National Library of Energy BETA

Sample records for materials science research

  1. Materials Science Research | Materials Science | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Science Research For photovoltaics and other energy applications, NREL's primary research in materials science includes the following core competencies. A photo of laser light rays...

  2. Sandia National Laboratories: Research: Materials Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials Science Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Materials Science Creating materials for energy applications and defense needs Aries Applying innovative characterization and diagnostic techniques Hongyou Fan Development of new materials to support national

  3. Sandia National Laboratories: Research: Materials Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Research Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Research Materials Processing Sandia research staff understand, characterize, model, and ultimately control materials fabrication technologies that are critical to component development and production. Plasma Spray

  4. Sandia National Laboratories: Research: Materials Science: Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Facilities Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Facilities Center for Integrated Nanotechnologies (CINT) CINT Ion Beam Laboratory Ion Beam Laboratory MESA High Performance Computing Processing and Environmental Technology Laboratory Processing and Environmental

  5. Fusion materials science and technology research opportunities...

    Office of Scientific and Technical Information (OSTI)

    the ITER era Citation Details In-Document Search Title: Fusion materials science and technology research opportunities now and during the ITER era Several high-priority...

  6. Sandia National Laboratories: Research: Materials Science: Image Gallery

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials Science Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Image Gallery

  7. Sandia National Laboratories: Research: Materials Science: Video Gallery

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials Science Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Video Gallery

  8. Sandia National Laboratories: Research: Materials Science: About Us

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials Science Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research About Materials Science Xunhu Dai Sandia excels in innovative fundamental materials science research - developing and integrating the theoretical insights, computational simulation tools and deliberate

  9. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials ...

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Micronanofabricated environments for synthetic biology C. Patrick Collier and Michael L. Simpson Nanofabrication Research Laboratory, Center for Nanophase Materials Sciences Oak...

  11. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details ... of ab initio PDOS simulations. * Direct comparison between anharmonicity-smoothed ...

  12. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation ... dispersion, and, further, that advanced lattice dynamics simulations ...

  13. NERSC, LBL Researchers Share Materials Science Advances at APS

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    NERSC, LBL Researchers Highlight Materials Science at APS NERSC, LBL Researchers Share Materials Science Advances at APS March 3, 2014 APSlogo NERSC and Lawrence Berkeley National Laboratory (LBL) are well represented this week at the American Physical Society (APS) March meeting. Some 10,000 physicists, scientists, and students are expected to attend this year's meeting, which takes place March 3-7 in Denver, CO. Physicists and students will report on groundbreaking research from industry,

  14. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative,

  15. 2004 research briefs :Materials and Process Sciences Center.

    SciTech Connect (OSTI)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  16. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 2-Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 3-Physics Department,...

  17. Materials Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials Science Materials Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Materials Physics and Applications» Materials Science and Technology» Institute for Materials Science» Materials Science Rob Dickerson uses a state-of-the-art transmission electron microscope at the Electron Microscopy Laboratory managed by Los

  18. Basic Science Research to Support the Nuclear Materials Focus Area

    SciTech Connect (OSTI)

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  19. Basic science research to support the nuclear material focus area

    SciTech Connect (OSTI)

    Boak, J. M.; Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  20. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 4-Department of Physics and Department of Electrical Engineering and Computer...

  1. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    AL 35487 (USA) 2-Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA) 3-Department of Chemistry, University of Kentucky,...

  2. NREL: Energy Sciences - Chemical and Materials Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    in the U.S. Department of Energy (DOE) National Photovoltaic Program and DOE Basic Energy Sciences Program. Materials Science. The Materials Science Group's research...

  3. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    H. Weitering, Nature Materials 7, 539 (2008). The research was sponsored by the National Human Genome Research Institute, National Institutes of Health Grant R01HG002647 (CZ), NSF...

  4. Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97

    SciTech Connect (OSTI)

    Newkirk, L.

    1997-12-01

    This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

  5. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Achievement: The material of choice for spintronics device today is FeMgOFe tunnel ... by modi?cation of the interface is an important topic in spintronics research. ...

  6. Synchrotron-based high-pressure research in materials science (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Synchrotron-based high-pressure research in materials science Citation Details In-Document Search Title: Synchrotron-based high-pressure research in materials science Authors: Chen, Bin ; Lin, Jung-Fu ; Chen, Jiuhua ; Zhang, Hengzhong ; Zeng, Qiaoshi Publication Date: 2016-06-01 OSTI Identifier: 1324800 Resource Type: Journal Article Resource Relation: Journal Name: MRS Bulletin; Journal Volume: 41; Journal Issue: 06 Publisher: Materials Research Society Research

  7. Materials Discovery | Materials Science | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Discovery Images of red and yellow particles NREL's research in materials discovery serves as a foundation for technological progress in renewable energies. Our experimental activities in inorganic solid-state materials innovation span a broad range of technological readiness levels-from basic science through applied research to device development-relying on a high-throughput combinatorial materials science approach, followed by traditional targeted experiments. In addition, our researchers work

  8. Computational Materials Science | Materials Science | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Computational Materials Science An image of interconnecting, sphere- and square-shaped particles that appears to be floating in space NREL's computational materials science capabilities span many research fields and interests. Electronic, Optical, and Transport Properties of Photovoltaic Materials Material properties and defect physics of Si, CdTe, III-V, CIGS, CZTS, and hybrid perovskite compounds Reconstruction of, and defect formation on, semiconductor surfaces Electronic and transport

  9. Postdoctoral Research Fellow Center for Nanophase Materials Sciences

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    & transport properties of the materials, which in turn can be used to engineer better solid electrolyte materials 2. Automation & Data Analytics * Designing a new material for...

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    di Fisica "A. Volta", Universita degli Studi di Pavia, via Bassi 6, 27100 Pavia, Italy Department of Physics and Institute for Optical Sciences, University of Toronto, 60 St. ...

  11. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    di Fisica "A. Volta", Universita degli Studi di Pavia, via Bassi 6, 27100 Pavia, Italy Department of Physics and Institute for Optical Sciences, University of Toronto, 60 St. ...

  12. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Oak Ridge, TN 37831 2-University of Heidelberg, Heidelberg, Germany 3-National Academy of Science of Ukraine, Kiev, Ukraine Achievement Here we report direct measurements of oxygen...

  13. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    S. Allen, James M. McCollum, John R. Wilgus, Gary S. Sayler, and Chris D. Cox. Co-author Roy D. Dar was a DOE Science Undergraduate Laboratory Intern student working with...

  14. Opportunities for Materials Science and Biological Research at the OPAL Research Reactor

    SciTech Connect (OSTI)

    Kennedy, S. J.

    2008-03-17

    Neutron scattering techniques have evolved over more than 1/2 century into a powerful set of tools for determination of atomic and molecular structures. Modern facilities offer the possibility to determine complex structures over length scales from {approx}0.1 nm to {approx}500 nm. They can also provide information on atomic and molecular dynamics, on magnetic interactions and on the location and behaviour of hydrogen in a variety of materials. The OPAL Research Reactor is a 20 megawatt pool type reactor using low enriched uranium fuel, and cooled by water. OPAL is a multipurpose neutron factory with modern facilities for neutron beam research, radioisotope production and irradiation services. The neutron beam facility has been designed to compete with the best beam facilities in the world. After six years in construction, the reactor and neutron beam facilities are now being commissioned, and we will commence scientific experiments later this year. The presentation will include an outline of the strengths of neutron scattering and a description of the OPAL research reactor, with particular emphasis on it's scientific infrastructure. It will also provide an overview of the opportunities for research in materials science and biology that will be possible at OPAL, and mechanisms for accessing the facilities. The discussion will emphasize how researchers from around the world can utilize these exciting new facilities.

  15. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    a diverse collection of leading journals, such as Nano Letters, Advanced Materials, and ACS Nano. They have also built capabilities for nanofiber synthesis and characterization at...

  16. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    in multiferroic BiFeO3, only 2-3 nm wide and distinct from the surrounding insulating material.1 Conductivity was completely unexpected since domain walls present only a subtle...

  17. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Rouleau,3 Karren L. More,5 G. Tayhas R. Palmore,2 and Robert H. Hurt2 1-Dept Chemistry, Brown University 2-School of Engineering, Brown University 3-Center for Nanophase Materials...

  18. Materials and Chemical Science and Technology | Solar Research...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    High-efficiency crystalline materials and devices, including high-efficiency single-crystal silicon, silicon tandems, III-V multijunctions, and low-cost III-V 1-sun devices Cell ...

  19. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    oxidative stress, indicating that the fullerenes can be absorbed into living tissue. This led CNMS researchers to investigate the potential impact of buckyballs if they...

  20. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    meet various research needs. The chemical or physical exfoliation of graphite is a straightforward method to produce graphene with minimal synthesis effort, since it takes...

  1. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Jose M. Romo-Herrera CNMS User, Institute for Scientific and Technological Research of San Luis Potosi (IPICYT), Bobby G. Sumpter (CNMS Staff), David A. Cullen (Arizona State...

  2. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    a whole new family of previously unknown electronic properties. Credit Published in Nano Letters, DOI: 10.1021nl203349b. Research at Oak Ridge National Laboratory's Center for...

  3. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    nanoscale system components that can be directly imaged. In this work Nature Genetics, 40(4), 466-470 (2008), in collaboration with a researcher at the University of...

  4. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    CNMS RESEARCH Synthesis and Directed Growth of Single-Crystal TCNQ-Cu Organic Nanowires K. Xiao, J. Tao, and Z. Liu (CNMS Postdocs); I. N. Ivanov, A.A. Puretzky, Z. Pan, and D.B....

  5. Material Science and Nuclear Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Material Science and Nuclear Science Material Science and Nuclear Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. The Lab's four Science Pillars harness capabilities for solutions to threats- on national and global scales. Contact thumbnail of Business Development Business Development Richard P. Feynman Center for Innovation

  6. Nuclear Materials Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    MST MST-16 Nuclear Materials Science Our multidisciplinary expertise comprises the core actinide materials science and metallurgical capability within the nuclear weapons ...

  7. Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96

    SciTech Connect (OSTI)

    Chase, L.

    1997-03-01

    This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

  8. Materials Science and Technology

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    PADSTE » ADEPS » MST Materials Science and Technology Providing world-leading, innovative, and agile materials science and technology solutions for national security missions. MST is metallurgy. The Materials Science and Technology Division provides scientific and technical leadership in materials science and technology for Los Alamos National Laboratory. READ MORE MST is engineered materials. The Materials Science and Technology Division provides scientific and technical leadership in

  9. Berkeley Lab - Materials Sciences Division

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    How to Train Your Bacterium Peidong Yang, a chemist with Berkeley Lab's Materials Sciences Division, and his researchers are using the bacterium Moorella thermoacetica to perform...

