in UO2
Andersson, Anders D.; Dorado, Boris; Uberuaga, Blas P.; Stanek, Christopher R.
2012-06-26
In this talk we present results of density functional theory (DFT) calculations of U, O and fission gas diffusion in UO{sub 2}. These processes all impact nuclear fuel performance. For example, the formation and retention of fission gas bubbles induce fuel swelling, which leads to mechanical interaction with the clad thereby increasing the probability for clad breach. Alternatively, fission gas can be released from the fuel to the plenum, which increases the pressure on the clad walls and decreases the gap thermal conductivity. The evolution of fuel microstructure features is strongly coupled to diffusion of U vacancies. Since both U and fission gas transport rates vary strongly with the O stoichiometry, it is also important to understand O diffusion. In order to better understand bulk Xe behavior in UO{sub 2{+-}x} we first calculate the relevant activation energies using DFT techniques. By analyzing a combination of Xe solution thermodynamics, migration barriers and the interaction of dissolved Xe atoms with U, we demonstrate that Xe diffusion predominantly occurs via a vacancy-mediated mechanism. Since Xe transport is closely related to diffusion of U vacancies, we have also studied the activation energy for this process. In order to explain the low value of 2.4 eV found for U migration from independent damage experiments (not thermal equilibrium) the presence of vacancy clusters must be included in the analysis. Next we investigate species transport on the (111) UO{sub 2} surface, which is motivated by the formation of small voids partially filled with fission gas atoms (bubbles) in UO{sub 2} under irradiation. Surface diffusion could be the rate-limiting step for diffusion of such bubbles, which is an alternative mechanism for mass transport in these materials. As expected, the activation energy for surface diffusion is significantly lower than for bulk transport. These results are further discussed in terms of engineering-scale fission gas release models
Complex-energy approach to sum rules within nuclear density functional...
Office of Scientific and Technical Information (OSTI)
Complex-energy approach to sum rules within nuclear density functional theory Citation ... This content will become publicly available on April 27, 2016 Title: Complex-energy ...
Complex-energy approach to sum rules within nuclear density functional...
Office of Scientific and Technical Information (OSTI)
Journal Article: Complex-energy approach to sum rules within nuclear density functional theory Citation Details In-Document Search This content will become publicly available on...
Tabacchi, G; Hutter, J; Mundy, C
2005-04-07
A combined linear response--frozen electron density model has been implemented in a molecular dynamics scheme derived from an extended Lagrangian formalism. This approach is based on a partition of the electronic charge distribution into a frozen region described by Kim-Gordon theory, and a response contribution determined by the instaneous ionic configuration of the system. The method is free from empirical pair-potentials and the parameterization protocol involves only calculations on properly chosen subsystems. They apply this method to a series of alkali halides in different physical phases and are able to reproduce experimental structural and thermodynamic properties with an accuracy comparable to Kohn-Sham density functional calculations.
Communication: Self-interaction correction with unitary invariance in density functional theory
Pederson, Mark R.; Ruzsinszky, Adrienn; Perdew, John P.; Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
2014-03-28
Standard spin-density functionals for the exchange-correlation energy of a many-electron ground state make serious self-interaction errors which can be corrected by the Perdew-Zunger self-interaction correction (SIC). We propose a size-extensive construction of SIC orbitals which, unlike earlier constructions, makes SIC computationally efficient, and a true spin-density functional. The SIC orbitals are constructed from a unitary transformation that is explicitly dependent on the non-interacting one-particle density matrix. When this SIC is applied to the local spin-density approximation, improvements are found for the atomization energies of molecules.
Dane, Markus; Gonis, Antonios
2016-07-05
Based on a computational procedure for determining the functional derivative with respect to the density of any antisymmetric N-particle wave function for a non-interacting system that leads to the density, we devise a test as to whether or not a wave function known to lead to a given density corresponds to a solution of a SchrĂ¶dinger equation for some potential. We examine explicitly the case of non-interacting systems described by Slater determinants. Here, numerical examples for the cases of a one-dimensional square-well potential with infinite walls and the harmonic oscillator potential illustrate the formalism.
Xianlong, Gao; Polini, Marco; Tosi, M. P.; Campo, Vivaldo L. Jr.; Capelle, Klaus; Rigol, Marcos
2006-04-15
We present an extensive numerical study of the ground-state properties of confined repulsively interacting fermions in one-dimensional optical lattices. Detailed predictions for the atom-density profiles are obtained from parallel Kohn-Sham density-functional calculations and quantum Monte Carlo simulations. The density-functional calculations employ a Bethe ansatz based local-density approximation for the correlation energy that accounts for Luttinger-liquid and Mott-insulator physics. Semianalytical and fully numerical formulations of this approximation are compared with each other and with a cruder Thomas-Fermi-type local-density approximation for the total energy. Precise quantum Monte Carlo simulations are used to assess the reliability of the various local-density approximations, and in conjunction with these provide a detailed microscopic picture of the consequences of the interplay between particle-particle interactions and confinement in one-dimensional systems of strongly correlated fermions.
Ensemble density variational methods with self- and ghost-interaction-corrected functionals
Pastorczak, Ewa; Pernal, Katarzyna
2014-05-14
Ensemble density functional theory (DFT) offers a way of predicting excited-states energies of atomic and molecular systems without referring to a density response function. Despite a significant theoretical work, practical applications of the proposed approximations have been scarce and they do not allow for a fair judgement of the potential usefulness of ensemble DFT with available functionals. In the paper, we investigate two forms of ensemble density functionals formulated within ensemble DFT framework: the Gross, Oliveira, and Kohn (GOK) functional proposed by Gross et al. [Phys. Rev. A 37, 2809 (1988)] alongside the orbital-dependent eDFT form of the functional introduced by Nagy [J. Phys. B 34, 2363 (2001)] (the acronym eDFT proposed in analogy to eHF ensemble Hartree-Fock method). Local and semi-local ground-state density functionals are employed in both approaches. Approximate ensemble density functionals contain not only spurious self-interaction but also the so-called ghost-interaction which has no counterpart in the ground-state DFT. We propose how to correct the GOK functional for both kinds of interactions in approximations that go beyond the exact-exchange functional. Numerical applications lead to a conclusion that functionals free of the ghost-interaction by construction, i.e., eDFT, yield much more reliable results than approximate self- and ghost-interaction-corrected GOK functional. Additionally, local density functional corrected for self-interaction employed in the eDFT framework yields excitations energies of the accuracy comparable to that of the uncorrected semi-local eDFT functional.
Lykissa, Iliana; Li, Shu-Yi; Granqvist, Claes G.; Niklasson, Gunnar A.; Ramzan, Muhammad; Chakraborty, Sudip; Ahuja, Rajeev
2014-05-14
Thin films of V{sub 2}O{sub 5} were prepared by sputter deposition onto transparent and electrically conducting substrates and were found to be X-ray amorphous. Their electrochemical density of states was determined by chronopotentiometry and displayed a pronounced low-energy peak followed by an almost featureless contribution at higher energies. These results were compared with density functional theory calculations for amorphous V{sub 2}O{sub 5}. Significant similarities were found between measured data and computations; specifically, the experimental low-energy peak corresponds to a split-off part of the conduction band apparent in the computations. Furthermore, the calculations approximately reproduce the experimental band gap observed in optical measurements.
Degenerate ground states and nonunique potentials: Breakdown and restoration of density functionals
Capelle, K.; Ullrich, C. A.; Vignale, G.
2007-07-15
The Hohenberg-Kohn (HK) theorem is one of the most fundamental theorems of quantum mechanics, and constitutes the basis for the very successful density-functional approach to inhomogeneous interacting many-particle systems. Here we show that in formulations of density-functional theory (DFT) that employ more than one density variable, applied to systems with a degenerate ground state, there is a subtle loophole in the HK theorem, as all mappings between densities, wave functions, and potentials can break down. Two weaker theorems which we prove here, the joint-degeneracy theorem and the internal-energy theorem, restore the internal, total, and exchange-correlation energy functionals to the extent needed in applications of DFT to atoms, molecules, and solids. The joint-degeneracy theorem constrains the nature of possible degeneracies in general many-body systems.
Isospin effects in N â Z nuclei in extended density functional...
Office of Scientific and Technical Information (OSTI)
N Z nuclei in extended density functional theory Citation Details In-Document Search This content will become publicly available on January 25, 2017 Title: Isospin effects in N ...
Double-hybrid density-functional theory with meta-generalized-gradient approximations
Souvi, Sidi M. O. Sharkas, Kamal; Toulouse, Julien; CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris
2014-02-28
We extend the previously proposed one-parameter double-hybrid density-functional theory [K. Sharkas, J. Toulouse, and A. Savin, J. Chem. Phys. 134, 064113 (2011)] to meta-generalized-gradient-approximation (meta-GGA) exchange-correlation density functionals. We construct several variants of one-parameter double-hybrid approximations using the Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA functional and test them on test sets of atomization energies and reaction barrier heights. The most accurate variant uses the uniform coordinate scaling of the density and of the kinetic energy density in the correlation functional, and improves over both standard Kohn-Sham TPSS and second-order Műller-Plesset calculations.
A density-functional study on the stability of anatase-type phases in the system Mg-Ta-O-N
Wolff, Holger; Lerch, Martin; Schilling, Heikko; Baehtz, Carsten; Dronskowski, Richard
2008-10-15
Magnesium-doped tantalum oxynitrides, which were prepared by ammonolysis of amorphous mixed oxides, have been investigated using quantum-theoretical methods. For small magnesium amounts (5 cat%), density-functional total-energy calculations indicate an anatase-type structure consisting of stretched, corner-sharing TaO{sub 3}N{sub 3} octahedra with a tetrahedrally distorted equatorial plane. The calculated structural parameters are in excellent agreement with those obtained using X-ray powder diffraction and synchrotron radiation. Additionally, the quantum-chemical results show a clear preference for an ordered anionic distribution (space group I4{sub 1}md, no. 109) of the host lattice, which is locally disturbed around Mg{sup 2+}. For thermodynamical reasons, the excess oxygen anions, which replace nitrogen on account of the lower charge of the dopant cation, segregate next to magnesium, thus forming local MgO 'domains'. For higher magnesium contents ({>=}10%), minor phases of rutile-type structure have to be expected, which is in good agreement with experimental data. - Density-functional total energy of Mg-doped TaON in several polymorphs, each in its most stable arrangement, as a function of the dopant amount.
Density functional theory for d- and f-electron materials and compounds
Mattson, Ann E.; Wills, John M.
2016-02-12
Here, the fundamental requirements for a computationally tractable Density Functional Theory-based method for relativistic f- and (nonrelativistic) d-electron materials and compounds are presented. The need for basing the KohnâSham equations on the Dirac equation is discussed. The full Dirac scheme needs exchange-correlation functionals in terms of four-currents, but ordinary functionals, using charge density and spin-magnetization, can be used in an approximate Dirac treatment. The construction of a functional that includes the additional confinement physics needed for these materials is illustrated using the subsystem-functional scheme. If future studies show that a full Dirac, four-current based, exchange-correlation functional is needed, the subsystemmoreÂ Â» functional scheme is one of the few schemes that can still be used for constructing functional approximations.Â«Â less
Weck, Philippe F.; Kim, Eunja
2015-06-11
The structure, lattice dynamics and thermodynamic properties of bulk technetium were investigated within the framework of density functional theory. The phonon density of states spectrum computed with density functional perturbation theory closely matches inelastic coherent neutron scattering measurements. The thermal properties of technetium were derived from phonon frequencies calculated within the quasi-harmonic approximation (QHA), which introduces a volume dependence of phonon frequencies as a part of the anharmonic effect. As a result, the predicted thermal expansion and isobaric heat capacity of technetium are in excellent agreement with available experimental data for temperatures up to ~1600 K.
Energy Science and Technology Software Center (OSTI)
2009-06-12
Simple parallel MD code that serves as a microapplication in the Mantevo suite. Study of computer system design and implementation, benchmarking of new and existing computer systems.
Tao, Jianmin; Perdew, John P; Staroverov, Viktor N; Scuseria, Gustavo E
2008-01-01
We construct a nonlocal density functional approximation with full exact exchange, while preserving the constraint-satisfaction approach and justified error cancellations of simpler semilocal functionals. This is achieved by interpolating between different approximations suitable for two extreme regions of the electron density. In a 'normal' region, the exact exchange-correlation hole density around an electron is semilocal because its spatial range is reduced by correlation and because it integrates over a narrow range to -1. These regions are well described by popular semilocal approximations (many of which have been constructed nonempirically), because of proper accuracy for a slowly-varying density or because of error cancellation between exchange and correlation. 'Abnormal' regions, where non locality is unveiled, include those in which exchange can dominate correlation (one-electron, nonuniform high-density, and rapidly-varying limits), and those open subsystems of fluctuating electron number over which the exact exchange-correlation hole integrates to a value greater than -1. Regions between these extremes are described by a hybrid functional mixing exact and semi local exchange energy densities locally (i.e., with a mixing fraction that is a function of position r and a functional of the density). Because our mixing fraction tends to 1 in the high-density limit, we employ full exact exchange according to the rigorous definition of the exchange component of any exchange-correlation energy functional. Use of full exact exchange permits the satisfaction of many exact constraints, but the nonlocality of exchange also requires balanced nonlocality of correlation. We find that this nonlocality can demand at least five empirical parameters (corresponding roughly to the four kinds of abnormal regions). Our local hybrid functional is perhaps the first accurate size-consistent density functional with full exact exchange. It satisfies other known exact constraints
Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation
Kühn, Michael; Weigend, Florian
2015-01-21
We report the implementation of a two-component variant of time-dependent density functional theory (TDDFT) for hybrid functionals that accounts for spin-orbit effects within the Tamm-Dancoff approximation (TDA) for closed-shell systems. The influence of the admixture of Hartree-Fock exchange on excitation energies is investigated for several atoms and diatomic molecules by comparison to numbers for pure density functionals obtained previously [M. Kühn and F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013)]. It is further related to changes upon switching to the local density approximation or using the full TDDFT formalism instead of TDA. Efficiency is demonstrated for a comparably large system, Ir(ppy){sub 3} (61 atoms, 1501 basis functions, lowest 10 excited states), which is a prototype molecule for organic light-emitting diodes, due to its spin-forbidden triplet-singlet transition.
Moustakidis, Ch. C.; Lalazissis, G. A.; Niksic, T.; Vretenar, D.; Ring, P.
2010-06-15
The transition density n{sub t} and pressure P{sub t} at the inner edge between the liquid core and the solid crust of a neutron star are analyzed using the thermodynamical method and the framework of relativistic nuclear energy density functionals. Starting from a functional that has been carefully adjusted to experimental binding energies of finite nuclei, and varying the density dependence of the corresponding symmetry energy within the limits determined by isovector properties of finite nuclei, we estimate the constraints on the core-crust transition density and pressure of neutron stars: 0.086 fm{sup -3}<=n{sub t}<0.090 fm{sup -3} and 0.3 MeV fm{sup -3}
Synergy between pair coupled cluster doubles and pair density functional theory
Garza, Alejandro J.; Bulik, Ireneusz W.; Henderson, Thomas M.; Scuseria, Gustavo E.
2015-01-28
Pair coupled cluster doubles (pCCD) has been recently studied as a method capable of accounting for static correlation with low polynomial cost. We present three combinations of pCCD with KohnSham functionals of the density and on-top pair density (the probability of finding two electrons on top of each other) to add dynamic correlation to pCCD without double counting. With a negligible increase in computational cost, these pCCD+DFT blends greatly improve upon pCCD in the description of typical problems where static and dynamic correlations are both important. We argue thatas a black-box method with low scaling, size-extensivity, size-consistency, and a simple quasidiagonal two-particle density matrixpCCD is an excellent match for pair density functionals in this type of fusion of multireference wavefunctions with DFT.
Eich, F. G.; Hellgren, Maria
2014-12-14
We investigate fundamental properties of meta-generalized-gradient approximations (meta-GGAs) to the exchange-correlation energy functional, which have an implicit density dependence via the Kohn-Sham kinetic-energy density. To this purpose, we construct the most simple meta-GGA by expressing the local exchange-correlation energy per particle as a function of a fictitious density, which is obtained by inverting the Thomas-Fermi kinetic-energy functional. This simple functional considerably improves the total energy of atoms as compared to the standard local density approximation. The corresponding exchange-correlation potentials are then determined exactly through a solution of the optimized effective potential equation. These potentials support an additional bound state and exhibit a derivative discontinuity at integer particle numbers. We further demonstrate that through the kinetic-energy density any meta-GGA incorporates a derivative discontinuity. However, we also find that for commonly used meta-GGAs the discontinuity is largely underestimated and in some cases even negative.
Towards time-dependent current-density-functional theory in the non-linear regime
Escartín, J. M.; Vincendon, M.; Dinh, P. M.; Suraud, E.; Romaniello, P.; Reinhard, P.-G.
2015-02-28
Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na{sub 2}. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.
Wang, Peng; Barajas-Solano, David A.; Constantinescu, Emil; Abhyankar, S.; Ghosh, Donetta L.; Smith, Barry; Huang, Zhenyu; Tartakovsky, Alexandre M.
2015-09-22
Wind and solar power generators are commonly described by a system of stochastic ordinary differential equations (SODEs) where random input parameters represent uncertainty in wind and solar energy. The existing methods for SODEs are mostly limited to delta-correlated random parameters (white noise). Here we use the Probability Density Function (PDF) method for deriving a closed-form deterministic partial differential equation (PDE) for the joint probability density function of the SODEs describing a power generator with time-correlated power input. The resulting PDE is solved numerically. A good agreement with Monte Carlo Simulations shows accuracy of the PDF method.
Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo
Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.
2014-10-01
We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, a finding in stark contrast to DAC data.
Ultra-nonlocality in density functional theory for photo-emission spectroscopy
Uimonen, A.-M.; Stefanucci, G.; INFN, Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati; European Theoretical Spectroscopy Facility , Louvain-la Neuve ; Leeuwen, R. van; European Theoretical Spectroscopy Facility , Louvain-la Neuve
2014-05-14
We derive an exact expression for the photocurrent of photo-emission spectroscopy using time-dependent current density functional theory (TDCDFT). This expression is given as an integral over the Kohn-Sham spectral function renormalized by effective potentials that depend on the exchange-correlation kernel of current density functional theory. We analyze in detail the physical content of this expression by making a connection between the density-functional expression and the diagrammatic expansion of the photocurrent within many-body perturbation theory. We further demonstrate that the density functional expression does not provide us with information on the kinetic energy distribution of the photo-electrons. Such information can, in principle, be obtained from TDCDFT by exactly modeling the experiment in which the photocurrent is split into energy contributions by means of an external electromagnetic field outside the sample, as is done in standard detectors. We find, however, that this procedure produces very nonlocal correlations between the exchange-correlation fields in the sample and the detector.
Density-functional errors in ionization potential with increasing system size
Whittleton, Sarah R.; Sosa Vazquez, Xochitl A.; Isborn, Christine M.; Johnson, Erin R.
2015-05-14
This work investigates the effects of molecular size on the accuracy of density-functional ionization potentials for a set of 28 hydrocarbons, including series of alkanes, alkenes, and oligoacenes. As the system size increases, delocalization error introduces a systematic underestimation of the ionization potential, which is rationalized by considering the fractional-charge behavior of the electronic energies. The computation of the ionization potential with many density-functional approximations is not size-extensive due to excessive delocalization of the incipient positive charge. While inclusion of exact exchange reduces the observed errors, system-specific tuning of long-range corrected functionals does not generally improve accuracy. These results emphasize that good performance of a functional for small molecules is not necessarily transferable to larger systems.
Neutron-star matter within the energy-density functional theory and neutron-star structure
Fantina, A. F.; Chamel, N.; Goriely, S.; Pearson, J. M.
2015-02-24
In this lecture, we will present some nucleonic equations of state of neutron-star matter calculated within the nuclear energy-density functional theory using generalized Skyrme functionals developed by the Brussels-Montreal collaboration. These equations of state provide a consistent description of all regions of a neutron star. The global structure of neutron stars predicted by these equations of state will be discussed in connection with recent astrophysical observations.
Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids
Aradi, BĂĄlint; Niklasson, Anders M. N.; Frauenheim, Thomas
2015-06-26
A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian BornâOppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materials science, chemistry, and biology.
Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids
Aradi, BĂĄlint; Niklasson, Anders M. N.; Frauenheim, Thomas
2015-06-26
A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian BornâOppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmoreÂ Â» science, chemistry, and biology.Â«Â less
Energy density functional analysis of shape coexistence in {sup 44}S
Li, Z. P.; Yao, J. M.; Vretenar, D.; Niksic, T.; Meng, J.
2012-10-20
The structure of low-energy collective states in the neutron-rich nucleus {sup 44}S is analyzed using a microscopic collective Hamiltonian model based on energy density functionals (EDFs). The calculated triaxial energy map, low-energy spectrum and corresponding probability distributions indicate a coexistence of prolate and oblate shapes in this nucleus.
Kraisler, Eli; Kronik, Leeor
2014-05-14
The fundamental gap is a central quantity in the electronic structure of matter. Unfortunately, the fundamental gap is not generally equal to the Kohn-Sham gap of density functional theory (DFT), even in principle. The two gaps differ precisely by the derivative discontinuity, namely, an abrupt change in slope of the exchange-correlation energy as a function of electron number, expected across an integer-electron point. Popular approximate functionals are thought to be devoid of a derivative discontinuity, strongly compromising their performance for prediction of spectroscopic properties. Here we show that, in fact, all exchange-correlation functionals possess a derivative discontinuity, which arises naturally from the application of ensemble considerations within DFT, without any empiricism. This derivative discontinuity can be expressed in closed form using only quantities obtained in the course of a standard DFT calculation of the neutral system. For small, finite systems, addition of this derivative discontinuity indeed results in a greatly improved prediction for the fundamental gap, even when based on the most simple approximate exchange-correlation density functional the local density approximation (LDA). For solids, the same scheme is exact in principle, but when applied to LDA it results in a vanishing derivative discontinuity correction. This failure is shown to be directly related to the failure of LDA in predicting fundamental gaps from total energy differences in extended systems.
Time-dependent density functional theory quantum transport simulation in non-orthogonal basis
Kwok, Yan Ho; Xie, Hang; Yam, Chi Yung; Chen, Guan Hua; Zheng, Xiao
2013-12-14
Basing on the earlier works on the hierarchical equations of motion for quantum transport, we present in this paper a first principles scheme for time-dependent quantum transport by combining time-dependent density functional theory (TDDFT) and Keldysh's non-equilibrium Green's function formalism. This scheme is beyond the wide band limit approximation and is directly applicable to the case of non-orthogonal basis without the need of basis transformation. The overlap between the basis in the lead and the device region is treated properly by including it in the self-energy and it can be shown that this approach is equivalent to a lead-device orthogonalization. This scheme has been implemented at both TDDFT and density functional tight-binding level. Simulation results are presented to demonstrate our method and comparison with wide band limit approximation is made. Finally, the sparsity of the matrices and computational complexity of this method are analyzed.
Smallwood, D. O.
1996-01-01
It is shown that the usual method for estimating the coherence functions (ordinary, partial, and multiple) for a general multiple-input! multiple-output problem can be expressed as a modified form of Cholesky decomposition of the cross-spectral density matrix of the input and output records. The results can be equivalently obtained using singular value decomposition (SVD) of the cross-spectral density matrix. Using SVD suggests a new form of fractional coherence. The formulation as a SVD problem also suggests a way to order the inputs when a natural physical order of the inputs is absent.
Clay, Raymond C.; Holzmann, Markus; Ceperley, David M.; Morales, Maguel A.
2016-01-19
An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar planets. Though DFT based rst principles methods have the potential to provide the accuracy and computational e ciency required for this task, recent benchmarking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quanti cation of the errors introduced. In this work, we present a quantum Monte Carlo based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures atmoreÂ Â» thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC based force estimators and use them to gain insights into how well the local liquid structure is captured by di erent density functionals. We nd that TPSS, BLYP and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative di erences exhibited by the major classes of functionals, and estimate the magnitudes of these e ects when possible.Â«Â less
Ringholm, Magnus; Ruud, Kenneth; Bast, Radovan; Oggioni, Luca; EkstrĂ¶m, Ulf
2014-10-07
We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.
Phonon and magnetic structure in ÎŽ-plutonium from density-functional theory
SĂ¶derlind, Per; Zhou, F.; Landa, A.; Klepeis, J. E.
2015-10-30
We present phonon properties of plutonium metal obtained from a combination of density-functional-theory (DFT) electronic structure and the recently developed compressive sensing lattice dynamics (CSLD). The CSLD model is here trained on DFT total energies of several hundreds of quasi-random atomic configurations for best possible accuracy of the phonon properties. The calculated phonon dispersions compare better with experiment than earlier results obtained from dynamical mean-field theory. The density-functional model of the electronic structure consists of disordered magnetic moments with all relativistic effects and explicit orbital-orbital correlations. The magnetic disorder is approximated in two ways: (i) a special quasi-random structure and (ii) the disordered-local-moment (DLM) method within the coherent potential approximation. Magnetism in plutonium has been debated intensely, However, the present magnetic approach for plutonium is validated by the close agreement between the predicted magnetic form factor and that of recent neutron-scattering experiments.
Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo
Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.
2014-10-01
We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amoreÂ Â» finding in stark contrast to DAC data.Â«Â less
Nuclear energy density functionals: What we can learn about/from their global performance?
Afanasjev, A. V.; Agbemava, S. E.; Ray, D.; Ring, P.
2014-10-15
A short review of recent results on the global performance of covariant energy density functionals is presented. It is focused on an analysis of the accuracy of the description of physical observables of ground and excited states as well as to related theoretical uncertainties. In addition, a global analysis of pairing properties is presented and the impact of pairing on the position of two-neutron drip line is discussed.
Application of nuclear density functionals to lepton number violating weak processes
Rodriguez, Tomas R.; Martinez-Pinedo, Gabriel
2012-10-20
We present an application of energy density functional methods with the Gogny interaction to the calculation of nuclear matrix elements (NME) for neutrinoless double beta decay and double electron capture. Beyond mean field effects have been included by particle number and angular momentum restoration and shape mixing within the generator coordinate method (GCM) framework. We analyze in detail the NME for {sup 116}Cd nucleus which is one of the most promising candidates to detect neutrinoless double beta decay.
Covariant density functional theory with two-phonon coupling in nuclei
Ring, P.; Litvinova, E.; Tselyaev, V.
2012-10-20
A full description of excited states within the framework of density functional theory requires energy dependent self energies. We present a new class of many-body models. It allows a parameter free description of the fragmentation of nuclear states induced by mode coupling of two-quasiparticle and two-phonon configurations. The method is applied for an investigation of low-lying dipole excitations in Sn isotopes with large neutron excess.
Size-dependent error of the density functional theory ionization potential in vacuum and solution
Sosa Vazquez, Xochitl A.; Isborn, Christine M.
2015-12-22
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmoreÂ Â» for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. As a result, in vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.Â«Â less
Joint Density-Functional Theory of Electrochemistry > Research Highlights >
U.S. Department of Energy (DOE) all webpages (Extended Search)
Research > The Energy Materials Center at Cornell Research Highlights In This Section The Structural Evolution and Diffusion During the Chemical Transformation from Cobalt to Cobalt Phosphide Nanoparticles Joint Density-Functional Theory of Electrochemistry Double-band Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single Crystal Nanostructures for Batteries & PVs High
Size-dependent error of the density functional theory ionization potential in vacuum and solution
Sosa Vazquez, Xochitl A.; Isborn, Christine M.
2015-12-28
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potential for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.
Size-dependent error of the density functional theory ionization potential in vacuum and solution
Sosa Vazquez, Xochitl A.; Isborn, Christine M.
2015-12-22
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potential for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. As a result, in vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.
Long-range corrected density functional theory with linearly-scaled HF exchange
Song, Jong-Won; Hirao, Kimihiko
2015-12-31
Long-range corrected density functional theory (LC-DFT) attracts many chemistsâ attentions as a quantum chemical method to be applied to large molecular system and its property calculations. However, the expensive time cost to evaluate the long-range HF exchange is a big obstacle to be overcome to be applied to the large molecular systems and the solid state materials. Upon this problem, we propose a linear-scaling method of the HF exchange integration, in particular, for the LC-DFT hybrid functional.
Hao, Feng Mattsson, Ann E.; Armiento, Rickard
2014-05-14
We have previously proposed that further improved functionals for density functional theory can be constructed based on the Armiento-Mattsson subsystem functional scheme if, in addition to the uniform electron gas and surface models used in the Armiento-Mattsson 2005 functional, a model for the strongly confined electron gas is also added. However, of central importance for this scheme is an index that identifies regions in space where the correction provided by the confined electron gas should be applied. The electron localization function (ELF) is a well-known indicator of strongly localized electrons. We use a model of a confined electron gas based on the harmonic oscillator to show that regions with high ELF directly coincide with regions where common exchange energy functionals have large errors. This suggests that the harmonic oscillator model together with an index based on the ELF provides the crucial ingredients for future improved semi-local functionals. For a practical illustration of how the proposed scheme is intended to work for a physical system we discuss monoclinic cupric oxide, CuO. A thorough discussion of this system leads us to promote the cell geometry of CuO as a useful benchmark for future semi-local functionals. Very high ELF values are found in a shell around the O ions, and take its maximum value along the CuâO directions. An estimate of the exchange functional error from the effect of electron confinement in these regions suggests a magnitude and sign that could account for the error in cell geometry.
Khan, Shehryar Odelius, Michael; Kubica-Misztal, Aleksandra; Kruk, Danuta; Kowalewski, Jozef
2015-01-21
The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H{sub 2}O){sup â}, Gd(III)DTPA(H{sub 2}O){sup 2â}, and Gd(III)(H{sub 2}O){sub 8}{sup 3+} in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.
Fragment approach to constrained density functional theory calculations using Daubechies wavelets
Ratcliff, Laura E.; Genovese, Luigi; Mohr, Stephan; Deutsch, Thierry
2015-06-21
In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments.
McNally, Joshua S.; Noll, Bruce; Orme, Christopher J.; Wilson, Aaron D.
2015-05-04
Here, a density functional theory (DFT) analysis has been performed to explore the impact of steric interactions on the function of switchable polarity solvents (SPS) and their implications on a quantitative structure-activity relationship (QSAR) model previously proposed for SPS. An x-ray crystal structure of the N,N-dimethylcyclohexylammonium bicarbonate (Hdmcha) salt has been solved as an asymmetric unit containing two cation/anion pairs, with a hydrogen bonding interaction observed between the bicarbonate anions, as well as between the cation and anion in each pair. DFT calculations provide an optimized structure of Hdmcha that closely resembles experimental data and reproduces the cation/anion interaction withmoreÂ Â» the inclusion of a dielectric field. Relaxed potential energy surface (PES) scans have been performed on Hdmcha-based computational model compounds, differing in the size of functional group bonded to the nitrogen center, to assess the steric impact of the group on the relative energy and structural properties of the compound. Results suggest that both the length and amount of branching associated with the substituent impact the energetic limitations on rotation of the group along the N-R bond and NC-R bond, and disrupt the energy minimized position of the hydrogen bonded bicarbonate group. The largest interaction resulted from functional groups that featured five bonds between the ammonium proton and a proton on a functional group with the freedom of rotation to form a pseudo-six membered ring which included both protons.Â«Â less
McNally, Joshua S.; Noll, Bruce; Orme, Christopher J.; Wilson, Aaron D.
2015-05-04
Here, a density functional theory (DFT) analysis has been performed to explore the impact of steric interactions on the function of switchable polarity solvents (SPS) and their implications on a quantitative structure-activity relationship (QSAR) model previously proposed for SPS. An x-ray crystal structure of the N,N-dimethylcyclohexylammonium bicarbonate (Hdmcha) salt has been solved as an asymmetric unit containing two cation/anion pairs, with a hydrogen bonding interaction observed between the bicarbonate anions, as well as between the cation and anion in each pair. DFT calculations provide an optimized structure of Hdmcha that closely resembles experimental data and reproduces the cation/anion interaction with the inclusion of a dielectric field. Relaxed potential energy surface (PES) scans have been performed on Hdmcha-based computational model compounds, differing in the size of functional group bonded to the nitrogen center, to assess the steric impact of the group on the relative energy and structural properties of the compound. Results suggest that both the length and amount of branching associated with the substituent impact the energetic limitations on rotation of the group along the N-R bond and NC-R bond, and disrupt the energy minimized position of the hydrogen bonded bicarbonate group. The largest interaction resulted from functional groups that featured five bonds between the ammonium proton and a proton on a functional group with the freedom of rotation to form a pseudo-six membered ring which included both protons.
Thermally-assisted-occupation density functional theory with generalized-gradient approximations
Chai, Jeng-Da
2014-05-14
We extend the recently proposed thermally-assisted-occupation density functional theory (TAO-DFT) [J.-D. Chai, J. Chem. Phys. 136, 154104 (2012)] to generalized-gradient approximation (GGA) exchange-correlation density functionals. Relative to our previous TAO-LDA (i.e., the local density approximation to TAO-DFT), the resulting TAO-GGAs are significantly superior for a wide range of applications, such as thermochemistry, kinetics, and reaction energies. For noncovalent interactions, TAO-GGAs with empirical dispersion corrections are shown to yield excellent performance. Due to their computational efficiency for systems with strong static correlation effects, TAO-LDA and TAO-GGAs are applied to study the electronic properties (e.g., the singlet-triplet energy gaps, vertical ionization potentials, vertical electron affinities, fundamental gaps, and symmetrized von Neumann entropy) of acenes with different number of linearly fused benzene rings (up to 100), which is very challenging for conventional electronic structure methods. The ground states of acenes are shown to be singlets for all the chain lengths studied here. With the increase of acene length, the singlet-triplet energy gaps, vertical ionization potentials, and fundamental gaps decrease monotonically, while the vertical electron affinities and symmetrized von Neumann entropy (i.e., a measure of polyradical character) increase monotonically.
DOE - Office of Legacy Management -- Johns Hopkins University - MD 02
Office of Legacy Management (LM)
Johns Hopkins University - MD 02 FUSRAP Considered Sites Site: JOHNS HOPKINS UNIVERSITY (MD.02 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Baltimore , Maryland MD.02-1 Evaluation Year: 1987 MD.02-2 Site Operations: Conducted spectroscopic studies under contract number AT(49-1)-309. MD.02-1 Site Disposition: Eliminated - Potential for contamination considered remote based on limited quantities of material used in a controlled
DOE - Office of Legacy Management -- Maryland Disposal Site - MD 05
Office of Legacy Management (LM)
Maryland Disposal Site - MD 05 FUSRAP Considered Sites Site: MARYLAND DISPOSAL SITE (MD.05 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Baltimore - Vicinity , Maryland MD.05-1 Evaluation Year: 1989 MD.05-1 Site Operations: Proposed disposal site - never developed. MD.05-1 Site Disposition: Eliminated Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None Indicated Radiological Survey(s): None
Matanovic, Ivana; Kent, Paul; Garzon, Fernando; Henson, Neil J.
2013-03-14
We used density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.51.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, non-hollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity toward the oxygen reduction reaction of platinum nanowires was assessed by studying the change in the chemisorption energies of oxygen, hydroxyl, and hydroperoxyl groups, induced by converting the nanotube models to nanowires. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Single-wall nanotubes and platinum nanowires with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.
Fattebert, J; Law, R J; Bennion, B; Lau, E Y; Schwegler, E; Lightstone, F C
2009-04-24
We evaluate the accuracy of density functional theory quantum calculations of biomolecular subsystems using a simple electrostatic embedding scheme. Our scheme is based on dividing the system of interest into a primary and secondary subsystem. A finite difference discretization of the Kohn-Sham equations is used for the primary subsystem, while its electrostatic environment is modeled with a simple one-electron potential. Force-field atomic partial charges are used to generate smeared Gaussian charge densities and to model the secondary subsystem. We illustrate the utility of this approach with calculations of truncated dipeptide chains. We analyze quantitatively the accuracy of this approach by calculating atomic forces and comparing results with fullQMcalculations. The impact of the choice made in terminating dangling bonds at the frontier of the QM region is also investigated.
Mao, James X; Lee, Anita S; Kitchin, John R; Nulwala, Hunaid B; Luebke, David R; Damodaran, Krishnan
2013-04-24
Density Functional Theory is used to investigate a weakly coordinating room-temperature ionic liquid, 1-ethyl-3-methyl imidazolium tetracyanoborate ([Emim]{sup +}[TCB]{sup -}). Four locally stable conformers of the ion pair were located. Atoms-in-molecules (AIM) and electron density analysis indicated the existence of several hydrogen bonds. Further investigation through the Natural Bond Orbital (NBO) and Natural Energy Decomposition Analysis (NEDA) calculations provided insight into the origin of interactions in the [Emim]{sup +}[TCB]{sup -} ion pair. Strength of molecular interactions in the ionic liquid was correlated with frequency shifts of the characteristic vibrations of the ion pair. Harmonic vibrations of the ion pair were also compared with the experimental Raman and Infrared spectra. Vibrational frequencies were assigned by visualizing displacements of atoms around their equilibrium positions and through Potential Energy Distribution (PED) analysis.
Orbital relaxation effects on KohnâSham frontier orbital energies in density functional theory
Zhang, DaDi; Zheng, Xiao; Li, Chen; Yang, Weitao
2015-04-21
We explore effects of orbital relaxation on KohnâSham frontier orbital energies in density functional theory by using a nonempirical scaling correction approach developed in Zheng et al. [J. Chem. Phys. 138, 174105 (2013)]. Relaxation of KohnâSham orbitals upon addition/removal of a fractional number of electrons to/from a finite system is determined by a systematic perturbative treatment. The information of orbital relaxation is then used to improve the accuracy of predicted KohnâSham frontier orbital energies by HartreeâFock, local density approximation, and generalized gradient approximation methods. The results clearly highlight the significance of capturing the orbital relaxation effects. Moreover, the proposed scaling correction approach provides a useful way of computing derivative gaps and Fukui quantities of N-electron finite systems (N is an integer), without the need to perform self-consistent-field calculations for (N Â± 1)-electron systems.
Density functional calculation of the structural and electronic properties of germanium quantum dots
Anas, M. M.; Gopir, G.
2015-04-24
We apply first principles density functional computational methods to study the structures, densities of states (DOS), and higher occupied molecular orbital (HOMO) lowest unoccupied molecular orbital (LUMO) gaps of selected free-standing Ge semiconductor quantum dots up to 1.8nm. Our calculations are performed using numerical atomic orbital approach where linear combination of atomic orbital was applied. The surfaces of the quantum dots was passivized by hydrogen atoms. We find that surface passivation does affect the electronic properties associated with the changes of surface state, electron localization, and the energy gaps of germanium nanocrystals as well as the confinement of electrons inside the quantum dots (QDs). Our study shows that the energy gaps of germanium quantum dots decreases with the increasing dot diameter. The size-dependent variations of the computed HOMO-LUMO gaps in our quantum dots model were found to be consistent with the effects of quantum confinement reported in others theoretical and experimental calculation.
Electrical double layers and differential capacitance in molten salts from density functional theory
Frischknecht, Amalie L.; Halligan, Deaglan O.; Parks, Michael L.
2014-08-05
Classical density functional theory (DFT) is used to calculate the structure of the electrical double layer and the differential capacitance of model molten salts. The DFT is shown to give good qualitative agreement with Monte Carlo simulations in the molten salt regime. The DFT is then applied to three common molten salts, KCl, LiCl, and LiKCl, modeled as charged hard spheres near a planar charged surface. The DFT predicts strong layering of the ions near the surface, with the oscillatory density profiles extending to larger distances for larger electrostatic interactions resulting from either lower temperature or lower dielectric constant. In conclusion, overall the differential capacitance is found to be bell-shaped, in agreement with recent theories and simulations for ionic liquids and molten salts, but contrary to the results of the classical Gouy-Chapman theory.
Electrical double layers and differential capacitance in molten salts from density functional theory
Frischknecht, Amalie L.; Halligan, Deaglan O.; Parks, Michael L.