  10. Chemistry and Materials Science progress report, first half FY 1992. Weapons-Supporting Research and Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This report contains sections on: Fundamentals of the physics and processing of metals; interfaces, adhesion, and bonding; energetic materials; plutonium research; synchrotron radiation-based materials science; atomistic approach to the interaction of surfaces with the environment: actinide studies; properties of carbon fibers; buried layer formation using ion implantation; active coherent control of chemical reaction dynamics; inorganic and organic aerogels; synthesis and characterization of melamine-formaldehyde aerogels; structural transformation and precursor phenomena in advanced materials; magnetic ultrathin films, surfaces, and overlayers; ductile-phase toughening of refractory-metal intermetallics; particle-solid interactions; electronic structure evolution of metal clusters; and nanoscale lithography induced chemically or physically by modified scanned probe microscopy.

  11. Fusion Materials Science and Technology Research Needs: Now and During the ITER era

    SciTech Connect (OSTI)

    Wirth, Brian D.; Kurtz, Richard J.; Snead, Lance L.

    2013-09-30

    The plasma facing components, first wall and blanket systems of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Indeed, the United States National Academy of Engineering has recently ranked the quest for fusion as one of the top grand challenges for engineering in the 21st Century. These challenges are even more pronounced by the lack of experimental testing facilities that replicate the extreme operating environment involving simultaneous high heat and particle fluxes, large time varying stresses, corrosive chemical environments, and large fluxes of 14-MeV peaked fusion neutrons. This paper will review, and attempt to prioritize, the materials research and development challenges facing fusion nuclear science and technology into the ITER era and beyond to DEMO. In particular, the presentation will highlight the materials degradation mechanisms we anticipate to occur in the fusion environment, the temperature- displacement goals for fusion materials and plasma facing components and the near and long-term materials challenges required for both ITER, a fusion nuclear science facility and longer term ultimately DEMO.

  12. 1995 Federal Research and Development Program in Materials Science and Technology

    SciTech Connect (OSTI)

    1995-12-01

    The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly a century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The

  13. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect (OSTI)

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  14. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  15. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  16. Sandia National Laboratories: Careers: Materials Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials Science Materials science worker Sandia materials scientists are creating scientifically tailored materials for U.S. energy applications and critical defense needs. Sandia's focus on scientifically tailored materials capitalizes on our expertise in solid-state sciences, advanced atomic-level diagnostics, and materials synthesis and processing science. Our research uses Sandia's experimental, theoretical, and computational capabilities to establish the state of the art in materials

  17. Materials Science | Concentrating Solar Power | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials Science National Renewable Energy Laboratory (NREL) researchers develop and support others in developing materials for use in concentrating solar power (CSP). These ...

  18. Science Research Connection

    Office of Scientific and Technical Information (OSTI)

    Science Research Connection Science Research Connection (SRC) offers to the DOE community research information integrated from various OSTI databases, including both unclassified...

  19. Materials Science | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials Science Materials Science The unique internal construction of the gas-filled panels developed at the Lawrence Berkeley National Laboratory in California are as effective barriers to heat as its pink fibrous counterparts with less material in less space. <a href="http://energy.gov/articles/berkeley-labs-gas-filled-insulation-rivals-fiber-buildings-sector">Learn more about this cost-effective, energy-efficient insulation</a>. The unique internal construction of the

  20. Nuclear Materials Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    MST » MST-16 Nuclear Materials Science Our multidisciplinary expertise comprises the core actinide materials science and metallurgical capability within the nuclear weapons production and surveillance communities. Contact Us Group Leader David Pugmire Email Deputy Group Leader (acting) Marianne Wilkerson Email Group Office (505) 667-4665 The evaluations performed by our group are essential for the nuclear weapons program as well as nuclear materials storage, forensics, and actinide fundamental

  1. The Center for Nanophase Materials Sciences (Other) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    National Laboratory (ORNL) integrates nanoscale science with neutron science; synthesis ... environment for research to understand nanoscale materials and phenomena. ...

  2. Materials science and engineering

    SciTech Connect (OSTI)

    Holden, T.M.

    1995-10-01

    The science-based stockpile stewardship program emphasizes a better understanding of how complex components function through advanced computer calculations. Many of the problem areas are in the behavior of materials making up the equipment. The Los Alamos Neutron Science Center (LANSCE) can contribute to solving these problems by providing diagnostic tools to examine parts noninvasively and by providing the experimental tools to understand material behavior in terms of both the atomic structure and the microstructure. Advanced computer codes need experimental information on material behavior in response to stress, temperature, and pressure as input, and they need benchmarking experiments to test the model predictions for the finished part.

  3. Materials Science Application Training 2015

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    5 Materials Science Application Training 2015 NERSC will present an one-hour online training class focused on Materials Science applications, VASP and Quantum Espresso on June 5, ...

  4. Materials Science Application Training 2016

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    6 Materials Science Application Training 2016 June 3, 2016 NERSC will present an one-hour online training class focused on Materials Science applications, VASP and Quantum Espresso ...

  5. Fusion Materials Science and Technology Research Opportunities now and during the ITER Era

    SciTech Connect (OSTI)

    Zinkle, Steven J.; Blanchard, James; Callis, Richard W.; Kessel, Charles E.; Kurtz, Richard J.; Lee, Peter J.; Mccarthy, Kathryn; Morley, Neil; Najmabadi, Farrokh; Nygren, Richard; Tynan, George R.; Whyte, Dennis G.; Willms, Scott; Wirth, Brian D.

    2014-03-13

    Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: 1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the single-effects concept exploration stage, Technology Readiness Levels >3), 2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and 3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

  6. Fusion materials science and technology research opportunities now and during the ITER era

    SciTech Connect (OSTI)

    S.J. Zinkle; J.P. Planchard; R.W. Callis; C.E. Kessel; P.J. Lee; K.A. McCarty; Various Others

    2014-10-01

    Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: (1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the singleeffects concept exploration stage, technology readiness levels >3), (2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and (3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

  7. Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Alex Zunger; Tumas, Bill; CID Staff

    2011-05-01

    'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

  8. Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Alex Zunger (former Director, Center for Inverse Design); Tumas, Bill (Director, Center for Inverse Design); CID Staff

    2011-11-02

    'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

  9. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  10. Thin-Film Material Science and Processing | Materials Science | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Thin-Film Material Science and Processing Photo of a stainless steel piece of equipment with multiple hoses and other equipment attached. NREL's expertise focuses on using thin films to create and enable technologically useful applications. For renewable energy, a prime example of this research is thin-film photovoltaics (PV). Thin films are important because they offer the potential for low-cost processing with minimal material usage while fulfilling application requirements. Importantly, this

  11. Materials Science / Data Technology Nexus

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials Science / Data Technology Nexus Materials Science / Data Technology Nexus: IMS mini-symposium This one day mini-symposium is aligned with the CINT 2016 User Meeting, September 19 - 20 thumbnail of Contact Institute Director Dr. Alexander V. Balatsky Institute for Materials Science (505) 665-0077 Email Deputy Director Dr. Jennifer S. Martinez Institute for Materials Science (505) 665-0045 Email Deputy Director Dr. Nathan A. Mara Institute for Materials Science (505) 667 8665 Email

  12. Work with Us | Materials Science | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Work with Us We are eager to pursue materials science research with partners in industry, universities, and other organizations. Contact Us Photo of Nancy Haegel Nancy Haegel Center Director, Materials Science Center Email | 303-384-6548 For lead researcher contacts, see our research areas. To find research group managers or specific researchers, see our listing of research staff. Interested in Joining Our Team? Find an opportunity: Job | Internship | Post-doc Plan Your Visit Map to NREL Golden,

  13. Materials sciences programs, Fiscal year 1997

    SciTech Connect (OSTI)

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  14. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Burns, Peter (Director, Materials Science of Actinides); MSA Staff

    2011-11-03

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  15. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Burns, Peter; MSA Staff

    2011-05-01

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  16. Panel 3 - material science

    SciTech Connect (OSTI)

    Sarrao, John L; Yip, Sidney

    2010-01-01

    In the last decades, NNSA's national security challenge has evolved, and the role of simulation and computation has grown dramatically. The process of certifying nuclear weapons performance has changed from one based on integrated tests to science-based certification in which underground nuclear tests have been replaced by large-scale simulations, appropriately validated with fundamental experimental data. Further, the breadth of national security challenges has expanded beyond stewardship of a nuclear deterrent to a broad range of global and asymmetric threats. Materials challenges are central to the full suite of these national security challenges. Mission requirements demand that materials perform predictably in extreme environments -- high pressure, high strain rate, and hostile irradiation and chemical conditions. Considerable advances have been made in incorporating fundamental materials physics into integrated codes used for component certification. On the other hand, significant uncertainties still remain, and materials properties, especially at the mesoscale, are key to understanding uncertainties that remain in integrated weapons performance codes and that at present are treated as empirical knobs. Further, additional national security mission challenges could be addressed more robustly with new and higher performing materials.

  17. Materials sciences programs, fiscal year 1994

    SciTech Connect (OSTI)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  18. Materials and Chemical Sciences Division annual report, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  19. Chemistry and Material Sciences Applications

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Chemistry and Material Sciences Applications Chemistry and Material Sciences Applications June 26, 2012 Jack Zhengji NERSC Training Event 09:00 - 12:00 PST June 26, 2012 Concurrently presented on the web and at NERSC's Oakland Scientific Facility Attendance: 45 Chemistry and Material Sciences Applications Zhengji Zhao, NERSC User Services Group Jack Deslippe, NERSC User Services Group The first hour of the training is targeted at beginners. We will show you how to get started running material

  20. X-Ray Microscopy and Imaging: Science and Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    fields: Biology and Life Sciences Environmental Sciences Materials Science Nanoscience Optics and Fundamental Physics Our research often employs the following techniques: Coherent...

  1. Collaborative Research. Fundamental Science of Low Temperature Plasma-Biological Material Interactions

    SciTech Connect (OSTI)

    Graves, David Barry; Oehrlein, Gottlieb

    2014-09-01

    atmospheric pressure using several types of low temperature plasma sources, for which radical induced interactions generally dominate due to short mean free paths of ions and VUV photons. For these conditions we demonstrated the importance of environmental interactions when atmospheric pressure plasma sources are used to modify biomolecules. This is evident from both gas phase characterization data and in-situ surface characterization of treated biomolecules. Environmental interactions can produce unexpected outcomes due to the complexity of reactions of reactive species with the atmosphere which determines the composition of reactive fluxes and atomistic changes of biomolecules. Overall, this work clarified a richer spectrum of scientific opportunities and challenges for the field of low temperature plasma-biomolecule surface interactions than initially anticipated, in particular for plasma sources operating at atmospheric pressure. The insights produced in this work, e.g. demonstration of the importance of environmental interactions, are generally important for applications of APP to materials modifications. Thus one major contributions of this research has been the establishment of methodologies to more systematically study the interaction of plasma with bio-molecules. In particular, our studies of atmospheric pressure plasma sources using very well-defined experimental conditions enabled to combine atomistic surface modifications of biomolecules with changes in their biological function. The clarification of the role of ions, VUV photons and radicals in deactivation of biomolecules during low pressure and atmospheric pressure plasma-biomolecule interaction has broad implications, e.g. for the emerging field of plasma medicine. The development of methods to detect the effects of plasma treatment on immune-active biomolecules will be helpful in many future studies.

  2. What Makes Science, Science? Research, Shared Effort ... & A...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Makes Science, Science? Research, Shared Effort ... & A New Office of Science Website What Makes Science, Science? Research, Shared Effort ... & A New Office of Science Website ...

  3. ENVIRONMENTAL SCIENCES; ENVIRONMENTAL MATERIALS; CONTAMINATION...

    Office of Scientific and Technical Information (OSTI)

    audit of SRP radioactive waste Ashley, C. 05 NUCLEAR FUELS; 54 ENVIRONMENTAL SCIENCES; ENVIRONMENTAL MATERIALS; CONTAMINATION; RADIOACTIVE EFFLUENTS; EMISSION; HIGH-LEVEL...

  4. Basic Energy Sciences Materials Sciences programs: FWP executive summaries

    SciTech Connect (OSTI)

    Vook, F.L.; Samara, G.A.

    1989-02-01

    The goals of our Basic Energy Sciences (BES) Materials Science Program at Sandia are: (1) Perform basic, forefront interdisciplinary research using the capabilities of several organizations. (2) Choose programs broadly complementary to Sandia's weapons laboratory mission, but separably identifiable. (3) Perform research in a setting which enhances technological impact because of Sandia's spectrum of basic research, applied research and development engineering. (4) Use large, capital-intensive research facilities not usually found at universities. The BES Materials Science program at Sandia Albuquerque has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia's expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics, and materials-processing science to produce new classes of tailorable materials for the US energy industry, the electronics industry and for defense needs. Current research in this program includes ion-implantation-modified materials, physics and chemistry of ceramics, tailored surfaces for materials applications, strained-layer semiconductors, chemical vapor deposition, surface photo kinetics, organic and high-temperature superconductors, advanced growth techniques for improved semiconductor structures and boron-rich very high temperature semiconductors.

  5. ENERGY FRONTIER RESEARCH CENTERS SCIENCE FOR OUR...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    FRONTIER RESEARCH CENTERS SCIENCE FOR OUR NATION'S ENERGY FUTURE September 2016 CALIFORNIA Light-Material Interactions in Energy Conversion (LMI) California Institute of Technology ...

  6. UNCLASSIFIED Institute for Materials Science Lecture Series

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Edwin L. Thomas Dean of Engineering Professor of Materials Science and NanoEngineering Rice University - Houston, Texas Indistinguishable from Magic? (A Perspective on Some Aspects of Materials Research in the Next Decade) Tuesday, March 22, 2016 10am - 11am MSL Auditorium (TA-03 - Bldg 1698 - Room A103) Addressing multifunctional materials: The mighty electron, the cool photon and the lowly phonon...how waves in periodic materials lead to interesting properties. Problem Driven Research:

  7. Center for Nanophase Materials Sciences (CNMS) | U.S. DOE Office of Science

    Office of Science (SC) [DOE]

    (SC) Nanophase Materials Sciences (CNMS) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators'

  8. Materials Science Applications

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Science Applications VASP VASP is a plane wave ab initio code for quantum mechanical molecular dynamics. It is highly scalable and shows very good parallel performance for a...

  9. Materials and Molecular Research Division: Annual report, 1986

    SciTech Connect (OSTI)

    Phillips, N.E.; Muller, R.H.; Peterson, C.V.

    1987-07-01

    Research activities are reported under the following headings: materials sciences, chemical sciences, nuclear sciences, fossil energy, energy storage systems, and work for others. (DLC)

  10. Materials Sciences programs, Fiscal year 1993

    SciTech Connect (OSTI)

    1994-02-01

    This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

  11. Materials Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Materials Science Materials Science The unique internal construction of the gas-filled panels developed at the Lawrence Berkeley National Laboratory in California are as effective barriers to heat as its pink fibrous counterparts with less material in less space. <a href="http://energy.gov/articles/berkeley-labs-gas-filled-insulation-rivals-fiber-buildings-sector">Learn more about this cost-effective, energy-efficient insulation</a>. The unique internal construction of the

  12. Basic Energy Sciences FY 2011 Research Summaries

    SciTech Connect (OSTI)

    2011-01-01

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  13. Basic Energy Sciences FY 2012 Research Summaries

    SciTech Connect (OSTI)

    2012-01-01

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  14. Basic Energy Sciences FY 2014 Research Summaries

    SciTech Connect (OSTI)

    2014-01-01

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  15. Materials Sciences and Engineering

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Batteries Electric Drive Systems Hydrogen Materials & Components Compatibility Hydrogen ...

  16. Interfacial and Surface Science | Materials Science | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Interfacial and Surface Science Image of irregular-outlined, light-colored shapes on a dark background. Represents a tapping-mode atomic force microscope image of gallium phosphide on silicon. NREL researchers have developed an integrated set of experimental capabilities to address a broad range of fundamental and applied issues in surface and interfacial science that are critical for advancing sustainable-energy technologies. Surface and interface phenomena often control the opto-electronic,

  17. Materials Science / Data Technology Nexus

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (505) 665-3950 Email Materials Science and Data Technology Nexus Dates: September 21, 2016 Venue: La Fonda on the Plaza, Santa Fe, NM, USA Registration: New Mexico Consortium (NMC) ...

  18. Chemistry and Material Sciences Codes at NERSC

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Chemistry and Material Sciences Codes Chemistry and Material Sciences Codes at NERSC April 6, 2011 Last edited: 2016-04-29 11:35:1

  19. Materials Science in Radiation and Dynamics Extremes

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    8 Materials Science in Radiation and Dynamics Extremes Our combination of modeling and experimental testing capabilities opens up unparalleled opportunities to do fundamental research leading to physics-based predictive models. Contact Us Group Leader Ellen Cerreta Email Deputy Group Leader Christopher Stanek Email Group Office (505) 665-4735 We predict structure/property relationships of materials, perform computational materials modeling, characterize thermophysical properties, and measure the

  20. Material Science Smart Coatings

    SciTech Connect (OSTI)

    Rubinstein, A. I.; Sabirianov, R. F.; Namavar, Fereydoon

    2014-07-01

    The contribution of electrostatic interactions to the free energy of binding between model protein and a ceramic implant surface in the aqueous solvent, considered in the framework of the nonlocal electrostatic model, is calculated as a function of the implant low-frequency dielectric constant. We show that the existence of a dynamically ordered (low-dielectric) interfacial solvent layer at the protein-solvent and ceramic-solvent interface markedly increases charging energy of the protein and ceramic implant, and consequently makes the electrostatic contribution to the protein-ceramic binding energy more favorable (attractive). Our analysis shows that the corresponding electrostatic energy between protein and oxide ceramics depends nonmonotonically on the dielectric constant of ceramic, εC. Obtained results indicate that protein can attract electrostatically to the surface if ceramic material has a moderate εC below or about 35 (in particularly ZrO2 or Ta2O5). This is in contrast to classical (local) consideration of the solvent, which demonstrates an unfavorable electrostatic interaction of protein with typical metal oxide ceramic materialsC>10). Thus, a solid implant coated by combining oxide ceramic with a reduced dielectric constant can be beneficial to strengthen the electrostatic binding of the protein-implant complex.

  1. Chemistry and materials science progress report, FY 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-01

    Research is reported in the areas of surface science, fundamentals of the physics and processing of metals, energetic materials, transactinide materials and properties and other indirectly related areas of weapons research.

  2. FWP executive summaries: Basic energy sciences materials sciences programs

    SciTech Connect (OSTI)

    Not Available

    1990-02-01

    The BES Materials Science program at Sandia Albuquerque has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia's expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials-processing science to produce new classes of tailorable materials for the US energy industry, the electronics industry and for defense needs. Current research in this program includes the physics and chemistry of ceramics, the use of energetic particles for the synthesis and study of materials, high-temperature and organic superconductors, tailored surfaces for materials applications, chemical vapor deposition sciences, strained-layer semiconductors, advanced growth techniques for improved semiconductor structures and boron-rich very high temperature semiconductors. A new start just getting underway deals with the atomic level science of interfacial adhesion. Our interdisciplinary program utilizes a broad array of sophisticated, state-of-the-art experimental capabilities provided by other programs. The major capabilities include several molecular-beam epitaxy and chemical-vapor-deposition facilities, electron- and ion-beam accelerators, laser-based diagnostics, advanced surface spectroscopies, unique combined high-pressure/low-temperature/high-magnetic-field facilities, and the soon to be added scanning tunneling and atomic force microscopies.

  3. Materials sciences programs fiscal year 1996

    SciTech Connect (OSTI)

    1997-06-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  4. Materials sciences programs: Fiscal year 1995

    SciTech Connect (OSTI)

    1996-05-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  5. Sandia Energy - Materials Science and Engineering Support for...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project Home Renewable Energy Energy...

  6. Chemistry and Materials Science progress report, FY 1994. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-01-01

    Thrust areas of the weapons-supporting research include surface science, fundamentals of the physics and processing of metals, energetic materials, etc. The laboratory directed R and D include director`s initiatives, individual projects, and transactinium science studies.

  7. UNCLASSIFIED Institute for Materials Science Sponsored Lecture

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Garritt Tucker Drexel University, Philadelphia, Pennsylvania Atomistic Methods to Quantify Nanoscale Strain and Deformation Mechanisms in Nanostructured Materials Thursday, August 27, 2015 3:00 - 4:00pm MSL Auditorium (TA-03, Bldg. 1698, Room A103) Abstract: As the theoretical physicist, Sir Frederick Charles Franck, said, 'Crystals are like people: it is the defects in them that make them interesting.' Fundamental research in Materials Science and Engineering focuses on linking structure and

  8. Materials Science of Actinides (MSA) | U.S. DOE Office of Science (SC)

    Office of Science (SC) [DOE]

    Materials Science of Actinides (MSA) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Materials Science of Actinides (MSA) Print Text Size: A A A FeedbackShare Page MSA Header Director Peter Burns Lead Institution University of Notre Dame Year Established 2009 Mission To conduct collaborative, multidisciplinary, novel and transformative research on actinide materials

  9. Applications Solutions Science Predicting Materials Behavior

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Science Predicting Materials Behavior Data Science at Scale ... as to enable the best performance given a set of ... modeling, design, and optimization These IS&T efforts are ...

  10. Center for Nanophase Materials Sciences - Newsletter January...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Center for Nanophase Materials Sciences and Panos Datskos of ORNL Measurement Science and Systems Engineering Division The technology, based on nonlinear nanomechanical resonators,...

  11. Materials and Chemical Sciences Division annual report 1989

    SciTech Connect (OSTI)

    Not Available

    1990-07-01

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

  12. The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Allen, Todd (Director, Center for Material Science of Nuclear Fuel); CMSNF Staff

    2016-07-12

    'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

  13. The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Allen, Todd; CMSNF Staff

    2011-05-01

    'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

  14. materials science | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    materials science NNSA-lab-created new magnets will power renewable technology The Ion Beam Materials Laboratory at NNSA's Los Alamos National Laboratory (LANL) works to ...