2014-08-05
Classical density functional theory (DFT) is used to calculate the structure of the electrical double layer and the differential capacitance of model molten salts. The DFT is shown to give good qualitative agreement with Monte Carlo simulations in the molten salt regime. The DFT is then applied to three common molten salts, KCl, LiCl, and LiKCl, modeled as charged hard spheres near a planar charged surface. The DFT predicts strong layering of the ions near the surface, with the oscillatory density profiles extending to larger distances for larger electrostatic interactions resulting from either lower temperature or lower dielectric constant. InmoreÂ Â» conclusion, overall the differential capacitance is found to be bell-shaped, in agreement with recent theories and simulations for ionic liquids and molten salts, but contrary to the results of the classical Gouy-Chapman theory.Â«Â less
DGDFT: A massively parallel method for large scale density functional theory calculations
Hu, Wei Yang, Chao; Lin, Lin
2015-09-28
We describe a massively parallel implementation of the recently developed discontinuous Galerkin density functional theory (DGDFT) method, for efficient large-scale Kohn-Sham DFT based electronic structure calculations. The DGDFT method uses adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field iteration to represent the solution to the Kohn-Sham equations. The use of the ALB set provides a systematic way to improve the accuracy of the approximation. By using the pole expansion and selected inversion technique to compute electron density, energy, and atomic forces, we can make the computational complexity of DGDFT scale at most quadratically with respect to the number of electrons for both insulating and metallic systems. We show that for the two-dimensional (2D) phosphorene systems studied here, using 37 basis functions per atom allows us to reach an accuracy level of 1.3 Ă 10{sup â4} Hartree/atom in terms of the error of energy and 6.2 Ă 10{sup â4} Hartree/bohr in terms of the error of atomic force, respectively. DGDFT can achieve 80% parallel efficiency on 128,000 high performance computing cores when it is used to study the electronic structure of 2D phosphorene systems with 3500-14â000 atoms. This high parallel efficiency results from a two-level parallelization scheme that we will describe in detail.
Hybrid density functional theory description of N- and C-doping of NiO
Nolan, Michael; Long, Run; English, Niall J.; Mooney, Damian A.
2011-06-14
The large intrinsic bandgap of NiO hinders its potential application as a photocatalyst under visible-light irradiation. In this study, we have performed first-principles screened exchange hybrid density functional theory with the HSE06 functional calculations of N- and C-doped NiO to investigate the effect of doping on the electronic structure of NiO. C-doping at an oxygen site induces gap states due to the dopant, the positions of which suggest that the top of the valence band is made up primarily of C 2p-derived states with some Ni 3d contributions, and the lowest-energy empty state is in the middle of the gap. This leads to an effective bandgap of 1.7 eV, which is of potential interest for photocatalytic applications. N-doping induces comparatively little dopant-Ni 3d interactions, but results in similar positions of dopant-induced states, i.e., the top of the valence band is made up of dopant 2p states and the lowest unoccupied state is the empty gap state derived from the dopant, leading to bandgap narrowing. With the hybrid density functional theory (DFT) results available, we discuss issues with the DFT corrected for on-site Coulomb description of these systems.
Interacting boson model from energy density functionals: {gamma}-softness and the related topics
Nomura, K.
2012-10-20
A comprehensive way of deriving the Hamiltonian of the interacting boson model (IBM) is described. Based on the fact that the multi-nucleon induced surface deformation in finite nucleus is simulated by effective boson degrees of freedom, the potential energy surface calculated with self-consistent mean-field method employing a given energy density functional (EDF) is mapped onto the IBM analog, and thereby the excitation spectra and transition rates with good symmetry quantum numbers are calculated. Recent applications of the proposed approach are reported: (i) an alternative robust interpretation of the {gamma}-soft nuclei and (ii) shape coexistence in lead isotopes.
Optical absorption in B{sub 13} cluster: A time-dependent density functional approach
Shinde, Ravindra; Tayade, Meenakshi
2013-02-05
The linear optical absorption spectra of three isomers of planar boron cluster B{sub 13} are calculated using time-dependent spin-polarized density functional approach. The geometries of these cluster are optimized at the B3LYP/6-311+G* level of theory. Even though the isomers are almost degenerate, the calculated spectra are quite different, indicating a strong structure-property relationship. Therefore, these computed spectra can be used in the photo-absorption experiments to distinguish between different isomers of a cluster.
Free Energy Calculations of Crystalline Hard Sphere Complexes Using Density Functional Theory
Gunawardana, K. G.S.H.; Song, Xueyu
2014-12-22
Recently developed fundamental measure density functional theory (FMT) is used to study binary hard sphere (HS) complexes in crystalline phases. By comparing the excess free energy, pressure and phase diagram, we show that the fundamental measure functional yields good agreements to the available simulation results of AB, AB2 and AB13 crystals. Additionally, we use this functional to study the HS models of five binary crystals, Cu5Zr(C15b), Cu51Zr14(ÎČ), Cu10Zr7(Ï), CuZr(B2) and CuZr2 (C11b), which are observed in the Cu-Zr system. The FMT functional gives well behaved minimum for most of the hard sphere crystal complexes in the two dimensional Gaussian space,moreÂ Â» namely a crystalline phase. However, the current version of FMT functional (white Bear) fails to give a stable minimum for the structure Cu10Zr7(Ï). We argue that the observed solid phases for the HS models of the Cu-Zr system are true thermodynamic stable phases and can be used as a reference system in perturbation calculations.Â«Â less
Free Energy Calculations of Crystalline Hard Sphere Complexes Using Density Functional Theory
Gunawardana, K. G.S.H.; Song, Xueyu
2014-12-22
Recently developed fundamental measure density functional theory (FMT) is used to study binary hard sphere (HS) complexes in crystalline phases. By comparing the excess free energy, pressure and phase diagram, we show that the fundamental measure functional yields good agreements to the available simulation results of AB, AB_{2} and AB_{13} crystals. Additionally, we use this functional to study the HS models of five binary crystals, Cu_{5}Zr(C15_{b}), Cu_{51}Zr_{14}(?), Cu_{10}Zr_{7}(?), CuZr(B2) and CuZr_{2} (C11_{b}), which are observed in the Cu-Zr system. The FMT functional gives well behaved minimum for most of the hard sphere crystal complexes in the two dimensional Gaussian space, namely a crystalline phase. However, the current version of FMT functional (white Bear) fails to give a stable minimum for the structure Cu_{10}Zr_{7}(?). We argue that the observed solid phases for the HS models of the Cu-Zr system are true thermodynamic stable phases and can be used as a reference system in perturbation calculations.
Quantal density-functional theory in the presence of a magnetic field
Yang Tao; Pan Xiaoyin; Sahni, Viraht
2011-04-15
We generalize the quantal density-functional theory (QDFT) of electrons in the presence of an external electrostatic field E(r)=-{nabla}v(r) to include an external magnetostatic field B(r)={nabla}xA(r), where (v(r),A(r)) are the respective scalar and vector potentials. The generalized QDFT, valid for nondegenerate ground and excited states, is the mapping from the interacting system of electrons to a model of noninteracting fermions with the same density {rho}(r) and physical current density j(r), and from which the total energy can be obtained. The properties ({rho}(r),j(r)) constitute the basic quantum-mechanical variables because, as proved previously, for a nondegenerate ground state they uniquely determine the potentials (v(r),A(r)). The mapping to the noninteracting system is arbitrary in that the model fermions may be either in their ground or excited state. The theory is explicated by application to a ground state of the exactly solvable (two-dimensional) Hooke's atom in a magnetic field, with the mapping being to a model system also in its ground state. The majority of properties of the model are obtained in closed analytical or semianalytical form. A comparison with the corresponding mapping from a ground state of the (three-dimensional) Hooke's atom in the absence of a magnetic field is also made.
Structure and dynamics in liquid bismuth and Bi{sub n} clusters: A density functional study
Akola, J.; Atodiresei, N.; Kalikka, J.; Larrucea, J.; Jones, R. O.
2014-11-21
Density functional/molecular dynamics simulations with more than 500 atoms have been performed on liquid bismuth at 573, 773, 923, and 1023 K and on neutral Bi clusters with up to 14 atoms. There are similar structural patterns (coordination numbers, bond angles, and ring patterns) in the liquid and the clusters, with significant differences from the rhombohedral crystalline form. We study the details of the structure (structure factor, pair, and cavity distribution functions) and dynamical properties (vibration frequencies, diffusion constants, power spectra), and compare with experimental results where available. While the three short covalent bonds typical to pnictogens are characteristic in both liquid and clusters, the number of large voids and the total cavity volume is much larger in the liquid at 1023 K, with larger local concentration variations. The inclusion of spin-orbit coupling results in a lowering of the cohesive energies in Bi{sub n} clusters of 0.30.5 eV/atom.
Energy Density Functional Study of Nuclear Matrix Elements for Neutrinoless {beta}{beta} Decay
Rodriguez, Tomas R. [GSI Helmholtzzentrum fuer Schwerionenforschung, D-64259 Darmstadt (Germany); Departamento de Fisica Teorica, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); CEA, Irfu, SPhN, Centre de Saclay, F-911191 Gif-sur-Yvette (France); Martinez-Pinedo, Gabriel [GSI Helmholtzzentrum fuer Schwerionenforschung, D-64259 Darmstadt (Germany)
2010-12-17
We present an extensive study of nuclear matrix elements (NME) for the neutrinoless double-beta decay of the nuclei {sup 48}Ca, {sup 76}Ge, {sup 82}Se, {sup 96}Zr, {sup 100}Mo, {sup 116}Cd, {sup 124}Sn, {sup 128}Te, {sup 130}Te, {sup 136}Xe, and {sup 150}Nd based on state-of-the-art energy density functional methods using the Gogny D1S functional. Beyond-mean-field effects are included within the generating coordinate method with particle number and angular momentum projection for both initial and final ground states. We obtain a rather constant value for the NMEs around 4.7 with the exception of {sup 48}Ca and {sup 150}Nd, where smaller values are found. We analyze the role of deformation and pairing in the evaluation of the NME and present detailed results for the decay of {sup 150}Nd.
Density-functional Monte-Carlo simulation of CuZn order-disorder transition
Khan, Suffian N.; Eisenbach, Markus
2016-01-25
We perform a Wang-Landau Monte Carlo simulation of a Cu0.5Zn0.5 order-disorder transition using 250 atoms and pairwise atom swaps inside a 5 x 5 x 5 BCC supercell. Each time step uses energies calculated from density functional theory (DFT) via the all-electron Korringa-Kohn- Rostoker method and self-consistent potentials. Here we find CuZn undergoes a transition from a disordered A2 to an ordered B2 structure, as observed in experiment. Our calculated transition temperature is near 870 K, comparing favorably to the known experimental peak at 750 K. We also plot the entropy, temperature, specific-heat, and short-range order as a function ofmoreÂ Â» internal energy.Â«Â less
Quasi-particle energy spectra in local reduced density matrix functional theory
Lathiotakis, Nektarios N.; Helbig, Nicole; Rubio, Angel
2014-10-28
Recently, we introduced [N. N. Lathiotakis, N. Helbig, A. Rubio, and N. I. Gidopoulos, Phys. Rev. A 90, 032511 (2014)] local reduced density matrix functional theory (local RDMFT), a theoretical scheme capable of incorporating static correlation effects in Kohn-Sham equations. Here, we apply local RDMFT to molecular systems of relatively large size, as a demonstration of its computational efficiency and its accuracy in predicting single-electron properties from the eigenvalue spectrum of the single-particle Hamiltonian with a local effective potential. We present encouraging results on the photoelectron spectrum of molecular systems and the relative stability of C{sub 20} isotopes. In addition, we propose a modelling of the fractional occupancies as functions of the orbital energies that further improves the efficiency of the method useful in applications to large systems and solids.
Mixtures of ions and amphiphilic molecules in slit-like pores: A density functional approach
Pizio, O.; RĆŒysko, W. SokoĆowski, S.; SokoĆowska, Z.
2015-04-28
We investigate microscopic structure and thermodynamic properties of a mixture that contains amphiphilic molecules and charged hard spheres confined in slit-like pores with uncharged hard walls. The model and the density functional approach are the same as described in details in our previous work [Pizio et al., J. Chem. Phys. 140, 174706 (2014)]. Our principal focus is in exploring the effects brought by the presence of ions on the structure of confined amphiphilic particles. We have found that for some cases of anisotropic interactions, the change of the structure of confined fluids occurs via the first-order transitions. Moreover, if anions and cations are attracted by different hemispheres of amphiphiles, a charge at the walls appears at the zero value of the wall electrostatic potential. For a given thermodynamic state, this charge is an oscillating function of the pore width.
McDonnell, J. D.; Schunck, N.; Higdon, D.; Sarich, J.; Wild, S. M.; Nazarewicz, W.
2015-03-24
Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. In addition, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.
McDonnell, J. D.; Schunck, N.; Higdon, D.; Sarich, J.; Wild, S. M.; Nazarewicz, W.
2015-03-24
Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. As a result, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.
Nomura, K.; Vretenar, D.; Niksic, T.; Otsuka, T.; Shimizu, N.
2011-07-15
Microscopic energy density functionals have become a standard tool for nuclear structure calculations, providing an accurate global description of nuclear ground states and collective excitations. For spectroscopic applications, this framework has to be extended to account for collective correlations related to restoration of symmetries broken by the static mean field, and for fluctuations of collective variables. In this paper, we compare two approaches to five-dimensional quadrupole dynamics: the collective Hamiltonian for quadrupole vibrations and rotations and the interacting boson model (IBM). The two models are compared in a study of the evolution of nonaxial shapes in Pt isotopes. Starting from the binding energy surfaces of {sup 192,194,196}Pt, calculated with a microscopic energy density functional, we analyze the resulting low-energy collective spectra obtained from the collective Hamiltonian, and the corresponding IBM Hamiltonian. The calculated excitation spectra and transition probabilities for the ground-state bands and the {gamma}-vibration bands are compared to the corresponding sequences of experimental states.
McDonnell, J. D.; Schunck, N.; Higdon, D.; Sarich, J.; Wild, S. M.; Nazarewicz, W.
2015-03-24
Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squaresmoreÂ Â» optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. In addition, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.Â«Â less
Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung
2015-04-14
Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.
Orbital-free density functional theory implementation with the projector augmented-wave method
Lehtomäki, Jouko; Makkonen, Ilja; Harju, Ari; Lopez-Acevedo, Olga; Caro, Miguel A.
2014-12-21
We present a computational scheme for orbital-free density functional theory (OFDFT) that simultaneously provides access to all-electron values and preserves the OFDFT linear scaling as a function of the system size. Using the projector augmented-wave method (PAW) in combination with real-space methods, we overcome some obstacles faced by other available implementation schemes. Specifically, the advantages of using the PAW method are twofold. First, PAW reproduces all-electron values offering freedom in adjusting the convergence parameters and the atomic setups allow tuning the numerical accuracy per element. Second, PAW can provide a solution to some of the convergence problems exhibited in other OFDFT implementations based on Kohn-Sham (KS) codes. Using PAW and real-space methods, our orbital-free results agree with the reference all-electron values with a mean absolute error of 10 meV and the number of iterations required by the self-consistent cycle is comparable to the KS method. The comparison of all-electron and pseudopotential bulk modulus and lattice constant reveal an enormous difference, demonstrating that in order to assess the performance of OFDFT functionals it is necessary to use implementations that obtain all-electron values. The proposed combination of methods is the most promising route currently available. We finally show that a parametrized kinetic energy functional can give lattice constants and bulk moduli comparable in accuracy to those obtained by the KS PBE method, exemplified with the case of diamond.
Franke, J.-H.; Kosov, D. S.
2013-12-14
The adsorption of the chiral molecule lactate on the intrinsically chiral noble metal surfaces Pt(321), Au(321), and Ag(321) is studied by density functional theory calculations. We use the oPBE-vdW functional which includes van der Waals forces on an ab initio level. It is shown that the molecule binds via its carboxyl and the hydroxyl oxygen atoms to the surface. The binding energy is larger on Pt(321) and Ag(321) than on Au(321). An analysis of the contributions to the binding energy of the different molecular functional groups reveals that the deprotonated carboxyl group contributes most to the binding energy, with a much smaller contribution of the hydroxyl group. The Pt(321) surface shows considerable enantioselectivity of 0.06 eV. On Au(321) and Ag(321) it is much smaller if not vanishing. The chiral selectivity of the Pt(321) surface can be explained by two factors. First, it derives from the difference in van der Waals attraction of L- and D-lactate to the surface that we trace to differences in the binding energy of the methyl group. Second, the multi-point binding pattern for lactate on the Pt(321) surface is sterically more sensitive to surface chirality and also leads to large binding energy contributions of the hydroxyl group. We also calculate the charge transfer to the molecule and the work function to gauge changes in electronic structure of the adsorbed molecule. The work function is lowered by 0.8 eV on Pt(321) with much smaller changes on Au(321) and Ag(321)
Perspective: Fifty years of density-functional theory in chemical physics
Becke, Axel D.
2014-05-14
Since its formal inception in 1964â1965, Kohn-Sham density-functional theory (KS-DFT) has become the most popular electronic structure method in computational physics and chemistry. Its popularity stems from its beautifully simple conceptual framework and computational elegance. The rise of KS-DFT in chemical physics began in earnest in the mid 1980s, when crucial developments in its exchange-correlation term gave the theory predictive power competitive with well-developed wave-function methods. Today KS-DFT finds itself under increasing pressure to deliver higher and higher accuracy and to adapt to ever more challenging problems. If we are not mindful, however, these pressures may submerge the theory in the wave-function sea. KS-DFT might be lost. I am hopeful the Kohn-Sham philosophical, theoretical, and computational framework can be preserved. This Perspective outlines the history, basic concepts, and present status of KS-DFT in chemical physics, and offers suggestions for its future development.
Radical Coupling Reactions in Lignin Synthesis: A Density Functional Theory Study
Sangha, A. K.; Parks, J. M.; Standaert, R. F.; Ziebell, A.; Davis, M.; Smith, J. C.
2012-04-26
Lignin is a complex, heterogeneous polymer in plant cell walls that provides mechanical strength to the plant stem and confers resistance to degrading microbes, enzymes, and chemicals. Lignin synthesis initiates through oxidative radical-radical coupling of monolignols, the most common of which are p-coumaryl, coniferyl, and sinapyl alcohols. Here, we use density functional theory to characterize radical-radical coupling reactions involved in monolignol dimerization. We compute reaction enthalpies for the initial self- and cross-coupling reactions of these monolignol radicals to form dimeric intermediates via six major linkages observed in natural lignin. The 8-O-4, 8-8, and 8-5 coupling are computed to be the most favorable, whereas the 5-O-4, 5-5, and 8-1 linkages are less favorable. Overall, p-coumaryl self- and cross-coupling reactions are calculated to be the most favorable. For cross-coupling reactions, in which each radical can couple via either of the two sites involved in dimer formation, the more reactive of the two radicals is found to undergo coupling at its site with the highest spin density.
Analytic cubic and quartic force fields using density-functional theory
Ringholm, Magnus; Gao, Bin; Thorvaldsen, Andreas J.; Ruud, Kenneth; Jonsson, Dan; High Performance Computing Group, University of TromsĂžâThe Arctic University of Norway, 9037 TromsĂž ; Bast, Radovan; EkstrĂ¶m, Ulf; Helgaker, Trygve
2014-01-21
We present the first analytic implementation of cubic and quartic force constants at the level of KohnâSham density-functional theory. The implementation is based on an open-ended formalism for the evaluation of energy derivatives in an atomic-orbital basis. The implementation relies on the availability of open-ended codes for evaluation of one- and two-electron integrals differentiated with respect to nuclear displacements as well as automatic differentiation of the exchangeâcorrelation kernels. We use generalized second-order vibrational perturbation theory to calculate the fundamental frequencies of methane, ethane, benzene, and aniline, comparing B3LYP, BLYP, and HartreeâFock results. The HartreeâFock anharmonic corrections agree well with the B3LYP corrections when calculated at the B3LYP geometry and from B3LYP normal coordinates, suggesting that the inclusion of electron correlation is not essential for the reliable calculation of cubic and quartic force constants.
Density functional theory calculations of magnetocrystalline anisotropy energies for (Fe1-xCox)2B
Daene, Markus; Kim, Soo Kyung; Surh, Michael P.; Aberg, Daniel; Benedict, Lorin X.
2015-06-15
We present and discuss density functional theory calculations of magnetic properties of the family of ferromagnetic compounds, (Fe1-xCox)2B, focusing specifically on the magnetocrystalline anisotropy energy (MAE). Using periodic supercells of various sizes (up to 96 atoms), it is shown that the general qualitative features of the composition dependence of the MAE is in agreement with experimental findings, while our predicted magnitudes are larger than those of experiment. We find that the use of small supercells (6 and 12-atom) favors larger MAE values relative to a statistical sample of configurations constructed with 96-atom supercells. As a result, the effect of latticemoreÂ Â» relaxations is shown to be small. Calculations of the Curie temperature for this alloy are also presented.Â«Â less
Solving the Self-Interaction Problem in Kohn-Sham Density Functional Theory. Application to Atoms
Daene, M.; Gonis, A.; Nicholson, D. M.; Stocks, G. M.
2014-10-14
Previously, we proposed a computational methodology that addresses the elimination of the self-interaction error from the KohnâSham formulation of the density functional theory. We demonstrated how the exchange potential can be obtained, and presented results of calculations for atomic systems up to Kr carried out within a Cartesian coordinate system. In our paper, we provide complete details of this self-interaction free method formulated in spherical coordinates based on the explicit equidensity basis ansatz. We also prove analytically that derivatives obtained using this method satisfy the Virial theorem for spherical orbitals, where the problem can be reduced to one dimension. WemoreÂ Â» present the results of calculations of ground-state energies of atomic systems throughout the periodic table carried out within the exchange-only mode.Â«Â less
Density functional study of H-induced defects as nucleation sites in hybrid carbon nanomaterials.
Barnard, A.; Terranova, M. L.; Rossi, M.; Dip. Scienze e Tecnologie Chimiche; Dip di Energetica; INFM
2005-01-01
Recently we have reported on the growth of an exciting new class of hybrid nanostructured carbon materials, coupling nanosized diamond with single-walled carbon nanotubes. The inner structures were shown to be single-walled C nanotubes or bundles of single-walled nanotubes up to 15 {micro}m long, and the outer deposit consisted of faceted diamond crystallites with diameters in the range of 20-100 nm. To aid in understanding the mechanisms responsible for the formation of such materials, the present study uses density functional theory to examine the role of atomic hydrogen in creating localized sp{sup 3} hybridized defects on the outer wall of carbon nanotubes. The results illustrate that certain absorption configurations may produce defects containing dangling carbon bonds, and thus promote the formation of suitable sites for nanodiamond nucleation.
Multidimensional Skyrme-density-functional study of the spontaneous fission of ^{238}U
Sadhukhan, J.; Mazurek, K.; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.
2015-01-01
We determined the spontaneous fission lifetime of ^{238}U by a minimization of the action integral in a three-dimensional space of collective variables. Apart from the mass-distribution multipole moments Q_{20} (elongation) and Q_{30} (leftright asymmetry), we also considered the pairing-fluctuation parameter ?_{2} as a collective coordinate. The collective potential was obtained self-consistently using the Skyrme energy density functional SkM*. The inertia tensor was obtained within the nonperturbative cranking approximation to the adiabatic time-dependent HartreeFockBogoliubov approach. As a result, the pairing-fluctuation parameter ?_{2} allowed us to control the pairing gap along the fission path, which significantly changed the spontaneous fission lifetime.
Density-functional calculations for rare-earth atoms and ions
Forstreuter, J.; Steinbeck, L.; Richter, M.; Eschrig, H.
1997-04-01
Relativistic local-spin-density (RLSD) and self-interaction-corrected (SIC) RLSD calculations were performed for the whole series of the rare-earth elements. Ionization potentials and radial expectation values with 4f wave functions were calculated. Improvement on nearly all quantities is found for SIC calculations. Comparison with other calculational methods shows that for a description of rare-earth elements SIC-RLSD competes well in accuracy with all of them, including the most accurate quantum-chemical approach. This is important since the SIC calculation has the advantage of being suited for a description of localized f states in solids with a comparatively moderate effort. {copyright} {ital 1997} {ital The American Physical Society}
Multidimensional Skyrme-density-functional study of the spontaneous fission of 238U
Sadhukhan, J.; Mazurek, K.; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.
2015-01-01
We determined the spontaneous fission lifetime of 238U by a minimization of the action integral in a three-dimensional space of collective variables. Apart from the mass-distribution multipole moments Q20 (elongation) and Q30 (leftâright asymmetry), we also considered the pairing-fluctuation parameter Î»2 as a collective coordinate. The collective potential was obtained self-consistently using the Skyrme energy density functional SkM*. The inertia tensor was obtained within the nonperturbative cranking approximation to the adiabatic time-dependent HartreeâFockâBogoliubov approach. As a result, the pairing-fluctuation parameter Î»2 allowed us to control the pairing gap along the fission path, which significantly changed the spontaneous fission lifetime.
Greeley, J.; Norskov, J.; Center for Nanoscale Materials; Technical Univ. of Denmark
2009-03-26
A density functional theory (DFT) -based, combinatorial search for improved oxygen reduction reaction (ORR) catalysts is presented. A descriptor-based approach to estimate the ORR activity of binary surface alloys, wherein alloying occurs only in the surface layer, is described, and rigorous, potential-dependent computational tests of the stability of these alloys in aqueous, acidic environments are presented. These activity and stability criteria are applied to a database of DFT calculations on nearly 750 binary transition metal surface alloys; of these, many are predicted to be active for the ORR but, with few exceptions, they are found to be thermodynamically unstable in the acidic environments typical of low-temperature fuel cells. The results suggest that, absent other thermodynamic or kinetic mechanisms to stabilize the alloys, surface alloys are unlikely to serve as useful ORR catalysts over extended periods of operation.
Zhang, Yachao
2014-12-07
A first-principles study of critical temperatures (T{sub c}) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T{sub c} of a pair of iron(II) SCO molecular crystals (Î± and ÎČ phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ÎE{sub HL} and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ÎH and ÎS), and finally extract T{sub c} by exploiting the ÎH/T â T and ÎS â T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the Î± phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T{sub c} of the two phases. This study shows the applicability of the DFT+U approach for predicting T{sub c} of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.
Mardirossian, Narbe; Head-Gordon, Martin
2015-02-21
A meta-generalized gradient approximation density functional paired with the VV10 nonlocal correlation functional is presented. The functional form is selected from more than 10{sup 10} choices carved out of a functional space of almost 10{sup 40} possibilities. Raw data come from training a vast number of candidate functional forms on a comprehensive training set of 1095 data points and testing the resulting fits on a comprehensive primary test set of 1153 data points. Functional forms are ranked based on their ability to reproduce the data in both the training and primary test sets with minimum empiricism, and filtered based on a set of physical constraints and an often-overlooked condition of satisfactory numerical precision with medium-sized integration grids. The resulting optimal functional form has 4 linear exchange parameters, 4 linear same-spin correlation parameters, and 4 linear opposite-spin correlation parameters, for a total of 12 fitted parameters. The final density functional, B97M-V, is further assessed on a secondary test set of 212 data points, applied to several large systems including the coronene dimer and water clusters, tested for the accurate prediction of intramolecular and intermolecular geometries, verified to have a readily attainable basis set limit, and checked for grid sensitivity. Compared to existing density functionals, B97M-V is remarkably accurate for non-bonded interactions and very satisfactory for thermochemical quantities such as atomization energies, but inherits the demonstrable limitations of existing local density functionals for barrier heights.
Mattsson, Thomas R.; Root, Seth; Mattsson, Ann E.; Shulenburger, Luke; Magyar, Rudolph J.; Flicker, Dawn G.
2014-11-11
We use Sandia's Z machine and magnetically accelerated flyer plates to shock compress liquid krypton to 850 GPa and compare with results from density-functional theory (DFT) based simulations using the AM05 functional. We also employ quantum Monte Carlo calculations to motivate the choice of AM05. We conclude that the DFT results are sensitive to the quality of the pseudopotential in terms of scattering properties at high energy/temperature. A new Kr projector augmented wave potential was constructed with improved scattering properties which resulted in excellent agreement with the experimental results to 850 GPa and temperatures above 10 eV (110 kK). InmoreÂ Â» conclusion, we present comparisons of our data from the Z experiments and DFT calculations to current equation of state models of krypton to determine the best model for high energy-density applications.Â«Â less
Mattsson, Thomas R.; Root, Seth; Mattsson, Ann E.; Shulenburger, Luke; Magyar, Rudolph J.; Flicker, Dawn G.
2014-11-11
We use Sandia's Z machine and magnetically accelerated flyer plates to shock compress liquid krypton to 850 GPa and compare with results from density-functional theory (DFT) based simulations using the AM05 functional. We also employ quantum Monte Carlo calculations to motivate the choice of AM05. We conclude that the DFT results are sensitive to the quality of the pseudopotential in terms of scattering properties at high energy/temperature. A new Kr projector augmented wave potential was constructed with improved scattering properties which resulted in excellent agreement with the experimental results to 850 GPa and temperatures above 10 eV (110 kK). In conclusion, we present comparisons of our data from the Z experiments and DFT calculations to current equation of state models of krypton to determine the best model for high energy-density applications.
Building a Universal Nuclear Energy Density Functional (UNEDF): SciDAC-2 Project
Carlson, Joe; Furnstahl, Dick; Lusk, Rusty; Nazarewicz, Witek; Ng, Esmond; Thompson, Ian; Vary, James
2012-06-30
An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1, 2006 - Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; and third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.
Sarker, Pranab; Huda, Muhammad N.; Al-Jassim, Mowafak M.
2015-12-07
A quaternary oxide, CuSnW{sub 2}O{sub 8} (CTTO), has been predicted by density functional theory (DFT) to be a suitable material for sustainable photovoltaic applications. CTTO possesses band gaps of 1.25âeV (indirect) and 1.37âeV (direct), which were evaluated using the hybrid functional (HSE06) as a post-DFT method. The hole mobility of CTTO was higher than that of silicon. Further, optical absorption calculations demonstrate that CTTO is a better absorber of sunlight than Cu{sub 2}ZnSnS{sub 4} and CuIn{sub x}Ga{sub 1âx}Se{sub 2} (xâ=â0.5). In addition, CTTO exhibits rigorous thermodynamic stability comparable to WO{sub 3}, as investigated by different thermodynamic approaches such as bonding cohesion, fragmentation tendency, and chemical potential analysis. Chemical potential analysis further revealed that CTTO can be synthesized at flexible experimental growth conditions, although the co-existence of at least one secondary phase is likely. Finally, like other Cu-based compounds, the formation of Cu vacancies is highly probable, even at Cu-rich growth condition, which could introduce p-type activity in CTTO.
Complex-energy approach to sum rules within nuclear density functional theory
Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; Olsen, Erik
2015-04-27
The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations governing the behavior of the many-body system, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish an efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random- phase approximation. The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel computing. As a result, the FAM formulation is especially useful when standard theorems based on commutation relations involving the nuclear Hamiltonian and external field cannot be used.
Complex-energy approach to sum rules within nuclear density functional theory
Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; Olsen, Erik
2015-04-27
The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations governing the behavior of the many-body system, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish anmoreÂ Â» efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random- phase approximation. The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel computing. As a result, the FAM formulation is especially useful when standard theorems based on commutation relations involving the nuclear Hamiltonian and external field cannot be used.Â«Â less
Filatov, Michael; Huix-Rotllant, Miquel; Burghardt, Irene
2015-05-14
State-averaged (SA) variants of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, SA-REKS and state-interaction (SI)-SA-REKS, implement ensemble density functional theory for variationally obtaining excitation energies of molecular systems. In this work, the currently existing version of the SA-REKS method, which included only one excited state into the ensemble averaging, is extended by adding more excited states to the averaged energy functional. A general strategy for extension of the REKS-type methods to larger ensembles of ground and excited states is outlined and implemented in extended versions of the SA-REKS and SI-SA-REKS methods. The newly developed methods are tested in the calculation of several excited states of ground-state multi-reference systems, such as dissociating hydrogen molecule, and excited states of donorâacceptor molecular systems. For hydrogen molecule, the new method correctly reproduces the distance dependence of the lowest excited state energies and describes an avoided crossing between the doubly excited and singly excited states. For bithiopheneâperylenediimide stacked complex, the SI-SA-REKS method correctly describes crossing between the locally excited state and the charge transfer excited state and yields vertical excitation energies in good agreement with the ab initio wavefunction methods.
Attarian Shandiz, M. Gauvin, R.
2014-10-28
The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy was modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.
THE INITIAL MASS FUNCTION AND THE SURFACE DENSITY PROFILE OF NGC 6231
Sung, Hwankyung; Sana, Hugues; Bessell, Michael S. E-mail: H.Sana@uva.nl
2013-02-01
We have performed new wide-field photometry of the young open cluster NGC 6231 to study the shape of the initial mass function (IMF) and mass segregation. We also investigated the reddening law toward NGC 6231 from optical to mid-infrared color excess ratios, and found that the total-to-selective extinction ratio is R{sub V} = 3.2, which is very close to the normal value. But many early-type stars in the cluster center show large color excess ratios. We derived the surface density profiles of four member groups, and found that they reach the surface density of field stars at about 10', regardless of stellar mass. The IMF of NGC 6231 is derived for the mass range 0.8-45 M{sub Sun }. The slope of the IMF of NGC 6231 ({Gamma} = -1.1 {+-} 0.1) is slightly shallower than the canonical value, but the difference is marginal. In addition, the mass function varies systematically, and is a strong function of radius-it is very shallow at the center, and very steep at the outer ring suggesting the cluster is mass segregated. We confirm the mass segregation for the massive stars (m {approx}> 8 M{sub Sun }) by a minimum spanning tree analysis. Using a Monte Carlo method, we estimate the total mass of NGC 6231 to be about 2.6 ({+-} 0.6) Multiplication-Sign 10{sup 3} M{sub Sun }. We constrain the age of NGC 6231 by comparison with evolutionary isochrones. The age of the low-mass stars ranges from 1 to 7 Myr with a slight peak at 3 Myr. However, the age of the high-mass stars depends on the adopted models and is 3.5 {+-} 0.5 Myr from the non-rotating or moderately rotating models of Brott et al. as well as the non-rotating models of Ekstroem et al. But the age is 4.0-7.0 Myr if the rotating models of Ekstroem et al. are adopted. This latter age is in excellent agreement with the timescale of ejection of the high-mass runaway star HD 153919 from NGC 6231, albeit the younger age cannot be entirely excluded.
Tussupbayev, Samat; Govind, Niranjan; Lopata, Kenneth A.; Cramer, Christopher J.
2015-03-10
We assess the performance of real-time time-dependent density functional theory (RT-TDDFT) for the calculation of absorption spectra of 12 organic dye molecules relevant to photovoltaics and dye sensitized solar cells with 8 exchange-correlation functionals (3 traditional, 3 global hybrids, and 2 range-separated hybrids). We compare the calculations with traditional linear-response (LR) TDDFT. In addition, we demonstrate the efficacy of the RT-TDDFT approach to calculate wide absorption spectra of two large chromophores relevant to photovoltaics and molecular switches.
The magnetic and electronic structure of vanadyl pyrophosphate from density functional theory
Cheng, Mu-Jeng; Nielsen, Robert J.; Tahir-Kheli, Jamil; Goddard III, William A.
2011-01-01
We have studied the magnetic structure of the high symmetry vanadyl pyrophosphate ((VO)?P?O?, VOPO), focusing on the spin exchange couplings, using density functional theory (B3LYP) with the full three-dimensional periodicity. VOPO involves four distinct spin couplings: two larger couplings exist along the chain direction (a-axis), which we predict to be antiferromagnetic, J_{OPO} = ?156.8 K and J_{O} = ?68.6 K, and two weaker couplings appear along the c (between two layers) and b directions (between two chains in the same layer), which we calculate to be ferromagnetic, J_{layer} = 19.2 K and J_{chain} = 2.8 K. Based on the local density of states and the response of spin couplings to varying the cell parameter a, we found that J_{OPO} originates from a super-exchange interaction through the bridging OPO unit. In contrast, J_{O} results from a direct overlap of 3d_{xČ?yČ } orbitals on two vanadium atoms in the same V_{2}O_{8} motif, making it very sensitive to structural fluctuations. Based on the variations in VO bond length as a function of strain along a, we found that the VO bonds of V(OPO)_{2}V are covalent and rigid, whereas the bonds of V(O)_{2}V are fragile and dative. These distinctions suggest that compression along the a-axis would have a dramatic impact on J_{O}, changing the magnetic structure and spin gap of VOPO. This result also suggests that assuming J_{O} to be a constant over the range of 2300 K whilst fitting couplings to the experimental magnetic susceptibility is an invalid method. Regarding its role as a catalyst, the bonding pattern suggests that O_{2} can penetrate beyond the top layers of the VOPO surface, converting multiple V atoms from the +4 to +5 oxidation state, which seems crucial to explain the deep oxidation of n-butane to maleic anhydride.
Staszczak, A,
2013-01-01
Background: The reactions with the neutron-rich 48Ca beam and actinide targets resulted in the detection of new superheavy (SH) nuclides with Z=104 118. The unambiguous identification of the new isotopes, however, still poses a problem because their -decay chains terminate by spontaneous fission (SF) before reaching the known region of the nuclear chart. The understanding of the competition between -decay and SF channels in SH nuclei is, therefore, of crucial importance for our ability to map the SH region and to assess its extent.
Purpose: We perform self-consistent calculations of the competing decay modes of even-even SH isotopes with 108 Z 126 and 148 N 188.
Methods: We use the state-of-the-art computational framework based on self-consistent symmetry-unrestricted nuclear density functional theory capable of describing the competition between nuclear attraction and electrostatic repulsion. We apply the SkM* Skyrme energy density functional. The collective mass tensor of the fissioning superfluid nucleus is computed by means of the cranking approximation to the adiabatic time-dependent Hartree-Fock-Bogoliubov (HFB) approach. This paper constitutes a systematic self-consistent study of spontaneous fission in the SH region, carried out at a full HFB level, that simultaneously takes into account both triaxiality and reflection asymmetry.
Results: Breaking axial symmetry and parity turns out to be crucial for a realistic estimate of collective action; it results in lowering SF lifetimes by more than 7 orders of magnitude in some cases. We predict two competing SF modes: reflection symmetric modes and reflection asymmetric modes.
Conclusions: The shortest-lived SH isotopes decay by SF; they are expected to lie in a narrow corridor formed by 280Hs, 284Fl, and 118284Uuo that separates the regions of SH nuclei synthesized in cold-fusion and hot-fusion reactions. The region of long-lived SH nuclei is expected to be centered on 294Ds with a total half-life of
Alfred L. Frechette, M.D. COYYISIIONE~
Office of Legacy Management (LM)
Alfred L. Frechette, M.D. - COYYISIIONE~ , 5i7 StrcOm 02X/ Room 770 Tel: (6171 727-2660 October 15. 1979 \+ * Dr. William Mot? DOE Environmental Control Division ' Mail Stop E2Gl Washington, D.C. 20545 Re: Uranium in the Woburn Dump Dear Dr. Mott: The Massachusetts Department of Public Health has been informed that uranium ore was disposed of in a dump site in Woburn, Massachusetts sometime in 1960. x. -.. ' The National Lead Company, was under contract with a federal agency to assay uranium ore
Gillespie, Dirk
2013-10-01
An algorithm to approximately calculate the partition function (and subsequently ensemble averages) and density of states of lattice spin systems through non-Monte-Carlo random sampling is developed. This algorithm (called the sampling-the-mean algorithm) can be applied to models where the up or down spins at lattice nodes interact to change the spin states of other lattice nodes, especially non-Ising-like models with long-range interactions such as the biological model considered here. Because it is based on the Central Limit Theorem of probability, the sampling-the-mean algorithm also gives estimates of the error in the partition function, ensemble averages, and density of states. Easily implemented parallelization strategies and error minimizing sampling strategies are discussed. The sampling-the-mean method works especially well for relatively small systems, systems with a density of energy states that contains sharp spikes or oscillations, or systems with little a priori knowledge of the density of states.