  15. Big, Deep, and Smart Data in Energy Materials Research: Atomic...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Big, Deep, and Smart Data in Energy Materials Research: Atomic View on Materials Functionalities Event Sponsor: Computing, Environment, and Life Sciences Seminar Start Date: Sep 22...

  16. Materials Science: the science of everything | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Materials Science: the science of everything Friday, July 24, 2015 - 10:57am Y-12 Senior Metallurgist Steven Dekanich and NASA Materials Science Branch Chief Steve McDanels teamed up to lead a weeklong materials science camp that took at the University of Tennessee in Knoxville. The camp, which has been held since 2004, was jointly sponsored by Consolidated Nuclear Services (CNS), Oak Ridge National Laboratory, the University of Tennessee and the Knoxville chapter of

  17. DOE Science Showcase - Neutron Science Research from DOE Databases...

    Office of Scientific and Technical Information (OSTI)

    Neutron Science Research from DOE Databases Additional neutron science research in DOE Databases Information Bridge Neutron scattering research was pioneered in 1946 by ORNL's ...

  18. Inspiring Careers in Science Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    exposure to science areas across the Laboratory. Scientists who are interested in speaking at Lowell High School about their research can contact Elizabeth at...

  19. Science DMZ Fuels Fusion Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Science DMZ Fuels Fusion Research General Atomics remote controls fusion experiments, bridges...

  20. Ultrafast Materials and Chemical Sciences FOA | U.S. DOE Office of Science

    Office of Science (SC) [DOE]

    (SC) Ultrafast Materials and Chemical Sciences FOA Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search / Public Abstracts Additional Requirements and Guidance for Digital Data Management Peer Review Policies EFRCs FOA Applications from Universities and Other Research Institutions Construction Review EPSCoR DOE Office of Science Graduate

  1. Theory VI. Computational Materials Sciences Network (CMSN)

    SciTech Connect (OSTI)

    Zhang, Z Y

    2008-06-25

    The Computational Materials Sciences Network (CMSN) is a virtual center consisting of scientists interested in working together, across organizational and disciplinary boundaries, to formulate and pursue projects that reflect challenging and relevant computational research in the materials sciences. The projects appropriate for this center involve those problems best pursued through broad cooperative efforts, rather than those key problems best tackled by single investigator groups. CMSN operates similarly to the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials, coordinated by George Samara at Sandia. As in the Synthesis and Processing Center, the intent of the modest funding for CMSN is to foster partnering and collective activities. All CMSN proposals undergo external peer review and are judged foremost on the quality and timeliness of the science and also on criteria relevant to the objective of the center, especially concerning a strategy for partnering. More details about CMSN can be found on the CMSN webpages at: http://cmpweb.ameslab.gov/ccms/CMSN-homepage.html.

  2. Basic Research Needs for Materials Under Extreme Environments. Report of the Basic Energy Sciences Workshop on Materials Under Extreme Environments, June 11-13, 2007

    SciTech Connect (OSTI)

    Wadsworth, J.; Crabtree, G. W.; Hemley, R. J.; Falcone, R.; Robertson, I.; Stringer, J.; Tortorelli, P.; Gray, G. T.; Nicol, M.; Lehr, J.; Tozer, S. W.; Diaz de la Rubia, T.; Fitzsimmons, T.; Vetrano, J. S.; Ashton, C. L.; Kitts, S.; Landson, C.; Campbell, B.; Gruzalski, G.; Stevens, D.

    2008-02-01

    To evaluate the potential for developing revolutionary new materials that will meet demanding future energy requirements that expose materials to environmental extremes.

  3. Molecular Science Research Center 1992 annual report

    SciTech Connect (OSTI)

    Knotek, M.L.

    1994-01-01

    The Molecular Science Research Center is a designated national user facility, available to scientists from universities, industry, and other national laboratories. After an opening section, which includes conferences hosted, appointments, and projects, this document presents progress in the following fields: chemical structure and dynamics; environmental dynamics and simulation; macromolecular structure and dynamics; materials and interfaces; theory, modeling, and simulation; and computing and information sciences. Appendices are included: MSRC staff and associates, 1992 publications and presentations, activities, and acronyms and abbreviations.

  4. Biology Chemistry & Material Science Laboratory 1 | Sample Preparation...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1 Cynthia Patty | (650) 926-3925 Biology Chemistry & Material Science Laboratory 1 Inventory The BioChemMat Lab 1 at SSRL is dedicated to researcher experiments, including x-ray ...

  5. Biology Chemistry & Material Science Laboratory 2 | Sample Preparation...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2 Cynthia Patty | (650) 926-3925 Biology Chemistry & Material Science Laboratory 2 Inventory The BioChemMat Lab 2 (BCM 2) at SSRL is dedicated to researcher experiments, including ...

  6. Introduction to Chemistry and Material Sciences Applications

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Intro Chem and MatSci Apps Introduction to Chemistry and Material Sciences Applications June 26, 2012 Last edited: 2016-04-29 11:34:4

  7. Introduction to Chemistry and Material Sciences Applications

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Intro Chem and MatSci Apps Introduction to Chemistry and Material Sciences Applications June 26, 2012 Last edited: 2016-04-29 11:34:4

  8. Bayer MaterialScience | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Leverkusen, Germany Website: www.bayermaterialscience.comi References: Bayer Material Science1 Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

  9. Science and Technology Facility | Photovoltaic Research | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Science and Technology Facility Solar cell, thin-film, and nanostructure research are conducted in our Science and Technology Facility (S&TF). Photo of the Science and Technology Facility Designed specifically to reduce time delays associated with transferring technology to industry, the S&TF's 71,000 square feet is a multi-level facility of lab space, office space, and lobby connected by an elevated bridge to the SERF. The S&TF houses advanced material synthesis, characterization,

  10. Other: Advancing Materials Science using Neutrons at Oak Ridge National

    Office of Scientific and Technical Information (OSTI)

    Laboratory | ScienceCinema Advancing Materials Science using Neutrons at Oak Ridge National Laboratory Citation Details Title: Advancing Materials Science using Neutrons at Oak Ridge National Laboratory

  11. Research Conduct Policies | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Research Conduct Policies Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic

  12. Scenes from Argonne's Materials Engineering Research Facility | Argonne

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    National Laboratory Scenes from Argonne's Materials Engineering Research Facility Share Description B-roll for the Materials Engineering Research Facility Topic Energy Energy usage Energy storage Batteries Lithium-air batteries Lithium-ion batteries Programs Chemical sciences & engineering Electrochemical energy storage Materials science

  13. Materials Science: the science of everything | Y-12 National Security

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Complex Materials Science: the ... Materials Science: the science of everything Posted: July 9, 2015 - 4:24pm Participants in the 2015 ASM Materials Camp pose for a photo during a Skype conversation with NASA astronauts Barry "Butch" Wilmore, left, and Jeffrey Williams. On the 50th anniversary of the first American spacewalk June 3, a group of high school students gathered to talk via Skype with two NASA astronauts who themselves have spacewalked a dozen times during their careers.

  14. NREL: Photovoltaics Research - New Materials, Devices, and Processes...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Scientific Computing Experimental Materials Science Solid-State Theory. NREL has strong complementary research capabilities in organic photovoltaic (OPV) cells, transparent ...

  15. Center for Nanoscale Materials (CNM) | U.S. DOE Office of Science (SC)

    Office of Science (SC) [DOE]

    Nanoscale Materials (CNM) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home

  16. Materials and Molecular Research Division annual report 1980

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    Progress made in the following research areas is reported: materials sciences (metallurgy and ceramics, solid state physics, materials chemistry); chemical sciences (fundamental interactions, processes and techniques); nuclear sciences; fossil energy; advanced isotope separation technology; energy storage; magnetic fusion energy; and nuclear waste management.

  17. SECTION IV: ATOMIC, MOLECULAR AND MATERIALS SCIENCE

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ATOMIC, MOLECULAR AND MATERIALS SCIENCE A semiempirical scaling law for target K x-ray production in heavy ion collisions...... IV-1 R. L. Watson, Y. Peng, V. Horvat, and A. ...

  18. Research Staff | Materials Science | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Joe Berry | Email Andre Bikawski | Email Steve Harvey | Email Paul Ndione | Email Michele ... Arrelaine Dameron | Email Rebekah Garris | Email Stephen Glynn | Email Hasitha Padmika ...

  19. Sandia National Labs: PCNSC: Research: Optical Sciences

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Optical Sciences The focus of the Optical Sciences thrust is to understand and exploit the elegant interaction between light and matter. Our research portfolio encompasses the ...

  20. Nuclear Science Research facility at LANSCE

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Neutron and Nuclear Science (WNR) Facility at LANSCE lansce facility at LANL Introduction ... Neutron Scattering Center (Target-1) and the Neutron and Nuclear Science Research facility ...

  1. Research | Critical Materials Institute

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Research Four Research Thrusts organizational chart of four research thrusts (A click on the org chart image will lead to a pdf version that includes hotlinks for the e-mail addresses for leaders.) CMI has more than 30 projects focused in four areas. Project titles are available in a table, which can be sorted by project leader, location of project leader, project title or project number. CMI research is conducted at partner institutions, including national laboratories, universities and

  2. Research Alliance in Math and Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    News and Highlights Rice's Richard Tapia to receive National Medal of Science ORNL women lead high-performance computing panels at Tapia 2011 Tapia Conference 2011: Reshaped by Feedback Congratulations, SERCh finalist! Exploration of High-Dimensional Nuclei Data RAMS internship 'really challenged my intellect,' CSM intern says Computational biology work as RAMS intern becomes material for PhD thesis Parallel computing intern used RAMS research to finish senior thesis ORNL RAMS intern, Jessica

  3. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    SciTech Connect (OSTI)

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  4. Materials Research | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials Research Continuous Stirred Tank Reactor (CSTR) Continuous Stirred Tank Reactor (CSTR) The Materials Research group specializes in the synthesis and electrochemical characterization of advanced battery materials for a number of energy storage applications. These include lithium-ion batteries, sodium-ion batteries and multivalent batteries. In addition, the group focuses on in operando structural studies of battery materials using synchrotron X-rays as we seek to optimize and stabilize

  5. Backscattered Diffraction | Materials Science | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Backscattered Diffraction Backscattered diffraction images showing crystalline orientation (left) and grain distribution (right). EBSD images showing properties of crystalline semiconductor materials at high resolution (micrometers). We have found electron backscattered diffraction (EBSD) to be a valuable tool for assessing crystalline specimens. EBSD is becoming an established, fully automated mode that indexes electron diffraction patterns produced by backscattered electrons under diffraction

  6. Research Areas | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Research Areas Print Text Size: A A A FeedbackShare Page To meet the challenge of supporting basic research programs that are also energy relevant, the Division manages portfolio components that consist of distinct Core Research Activities

  7. Materials Discovery | Photovoltaic Research | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Discovery The National Center for Photovoltaics (NCPV) research in materials discovery serves as a foundation for technological progress in renewable energies. Our experimental ...

  8. Evaluation of Natural Gas Pipeline Materials for Hydrogen Science...

    Office of Environmental Management (EM)

    Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen ...