2007 Time_Dependent Density-Functional Therory (July 15-20, 2007 Colby College, Maine)
Ullrich Carsten Nancy Ryan Gray
2008-09-19
Time-dependent density-functional theory (TDDFT) provides an efficient, elegant, and formally exact way of describing the dynamics of interacting many-body quantum systems, circumventing the need for solving the full time-dependent Schroedinger equation. In the 20 years since it was first rigorously established in 1984, the field of TDDFT has made rapid and significant advances both formally as well as in terms of successful applications in chemistry, physics and materials science. Today, TDDFT has become the method of choice for calculating excitation energies of complex molecules, and is becoming increasingly popular for describing optical and spectroscopic properties of a variety of materials such as bulk solids, clusters and nanostructures. Other growing areas of applications of TDDFT are nonlinear dynamics of strongly excited electronic systems and molecular electronics. The purpose and scope of this Gordon Research Conference is to provide a platform for discussing the current state of the art of the rapidly progressing, highly interdisciplinary field of TDDFT, to identify and debate open questions, and to point out new promising research directions. The conference will bring together experts with a diverse background in chemistry, physics, and materials science.
Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; Martin-Martinez, Sergio; Zhang, Jie; Hodge, Bri -Mathias; Molina-Garcia, Angel
2016-02-02
Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power datamoreÂ Â» are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.Â«Â less
Liu, Jin; Adamska, Lyudmyla; Doorn, Stephen K.; Tretiak, Sergei
2015-05-14
Conformational structure and the electronic properties of various electronic excitations in cycloparaphenylenes (CPPs) are calculated using hybrid Density Functional Theory (DFT). The results demonstrate that wavefunctions of singlet and triplet excitons as well as the positive and negative polarons remain fully delocalized in CPPs. In contrast, these excitations in larger CPP molecules become localized on several phenyl rings, which are locally planarized, while the undeformed ground state geometry is preserved on the rest of the hoop. As evidenced by the measurements of bond-length alternation and dihedral angles, localized regions show stronger hybridization between neighboring bonds and thus enhanced electronic communication.moreÂ Â» This effect is even more significant in the smaller hoops, where phenyl rings have strong quinoid character in the ground state. Thus, upon excitation, electronâphonon coupling leads to the self-trapping of the electronic wavefunction and release of energy from fractions of an eV up to two eVs, depending on the type of excitation and the size of the hoop. The impact of such localization on electronic and optical properties of CPPs is systematically investigated and compared with the available experimental measurements.Â«Â less
Density functional theory and conductivity studies of boron-based anion receptors
Leung, Kevin; Chaudhari, Mangesh I.; Rempe, Susan B.; Fenton, Kyle R.; Pratt, III, Harry D.; Staiger, Chad L.; Nagasubramanian, Ganesan
2015-07-10
Anion receptors that bind strongly to fluoride anions in organic solvents can help dissolve the lithium fluoride discharge products of primary carbon monofluoride (CFx) batteries, thereby preventing the clogging of cathode surfaces and improving ion conductivity. The receptors are also potentially beneficial to rechargeable lithium ion and lithium air batteries. We apply Density Functional Theory (DFT) to show that an oxalate-based pentafluorophenyl-boron anion receptor binds as strongly, or more strongly, to fluoride anions than many phenyl-boron anion receptors proposed in the literature. Experimental data shows marked improvement in electrolyte conductivity when this oxalate anion receptor is present. The receptor is sufficiently electrophilic that organic solvent molecules compete with F^{â} for boron-site binding, and specific solvent effects must be considered when predicting its F^{â} affinity. To further illustrate the last point, we also perform computational studies on a geometrically constrained boron ester that exhibits much stronger gas-phase affinity for both F^{â} and organic solvent molecules. After accounting for specific solvent effects, however, its net F^{â} affinity is about the same as the simple oxalate-based anion receptor. Lastly, we propose that LiF dissolution in cyclic carbonate organic solvents, in the absence of anion receptors, is due mostly to the formation of ionic aggregates, not isolated F^{â} ions.
A new Skyrme energy density functional for a better description of spin-isospin resonances
Roca-Maza, X.; ColĂČ, G.; Cao, Li-Gang; Sagawa, H.
2015-10-15
A correct determination of the isospin and spin-isospin properties of the nuclear effective interaction should lead to an accurate description of the Gamow-Teller resonance (GT), the Spin Dipole Resonance (SDR), the Giant Dipole Resonance (GDR) or the Antianalog Giant Dipole Resonance (AGDR), among others. A new Skyrme energy density functional named SAMi is introduced with the aim of going a step forward in setting the bases for a more precise description of spin-isospin resonances [1, 2]. In addition, we will discuss some new features of our analysis on the AGDR in {sup 208}Pb [3] as compared with available experimental data on this resonance [4, 5, 6], and on the GDR [7]. Such study, guided by a simple yet physical pocket formula, has been developed by employing the so called SAMi-J family of systematically varied interactions. This set of interactions is compatible with experimental data for values of the symmetry energy at saturation J and slope parameter L falling in the ranges 31â33 MeV and 75â95 MeV, respectively.
Herron, Jeffrey A.; Scaranto, Jessica; Ferrin, Peter A.; Li, Sha; Mavrikakis, Manos
2014-12-05
We present a first-principles, self-consistent periodic density functional theory (PW91-GGA) study of formic acid (HCOOH) decomposition on model (111) and (100) facets of eight fcc metals (Au, Ag, Cu, Pt, Pd, Ni, Ir, and Rh) and (0001) facets of four hcp (Co, Os, Ru, and Re) metals. The calculated binding energies of key formic acid decomposition intermediates including formate (HCOO), carboxyl (COOH), carbon monoxide (CO), water (H2O), carbon dioxide (CO2), hydroxyl (OH), carbon (C), oxygen (O), and hydrogen (H; H2) are presented. Using these energetics, we develop thermochemical potential energy diagrams for both the carboxyl-mediated and the formate-mediated dehydrogenation mechanisms on each surface. We evaluate the relative stability of COOH, HCOO, and other isomeric intermediates (i.e., CO + OH, CO2 + H, CO + O + H) on these surfaces. These results provide insights into formic acid decomposition selectivity (dehydrogenation versus dehydration), and in conjunction with calculated vibrational frequency modes, the results can assist with the experimental search for the elusive carboxyl (COOH) surface intermediate. Results are compared against experimental reports in the literature.
Weck, Philippe F.; Kim, Eunja; Tikare, Veena; Mitchell, John A.
2015-10-13
Here, the elastic properties and mechanical stability of zirconium alloys and zirconium hydrides have been investigated within the framework of density functional perturbation theory. Results show that the lowest-energy cubic Pn-3m with combining macron]m polymorph of ÎŽ-ZrH1.5 does not satisfy all the Born requirements for mechanical stability, unlike its nearly degenerate tetragonal P42/mcm polymorph. Elastic moduli predicted with the VoigtâReussâHill approximations suggest that mechanical stability of Î±-Zr, Zr-alloy and Zr-hydride polycrystalline aggregates is limited by the shear modulus. According to both Pugh's and Poisson's ratios, Î±-Zr, Zr-alloy and Zr-hydride polycrystalline aggregates can be considered ductile. The Debye temperatures predicted formoreÂ Â» Îł-ZrH, ÎŽ-ZrH1.5 and Î”-ZrH2 are ÎžD = 299.7, 415.6 and 356.9 K, respectively, while ÎžD = 273.6, 284.2, 264.1 and 257.1 K for the Î±-Zr, Zry-4, ZIRLO and M5 matrices, i.e. suggesting that Zry-4 possesses the highest micro-hardness among Zr matrices.Â«Â less
Near surface stoichiometry in UO2: A density functional theory study
Yu, Jianguo; Valderrama, Billy; Henderson, Hunter B.; Manuel, Michele V.; Allen, Todd
2015-08-01
The mechanisms of oxygen stoichiometry variation in UO2 at different temperature and oxygen partial pressure are important for understanding the dynamics of microstructure in these crystals. However, very limited experimental studies have been performed to understand the atomic structure of UO2 near surface and defect effects of near surface on stoichiometry in which the system can exchange atoms with the external reservoir. In this study, the near (110) surface relaxation and stoichiometry in UO2 have been studied with density functional theory (DFT) calculations. On the basis of the point-defect model (PDM), a general expression for the near surface stoichiometric variationmoreÂ Â» is derived by using DFT total-energy calculations and atomistic thermodynamics, in an attempt to pin down the mechanisms of oxygen exchange between the gas environment and defected UO2. By using the derived expression, it is observed that, under poor oxygen conditions, the stoichiometry of near surface is switched from hyperstoichiometric at 300 K with a depth around 3 nm to near-stoichiometric at 1000 K and hypostoichiometric at 2000 K. Furthermore, at very poor oxygen concentrations and high temperatures, our results also suggest that the bulk of the UO2 prefers to be hypostoichiometric, although the surface is near-stoichiometric.Â«Â less
Near surface stoichiometry in UO_{2}: A density functional theory study
Yu, Jianguo; Valderrama, Billy; Henderson, Hunter B.; Manuel, Michele V.; Allen, Todd
2015-08-01
The mechanisms of oxygen stoichiometry variation in UO_{2} at different temperature and oxygen partial pressure are important for understanding the dynamics of microstructure in these crystals. However, very limited experimental studies have been performed to understand the atomic structure of UO_{2} near surface and defect effects of near surface on stoichiometry in which the system can exchange atoms with the external reservoir. In this study, the near (110) surface relaxation and stoichiometry in UO_{2} have been studied with density functional theory (DFT) calculations. On the basis of the point-defect model (PDM), a general expression for the near surface stoichiometric variation is derived by using DFT total-energy calculations and atomistic thermodynamics, in an attempt to pin down the mechanisms of oxygen exchange between the gas environment and defected UO_{2}. By using the derived expression, it is observed that, under poor oxygen conditions, the stoichiometry of near surface is switched from hyperstoichiometric at 300 K with a depth around 3 nm to near-stoichiometric at 1000 K and hypostoichiometric at 2000 K. Furthermore, at very poor oxygen concentrations and high temperatures, our results also suggest that the bulk of the UO_{2} prefers to be hypostoichiometric, although the surface is near-stoichiometric.
Uranium (VI)Bis(imido) chalcogenate complexes:synthesis and density functional theory analysis
Spencer, Liam P; Batista, Enrique R; Boncella, James M; Yang, Ping; Scott, Brian L
2009-01-01
Bis(imido) uranium(VI) trans- and cis-dichalcogenate complexes with the general formula U(NtBu)2(EAr)2(OPPh3)2 (EAr = O-2-tBuC6H4, SPh, SePh, TePh) and U(NtBu)2(EAr)2(R2bpy) (EAr = SPh, SePh, TePh) (R2bpy = 4,4'-disubstituted-2,2'-bipyridyl, R = Me, tBu) have been prepared. This family of complexes includes the first reported monodentate selenolate and tellurolate complexes of uranium(VI). Density functional theory calculations show that covalent interactions in the U-E bond increase in the trans-dichalcogenate series U(NtBu)2(EAr)2(OPPh3)2 as the size of the chalcogenate donor increases and that both 5f and 6d orbital participation is important in the M-E bonds of U-S, U-Se, and U-Te complexes.
Guided basin-hopping search of small boron clusters with density functional theory
Ng, Wei Chun; Yoon, Tiem Leong; Lim, Thong Leng
2015-04-24
The search for the ground state structures of Boron clusters has been a difficult computational task due to the unique metalloid nature of Boron atom. Previous research works had overcome the problem in the search of the Boron ground-state structures by adding symmetry constraints prior to the process of locating the local minima in the potential energy surface (PES) of the Boron clusters. In this work, we shown that, with the deployment of a novel computational approach that incorporates density functional theory (DFT) into a guided global optimization search algorithm based on basin-hopping, it is possible to directly locate the local minima of small Boron clusters in the PES at the DFT level. The ground-state structures search algorithm as proposed in this work is initiated randomly and needs not a priori symmetry constraint artificially imposed throughout the search process. Small sized Boron clusters so obtained compare well to the results obtained by similar calculations in the literature. The electronic properties of each structures obtained are calculated within the DFT framework.
Comparative Density Functional Study of Methanol Decomposition on Cu4 and Co4 Clusters
Mehmood, Faisal; Greeley, Jeffrey P.; Zapol, Peter; Curtiss, Larry A.
2010-11-18
A density functional theory study of the decomposition of methanol on Cu4 and Co4 clusters is presented. The reaction intermediates and activation barriers have been determined for reaction steps to form H2 and CO. For both clusters, methanol decomposition initiated by C-H and O-H bond breaking was investigated. In the case of a Cu4 cluster, methanol dehydrogenation through hydroxymethyl (CH2OH), hydroxymethylene (CHOH), formyl (CHO), and carbon monoxide (CO) is found to be slightly more favorable. For a Co4 cluster, the dehydrogenation pathway through methoxy (CH3O) and formaldehyde (CH2O) is slightly more favorable. Each of these pathways results in formation of CO and H2. The Co cluster pathway is very favorable thermodynamically and kinetically for dehydrogenation. However, since CO binds strongly, it is likely to poison methanol decomposition to H2 and CO at low temperatures. In contrast, for the Cu cluster, CO poisoning is not likely to be a problem since it does not bind strongly, but the dehydrogenation steps are not energetically favorable. Pathways involving C-O bond cleavage are even less energetically favorable. The results are compared to our previous study of methanol decomposition on Pd4 and Pd8 clusters. Finally, all reaction energy changes and transition state energies, including those for the Pd clusters, are related in a linear, Broensted-Evans-Polanyi plot.
Maeta, Takahiro; Sueoka, Koji
2014-08-21
Ge-based substrates are being developed for applications in advanced nano-electronic devices because of their higher intrinsic carrier mobility than Si. The stability and diffusion mechanism of impurity atoms in Ge are not well known in contrast to those of Si. Systematic studies of the stable sites of 2nd to 6th row element impurity atoms in Ge crystal were undertaken with density functional theory (DFT) and compared with those in Si crystal. It was found that most of the impurity atoms in Ge were stable at substitutional sites, while transition metals in Si were stable at interstitial sites and the other impurity atoms in Si were stable at substitutional sites. Furthermore, DFT calculations were carried out to clarify the mechanism responsible for the diffusion of impurity atoms in Ge crystals. The diffusion mechanism for 3d transition metals in Ge was found to be an interstitial-substitutional diffusion mechanism, while in Si this was an interstitial diffusion mechanism. The diffusion barriers in the proposed diffusion mechanisms in Ge and Si were quantitatively verified by comparing them to the experimental values in the literature.
Electronic transport properties of one dimensional lithium nanowire using density functional theory
Thakur, Anil; Kumar, Arun; Chandel, Surjeet; Ahluwalia, P. K.
2015-05-15
Single nanowire electrode devices are a unique platform for studying as energy storage devices. Lithium nanowire is of much importance in lithium ion batteries and therefore has received a great deal of attention in past few years. In this paper we investigated structural and electronic transport properties of Li nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Li nanowire are investigated theoretically. The calculations are performed in two steps: first an optimized geometry for Li nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations correspondingly. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Agreement of bulk properties of Li with experimental values make the study of electronic and transport properties in lithium nanowires interesting because they are promising candidates as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Li nano wire indicates that Li nanowire can be used as an electrode device.
Liu, Jin; Adamska, Lyudmyla; Doorn, Stephen K.; Tretiak, Sergei
2015-05-14
Conformational structure and the electronic properties of various electronic excitations in cycloparaphenylenes (CPPs) are calculated using hybrid Density Functional Theory (DFT). The results demonstrate that wavefunctions of singlet and triplet excitons as well as the positive and negative polarons remain fully delocalized in CPPs. In contrast, these excitations in larger CPP molecules become localized on several phenyl rings, which are locally planarized, while the undeformed ground state geometry is preserved on the rest of the hoop. As evidenced by the measurements of bond-length alternation and dihedral angles, localized regions show stronger hybridization between neighboring bonds and thus enhanced electronic communication. This effect is even more significant in the smaller hoops, where phenyl rings have strong quinoid character in the ground state. Thus, upon excitation, electronphonon coupling leads to the self-trapping of the electronic wavefunction and release of energy from fractions of an eV up to two eVs, depending on the type of excitation and the size of the hoop. The impact of such localization on electronic and optical properties of CPPs is systematically investigated and compared with the available experimental measurements.
Liu, Yuan; Ning, Chuangang
2015-10-14
Recently, the development of photoelectron velocity map imaging makes it much easier to obtain the photoelectron angular distributions (PADs) experimentally. However, explanations of PADs are only qualitative in most cases, and very limited works have been reported on how to calculate PAD of anions. In the present work, we report a method using the density-functional-theory Kohn-Sham orbitals to calculate the photodetachment cross sections and the anisotropy parameter ÎČ. The spherical average over all random molecular orientation is calculated analytically. A program which can handle both the Gaussian type orbital and the Slater type orbital has been coded. The testing calculations on Li{sup â}, C{sup â}, O{sup â}, F{sup â}, CH{sup â}, OH{sup â}, NH{sub 2}{sup â}, O{sub 2}{sup â}, and S{sub 2}{sup â} show that our method is an efficient way to calculate the photodetachment cross section and anisotropy parameter ÎČ for anions, thus promising for large systems.
Density functional study of CaN mono and bilayer on Cu(001)
Zahedifar, Maedeh; Hashemifar, S. Javad Akbarzadeh, Hadi
2014-01-15
Density functional - pseudopotential calculations are performed to provide first-principles insights into magnetic behaviour of bulk CaN and CaN monolayers on Cu(001) in the rock-salt (RS) and zinc-blende (ZB) structures. Our results indicate that both RS- and ZB-CaN exhibit half-metallic ferromagnetism originated from the incomplete 2p shell of the nitrogen ion. In contrast to the bulk CaN, the CaN monolayers on Cu(001) generally favor ZB structure. We argue that the more stable ZB-CaN thin films on Cu(001) are nonmagnetic, because of strong Cu-N bonding at the interface, while the less stable Ca terminated ZB-CaN thin films exhibit half-metallic ferromagnetism. The transition path between the high energy ferromagnetic and the stable nonmagnetic configurations of the ZB-CaN monolayer on Cu(001) are studied by using the nudged elastic band method. We observe a two stages transition and an activation barrier of about 1.18 eV in the minimum energy path of this transition.
Density functional theory and conductivity studies of boron-based anion receptors
Leung, Kevin; Chaudhari, Mangesh I.; Rempe, Susan B.; Fenton, Kyle R.; Pratt, III, Harry D.; Staiger, Chad L.; Nagasubramanian, Ganesan
2015-07-10
Anion receptors that bind strongly to fluoride anions in organic solvents can help dissolve the lithium fluoride discharge products of primary carbon monofluoride (CFx) batteries, thereby preventing the clogging of cathode surfaces and improving ion conductivity. The receptors are also potentially beneficial to rechargeable lithium ion and lithium air batteries. We apply Density Functional Theory (DFT) to show that an oxalate-based pentafluorophenyl-boron anion receptor binds as strongly, or more strongly, to fluoride anions than many phenyl-boron anion receptors proposed in the literature. Experimental data shows marked improvement in electrolyte conductivity when this oxalate anion receptor is present. The receptor ismoreÂ Â» sufficiently electrophilic that organic solvent molecules compete with Fâ for boron-site binding, and specific solvent effects must be considered when predicting its Fâ affinity. To further illustrate the last point, we also perform computational studies on a geometrically constrained boron ester that exhibits much stronger gas-phase affinity for both Fâ and organic solvent molecules. After accounting for specific solvent effects, however, its net Fâ affinity is about the same as the simple oxalate-based anion receptor. Lastly, we propose that LiF dissolution in cyclic carbonate organic solvents, in the absence of anion receptors, is due mostly to the formation of ionic aggregates, not isolated Fâ ions.Â«Â less
DOE - Office of Legacy Management -- W R Grace Co - Curtis Bay - MD 01
Office of Legacy Management (LM)
Co - Curtis Bay - MD 01 FUSRAP Considered Sites W.R. Grace Co., MD Alternate Name(s): W.R. Grace Rare Earths, Inc. Davison Chemical Division Curtis Bay Plant MD.01-2 MD.01-3 Location: Curtis Bay, Baltimore, Maryland MD.01-2 Historical Operations: Conducted developmental research and thorium extraction from monazite ore for AEC. MD.01-6 Eligibility Determination: Eligible MD.01-2 Radiological Survey(s): Assessment Surveys MD.01-3 MD.01-4 MD.01-5 MD.01-6 Site Status: Cleanup in progress by U.S.
Ribeiro, M.
2015-06-21
Ab initio calculations of hydrogen-passivated Si nanowires were performed using density functional theory within LDA-1/2, to account for the excited states properties. A range of diameters was calculated to draw conclusions about the ability of the method to correctly describe the main trends of bandgap, quantum confinement, and self-energy corrections versus the diameter of the nanowire. Bandgaps are predicted with excellent accuracy if compared with other theoretical results like GW, and with the experiment as well, but with a low computational cost.
Krykunov, Mykhaylo; Seth, Mike; Ziegler, Tom
2014-05-14
We have applied the relaxed and self-consistent extension of constricted variational density functional theory (RSCF-CV-DFT) for the calculation of the lowest charge transfer transitions in the molecular complex X-TCNE between X = benzene and TCNE = tetracyanoethylene. Use was made of functionals with a fixed fraction (Î±) of Hartree-Fock exchange ranging from Î± = 0 to Î± = 0.5 as well as functionals with a long range correction (LC) that introduces Hartree-Fock exchange for longer inter-electronic distances. A detailed comparison and analysis is given for each functional between the performance of RSCF-CV-DFT and adiabatic time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation. It is shown that in this particular case, all functionals afford the same reasonable agreement with experiment for RSCF-CV-DFT whereas only the LC-functionals afford a fair agreement with experiment using TDDFT. We have in addition calculated the CT transition energy for X-TCNE with X = toluene, o-xylene, and naphthalene employing the same functionals as for X = benzene. It is shown that the calculated charge transfer excitation energies are in as good agreement with experiment as those obtained from highly optimized LC-functionals using adiabatic TDDFT. We finally discuss the relation between the optimization of length separation parameters and orbital relaxation in the RSCF-CV-DFT scheme.
Magnetism in undoped ZnS studied from density functional theory
Xiao, Wen-Zhi E-mail: llwang@hun.edu.cn; Rong, Qing-Yan; Xiao, Gang; Wang, Ling-ling E-mail: llwang@hun.edu.cn; Meng, Bo
2014-06-07
The magnetic property induced by the native defects in ZnS bulk, thin film, and quantum dots are investigated comprehensively based on density functional theory within the generalized gradient approximation + Hubbard U (GGA?+?U) approach. We find the origin of magnetism is closely related to the introduction of hole into ZnS systems. The relative localization of S-3p orbitals is another key to resulting in unpaired p-electron, due to Hund's rule. For almost all the ZnS systems under study, the magnetic moment arises from the S-dangling bonds generated by Zn vacancies. The charge-neutral Zn vacancy, Zn vacancy in 1? charge sate, and S vacancy in the 1+ charge sate produce a local magnetic moment of 2.0, 1.0, and 1.0??{sub B}, respectively. The Zn vacancy in the neutral and 1? charge sates are the important cause for the ferromagnetism in ZnS bulk, with a Curie temperature (T{sub C}) above room temperature. For ZnS thin film with clean (111) surfaces, the spins on each surface are ferromagnetically coupled but antiferromagnetically coupled between two surfaces, which is attributable to the internal electric field between the two polar (111) surfaces of the thin film. Only surface Zn vacancies can yield local magnetic moment for ZnS thin film and quantum dot, which is ascribed to the surface effect. Interactions between magnetic moments on S-3p states induced by hole-doping are responsible for the ferromagnetism observed experimentally in various ZnS samples.
Two-electron Rabi oscillations in real-time time-dependent density-functional theory
Habenicht, Bradley F.; Tani, Noriyuki P.; Provorse, Makenzie R.; Isborn, Christine M.
2014-11-14
We investigate the Rabi oscillations of electrons excited by an applied electric field in several simple molecular systems using time-dependent configuration interaction (TDCI) and real-time time-dependent density-functional theory (RT-TDDFT) dynamics. While the TDCI simulations exhibit the expected single-electron Rabi oscillations at a single resonant electric field frequency, Rabi oscillations in the RT-TDDFT simulations are a two-electron process. The existence of two-electron Rabi oscillations is determined both by full population inversion between field-free molecular orbitals and the behavior of the instantaneous dipole moment during the simulations. Furthermore, the Rabi oscillations in RT-TDDFT are subject to an intensity threshold of the electric field, below which Rabi oscillations do not occur and above which the two-electron Rabi oscillations occur at a broad range of frequencies. It is also shown that at field intensities near the threshold intensity, the field frequency predicted to induce Rabi oscillations by linear response TDDFT only produces detuned Rabi oscillations. Instead, the field frequency that yields the full two-electron population inversion and Rabi oscillation behavior is shown to be the average of single-electron transition frequencies from the ground S{sub 0} state and the doubly-excited S{sub 2} state. The behavior of the two-electron Rabi oscillations is rationalized via two possible models. The first model is a multi-photon process that results from the electric field interacting with the three level system such that three level Rabi oscillations may occur. The second model suggests that the mean-field nature of RT-TDDFT induces paired electron propagation.
Sutton, Christopher; Gray, Matthew T.; Brunsfeld, Max; Parrish, Robert M.; Sherrill, C. David; Sears, John S.; BrĂ©das, Jean-Luc E-mail: thomas.koerzdoerfer@uni-potsdam.de; KĂ¶rzdĂ¶rfer, Thomas E-mail: thomas.koerzdoerfer@uni-potsdam.de; Computational Chemistry, Institute of Chemistry, University of Potsdam, D-14476 Potsdam
2014-02-07
We investigate the torsion potentials in two prototypical Ï-conjugated polymers, polyacetylene and polydiacetylene, as a function of chain length using different flavors of density functional theory. Our study provides a quantitative analysis of the delocalization error in standard semilocal and hybrid density functionals and demonstrates how it can influence structural and thermodynamic properties. The delocalization error is quantified by evaluating the many-electron self-interaction error (MESIE) for fractional electron numbers, which allows us to establish a direct connection between the MESIE and the error in the torsion barriers. The use of non-empirically tuned long-range corrected hybrid functionals results in a very significant reduction of the MESIE and leads to an improved description of torsion barrier heights. In addition, we demonstrate how our analysis allows the determination of the effective conjugation length in polyacetylene and polydiacetylene chains.
Oshiyama, Atsushi Iwata, Jun-Ichi; Uchida, Kazuyuki; Matsushita, Yu-Ichiro
2015-03-21
We show that our real-space finite-difference scheme allows us to perform density-functional calculations for nanometer-scale targets containing more than 100â000 atoms. This real-space scheme is applied to twisted bilayer graphene, clarifying that MoirĂ© pattern induced in the slightly twisted bilayer graphene drastically modifies the atomic and electronic structures.
Mentel, ?. M.; Meer, R. van; Gritsenko, O. V.; Baerends, E. J.
2014-06-07
For chemistry an accurate description of bond weakening and breaking is vital. The great advantage of density matrix functionals, as opposed to density functionals, is their ability to describe such processes since they naturally cover both nondynamical and dynamical correlation. This is obvious in the Löwdin-Shull functional, the exact natural orbital functional for two-electron systems. We present in this paper extensions of this functional for the breaking of a single electron pair bond in N-electron molecules, using LiH, BeH{sup +}, and Li{sub 2} molecules as prototypes. Attention is given to the proper formulation of the functional in terms of not just J and K integrals but also the two-electron L integrals (K integrals with a different distribution of the complex conjugation of the orbitals), which is crucial for the calculation of response functions. Accurate energy curves are obtained with extended Löwdin-Shull functionals along the complete dissociation coordinate using full CI calculations as benchmark.
Mardirossian, Narbe; Head-Gordon, Martin
2014-05-14
The limit of accuracy for semi-empirical generalized gradient approximation (GGA) density functionals is explored by parameterizing a variety of local, global hybrid, and range-separated hybrid functionals. The training methodology employed differs from conventional approaches in 2 main ways: (1) Instead of uniformly truncating the exchange, same-spin correlation, and opposite-spin correlation functional inhomogeneity correction factors, all possible fits up to fourth order are considered, and (2) Instead of selecting the optimal functionals based solely on their training set performance, the fits are validated on an independent test set and ranked based on their overall performance on the training and test sets. The 3 different methods of accounting for exchange are trained both with and without dispersion corrections (DFT-D2 and VV10), resulting in a total of 491Â 508 candidate functionals. For each of the 9 functional classes considered, the results illustrate the trade-off between improved training set performance and diminished transferability. Since all 491Â 508 functionals are uniformly trained and tested, this methodology allows the relative strengths of each type of functional to be consistently compared and contrasted. The range-separated hybrid GGA functional paired with the VV10 nonlocal correlation functional emerges as the most accurate form for the present training and test sets, which span thermochemical energy differences, reaction barriers, and intermolecular interactions involving lighter main group elements.
van der Waals forces in density functional theory: a review of the vdW-DF method
Berland, Kristian; Cooper, Valentino R.; Lee, Kyuho; SchrĂ¶der, Elsebeth; Thonhauser, T.; Hyldgaard, Per; Lundqvist, Bengt I.
2015-05-15
We review a density functional theory (DFT) that accounts for van der Waals (vdW) interactions in condensed matter, materials physics, chemistry, and biology. The insights that led to the construction of the RutgersâChalmers van der Waals density functional (vdW-DF) are presented with the aim of giving a historical perspective, while also emphasizing more recent efforts which have sought to improve its accuracy. In addition to technical details, we discuss a range of recent applications that illustrate the necessity of including dispersion interactions in DFT. This review highlights the value of the vdW-DF method as a general-purpose method, not only for dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.
van der Waals forces in density functional theory: a review of the vdW-DF method
Berland, Kristian; Cooper, Valentino R.; Lee, Kyuho; SchrĂ¶der, Elsebeth; Thonhauser, T.; Hyldgaard, Per; Lundqvist, Bengt I.
2015-05-15
We review a density functional theory (DFT) that accounts for van der Waals (vdW) interactions in condensed matter, materials physics, chemistry, and biology. The insights that led to the construction of the RutgersâChalmers van der Waals density functional (vdW-DF) are presented with the aim of giving a historical perspective, while also emphasizing more recent efforts which have sought to improve its accuracy. In addition to technical details, we discuss a range of recent applications that illustrate the necessity of including dispersion interactions in DFT. This review highlights the value of the vdW-DF method as a general-purpose method, not only formoreÂ Â» dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.Â«Â less
Relativistic energy density functionals: Low-energy collective states of {sup 240}Pu and {sup 166}Er
Li, Z. P.; Niksic, T.; Vretenar, D.; Ring, P.; Meng, J.
2010-06-15
The empirical relativistic density-dependent, point-coupling energy density functional, adjusted exclusively to experimental binding energies of a large set of deformed nuclei with Aapprox =150-180 and Aapprox =230-250, is tested with spectroscopic data for {sup 166}Er and {sup 240}Pu. Starting from constrained self-consistent triaxial relativistic Hartree-Bogoliubov calculations of binding energy maps as functions of the quadrupole deformation in the beta-gamma plane, excitation spectra and E2 transition probabilities are calculated as solutions of the corresponding microscopic collective Hamiltonian in five dimensions for quadrupole vibrational and rotational degrees of freedom and compared with available data on low-energy collective states.
The structure of mixed {sup 3}He-{sup 4}He droplets doped with OCS: A density functional approach
Leal, Antonio; Mateo, David; Pi, Martí; Barranco, Manuel [Departament ECM, Facultat de Física and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain)] [Departament ECM, Facultat de Física and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain); Navarro, Jesús [IFIC (CSIC-Universidad de Valencia), P.O. Box 22085, E-46071 Valencia (Spain)] [IFIC (CSIC-Universidad de Valencia), P.O. Box 22085, E-46071 Valencia (Spain)
2013-11-07
We have investigated the structure and energetics of mixed {sup 3}He-{sup 4}He droplets doped with a carbonyl sulfide molecule within a density functional approach considering a small but finite temperature of 0.1 K. The molecule is treated as an external field to which the helium droplet is attached. The energetics and appearance of these droplets are discussed for selected numbers of helium atoms, identifying the first magic numbers of the fermionic component.
Dobaczewski, J.; Afanasjev, A. V.; Bender, M.; Shi, Yue
2015-07-29
In this study, we calculate properties of the ground and excited states of nuclei in the nobelium region for proton and neutron numbers of 92 â€ Z â€ 104 and 144 â€ N â€ 156, respectively. We use three different energy-density-functional (EDF) approaches, based on covariant, Skyrme, and Gogny functionals, each with two different parameter sets. A comparative analysis of the results obtained for quasiparticle spectra, oddâeven and two-particle mass staggering, and moments of inertia allows us to identify single-particle and shell effects that are characteristic to these different models and to illustrate possible systematic uncertainties related to using the EDF modelling.
Dobaczewski, J.; Afanasjev, A. V.; Bender, M.; Shi, Yue
2015-07-29
In this study, we calculate properties of the ground and excited states of nuclei in the nobelium region for proton and neutron numbers of 92 ? Z ? 104 and 144 ? N ? 156, respectively. We use three different energy-density-functional (EDF) approaches, based on covariant, Skyrme, and Gogny functionals, each with two different parameter sets. A comparative analysis of the results obtained for quasiparticle spectra, oddeven and two-particle mass staggering, and moments of inertia allows us to identify single-particle and shell effects that are characteristic to these different models and to illustrate possible systematic uncertainties related to using the EDF modelling.
DOE - Office of Legacy Management -- Max Zuckerman and Sons Inc - MD 04
Office of Legacy Management (LM)
Inc - MD 04 FUSRAP Considered Sites Site: MAX ZUCKERMAN & SONS, INC. (MD.04 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Maryland Alloys Corporation MD.04-1 Location: 5245 Fairlawn Avenue , Baltimore , Maryland MD.04-2 Evaluation Year: 1994 MD.04-1 MD.04-3 Site Operations: Scrap metals broker that arranged purchases of materials for third party buyers. MD.04-2 MD.04-4 Site Disposition: Eliminated - Potential for contamination remote MD.04-3
Mirtschink, André; Gori-Giorgi, Paola; Umrigar, C. J.; Morgan, John D.
2014-05-14
Anions and radicals are important for many applications including environmental chemistry, semiconductors, and charge transfer, but are poorly described by the available approximate energy density functionals. Here we test an approximate exchange-correlation functional based on the exact strong-coupling limit of the Hohenberg-Kohn functional on the prototypical case of the He isoelectronic series with varying nuclear charge Z < 2, which includes weakly bound negative ions and a quantum phase transition at a critical value of Z, representing a big challenge for density functional theory. We use accurate wavefunction calculations to validate our results, comparing energies and Kohn-Sham potentials, thus also providing useful reference data close to and at the quantum phase transition. We show that our functional is able to bind H{sup ?} and to capture in general the physics of loosely bound anions, with a tendency to strongly overbind that can be proven mathematically. We also include corrections based on the uniform electron gas which improve the results.
Matanovic, Ivana; Atanassov, Plamen; Kiefer, Boris; Garzon, Fernando; Henson, Neil J.
2014-10-05
The structural equilibrium parameters, the adsorption energies, and the vibrational frequencies of the nitrogen molecule and the hydrogen atom adsorbed on the (111) surface of rhodium have been investigated using different generalized-gradient approximation (GGA), nonlocal correlation, meta-GGA, and hybrid functionals, namely, Perdew, Burke, and Ernzerhof (PBE), Revised-RPBE, vdW-DF, Tao, Perdew, Staroverov, and Scuseria functional (TPSS), and Heyd, Scuseria, and Ernzerhof (HSE06) functional in the plane wave formalism. Among the five tested functionals, nonlocal vdW-DF and meta-GGA TPSS functionals are most successful in describing energetics of dinitrogen physisorption to the Rh(111) surface, while the PBE functional provides the correct chemisorption energy for the hydrogen atom. It was also found that TPSS functional produces the best vibrational spectra of the nitrogen molecule and the hydrogen atom on rhodium within the harmonic formalism with the error of 22.62 and 21.1% for the NAN stretching and RhAH stretching frequency. Thus, TPSS functional was proposed as a method of choice for obtaining vibrational spectra of low weight adsorbates on metallic surfaces within the harmonic approximation. At the anharmonic level, by decoupling the RhAH and NAN stretching modes from the bulk phonons and by solving one- and two-dimensional Schrodinger equation associated with the RhAH, RhAN, and NAN potential energy we calculated the anharmonic correction for NAN and RhAH stretching modes as 231 cm21 and 277 cm21 at PBE level. Anharmonic vibrational frequencies calculated with the use of the hybrid HSE06 function are in best agreement with available experiments.
American Physical Society March Meeting (Baltimore, MD) - JCAP
U.S. Department of Energy (DOE) all webpages (Extended Search)
American Physical Society March Meeting (Baltimore, MD) American Physical Society March Meeting (Baltimore, MD) Mon, Mar 14, 2016 8:00am 08:00 Fri, Mar 18, 2016 9:00am 09:00 Baltimore Convention Center 1 W Pratt St Baltimore, MD 21201 United States Bryan Beckingham and Daniel Miller, "Quantitative Monitoring of Membrane Permeation via In-Situ ATR FT-IR Spectroscopy" Abstract: Ion conducting membranes are of interest for various energy applications including fuel cells and artificial
Phillips, D; Roeske, F; Burnham, A
2007-06-26
X-ray computer tomography scans of artificially aged PETN seem to indicate shrinkage of material and, by extension, an increased high explosive density, resulting in potential separation of the HE from the header/bridge foil. We have investigated these phenomena by mimicking this shrinkage of material (load density). Thus, we have evaluated various induced gaps between the exploding bridge foil and the PETN in our custom detonators by changing both specific surface area - recognizing crystal morphology changes - and load density. Analyses for these data include absolute function time relative to bridge burst and careful evaluation of the detonation wave breakout curvature, using an electronic streak camera for wave capture, in cases where the bridge foil (exploding bridge wire - EBW style) initiation successfully traverses the gap (a 'go' condition). In addition, a fireset with subnanosecond trigger jitter was used for these tests allowing easy comparison of relative 'go' function times. Using the same test matrix and fine-tuning the induced gap, a second, smaller subset of these experiments were performed to provide additional insight as to what conditions we might expect detonator anomalies/failure.
Sato, Shunsuke A.; Taniguchi, Yasutaka; Shinohara, Yasushi; Yabana, Kazuhiro
2015-12-14
We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functional which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.
Borges, P. D. E-mail: lscolfaro@txstate.edu; Scolfaro, L. E-mail: lscolfaro@txstate.edu
2014-12-14
The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.
Sjostrom, Travis; Crockett, Scott
2015-09-02
The liquid regime equation of state of silicon dioxide SiO2 is calculated via quantum molecular dynamics in the density range of 5 to 15 g/cc and with temperatures from 0.5 to 100 eV, including the Î±-quartz and stishovite phase Hugoniot curves. Below 8 eV calculations are based on Kohn-Sham density functional theory (DFT), and above 8 eV a new orbital-free DFT formulation, presented here, based on matching Kohn-Sham DFT calculations is employed. Recent experimental shock data are found to be in very good agreement with the current results. Finally both experimental and simulation data are used in constructing a newmoreÂ Â» liquid regime equation of state table for SiO2.Â«Â less
Sjostrom, Travis; Crockett, Scott
2015-09-02
The liquid regime equation of state of silicon dioxide SiO_{2} is calculated via quantum molecular dynamics in the density range of 5 to 15 g/cc and with temperatures from 0.5 to 100 eV, including the Î±-quartz and stishovite phase Hugoniot curves. Below 8 eV calculations are based on Kohn-Sham density functional theory (DFT), and above 8 eV a new orbital-free DFT formulation, presented here, based on matching Kohn-Sham DFT calculations is employed. Recent experimental shock data are found to be in very good agreement with the current results. Finally both experimental and simulation data are used in constructing a new liquid regime equation of state table for SiO_{2}.
Ploetz, Elizabeth A.; Smith, Paul E.
2015-03-07
Kirkwood-Buff or Fluctuation Solution Theory can be used to provide experimental pair fluctuations, and/or integrals over the pair distribution functions, from experimental thermodynamic data on liquid mixtures. Here, this type of approach is used to provide triplet and quadruplet fluctuations, and the corresponding integrals over the triplet and quadruplet distribution functions, in a purely thermodynamic manner that avoids the use of structure factors. The approach is then applied to binary mixtures of water + methanol and benzene + methanol over the full composition range under ambient conditions. The observed correlations between the different species vary significantly with composition. The magnitude of the fluctuations and integrals appears to increase as the number of the most polar molecule involved in the fluctuation or integral also increases. A simple physical picture of the fluctuations is provided to help rationalize some of these variations.
QCD at nonzero density and canonical partition functions with Wilson fermions
Alexandru, Andrei; Wenger, Urs
2011-02-01
We present a reduction method for Wilson-Dirac fermions with nonzero chemical potential which generates a dimensionally reduced fermion matrix. The size of the reduced fermion matrix is independent of the temporal lattice extent and the dependence on the chemical potential is factored out. As a consequence the reduced matrix allows a simple evaluation of the Wilson fermion determinant for any value of the chemical potential and hence the exact projection to the canonical partition functions.
DOE - Office of Legacy Management -- Armco-Rustless Iron and Steel - MD 03
Office of Legacy Management (LM)
Armco-Rustless Iron and Steel - MD 03 FUSRAP Considered Sites Site: Armco-Rustless Iron & Steel (MD.03 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: ARMCO Baltimore Works MD.03-1 Location: Baltimore , Maryland MD.03-2 Evaluation Year: 1987 MD.03-1 Site Operations: Test rolling of uranium billets. MD.03-2 MD.03-3 Site Disposition: Eliminated - Potential for contamination remote due to limited quantity of material and duration of test MD.03-1
Zhang, Yu; Biggs, Jason D.; Healion, Daniel; Govind, Niranjan; Mukamel, Shaul
2012-11-21
We report simulations of X-ray absorption near edge structure (XANES), resonant inelastic X-ray scattering (RIXS) and 1D stimulated X-ray Raman spectroscopy (SXRS) signals of cysteine at the oxygen, nitrogen and sulfur K and L2,3 edges. The simulated XANES signals from the restricted window time-dependent density functional theory (REW-TDDFT) and the static exchange (STEX) method are compared with experiments, showing that REW-TDDFT is more accurate and computationally less expensive than STEX. Simulated RIXS and 1D SXRS signals from REW-TDDFT give some insights on the correlation of different excitations in the molecule.
Louie, S.G.
1988-10-01
Two recently developed approaches for calculating properties of materials going beyond the density functional formalism are discussed. For excited-state properties, a first-principles quasiparticle theory has been developed. The electron self-energy operator is calculated using the full dielectric matrix and the dressed Green's function. Electron excitation spectra are interpreted as transitions between quasiparticle states of an interacting many-electron system. For ground-state properties, a new method using nonlocal pseudopotentials in conjunction with the variational quantum Monte Carlo approach is introduced. Electron correlations are treated using the exact interaction with a correlated wavefunction of the Jastrow-Slater form. Selected examples from bulk, surface, and interface calculations are presented to illustrate the capabilities of these two approaches. 47 refs., 6 figs., 5 tabs.
Dobaczewski, J.; Afanasjev, A. V.; Bender, M.; Robledo, L. M.; Shi, Yue
2015-07-29
In this study, we calculate properties of the ground and excited states of nuclei in the nobelium region for proton and neutron numbers of 92 â€ Z â€ 104 and 144 â€ N â€ 156, respectively. We use three different energy-density-functional (EDF) approaches, based on covariant, Skyrme, and Gogny functionals, each with two different parameter sets. A comparative analysis of the results obtained for quasiparticle spectra, oddâeven and two-particle mass staggering, and moments of inertia allows us to identify single-particle and shell effects that are characteristic to these different models and to illustrate possible systematic uncertainties related to using themoreÂ Â» EDF modelling.Â«Â less
Banai, R. E.; Brownson, J. R. S.; Burton, L. A.; Walsh, A.; Choi, S. G. To, B.; Hofherr, F.; Sorgenfrei, T.; Cröll, A.
2014-07-07
We report on the anisotropic optical properties of single-crystal tin monosulfide (SnS). The components ?{sub a}, ?{sub b}, and ?{sub c} of the pseudodielectric-function tensor (?)=(??)+i(??) spectra are taken from 0.73 to 6.45 eV by spectroscopic ellipsometry. The measured (?) spectra are in a good agreement with the results of the calculated dielectric response from hybrid density functional theory. The (?) spectra show the direct band-gap onset and a total of eight above-band-gap optical structures that are associated with the interband-transition critical points (CPs). We obtain accurate CP energies by fitting analytic CP expressions to second-energy-derivatives of the (?) data. Their probable electronic origins and implications for photovoltaic applications are discussed.
Boereboom, J. M.; Wijzenbroek, M.; Somers, M. F.; Kroes, G. J.
2013-12-28
Recently, an implementation of the specific reaction parameter (SRP) approach to density functional theory (DFT) was used to study several reactive scattering experiments of H{sub 2} on Cu(111). It was possible to obtain chemical accuracy (1 kcal/mol ? 4.2 kJ/mol), and therefore, accurately model this paradigmatic example of activated H{sub 2} dissociation on a metal surface. In this work, the SRP-DFT methodology is applied to the dissociation of hydrogen on a Pd(111) surface, in order to test whether the SRP-DFT approach is also applicable to non-activated H{sub 2}-metal systems. In the calculations, the BornOppenheimer static surface approximations are used. A comparison to molecular beam sticking experiments, performed at incidence energies ?125 meV, on H{sub 2} + Pd(111) suggested the PBE-vdW [where the Perdew, Burke, and Ernzerhof (PBE) correlation is replaced by van der Waals correlation] functional as a candidate SRP density functional describing the reactive scattering of H{sub 2} on Pd(111). Unfortunately, quantum dynamics calculations are not able to reproduce the molecular beam sticking results for incidence energies <125 meV. From a comparison to initial state-resolved (degeneracy averaged) sticking probabilities it seems clear that for H{sub 2} + Pd(111) dynamic trapping and steering effects are important, and that these effects are not yet well modeled with the potential energy surfaces considered here. Applying the SRP-DFT method to systems where H{sub 2} dissociation is non-activated remains difficult. It is suggested that a density functional that yields a broader barrier distribution and has more non-activated pathways than PBE-vdW (i.e., non-activated dissociation at some sites but similarly high barriers at the high energy end of the spectrum) should allow a more accurate description of the available experiments. Finally, it is suggested that new and better characterized molecular beam sticking experiments be done on H{sub 2} + Pd(111), to
Cummins MD & HD Accessory Hybridization CRADA -Annual Report FY15
Deter, Dean D.
2015-10-01
There are many areas of MD and HD vehicles that can be improved by new technologies and optimized control strategies. Component optimization and idle reduction need to be addressed, this is best done by a two part approach that includes selecting the best component technology, and/or architecture, and optimized controls that are vehicle focused. While this is a common focus in the light duty industry it has been gaining momentum in the MD and HD market as the market gets more competitive and the regulations become more stringent. When looking into systems optimization and idle reduction technologies, affected vehicle systems must first be considered, and if possible included in the new architecture to get the most benefit out of these new capabilities. Typically, when looking into idle reduction or component optimization for MD/HD, the vehicle s accessories become a prime candidate for electrification or hybridization. While this has already been studied on light duty vehicles (especially on hybrids and electric vehicles) it has not made any head way or market penetration in most MD and HD applications. If hybrids and electric MD and HD vehicles begin to break into the market this would be a necessary step into the ability to make those vehicles successful by allowing for independent, optimized operation separate from the engine.
CoMD Implementation Suite in Emerging Programming Models
Energy Science and Technology Software Center (OSTI)
2014-09-23
CoMD-Em is a software implementation suite of the CoMD [4] proxy app using different emerging programming models. It is intended to analyze the features and capabilities of novel programming models that could help ensure code and performance portability and scalability across heterogeneous platforms while improving programmer productivity. Another goal is to provide the authors and venders with some meaningful feedback regarding the capabilities and limitations of their models. The actual application is a classical molecularmoreÂ Â» dynamics (MD) simulation using either the Lennard-Jones method (LJ) or the embedded atom method (EAM) for primary particle interaction. The code can be extended to support alternate interaction models. The code is expected ro run on a wide class of heterogeneous hardware configurations like shard/distributed/hybrid memory, GPU's and any other platform supported by the underlying programming model.Â«Â less
Shankar Subramaniam
2009-04-01
This final project report summarizes progress made towards the objectives described in the proposal entitled âDeveloping New Mathematical Models for Multiphase Flows Based on a Fundamental Probability Density Function Approachâ. Substantial progress has been made in theory, modeling and numerical simulation of turbulent multiphase flows. The consistent mathematical framework based on probability density functions is described. New models are proposed for turbulent particle-laden flows and sprays.
Soderlind, P; Wolfer, W
2007-07-27
Spin and orbital and electron correlations are known to be important when treating the high-temperature {delta} phase of plutonium within the framework of density-functional theory (DFT). One of the more successful attempts to model {delta}-Pu within this approach has included condensed-matter generalizations of Hund's three rules for atoms, i.e., spin polarization, orbital polarization, and spin-orbit coupling. Here they perform a quantitative analysis of these interactions relative rank for the bonding and electronic structure in {delta}-Pu within the DFT model. The result is somewhat surprising in that spin-orbit coupling and orbital polarization are far more important than spin polarization for a realistic description of {delta}-Pu. They show that these orbital correlations on their own, without any formation of magnetic spin moments, can account for the low atomic density of the {delta} phase with a reasonable equation-of-state. In addition, this unambiguously non-magnetic (NM) treatment produces a one-electron spectra with resonances close to the Fermi level consistent with experimental valence band photoemission spectra.
Farberow, Carrie A.; Dumesic, James A.; Mavrikakis, Manos
2014-10-03
Reaction pathways are explored for low temperature (e.g., 400 K) reduction of nitric oxide by hydrogen on Pt(111). First-principles electronic structure calculations based on periodic, self-consistent density functional theory(DFT-GGA, PW91) are employed to obtain thermodynamic and kinetic parameters for proposed reaction schemes on Pt(111). The surface of Pt(111) during NO reduction by H? at low temperatures is predicted to operate at a high NO coverage, and this environment is explicitly taken into account in the DFT calculations. Maximum rate analyses are performed to assess the most likely reaction mechanisms leading to formation of N?O, the major product observed experimentally at low temperatures. The results of these analyses suggest that the reaction most likely proceeds via the addition of at least two H atoms to adsorbed NO, followed by cleavage of the N-O bond.
Lindskog, M. Wacker, A.; Wolf, J. M.; Liverini, V.; Faist, J.; Trinite, V.; Maisons, G.; Carras, M.; Aidam, R.; Ostendorf, R.
2014-09-08
We study the operation of an 8.5âÎŒm quantum cascade laser based on GaInAs/AlInAs lattice matched to InP using three different simulation models based on density matrix (DM) and non-equilibrium Green's function (NEGF) formulations. The latter advanced scheme serves as a validation for the simpler DM schemes and, at the same time, provides additional insight, such as the temperatures of the sub-band carrier distributions. We find that for the particular quantum cascade laser studied here, the behavior is well described by simple quantum mechanical estimates based on Fermi's golden rule. As a consequence, the DM model, which includes second order currents, agrees well with the NEGF results. Both these simulations are in accordance with previously reported data and a second regrown device.
Weck, Philippe F.; Kim, Eunja; Jove-Colon, Carlos F.
2015-03-04
In this study, the structural, mechanical and thermodynamic properties of 1 : 1 layered dioctahedral kaolinite clay, with ideal Al_{2}Si_{2}O_{5}(OH)_{4} stoichiometry, were investigated using density functional theory corrected for dispersion interactions (DFT-D2). The bulk moduli of 56.2 and 56.0 GPa predicted at 298 K using the Vinet and BirchMurnaghan equations of state, respectively, are in good agreement with the recent experimental value of 59.7 GPa reported for well-crystallized samples. The isobaric heat capacity computed for uniaxial deformation of kaolinite along the stacking direction reproduces calorimetric data within 0.73.0% from room temperature up to its thermal stability limit.
Weck, Philippe F.; Kim, Eunja; Jove-Colon, Carlos F.
2015-03-04
In this study, the structural, mechanical and thermodynamic properties of 1 : 1 layered dioctahedral kaolinite clay, with ideal Al_{2}Si_{2}O_{5}(OH)_{4} stoichiometry, were investigated using density functional theory corrected for dispersion interactions (DFT-D2). The bulk moduli of 56.2 and 56.0 GPa predicted at 298 K using the Vinet and BirchâMurnaghan equations of state, respectively, are in good agreement with the recent experimental value of 59.7 GPa reported for well-crystallized samples. The isobaric heat capacity computed for uniaxial deformation of kaolinite along the stacking direction reproduces calorimetric data within 0.7â3.0% from room temperature up to its thermal stability limit.
Weck, Philippe F.; Kim, Eunja; Jove-Colon, Carlos F.
2015-03-04
In this study, the structural, mechanical and thermodynamic properties of 1 : 1 layered dioctahedral kaolinite clay, with ideal Al2Si2O5(OH)4 stoichiometry, were investigated using density functional theory corrected for dispersion interactions (DFT-D2). The bulk moduli of 56.2 and 56.0 GPa predicted at 298 K using the Vinet and BirchâMurnaghan equations of state, respectively, are in good agreement with the recent experimental value of 59.7 GPa reported for well-crystallized samples. The isobaric heat capacity computed for uniaxial deformation of kaolinite along the stacking direction reproduces calorimetric data within 0.7â3.0% from room temperature up to its thermal stability limit.
Morzan, Uriel N.; Ramírez, Francisco F.; Scherlis, Damián A. E-mail: mcgl@qb.ffyb.uba.ar; Lebrero, Mariano C. González E-mail: mcgl@qb.ffyb.uba.ar
2014-04-28
This article presents a time dependent density functional theory (TDDFT) implementation to propagate the Kohn-Sham equations in real time, including the effects of a molecular environment through a Quantum-Mechanics Molecular-Mechanics (QM-MM) hamiltonian. The code delivers an all-electron description employing Gaussian basis functions, and incorporates the Amber force-field in the QM-MM treatment. The most expensive parts of the computation, comprising the commutators between the hamiltonian and the density matrixrequired to propagate the electron dynamics, and the evaluation of the exchange-correlation energy, were migrated to the CUDA platform to run on graphics processing units, which remarkably accelerates the performance of the code. The method was validated by reproducing linear-response TDDFT results for the absorption spectra of several molecular species. Two different schemes were tested to propagate the quantum dynamics: (i) a leap-frog Verlet algorithm, and (ii) the Magnus expansion to first-order. These two approaches were confronted, to find that the Magnus scheme is more efficient by a factor of six in small molecules. Interestingly, the presence of iron was found to seriously limitate the length of the integration time step, due to the high frequencies associated with the core-electrons. This highlights the importance of pseudopotentials to alleviate the cost of the propagation of the inner states when heavy nuclei are present. Finally, the methodology was applied to investigate the shifts induced by the chemical environment on the most intense UV absorption bands of two model systems of general relevance: the formamide molecule in water solution, and the carboxy-heme group in Flavohemoglobin. In both cases, shifts of several nanometers are observed, consistently with the available experimental data.
DOE - Office of Legacy Management -- Naval Ordnance Laboratory - MD 0-03
Office of Legacy Management (LM)
Laboratory - MD 0-03 FUSRAP Considered Sites Site: NAVAL ORDNANCE LABORATORY (MD.0-03 ) Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: Naval Ordnance Laboratory - White Oak Location: White Oak Area , Silver Spring , Maryland MD.0-03-1 MD.0-03-2 Evaluation Year: 1987 MD.0-03-2 Site Operations: Research and development - may have involved radioactive materials because the site was identified on a 1955 Accountability Station
Chen, Sow-Hsin; Lagi, Marco; Chu, Xiang-qiang; Zhang, Yang; Kim, Chansoo; Faraone, Antonio; Fratini, Emiliano; Baglioni, Piero
2010-01-01
This review article describes our neutron scattering experiments made in the past four years for the understanding of the single-particle (hydrogen atom) dynamics of a protein and its hydration water and the strong coupling between them. We found that the key to this strong coupling is the existence of a fragile-to-strong dynamic crossover (FSC) phenomenon occurring at around T L = 225Â±5 K in the hydration water. On lowering of the temperature toward FSC, the structure of hydration water makes a transition from predominantly the high density form (HDL), a more fluid state, to predominantly the low density formmoreÂ Â» (LDL), a less fluid state, derived from the existence of a liquidâliquid critical point at an elevated pressure. We show experimentally that this sudden switch in the mobility of hydration water on Lysozyme, B-DNA and RNA triggers the dynamic transition, at a temperature T D = 220 K, for these biopolymers. In the glassy state, below T D , the biopolymers lose their vital conformational flexibility resulting in a substantial diminishing of their biological functions. We also performed molecular dynamics (MD) simulations on a realistic model of hydrated lysozyme powder, which confirms the existence of the FSC and the hydration level dependence of the FSC temperature. Furthermore, we show a striking feature in the short time relaxation ( ÎČ -relaxation) of protein dynamics, which is the logarithmic decay spanning 3 decades (from ps to ns). The long time Î± -relaxation shows instead a diffusive behavior, which supports the liquid-like motions of protein constituents. We then discuss our recent high-resolution X-ray inelastic scattering studies of globular proteins, Lysozyme and Bovine Serum Albumin. We were able to measure the dispersion relations of collective, intra-protein phonon-like excitations in these proteins for the first time. We found that the phonon energies show a marked softening and at the same time their population increases
Mehmood, F.; Pachter, R.
2014-04-28
In this work, density functional theory (DFT) calculations have been used to investigate chemical sensing on surfaces of single-layer MoS{sub 2} and graphene, considering the adsorption of the chemical compounds triethylamine, acetone, tetrahydrofuran, methanol, 2,4,6-trinitrotoluene, o-nitrotoluene, o-dichlorobenzene, and 1,5-dicholoropentane. Physisorption of the adsorbates on free-standing surfaces was analyzed in detail for optimized material structures, considering various possible adsorption sites. Similar adsorption characteristics for the two surface types were demonstrated, where inclusion of a correction to the DFT functional for London dispersion was shown to be important to capture interactions at the interface of molecular adsorbate and surface. Charge transfer analyses for adsorbed free-standing surfaces generally demonstrated very small effects. However, charge transfer upon inclusion of the underlying SiO{sub 2} substrate rationalized experimental observations for some of the adsorbates considered. A larger intrinsic response for the electron-donor triethylamine adsorbed on MoS{sub 2} as compared to graphene was demonstrated, which may assist in devising chemical sensors for improved sensitivity.
Ganesh, P.; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A.; Kent, Paul R. C.
2014-11-03
In highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Moreover, the highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based onmoreÂ Â» point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. Our results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.Â«Â less
Escudero, Daniel E-mail: thiel@kofo.mpg.de; Thiel, Walter E-mail: thiel@kofo.mpg.de
2014-05-21
We report an assessment of the performance of density functional theory-based multireference configuration interaction (DFT/MRCI) calculations for a set of 3d- and 4d-transition metal (TM) complexes. The DFT/MRCI results are compared to published reference data from reliable high-level multi-configurational ab initio studies. The assessment covers the relative energies of different ground-state minima of the highly correlated CrF{sub 6} complex, the singlet and triplet electronically excited states of seven typical TM complexes (MnO{sub 4}{sup ?}, Cr(CO){sub 6}, [Fe(CN){sub 6}]{sup 4?}, four larger Fe and Ru complexes), and the corresponding electronic spectra (vertical excitation energies and oscillator strengths). It includes comparisons with results from different flavors of time-dependent DFT (TD-DFT) calculations using pure, hybrid, and long-range corrected functionals. The DFT/MRCI method is found to be superior to the tested TD-DFT approaches and is thus recommended for exploring the excited-state properties of TM complexes.
Stout, Ray B.
2008-07-01
Future designs of nuclear fuels require an increased understanding of fission gas bubble density evolution. Derivations will be provided for a generic Boltzmann bubble density evolution equation, a bubble density deformation field equation, and a Cauchy stress/bubble-pressure equilibrium equation. (author)
Chrissanthopoulos, A.; Jovari, P.; Kaban, I.; Gruner, S.; Kavetskyy, T.; Borc, J.; Wang, W.; Ren, J.; Chen, G.; Yannopoulos, S.N.
2012-08-15
We report an investigation of the structure and vibrational modes of Ge-In-S-AgI bulk glasses using X-ray diffraction, EXAFS spectroscopy, Reverse Monte-Carlo (RMC) modelling, Raman spectroscopy, and density functional theoretical (DFT) calculations. The combination of these techniques made it possible to elucidate the short- and medium-range structural order of these glasses. Data interpretation revealed that the AgI-free glass structure is composed of a network where GeS{sub 4/2} tetrahedra are linked with trigonal InS{sub 3/2} units; S{sub 3/2}Ge-GeS{sub 3/2} ethane-like species linked with InS{sub 4/2}{sup -} tetrahedra form sub-structures which are dispersed in the network structure. The addition of AgI into the Ge-In-S glassy matrix causes appreciable structural changes, enriching the Indium species with Iodine terminal atoms. The existence of trigonal species InS{sub 2/2}I and tetrahedral units InS{sub 3/2}I{sup -} and InS{sub 2/2}I{sub 2}{sup -} is compatible with the EXAFS and RMC analysis. Their vibrational properties (harmonic frequencies and Raman activities) calculated by DFT are in very good agreement with the experimental values determined by Raman spectroscopy. - Graphical abstract: Experiment (XRD, EXAFS, RMC, Raman scattering) and density functional calculations are employed to study the structure of AgI-doped Ge-In-S glasses. The role of mixed structural units as illustrated in the figure is elucidated. Highlights: Black-Right-Pointing-Pointer Doping Ge-In-S glasses with AgI causes significant changes in glass structure. Black-Right-Pointing-Pointer Experiment and DFT are combined to elucidate short- and medium-range structural order. Black-Right-Pointing-Pointer Indium atoms form both (InS{sub 4/2}){sup -} tetrahedra and InS{sub 3/2} planar triangles. Black-Right-Pointing-Pointer (InS{sub 4/2}){sup -} tetrahedra bond to (S{sub 3/2}Ge-GeS{sub 3/2}){sup 2+} ethane-like units forming neutral sub-structures. Black-Right-Pointing-Pointer Mixed
DOE - Office of Legacy Management -- Bendix Corp Frieze Division - MD 0-01
Office of Legacy Management (LM)
Corp Frieze Division - MD 0-01 FUSRAP Considered Sites Site: BENDIX CORP., FRIEZE DIVISION (MD.0-01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Baltimore , Maryland MD.0-01-1 Evaluation Year: 1987 MD.0-01-3 Site Operations: Produced "classified units" believed to be electronics components - no radioactive materials involved. MD.0-01-1 MD.0-01-3 Site Disposition: Eliminated - No radioactive materials handled at this
Density Functional Studies of Stoichiometric Surfaces of Orthorhombic Hybrid Perovskite CH3NH3PbI3
Wang, Yun; Huang, Jingsong; Sumpter, Bobby G.; Zhang, Haimin; Liu, Porun; Yang, Huagui; Zhao, Huijun
2014-12-19
Organic/inorganic hybrid perovskite materials are highly attractive for dye-sensitized solar cells as demonstrated by their rapid advances in energy conversion efficiency. In this work, the structures, energetics, and electronic properties for a range of stoichiometric surfaces of the orthorhombic perovskite CH3NH3PbI3 are theoretically studied using density functional theory. Various possible spatially and constitutionally isomeric surfaces are considered by diversifying the spatial orientations and connectivities of surface Pb-I bonds. The comparison of the surface energies for the most stable configurations identified for various surfaces shows that the stabilities of stoichiometric surfaces are mainly dictated by the coordination numbers of surface atoms,moreÂ Â» which are directly correlated with the numbers of broken bonds. Additionally, Coulombic interactions between I anions and organic countercations on the surface also contribute to the stabilization. Electronic properties are compared between the most stable (100) surface and the bulk phase, showing generally similar features except for the lifted band degeneracy and the enhanced bandgap energy for the surface. These studies on the stoichiometric surfaces serve as the first step toward gaining a fundamental understanding of the interfacial properties in the current structural design of perovskite based solar cells, in order to achieve further breakthroughs in solar conversion efficiencies.Â«Â less
Walsh, Aron; Wei, S.-H.; Yan Yanfa; Al-Jassim, M. M.; Turner, John A.; Woodhouse, Michael; Parkinson, B. A.
2007-10-15
A systematic study of nine binary and ternary spinel oxides formed from Co, Al, and Fe is presented by means of density functional theory. Analysis of the structural, magnetic, and electronic properties through the series of materials is carried out. Preference for the octahedral spinel sites are found in the order Fe
Rudin, Sven P.; Johnson, David C.
2015-04-30
Among composite materials that layer constituent substances of nanoscale thicknesses, [(SnSe)1+y ]m(VSe2)n emerges as an example where the constituents retain incommensurate lattice structures. Perpendicular to the stacking direction, the system exhibits random translations and random rotations on average, i.e., turbostratic disorder, with local regions showing twelvefold diffraction patterns. Earlier theoretical work on these structures showed that combining density functional theory with an empirical treatment of the van der Waals interaction gave structural parameters in good agreement with experiment, but no attempt was made to examine the relative orientations. Here we approximate the extended system with one extended constituent and onemoreÂ Â» finite constituent, which allows the treatment of all relative orientations on equal footing. Furthermore, the calculations show how the twelvefold periodicity follows from how the ions of the SnSe layer lock in with favored positions relative to the VSe2 layer, and the associated energy scale supports arguments for the overall turbostratic disorder.Â«Â less
Park, Ji-Sang; Kang, Joongoo; Yang, Ji-Hui; Metzger, Wyatt; Wei, Su-Huai
2015-01-15
Using first-principles density functional calculations, we investigate the relative stability and electronic structure of the grain boundaries (GBs) in zinc-blende CdTe. Among the low-ÎŁ-value symmetric tilt ÎŁ3 (111), ÎŁ3 (112), ÎŁ5 (120), and ÎŁ5 (130) GBs, we show that the ÎŁ3 (111)GB is always the most stable due to the absence of dangling bonds and wrong bonds. The ÎŁ5 (120) GBs, however, are shown to be more stable than the ÎŁ3 (112) GBs, even though the former has a higher ÎŁ value, and the latter is often used as a model system to study GB effects in zinc-blende semiconductors. Furthermore,moreÂ Â» we find that although containing wrong bonds, the ÎŁ5 (120) GBs are electrically benign due to the short wrong bond lengths, and thus are not as harmful as the ÎŁ3 (112) GBs also having wrong bonds but with longer bond lengths.Â«Â less
Density Functional Studies of Stoichiometric Surfaces of Orthorhombic Hybrid Perovskite CH3NH3PbI3
Wang, Yun; Huang, Jingsong; Sumpter, Bobby G; Zhang, Haimin; Liu, Porun; Yang, Huagui; Zhao, Huijun
2015-01-01
Organic/inorganic hybrid perovskite materials are highly attractive for dye-sensitized solar cells as demonstrated by their rapid advances in energy conversion efficiency. In this work, the structures, energetics, and electronic properties for a range of stoichiometric surfaces of the orthorhombic perovskite CH3NH3PbI3 are theoretically studied using density functional theory. Various possible spatially and constitutionally isomeric surfaces are considered by diversifying the spatial orientations and connectivities of surface Pb-I bonds. The comparison of the surface energies for the most stable configurations identified for various surfaces shows that the stabilities of stoichiometric surfaces are mainly dictated by the coordination numbers of surface atoms, which are directly correlated with the numbers of broken bonds. Additionally, Coulombic interactions between I anions and organic countercations on the surface also contribute to the stabilization. Electronic properties are compared between the most stable (100) surface and the bulk phase, showing generally similar features except for the lifted band degeneracy and the enhanced bandgap energy for the surface. These studies on the stoichiometric surfaces serve as the first step toward gaining a fundamental understanding of the interfacial properties in the current structural design of perovskite based solar cells, in order to achieve further breakthroughs in solar conversion efficiencies.
Veals, Jeffrey D.; Thompson, Donald L.
2014-04-21
Density functional theory and ab initio methods are employed to investigate decomposition pathways of 1,3,3-trinitroazetidine initiated by unimolecular loss of NO{sub 2} or HONO. Geometry optimizations are performed using M06/cc-pVTZ and coupled-cluster (CC) theory with single, double, and perturbative triple excitations, CCSD(T), is used to calculate accurate single-point energies for those geometries. The CCSD(T)/cc-pVTZ energies for NO{sub 2} elimination by NN and CN bond fission are, including zero-point energy (ZPE) corrections, 43.21 kcal/mol and 50.46 kcal/mol, respectively. The decomposition initiated by trans-HONO elimination can occur by a concerted H-atom and nitramine NO{sub 2} group elimination or by a concerted H-atom and nitroalkyl NO{sub 2} group elimination via barriers (at the CCSD(T)/cc-pVTZ level with ZPE corrections) of 47.00 kcal/mol and 48.27 kcal/mol, respectively. Thus, at the CCSD(T)/cc-pVTZ level, the ordering of these four decomposition steps from energetically most favored to least favored is: NO{sub 2} elimination by NN bond fission, HONO elimination involving the nitramine NO{sub 2} group, HONO elimination involving a nitroalkyl NO{sub 2} group, and finally NO{sub 2} elimination by CN bond fission.
Successes and failures of Hubbard-corrected density functional theory. The case of Mg doped LiCoO2
Santana Palacio, Juan A.; Kim, Jeongnim; Kent, Paul R.; Reboredo, Fernando A.
2014-10-28
We have evaluated the successes and failures of the Hubbard-corrected density functional theory approach to study Mg doping of LiCoO2. We computed the effect of the U parameter on the energetic, geometric, and electronic properties of two possible doping mechanisms: (1) substitution of Mg onto a Co (or Li) site with an associated impurity state and (2) formation of impurity-state-free complexes of substitutional Mg and point defects in LiCoO2. We find that formation of impurity states results in changes on the valency of Co in LiCoO2. Variation of the Co U shifts the energy of the impurity state, resulting inmoreÂ Â» energetic, geometric, and electronic properties that depend significantly on the specific value of U. In contrast, the properties of the impurity-state-free complexes are insensitive to U. These results identify reasons for the strong dependence on the doping properties on the chosen value of U and for the overall difficulty of achieving agreement with the experimentally known energetic and electronic properties of doped transition metal oxides such as LiCoO2.Â«Â less
Holmes, Sean T.; Dybowski, Cecil; Iuliucci, Robbie J.; Mueller, Karl T.
2014-10-28
A quantum-chemical method for modeling solid-state nuclear magnetic resonance chemical-shift tensors by calculations on large symmetry-adapted clusters of molecules is demonstrated. Four hundred sixty five principal components of the {sup 13}C chemical-shielding tensors of 24 organic materials are analyzed. The comparison of calculations on isolated molecules with molecules in clusters demonstrates that intermolecular effects can be successfully modeled using a cluster that represents a local portion of the lattice structure, without the need to use periodic-boundary conditions (PBCs). The accuracy of calculations which model the solid state using a cluster rivals the accuracy of calculations which model the solid state using PBCs, provided the cluster preserves the symmetry properties of the crystalline space group. The size and symmetry conditions that the model cluster must satisfy to obtain significant agreement with experimental chemical-shift values are discussed. The symmetry constraints described in the paper provide a systematic approach for incorporating intermolecular effects into chemical-shielding calculations performed at a level of theory that is more advanced than the generalized gradient approximation. Specifically, NMR parameters are calculated using the hybrid exchange-correlation functional B3PW91, which is not available in periodic codes. Calculations on structures of four molecules refined with density plane waves yield chemical-shielding values that are essentially in agreement with calculations on clusters where only the hydrogen sites are optimized and are used to provide insight into the inherent sensitivity of chemical shielding to lattice structure, including the role of rovibrational effects.
Khaliullin, Rustam Z.; Bell, Alexis T.
2002-09-05
Density functional theory was used to investigate the mechanism and kinetics of methanol oxidation to formaldehyde over vanadia supported on silica, titania, and zirconia. The catalytically active site was modeled as an isolated VO{sub 4} unit attached to the support. The calculated geometry and vibrational frequencies of the active site are in good agreement with experimental measurements both for model compounds and oxide-supported vanadia. Methanol adsorption is found to occur preferentially with the rupture of a V-O-M bond (M = Si, Ti, Zr) and with preferential attachment of a methoxy group to V. The vibrational frequencies of the methoxy group are in good agreement with those observed experimentally as are the calculated isobars. The formation of formaldehyde is assumed to occur via the transfer of an H atom of a methoxy group to the O atom of the V=O group. The activation energy for this process is found to be in the range of 199-214 kJ/mol and apparent activation energies for the overall oxidation of methanol to formaldehyde are predicted to lie in the range of 112-123 kJ/mol, which is significantly higher than that found experimentally. Moreover, the predicted turnover frequency (TOF) for methanol oxidation is found to be essentially independent of support composition, whereas experiments show that the TOF is 10{sup 3} greater for titania- and zirconia-supported vanadia than for silica-supported vanadia. Based on these findings, it is proposed that the formation of formaldehyde from methoxy groups may require pairs of adjacent VO{sub 4} groups or V{sub 2}O{sub 7} dimer structures.
Mehmood, F.; Greeley, J.; Zapol, P.; Curtiss, L. A.
2010-08-12
A density functional theory study of the decomposition of methanol on Cu{sub 4} and Co{sub 4} clusters is presented. The reaction intermediates and activation barriers have been determined for reaction steps to form H{sub 2} and CO. For both clusters, methanol decomposition initiated by C-H and O-H bond breaking was investigated. In the case of a Cu{sub 4} cluster, methanol dehydrogenation through hydroxymethyl (CH{sub 2}OH), hydroxymethylene (CHOH), formyl (CHO), and carbon monoxide (CO) is found to be slightly more favorable. For a Co{sub 4} cluster, the dehydrogenation pathway through methoxy (CH{sub 3}O) and formaldehyde (CH{sub 2}O) is slightly more favorable. Each of these pathways results in formation of CO and H{sub 2}. The Co cluster pathway is very favorable thermodynamically and kinetically for dehydrogenation. However, since CO binds strongly, it is likely to poison methanol decomposition to H{sub 2} and CO at low temperatures. In contrast, for the Cu cluster, CO poisoning is not likely to be a problem since it does not bind strongly, but the dehydrogenation steps are not energetically favorable. Pathways involving C-O bond cleavage are even less energetically favorable. The results are compared to our previous study of methanol decomposition on Pd{sub 4} and Pd{sub 8} clusters. Finally, all reaction energy changes and transition state energies, including those for the Pd clusters, are related in a linear, Broensted?Evans?Polanyi plot.
Zanatta, G.; Gottfried, C.; Silva, A. M.; Caetano, E. W. S.; Sales, F. A. M.; Freire, V. N.
2014-03-28
Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences ?a, ?b, ?c between theory and experiment were as small as 0.020, 0.051, and 0.022 Ć, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z???? and Z???? transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to ?3 ???, ?1 ???, and ?2 ??? transitions, respectively. ?-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2pcarboxyl, C 2pside chain, and C 2pcarboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical anisotropy for the absorption and complex
Kikkinides, E. S.; Monson, P. A.
2015-03-07
Building on recent developments in dynamic density functional theory, we have developed a version of the theory that includes hydrodynamic interactions. This is achieved by combining the continuity and momentum equations eliminating velocity fields, so the resulting model equation contains only terms related to the fluid density and its time and spatial derivatives. The new model satisfies simultaneously continuity and momentum equations under the assumptions of constant dynamic or kinematic viscosity and small velocities and/or density gradients. We present applications of the theory to spinodal decomposition of subcritical temperatures for one-dimensional and three-dimensional density perturbations for both a van der Waals fluid and for a lattice gas model in mean field theory. In the latter case, the theory provides a hydrodynamic extension to the recently studied dynamic mean field theory. We find that the theory correctly describes the transition from diffusive phase separation at short times to hydrodynamic behaviour at long times.
Song, Jong-Won; Hirao, Kimihiko
2015-10-14
Since the advent of hybrid functional in 1993, it has become a main quantum chemical tool for the calculation of energies and properties of molecular systems. Following the introduction of long-range corrected hybrid scheme for density functional theory a decade later, the applicability of the hybrid functional has been further amplified due to the resulting increased performance on orbital energy, excitation energy, non-linear optical property, barrier height, and so on. Nevertheless, the high cost associated with the evaluation of Hartree-Fock (HF) exchange integrals remains a bottleneck for the broader and more active applications of hybrid functionals to large molecular and periodic systems. Here, we propose a very simple yet efficient method for the computation of long-range corrected hybrid scheme. It uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. As a result, the two-Gaussian HF operator, which mimics the shape of the error function operator, reduces computational time dramatically (e.g., about 14 times acceleration in C diamond calculation using periodic boundary condition) and enables lower scaling with system size, while maintaining the improved features of the long-range corrected density functional theory.
Aquino, Fredy W.; Govind, Niranjan; Autschbach, Jochen
2011-10-01
Density functional theory (DFT) calculations of NMR chemical shifts and molecular g-tensors with Gaussian-type orbitals are implemented via second-order energy derivatives within the scalar relativistic zeroth order regular approximation (ZORA) framework. Nonhybrid functionals, standard (global) hybrids, and range-separated (Coulomb-attenuated, long-range corrected) hybrid functionals are tested. Origin invariance of the results is ensured by use of gauge-including atomic orbital (GIAO) basis functions. The new implementation in the NWChem quantum chemistry package is verified by calculations of nuclear shielding constants for the heavy atoms in HX (X=F, Cl, Br, I, At) and H2X (X = O, S, Se, Te, Po), and Te chemical shifts in a number of tellurium compounds. The basis set and functional dependence of g-shifts is investigated for 14 radicals with light and heavy atoms. The problem of accurately predicting F NMR shielding in UF6-nCln, n = 1 to 6, is revisited. The results are sensitive to approximations in the density functionals, indicating a delicate balance of DFT self-interaction vs. correlation. For the uranium halides, the results with the range-separated functionals are mixed.
Lara-Castells, MarĂa Pilar de; Mitrushchenkov, Alexander O.; Stoll, Hermann
2015-09-14
A combined density functional (DFT) and incremental post-Hartree-Fock (post-HF) approach, proven earlier to calculate He-surface potential energy surfaces [de Lara-Castells et al., J. Chem. Phys. 141, 151102 (2014)], is applied to describe the van der Waals dominated Ag{sub 2}/graphene interaction. It extends the dispersionless density functional theory developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] by including periodic boundary conditions while the dispersion is parametrized via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. Starting with the elementary cluster unit of the target surface (benzene), continuing through the realistic cluster model (coronene), and ending with the periodic model of the extended system, modern ab initio methodologies for intermolecular interactions as well as state-of-the-art van der Waals-corrected density functional-based approaches are put together both to assess the accuracy of the composite scheme and to better characterize the Ag{sub 2}/graphene interaction. The present work illustrates how the combination of DFT and post-HF perspectives may be efficient to design simple and reliable ab initio-based schemes in extended systems for surface science applications.
Dai, Xing; Gao, Yang; Xin, Minsi; Wang, Zhigang; Zhou, Ruhong
2014-12-28
As a representative lanthanide endohedral metallofullerene, Gd@C{sub 82} has attracted a widespread attention among theorists and experimentalists ever since its first synthesis. Through comprehensive comparisons and discussions, as well as references to the latest high precision experiments, we evaluated the performance of different computational methods. Our results showed that the appropriate choice of the exchange-correlation functionals is the decisive factor to accurately predict both geometric and electronic structures for Gd@C{sub 82}. The electronic structure of the ground state and energy gap between the septet ground state and the nonet low-lying state obtained from pure density functional methods, such as PBE and PW91, are in good agreement with current experiment. Unlike pure functionals, the popularly used hybrid functionals in previous studies, such as B3LYP, could infer the qualitative correct ground state only when small basis set for C atoms is employed. Furthermore, we also highlighted that other geometric structures of Gd@C{sub 82} with the Gd staying at different positions are either not stable or with higher energies. This work should provide some useful references for various theoretical methodologies in further density functional studies on Gd@C{sub 82} and its derivatives in the future.