  9. June 26 Training: Using Chemistry and Material Sciences Applications

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    June 26 Training: Using Chemistry and Material Sciences Applications June 26 Training: Using Chemistry and Material Sciences Applications June 15, 2012 by Francesca Verdier NERSC ...

  10. Materials Science and Technology Teachers Handbook

    SciTech Connect (OSTI)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  11. Polymer/Elastomer and Composite Material Science

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    / Elastomer and Composite Material Science KEVIN L. SIMMONS Pacific Northwest National Laboratory, Richland, WA DOE Headquarters, Forrestal Bldg. October 17-18, 2012 January 17, 2013 Kevin.simmons@pnnl.gov 1 Outline Hydrogen production, transmission, distribution, delivery system Common themes in the hydrogen system Automotive vs infrastructure Hydrogen use conditions Polymer/elastomer and composites compatibility? Common materials in BOP components, hoses, and liners Common materials in

  12. Center for Nanophase Materials Sciences (CNMS) - News

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... "ORNL materials researchers get first look at atom-thin boundaries," Space Daily (November 11, 2014) "UT, ORNL Team Up in Possible Spintronics Advancement," Tennessee Today ...

  13. Research Areas | U.S. DOE Office of Science (SC)

    Office of Science (SC) [DOE]

    Reports and Activities Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Reports and Activities Print Text Size: A A A FeedbackShare Page Program Research Summaries Conferences and Workshop Reports The Division sponsors workshops and studies to assist the identification of future research directions and/or to shape future research initiatives. The workshop reports have mostly been

  14. Research News | U.S. DOE Office of Science (SC)

    Office of Science (SC) [DOE]

    sciences, primarily in physics but also including subject areas such as chemistry, biology and life sciences, materials science, nuclear sciences and engineering, energy ...

  15. Novel Materials for Energy Research | The Ames Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Novel Materials for Energy Research Novel Materials for Energy Research The Ames Laboratory is home to the Materials Preparation Center (MPC). The MPC is a DOE Basic Energy Sciences specialized research center. It is one of the premier materials laboratories in the world for the synthesis and processing of rare earth metals and compounds, metallics alloys, complex intermetallics and inorganic compounds in both single crystalline and polycrystalline form. Established in October 1981, the MPC

  16. Materials Engineering Research Facility | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Engineering Research Facility Materials Engineering Research Facility exterior 1 of 11 Materials Engineering Research Facility exterior With the Materials Engineering Research Facility's state-of-the-art labs and equipment, Argonne researchers can safely scale up materials from the research bench for commercial testing. Photo courtesy Argonne National Laboratory. Materials Engineering Research Facility exterior 1 of 11 Materials Engineering Research Facility exterior With the Materials

  17. Molecular Science Research Center, 1991 annual report

    SciTech Connect (OSTI)

    Knotek, M.L.

    1992-03-01

    During 1991, the Molecular Science Research Center (MSRC) experienced solid growth and accomplishment and the Environmental, and Molecular Sciences Laboratory (EMSL) construction project moved forward. We began with strong programs in chemical structure and dynamics and theory, modeling, and simulation, and both these programs continued to thrive. We also made significant advances in the development of programs in materials and interfaces and macromolecular structure and dynamics, largely as a result of the key staff recruited to lead these efforts. If there was one pervasive activity for the past year, however, it was to strengthen the role of the EMSL in the overall environmental restoration and waste management (ER/WM) mission at Hanford. These extended activities involved not only MSRC and EMSL staff but all PNL scientific and technical staff engaged in ER/WM programs.

  18. NREL: Photovoltaics Research - Materials Applications and Performance...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    about the scientists specializing in each area of PV research: National Center for Photovoltaics research staff Materials Applications and Performance research staff Materials...

  19. Perspective: Codesign for materials science: An optimal learning...

    Office of Scientific and Technical Information (OSTI)

    science: An optimal learning approach Citation Details In-Document Search Title: Perspective: Codesign for materials science: An optimal learning approach Authors: Lookman, ...

  20. Advancing Materials Science using Neutrons at Oak Ridge National Laboratory

    ScienceCinema (OSTI)

    Carpenter, John

    2016-07-12

    Jack Carpenter, pioneer of accelerator-based pulsed spallation neutron sources, talks about neutron science at Oak Ridge National Laboratory (ORNL) and a need for a second target station at the Spallation Neutron Source (SNS). ORNL is the Department of Energy's largest multiprogram science and energy laboratory, and is home to two scientific user facilities serving the neutron science research community: the High Flux Isotope Reactor (HFIR) and SNS. HFIR and SNS provide researchers with unmatched capabilities for understanding the structure and properties of materials, macromolecular and biological systems, and the fundamental physics of the neutron. Neutrons provide a window through which to view materials at a microscopic level that allow researchers to develop better materials and better products. Neutrons enable us to understand materials we use in everyday life. Carpenter explains the need for another station to produce long wavelength neutrons, or cold neutrons, to answer questions that are addressed only with cold neutrons. The second target station is optimized for that purpose. Modern technology depends more and more upon intimate atomic knowledge of materials, and neutrons are an ideal probe.

  1. Electronic Structure Theory | Materials Science | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Electronic Structure Theory An image of multiple, interconnecting red and blue particles Using high-performance computing, NREL applies electronic structure theory to design and discover materials for energy applications. This includes detailed studies of the physical mechanisms that determine the material's behavior on an atomistic level. Learn more about high-performance computing. Key Research Areas Materials by Design NREL leads the U.S. Department of Energy's Center for Next Generation of

  2. SECTION IV: ATOMIC, MOLECULAR AND MATERIALS SCIENCE

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ATOMIC, MOLECULAR AND MATERIALS SCIENCE A semiempirical scaling law for target K x-ray production in heavy ion collisions............ IV-1 R. L. Watson, Y. Peng, V. Horvat, and A. N. Perumal Systematics of L x-ray satellite spectra .................................................................................. IV-4 V. Horvat, R.L. Watson, Y. Peng and J. M. Blackadar Single and multiple L-shell ionization by fast heavy ions...................................................... IV-7 V. Horvat ,

  3. UNCLASSIFIED Institute for Materials Science Lecture Series

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Lecture Series Dr Roger D Doherty M.A. D. Phil., Fellow TMS Emeritus Professor of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania Solute Enhanced Strain Hardening of Aluminum Alloys for Higher Strength / Toughness Combinations Wednesday, May 6, 2015 1:15 - 2:15 PM TA-03, Bldg. 1698, Room A103 (MSL Auditorium) Abstract: When the yield strength of metallic alloys is increased the fracture toughness almost always falls. By use of a plot of bond strength normalized

  4. Research facility access & science education

    SciTech Connect (OSTI)

    Rosen, S.P.; Teplitz, V.L.

    1994-10-01

    As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

  5. Sandia National Labs: Physical, Chemical and Nano Sciences Center...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Sciences Semiconductor & Optical Sciences Energy Sciences Small Science Cluster Business Office News Partnering Research Departments Radiation, Nano Materials, & Interface Sciences ...

  6. STICKY FINGERS: How One Researcher is Improving the Science of Fingerprints

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy STICKY FINGERS: How One Researcher is Improving the Science of Fingerprints STICKY FINGERS: How One Researcher is Improving the Science of Fingerprints May 1, 2015 - 3:42pm Addthis Linda Lewis takes a materials science approach to forensics research at Oak Ridge National Laboratory. | Photo courtesy of Oak Ridge National Laboratory. Linda Lewis takes a materials science approach to forensics research at Oak Ridge National Laboratory. | Photo courtesy of Oak Ridge

  7. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Center (LMI-EFRC) - Mark Brongersma Mark Brongersma Mark Brongersma, Professor of Materials Science and Engineering Stanford University Mark Brongersma is a Professor in the Department of Materials Science and Engineering at Stanford University. He received his PhD from the FOM Institute in Amsterdam, The Netherlands, in 1998. From 1998-2001 he was a postdoctoral research fellow at the California Institute of Technology. His current research is directed towards the development and physical

  8. Molecular forensic science of nuclear materials

    SciTech Connect (OSTI)

    Wilkerson, Marianne Perry

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  9. NETL Earns Carnegie Science Awards for Advanced Materials, Corporate

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Innovation | Department of Energy Earns Carnegie Science Awards for Advanced Materials, Corporate Innovation NETL Earns Carnegie Science Awards for Advanced Materials, Corporate Innovation March 5, 2013 - 9:16am Addthis WASHINGTON, D.C. - For its leadership and innovation in science and technology, the National Energy Technology Laboratory has earned two Carnegie Science Awards from the Carnegie Science Center. NETL representatives will pick up the Advanced Materials Award and the Corporate

  10. Damaged Material, Heal Thyself | U.S. DOE Office of Science (SC)

    Office of Science (SC) [DOE]

    Damaged Material, Heal Thyself Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 12.14.15 Damaged Material, Heal Thyself Internal storage compartments

  11. Materials Sciences Programs. Fiscal Year 1980, Office of Basic Energy Sciences

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    This report provides a convenient compilation index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs and is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index (the investigator index is in two parts - laboratory and contract research).

  12. June 26 Training: Using Chemistry and Material Sciences Applications

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    June 26 Training: Using Chemistry and Material Sciences Applications June 26 Training: Using Chemistry and Material Sciences Applications June 15, 2012 by Francesca Verdier NERSC will present a three-hour training class focussed on Chemistry and Material Sciences applications on Tuesday, June 26, from 9:00 to 12:00 Pacific Time. The first hour of the training is targeted at beginners. We will show you how to get started running material science and chemistry application codes at NERSC. We will

  13. Molecular Science Research Center annual report

    SciTech Connect (OSTI)

    Knotek, M.L.

    1991-01-01

    The Chemical Structure and Dynamics group is studying chemical kinetics and reactions dynamics of terrestrial and atmospheric processes as well as the chemistry of complex waste forms and waste storage media. Staff are using new laser systems and surface-mapping techniques in combination with molecular clusters that mimic adsorbate/surface interactions. The Macromolecular Structure and Dynamics group is determining biomolecular structure/function relationships for processes the control the biological transformation of contaminants and the health effects of toxic substances. The Materials and Interfaces program is generating information needed to design and synthesize advanced materials for the analysis and separation of mixed chemical waste, the long-term storage of concentrated hazardous materials, and the development of chemical sensors for environmental monitoring of various organic and inorganic species. The Theory, Modeling, and Simulation group is developing detailed molecular-level descriptions of the chemical, physical, and biological processes in natural and contaminated systems. Researchers are using the full spectrum of computational techniques. The Computer and Information Sciences group is developing new approaches to handle vast amounts of data and to perform calculations for complex natural systems. The EMSL will contain a high-performance computing facility, ancillary computing laboratories, and high-speed data acquisition systems for all major research instruments.

  14. EMei Semiconductor Materials Plant Research Institute | Open...

    Open Energy Information (Open El) [EERE & EIA]

    EMei Semiconductor Materials Plant Research Institute Jump to: navigation, search Name: EMei Semiconductor Materials Plant & Research Institute Place: Emei, Sichuan Province, China...