BERAC Meeting February 18 - 19, 2009 North Bethesda, MD | U.S. DOE Office
of Science (SC) 18 - 19, 2009 North Bethesda, MD Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (135KB) BER Committees of Visitors Federal Advisory Committees BER Home Meetings BERAC Meeting February 18 - 19, 2009 North Bethesda, MD Print Text Size: A A A FeedbackShare Page Biological and Environmental Research Advisory Committee Meeting February 18-19, 2009 North Bethesda, MD
BERAC Meeting February 23-24, 2010 Gaithersburg, MD | U.S. DOE Office of
Science (SC) 23-24, 2010 Gaithersburg, MD Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (135KB) BER Committees of Visitors Federal Advisory Committees BER Home Meetings BERAC Meeting February 23-24, 2010 Gaithersburg, MD Print Text Size: A A A FeedbackShare Page BERAC Meeting February 23-24,2010 Gaithersburg MD Agenda .pdf file (8KB) Presentations Patricia Dehmer .ppt file
BERAC Meeting October 16, 2006 North Bethesda, MD | U.S. DOE Office of
Science (SC) October 16, 2006 North Bethesda, MD Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (135KB) BER Committees of Visitors Federal Advisory Committees BER Home Meetings BERAC Meeting October 16, 2006 North Bethesda, MD Print Text Size: A A A FeedbackShare Page BERAC Meeting October 16, 2006 North Bethesda, MD Agenda .pdf file (8KB) Presentations Jerry Elwood .ppt file
BERAC Meeting September 1-2, 2009 Gaithersburg, MD | U.S. DOE Office of
Science (SC) 1-2, 2009 Gaithersburg, MD Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (135KB) BER Committees of Visitors Federal Advisory Committees BER Home Meetings BERAC Meeting September 1-2, 2009 Gaithersburg, MD Print Text Size: A A A FeedbackShare Page BERAC Meeting September 1-2, 2009 Gaithersburg, MD Agenda .pdf file (8KB) Presentations Patricia Dehmer .ppt file
BERAC Meeting September 16-17, 2010 Gaithersburg, MD | U.S. DOE Office of
Science (SC) September 16-17, 2010 Gaithersburg, MD Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (135KB) BER Committees of Visitors Federal Advisory Committees BER Home Meetings BERAC Meeting September 16-17, 2010 Gaithersburg, MD Print Text Size: A A A FeedbackShare Page BERAC Meeting September 16-17, 2010 Gaithersburg, MD Agenda .pdf file (8KB) Presentations Anna Palmisano
BERAC Meeting, June 6-7, 2012 Gaithersburg, MD| U.S. DOE Office of Science
(SC) June 6-7, 2012 Gaithersburg, MD Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (135KB) BER Committees of Visitors Federal Advisory Committees BER Home Meetings BERAC Meeting, June 6-7, 2012 Gaithersburg, MD Print Text Size: A A A FeedbackShare Page BERAC Meeting June 6-7, 2012 Gaithersburg, MD Agenda .pdf file (424KB) Presentations Sharlene Weatherwax, BER Associate
BERAC Meeting, October 6-7, 2011, Rockville, MD| U.S. DOE Office of Science
(SC) Meeting, October 6-7, 2011, Rockville, MD Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (135KB) BER Committees of Visitors Federal Advisory Committees BER Home Meetings BERAC Meeting, October 6-7, 2011, Rockville, MD Print Text Size: A A A FeedbackShare Page BERAC Meeting October 6-7, 2011 Rockville, MD Agenda .docx file (13KB) Presentations Sharlene Weatherwax, State of
DOE Zero Energy Ready Home Case Study, Nexus EnergyHomes, Frederick, MD,
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Production | Department of Energy Study, Nexus EnergyHomes, Frederick, MD, Production DOE Zero Energy Ready Home Case Study, Nexus EnergyHomes, Frederick, MD, Production This urban infill community features a package of SIP walls, geothermal heat pumps, solar PV, and a proprietary energy management system. Nexus EnergyHomes - Frederick, MD (1.56 MB) More Documents & Publications Building America Whole-House Solutions for New Homes: Nexus EnergyHomes - Frederick, Maryland DOE Zero Energy
Reshak, A.H.; Khan, Saleem Ayaz
2013-11-15
Graphical abstract: - Highlights: FPLAPW method is used for calculating the electronic and optical properties of CdGa{sub 2}X{sub 4}. Electronic and optical properties were calculated using LDA, GGA, EVGGA and mBJ. Band gap conformed that CdGa{sub 2}X{sub 4} are semiconductors fit for UV and visible light. The ECD shows that change in the bond length and bond nature affect the band gap. The dielectric tensor components and its derivatives show considerable anisotropy. - Abstract: A density functional theory (DFT) based on full potential linear augmented plane wave (FPLAPW) was used for calculating the electronic structure, charge density and optical properties of CdGa{sub 2}X{sub 4} (X = S, Se) compounds. Local density approximation (LDA), generalized gradient approximation (GGA), Engle Vasko generalized gradient approximation (EVGGA) and recently modified BeckeJohnson (mBJ) were applied to calculate the band structure, total and partial density of states. The investigation of band structures and density of states of CdGa{sub 2}X{sub 4} (X = S, Se) elucidate that mBJ potential show close agreement to the experimental results. The mBJ potential was selected for further explanation of optical properties of CdGa{sub 2}X{sub 4} (X = S, Se). The study of electronic charge density contours shows that change in the bond lengths and bond nature affect the band gap of the compounds. The two non-zero dielectric tensor components and its derivatives show considerable anisotropy between the perpendicular and parallel components. The present work provide accurate information about the combination (hybridization) of orbital, formation of bands and dispersion of non-zero tensor components of CdGa{sub 2}X{sub 4} (X = S, Se)
Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang
2015-07-31
We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X = N,P,As,Sb, and II-VI compounds, (Zn or Cd)X, with X = O,S,Se,Te. By correcting (1) the binary band gaps at high-symmetry points , L, X, (2) the separation of p-and d-orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles methodmoreÂ Â» can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.Â«Â less
Nazarian, Dalar; Ganesh, P.; Sholl, David S.
2015-09-30
We compiled a test set of chemically and topologically diverse MetalâOrganic Frameworks (MOFs) with high accuracy experimentally derived crystallographic structure data. The test set was used to benchmark the performance of Density Functional Theory (DFT) functionals (M06L, PBE, PW91, PBE-D2, PBE-D3, and vdW-DF2) for predicting lattice parameters, unit cell volume, bonded parameters and pore descriptors. On average PBE-D2, PBE-D3, and vdW-DF2 predict more accurate structures, but all functionals predicted pore diameters within 0.5 Ă of the experimental diameter for every MOF in the test set. The test set was also used to assess the variance in performance of DFT functionals for elastic properties and atomic partial charges. The DFT predicted elastic properties such as minimum shear modulus and Young's modulus can differ by an average of 3 and 9 GPa for rigid MOFs such as those in the test set. Moreover, we calculated the partial charges by vdW-DF2 deviate the most from other functionals while there is no significant difference between the partial charges calculated by M06L, PBE, PW91, PBE-D2 and PBE-D3 for the MOFs in the test set. We find that while there are differences in the magnitude of the properties predicted by the various functionals, these discrepancies are small compared to the accuracy necessary for most practical applications.
Silvestrelli, Pier Luigi; Ambrosetti, Alberto
2014-03-28
The Density Functional Theory (DFT)/van der Waals-Quantum Harmonic Oscillator-Wannier function (vdW-QHO-WF) method, recently developed to include the vdW interactions in approximated DFT by combining the quantum harmonic oscillator model with the maximally localized Wannier function technique, is applied to the cases of atoms and small molecules (X=Ar, CO, H{sub 2}, H{sub 2}O) weakly interacting with benzene and with the ideal planar graphene surface. Comparison is also presented with the results obtained by other DFT vdW-corrected schemes, including PBE+D, vdW-DF, vdW-DF2, rVV10, and by the simpler Local Density Approximation (LDA) and semilocal generalized gradient approximation approaches. While for the X-benzene systems all the considered vdW-corrected schemes perform reasonably well, it turns out that an accurate description of the X-graphene interaction requires a proper treatment of many-body contributions and of short-range screening effects, as demonstrated by adopting an improved version of the DFT/vdW-QHO-WF method. We also comment on the widespread attitude of relying on LDA to get a rough description of weakly interacting systems.
Arghavani Nia, Borhan; Sedighi, Matin; Shahrokhi, Masoud; Moradian, Rostam
2013-11-15
A density functional theory study of structural, electronical and optical properties of Ca{sub 3}Sb{sub 2} compound in hexagonal and cubic phases is presented. In the exchangecorrelation potential, generalized gradient approximation (PBE-GGA) has been used to calculate lattice parameters, bulk modulus, cohesive energy, dielectric function and energy loss spectra. The electronic band structure of this compound has been calculated using the above two approximations as well as another form of PBE-GGA, proposed by Engle and Vosko (EV-GGA). It is found that the hexagonal phase of Ca{sub 3}Sb{sub 2} has an indirect gap in the ??N direction; while in the cubic phase there is a direct-gap at the ? point in the PBE-GGA and EV-GGA. Effects of applying pressure on the band structure of the system studied and optical properties of these systems were calculated. - Graphical abstract: A density functional theory study of structural, electronic and optical properties of Ca{sub 3}Sb{sub 2} compound in hexagonal and cubic phases is presented. Display Omitted - Highlights: Physical properties of Ca{sub 3}Sb{sub 2} in hexagonal and cubic phases are investigated. It is found that the hexagonal phase is an indirect gap semiconductor. Ca{sub 3}Sb{sub 2} is a direct-gap semiconductor at the ? point in the cubic phase. By increasing pressure the semiconducting band gap and anti-symmetry gap are decreased.
Dunlap, B.I.; Brenner, D.W.; Mowrey, R.C.; Mintmire, J.W.; White, C.T. )
1990-05-15
Linear combination of Gaussian-type orbitals (LCGTO) --local-density-functional (LDF) cluster calculations give the interaction energy of two deuterium atoms in the interstices of titanium and palladium. Octahedral and tetrahedral interstices of the face-centered-cubic (fcc) lattice are modeled by six and four metal atoms, respectively. No short equilibrium separations, compared to the gas-phase equilibrium separation, are found even when expansion of the lattice and loading with additional deuterium and metal atoms are considered. The deuteron affinities of these clusters are in accord with the experimental site preference.
Nakata, Hiroya; RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 ; Fedorov, Dmitri G.; Yokojima, Satoshi; Tokyo University of Pharmacy and Life Sciences, 1423-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 ; Kitaura, Kazuo; Sakurai, Minoru; Nakamura, Shinichiro
2014-04-14
We extended the fragment molecular orbital (FMO) method interfaced with density functional theory (DFT) into spin unrestricted formalism (UDFT) and developed energy gradients for the ground state and single point excited state energies based on time-dependent DFT. The accuracy of FMO is evaluated in comparison to the full calculations without fragmentation. Electronic excitations in solvated organic radicals and in the blue copper protein, plastocyanin (PDB code: 1BXV), are reported. The contributions of solvent molecules to the electronic excitations are analyzed in terms of the fragment polarization and quantum effects such as interfragment charge transfer.
Xu, Zhuo Gu, Bo; Mori, Michiyasu; Maekawa, Sadamichi; Ziman, Timothy
2015-05-07
We analyze the spin Hall effect in CuIr alloys in theory by the combined approach of the density functional theory (DFT) and Hartree-Fock (HF) approximation. The spin Hall angle (SHA) is obtained to be negative without the local correlation effects. After including the local correlation effects of the 5d orbitals of Ir impurities, the SHA becomes positive with realistic correlation parameters and consistent with experiment [Niimi et al., Phys. Rev. Lett. 106, 126601 (2011)]. Moreover, our analysis shows that the DFTâ+âHF approach is a convenient and general method to study the influence of local correlation effects on the spin Hall effect.
Fahleson, Tobias; Norman, Patrick; Coriani, Sonia; Rizzo, Antonio; Rikken, Geert L. J. A.
2013-11-21
We report on the results of a systematic ab initio study of the Jones birefringence of noble gases, of furan homologues, and of monosubstituted benzenes, in the gas phase, with the aim of analyzing the behavior and the trends within a list of systems of varying size and complexity, and of identifying candidates for a combined experimental/theoretical study of the effect. We resort here to analytic linear and nonlinear response functions in the framework of time-dependent density functional theory. A correlation is made between the observable (the Jones constant) and the atomic radius for noble gases, or the permanent electric dipole and a structure/chemical reactivity descriptor as the para Hammett constant for substituted benzenes.
Afshar, Mahdi; Sargolzaei, Mohsen
2013-11-15
We have demonstrated electronic structure and magnetic properties of Cu{sub 3}, Ag{sub 3} and Au{sub 3} trimers using a full potential local orbital method in the framework of relativistic density functional theory. We have also shown that the non-relativistic generalized gradient approximation for the exchange-correlation energy functional gives reliable magnetic properties in coinage metal trimers compared to experiment. In addition we have indicated that the spin-orbit coupling changes the structure and magnetic properties of gold trimer while the structure and magnetic properties of copper and silver trimers are marginally affected. A significant orbital moment of 0.21ÎŒ{sub B} was found for most stable geometry of the gold trimer whereas orbital magnetism is almost quenched in the copper and silver trimers.
Long, Run; English, Niall J.
2011-04-04
The electronic structures of Mg/Ca- and/or Mo/W- (mono- and co-) doped anatase TiO{sub 2} have been investigated via generalized Kohn-Sham theory with the Heyd-Scuseria-Ernzerhof hybrid functional for exchange-correlation (J. Heyd et al., [J. Chem. Phys. 118, 8207 (2003)], J. Heyd et al., [J. Chem. Phys. 124, 219906 (2006)], and J. Paier et al., [J. Chem. Phys. 125, 249901 (2006)]), in the context of density functional theory. Gap narrowing is small for monodoping, which also creates impuritiy bands in the ''forbidden gap,'' either as acceptor or donor states, limiting possible utility as visible-light photocatalysts. However, codoping of Mg/Ca and Mo/W not only induces appreciable gap narrowing, but also serves to passivate the impurity bands, which can harvest visible-light to a greater extent. Considering ionic radii, Mg and Mo should constitute the best cation-pair.
Afshar, Mahdi; Sargolzaei, Mohsen
2013-11-15
We have demonstrated electronic structure and magnetic properties of Cu{sub 3}, Ag{sub 3} and Au{sub 3} trimers using a full potential local orbital method in the framework of relativistic density functional theory. We have also shown that the non-relativistic generalized gradient approximation for the exchange-correlation energy functional gives reliable magnetic properties in coinage metal trimers compared to experiment. In addition we have indicated that the spin-orbit coupling changes the structure and magnetic properties of gold trimer while the structure and magnetic properties of copper and silver trimers are marginally affected. A significant orbital moment of 0.21?{sub B} was found for most stable geometry of the gold trimer whereas orbital magnetism is almost quenched in the copper and silver trimers.
Kawaguchi, Yoshizo; Sasaki, Fumio; Mochizuki, Hiroyuki; Ishitsuka, Tomoaki; Tomie, Toshihisa; Ootsuka, Teruhisa; Watanabe, Shuji; Shimoi, Yukihiro; Yamao, Takeshi; Hotta, Shu
2013-02-28
We have investigated electronic states in the valence electron bands for the thin films of three thiophene/phenylene co-oligomer (TPCO) compounds, 2,5-bis(4-biphenylyl)thiophene (BP1T), 1,4-bis(5-phenylthiophen-2-yl)benzene (AC5), and 1,4-bis{l_brace}5-[4-(trifluoromethyl)phenyl]thiophen-2-yl{r_brace}benzene (AC5-CF{sub 3}), by using extreme-UV excited photoelectron spectroscopy (EUPS). By comparing both EUPS spectra and secondary electron spectra between AC5 and AC5-CF{sub 3}, we confirm that CF{sub 3} substitution to AC5 deepens valence states by 2 eV, and increases the ionization energy by 3 eV. From the cut-off positions of secondary electron spectra, the work functions of AC5, AC5-CF{sub 3}, and BP1T are evaluated to be 3.8 eV, 4.8 eV, and 4.0 eV, respectively. We calculate molecular orbital (MO) energy levels by the density functional theory and compare results of calculations with those of experiments. Densities of states obtained by broadening MO levels well explain the overall features of experimental EUPS spectra of three TPCOs.
Lao, Ka Un; Herbert, John M.
2014-01-28
The performance of second-order symmetry-adapted perturbation theory (SAPT) calculations using Kohn-Sham (KS) orbitals is evaluated against benchmark results for intermolecular interactions. Unlike previous studies of this SAPT(KS) methodology, the present study uses non-empirically tuned long-range corrected (LRC) functionals for the monomers. The proper v{sub xc} (r)?0 asymptotic limit is achieved by tuning the range separation parameter in order to satisfy the condition that the highest occupied KS energy level equals minus the molecule's ionization energy, for each monomer unit. Tests for He{sub 2}, Ne{sub 2}, and the S22 and S66 data sets reveal that this condition is important for accurate prediction of the non-dispersion components of the energy, although errors in SAPT(KS) dispersion energies remain unacceptably large. In conjunction with an empirical dispersion potential, however, the SAPT(KS) method affords good results for S22 and S66, and also accurately predicts the whole potential energy curve for the sandwich isomer of the benzene dimer. Tuned LRC functionals represent an attractive alternative to other asymptotic corrections that have been employed in density-functional-based SAPT calculations, and we recommend the use of tuned LRC functionals in both coupled-perturbed SAPT(DFT) calculations and dispersion-corrected SAPT(KS) calculations.
Alavi, Anahita; Siana, Brian; Freeman, William R.; Dominguez, Alberto; Richard, Johan; Stark, Daniel P.; Robertson, Brant; Scarlata, Claudia; Teplitz, Harry I.; Rafelski, Marc; Kewley, Lisa
2014-01-10
We have obtained deep ultraviolet imaging of the lensing cluster A1689 with the WFC3/UVIS camera onboard the Hubble Space Telescope in the F275W (30 orbits) and F336W (4 orbits) filters. These images are used to identify z âŒ 2 star-forming galaxies via their Lyman break, in the same manner that galaxies are typically selected at z â„ 3. Because of the unprecedented depth of the images and the large magnification provided by the lensing cluster, we detect galaxies 100Ă fainter than previous surveys at this redshift. After removing all multiple images, we have 58 galaxies in our sample in the range â19.5 < M {sub 1500} < â13 AB mag. Because the mass distribution of A1689 is well constrained, we are able to calculate the intrinsic sensitivity of the observations as a function of source plane position, allowing for accurate determinations of effective volume as a function of luminosity. We fit the faint-end slope of the luminosity function to be Î± = â1.74 Â± 0.08, which is consistent with the values obtained for 2.5 < z < 6. Notably, there is no turnover in the luminosity function down to M {sub 1500} = â13 AB mag. We fit the UV spectral slopes with photometry from existing Hubble optical imaging. The observed trend of increasingly redder slopes with luminosity at higher redshifts is observed in our sample, but with redder slopes at all luminosities and average reddening of (E(B â V)) = 0.15 mag. We assume the stars in these galaxies are metal poor (0.2 Z {sub â}) compared to their brighter counterparts (Z {sub â}), resulting in bluer assumed intrinsic UV slopes and larger derived values for dust extinction. The total UV luminosity density at z âŒ 2 is 4.31{sub â0.60}{sup +0.68}Ă10{sup 26} erg s{sup â1} Hz{sup â1} Mpc{sup â3}, more than 70% of which is emitted by galaxies in the luminosity range of our sample. Finally, we determine the global star formation rate density from UV-selected galaxies at z âŒ 2 (assuming a constant dust
BERAC Meeting May 14-15, 2007 North Bethesda, MD | U.S. DOE Office of
Science (SC) 4-15, 2007 North Bethesda, MD Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (135KB) BER Committees of Visitors Federal Advisory Committees BER Home Meetings BERAC Meeting May 14-15, 2007 North Bethesda, MD Print Text Size: A A A FeedbackShare Page BERAC Meeting May 14-15, 2007 North Bethesda, MD Agenda .pdf file (10KB) Presentations Joyce Penner .ppt file (74KB),
BERAC Meeting May 19-20, 2008 Hilton Hotel Gaithersburg, MD | U.S. DOE
Office of Science (SC) 9-20, 2008 Hilton Hotel Gaithersburg, MD Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (135KB) BER Committees of Visitors Federal Advisory Committees BER Home Meetings BERAC Meeting May 19-20, 2008 Hilton Hotel Gaithersburg, MD Print Text Size: A A A FeedbackShare Page BERAC Meeting May 19-20, 2008 Hilton Hotel Gaithersburg, MD Agenda .pdf file (17KB)
Nazarian, Dalar; Ganesh, P.; Sholl, David S.
2015-09-30
We compiled a test set of chemically and topologically diverse MetalâOrganic Frameworks (MOFs) with high accuracy experimentally derived crystallographic structure data. The test set was used to benchmark the performance of Density Functional Theory (DFT) functionals (M06L, PBE, PW91, PBE-D2, PBE-D3, and vdW-DF2) for predicting lattice parameters, unit cell volume, bonded parameters and pore descriptors. On average PBE-D2, PBE-D3, and vdW-DF2 predict more accurate structures, but all functionals predicted pore diameters within 0.5 Ă of the experimental diameter for every MOF in the test set. The test set was also used to assess the variance in performance of DFT functionalsmoreÂ Â» for elastic properties and atomic partial charges. The DFT predicted elastic properties such as minimum shear modulus and Young's modulus can differ by an average of 3 and 9 GPa for rigid MOFs such as those in the test set. Moreover, we calculated the partial charges by vdW-DF2 deviate the most from other functionals while there is no significant difference between the partial charges calculated by M06L, PBE, PW91, PBE-D2 and PBE-D3 for the MOFs in the test set. We find that while there are differences in the magnitude of the properties predicted by the various functionals, these discrepancies are small compared to the accuracy necessary for most practical applications.Â«Â less
Goudfrooij, Paul
2012-05-10
We study mass functions of globular clusters derived from Hubble Space Telescope/Advanced Camera for Surveys images of the early-type merger remnant galaxy NGC 1316, which hosts a significant population of metal-rich globular clusters of intermediate age ({approx}3 Gyr). For the old, metal-poor ({sup b}lue{sup )} clusters, the peak mass of the mass function M{sub p} increases with internal half-mass density {rho}{sub h} as M{sub p}{proportional_to}{rho}{sub h}{sup 0.44}, whereas it stays approximately constant with galactocentric distance R{sub gal}. The mass functions of these clusters are consistent with a simple scenario in which they formed with a Schechter initial mass function and evolved subsequently by internal two-body relaxation. For the intermediate-age population of metal-rich ({sup r}ed{sup )} clusters, the faint end of the previously reported power-law luminosity function of the clusters with R{sub gal} > 9 kpc is due to many of those clusters having radii larger than the theoretical maximum value imposed by the tidal field of NGC 1316 at their R{sub gal}. This renders disruption by two-body relaxation ineffective. Only a few such diffuse clusters are found in the inner regions of NGC 1316. Completeness tests indicate that this is a physical effect. Using comparisons with star clusters in other galaxies and cluster disruption calculations using published models, we hypothesize that most red clusters in the low-{rho}{sub h} tail of the initial distribution have already been destroyed in the inner regions of NGC 1316 by tidal shocking, and that several remaining low-{rho}{sub h} clusters will evolve dynamically to become similar to 'faint fuzzies' that exist in several lenticular galaxies. Finally, we discuss the nature of diffuse red clusters in early-type galaxies.
Cox, Stephen J.; Michaelides, Angelos; Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ ; Towler, Michael D.; Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE ; Alfè, Dario; Department of Earth Sciences, University College London Gower Street, London WC1E 6BT
2014-05-07
High quality reference data from diffusion Monte Carlo calculations are presented for bulk sI methane hydrate, a complex crystal exhibiting both hydrogen-bond and dispersion dominated interactions. The performance of some commonly used exchange-correlation functionals and all-atom point charge force fields is evaluated. Our results show that none of the exchange-correlation functionals tested are sufficient to describe both the energetics and the structure of methane hydrate accurately, while the point charge force fields perform badly in their description of the cohesive energy but fair well for the dissociation energetics. By comparing to ice I{sub h}, we show that a good prediction of the volume and cohesive energies for the hydrate relies primarily on an accurate description of the hydrogen bonded water framework, but that to correctly predict stability of the hydrate with respect to dissociation to ice I{sub h} and methane gas, accuracy in the water-methane interaction is also required. Our results highlight the difficulty that density functional theory faces in describing both the hydrogen bonded water framework and the dispersion bound methane.
Ohl, A; Boer, S De
2014-06-01
Purpose: To investigate the differences in relative electron density for different energy (kVp) settings and the effect that these differences have on dose calculations. Methods: A Nuclear Associates 76-430 Mini CT QC Phantom with materials of known relative electron densities was imaged by one multi-slice (16) and one single-slice computed tomography (CT) scanner. The Hounsfield unit (HU) was recorded for each material with energies ranging from 80 to 140 kVp and a representative relative electron density (RED) curve was created. A 5 cm thick inhomogeneity was created in the treatment planning system (TPS) image at a depth of 5 cm. The inhomogeneity was assigned HU for various materials for each kVp calibration curve. The dose was then calculated with the analytical anisotropic algorithm (AAA) at points within and below the inhomogeneity and compared using the 80 kVp beam as a baseline. Results: The differences in RED values as a function of kVp showed the largest variations of 580 and 547 HU for the Aluminum and Bone materials; the smallest differences of 0.6 and 3.0 HU were observed for the air and lung inhomogeneities. The corresponding dose calculations for the different RED values assigned to the 5 cm thick slab revealed the largest differences inside the aluminum and bone inhomogeneities of 2.2 to 6.4% and 4.3 to 7.0% respectively. The dose differences beyond these two inhomogeneities were between 0.4 to 1.6% for aluminum and 1.9 to 2.2 % for bone. For materials with lower HU the calculated dose differences were less than 1.0%. Conclusion: For high CT number materials the dose differences in the phantom calculation as high as 7.0% are significant. This result may indicate that implementing energy specific RED curves can increase dose calculation accuracy.
U?ur, Gökay; Candan, Abdullah
2014-10-06
First-principle calculations of structural, electronic, elastic and phonon properties of SnMg{sub 2}O{sub 4}, SnZn{sub 2}O{sub 4} and SnCd{sub 2}O{sub 4} compounds are presented, using the pseudo-potential plane waves approach based on density functional theory (DFT) within the generalized gradient approximation (GGA). The computed ground state structural parameters, i.e. lattice constants, internal free parameter and bulk modulus are in good agreement with the available theoretical results. Our calculated elastic constants are indicative of stability of SnX{sub 2}O{sub 4} (X=Mg, Zn, Cd) compounds in the spinel structure. The partial density of states (PDOS) of these compounds is in good agreement with the earlier ab-initio calculations. The phonon dispersion relations were calculated using the direct method. Phonon dispersion results indicate that SnZn{sub 2}O{sub 4} is dynamically stable, while SnMg{sub 2}O{sub 4} and SnCd{sub 2}O{sub 4} are unstable.
Liu, J. J.; Fu, X. L.; Chen, S. F.; Zhu, Y. F.
2011-11-07
The electronic structure and optical properties of Ag{sub 3}PO{sub 4} were studied by hybrid density functional theory. The results indicated that the band gap is 2.43 eV, which agrees well with the experimental value of 2.45 eV. The conduction bands of Ag{sub 3}PO{sub 4} are mainly attributable to Ag 5s and 5p states, while the valence bands are dominated by O 2p and Ag 4d states. The highest valence band edge potential was 2.67 V (vs. normal hydrogen electrode), which has enough driving force for photocatalytic water oxidation and pollutants degradation. The optical absorption spectrum showed that Ag{sub 3}PO{sub 4} is a visible light response photocatalyst.
Daene, Markus; Kim, Soo Kyung; Surh, Michael P.; Aberg, Daniel; Benedict, Lorin X.
2015-06-15
We present and discuss density functional theory calculations of magnetic properties of the family of ferromagnetic compounds, (Fe_{1-x}Co_{x})_{2}B, focusing specifically on the magnetocrystalline anisotropy energy (MAE). Using periodic supercells of various sizes (up to 96 atoms), it is shown that the general qualitative features of the composition dependence of the MAE is in agreement with experimental findings, while our predicted magnitudes are larger than those of experiment. We find that the use of small supercells (6 and 12-atom) favors larger MAE values relative to a statistical sample of configurations constructed with 96-atom supercells. As a result, the effect of lattice relaxations is shown to be small. Calculations of the Curie temperature for this alloy are also presented.
Zhang, Yu; Mukamel, Shaul; Khalil, Munira; Govind, Niranjan
2015-11-09
Valence-to-core (VtC) X-ray emission spectroscopy (XES) has emerged as a power- ful technique for the structural characterization of complex organometallic compounds in realistic environments. Since the spectrum represents electronic transitions from the ligand molecular orbitals to the core holes of the metal centers, the approach is more chemically sensitive to the metal-ligand bonding character compared with con- ventional X-ray absorption techniques. In this paper we study how linear-response time-dependent density functional theory (LR-TDDFT) can be harnessed to simulate K-edge VtC X-ray emission spectra reliably. LR-TDDFT allows one to go beyond the single-particle picture that has been extensively used to simulate VtC-XES. We con- sider seven low- and high-spin model complexes involving chromium, manganese and iron transition metal centers. Our results are in good agreement with experiment.
Vehicle Technologies Office Merit Review 2015: Cummins MD & HD Accessory Hybridization CRADA
Office of Energy Efficiency and Renewable Energy (EERE)
Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins MD &...
Vehicle Technologies Office Merit Review 2014: Cummins MD & HD Accessory Hybridization CRADA
Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins MD &...
Lara-Castells, MarĂa Pilar de; Stoll, Hermann; Civalleri, Bartolomeo; CausĂ , Mauro; Voloshina, Elena; Mitrushchenkov, Alexander O.; Pi, MartĂ
2014-10-21
In this work we propose a general strategy to calculate accurate Heâsurface interaction potentials. It extends the dispersionless density functional approach recently developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] to adsorbate-surface interactions by including periodic boundary conditions. We also introduce a scheme to parametrize the dispersion interaction by calculating two- and three-body dispersion terms at coupled cluster singles and doubles and perturbative triples (CCSD(T)) level via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. The performance of the composite approach is tested on {sup 4}He/graphene by determining the energies of the low-lying selective adsorption states, finding an excellent agreement with the best available theoretical data. Second, the capability of the approach to describe dispersionless correlation effects realistically is used to extract dispersion effects in time-dependent density functional simulations on the collision of {sup 4}He droplets with a single graphene sheet. It is found that dispersion effects play a key role in the fast spreading of the {sup 4}He nanodroplet, the evaporation-like process of helium atoms, and the formation of solid-like helium structures. These characteristics are expected to be quite general and highly relevant to explain experimental measurements with the newly developed helium droplet mediated deposition technique.
BERAC Meeting September 5 2008 Gaithersburg MD | U.S. DOE Office of Science
(SC) 5 2008 Gaithersburg MD Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (135KB) BER Committees of Visitors Federal Advisory Committees BER Home Meetings BERAC Meeting September 5 2008 Gaithersburg MD Print Text Size: A A A FeedbackShare Page BER September 5, 2008 Arlington, VA Agenda Presentations Peg Riley .ppt file (357KB), Life and Medical Sciences Division Committee of
Structure of overheated metal clusters: MD simulation study
Vorontsov, Alexander
2015-08-17
The structure of overheated metal clusters appeared in condensation process was studied by computer simulation techniques. It was found that clusters with size larger than several tens of atoms have three layers: core part, intermediate dense packing layer and a gas- like shell with low density. The change of the size and structure of these layers with the variation of internal energy and the size of cluster is discussed.
Kuiken, Benjamin E. Van; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, Nils; Schoenlein, Robert W.; Govind, Niranjan; Khalil, Munira
2013-04-26
Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.
DemjĂĄn, TamĂĄs; VĂ¶rĂ¶s, MĂĄrton; Palummo, Maurizia; Gali, Adam
2014-08-14
Diamondoids are small diamond nanoparticles (NPs) that are built up from diamond cages. Unlike usual semiconductor NPs, their atomic structure is exactly known, thus they are ideal test-beds for benchmarking quantum chemical calculations. Their usage in spintronics and bioimaging applications requires a detailed knowledge of their electronic structure and optical properties. In this paper, we apply density functional theory (DFT) based methods to understand the electronic and optical properties of a few selected pure and modified diamondoids for which accurate experimental data exist. In particular, we use many-body perturbation theory methods, in the G{sub 0}W{sub 0} and G{sub 0}W{sub 0}+BSE approximations, and time-dependent DFT in the adiabatic local density approximation. We find large quasiparticle gap corrections that can exceed thrice the DFT gap. The electron-hole binding energy can be as large as 4 eV but it is considerably smaller than the GW corrections and thus G{sub 0}W{sub 0}+BSE optical gaps are about 50% larger than the Kohn-Sham (KS) DFT gaps. We find significant differences between KS time-dependent DFT and GW+BSE optical spectra on the selected diamondoids. The calculated G{sub 0}W{sub 0} quasiparticle levels agree well with the corresponding experimental vertical ionization energies. We show that nuclei dynamics in the ionization process can be significant and its contribution may reach about 0.5 eV in the adiabatic ionization energies.
Ma, Jin-Gang; Gong, Ji-Jun; Zhang, Hai-Min; Wang, Wei; Zhang, Cai-Rong Chen, Yu-Hong; Yang, Bing; Wu, You-Zhi; Chen, Hong-Shan
2014-12-21
The adsorption of Î±-cyanoacrylic acid (CAA) on anatase TiO{sub 2} (101) and (001) surfaces, including adsorption energies, structures, and electronic properties, have been studied by means of density functional theory calculations in connection with ultrasoft pseudopotential and generalized gradient approximation based upon slab models. The most stable structure of CAA on anatase TiO{sub 2} (101) surface is the dissociated bidentate configuration where the cyano N and carbonyl O bond with two adjacent surface Ti atoms along [010] direction and the dissociated H binds to the surface bridging O which connects the surface Ti bonded with carbonyl O. While for the adsorption of CAA on (001) surface, the most stable structure is the bidentate configuration through the dissociation of hydroxyl in carboxyl moiety. The O atoms of carboxyl bond with two neighbor surface Ti along [100] direction, and the H from dissociated hydroxyl interacts with surface bridging O, generating OH species. The adsorption energies are estimated to be 1.02 and 3.25 eV for (101) and (001) surfaces, respectively. The analysis of density of states not only suggests the bonds between CAA and TiO{sub 2} surfaces are formed but also indicates that CAA adsorptions on TiO{sub 2} (101) and (001) surfaces provide feasible mode for photo-induced electron injection through the interface between TiO{sub 2} and CAA. This is resulted from that, compared with the contribution of CAA orbitals in valence bands, the conduction bands which are mainly composed of Ti 3d orbitals have remarkable reduction of the component of CAA orbitals.
Sadigh, B
2011-04-07
Every action in biology is performed by dynamic proteins that convert between multiple states in order to engage their functions. Often binding to various ligands is essential for the rates of desired transitions to be enhanced. The goal of computational biology is to study these transitions and discover the different states to fully understand the protein's normal and diseased function, design drugs to target/bias specific states, and understand all of the interactions in between. We have developed a new methodology that is capable of calculating the absolute free energy of proteins while taking into account all the interactions with the solvent molecules. The efficiency of the new scheme is an order of magnitude greater than any existing technique. This method is now implemented in the massively parallel popular MD program package NAMD. This now makes it possible to calculate the relative stability of different conformational states of biological macromolecules as well as their binding free energies to various ligands.
Lara-Castells, MarĂa Pilar de Bartolomei, Massimiliano; Mitrushchenkov, Alexander O.; Stoll, Hermann
2015-11-21
The accuracy and transferability of the electronic structure approach combining dispersionless density functional theory (DFT) [K. Pernal et al., Phys. Rev. Lett. 103, 263201 (2009)] with the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)], are validated for the interaction between the noble-gas Ne, Ar, Kr, and Xe atoms and coronene/graphene/graphite surfaces. This approach uses the method of increments for surface cluster models to extract intermonomer dispersion-like (2- and 3-body) correlation terms at coupled cluster singles and doubles and perturbative triples level, while periodic dispersionless density functionals calculations are performed to estimate the sum of Hartree-Fock and intramonomer correlation contributions. Dispersion energy contributions are also obtained using DFT-based symmetry-adapted perturbation theory [SAPT(DFT)]. An analysis of the structure of the X/surface (X = Ne, Ar, Kr, and Xe) interaction energies shows the excellent transferability properties of the leading intermonomer correlation contributions across the sequence of noble-gas atoms, which are also discussed using the Drude oscillator model. We further compare these results with van der Waals-(vdW)-corrected DFT-based approaches. As a test of accuracy, the energies of the low-lying nuclear bound states supported by the laterally averaged X/graphite potentials (X = {sup 3}He, {sup 4}He, Ne, Ar, Kr, and Xe) are calculated and compared with the best estimations from experimental measurements and an atom-bond potential model using the ab initio-assisted fine-tuning of semiempirical parameters. The bound-state energies determined differ by less than 6â7 meV (6%) from the atom-bond potential model. The crucial importance of including incremental 3-body dispersion-type terms is clearly demonstrated, showing that the SAPT(DFT) approach effectively account for these terms. With the deviations from the best experimental-based estimations smaller than 2.3 meV (1.9%), the
Liu, Ping; An, Wei; Stacchiola, Dario; Xu, Fang
2015-10-16
Potassium (K) plays an essential role in promoting catalytic reaction in many established industrial catalytic processes. Here, we report a combined study using scanning tunneling microscopy (STM) and density functional theory (DFT) in understanding the effect of depositing K on the atomic and electronic structures as well as chemical activities of CuxO/Cu(111) (xâ€2). The DFT calculations observe a pseudomorphic growth of K on CuxO/Cu(111) up to 0.19 monolayer (ML) of coverage, where K binds the surface via strong ionic interaction with chemisorbed oxygen and the relatively weak electrostatic interactions with copper ions, lower and upper oxygen on the CuxO rings.moreÂ Â» The simulated STM pattern based on the DFT results agrees well with the experimental observations. The deposited K displays great impact on the surface electronic structure of CuxO/Cu(111), which induces significant reduction in work function and leads to a strong electron polarization on the surface. The promotion of K on the surface binding properties is selective. It varies depending on the nature of adsorbates. According to our results, K has little effect on surface acidity, while it enhances the surface basicity significantly. As a consequence, the presence of K does not help for CO adsorption on CuxO/Cu(111), but being able to accelerate the activation of CO2. Thus, such promotion strongly depends on the combinations from both geometric and electronic effects. Our results highlight the origin of promoting effect of alkalis in the design of catalysts for the complex reactions.Â«Â less
Parkes, Marie V.; Sava Gallis, Dorina F.; Greathouse, Jeffery A.; Nenoff, Tina M.
2015-03-02
Computational screening of metal-organic framework (MOF) materials for selective oxygen adsorption from air could lead to new sorbents for the oxyfuel combustion process feedstock streams. A comprehensive study on the effect of MOF metal chemistry on gas binding energies in two common but structurally disparate metal-organic frameworks has been undertaken. Dispersion-corrected density functional theory methods were used to calculate the oxygen and nitrogen binding energies with each of fourteen metals, respectively, substituted into two MOF series, M2(dobdc) and M3(btc)2. The accuracy of DFT methods was validated by comparing trends in binding energy with experimental gas sorption measurements. A periodic trendmoreÂ Â» in oxygen binding energies was found, with greater oxygen binding energies for early transition-metal-substituted MOFs compared to late transition metal MOFs; this was independent of MOF structural type. The larger binding energies were associated with oxygen binding in a side-on configuration to the metal, with concomitant lengthening of the O-O bond. In contrast, nitrogen binding energies were similar across the transition metal series, regardless of both MOF structural type and metal identity. Altogether, these findings suggest that early transition metal MOFs are best suited to separating oxygen from nitrogen, and that the MOF structural type is less important than the metal identity.Â«Â less
Wang, Chen-Guang; Huang, Kai E-mail: wji@ruc.edu.cn; Ji, Wei E-mail: wji@ruc.edu.cn
2014-11-07
During the dissociative adsorption on a solid surface, the substrate usually participates in a passive manner to accommodate fragments produced upon the cleavage of the internal bond(s) of a (transient) molecular adsorbate. This simple picture, however, neglects the flexibility of surface atoms. Here, we report a Density Functional Theory study to revisit our early studies of the dissociative adsorption of CH{sub 3}X (X = Br and Cl) on Si(100). We have identified a new reaction pathway, which involves a flip of a silicon dimer; this new pathway agrees better with experiments. For our main exemplar of CH{sub 3}Br, insights have been gained using a simple model that involves a three-atom reactive center, Br-C-Si. When the silicon dimer flips, the interaction between C and Si in the Br-C-Si center is enhanced, evident in the increased energy-split of the frontier orbitals. We also examine how the dissociation dynamics of CH{sub 3}Br is altered on a heterodimer (Si-Al, Si-P, and Si-Ge) in a Si(100) surface. In each case, we conclude, on the basis of computed reaction pathways, that no heterodimer flipping is involved before the system transverses the transition state to dissociative adsorption.
Bisetti, Fabrizio; Chen, J.-Y.; Hawkes, Evatt R.; Chen, Jacqueline H.
2008-12-15
Homogeneous charge compression ignition (HCCI) engine technology promises to reduce NO{sub x} and soot emissions while achieving high thermal efficiency. Temperature and mixture stratification are regarded as effective means of controlling the start of combustion and reducing the abrupt pressure rise at high loads. Probability density function methods are currently being pursued as a viable approach to modeling the effects of turbulent mixing and mixture stratification on HCCI ignition. In this paper we present an assessment of the merits of three widely used mixing models in reproducing the moments of reactive scalars during the ignition of a lean hydrogen/air mixture ({phi}=0.1, p=41atm, and T=1070 K) under increasing temperature stratification and subject to decaying turbulence. The results from the solution of the evolution equation for a spatially homogeneous joint PDF of the reactive scalars are compared with available direct numerical simulation (DNS) data [E.R. Hawkes, R. Sankaran, P.P. Pebay, J.H. Chen, Combust. Flame 145 (1-2) (2006) 145-159]. The mixing models are found able to quantitatively reproduce the time history of the heat release rate, first and second moments of temperature, and hydroxyl radical mass fraction from the DNS results. Most importantly, the dependence of the heat release rate on the extent of the initial temperature stratification in the charge is also well captured. (author)
Yamaoka, Hitoshi; Jarrige, Ignace; Schwier, Eike F.; Arita, Masashi; Shimada, Kenya; Tsujii, Naohito; Jiang, Jian; Hayashi, Hirokazu; Iwasawa, Hideaki; Namatame, Hirofumi; et al
2015-03-30
The electronic structure of Ce?Pd??X? (X = Si, Ge) has been studied using detailed density functional theory (DFT) calculations and high-resolution photoelectron spectroscopy (PES) measurements. The orbital decomposition of the electronic structure by DFT calculations indicates that Ce atoms at the (8c) site surrounded by 16 Pd atoms have a more localized nature and a tendency to be magnetic. Ce atoms in the (4a) site surrounded by 12 Pd and 6 X atoms, on the other, show only a negligible magnetic moment. In the photoemission valence-band spectra we observe a strong f? (Ce??) component with a small fraction of fčmore »(Ceł?) component. The spectral weight of fč component near the Fermi level Ce?Pd??Si? is stronger than that for Ce?Pd??Ge? at the 4d-4f resonance, suggesting stronger c-f hybridization in the former. This may hint to the origin of the large electronic specific coefficient of Ce?Pd??Si? compared to Ce?Pd??Ge?.« less
Minezawa, Noriyuki
2014-10-28
Examining photochemical processes in solution requires understanding the solvent effects on the potential energy profiles near conical intersections (CIs). For that purpose, the CI point in solution is determined as the crossing between nonequilibrium free energy surfaces. In this work, the nonequilibrium free energy is described using the combined method of linear-response free energy and collinear spin-flip time-dependent density functional theory. The proposed approach reveals the solvent effects on the CI geometries of stilbene in an acetonitrile solution and those of thymine in water. Polar acetonitrile decreases the energy difference between the twisted minimum and twisted-pyramidalized CI of stilbene. For thymine in water, the hydrogen bond formation stabilizes significantly the CI puckered at the carbonyl carbon atom. The result is consistent with the recent simulation showing that the reaction path via this geometry is open in water. Therefore, the present method is a promising way of identifying the free-energy crossing points that play an essential role in photochemistry of solvated molecules.
Ju, J.; DĂ¶pp, A.; Cros, B.; Svensson, K.; Genoud, G.; Wojda, F.; Burza, M.; Persson, A.; Lundh, O.; WahlstrĂ¶m, C.-G.; Ferrari, H.
2013-08-15
Laser wakefield electron acceleration in the blow-out regime and the associated betatron X-ray radiation were investigated experimentally as a function of the plasma density in a configuration where the laser is guided. Dielectric capillary tubes were employed to assist the laser keeping self-focused over a long distance by collecting the laser energy around its central focal spot. With a 40 fs, 16 TW pulsed laser, electron bunches with tens of pC charge were measured to be accelerated to an energy up to 300 MeV, accompanied by X-ray emission with a peak brightness of the order of 10{sup 21} ph/s/mm{sup 2}/mrad{sup 2}/0.1%BW. Electron trapping and acceleration were studied using the emitted X-ray beam distribution to map the acceleration process; the number of betatron oscillations performed by the electrons was inferred from the correlation between measured X-ray fluence and beam charge. A study of the stability of electron and X-ray generation suggests that the fluctuation of X-ray emission can be reduced by stabilizing the beam charge. The experimental results are in good agreement with 3D particle-in-cell (PIC) simulation.
Yamaoka, Hitoshi; Schwier, Eike F.; Arita, Masashi; Shimada, Kenya; Tsujii, Naohito; Jarrige, Ignace; Jiang, Jian; Hayashi, Hirokazu; Iwasawa, Hideaki; Namatame, Hirofumi; et al
2015-03-30
The electronic structure of CeâPdââXâ (X = Si, Ge) has been studied using detailed density functional theory (DFT) calculations and high-resolution photoelectron spectroscopy (PES) measurements. The orbital decomposition of the electronic structure by DFT calculations indicates that Ce atoms at the (8c) site surrounded by 16 Pd atoms have a more localized nature and a tendency to be magnetic. Ce atoms in the (4a) site surrounded by 12 Pd and 6 X atoms, on the other, show only a negligible magnetic moment. In the photoemission valence-band spectra we observe a strong fâ° (CeâŽâș) component with a small fraction of fÂčmoreÂ Â» (CeÂłâș) component. The spectral weight of fÂč component near the Fermi level CeâPdââSiâ is stronger than that for CeâPdââGeâ at the 4d-4f resonance, suggesting stronger c-f hybridization in the former. This may hint to the origin of the large electronic specific coefficient of CeâPdââSiâ compared to CeâPdââGeâ.Â«Â less
Rykounov, A. A.
2015-06-07
The influence of pressure on the thermodynamic, structural, and elastic properties of the 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) molecular crystal at Tâ=â0 is systematically studied. Calculations are carried out using density functional theory methods in a plane wave basis set with dispersion corrections for the exchange-correlation part of total energy, and ultrasoft pseudopotentials. The equilibrium unit cell parameters, the cold compression curve in the pressure range of 0â50âGPa and the sound speeds are computed. The effect of finite pressure on the molecular structure of TATB is elucidated from the analysis of relative changes in the intra- and intermolecular geometrical parameters. For the first time, the full set of elastic constants of this crystal at zero and non-zero pressures is determined from ab initio calculations. The resulted structural, elastic, and acoustic properties of TATB are shown to be in a good agreement with available experimental and theoretical data.
Santana Palacio, Juan A.; Kim, Jeongnim; Kent, Paul R.; Reboredo, Fernando A.
2014-10-28
We have evaluated the successes and failures of the Hubbard-corrected density functional theory approach to study Mg doping of LiCoO_{2}. We computed the effect of the U parameter on the energetic, geometric, and electronic properties of two possible doping mechanisms: (1) substitution of Mg onto a Co (or Li) site with an associated impurity state and (2) formation of impurity-state-free complexes of substitutional Mg and point defects in LiCoO_{2}. We find that formation of impurity states results in changes on the valency of Co in LiCoO_{2}. Variation of the Co U shifts the energy of the impurity state, resulting in energetic, geometric, and electronic properties that depend significantly on the specific value of U. In contrast, the properties of the impurity-state-free complexes are insensitive to U. These results identify reasons for the strong dependence on the doping properties on the chosen value of U and for the overall difficulty of achieving agreement with the experimentally known energetic and electronic properties of doped transition metal oxides such as LiCoO_{2}.
Apitz, D.; Bertram, R.P.; Benter, N.; Buse, K.; Hieringer, W.; Andreasen, J.W.; Nielsen, M.M.; Johansen, P.M.
2005-09-01
Free-beam interferometry and angle-resolved absorption spectra are used to investigate the linear electro-optic coefficients and the linear dichroism in photoaddressable bis-azo copolymer thin films. From the first- and second order parameters deduced, the chromophore orientation distribution is calculated and displayed for several poling temperatures and chromophore concentrations. The influence of dipole-dipole interaction on the overall polymer dynamics is discussed. The first order parameter, and therefore the Pockels effect, peaks for a poling temperature of around 10 deg. C above the glass transition. The decrease of the Pockels effect above this temperature region is triggered by a head-to-tail chromophore orientation, i.e., a transition to a microcrystalline phase, increasing the second order parameter. Comparison of the experimentally observed absorption spectra and those obtained by density-functional calculations support the picture of differently aligned bis-azo dye molecules in a trans,trans configuration. Complementary wide-angle x-ray scattering is recorded to confirm the various kinds of ordering in samples poled at different temperatures.
Baer, Marcel D.; Kuo, I-F W.; Tobias, Douglas J.; Mundy, Christopher J.
2014-07-17
The propensities of the water self ions, H3O+ and OH- , for the air-water interface has implications for interfacial acid-base chemistry. Despite numerous experimental and computational studies, no consensus has been reached on the question of whether or not H3O+ and/or OH- prefer to be at the water surface or in the bulk. Here we report a molecular dynamics simulation study of the bulk vs. interfacial behavior of H3O+ and OH- that employs forces derived from density functional theory with a generalized gradient approximation exchangecorrelation functional (specifically, BLYP) and empirical dispersion corrections. We computed the potential of mean force (PMF) for H3O+ as a function of the position of the ion in a 215-molecule water slab. The PMF is flat, suggesting that H3O+ has equal propensity for the air-water interface and the bulk. We compare the PMF for H3O+ to our previously computed PMF for OH- adsorption, which contains a shallow minimum at the interface, and we explore how differences in solvation of each ion at the interface vs. the bulk are connected with interfacial propensity. We find that the solvation shell of H3O+ is only slightly dependent on its position in the water slab, while OH- partially desolvates as it approaches the interface, and we examine how this difference in solvation behavior is manifested in the electronic structure and chemistry of the two ions. DJT was supported by National Science Foundation grant CHE-0909227. CJM was supported by the U.S. Department of Energyâs (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle. The potential of mean force required resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DEAC05-00OR22725. The remaining simulations
Reactive MD Simulations of Electrochemical Oxide Interfaces at Mesoscale |
U.S. Department of Energy (DOE) all webpages (Extended Search)
Argonne Leadership Computing Facility Large-scale reactive molecular dynamics demonstrating the sintering mechanism under the influence of e-field. Tailoring the properties of nanoscale oxide-based technologies such as chemical activity, efficiency, durability, and reliability requires a better understanding of the nanoscale oxide growth kinetics under various oxidation conditions, the resulting film morphology, as well as their functional properties. Subramanian Sankaranarayanan, Argonne
Li, Li; Zhang, Guo; Chen, Lei; Bi, Hong-Mei; Shi, Ke-Ying
2013-02-15
Graphical abstract: The Ni(NiO)/semiconducting single-walled carbon nanotubes composite collected from the cathode after electro-deposition shows a high sensitivity to low-concentration NO gas at room temperature (18 °C). Display Omitted Highlights: ? Ni(NiO) nanoparticles were deposited on semiconducting SWCNTs by electro-deposition. ? Ni(NiO)/semiconducting SWCNTs film shows a high sensitivity to NO gas at 18 °C. ?Theoretical calculation reveals electron transfer from SWCNTs to NO via Ni. -- Abstract: Single-walled carbon nanotubes which contains metallic SWCNTs (m-SWCNTs) and semiconducting SWCNTs (s-SWCNTs) have been obtained under electric arc discharge. Their separation can be effectively achieved by the electro-deposition method. The Ni(NiO)/s-SWCNTs composite was found on cathode where Ni was partially oxidized to NiO at ambient condition with Ni(NiO) nanoparticles deposited uniformly on the bundles of SWCNTs. These results were confirmed by Raman spectra, transmission electron microscopy (TEM), scanning electron microscopy (SEM), UVvisNIR and TG characterizations. Furthermore, investigation of the gas sensing property of Ni(NiO)/s-SWCNTs composite film to NO gas at 18 °C demonstrated the sensitivity was approximately 5% at the concentration of 97 ppb. Moreover, density functional theory (DFT) calculations were performed to explore the sensing mechanism which suggested the adsorption of NO molecules onto the composite through NNi interaction as well as the proposition of electron transfer mechanisms from SWCNTs to NO via the Ni medium.
Xu, Kang-Ming; Huang, Teng; Liu, Yi-Rong; Jiang, Shuai; Zhang, Yang; Lv, Yu-Zhou; Gai, Yan-Bo; Huang, Wei
2015-07-29
The geometries of gold clusters doped with two phosphorus atoms, (AunP-2, n = 1â8) were investigated using density functional theory (DFT) methods. Various two-dimensional (2D) and three-dimensional (3D) structures of the doped clusters were studied. The results indicate that the structures of dual-phosphorus-doped gold clusters exhibit large differences from those of pure gold clusters with small cluster sizes. In our study, as for Au6P-2, two cisâtrans isomers were found. The global minimum of Au8P-2 presents a similar configuration to that of Au-20, a pyramid-shaped unit, and the potential novel optical and catalytic properties of this structure warrant further attention. The higher stability of AunP-2 clusters relative to Au-n+2 (n = 1â8) clusters was verified based on various energy parameters, and the results indicate that the phosphorus atom can improve the stabilities of the gold clusters. We then explored the evolutionary path of (n = 1â8) clusters. We found that AunP-2 clusters exhibit the 2Dâ3D structural transition at n = 6, which is much clearer and faster than that of pure gold clusters and single-phosphorus-doped clusters. The electronic properties of AunP-2 (n = 1â8) were then investigated. The photoelectron spectra provide additional fundamental information on the structures and molecular orbitals shed light on the evolution of AunP-2 (n = 1â8). Natural bond orbital (NBO) described the charge distribution in stabilizing structures and revealed the strong relativistic effects of the gold atoms.
Mizutani, U; Inukai, M; Sato, H; Zijlstra, E S; Lin, Q
2014-05-16
There are three key electronic parameters in elucidating the physics behind the HumeâRothery electron concentration rule: the square of the Fermi diameter (2kF)2, the square of the critical reciprocal lattice vector and the electron concentration parameter or the number of itinerant electrons per atom e/a. We have reliably determined these three parameters for 10 Rhombic Triacontahedron-type 2/1â2/1â2/1 (N = 680) and 1/1â1/1â1/1 (N = 160â162) approximants by making full use of the full-potential linearized augmented plane wave-Fourier band calculations based on all-electron density-functional theory. We revealed that the 2/1â2/1â2/1 approximants Al13Mg27Zn45 and Na27Au27Ga31 belong to two different sub-groups classified in terms of equal to 126 and 109 and could explain why they take different e/a values of 2.13 and 1.76, respectively. Among eight 1/1â1/1â1/1 approximants Al3Mg4Zn3, Al9Mg8Ag3, Al21Li13Cu6, Ga21Li13Cu6, Na26Au24Ga30, Na26Au37Ge18, Na26Au37Sn18 and Na26Cd40Pb6, the first two, the second two and the last four compounds were classified into three sub-groups with = 50, 46 and 42; and were claimed to obey the e/a = 2.30, 2.10â2.15 and 1.70â1.80 rules, respectively.
Yan, Li-Li; Liu, Yi-Rong; Huang, Teng; Jiang, Shuai; Wen, Hui; Gai, Yan-Bo; Zhang, Wei-Jun E-mail: wjzhang@aiofm.ac.cn; Huang, Wei E-mail: wjzhang@aiofm.ac.cn; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026
2013-12-28
The equilibrium geometric structures, relative stabilities, and electronic properties of Au{sub n}C{sup ?} and Au{sub n+1}{sup ?} (n = 110) clusters are systematically investigated using density functional theory with hyper-generalized gradient approximation. The optimized geometries show that one Au atom capped on Au{sub n?1}C{sup ?} clusters is a dominant growth pattern for Au{sub n}C{sup ?} clusters. In contrast to Au{sub n+1}{sup ?} clusters, Au{sub n}C{sup ?} clusters are most stable in a quasi-planar or three-dimensional structure because C doping induces the local non-planarity while the rest of the structure continues to grow in a planar mode, resulting in an overall non-2D configuration. The relative stability calculations show that the impurity C atom can significantly enhance the thermodynamic stability of pure gold clusters. Moreover, the effect of C atom on the Au{sub n}{sup ?} host decreases with the increase of cluster size. The HOMO-LUMO gap curves show that the interaction of the C atom with Au{sub n}{sup ?} clusters improves the chemical stability of pure gold clusters, except for Au{sub 3}{sup ?} and Au{sub 4}{sup ?} clusters. In addition, a natural population analysis shows that the charges in corresponding Au{sub n}C{sup ?} clusters transfer from the Au{sub n}{sup ?} host to the C atom. Meanwhile, a natural electronic configuration analysis also shows that the charges mainly transfer between the 2s and 2p orbitals within the C atom.
Computation of shear viscosity of colloidal suspensions by SRD-MD
Laganapan, A. M. K.; Videcoq, A. Bienia, M.; Ala-Nissila, T.; Bochicchio, D.; Ferrando, R.
2015-04-14
The behaviour of sheared colloidal suspensions with full hydrodynamic interactions (HIs) is numerically studied. To this end, we use the hybrid stochastic rotation dynamics-molecular dynamics (SRD-MD) method. The shear viscosity of colloidal suspensions is computed for different volume fractions, both for dilute and concentrated cases. We verify that HIs help in the collisions and the streaming of colloidal particles, thereby increasing the overall shear viscosity of the suspension. Our results show a good agreement with known experimental, theoretical, and numerical studies. This work demonstrates the ability of SRD-MD to successfully simulate transport coefficients that require correct modelling of HIs.
Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Nigeria
U.S. Energy Information Administration (EIA) (indexed site)
(Million Cubic Feet) Nigeria (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Nigeria (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,362 2013 2,590 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Cove Point, MD LNG Imports from
Srinivasan, Sriram Goverapet; Shivaramaiah, Radha; Kent, Paul R. C.; Stack, Andrew G.; Navrotsky, Alexandra; Riman, Richard; Anderko, Andre; Bryantsev, Vyacheslav S.
2016-07-11
Bastnasite is a fluoro-carbonate mineral that is the largest source of rare earth elements such as Y, La and Ce. With increasing demand for REE in many emerging technologies, there is an urgent need for improving the efficiency of ore beneficiation by froth flotation. In order to design improved flotation agents that can selectively bind to the mineral surface, a fundamental understanding of the bulk and surface properties of bastnasite is essential. Density functional theory calculations using the PBEsol exchange correlation functional and the DFT-D3 dispersion correction reveal that the most stable form of La bastnsite is isomorphic to themoreÂ Â» structure of Ce bastnasite belonging to the P2c space group, while the Inorganic Crystal Structure Database structure in the P2m space group is ca. 11.3 kJ/mol higher in energy per LaFCO3 formula unit. We report powder X-ray diffraction measurements on synthetic of La bastnasite to support these theoretical findings. Six different surfaces are studied by DFT, namely [100], [0001], [101], [102], [104] and [112]. Among these, the [100] surface is the most stable with a surface energy of 0.73 J/m2 in vacuum and 0.45 J/m2 in aqueous solution. We predicted the shape of a La bastnasite nanoparticle via thermodynamic Wulff construction to be a hexagonal prism with [100] and [0001] facets, chiseled at its ends by the [101] and [102] facets. The average surface energy of the nanoparticle in the gas phase is estimated to be 0.86 J/m2, in good agreement with a value of 1.11 J/m2 measured by calorimetry. The calculated adsorption energy of a water molecule varies widely with the surface plane and specific adsorption sites on a given surface. Moreover, the first layer of water molecules is predicted to adsorb strongly on the La-bastnasite surface, in agreement with water adsorption calorimetry experiments. Our work provides an important step towards a detailed atomistic understanding of the bastnasite water interface and designing
Molecular adsorption on metal surfaces with van der Waals density...
Office of Scientific and Technical Information (OSTI)
Molecular adsorption on metal surfaces with van der Waals density functionals Title: Molecular adsorption on metal surfaces with van der Waals density functionals Authors: Li, Guo ...
Mineral density volume gradients in normal and diseased human tissues
Djomehri, Sabra I.; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W.; Yun, Wenbing; Lau, S. H.; Webb, Samuel; Ho, Sunita P.; Aikawa, Elena
2015-04-09
Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-raymoreÂ Â» fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.Â«Â less
Mineral density volume gradients in normal and diseased human tissues
Djomehri, Sabra I.; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W.; Yun, Wenbing; Lau, S. H.; Webb, Samuel; Ho, Sunita P.; Aikawa, Elena
2015-04-09
Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.
DOE Zero Energy Ready Home Case Study 2013: Nexus EnergyHomes, Frederick, MD
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Nexus EnergyHomes Frederick, MD BUILDING TECHNOLOGIES OFFICE The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specifi ed in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready home starts with ENERGY STAR for Homes Version 3 for an energy-effi cient home built on a solid foundation of building science research. Advanced technologies are designed in to give you
Vazquez-Mayagoitia, Alvaro; Sherrill, David; Apra, Edoardo; Sumpter, Bobby G
2010-01-01
A recently proposed double-hybrid functional called XYG3 and a semilocal GGA functional (B97-D) with a semiempirical correction for van der Waals interactions have been applied to study the potential energy curves along the dissociation coordinates of weakly bound pairs of molecules governed by London dispersion and induced dipole forces. Molecules treated in this work were the parallel sandwich, T-shaped, and parallel-displaced benzene dimer, (C6H6)2; hydrogen sulfide and benzene, H2S C6H6; methane and benzene, CH4 C6H6; the methane dimer, (CH4)2; and the pyridine dimer, (C5H5N)2. We compared the potential energy curves of these functionals with previously published benchmarks at the coupled cluster singles, doubles, and perturbative triplets [CCSD(T)] complete-basis-set limit. Both functionals, XYG3 and B97-D, exhibited very good performance, reproducing accurate energies for equilibrium distances and a smooth behavior along the dissociation coordinate. Overall, we found an agreement within a few tenths of one kcal mol-1 with the CCSD(T) results across the potential energy curves.
Matar, S.F.; Chevalier, B.; Etourneau, J.; Eyert, V.
1997-02-05
The electronic structures of U{sub 2}Fe{sub 2}Sn and UFe{sub 2}Ge{sub 2} are self-consistently calculated within the local density functional theory using the augmented spherical wave (ASW) method. Calculations are scalar relativistic. The experimentally observed Pauli paramagnetic behavior of the two systems is accounted for and the influence of hybridization between the different l-states on the chemical bonding is discussed from the site-projected densities of states (DOS) as well as from the modulation of the DOS by the sign and magnitude of the overlap integral, i.e., with the so-called COOP. From this, we propose a mechanism for the evolution of bonding within the series to which the two compounds belong. 12 refs., 3 figs.
NATIONAL HARBOR, Md.,May 21, 2013-Los Alamos National Laboratory Director
U.S. Department of Energy (DOE) all webpages (Extended Search)
director echoes cyber concerns May 21, 2013 Securing the grid will be key for energy security going forward NATIONAL HARBOR, Md.,May 21, 2013-Los Alamos National Laboratory Director Charlie McMillan told a gathering of energy executives today that securing the electrical grid is a major concern now and it's only becoming more serious. "If you look back at the last year, there were several hundred attacks on critical infrastructure," McMillan said, addressing attendees at the Deloitte
Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Norway
U.S. Energy Information Administration (EIA) (indexed site)
(Million Cubic Feet) Norway (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Norway (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,909 5,810 2,900 2014 2,621 2,995 2015 3,097 3,105 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of
Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Trinidad and
U.S. Energy Information Administration (EIA) (indexed site)
Tobago (Million Cubic Feet) Trinidad and Tobago (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 2,790 2013 2,776 2014 2,984 2,986 2015 2,844 3,045 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied
Cove Point, MD Natural Gas Liquefied Natural Gas Total Imports (Million
U.S. Energy Information Administration (EIA) (indexed site)
Cubic Feet) Total Imports (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Total Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,984 2,621 5,981 2015 2,844 3,045 3,097 3,105 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Cove Point,
DEPARTMENT OF HEALTH AN~~.N~dtAN, MD. Y.P.H.
Office of Legacy Management (LM)
,' ,...- -., -.- . . we#lnty..: - DEPARTMENT OF HEALTH AN~~.N~dtAN, MD. Y.P.H. April 30, 1979 . _-- _' . U.S.E.P.A. Radiation Branch 26 Federal Plaz;a, Boom 9079 New York, N. Y. 10007 Attention: Miss Feldman:, Gentlemen: In accordance with your request to Calvin E. Weber, P.E., Assistant Commissioner of Health for Environmental Quality, I am forwarding a copy of a report prepared by him concerning a radiation survey conducted in the vicinity of the former Canadian Radium and Uranium Corpora+on
Price of Cove Point, MD Natural Gas LNG Imports from Algeria (Dollars per
U.S. Energy Information Administration (EIA) (indexed site)
Thousand Cubic Feet) Algeria (Dollars per Thousand Cubic Feet) Price of Cove Point, MD Natural Gas LNG Imports from Algeria (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's NA NA NA 4.79 6.32 8.38 8.48 7.50 -- -- 2010's -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring
Price of Cove Point, MD Natural Gas LNG Imports from Egypt (Nominal Dollars
U.S. Energy Information Administration (EIA) (indexed site)
per Thousand Cubic Feet) Egypt (Nominal Dollars per Thousand Cubic Feet) Price of Cove Point, MD Natural Gas LNG Imports from Egypt (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 11.66 7.83 7.22 7.46 4.20 2010's 5.49 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016
Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang
2015-07-31
We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X = N,P,As,Sb, and II-VI compounds, (Zn or Cd)X, with X = O,S,Se,Te. By correcting (1) the binary band gaps at high-symmetry points , L, X, (2) the separation of p-and d-orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles method can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.
Lara-Castells, MarĂa Pilar de Aguirre, NĂ©stor F.; Stoll, Hermann; Mitrushchenkov, Alexander O.; Mateo, David; Pi, MartĂ
2015-04-07
An ab-initio-based methodological scheme for He-surface interactions and zero-temperature time-dependent density functional theory for superfluid {sup 4}He droplets motion are combined to follow the short-time collision dynamics of the Au@{sup 4}He{sub 300} system with the TiO{sub 2}(110) surface. This composite approach demonstrates the {sup 4}He droplet-assisted sticking of the metal species to the surface at low landing energy (below 0.15 eV/atom), thus providing the first theoretical evidence of the experimentally observed {sup 4}He droplet-mediated soft-landing deposition of metal nanoparticles on solid surfaces [Mozhayskiy et al., J. Chem. Phys. 127, 094701 (2007) and Loginov et al., J. Phys. Chem. A 115, 7199 (2011)].
Density functional description of Coulomb blockade: Adiabatic...
Office of Scientific and Technical Information (OSTI)
This content will become publicly available on June 29, 2016 Prev Next Title: ... will become publicly available on June 29, 2016 Publisher's Version of Record 10.1103...
Statistical Mechanics with Density Functional Theory Accuracy
U.S. Department of Energy (DOE) all webpages (Extended Search)
before the House Armed Services Subcommittee on Strategic Forces | National Nuclear Security Administration | (NNSA) Statement on B61 Life Extension Program and Future Stockpile Strategy before the House Armed Services Subcommittee on Strategic Forces October 30, 2013 Introduction Chairman Rogers, Ranking Member Cooper and distinguished members of the Subcommittee, thank you for having me here to discuss the President's plans for nuclear weapon modernization focused on the B61 Life Extension
Implementation of density functional embedding theory within...
Office of Scientific and Technical Information (OSTI)
theory within the projector-augmented-wave method and applications to semiconductor ... Mathematics and Andlinger Center for Energy and the Environment, Princeton ...
Attractor comparisons based on density
Carroll, T. L.
2015-01-15
Recognizing a chaotic attractor can be seen as a problem in pattern recognition. Some feature vector must be extracted from the attractor and used to compare to other attractors. The field of machine learning has many methods for extracting feature vectors, including clustering methods, decision trees, support vector machines, and many others. In this work, feature vectors are created by representing the attractor as a density in phase space and creating polynomials based on this density. Density is useful in itself because it is a one dimensional function of phase space position, but representing an attractor as a density is also a way to reduce the size of a large data set before analyzing it with graph theory methods, which can be computationally intensive. The density computation in this paper is also fast to execute. In this paper, as a demonstration of the usefulness of density, the density is used directly to construct phase space polynomials for comparing attractors. Comparisons between attractors could be useful for tracking changes in an experiment when the underlying equations are too complicated for vector field modeling.
Nishimura, Yoshifumi; Lee, Yuan-Pern; Irle, Stephan; Witek, Henryk A.
2014-09-07
Vibrational infrared (IR) spectra of gas-phase OH???O methanol clusters up to pentamer are simulated using self-consistent-charge density functional tight-binding method using two distinct methodologies: standard normal mode analysis and Fourier transform of the dipole time-correlation function. The twofold simulations aim at the direct critical assignment of the CH stretching region of the recently recorded experimental spectra [H.-L. Han, C. Camacho, H. A. Witek, and Y.-P. Lee, J. Chem. Phys. 134, 144309 (2011)]. Both approaches confirm the previous assignment (ibid.) of the CH stretching bands based on the B3LYP/ANO1 harmonic frequencies, showing that ?{sub 3}, ?{sub 9}, and ?{sub 2} CH stretching modes of the proton-accepting (PA) and proton-donating (PD) methanol monomers experience only small splittings upon the cluster formation. This finding is in sharp discord with the assignment based on anharmonic B3LYP/VPT2/ANO1 vibrational frequencies (ibid.), suggesting that some procedural faults, likely related to the breakdown of the perturbational vibrational treatment, led the anharmonic calculations astray. The IR spectra based on the Fourier transform of the dipole time-correlation function include new, previously unaccounted for physical factors such as non-zero temperature of the system and large amplitude motions of the clusters. The elevation of temperature results in a considerable non-homogeneous broadening of the observed IR signals, while the presence of large-amplitude motions (methyl group rotations and PA-PD flipping), somewhat surprisingly, does not introduce any new features in the spectrum.
Liu, Ping; An, Wei; Stacchiola, Dario; Xu, Fang
2015-10-16
Potassium (K) plays an essential role in promoting catalytic reaction in many established industrial catalytic processes. Here, we report a combined study using scanning tunneling microscopy (STM) and density functional theory (DFT) in understanding the effect of depositing K on the atomic and electronic structures as well as chemical activities of Cu_{x}O/Cu(111) (xâ€2). The DFT calculations observe a pseudomorphic growth of K on Cu_{x}O/Cu(111) up to 0.19 monolayer (ML) of coverage, where K binds the surface via strong ionic interaction with chemisorbed oxygen and the relatively weak electrostatic interactions with copper ions, lower and upper oxygen on the Cu_{x}O rings. The simulated STM pattern based on the DFT results agrees well with the experimental observations. The deposited K displays great impact on the surface electronic structure of Cu_{x}O/Cu(111), which induces significant reduction in work function and leads to a strong electron polarization on the surface. The promotion of K on the surface binding properties is selective. It varies depending on the nature of adsorbates. According to our results, K has little effect on surface acidity, while it enhances the surface basicity significantly. As a consequence, the presence of K does not help for CO adsorption on Cu_{x}O/Cu(111), but being able to accelerate the activation of CO_{2}. Thus, such promotion strongly depends on the combinations from both geometric and electronic effects. Our results highlight the origin of promoting effect of alkalis in the design of catalysts for the complex reactions.
Iftner, Christophe; Simon, Aude; Korchagina, Kseniia; Rapacioli, Mathias; Spiegelman, Fernand
2014-01-21
We propose in the present paper a SCC-DFTB/FF (Self-Consistent-Charge Density Functional based Tight Binding/Force-Field) scheme adapted to the investigation of molecules trapped in rare gas environments. With respect to usual FF descriptions, the model involves the interaction of quantum electrons in a molecule with rare gas atoms in an anisotropic scheme. It includes polarization and dispersion contributions and can be used for both neutral and charged species. Parameters for this model are determined for hydrocarbon-argon complexes and the model is validated for small hydrocarbons. With the future aim of studying polycyclic aromatic hydrocarbons in Ar matrices, extensive benchmark calculations are performed on (C{sub 6}H{sub 6}){sup +/0}Ar{sub n} clusters against DFT and CCSD(T) calculations for the smaller sizes, and more generally against other experimental and theoretical data. Results on the structures and energetics (isomer ordering and energy separation, cohesion energy per Ar atom) are presented in detail for n = 18, 13, 20, 27, and 30, for both neutrals and cations. We confirm that the clustering of Ar atoms leads to a monotonous decrease of the ionization potential of benzene for n ? 20, in line with previous experimental and FF data.
Younker, J.M.; Krest, C.M.; Jiang, W.; Krebs, C.; Bollinger, J.M.Jr.; Green, M.T.
2009-05-28
The class Ic ribonucleotide reductase from Chlamydia trachomatis (C{bar A}) uses a stable Mn(lV)/ Fe(lll) cofactor to initiate nucleotide reduction by a free-radical mechanism. Extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) calculations are used to postulate a structure for this cofactor. Fe and Mn K-edge EXAFS data yield an intermetallic distance of -2.92 {angstrom}. The Mn data also suggest the presence of a short 1.74 {angstrom} Mn-O bond. These metrics are compared to the results of DFT calculations on 12 cofactor models derived from the crystal structure of the inactive Fe2(lll/ III) form of the protein. Models are differentiated by the protonation states of their bridging and terminal OH{sub x} ligands as well as the location of the Mn(lV) ion (site 1 or 2). The models that agree best with experimental observation feature a{mu}-1, 3-carboxylate bridge (E120), terminal solvent (H{sub 2}O/OH) to site 1, one {mu}-O bridge, and one {mu}-OH bridge. The site-placement of the metal ions cannot be discerned from the available data.
Li, Neng; Mo, Yuxiang; Ching, Wai-Yim
2013-11-14
In this work, we assess a full spectrum of properties (chemical bonding, charge distribution, spin ordering, optical, and elastic properties) of Cr{sub 2}AC (Aâ=âAl, Ge) and their hypothetical nitride counterparts Cr{sub 2}AN (Aâ=âAl, Ge) based on density functional theory calculations. The calculated total energy values indicate that a variety of spin ordering of these four compounds depending on interlayer-interactions between M-A and M-X within the sublattice, which is supported by bonding analysis. MAX phase materials are discovered to possess exotic magnetic properties which indicates that these materials could serve as promising candidates for novel layered magnetic materials for various electronic and spintronic applications. Further analysis of optical properties for two polarization vectors of Cr{sub 2}AX shows that the reflectivity is high in the visible-ultraviolet region up to âŒ15âeV suggesting Cr{sub 2}AX as a promising candidate for use as a coating material. The elastic coefficients (C{sub ij}) and bulk mechanical properties [bulk modulus (K), shear modulus (G), Young's modulus (E), Poisson's ratio (Î·), and Pugh ratio (G/K)] of these four Cr{sub 2}AX compounds are also calculated and analyzed, which pave the way to predict or design new MAX phases that are less brittle or tougher by having a lower G/K value or higher Î·.
Î±-tocopherol is well designed to protect polyunsaturated phospholipids: MD simulations
Leng, Xiaoling; Kinnun, Jacob A.; Marquardt, Drew; Ghefli, Mikel; Kucerka, Norbert; Katsaras, John; Atkinson, Jeffrey; Harroun, Thad A.; Feller, Scott E.; Wassall, Stephen
2015-10-20
Here, the presumptive function for alpha-tocopherol (Î±toc) in membranes is to protect polyunsaturated lipids against oxidation. Although the chemistry of the process is well established, the role played by molecular structure that we address here with atomistic molecular-dynamics simulations remains controversial. The simulations were run in the constant particle NPT ensemble on hydrated lipid bilayers composed of SDPC (1-stearoyl-2-docosahexaenoylphosphatidylcholine, 18:0-22:6PC) and SOPC (1-stearoyl-2-oleoylphosphatidylcholine, 18:0-18:1PC) in the presence of 20 mol % Î±toc at 37Â°C. SDPC with SA (stearic acid) for the sn-1 chain and DHA (docosahexaenoic acid) for the sn-2 chain is representative of polyunsaturated phospholipids, while SOPC with OA (oleic acid) substituted for the sn-2 chain serves as a monounsaturated control. Solid-state 2H nuclear magnetic resonance and neutron diffraction experiments provide validation. The simulations demonstrate that high disorder enhances the probability that DHA chains at the sn-2 position in SDPC rise up to the bilayer surface, whereby they encounter the chromanol group on Î±toc molecules. This behavior is reflected in the van der Waals energy of interaction between Î±toc and acyl chains, and illustrated by density maps of distribution for acyl chains around Î±toc molecules that were constructed. An ability to more easily penetrate deep into the bilayer is another attribute conferred upon the chromanol group in Î±toc by the high disorder possessed by DHA. By examining the trajectory of single molecules, we found that Î±toc flip-flops across the SDPC bilayer on a submicrosecond timescale that is an order-of-magnitude greater than in SOPC. Our results reveal mechanisms by which the sacrificial hydroxyl group on the chromanol group can trap lipid peroxyl radicals within the interior and near the surface of a polyunsaturated membrane. At the same time, water-soluble reducing agents that regenerate Î±toc can access the
Î±-tocopherol is well designed to protect polyunsaturated phospholipids: MD simulations
Leng, Xiaoling; Kinnun, Jacob A.; Marquardt, Drew; Ghefli, Mikel; Kucerka, Norbert; Katsaras, John; Atkinson, Jeffrey; Harroun, Thad A.; Feller, Scott E.; Wassall, Stephen
2015-10-20
Here, the presumptive function for alpha-tocopherol (Î±toc) in membranes is to protect polyunsaturated lipids against oxidation. Although the chemistry of the process is well established, the role played by molecular structure that we address here with atomistic molecular-dynamics simulations remains controversial. The simulations were run in the constant particle NPT ensemble on hydrated lipid bilayers composed of SDPC (1-stearoyl-2-docosahexaenoylphosphatidylcholine, 18:0-22:6PC) and SOPC (1-stearoyl-2-oleoylphosphatidylcholine, 18:0-18:1PC) in the presence of 20 mol % Î±toc at 37Â°C. SDPC with SA (stearic acid) for the sn-1 chain and DHA (docosahexaenoic acid) for the sn-2 chain is representative of polyunsaturated phospholipids, while SOPC with OAmoreÂ Â» (oleic acid) substituted for the sn-2 chain serves as a monounsaturated control. Solid-state 2H nuclear magnetic resonance and neutron diffraction experiments provide validation. The simulations demonstrate that high disorder enhances the probability that DHA chains at the sn-2 position in SDPC rise up to the bilayer surface, whereby they encounter the chromanol group on Î±toc molecules. This behavior is reflected in the van der Waals energy of interaction between Î±toc and acyl chains, and illustrated by density maps of distribution for acyl chains around Î±toc molecules that were constructed. An ability to more easily penetrate deep into the bilayer is another attribute conferred upon the chromanol group in Î±toc by the high disorder possessed by DHA. By examining the trajectory of single molecules, we found that Î±toc flip-flops across the SDPC bilayer on a submicrosecond timescale that is an order-of-magnitude greater than in SOPC. Our results reveal mechanisms by which the sacrificial hydroxyl group on the chromanol group can trap lipid peroxyl radicals within the interior and near the surface of a polyunsaturated membrane. At the same time, water-soluble reducing agents that regenerate Î±toc can access
Origin State>> CA ID ID ID IL KY MD NM NM NY NY OH SC TN TN
U.S. Department of Energy (DOE) all webpages (Extended Search)
MD NM NM NY NY OH SC TN TN TN, WA, CA TN TN TN TN TX Total Shipments by Route Lawrence Livermore National Laboratory Advanced Mixed Waste Treatment Project Batelle Energy Alliance Idaho National Laboratory Argonne National Laboratory Paducah Gaseous Diffusion Plant Aberdeen Proving Ground Los Alamos National Laboratory Sandia National Laboratory Brookhaven National Laboratory West Valley Environmental Services Portsmouth Gaseous Diffusion Plant Savannah River Site Duratek/Energy Solutions Babcox
Hulet, E.K.; Wild, J.F.; Lougheed, R.W.; Baisden, P.A.; Dougan, R.J.; Mustafa, M.G.