  15. ALS Ceramics Materials Research Advances Engine Performance

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics...

  16. Chemistry and Materials Science Directorate 2005 Annual Report

    SciTech Connect (OSTI)

    Diaz De La Rubia, T; Fluss, M J; Rath, K; Rennie, G; Shang, S; Kitrinos, G

    2006-08-08

    In 1952, we began laboratory operations in the barracks building of the Naval Air Station with approximately 50 employees. Today, the Chemistry and Materials Science (CMS) Directorate is a major organization at the Lawrence Livermore National Laboratory with more than 500 employees who continue to contribute to our evolving national security mission. For more than half a century, the mission of the Laboratory revolved primarily around nuclear deterrence and associated defense technologies. Today, Livermore supports a broad-based national security mission, and our specialized capabilities increasingly support emerging missions in human health and energy security. In the future, CMS will play a significantly expanded role in science and technology at the intersection of national security, energy and environment, and health. Our world-class workforce will provide the science and technology base for radically innovative materials to our programs and sponsors. Our 2005 Annual Report describes how our successes and breakthroughs follow a path set forward by our strategic plan and four organizing research themes, each with key scientific accomplishments by our staff and collaborators. Organized into two major sections-research themes and dynamic teams, this report focuses on achievements arising from earlier investments that address future challenges. The research presented in this annual report gives substantive examples of how we are proceeding in each of these four theme areas and how they are aligned with our national security mission. Research Themes: (1) Materials Properties and Performance under Extreme Conditions--We are developing ultrahard nanocrystalline metals, exploring the properties of nanotubes when exposed to very high temperatures, and engineering stronger materials to meet future needs for materials that can withstand extreme conditions. (2) Chemistry under Extreme Conditions and Chemical Engineering to Support National-Security Programs--Our recent

  17. Fusion Energy Sciences Advisory Committee Reports on Review of the Fusion Materials Research Program, Review of the Proposed Proof-of-Principle Programs, Review of the Possible Pathways for Pursuing Burning Plasma Physics, and Comments on the ER Facilities Roadmap

    SciTech Connect (OSTI)

    none,

    1998-07-01

    The Fusion Energy Science Advisory Committee was asked to conduct a review of Fusion Materials Research Program (the Structural Materials portion of the Fusion Program) by Dr. Martha Krebs, Director of Energy Research for the Department of Energy. This request was motivated by the fact that significant changes have been made in the overall direction of the Fusion Program from one primarily focused on the milestones necessary to the construction of successively larger machines to one where the necessary scientific basis for an attractive fusion energy system is. better understood. It was in this context that the review of current scientific excellence and recommendations for future goals and balance within the Program was requested.

  18. Advanced research workshop: nuclear materials safety

    SciTech Connect (OSTI)

    Jardine, L J; Moshkov, M M

    1999-01-28

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  19. Research Alliance in Math and Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    RAMS 2012 RAMS 2012 RAMS 2009 RAMS 2009 RAMS 2009 RAMS 2009 RAMS 2009 RAMS PROGRAM Workshop opportunities for 2013 will be posted as they become available. The Research Alliance in Math and Science (RAMS) Program is based on the belief that national laboratories and universities, working hand in hand, offer the best opportunity to make a positive impact on the quality of a diverse workforce. The Research Alliance in Math and Science program is designed to provide collaborative research

  20. Data Science and Optimal Learning for Material Discovery and Design

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Data Science & Optimal Learning for Material Discovery & Design Data Science and Optimal Learning for Material Discovery and Design WHEN: May 16, 2016 8:00 AM - May 18, 2016 5:00 PM WHERE: Hilton Santa Fe CONTACT: Karla Jackson (505) 667-5336 CATEGORY: Community Science TYPE: Conference INTERNAL: Calendar Login Event Description Accelerating materials discovery has been an emerging theme in several Office of Science and other government reports and proposal calls. It also has been the

  1. Gender Equity in Materials Science and Engineering

    SciTech Connect (OSTI)

    Angus Rockett

    2008-12-01

    At the request of the University Materials Council, a national workshop was convened to examine 'Gender Equity Issues in Materials Science and Engineering.' The workshop considered causes of the historic underrepresentation of women in materials science and engineering (MSE), with a goal of developing strategies to increase the gender diversity of the discipline in universities and national laboratories. Specific workshop objectives were to examine efforts to level the playing field, understand implicit biases, develop methods to minimize bias in all aspects of training and employment, and create the means to implement a broadly inclusive, family-friendly work environment in MSE departments. Held May 18-20, 2008, at the Conference Center at the University of Maryland, the workshop included heads and chairs of university MSE departments and representatives of the National Science Foundation (NSF), the Office of Basic Energy Sciences of the Department of Energy (DOE-BES), and the national laboratories. The following recommendations are made based on the outcomes of the discussions at the workshop. Many or all of these apply equally well to universities and national laboratories and should be considered in context of industrial environments as well. First, there should be a follow-up process by which the University Materials Council (UMC) reviews the status of women in the field of MSE on a periodic basis and determines what additional changes should be made to accelerate progress in gender equity. Second, all departments should strengthen documentation and enforcement of departmental procedures such that hiring, promotion, compensation, and tenure decisions are more transparent, that the reasons why a candidate was not selected or promoted are clear, and that faculty are less able to apply their biases to personnel decisions. Third, all departments should strengthen mentoring of junior faculty. Fourth, all departments must raise awareness of gender biases and work to

  2. Stanislav Golubov, and Roger Stoller - Materials Science and Technology Division, Oak Ridge

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Stanislav Golubov, and Roger Stoller - Materials Science and Technology Division, Oak Ridge National Laboratory Alexander Barashev - Department of Materials Science and Engineering, University of Tennessee Bachu Singh - Materials Research Department, Risø National Laboratory (Technical University of Denmark) During service in a commercial power reactor, the components are subjected to high heat and pressure, and bombarded by radiation. The combination of these stressors causes most materials to

  3. CMI Course Inventory: Metallurgical Engineering/Materials Science |

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Critical Materials Institute Course Inventory: Metallurgical Engineering/Materials Science Metallurgical Engineering/Materials Science Of the six CMI Team members that are educational institutions, all offer courses related to Metallurgical Engineering and/or Materials Science. The following links go to the class list on the CMI page for that school. Colorado School of Mines Iowa State University Purdue University University of California-Davis Rutgers University Brown University CMI

  4. Center for Nanophase Materials Sciences (CNMS) - News

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Physics, National Academy of Science of Ukraine, Kiev, Ukraine 8 Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE,...

  5. Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science

    SciTech Connect (OSTI)

    Crabtree, George; Glotzer, Sharon; McCurdy, Bill; Roberto, Jim

    2010-07-26

    enabled the development of computer simulations and models of unprecedented fidelity. We are at the threshold of a new era where the integrated synthesis, characterization, and modeling of complex materials and chemical processes will transform our ability to understand and design new materials and chemistries with predictive power. In turn, this predictive capability will transform technological innovation by accelerating the development and deployment of new materials and processes in products and manufacturing. Harnessing the potential of computational science and engineering for the discovery and development of materials and chemical processes is essential to maintaining leadership in these foundational fields that underpin energy technologies and industrial competitiveness. Capitalizing on the opportunities presented by simulation-based engineering and science in materials and chemistry will require an integration of experimental capabilities with theoretical and computational modeling; the development of a robust and sustainable infrastructure to support the development and deployment of advanced computational models; and the assembly of a community of scientists and engineers to implement this integration and infrastructure. This community must extend to industry, where incorporating predictive materials science and chemistry into design tools can accelerate the product development cycle and drive economic competitiveness. The confluence of new theories, new materials synthesis capabilities, and new computer platforms has created an unprecedented opportunity to implement a "materials-by-design" paradigm with wide-ranging benefits in technological innovation and scientific discovery. The Workshop on Computational Materials Science and Chemistry for Innovation was convened in Bethesda, Maryland, on July 26-27, 2010. Sponsored by the Department of Energy (DOE) Offices of Advanced Scientific Computing Research and Basic Energy Sciences, the workshop brought together

  6. Vidvuds Ozolins: Department of Materials Science and Engineering UCLA &

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Director of DOE EFRC Molecularly Engineered Energy Materials | Center for Energy Efficient Materials Vidvuds Ozolins: Department of Materials Science and Engineering UCLA & Director of DOE EFRC Molecularly Engineered Energy Materials Nov 13, 2013 | 4:00 PM - 5:00 PM Vidvuds Ozolins Professor, Department of Materials Science and Engineering, & Director, DOE EFRC Molecularly Engineered Energy Materials, University of California, Los Angeles Title Coming Soon November 13, 2013 | 4:00pm

  7. Scanning Probe Microscopy | Materials Science | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Microscopy Photo of NREL researcher using scanning probe microscope. Capability of use with ultra-high vacuum makes NREL Scanning Probe Microscopy particularly valuable for certain applications. Scanning probe microscopy (SPM) provides surface images at up to atomic scale and other valuable high-resolution data. SPM encompasses a group of techniques that use very sharp tips that scan extremely closely (several nm) to or in contact with the material being analyzed. The interaction between the tip

  8. Chemistry and Materials Science Department annual report, 1988--1989

    SciTech Connect (OSTI)

    Borg, R.J.; Sugihara, T.T.; Cherniak, J.C.; Corey, C.W.

    1989-12-31

    This is the first annual report of the Chemistry & Materials Science (C&MS) Department. The principal purpose of this report is to provide a concise summary of our scientific and technical accomplishments for fiscal years 1988 and 1989. The report is also tended to become part of the archival record of the Department`s activities. We plan to publish future editions annually. The activities of the Department can be divided into three broad categories. First, C&MS staff are assigned by the matrix system to work directly in a program. These programmatic assignments typically involve short deadlines and critical time schedules. A second category is longer-term research and development in technologies important to Laboratory programs. The focus and direction of this technology-base work are generally determined by programmatic needs. Finally, the Department manages its own research program, mostly long-range in outlook and basic in orientation. These three categories are not mutually exclusive but form a continuum of technical activities. Representative examples of all three are included in this report. The principal subject matter of this report has been divided into six sections: Innovations in Analysis and Characterization, Advanced Materials, Metallurgical Science and Technology, Surfaces and Interfaces, Energetic Materials and Chemical Synthesis, and Energy-Related Research and Development.

  9. Division of Materials Science (DMS) meeting presentation

    SciTech Connect (OSTI)

    Cline, C.F.; Weber, M.J.