1980-10-01
The fragment energies of about 725 coincidence events have now been observed in the spontaneous fission (SF) decay of 105-min /sup 259/Md since its discovery in 1977. The fission of /sup 259/Md is characterized by a symmetric mass distribution, similar to those of /sup 258/Fm and /sup 259/Fm, but with a broad total kinetic energy (anti TKE) distribution which peaks at about 195 MeV, in contrast to those of /sup 258/Fm and /sup 259/Fm, for which the anti TKE is about 240 MeV. This kinetic energy deficit, approx. 40 MeV, has been postulated to be due to the emission of hydrogen-like particles by /sup 259/Md at the scission point in a large fraction of the fissions, leaving the residual fissioning nucleus with 100 protons. The residual nucleus would then be able to divide into two ultrastable tin-like fission fragments, but with less kinetic energy than that observed in the SF of /sup 258/Fm and /sup 259/Fm, because of binding-energy losses and a reduction in the Coulomb repulsion of the major fragments. To test this hypothesis, counter-telescope experiments aimed at detecting and identifying these light particles were performed. In 439 SF events 3 + 3 protons of the appropriate energy were observed, too few to account for the kinetic energy deficit in the fission of /sup 259/Md. There seems to be no explanation for this problem within the framework of current fission theory. These results are discussed along with preliminary measurements of light-particle emission in the SF of /sup 256/Fm. 5 figures.
U.S. Department of Energy (DOE) all webpages (Extended Search)
Hai Wang, Z. Hua, W. Lua, M.D. Thouless - Department of Mechanical Engineering, and Department of Materials Science and Engineering, University of Michigan One of the fundamental challenges of multi-scale modeling is the integration of atomistic-scale effects to continuum scale calculations. For example, the analysis of creep deformation requires continuum-level finite-element calculations to compute local stresses and temperatures which are then used in atomistic models to determine local atom
Oesch, P. A.; Illingworth, G. D.; Magee, D.; Van Dokkum, P. G.; Momcheva, I.; Ashby, M. L. N.; Fazio, G. G.; Huang, J.-S.; Willner, S. P.; Gonzalez, V.; Trenti, M.; Brammer, G. B.; Skelton, R. E.; Spitler, L. R.
2014-05-10
We present the discovery of four surprisingly bright (H {sub 160} âŒ 26-27 mag AB) galaxy candidates at z âŒ 9-10 in the complete HST CANDELS WFC3/IR GOODS-N imaging data, doubling the number of z âŒ 10 galaxy candidates that are known, just âŒ500 Myr after the big bang. Two similarly bright sources are also detected in a reanalysis of the GOODS-S data set. Three of the four galaxies in GOODS-N are significantly detected at 4.5Ï-6.2Ï in the very deep Spitzer/IRAC 4.5 ÎŒm data, as is one of the GOODS-S candidates. Furthermore, the brightest of our candidates (at z = 10.2 Â± 0.4) is robustly detected also at 3.6 ÎŒm (6.9Ï), revealing a flat UV spectral energy distribution with a slope ÎČ = â2.0 Â± 0.2, consistent with demonstrated trends with luminosity at high redshift. Thorough testing and use of grism data excludes known low-redshift contamination at high significance, including single emission-line sources, but as-yet unknown low redshift sources could provide an alternative solution given the surprising luminosity of these candidates. Finding such bright galaxies at z âŒ 9-10 suggests that the luminosity function for luminous galaxies might evolve in a complex way at z > 8. The cosmic star formation rate density still shows, however, an order-of-magnitude increase from z âŒ 10 to z âŒ 8 since the dominant contribution comes from low-luminosity sources. Based on the IRAC detections, we derive galaxy stellar masses at z âŒ 10, finding that these luminous objects are typically 10{sup 9} M {sub â}. This allows for a first estimate of the cosmic stellar mass density at z âŒ 10 resulting in log{sub 10}âŻÏ{sub â}=4.7{sub â0.8}{sup +0.5} M {sub â} Mpc{sup â3} for galaxies brighter than M {sub UV} âŒ â18. The remarkable brightness, and hence luminosity, of these z âŒ 9-10 candidates will enable deep spectroscopy to determine their redshift and nature, and highlights the opportunity for the James Webb Space Telescope to map the buildup of
Normal and abnormal evolution of argon metastable density in high-density plasmas
Seo, B. H.; Kim, J. H.; You, S. J.
2015-05-15
A controversial problem on the evolution of Ar metastable density as a function of electron density (increasing trend versus decreasing trend) was resolved by discovering the anomalous evolution of the argon metastable density with increasing electron density (discharge power), including both trends of the metastable density [Daltrini et al., Appl. Phys. Lett. 92, 061504 (2008)]. Later, by virtue of an adequate physical explanation based on a simple global model, both evolutions of the metastable density were comprehensively understood as part of the abnormal evolution occurring at low- and high-density regimes, respectively, and thus the physics behind the metastable evolution has seemed to be clearly disclosed. In this study, however, a remarkable result for the metastable density behavior with increasing electron density was observed: even in the same electron density regime, there are both normal and abnormal evolutions of metastable-state density with electron density depending on the measurement position: The metastable density increases with increasing electron density at a position far from the inductively coupled plasma antenna but decreases at a position close to the antenna. The effect of electron temperature, which is spatially nonuniform in the plasma, on the electron population and depopulation processes of Argon metastable atoms with increasing electron density is a clue to understanding the results. The calculated results of the global model, including multistep ionization for the argon metastable state and measured electron temperature, are in a good agreement with the experimental results.
Enhancing critical current density of cuprate superconductors
Chaudhari, Praveen
2015-06-16
The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.
Maranzana, Andrea E-mail: anna.giordana@hotmail.com E-mail: mauro.causa@unina.it Giordana, Anna E-mail: anna.giordana@hotmail.com E-mail: mauro.causa@unina.it Indarto, Antonius Tonachini, Glauco; Barone, Vincenzo E-mail: anna.giordana@hotmail.com E-mail: mauro.causa@unina.it; CausĂ , Mauro E-mail: anna.giordana@hotmail.com E-mail: mauro.causa@unina.it; Pavone, Michele E-mail: anna.giordana@hotmail.com E-mail: mauro.causa@unina.it
2013-12-28
Our purpose is to identify a computational level sufficiently dependable and affordable to assess trends in the interaction of a variety of radical or closed shell unsaturated hydro-carbons A adsorbed on soot platelet models B. These systems, of environmental interest, would unavoidably have rather large sizes, thus prompting to explore in this paper the performances of relatively low-level computational methods and compare them with higher-level reference results. To this end, the interaction of three complexes between non-polar species, vinyl radical, ethyne, or ethene (A) with benzene (B) is studied, since these species, involved themselves in growth processes of polycyclic aromatic hydrocarbons (PAHs) and soot particles, are small enough to allow high-level reference calculations of the interaction energy ÎE{sub AB}. Counterpoise-corrected interaction energies ÎE{sub AB} are used at all stages. (1) Density Functional Theory (DFT) unconstrained optimizations of the AâB complexes are carried out, using the B3LYP-D, ÏB97X-D, and M06-2X functionals, with six basis sets: 6-31G(d), 6-311 (2d,p), and 6-311++G(3df,3pd); aug-cc-pVDZ and aug-cc-pVTZ; N07T. (2) Then, unconstrained optimizations by MĂžller-Plesset second order Perturbation Theory (MP2), with each basis set, allow subsequent single point Coupled Cluster Singles Doubles and perturbative estimate of the Triples energy computations with the same basis sets [CCSD(T)//MP2]. (3) Based on an additivity assumption of (i) the estimated MP2 energy at the complete basis set limit [E{sub MP2/CBS}] and (ii) the higher-order correlation energy effects in passing from MP2 to CCSD(T) at the aug-cc-pVTZ basis set, ÎE{sub CC-MP}, a CCSD(T)/CBS estimate is obtained and taken as a computational energy reference. At DFT, variations in ÎE{sub AB} with basis set are not large for the title molecules, and the three functionals perform rather satisfactorily even with rather small basis sets [6-31G(d) and N07T], exhibiting
Visualization of electronic density
Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; Hashibon, Adham; Yaish, Yuval; Adler, Joan
2015-04-22
An atomâs volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.
Visualization of electronic density
Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; Hashibon, Adham; Yaish, Yuval; Adler, Joan
2015-04-22
An atoms volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.
Multibillion-atom MD Studies of the Mechanical Response of Nanocrystalline
U.S. Department of Energy (DOE) all webpages (Extended Search)
Ta | Argonne Leadership Computing Facility Plastic deformation of a shock-compressed Ta Plastic deformation of a shock-compressed Ta nanocrystal (323 million atoms, 50 nm grains). Atoms are colored according to their local crystallographic orientation; a shock wave is traveling from left to right, and has traveled about three-quarters of the sample length. A high density of defects form and are annealed behind the shock front, including both slip (appearing as individual points where the
Schachter, L. Dobrescu, S.; Stiebing, K. E.
2014-02-15
Double frequency heating (DFH) is a tool to improve the output of highly charged ions particularly from modern electron cyclotron resonance ion source installations with very high RF-frequencies. In order to gain information on the DFH-mechanism and on the role of the lower injected frequency we have carried out a series of dedicated experiments where we have put emphasis on the creation of a discrete resonance surface also for this lower frequency. Our well-established method of inserting an emissive MD (metal-dielectric) liner into the plasma chamber of the source is used in these experiments as a tool of investigation. In this way, the electron temperature and density for both ECR zones is increased in a controlled manner, allowing conclusions on the role of the change of the electron-energy-distribution function with and without DFH.
High Island Densities and Long Range Repulsive Interactions:...
Office of Scientific and Technical Information (OSTI)
long range repulsive interactions. Kinetic Monte Carlo simulations and density functional theory calculations support this conclusion. In addition to answering an outstanding...
Low density, resorcinol-formaldehyde aerogels
Pekala, Richard W.
1991-01-01
The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "Clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density.ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100.circle.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.
Low density, resorcinol-formaldehyde aerogels
Pekala, Richard W.
1989-01-01
The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density .ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 .ANG.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.
Low density, resorcinol-formaldehyde aerogels
Pekala, R.W.
1989-10-10
The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer clusters. The covalent crosslinking of these clusters produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density [<=]100 mg/cc; cell size [<=]0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 [angstrom]. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.
Low density, resorcinol-formaldehyde aerogels
Pekala, R.W.
1988-05-26
The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer ''clusters''. The covalent crosslinking of these ''clusters'' produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density less than or equal to100 mg/cc; cell size less than or equal to0.1 microns). The aerogels are transparent,dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 A/degree/. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron. 1 fig., 1 tab.
Density Equalizing Map Projections
Energy Science and Technology Software Center (OSTI)
1995-07-01
A geographic map is mathematically transformed so that the subareas of the map are proportional to a given quantity such as population. In other words, population density is equalized over the entire map. The transformed map can be used as a display tool, or it can be statistically analyzed. For example, cases of disease plotted on the transformed map should be uniformly distributed at random, if disease rates are everywhere equal. Geographic clusters of diseasemoreÂ Â» can be readily identified, and their statistical significance determined, on a density equalized map.Â«Â less
Multiple density layered insulator
Alger, Terry W.
1994-01-01
A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.
Vranjes, J.; Kono, M.
2015-01-15
Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work, the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindrical configuration. This is of practical importance for drift wave instability in various plasmas, and, in particular, in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit volume (per second) in quiet regions in the corona. Consequently, within the life-time of a magnetic structure such energy losses can easily be compensated by the stochastic drift wave heating.
Multiple density layered insulator
Alger, T.W.
1994-09-06
A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.
Density Log | Open Energy Information
Open Energy Information (Open El) [EERE & EIA]
Density Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Density Log Details Activities (7) Areas (6) Regions (0) NEPA(0) Exploration...
Rock Density | Open Energy Information
Open Energy Information (Open El) [EERE & EIA]
Density Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Density Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique...
Vener, M. V.; Odinokov, A. V.; Wehmeyer, C.; Sebastiani, D.
2015-06-07
Salt bridges and ionic interactions play an important role in protein stability, protein-protein interactions, and protein folding. Here, we provide the classical MD simulations of the structure and IR signatures of the arginine (Arg)glutamate (Glu) salt bridge. The Arg-Glu model is based on the infinite polyalanine antiparallel two-stranded ?-sheet structure. The 1 ?s NPT simulations show that it preferably exists as a salt bridge (a contact ion pair). Bidentate (the end-on and side-on structures) and monodentate (the backside structure) configurations are localized [Donald et al., Proteins 79, 898915 (2011)]. These structures are stabilized by the short {sup +}NH?O{sup ?} bonds. Their relative stability depends on a force field used in the MD simulations. The side-on structure is the most stable in terms of the OPLS-AA force field. If AMBER ff99SB-ILDN is used, the backside structure is the most stable. Compared with experimental data, simulations using the OPLS all-atom (OPLS-AA) force field describe the stability of the salt bridge structures quite realistically. It decreases in the following order: side-on > end-on > backside. The most stable side-on structure lives several nanoseconds. The less stable backside structure exists a few tenth of a nanosecond. Several short-living species (solvent shared, completely separately solvated ionic groups ion pairs, etc.) are also localized. Their lifetime is a few tens of picoseconds or less. Conformational flexibility of amino acids forming the salt bridge is investigated. The spectral signature of the Arg-Glu salt bridge is the IR-intensive band around 2200 cm{sup ?1}. It is caused by the asymmetric stretching vibrations of the {sup +}NH?O{sup ?} fragment. Result of the present paper suggests that infrared spectroscopy in the 20002800 frequency region may be a rapid and quantitative method for the study of salt bridges in peptides and ionic interactions between proteins. This region is usually not considered in
Chiral dynamics and peripheral transverse densities
Granados, Carlos G.; Weiss, Christian
2014-01-01
In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.
Bouhemadou, A.; Bin-Omran, S.; Allali, D.; Al-Otaibi, S.M.; Khenata, R.; Al-Douri, Y.; Chegaar, M.; Reshak, A.H.
2015-04-15
Highlights: âą Electronic and optical properties of the LiCdX compounds have been predicted. âą TranâBlaha-modified BeckeâJohnson functional significantly improves the band gap. âą We predict a direct band gap in all of the considered LiCdX compounds. âą Origin of the peaks in the optical spectra is determined. - Abstract: The structural, electronic and optical properties of the LiCdN, LiCdP, LiCdAs and LiCdSb filled-tetrahedral compounds have been explored from first-principles. The calculated structural parameters are consistent with the available experimental results. Since DFT with the common LDA and GGA underestimates the band gap, we use a new developed functional able to accurately describe the electronic structure of semiconductors, namely the TranâBlaha-modified BeckeâJohnson potential. The four investigated compounds demonstrate semiconducting behavior with direct band gap ranging from about 0.32 to 1.65 eV. The charge-carrier effective masses are evaluated at the topmost valence band and at the bottommost conduction band. The evolution of the value and nature of the energy band gap under pressure effect is also investigated. The frequency-dependent complex dielectric function and some macroscopic optical constants are estimated. The microscopic origins of the structures in the optical spectra are determined in terms of the calculated energy band structures.
Dremov, V. V.; Sapozhnikov, F. A.; Ionov, G. V.; Karavaev, A. V.; Vorobyova, M. A.; Chung, B. W.
2013-05-14
We present classical molecular dynamics (MD) with Modified Embedded Atom Model (MEAM) simulations to investigate the role of primary radiation defects and radiogenic helium as factors affecting the phase stability of PuGa alloys in coolingâheating cycles at ambient pressure. The models of PuGa alloys equilibrated at ambient conditions were subjected to coolingâheating cycles in which they were initially cooled down to 100 K and then heated up to 500 K at ambient pressure. The rate of temperature change in the cycles was 10 K/ns. The simulations showed that the initial FCC phase of PuGa alloys undergo polymorphous transition in coolingmoreÂ Â» to a lower symmetry Î±'-phase. All the alloys undergo direct and reverse polymorphous transitions in the coolingâheating cycles. The alloys containing vacancies shift in both transitions to lower temperatures relative to the defect-free alloys. The radiogenic helium has much less effect on the phase stability compared to that of primary radiation defects (in spite of the fact that helium concentration is twice of that for the primary radiation defects). Lastly, this computational result agrees with experimental data on unconventional stabilization mechanism of PuGa alloys.Â«Â less
High Energy Density Capacitors
2010-07-01
BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of todays best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.
Anomalous density for Bose gases at finite temperature
Boudjemaa, A.; Benarous, M.
2011-10-15
We analyze the behavior of the anomalous density as function of the radial distance at different temperatures in a variational framework. We show that the temperature dependence of the anomalous density agrees with the Hartree-Fock-Bogoliubov (HFB) calculations. Comparisons between the normal and anomalous fractions at low temperature show that the latter remains higher and, consequently, the neglect of the anomalous density may destabilize the condensate. These results are compatible with those of Yukalov. Surprisingly, the study of the anomalous density in terms of the interaction parameter shows that the dip in the central density is destroyed for sufficiently weak interactions. We explain this effect.
Low density microcellular foams
LeMay, J.D.
1991-11-19
Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 [mu]m is produced. Also disclosed are the foams produced by the process. 8 figures.
Low density microcellular foams
LeMay, James D.
1992-01-01
Disclosed is a process of producing microcellular from which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.
Low density microcellular foams
LeMay, James D.
1991-01-01
Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.
Training Session: Frederick, MD
This 3.5-hour training provides builders with a comprehensive review of zero net-energy-ready home construction including the business case, detailed specifications, and opportunities to be...
Low density microcellular foams
Aubert, James H.; Clough, Roger L.; Curro, John G.; Quintana, Carlos A.; Russick, Edward M.; Shaw, Montgomery T.
1987-01-01
Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the resultant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Means for subjecting such a solvent to one-dimensional cooling are also provided. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 .mu.m and a volume such that the foams have a length greater than 1 cm are provided.
Low density microcellular foams
Aubert, J.H.; Clough, R.L.; Curro, J.G.; Quintana, C.A.; Russick, E.M.; Shaw, M.T.
1985-10-02
Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the reusltant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 ..mu..m and a volume such that the foams have a length greater than 1 cm are provided.
Monfet, J.P.
1997-12-31
The reduction of VOC emissions from metal dip coating applications is not an environmental constraint, it is an economic opportunity. This case study shows how the industry can reap economic benefits from VOC reductions while improving air quality. The Canam Steel Corporation plant located in Point of Rocks, MD operates dip tanks for primer application on fabricated steel joists and joist girders. This process is presently subject to a regulation that limits the paint VOC content to 3.5 pounds per gallon of coating less water. As a result of the high paint viscosity associated with that regulation, the paint thickness of the dipped steel is thicker than the customers` specifications. Most of the VOC emissions can therefore be associated with the excess of paint applied to the products rather than to the required thickness of the coating. The higher paint usage rate has more than environmental consequences, it increases the cost of the applied coating. The project is to reduce the paint usage by controlling the viscosity of the coating in the tank. Experimental results as well as actual mass balance calculations show that using a higher VOC content paint would reduce the overall VOC emissions. The author explained the project to the Maryland Department of the Environment (MDE) Air and Radiation Management Administration. First, the MDE agreed to develop a new RACT determination for fabricated steel dipping operations. The new regulation would limit the amount of VOC than can be emitted to dip coat a ton of fabricated steel. Second, the MDE agreed to allow experimentation of the higher VOC content paint as a pilot project for the new regulation. This paper demonstrates the need for a RACT determination specific to fabricated steel dipping operations.
Testing the density matrix expansion against ab initio calculations of
U.S. Department of Energy (DOE) all webpages (Extended Search)
trapped neutron drops | Argonne Leadership Computing Facility Testing the density matrix expansion against ab initio calculations of trapped neutron drops Authors: Bogner, S., Furnstahl, R.J., Hergert, H., Kortelainen, M., Maris, P., Stoitsov, M., Vary, J.P. Microscopic input to a universal nuclear energy density functional can be provided through the density matrix expansion (DME), which has recently been revived and improved. Several DME implementation strategies are tested for neutron
High Energy Density Microwaves
Phillips, R.M. [Stanford Linear Accelerator Center, Stanford, CA 94309 (United States)
1999-04-01
These proceedings represent papers presented at the RF98 Workshop entitled `High Energy Density Microwaves` held in California in October, 1998. The topics discussed were predominantly accelerator{minus}related. The Workshop dealt, for the most part, with the generation and control of electron beams, the amplification of RF signals, the design of mode converters, and the effect of very high RF field gradients. This Workshop was designed to address the concerns of the microwave tube industry worldwide, the plasma physicists who deal with very high beam currents and gigawatts of RF power, and researchers in accelerator centers around the world. Papers were presented on multibeam klystrons, gyrotron development, plasmas in microwave tubes, RF breakdown, and alternatives to conventional linear coliders at 1 TeV and above. The Workshop was partially sponsored by the US Department of Energy. There were 46 papers presented at the conference,out of which 19 have been abstracted for the Energy,Science and Technology database.(AIP)
Exact and approximate Kohn-Sham potentials in ensemble density...
Office of Scientific and Technical Information (OSTI)
Title: Exact and approximate Kohn-Sham potentials in ensemble density-functional theory Authors: Yang, Zeng-hui ; Trail, John R. ; Pribram-Jones, Aurora ; Burke, Kieron ; Needs, ...
Density functional theory study of skyrmion pinning by atomic...
Office of Scientific and Technical Information (OSTI)
GrantContract Number: AC52-06NA25396 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 93; Journal Issue: 11; ...
Monoxides of small terbium clusters: A density functional theory investigation
Zhang, G. L.; Yuan, H. K. Chen, H.; Kuang, A. L.; Li, Y.; Wang, J. Z.; Chen, J.
2014-12-28
To investigate the effect of oxygen atom on the geometrical structures, electronic, and magnetic properties of small terbium clusters, we carried out the first-principles calculations on Tb{sub n}O (n = 1-14) clusters. The capping of an oxygen atom on one trigonal-facet of Tb{sub n} structures is always favored energetically, which can significantly improve the structural stability. The far-infrared vibrational spectroscopies are found to be different from those of corresponding bare clusters, providing a distinct signal to detect the characteristic structures of Tb{sub n}O clusters. The primary effect of oxygen atom on magnetic properties is to change the magnetic orderings among Tb atoms and to reduce small of local magnetic moments of the O-coordinated Tb atoms, both of which serve as the key reasons for the experimental magnetic evolution of an oscillating behavior. These calculations are consistent with, and help to account for, the experimentally observed magnetic properties of monoxide Tb{sub n}O clusters [C. N. Van Dijk et al., J. Appl. Phys. 107, 09B526 (2010)].
Probabilistic Density Function Method for Stochastic ODEs of...
Office of Scientific and Technical Information (OSTI)
Authors: Wang, Peng ; Barajas-Solano, David A. ; Constantinescu, Emil ; Abhyankar, S. ; Ghosh, Donetta L. ; Smith, Barry ; Huang, Zhenyu ; Tartakovsky, Alexandre M. Publication ...
Magnetic and antimagnetic rotation in covariant density functional theory
Zhao, P. W.; Liang, H. Z.; Peng, J.; Ring, P.; Zhang, S. Q.; Meng, J.
2012-10-20
Progress on microscopic and self-consistent description of the magnetic rotation and antimagnetic rotation phenomena in tilted axis cranking relativistic mean-field theory based on a point-coupling interaction are briefly reviewed. In particular, the microscopic pictures of the shears mechanism in {sup 60}Ni and the two shears-like mechanism in {sup 105}Cd are discussed.
Probability Density Function Method for Langevin Equations with...
Office of Scientific and Technical Information (OSTI)
Language: English Subject: PDF method, uncertainty quantification, Langevin equation, Fokker-Planck equation, colored-noise, Large-Eddy-Diffusivity approximation Word Cloud More ...
Quantum Electronic Stress: Density-Functional-Theory Formulation...
Office of Scientific and Technical Information (OSTI)
Additional Journal Information: Journal Volume: 109; Journal Issue: 5; Journal ID: ISSN 0031-9007 Publisher: American Physical Society Sponsoring Org: USDOE Country of...
Density Functional Studies of Stoichiometric Surfaces of Orthorhombic...
Office of Scientific and Technical Information (OSTI)
Organicinorganic hybrid perovskite materials are highly attractive for dye-sensitized solar cells as demonstrated by their rapid advances in energy conversion efficiency. In this ...
Density Functional Theory Approach to Nuclear Fission (Conference...
Office of Scientific and Technical Information (OSTI)
DOE Contract Number: W-7405-ENG-48 Resource Type: Conference Resource Relation: Conference: Presented at: Zakopane Conference on Nuclear Physics, Zakopane, Poland, Aug 27 - Sep 02
The Materials Project: Combining Density Functional Theory Calculation...
U.S. Department of Energy (DOE) all webpages (Extended Search)
Facility Room 238 New materials can potentially reduce the cost and improve the efficiency of solar photovoltaics, batteries, and catalysts, leading to broad societal...
BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF...
Office of Scientific and Technical Information (OSTI)
The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, ... DOE Contract Number: FC02-09ER41583 Resource Type: Technical Report Research Org: ...
Density Functional Theory in Surface Chemistry and Catalysis
Norskov, Jens
2011-05-19
Recent advances in the understanding of reactivity trends for chemistry at transition metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. Current status of the field is discussed with an emphasis on the role of coupling between theory and experiment and future challenges.
United abominations: Density functional studies of heavy metal chemistry
Schoendorff, George
2012-04-02
Carbonyl and nitrile addition to uranyl (UO{sup 2}{sup 2+}) are studied. The competition between nitrile and water ligands in the formation of uranyl complexes is investigated. The possibility of hypercoordinated uranyl with acetone ligands is examined. Uranyl is studied with diactone alcohol ligands as a means to explain the apparent hypercoordinated uranyl. A discussion of the formation of mesityl oxide ligands is also included. A joint theory/experimental study of reactions of zwitterionic boratoiridium(I) complexes with oxazoline-based scorpionate ligands is reported. A computational study was done of the catalytic hydroamination/cyclization of aminoalkenes with zirconium-based catalysts. Techniques are surveyed for programming for graphical processing units (GPUs) using Fortran.
Density Functional Studies of Stoichiometric Surfaces of Orthorhombic...
Office of Scientific and Technical Information (OSTI)
are highly attractive for dye-sensitized solar cells as demonstrated by their rapid ... structural design of perovskite based solar cells, in order to achieve further ...
Category:Rock Density | Open Energy Information
Open Energy Information (Open El) [EERE & EIA]
Rock Density Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Rock Density page? For detailed information on Rock Density as...
A DENSITY-INDEPENDENT FORMULATION OF SMOOTHED PARTICLE HYDRODYNAMICS
Saitoh, Takayuki R.; Makino, Junichiro
2013-05-01
The standard formulation of the smoothed particle hydrodynamics (SPH) assumes that the local density distribution is differentiable. This assumption is used to derive the spatial derivatives of other quantities. However, this assumption breaks down at the contact discontinuity. At the contact discontinuity, the density of the low-density side is overestimated while that of the high-density side is underestimated. As a result, the pressure of the low-density (high-density) side is overestimated (underestimated). Thus, unphysical repulsive force appears at the contact discontinuity, resulting in the effective surface tension. This tension suppresses fluid instabilities. In this paper, we present a new formulation of SPH, which does not require the differentiability of density. Instead of the mass density, we adopt the internal energy density (pressure) and its arbitrary function, which are smoothed quantities at the contact discontinuity, as the volume element used for the kernel integration. We call this new formulation density-independent SPH (DISPH). It handles the contact discontinuity without numerical problems. The results of standard tests such as the shock tube, Kelvin-Helmholtz and Rayleigh-Taylor instabilities, point-like explosion, and blob tests are all very favorable to DISPH. We conclude that DISPH solved most of the known difficulties of the standard SPH, without introducing additional numerical diffusion or breaking the exact force symmetry or energy conservation. Our new SPH includes the formulation proposed by Ritchie and Thomas as a special case. Our formulation can be extended to handle a non-ideal gas easily.
Low density carbonized composite foams
Kong, Fung-Ming
1993-01-01
A carbonized composite foam having a density less than about 50 mg/cm.sup.3 and individual cell sizes no greater than about 1 .mu.m in diameter is described, and the process of making it.
Low density carbonized composite foams
Kong, Fung-Ming
1991-01-01
A carbonized composite foam having a density less than about 50 mg/cm.sup.3 and individual cell sizes no greater than about 1 .mu.m in diameter is described, and the process of making it.
Low density metal hydride foams
Maienschein, Jon L.; Barry, Patrick E.
1991-01-01
Disclosed is a low density foam having a porosity of from 0 to 98% and a density less than about 0.67 gm/cc, prepared by heating a mixture of powered lithium hydride and beryllium hydride in an inert atmosphere at a temperature ranging from about 455 to about 490 K for a period of time sufficient to cause foaming of said mixture, and cooling the foam thus produced. Also disclosed is the process of making the foam.
Identification of cell density signal molecule
Schwarz, Richard I.
1998-01-01
Disclosed herein is a novel proteinaceous cell density signal molecule (CDS) between 25 and 35 kD, which is secreted by fibroblastic primary avian tendon cells in culture, and causes the cells to self-regulate their proliferation and the expression of differentiated function. It effects an increase of procollagen production in avian tendon cell cultures of ten fold while proliferation rates are decreased. CDS, and the antibodies which recognize them, are important for the development of diagnostics and treatments for injuries and diseases involving connective tissues, particularly tendon. Also disclosed are methods of production and use.
Identification of cell density signal molecule
Schwarz, R.I.
1998-04-21
Disclosed herein is a novel proteinaceous cell density signal molecule (CDS) between 25 and 35 kD, which is secreted by fibroblastic primary avian tendon cells in culture, and causes the cells to self-regulate their proliferation and the expression of differentiated function. It effects an increase of procollagen production in avian tendon cell cultures of ten fold while proliferation rates are decreased. CDS, and the antibodies which recognize them, are important for the development of diagnostics and treatments for injuries and diseases involving connective tissues, particularly tendon. Also disclosed are methods of production and use. 2 figs.
Pan Xiaoyin; Slamet, Marlina; Sahni, Viraht
2010-04-15
We extend our prior work on the construction of variational wave functions {psi} that are functionals of functions {chi}:{psi}={psi}[{chi}] rather than simply being functions. In this manner, the space of variations is expanded over those of traditional variational wave functions. In this article we perform the constrained search over the functions {chi} chosen such that the functional {psi}[{chi}] satisfies simultaneously the constraints of normalization and the exact expectation value of an arbitrary single- or two-particle Hermitian operator, while also leading to a rigorous upper bound to the energy. As such the wave function functional is accurate not only in the region of space in which the principal contributions to the energy arise but also in the other region of the space represented by the Hermitian operator. To demonstrate the efficacy of these ideas, we apply such a constrained search to the ground state of the negative ion of atomic hydrogen H{sup -}, the helium atom He, and its positive ions Li{sup +} and Be{sup 2+}. The operators W whose expectations are obtained exactly are the sum of the single-particle operators W={Sigma}{sub i}r{sub i}{sup n},n=-2,-1,1,2, W={Sigma}{sub i{delta}}(r{sub i}), W=-(1/2){Sigma}{sub i{nabla}i}{sup 2}, and the two-particle operators W={Sigma}{sub n}u{sup n},n=-2,-1,1,2, where u=|r{sub i}-r{sub j}|. Comparisons with the method of Lagrangian multipliers and of other constructions of wave-function functionals are made. Finally, we present further insights into the construction of wave-function functionals by studying a previously proposed construction of functionals {psi}[{chi}] that lead to the exact expectation of arbitrary Hermitian operators. We discover that analogous to the solutions of the Schroedinger equation, there exist {psi}[{chi}] that are unphysical in that they lead to singular values for the expectations. We also explain the origin of the singularity.
High Density Sensor Network Development | The Ames Laboratory
U.S. Department of Energy (DOE) all webpages (Extended Search)
High Density Sensor Network Development
Nonlinear upper hybrid waves and the induced density irregularities
Kuo, Spencer P.
2015-08-15
Upper hybrid waves are excited parametrically by the O-mode high-frequency heater waves in the ionospheric heating experiments. These waves grow to large amplitudes and self-induced density perturbations provide nonlinear feedback. The lower hybrid resonance modifies the nonlinear feedback driven by the ponderomotive force; the nonlinear equation governing the envelope of the upper hybrid waves is derived. Solutions in symmetric alternating functions, in non-alternating periodic functions, as well as in solitary functions are shown. The impact of lower hybrid resonance on the envelope of the upper hybrid waves is explored; the results show that both the spatial period and amplitude are enlarged. The average fluctuation level of induced density irregularities is also enhanced. In the soliton form, the induced density cavity is widened considerably.
Modelling charge transfer reactions with the frozen density embedding formalism
Pavanello, Michele; Neugebauer, Johannes
2011-12-21
The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two {pi}-stacked nucleobase dimers of B-DNA: 5{sup '}-GG-3{sup '} and 5{sup '}-GT-3{sup '}. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.
Parkes, Marie V.; Sava Gallis, Dorina F.; Greathouse, Jeffery A.; Nenoff, Tina M.
2015-03-02
Computational screening of metal-organic framework (MOF) materials for selective oxygen adsorption from air could lead to new sorbents for the oxyfuel combustion process feedstock streams. A comprehensive study on the effect of MOF metal chemistry on gas binding energies in two common but structurally disparate metal-organic frameworks has been undertaken. Dispersion-corrected density functional theory methods were used to calculate the oxygen and nitrogen binding energies with each of fourteen metals, respectively, substituted into two MOF series, M_{2}(dobdc) and M_{3}(btc)_{2}. The accuracy of DFT methods was validated by comparing trends in binding energy with experimental gas sorption measurements. A periodic trend in oxygen binding energies was found, with greater oxygen binding energies for early transition-metal-substituted MOFs compared to late transition metal MOFs; this was independent of MOF structural type. The larger binding energies were associated with oxygen binding in a side-on configuration to the metal, with concomitant lengthening of the O-O bond. In contrast, nitrogen binding energies were similar across the transition metal series, regardless of both MOF structural type and metal identity. Altogether, these findings suggest that early transition metal MOFs are best suited to separating oxygen from nitrogen, and that the MOF structural type is less important than the metal identity.
Design Principles for Materials with Magnetic Functionality
Thompson, Joe David
2015-11-05
This report describes the processes involved with refining and testing design principles of high density, magnetic materials and while observing their magnetic functionality.
High-density fluid compositions
Sanders, D.C.
1981-09-29
Clear, high-density fluids suitable for use as well completion, packing, and perforation media comprise aqueous solutions of zinc bromide and calcium bromide having densities lying in the range of about 14.5 up to about 18.0 pounds per gallon and measured PH's lying in the range of about 3.5 up to about 6.0. Optionally, such fluids may also comprise calcium chloride and/or a soluble film-forming amine-based corrosion inhibitor. Such fluids under conditions of ordinary use exhibit low corrosion rates and have crystallization points lying well below the range of temperatures under which they are used.
Plasma digital density determining device
Sprott, Julien C.; Lovell, Thomas W.; Holly, Donald J.
1976-01-01
The density of a decaying plasma in an electrically conducting enclosure is determined by applying an excitation to the cavity formed by the enclosure and counting digitally the number of resonant frequencies traversed by the combination of the cavity and the decaying plasma.
High energy density thermal cell
Fletcher, A.N.
1980-04-29
A thermal battery is described that uses a calcium anode and a catholyte consisting of a mixture of lithium, potassium, nitrate and chloride ions. The device is operable over a temperature range of about 150 to 600/sup 0/C and produces a long lasting, high energy density output.
Statistical density modification using local pattern matching
Terwilliger, Thomas C.
2007-01-23
A computer implemented method modifies an experimental electron density map. A set of selected known experimental and model electron density maps is provided and standard templates of electron density are created from the selected experimental and model electron density maps by clustering and averaging values of electron density in a spherical region about each point in a grid that defines each selected known experimental and model electron density maps. Histograms are also created from the selected experimental and model electron density maps that relate the value of electron density at the center of each of the spherical regions to a correlation coefficient of a density surrounding each corresponding grid point in each one of the standard templates. The standard templates and the histograms are applied to grid points on the experimental electron density map to form new estimates of electron density at each grid point in the experimental electron density map.
ARM - Lesson Plans: Air Density and Temperature
U.S. Department of Energy (DOE) all webpages (Extended Search)
Teachers' Toolbox Lesson Plans Lesson Plans: Air Density and Temperature Objective The objective of this activity is to investigate the effect of temperature on the density of air. ...
Direct experimental determination of spectral densities of molecular complexes
Pachón, Leonardo A.; Brumer, Paul
2014-11-07
Determining the spectral density of a molecular system immersed in a proteomic scaffold and in contact to a solvent is a fundamental challenge in the coarse-grained description of, e.g., electron and energy transfer dynamics. Once the spectral density is characterized, all the time scales are captured and no artificial separation between fast and slow processes need to be invoked. Based on the fluorescence Stokes shift function, we utilize a simple and robust strategy to extract the spectral density of a number of molecular complexes from available experimental data. Specifically, we show that experimental data for dye molecules in several solvents, amino acid proteins in water, and some photochemical systems (e.g., rhodopsin and green fluorescence proteins), are well described by a three-parameter family of sub-Ohmic spectral densities that are characterized by a fast initial Gaussian-like decay followed by a slow algebraic-like decay rate at long times.
Single particle density of trapped interacting quantum gases
Bala, Renu; Bosse, J.; Pathak, K. N.
2015-05-15
An expression for single particle density for trapped interacting gases has been obtained in first order of interaction using Greens function method. Results are easily simplified for homogeneous quantum gases and are found to agree with famous results obtained by Huang-Yang-Luttinger and Lee-Yang.
Density variations and anomalies in palladium compacts
Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.
1992-05-14
Low-density compacts of palladium powder have relative densities of about 30{plus minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a steer's head.'' it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.
Density variations and anomalies in palladium compacts
Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.
1992-05-14
Low-density compacts of palladium powder have relative densities of about 30{plus_minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a ``steer`s head.`` it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.
Probability distribution of the vacuum energy density
Duplancic, Goran; Stefancic, Hrvoje; Glavan, Drazen
2010-12-15
As the vacuum state of a quantum field is not an eigenstate of the Hamiltonian density, the vacuum energy density can be represented as a random variable. We present an analytical calculation of the probability distribution of the vacuum energy density for real and complex massless scalar fields in Minkowski space. The obtained probability distributions are broad and the vacuum expectation value of the Hamiltonian density is not fully representative of the vacuum energy density.
Marshall, J. Jr.
1961-10-24
A reactor is described in which natural-uranium bodies are located in parallel channels which extend through the graphite mass in a regular lattice. The graphite mass has additional channels that are out of the lattice and contain no uranium. These additional channels decrease in number per unit volume of graphite from the center of the reactor to the exterior and have the effect of reducing the density of the graphite more at the center than at the exterior, thereby spreading neutron activity throughout the reactor. (AEC)
Nishikawa, Takeshi
2014-07-15
Most conventional atomic models in a plasma do not treat the effect of the plasma on the free-electron state density. Using a nearest neighbor approximation, the state densities in hydrogenic plasmas for both bound and free electrons were evaluated and the effect of the plasma on the atomic model (especially for the state density of the free electron) was studied. The model evaluates the electron-state densities using the potential distribution formed by the superposition of the Coulomb potentials of two ions. The potential from one ion perturbs the electronic state density on the other. Using this new model, one can evaluate the free-state density without making any ad-hoc assumptions. The resulting contours of the average ionization degree, given as a function of the plasma temperature and density, are shifted slightly to lower temperatures because of the effect of the increasing free-state density.
Improving experimental phases for strong reflections prior to density modification
Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.; Read, Randy J.
2013-09-20
Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005), Acta Cryst. D61, 899â902], the impact of identifying optimized phases for a small number ofmoreÂ Â» strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. Lastly, a computer program,SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.Â«Â less
Oxides having high energy densities
Ceder, Gerbrand; Kang, Kisuk
2013-09-10
Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.