    1982-11-08

    Materials preparation techniques are listed. Materials preparation capabilities are discussed for making BeF/sub 2/ glasses and other materials. Materials characterization techniques are listed. (DLC)

  10. Chemistry and Materials Science Directorate Annual Report 2003

    SciTech Connect (OSTI)

    Diaz de la Rubia, T; Shang, S P; Kitrinos, G A; Fluss, M; Westbrook, C; Rennie, G

    2004-04-21

    Evolving challenges and solid accomplishments define the year 2003 for us. Our scientific breakthroughs validate our strategic directions and reaffirm our critical role in fulfilling the Laboratory's missions. Our growth continues in new research projects and significant new programmatic support. Our mission is clear: to enable the Laboratory to accomplish its primary mission through excellence in the chemical and materials sciences. The directorate's common theme and determination has remained constant: Deliver on our commitments, while anticipating and capitalizing on opportunities through innovation in science and technology. In this, the 2003 Annual Report, we describe how our science is built around a strategic plan with four organizing themes, each with key scientific accomplishments by our staff and collaborators. Our strategic plan is synergistic with the Laboratory's Long-Range Science and Technology Plan, which identifies six areas of institutional research and development strategy. This 2003 CMS Annual Report is organized into two major sections: research themes and dynamic teams. The research-theme section addresses challenges, achievements, and new frontiers within each of the four research themes. The dynamic-teams section illustrates the directorate's organizational structure of divisions, centers, and institutes that supports a team environment across disciplinary and institutional boundaries. The research presented gives substantive examples of how we are proceeding in each of these four theme areas and how they are aligned with the institutional strategy. Our organizational structure offers an environment of collaborative problem-solving opportunities, an environment that attracts and retains the best and the brightest from across the Laboratory and around the world.

  11. Can We Beat Mother Nature at Materials Design? | U.S. DOE Office of Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (SC) Can We Beat Mother Nature at Materials Design? Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 06.09.16 Can We Beat Mother Nature at

  12. Training April 5 - Material Science and Chemistry Applications

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    April 5 Training April 5 - Material Science and Chemistry Applications March 9, 2011 by Francesca Verdier Training on "Using Chemistry and Material Sciences Applications" will be held April 5, presented simultaneously on the web and at NERSC. See Chemistry and Material Sciences Applications. Subscribe via RSS Subscribe Browse by Date October 2016 September 2016 August 2016 June 2016 May 2016 April 2016 January 2016 December 2015 November 2015 October 2015 September 2015 August 2015

  13. Nanoscale Science, Engineering and Technology Research Directions

    SciTech Connect (OSTI)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  14. UK Biotechnology and Biological Sciences Research Council | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Biotechnology and Biological Sciences Research Council Jump to: navigation, search Name: UK Biotechnology and Biological Sciences Research Council Place: London, United Kingdom...

  15. DOE Science Showcase - "PECASE: Outstanding early career research...

    Office of Scientific and Technical Information (OSTI)

    Gavin E. Crooks and Trent R. Northen of Lawrence Berkeley National Laboratory Find Gavin Crooks research with the Science Accelerator Find Trent Northen's research with the Science ...

  16. Center for Nanophase Materials Sciences (CNMS) - 2014 CNMS User...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials Sciences Oak Ridge National Laboratory September 15-19, 2014 Chestnut Ridge Campus of Oak Ridge National Laboratory Oak Ridge, Tennessee User Meeting Announcement User...

  17. Center for Nanophase Materials Sciences (CNMS) - 2011 CNMS User...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials Sciences Oak Ridge National Laboratory September 19-20, 2011 Chestnut Ridge Campus of Oak Ridge National Laboratory Oak Ridge, Tennessee User Meeting Announcement User...

  18. Center for Nanophase Materials Sciences - Summer Newsletter 2010

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1 Department of Chemistry, Vanderbilt University, Station B 351824, Nashville, TN 37235, USA 2 Center for Nanophase Materials Sciences at Oak Ridge National Laboratory, 1 Bethel...

  19. Alamos National Laboratory] Materials Science(36) Abstract Not...

    Office of Scientific and Technical Information (OSTI)

    Co-Design at the Mesoscale: Opportunities for NSLS-II Sarrao, John L. Los Alamos National Laboratory Materials Science(36) Abstract Not Provided Los Alamos National Laboratory...

  20. Iver Anderson, Division of Materials Sciences and Engineering...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Iver Anderson, Division of Materials Sciences and Engineering, The Ames Laboratory, Current and Future Direction in Processing Rare Earth Alloys for Clean Energy Applications Iver...

  1. SC e-journals, Materials Science

    Office of Scientific and Technical Information (OSTI)

    OAJ Chemical and Petroleum Engineering Chemistry of Materials Chinese Optics Letters ... Waste Management Journal of Materials Chemistry Journal of Materials Processing ...

  2. Thermal Science Leaders Are Also Researchers | GE Global Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Thermal Science Leaders Are Also Researchers Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) ...

  3. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  4. Final Report of “Collaborative research: Fundamental science of low temperature plasma-biological material interactions” (Award# DE-SC0005105)

    SciTech Connect (OSTI)

    Oehrlein, Gottlieb S.; Seog, Joonil; Graves, David; Chu, J. -W.

    2014-09-24

    temperature plasma sources with modified geometry where radical induced interactions generally dominate due to short mean free paths of ions and VUV photons. In these conditions we demonstrated the importance of environmental interactions of plasma species when APP sources are used to modify biomolecules. This is evident from both gas phase characterization data and in-situ surface characterization of treated biomolecules. Environmental interactions can produce unexpected outcomes due to the complex reactions of reactive species with the atmosphere which determine the composition of reactive fluxes and atomistic changes in biomolecules. Overall, this work elucidated a richer spectrum of scientific opportunities and challenges for the field of low temperature plasma-biomolecule surface interactions than initially anticipated, in particular, for plasma sources operating at atmospheric pressure. The insights produced in this work, e.g. demonstration of the importance of environmental interactions, are generally important for applications of APP to materials modifications. Thus one major contributions of this research has been the establishment of methodologies to study the interaction of plasma with bio-molecules in a systemic and rigorous manner. In particular, our studies of atmospheric pressure plasma sources using very well-defined experimental conditions enabled us to correlate atomistic surface modifications of biomolecules with changes in their biological function. The clarification of the role of ions, VUV photons and radicals in deactivation of biomolecules during low pressure and atmospheric pressure plasma-biomolecule interaction has broad implications, e.g. for the emerging field of plasma medicine. The development of methods to detect the effects of plasma treatment on immune-active biomolecules will lay a fundamental foundation to enhance our understanding of the effect of plasma on biological systems. be helpful in many future studies.

  5. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    SciTech Connect (OSTI)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  6. Materials Engineering Research Facility | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials Engineering Research Facility Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and Manufacturing R&D Program. The MERF is enabling the development of manufacturing processes for producing advanced battery materials in sufficient quantity for industrial testing. The research conducted in this program is known as process scale-up. Scale-up R&D involves taking a laboratory-developed material and developing

  7. DOE Science Showcase - Light-emitting Diode (LED) Lighting Research...

    Office of Scientific and Technical Information (OSTI)

    LED Research Information in DOE Databases SciTech Connect National Library of EnergyBeta Science.gov Ciencia.Science.gov WorldWideScience.org Visit the Science Showcase homepage. ...

  8. Global change research: Science and policy

    SciTech Connect (OSTI)

    Rayner, S.

    1993-05-01

    This report characterizes certain aspects of the Global Change Research Program of the US Government, and its relevance to the short and medium term needs of policy makers in the public and private sectors. It addresses some of the difficulties inherent in the science and policy interface on the issues of global change. Finally, this report offers some proposals for improving the science for policy process in the context of global environmental change.

  9. 2010 Membranes: Materials & Processes Gordon Research Conference

    SciTech Connect (OSTI)

    Jerry Lin

    2010-07-30

    The GRC series on Membranes: Materials and Processes have gained significant international recognition, attracting leading experts on membranes and other related areas from around the world. It is now known for being an interdisciplinary and synergistic meeting. The next summer's edition will keep with the past tradition and include new, exciting aspects of material science, chemistry, chemical engineering, computer simulation with participants from academia, industry and national laboratories. This edition will focus on cutting edge topics of membranes for addressing several grand challenges facing our society, in particular, energy, water, health and more generally sustainability. During the technical program, we want to discuss new membrane structure and characterization techniques, the role of advanced membranes and membrane-based processes in sustainability/environment (including carbon dioxide capture), membranes in water processes, and membranes for biological and life support applications. As usual, the informal nature of the meeting, excellent quality of the oral presentations and posters, and ample opportunity to meet many outstanding colleagues make this an excellent conference for established scientists as well as for students. A Gordon Research Seminar (GRS) on the weekend prior to the GRC meeting will provide young researchers an opportunity to present their work and network with outstanding experts. It will also be a right warm-up for the conference participants to join and enjoy the main conference.

  10. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry.

  11. Living in a Materials World: Materials Science Engineering Professional Development for K-12 Educators

    SciTech Connect (OSTI)

    Anne Seifert; Louis Nadelson

    2011-06-01

    Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivation for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a Materials World' was

  12. Silicon Materials and Devices R&D | Photovoltaic Research | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials and Devices R&D The National Center for Photovoltaics (NCPV) at NREL has world-leading research capabilities and expertise in silicon (Si) materials and devices, especially for photovoltaic (PV) cell applications. PV Research Other Materials & Devices pages: High-Efficiency Crystalline PV Polycrystalline Thin-Film PV Perovskite and Organic PV Advanced PV Materials Science Chemistry & Nanoscience National Center for Photovoltaics Materials and Chemical Science and Technology

  13. Materials Science in Radiation and Dynamics Extremes

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and specialty) materials from atomistic to continuum length scales; Uses computational materials modeling to inform and complement the measurements listed above; Synthesizes and...

  14. Center for Nanophase Materials Sciences - Conference 2015

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    highly promising approach to expedite the materials discovery process using theory-guided electronic and structural engineering. This roundtable will bring together materials...

  15. Computational Materials Sciences Awards | U.S. DOE Office of...

    Office of Science (SC) [DOE]

    Policies EFRCs FOA Applications from Universities and Other Research Institutions Construction Review EPSCoR DOE Office of Science Graduate Fellowship (DOE SCGF) External link ...

  16. Research | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    BER Home » Research Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) Research Abstracts Searchable Archive of BER Highlights External link Facilities Science Highlights Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy

  17. Perspective: Codesign for materials science: An optimal learning approach

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | DOE PAGES Published Article: Perspective: Codesign for materials science: An optimal learning approach Title: Perspective: Codesign for materials science: An optimal learning approach Authors: Lookman, Turab [1] ; Alexander, Francis J. [1] ; Bishop, Alan R. [1] + Show Author Affiliations Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Publication Date: 2016-04-07 OSTI Identifier: 1246183 Type: Published Article Journal Name: APL Materials Additional

  18. Hydrogen Materials Advanced Research Consortium

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... materials to store hydrogen onboard vehicles, leading to more reliable, economic hydrogen-fuel-cell vehicles. "Hydrogen, as a transportation fuel, has great potential to ...

  19. Center for Nanophase Materials Sciences - Newsletter January...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (NIST), Gaithersburg, MD where I lead a project on Nanoparticle Assembly in Complex Fluids. Before joining NIST, I completed my Ph.D. in 2001 in Polymer Science and...

  20. DOE fundamentals handbook: Material science. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Mechanical Science Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mechanical components and mechanical science. The handbook includes information on diesel engines, heat exchangers, pumps, valves, and miscellaneous mechanical components. This information will provide personnel with a foundation for understanding the construction and operation of mechanical components that are associated with various DOE nuclear facility operations and maintenance.