Generalization of the Kohn-Sham system that can represent arbitrary one-electron density matrices
Hubertus J. J. van Dam
2016-05-23
Density functional theory is currently the most widely applied method in electronic structure theory. The Kohn-Sham method, based on a fictitious system of noninteracting particles, is the workhorse of the theory. The particular form of the Kohn-Sham wave function admits only idempotent one-electron density matrices whereas wave functions of correlated electrons in post-Hartree-Fock methods invariably have fractional occupation numbers. Here we show that by generalizing the orbital concept and introducing a suitable dot product as well as a probability density, a noninteracting system can be chosen that can represent the one-electron density matrix of any system, even one with fractionalmoreÂ Â» occupation numbers. This fictitious system ensures that the exact electron density is accessible within density functional theory. It can also serve as the basis for reduced density matrix functional theory. Moreover, to aid the analysis of the results the orbitals may be assigned energies from a mean-field Hamiltonian. This produces energy levels that are akin to Hartree-Fock orbital energies such that conventional analyses based on Koopmans' theorem are available. Lastly, this system is convenient in formalisms that depend on creation and annihilation operators as they are trivially applied to single-determinant wave functions.Â«Â less
Combinatorial nuclear level-density model (Journal Article) | SciTech
Office of Scientific and Technical Information (OSTI)
Connect Combinatorial nuclear level-density model Citation Details In-Document Search Title: Combinatorial nuclear level-density model A microscopic nuclear level-density model is presented. The model is a completely combinatorial (micro-canonical) model based on the folded-Yukawa single-particle potential and includes explicit treatment of pairing, rotational and vibrational states. The microscopic character of all states enables extraction of level distribution functions with respect to
Effect of composition on the density of multi-component molten nitrate salts.
Bradshaw, Robert W.
2009-12-01
The density of molten nitrate salts was measured to determine the effects of the constituents on the density of multi-component mixtures. The molten salts consisted of various proportions of the nitrates of potassium, sodium, lithium and calcium. Density measurements ere performed using an Archimedean method and the results were compared to data reported in the literature for the individual constituent salts or simple combinations, such as the binary Solar Salt mixture of NaNO3 and KNO3. The addition of calcium nitrate generally ncreased density, relative to potassium nitrate or sodium nitrate, while lithium nitrate decreased density. The temperature dependence of density is described by a linear equation regardless of composition. The molar volume, and thereby, density of multi-component mixtures an be calculated as a function of temperature using a linear additivity rule based on the properties of the individual constituents.
Aerodynamic Focusing Of High-Density Aerosols
Ruiz, D. E.; Fisch, Nathaniel
2014-02-24
High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.
HedegĂ„rd, Erik Donovan Knecht, Stefan; Reiher, Markus; Kielberg, Jesper Skau; Jensen, Hans JĂžrgen Aagaard
2015-06-14
We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.
Composition for detection of cell density signal molecule
Schwarz, Richard I.
2001-01-01
Disclosed herein is a novel proteinaceous cell density signal molecule (CDS), which is secreted by fibroblastic cells in culture, preferably tendon cells, and which provides a means by which the cells self-regulate their proliferation and the expression of differentiated function. CDS, and the antibodies which recognize them, are important for the development of diagnostics and treatments for injuries and diseases involving connective tissues, particularly tendon. Also disclosed are methods of production and use.
Hollman, David S.; Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061 ; Schaefer, Henry F.; Valeev, Edward F.
2014-02-14
A local density fitting scheme is considered in which atomic orbital (AO) products are approximated using only auxiliary AOs located on one of the nuclei in that product. The possibility of variational collapse to an unphysical âattractive electronâ state that can affect such density fitting [P. Merlot, T. KjĂŠrgaard, T. Helgaker, R. Lindh, F. Aquilante, S. Reine, and T. B. Pedersen, J. Comput. Chem. 34, 1486 (2013)] is alleviated by including atom-wise semidiagonal integrals exactly. Our approach leads to a significant decrease in the computational cost of density fitting for HartreeâFock theory while still producing results with errors 2â5 times smaller than standard, nonlocal density fitting. Our method allows for large HartreeâFock and density functional theory computations with exact exchange to be carried out efficiently on large molecules, which we demonstrate by benchmarking our method on 200 of the most widely used prescription drug molecules. Our new fitting scheme leads to smooth and artifact-free potential energy surfaces and the possibility of relatively simple analytic gradients.
U.S. Department of Energy (DOE) all webpages (Extended Search)
Functional Materials Researchers in NETL's Functional Materials Development competency work to discover and develop advanced functional materials and component processing technologies to meet technology performance requirements and enable scale-up for proof-of-concept studies. Research includes separations materials and electrochemical and magnetic materials, specifically: Separations Materials Synthesis, purification, and basic characterization of organic substances, including polymers and
Quartz resonator fluid density and viscosity monitor
Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.
1998-01-01
A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.
High Density Fuel Development for Research Reactors
Daniel Wachs; Dennis Keiser; Mitchell Meyer; Douglas Burkes; Curtis Clark; Glenn Moore; Jan-Fong Jue; Totju Totev; Gerard Hofman; Tom Wiencek; Yeon So Kim; Jim Snelgrove
2007-09-01
An international effort to develop, qualify, and license high and very high density fuels has been underway for several years within the framework of multi-national RERTR programs. The current development status is the result of significant contributions from many laboratories, specifically CNEA in Argentina, AECL in Canada, CEA in France, TUM in Germany, KAERI in Korea, VNIIM, RDIPE, IPPE, NCCP and RIARR in Russia, INL, ANL and Y-12 in USA. These programs are mainly engaged with UMo dispersion fuels with densities from 6 to 8 gU/cm3 (high density fuel) and UMo monolithic fuel with density as high as 16 gU/cm3 (very high density fuel). This paper, mainly focused on the French & US programs, gives the status of high density UMo fuel development and perspectives on their qualification.
The Quantum Energy Density: Improved E
Krogel, Jaron; Yu, Min; Kim, Jeongnim; Ceperley, David M.
2013-01-01
We establish a physically meaningful representation of a quantum energy density for use in Quantum Monte Carlo calculations. The energy density operator, dened in terms of Hamiltonian components and density operators, returns the correct Hamiltonian when integrated over a volume containing a cluster of particles. This property is demonstrated for a helium-neon \\gas," showing that atomic energies obtained from the energy density correspond to eigenvalues of isolated systems. The formation energies of defects or interfaces are typically calculated as total energy dierences. Using a model of delta-doped silicon (where dopant atoms form a thin plane) we show how interfacial energies can be calculated more eciently with the energy density, since the region of interest is small. We also demonstrate how the energy density correctly transitions to the bulk limit away from the interface where the correct energy is obtainable from a separate total energy calculation.
Method of synthesizing a low density material
Lorensen, L.E.; Monaco, S.B.
1987-02-27
A novel method of synthesizing a polymeric material of low density of the order of 50mg/cc or less. Such a low density material has applications in many areas including laser target fabrication. The method comprises preparing a polymer blend of two incompatible polymers as a major and a minor phase by mixing them and extruding the mixture, and then selectively extracting the major component, to yield a fine, low density structure.
3-D capacitance density imaging system
Fasching, G.E.
1988-03-18
A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.
Calculating Atomic Number Densities for Uranium
Energy Science and Technology Software Center (OSTI)
1993-01-01
Provides method to calculate atomic number densities of selected uranium compounds and hydrogenous moderators for use in nuclear criticality safety analyses at gaseous diffusion uranium enrichment facilities.
Screening potential in high density plasmas
Amari, M.; Arranz, J. P.; Butaux, J.; Nguyen, H.
1997-01-05
On the basis of a two-ion center model, an accurate closed form of the screening potential is suggested for intermediate and high density plasmas.
Mini-review of Electron Density Visualization
Adler, Joan; Adler, Omri; Kreif, Meytal; Cohen, Or; Grosso, Bastien; Hashibon, Adham; Cooper, Valentino R
2015-01-01
We describe both educational and research oriented examples of electronic density visualization with AViz. Several detailed cases are presented and the procedures for their preparation are described.
Chiral dynamics and peripheral transverse densities Granados...
Office of Scientific and Technical Information (OSTI)
dynamics and peripheral transverse densities Granados, Carlos G. Uppsala University (Sweden); Weiss, Christian JLAB, Newport News, VA (United States) 72 PHYSICS OF ELEMENTARY...
High Energy Density Ultracapacitors | Department of Energy
and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es038smith2011p.pdf (1.95 MB) More Documents & Publications High Energy Density Ultracapacitors ...
Marushka, Viktor; Zabeida, Oleg Martinu, Ludvik
2014-11-01
The uniformity of ion density is critical for applications relying on the ion assisted deposition technique for the fabrication of the high quality thin films. The authors propose and describe here a method allowing one to calculate the ion density distribution on spherical substrate holders under stationary and rotating conditions for different positions of the ion source. The ion beam shape was approximated by a cos{sup n} function, and the ion current density was represented by a function inversely proportional to the distance from the ion source in accordance with our experimental results. As an example, a calculation of the current density distribution on the spherical cap substrate was performed for a broad beam ion source operated with an anode current of 3?A. The authors propose an approach for process optimization with respect to the ion source position and its inclination, in terms of uniformity and absolute value of the ion current density.
High bandwidth vapor density diagnostic system
Globig, Michael A.; Story, Thomas W.
1992-01-01
A high bandwidth vapor density diagnostic system for measuring the density of an atomic vapor during one or more photoionization events. The system translates the measurements from a low frequency region to a high frequency, relatively noise-free region in the spectrum to provide improved signal to noise ratio.
High density laser-driven target
Lindl, John D.
1981-01-01
A high density target for implosion by laser energy composed of a central quantity of fuel surrounded by a high-Z pusher shell with a low-Z ablator-pusher shell spaced therefrom forming a region filled with low-density material.
Neutral depletion and the helicon density limit
Magee, R. M.; Galante, M. E.; Carr, J. Jr.; Lusk, G.; McCarren, D. W.; Scime, E. E.
2013-12-15
It is straightforward to create fully ionized plasmas with modest rf power in a helicon. It is difficult, however, to create plasmas with density >10{sup 20} m{sup ?3}, because neutral depletion leads to a lack of fuel. In order to address this density limit, we present fast (1 MHz), time-resolved measurements of the neutral density at and downstream from the rf antenna in krypton helicon plasmas. At the start of the discharge, the neutral density underneath the antenna is reduced to 1% of its initial value in 15 ?s. The ionization rate inferred from these data implies that the electron temperature near the antenna is much higher than the electron temperature measured downstream. Neutral density measurements made downstream from the antenna show much slower depletion, requiring 14 ms to decrease by a factor of 1/e. Furthermore, the downstream depletion appears to be due to neutral pumping rather than ionization.
Core density turbulence in the HSX Stellarator
Deng, C. B.; Brower, D. L.; Anderson, D. T.; Anderson, F. S. B.; Briesemeister, Alexis R.; Likin, K. M.
2015-10-23
Broadband turbulent density fluctuations are explored in the helically symmetric stellarator experiment (HSX) by investigating changes related to plasma heating power and location. No fluctuation response is observed to occur with large changes in electron temperature and its gradient, thereby eliminating temperature gradient as a driving mechanism. Instead, measurements reveal that density turbulence varies inversely with electron density scale length. This response is consistent with density gradient drive as one might expect for trapped electron mode (TEM) turbulence. In general, the plasma stored energy and particle confinement are higher for discharges with reduced fluctuations in the plasma core. When the density fluctuation amplitude is reduced, increased plasma rotation is also evident suggesting a role is being played by intrinsic plasma flow.
Electrostatic lens to focus an ion beam to uniform density
Johnson, Cleland H.
1977-01-11
A focusing lens for an ion beam having a gaussian or similar density profile is provided. The lens is constructed to provide an inner zero electrostatic field, and an outer electrostatic field such that ions entering this outer field are deflected by an amount that is a function of their distance from the edge of the inner field. The result is a beam that focuses to a uniform density in a manner analogous to that of an optical ring lens. In one embodiment, a conically-shaped network of fine wires is enclosed within a cylindrical anode. The wire net together with the anode produces a voltage field that re-directs the outer particles of the beam while the axial particles pass undeflected through a zero field inside the wire net. The result is a focused beam having a uniform intensity over a given target area and at a given distance from the lens.
Carrier Density Modulation in Ge Heterostructure by Ferroelectric Switching
Ponath, Patrick; Fredrickson, Kurt; Posadas, Agham B.; Ren, Yuan; Vasudevan, Rama K; Okatan, Mahmut Baris; Jesse, Stephen; Aoki, Toshihiro; McCartney, Martha; Smith, David J; Kalinin, Sergei V; Lai, Keji; Demkov, Alexander A.
2015-01-01
The development of nonvolatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching, and measurable semiconductor modulation. Here we report a true ferroelectric field effect carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in the epitaxial c-axis-oriented BaTiO3 (BTO) grown by molecular beam epitaxy (MBE) on Ge. Using density functional theory, we demonstrate that switching of BTO polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms the interface sharpness, and BTO tetragonality. Electron-energy-loss spectroscopy (EELS) indicates the absence of any low permittivity interlayer at the interface with Ge. Using piezoelectric force microscopy (PFM), we confirm the presence of fully switchable, stable ferroelectric polarization in BTO that appears to be single domain. Using microwave impedance microscopy (MIM), we clearly demonstrate a ferroelectric field effect.
A novel electron density reconstruction method for asymmetrical toroidal plasmas
Shi, N.; Ohshima, S.; Minami, T.; Nagasaki, K.; Yamamoto, S.; Mizuuchi, T.; Okada, H.; Kado, S.; Kobayashi, S.; Konoshima, S.; Sano, F.; Tanaka, K.; Ohtani, Y.; Zang, L.; Kenmochi, N.
2014-05-15
A novel reconstruction method is developed for acquiring the electron density profile from multi-channel interferometric measurements of strongly asymmetrical toroidal plasmas. It is based on a regularization technique, and a generalized cross-validation function is used to optimize the regularization parameter with the aid of singular value decomposition. The feasibility of method could be testified by simulated measurements based on a magnetic configuration of the flexible helical-axis heliotron device, Heliotron J, which has an asymmetrical poloidal cross section. And the successful reconstruction makes possible to construct a multi-channel Far-infrared laser interferometry on this device. The advantages of this method are demonstrated by comparison with a conventional method. The factors which may affect the accuracy of the results are investigated, and an error analysis is carried out. Based on the obtained results, the proposed method is highly promising for accurately reconstructing the electron density in the asymmetrical toroidal plasma.
Wolfe, Adam R.; Atkinson, Rachel L.; Reddy, Jay P.; Debeb, Bisrat G.; Larson, Richard; Li, Li; Masuda, Hiroko; Brewer, Takae; Atkinson, Bradley J.; Brewster, Abeena; Ueno, Naoto T.; Woodward, Wendy A.
2015-04-01
Purpose: We previously demonstrated that cholesterol-lowering agents regulate radiation sensitivity of inflammatory breast cancer (IBC) cell lines inÂ vitro and are associated with less radiation resistance among IBC patients who undergo postmastectomy radiation. We hypothesized that decreasing IBC cellular cholesterol induced by treatment with lipoproteins would increase radiation sensitivity. Here, we examined the impact of specific transporters of cholesterol (ie lipoproteins) on the responses of IBC cells to self-renewal and to radiation inÂ vitro and on clinical outcomes in IBC patients. Methods and Materials: Two patient-derived IBC cell lines, SUM 149 and KPL4, were incubated with low-density lipoproteins (LDL), very-low-density lipoproteins (VLDL), or high-density lipoproteins (HDL) for 24Â hours prior to irradiation (0-6Â Gy) and mammosphere formation assay. Cholesterol panels were examined in a cohort of patients withÂ primary IBC diagnosed between 1995 and 2011 at MD Anderson Cancer Center. Lipoprotein levels were then correlated to patient outcome, using the log rank statistical model, and examined in multivariate analysis using Cox regression. Results: VLDL increased and HDL decreased mammosphere formation compared toÂ untreated SUM 149 and KPL4 cells. Survival curves showed enhancement of survival in both of the IBC cell lines when pretreated with VLDL and, conversely, radiation sensitization in all cell lines when pretreated with HDL. In IBC patients, higher VLDL valuesÂ (>30Â mg/dL) predicted a lower 5-year overall survival rate than normal valuesÂ (hazard ratio [HR]Â =Â 1.9 [95% confidence interval [CI]: 1.05-3.45], P=.035). Lower-than-normal patient HDL values (<60Â mg/dL) predicted a lower 5-year overall survival rate than values higher than 60Â mg/dL (HR = 3.21 [95% CI: 1.25-8.27], P=.015). Conclusions: This study discovered a relationship among the plasma levels of lipoproteins, overall patient response, and radiation resistance in IBC patients
Yamaoka, Hitoshi; Schwier, Eike F.; Arita, Masashi; Shimada, Kenya; Tsujii, Naohito; Jarrige, Ignace; Jiang, Jian; Hayashi, Hirokazu; Iwasawa, Hideaki; Namatame, Hirofumi; Taniguchi, Masaki; Kitazawa, Hideaki
2015-03-30
The electronic structure of CeâPdââXâ (X = Si, Ge) has been studied using detailed density functional theory (DFT) calculations and high-resolution photoelectron spectroscopy (PES) measurements. The orbital decomposition of the electronic structure by DFT calculations indicates that Ce atoms at the (8c) site surrounded by 16 Pd atoms have a more localized nature and a tendency to be magnetic. Ce atoms in the (4a) site surrounded by 12 Pd and 6 X atoms, on the other, show only a negligible magnetic moment. In the photoemission valence-band spectra we observe a strong fâ° (CeâŽâș) component with a small fraction of fÂč (CeÂłâș) component. The spectral weight of fÂč component near the Fermi level CeâPdââSiâ is stronger than that for CeâPdââGeâ at the 4d-4f resonance, suggesting stronger c-f hybridization in the former. This may hint to the origin of the large electronic specific coefficient of CeâPdââSiâ compared to CeâPdââGeâ.
Density matrix embedding in an antisymmetrized geminal power bath
Tsuchimochi, Takashi; Welborn, Matthew; Van Voorhis, Troy
2015-07-14
Density matrix embedding theory (DMET) has emerged as a powerful tool for performing wave function-in-wave function embedding for strongly correlated systems. In traditional DMET, an accurate calculation is performed on a small impurity embedded in a mean field bath. Here, we extend the original DMET equations to account for correlation in the bath via an antisymmetrized geminal power (AGP) wave function. The resulting formalism has a number of advantages. First, it allows one to properly treat the weak correlation limit of independent pairs, which DMET is unable to do with a mean-field bath. Second, it associates a size extensive correlation energy with a given density matrix (for the models tested), which AGP by itself is incapable of providing. Third, it provides a reasonable description of charge redistribution in strongly correlated but non-periodic systems. Thus, AGP-DMET appears to be a good starting point for describing electron correlation in molecules, which are aperiodic and possess both strong and weak electron correlation.
Density controlled carbon nanotube array electrodes
Ren, Zhifeng F.; Tu, Yi
2008-12-16
CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.
Separation of carbon nanotubes in density gradients
Hersam, Mark C.; Stupp, Samuel I.; Arnold, Michael S.
2012-02-07
The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.
Separation of carbon nanotubes in density gradients
Hersam, Mark C.; Stupp, Samuel I.; Arnold, Michael S.
2010-02-16
The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.
High density load bearing insulation peg
Nowobilski, Jeffert J.; Owens, William J.
1985-01-01
A high density peg which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure.
High density load bearing insulation peg
Nowobilski, J.J.; Owens, W.J.
1985-01-29
A high density peg is disclosed which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure. 4 figs.
Spacetime Average Density (SAD) cosmological measures
Page, Don N.
2014-11-01
The measure problem of cosmology is how to obtain normalized probabilities of observations from the quantum state of the universe. This is particularly a problem when eternal inflation leads to a universe of unbounded size so that there are apparently infinitely many realizations or occurrences of observations of each of many different kinds or types, making the ratios ambiguous. There is also the danger of domination by Boltzmann Brains. Here two new Spacetime Average Density (SAD) measures are proposed, Maximal Average Density (MAD) and Biased Average Density (BAD), for getting a finite number of observation occurrences by using properties of the Spacetime Average Density (SAD) of observation occurrences to restrict to finite regions of spacetimes that have a preferred beginning or bounce hypersurface. These measures avoid Boltzmann brain domination and appear to give results consistent with other observations that are problematic for other widely used measures, such as the observation of a positive cosmological constant.
Chiral dynamics and peripheral transverse densities (Journal...
Office of Scientific and Technical Information (OSTI)
Journal Article: Chiral dynamics and peripheral transverse densities Citation Details ... Report Number(s): JLAB-THY--13-1763; DOEOR--23177-2641 Journal ID: ISSN 1029-8479; TRN: ...
Shock compression of low-density foams
Holmes, N.C.
1993-07-01
Shock compression of very low density micro-cellular materials allows entirely new regimes of hot fluid states to be investigated experimentally. Using a two-stage light-gas gun to generate strong shocks, temperatures of several eV are readily achieved at densities of roughly 0.5--1 g/cm{sup 3} in large, uniform volumes. The conditions in these hot, expanded fluids are readily found using the Hugoniot jump conditions. We will briefly describe the basic methodology for sample preparation and experimental measurement of shock velocities. We present data for several materials over a range of initial densities. This paper will explore the applications of these methods for investigations of equations of state and phase diagrams, spectroscopy, and plasma physics. Finally, we discus the need for future work on these and related low-density materials.
Breast Density and Cancer | GE Global Research
U.S. Department of Energy (DOE) all webpages (Extended Search)
Breast Cancer Awareness Series: Understanding Breast Density Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in ...
High Energy Density Ultracapacitors | Department of Energy
Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. esp22smith.pdf (1.09 MB) More Documents & Publications High Energy Density Ultracapacitors High ...
High-Energy-Density Plasmas, Fluids
U.S. Department of Energy (DOE) all webpages (Extended Search)
High-Energy-Density Plasmas, Fluids High-Energy-Density Plasmas, Fluids National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. TRIDENT target chamber Sasi Palaniyappan, right, and Rahul Shah left inside a target chamber where the TRIDENT short pulse laser is aimed at a very thin diamond- foil target, a fraction of a micrometer thick. The
Energy Science and Technology Software Center (OSTI)
1986-05-01
The ALTERNATIVE LIBRARY is a library of elementary functions prepared for use with the standard FORTRAN compiler under 4.2 BSD UNIX as an alternative to the standard system library. The library offers improved accuracy as well as additional capabilities. It includes routines ASIN, ACOS, COSH, EXP, LOG, LOG10, POW, SIN, COS, SINH, TAN, and TANH. These alternative routines have slightly modified domains and slightly different responses to invalid arguments. Four routines, not part of themoreÂ Â» standard library, are provided: ADX(X,N), a double-precision function that returns the double-precision argument X scaled by 2 raised to the Nth power; INTXP(X), an integer function that returns as a signed integer the exponent of the double-precision argument X; SETXP(X,N), a double-precision function that returns the double-precision argument X with its exponent replaced by N; and DCOTAN(X), a double-precision function that returns the cotangent of the double-precision argument X, where X is given in radians.Â«Â less
Method of altering the effective bulk density of solid material and the resulting product
Kool, Lawrence B.; Nolen, Robert L.; Solomon, David E.
1983-01-01
A method of adjustably tailoring the effective bulk density of a solid material in which a mixture comprising the solid material, a film-forming polymer and a volatile solvent are sprayed into a drying chamber such that the solvent evaporates and the polymer dries into hollow shells having the solid material captured within the shell walls. Shell density may be varied as a function of solid/polymer concentration, droplet size and drying temperature.
Chaos and structure of level densities (Journal Article) | SciTech Connect
Office of Scientific and Technical Information (OSTI)
Journal Article: Chaos and structure of level densities Citation Details In-Document Search Title: Chaos and structure of level densities The energy region of the first few MeV above the ground state shows interesting features of the nucleus. Beyond an ordered energy region just above the ground-state the dynamics changes, and chaotic features are observed in the neutron resonance region. The statistical properties of energies and wave-functions are common to all chaotic nuclei. However, if
The transition to the metallic state in low density hydrogen
McMinis, Jeremy; Morales, Miguel A.; Ceperley, David M.; Kim, Jeongnim
2015-11-18
Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work we use diffusion quantum Monte Carlo to benchmark the transition between the paramagnetic and anti-ferromagnetic phases of ground state body centered cubic atomic hydrogen. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transitionmoreÂ Â» order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of rs = 2.27(3)a0. As a result, we compare our results to previously reported density functional theory, Hedin s GW approximation, and dynamical mean field theory results.Â«Â less
The transition to the metallic state in low density hydrogen
McMinis, Jeremy; Morales, Miguel A.; Ceperley, David M.; Kim, Jeongnim
2015-11-18
Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work we use diffusion quantum Monte Carlo to benchmark the transition between the paramagnetic and anti-ferromagnetic phases of ground state body centered cubic atomic hydrogen. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transition order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of r_{s} = 2.27(3)a_{0}. As a result, we compare our results to previously reported density functional theory, Hedin s GW approximation, and dynamical mean field theory results.
INTERMITTENCY OF SOLAR WIND DENSITY FLUCTUATIONS FROM ION TO ELECTRON SCALES
Chen, C. H. K.; Sorriso-Valvo, L.; afránková, J.; N?me?ek, Z.
2014-07-01
The intermittency of density fluctuations in the solar wind at kinetic scales has been examined using high time resolution Faraday cup measurements from the Spektr-R spacecraft. It was found that the probability density functions (PDFs) of the fluctuations are highly non-Gaussian over this range, but do not show large changes in shape with scale. These properties are statistically similar to those of the magnetic fluctuations and are important to understanding the dynamics of small scale turbulence in the solar wind. Possible explanations for the behavior of the density and magnetic fluctuations are discussed.
Statistical approach to nuclear level density
Sen'kov, R. A.; Horoi, M.; Zelevinsky, V. G.
2014-10-15
We discuss the level density in a finite many-body system with strong interaction between the constituents. Our primary object of applications is the atomic nucleus but the same techniques can be applied to other mesoscopic systems. We calculate and compare nuclear level densities for given quantum numbers obtained by different methods, such as nuclear shell model (the most successful microscopic approach), our main instrument - moments method (statistical approach), and Fermi-gas model; the calculation with the moments method can use any shell-model Hamiltonian excluding the spurious states of the center-of-mass motion. Our goal is to investigate statistical properties of nuclear level density, define its phenomenological parameters, and offer an affordable and reliable way of calculation.
High power density solid oxide fuel cells
Pham, Ai Quoc; Glass, Robert S.
2004-10-12
A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.
Fabrication of low density ceramic material
Meek, T.T.; Blake, R.D.; Sheinberg, H.
1985-01-01
A precursor mixture and a method of making a low-density ceramic structural material are disclosed. The precursor mixture includes hollow microballoons, typically made of glass, together with a cementing agent capable of being cured by microwave irradiation. A preferred cementing agent is liquid hydrated potassium silicate, which is mixed with the glass microballoons to form a slurry. Upon irradiation the potassium silicate is dehydrated to form a solid porous matrix in which the microballoons are evenly distributed. Ground glass or other filling agents may be included in the slurry to enhance the properties of the final product. Low-density structural ceramics having densities on the order of 0.1 to 0.3 are obtained.
Function and dynamics of aptamers: A case study on the malachite green aptamer
Wang, Tianjiao
2008-12-01
Aptamers are short single-stranded nucleic acids that can bind to their targets with high specificity and high affinity. To study aptamer function and dynamics, the malachite green aptamer was chosen as a model. Malachite green (MG) bleaching, in which an OH- attacks the central carbon (C1) of MG, was inhibited in the presence of the malachite green aptamer (MGA). The inhibition of MG bleaching by MGA could be reversed by an antisense oligonucleotide (AS) complementary to the MGA binding pocket. Computational cavity analysis of the NMR structure of the MGA-MG complex predicted that the OH{sup -} is sterically excluded from the C1 of MG. The prediction was confirmed experimentally using variants of the MGA with changes in the MG binding pocket. This work shows that molecular reactivity can be reversibly regulated by an aptamer-AS pair based on steric hindrance. In addition to demonstrate that aptamers could control molecular reactivity, aptamer dynamics was studied with a strategy combining molecular dynamics (MD) simulation and experimental verification. MD simulation predicted that the MG binding pocket of the MGA is largely pre-organized and that binding of MG involves reorganization of the pocket and a simultaneous twisting of the MGA terminal stems around the pocket. MD simulation also provided a 3D-structure model of unoccupied MGA that has not yet been obtained by biophysical measurements. These predictions were consistent with biochemical and biophysical measurements of the MGA-MG interaction including RNase I footprinting, melting curves, thermodynamic and kinetic constants measurement. This work shows that MD simulation can be used to extend our understanding of the dynamics of aptamer-target interaction which is not evident from static 3D-structures. To conclude, I have developed a novel concept to control molecular reactivity by an aptamer based on steric protection and a strategy to study the dynamics of aptamer-target interaction by combining MD
NEUTRON DENSITY CONTROL IN A NEUTRONIC REACTOR
Young, G.J.
1959-06-30
The method and means for controlling the neutron density in a nuclear reactor is described. It describes the method and means for flattening the neutron density distribution curve across the reactor by spacing the absorbing control members to varying depths in the central region closer to the center than to the periphery of the active portion of the reactor to provide a smaller neutron reproduction ratio in the region wherein the members are inserted, than in the remainder of the reactor thereby increasing the over-all potential power output.
Low density, microcellular foams, preparation, and articles
Young, Ainslie T.; Marsters, Robert G.; Moreno, Dawn K.
1984-01-01
A microcellular low density foam of poly(4-methyl-1-pentene) which is particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 .mu.m). Methods for forming the foam and articles are given; and the yield strength of the foam of the invention is higher than was obtained in other structures of this same material.
Low density, microcellular foams, preparation, and articles
Young, A.T.
1982-03-03
A microcellular low-density foam of poly(4-methyl-1-pentene) particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 ..mu..m). Methods for forming the foam and articles are given. The yield strength of the foam of the invention is higher than was obtained in other structures of this same material.
Weak measurement and Bohmian conditional wave functions
Norsen, Travis; Struyve, Ward
2014-11-15
It was recently pointed out and demonstrated experimentally by Lundeen et al. that the wave function of a particle (more precisely, the wave function possessed by each member of an ensemble of identically-prepared particles) can be directly measured using weak measurement. Here it is shown that if this same technique is applied, with appropriate post-selection, to one particle from a perhaps entangled multi-particle system, the result is precisely the so-called conditional wave function of Bohmian mechanics. Thus, a plausibly operationalist method for defining the wave function of a quantum mechanical sub-system corresponds to the natural definition of a sub-system wave function which Bohmian mechanics uniquely makes possible. Similarly, a weak-measurement-based procedure for directly measuring a sub-systems density matrix should yield, under appropriate circumstances, the Bohmian conditional density matrix as opposed to the standard reduced density matrix. Experimental arrangements to demonstrate this behaviorand also thereby reveal the non-local dependence of sub-system state functions on distant interventionsare suggested and discussed. - Highlights: We study a direct measurement protocol for wave functions and density matrices. Weakly measured states of entangled particles correspond to Bohmian conditional states. Novel method of observing quantum non-locality is proposed.
Testing the density matrix expansion against ab initio calculations of trapped neutron drops
Bogner, S. K.; Hergert, H.; Furnstahl, R. J.; Kortelainen, Erno M; Stoitsov, M. V.; Maris, Pieter; Vary, J. P.
2011-01-01
Microscopic input to a universal nuclear energy density functional can be provided through the density matrix expansion (DME), which has recently been revived and improved. Several DME implementation strategies are tested for neutron drop systems in harmonic traps by comparing to Hartree-Fock (HF) and ab initio no-core full configuration (NCFC) calculations with a model interaction (Minnesota potential). The new DME with exact treatment of Hartree contributions is found to best reproduce HF results and supplementing the functional with fit Skyrme-like contact terms shows systematic improvement toward the full NCFC results.
U.S. Department of Energy (DOE) all webpages (Extended Search)
mFUSE: Function Sequencer for MATLAB Help Manual LANL/UCSD Engineering Institute LA-CC-10-033 LA-UR 10-01264 c Copyright 2010, Los Alamos National Security, LLC All rights reserved. July 29, 2010 LA-CC-10-033 LA-UR 10-01264 Contents I What is mFUSE? 4 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Version Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 About This Manual . . . . . . . . . . . . . . . . . . . . . . . . 6 4 Author Information . . . . .
Durable high-density data storage
Stutz, R.A.; Lamartine, B.C.
1996-09-01
This paper will discuss the Focus Ion Beam (FIB) milling process, media life considerations, and methods of reading the micromilled data. The FIB process for data storage provides a new non-magnetic storage method for archiving large amounts of data. The process stores data on robust materials such as steel, silicon, and gold coated silicon. The storage process was developed to provide a method to insure the long term storage life of data. We estimate the useful life of data written on silicon or gold coated silicon to be a few thousand years. The process uses an ion beam to carve material from the surface much like stone cutting. The deeper information is carved into the media the longer the expected life of the information. The process can read information in three formats: (1) binary at densities of 3.5 Gbits/cm{sup 2}, (2) alphanumeric at optical or non-optical density, and (3) graphical at optical and non-optical density. The formats can be mixed on the same media; and thus it is possible to record, in a human readable format, instructions that can be read using an optical microscope. These instructions provide guidance on reading the higher density information.
Density waves in the Calogero model - revisited
Bardek, V. Feinberg, J. Meljanac, S.
2010-03-15
The Calogero model bears, in the continuum limit, collective excitations in the form of density waves and solitary modulations of the density of particles. This sector of the spectrum of the model was investigated, mostly within the framework of collective-field theory, by several authors, over the past 15 years or so. In this work we shall concentrate on periodic solutions of the collective BPS-equation (also known as 'finite amplitude density waves'), as well as on periodic solutions of the full static variational equations which vanish periodically (also known as 'large amplitude density waves'). While these solutions are not new, we feel that our analysis and presentation add to the existing literature, as we explain in the text. In addition, we show that these solutions also occur in a certain two-family generalization of the Calogero model, at special points in parameter space. A compendium of useful identities associated with Hilbert transforms, including our own proofs of these identities, appears in Appendix A. In Appendix B we also elucidate in the present paper some fine points having to do with manipulating Hilbert-transforms, which appear ubiquitously in the collective field formalism. Finally, in order to make this paper self-contained, we briefly summarize in Appendix C basic facts about the collective field formulation of the Calogero model.
Interferometer for the measurement of plasma density
Jacobson, Abram R.
1980-01-01
An interferometer which combines the advantages of a coupled cavity interferometer requiring alignment of only one light beam, and a quadrature interferometer which has the ability to track multi-fringe phase excursions unambiguously. The device utilizes a Bragg cell for generating a signal which is electronically analyzed to unambiguously determine phase modulation which is proportional to the path integral of the plasma density.
Quantum crystallographic charge density of urea
Wall, Michael E.
2016-07-01
Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamoreÂ Â» is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.Â«Â less
?Linear Gas Jet with Tailored Density Profile"
KRISHNAN, Mahadevan
2012-12-10
Supersonic, highly collimated gas jets and gas-filled capillary discharge waveguides are two primary targets of choice for Laser Plasma Accelerators (LPA) . Present gas jets have lengths of only 2-4 mm at densities of 1-4E19 cm-3, sufficient for self trapping and electron acceleration to energies up to ~150 MeV. Capillary structures 3 cm long have been used to accelerate beams up to 1 GeV. Capillary discharges used in LPAs serve to guide the pump laser and optimize the energy gain. A wall-stabilized capillary discharge provides a transverse profile across the channel that helps guide the laser and combat diffraction. Gas injection via a fast nozzle at one end provides some longitudinal density control, to improve the coupling. Gas jets with uniform or controlled density profiles may be used to control electron bunch injection and are being integrated into capillary experiments to add tuning of density. The gas jet for electron injection has not yet been optimized. Our Ph-I results have provided the LPA community with an alternative path to realizing a 2-3GeV electron bunch using just a gas jet. For example, our slit/blade combination gives a 15-20mm long acceleration path with tunable density profile, serving as an alternative to a 20-mm long capillary discharge with gas injection at one end. In Ph-II, we will extend these results to longer nozzles, to see whether we can synthesize 30 or 40-mm long plasma channels for LPAs.
Distribution of Radiation Density in a Homogeneous Cloudy Laye
U.S. Department of Energy (DOE) all webpages (Extended Search)
of Radiation Density in a Homogeneous Cloudy Layer S. V. Dvoryashin, K. A. Shukorov, A. H. ... method) allowing calculating radiation density in homogeneous and non-uniform ...
Real-Time Simultaneous Measurements of Size, Density, and Composition...
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Simultaneous Measurements of Size, Density, and Composition of Single Ultrafine Diesel Tailpipe Particles Real-Time Simultaneous Measurements of Size, Density, and Composition of ...
Ultra Low Density Amorphous Shape Memory polymer Foams. (Conference...
Office of Scientific and Technical Information (OSTI)
Ultra Low Density Amorphous Shape Memory polymer Foams. Citation Details In-Document Search Title: Ultra Low Density Amorphous Shape Memory polymer Foams. You are accessing a ...
Time Adaptive Conditional Kernel Density Estimation for Wind...
Office of Scientific and Technical Information (OSTI)
Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting Citation Details In-Document Search Title: Time Adaptive Conditional Kernel Density Estimation for ...
Combinatorial nuclear level-density model (Journal Article) ...
Office of Scientific and Technical Information (OSTI)
Combinatorial nuclear level-density model Citation Details In-Document Search Title: Combinatorial nuclear level-density model You are accessing a document from the Department ...
Engineering Density of States of Earth Abundant Semiconductors...
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Density of States of Earth Abundant Semiconductors for Enhanced Thermoelectric Power Factor Engineering Density of States of Earth Abundant Semiconductors for Enhanced ...
XUV Absorption by Solid Density Aluminum (Journal Article) |...
Office of Scientific and Technical Information (OSTI)
XUV Absorption by Solid Density Aluminum Citation Details In-Document Search Title: XUV Absorption by Solid Density Aluminum An inverse bremsstrahlung model for plasmas and simple ...
Mitigating Breakdown in High Energy Density Perovskite Polymer...
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors 2012 ...
Controlling the Actuation Rate of Low Density Shape Memory Polymer...
Office of Scientific and Technical Information (OSTI)
Density Shape Memory Polymer Foams in Water Citation Details In-Document Search Title: Controlling the Actuation Rate of Low Density Shape Memory Polymer Foams in Water Authors: ...
Using Radio Waves to Control Fusion Plasma Density
U.S. Department of Energy (DOE) all webpages (Extended Search)
Using Radio Waves to Control Fusion Plasma Density Using Radio Waves to Control Fusion Plasma Density Simulations Run at NERSC Support Fusion Experiments at MIT, General Atomics ...
Low density biodegradable shape memory polyurethane foams for...
Office of Scientific and Technical Information (OSTI)
Low density biodegradable shape memory polyurethane foams for embolic biomedical applications Citation Details In-Document Search Title: Low density biodegradable shape memory...
Basic Research Needs for High Energy Density Laboratory Physics
U.S. Department of Energy (DOE) all webpages (Extended Search)
National Laboratory. Basic Research Needs for High Energy Density Laboratory Physics Report of the Workshop on High Energy Density Laboratory Physics Research Needs November ...
High Energy Density Laboratory Plasmas Program | National Nuclear...
National Nuclear Security Administration (NNSA)
Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home High Energy Density Laboratory Plasmas Program High Energy Density Laboratory Plasmas Program NNSA invests in next ...
Stabilizing laser energy density on a target during pulsed laser...
Office of Scientific and Technical Information (OSTI)
Patent: Stabilizing laser energy density on a target during pulsed laser deposition of thin films Citation Details In-Document Search Title: Stabilizing laser energy density on a ...
Research on Factors Relating to Density and Climate Change |...
Open Energy Information (Open El) [EERE & EIA]
on Factors Relating to Density and Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Research on Factors Relating to Density and Climate Change Agency...
A New Mechanism of Charge Density Wave Discovered in Transition...
U.S. Department of Energy (DOE) all webpages (Extended Search)
8 A New Mechanism of Charge Density Wave Discovered in Transition Metal Dichalcogenides Charge density waves (CDW) are a type of coupled electronic-lattice instability found in...
Reimund, Kevin K.; McCutcheon, Jeffrey R.; Wilson, Aaron D.
2015-08-01
A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, Ï, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy density of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is Ï/(1+âwâ»Âč), which is lower than the maximum power density operating pressure, ÎÏ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at âmaximum power density operating pressureâ requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.
Ultra-high density diffraction grating
Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.
2012-12-11
A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.