  1. Materials Chemistry | U.S. DOE Office of Science (SC)

    Office of Science (SC) [DOE]

    It complements the BES Biomolecular Materials Research Activity (whose emphasis is on discovery of materials and systems using concepts and principles of biology) and the Synthesis ...

  2. GE Researcher Explores Science Behind Movie Chappie | GE Global Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    When Will We Have Robot Best Friends? A GE Researcher Explores the Science Behind Movie Magic Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) When Will We Have Robot Best Friends? A GE Researcher Explores the Science Behind Movie Magic The film "Chappie" is the story of a Police droid, reprogrammed to become

  3. DOE Science Showcase - Thorium Research | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect - thorium research results from DOE science, technology, and engineering ... Additional Resources Department of Energy Office of Science DOE Office of Nuclear Energy ...

  4. DOE Science Showcase - Solitons Research | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    DOE Science Showcase - Solitons Research juan.jpg Image credit: Sandia National ... of wave systems throughout science and have changed the course of applied mathematics. ...

  5. DOE Science Showcase - Cool roofs, cool research, at DOE | OSTI...

    Office of Scientific and Technical Information (OSTI)

    Cool roofs, cool research, at DOE Science Accelerator returns cool roof documents from 6 ... for Selecting Cool Roofs DOE Cool Roof Calculator Visit the Science Showcase homepage.

  6. Experimental Physical Sciences Vistas: Los Alamos NPAC Research...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Experimental Physical Sciences Vistas: Los Alamos NPAC Research Citation Details In-Document Search Title: Experimental Physical Sciences Vistas: Los Alamos NPAC...

  7. DOE Science Showcase - Computing Research | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    DOE Science Showcase - Computing Research For the growing number of problems where ... of data, producing advances in areas of science and technology that are essential to DOE ...

  8. DOE Science Showcase - Fuel Cells Research | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    DOE Science Showcase - Fuel Cells Research Clean, Efficient, and Reliable Power for the ... DOE R&D Accomplishments DOepatents DOE Green Energy Energy Science and Technology Software ...

  9. DOE Science Showcase - Solitons Research | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    of wave systems throughout science and have changed the course of applied mathematics. ... SciTech Connect - soliton research results from DOE science, technology, and engineering ...

  10. DOE fundamentals handbook: Material science. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the following modules: thermal shock (thermal stress, pressurized thermal shock), brittle fracture (mechanism, minimum pressurization-temperature curves, heatup/cooldown rate limits), and plant materials (properties considered when selecting materials, fuel materials, cladding and reflectors, control materials, nuclear reactor core problems, plant material problems, atomic displacement due to irradiation, thermal and displacement spikes due to irradiation, neutron capture effect, radiation effects in organic compounds, reactor use of aluminum).

  11. Jia named Materials Research Society Fellow

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Jia named Materials Research Society Fellow Jia named Materials Research Society Fellow The MRS Fellow program recognizes outstanding members whose sustained and distinguished contributions to the advancement of materials research are internationally recognized. March 6, 2014 Quanxi Jia Quanxi Jia The MRS recognized Jia for "pioneering contributions to the development of high-temperature superconducting-coated conductors and for advancing the processing and application of multifunctional

  12. Jia named Materials Research Society Fellow

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Jia named Materials Research Society Fellow March 6, 2014 Quanxi Jia of the Center for Integrated Nanotechnologies (MPA-CINT) is a 2014 Fellow of the Materials Research Society (MRS). The MRS Fellow program recognizes outstanding members whose sustained and distinguished contributions to the advancement of materials research are internationally recognized. The number of new fellows selected annually is capped at 0.2 percent of the current total MRS membership. Achievements The MRS recognized Jia

  13. ALS Ceramics Materials Research Advances Engine Performance

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    One of Ritchie's latest materials research projects is contributing to the evolution of jet engine performance, and hence has industry players heavily interested and invested. ...

  14. NREL: Energy Sciences - Chemical and Materials Science Staff

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    the strategic direction of our research. Fellows Angelo Mascarenhas Garry Rumbles John Turner Emeriti Calvin (Buzz) Curtis Satyen Deb Arthur Frank Larry Kazmerski Arthur...

  15. Crosscutting Research | Critical Materials Institute

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Crosscutting Research diagram for focus area four, crosscutting research (A click on the org chart image will lead to a pdf version that includes hotlinks for the e-mail addresses of the leaders.) The Ames Laboratory offers more information about the rapid assessment project in this news release and video

  16. UNCLASSIFIED Institute for Materials Science Sponsored Seminar

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Dr. Sergii L. Dudarev Programme Grant Modelling Co-ordinator & Visiting Professor Oxford University Materials United Kingdom "Magnetic" Molecular Dynamics and Other Models for Fusion Reactor Materials Tuesday, September 15, 2015 2:00 - 3:00pm MSL Auditorium (TA-03 - Bldg 1698 - Room A103) Abstract - Multiscale models for fusion reactor materials address both the initial stages of production of radiation defects, where the recently discovered power law statistics of defect

  17. Center for Nanophase Materials Sciences (CNMS) - Themes

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    is home to our synthetic macromolecular capabilities and our complementary efforts in designing functional materials, including those with hybrid molecular architectures, for...

  18. Center for Nanophase Materials Sciences (CNMS) - Nanofabrication...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    clean room space for carrying out material modification using advanced lithographic, etching, thin-film deposition, and characterization tools. Process Design Assistance with...

  19. Center for Nanophase Materials Sciences - Newsletter

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    can provide insights for the development of new materials for solar cells, solid-state lighting and superconductor power transmission. Computer codes will be made...

  20. Bayer Material Science (TRL 1 2 3 System)- River Devices to Recover Energy with Advanced Materials(River DREAM)

    Energy.gov [DOE]

    Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM)

  1. Research Proposal Guidelines | U.S. DOE Office of Science (SC)

    Office of Science (SC) [DOE]

    Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Research Areas Print Text Size: A A A FeedbackShare Page To meet the challenge of supporting basic research programs that are also energy relevant, the Division manages portfolio components that consist of distinct Core Research Activities

  2. Center for Nanophase Materials Sciences - Newsletter January...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    were recently purchased with American Recovery and Reinvestment Act funds, including new SEM and TEMSTEM capabilities for soft materials, small-angle x-ray scattering, and in the...

  3. Center for Nanophase Materials Sciences - Newsletter January...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    CNMS Updates The CNMS has a new director Sean Smith from the University of Queensland in Australia has accepted the position of director for the Center for Nanophase Materials...

  4. Polymer/Elastomer and Composite Material Science

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Kevin Simmons, Pacific Northwest National Laboratory, at the U.S. Department of Energy's Polymer and Composite Materials Meeting, held October 17-18, 2012, in Washington, D.C.

  5. Science Olympiad | Photosynthetic Antenna Research Center

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Science Olympiad Science Olympiad PARC's outreach efforts helped fund students from KIPP Inspire Academy as they competed with other regional schools in the Science Olympiad 2013...

  6. NREL: Photovoltaics Research - Materials Science Staff

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Group Manager Nicole Campos Administrative Professional Kirstin Alberi Dan Beaton David Bobela Brian Fluegel Joongoo Kang Stephan Lany Jun-Wei Luo Aleksej Mialitsin Ji-Sang...

  7. Center for Nanophase Materials Sciences - Newsletter

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    meet various research needs. The chemical or physical exfoliation of graphite is a straightforward method to produce graphene with least synthesis effort, since it takes advantage...

  8. Computer Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cite Seer Department of Energy provided open access science research citations in chemistry, physics, materials, engineering, and computer science IEEE Xplore Full text...

  9. Ionized cluster beam technology for material science

    SciTech Connect (OSTI)

    Takagi, Toshinori

    1997-06-20

    The most suitable kinetic energy range of ionized materials in film formation and epitaxial growth is from a few eV to a few hundreds eV, especially, less than about 100eV, when ions are used as a host. The main roles of ions in film formation are the effects due to their kinetic energy and the electronic charge effects which involve the effect to active film formation and the effect acceleration of chemical reactions. Therefore, it is important to develope the technology to transport large volume of a flux of ionized particles with an extremely low incident energy without any troubles due to the space charge effects and charge up problems on the surface. This is the exact motivation for us to have been developing the Ionized Cluster Beam (ICB) technology since 1972. By ICB technology materials (actually wide varieties of materials such as metal, semiconductor, magnetic material, insulator, organic material, etc.) are vaporized and ejected through a small hole nozzle into a high vacuum, where the vaporized material condenses into clusters with loosely coupled atoms with the sizes about from 100 to a few 1000 atoms (mainly 100-2000 atoms) by supercondensation phenomena due to the adiabatic expansion in this evaporation process through a small hole nozzle. In the ICB technology an atom in each cluster is ionized by irradiated by electron shower, and the ionized clusters are accelerated by electric field onto a substrate. The ionized clusters with neutral clusters impinged onto a substrate are spreaded separately into atoms migrating over the substrate, so that the surface migration energy of the impinged atoms, that is, surface diffusion energy are controlled by an incident energy of a cluster. In this report the theoretical and also experimental results of ICB technology are summarized.

  10. UNCLASSIFIED Institute for Materials Science Lecture Series

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Dr. Igor Altfeder Air Force Research Laboratory Dayton, Ohio Scanning Tunneling Microscopy of Phonon Standing Waves Tuesday, March 8, 2016 2:30 - 3:30 pm MSL Auditorium (TA-03 - Bldg 1698 - Room A103) Abstract: Previous STM studies of coherent wave processes at the nanoscale have resulted in a number of breakthroughs related to electron standing waves on surfaces. The experimental discovery of atomic scale phonon standing waves opens a new page in this rapidly developing research field. Using

  11. Responsible Science: Ensuring the Integrity of the Research Process

    SciTech Connect (OSTI)

    Arrison, Thomas Samuel

    2014-03-31

    This is the final technical report for DE-SC0005916 Responsible Science: Ensuring the Integrity of the Research Process.

  12. Visit Energy Citations Database for access to research in many science

    Office of Scientific and Technical Information (OSTI)

    disciplines | OSTI, US Dept of Energy Office of Scientific and Technical Information Visit Energy Citations Database for access to research in many science disciplines Back to the OSTI News Listing for 2009 Visit Energy Citations Database and get free electronic access to over 2.6 million science research citations and more than 221,000 full-text documents in disciplines such as chemistry, physics, materials, environmental science, geology, engineering, mathematics, climatology,

  13. Commissioning a materials research laboratory

    SciTech Connect (OSTI)

    SAVAGE,GERALD A.

    2000-03-28

    This presentation covers the process of commissioning a new 150,000 sq. ft. research facility at Sandia National Laboratories. The laboratory being constructed is a showcase of modern design methods being built at a construction cost of less than $180 per sq. ft. This is possible in part because of the total commissioning activities that are being utilized for this project. The laboratory's unique approach to commissioning will be presented in this paper. The process will be followed through from the conceptual stage on into the actual construction portion of the laboratory. Lessons learned and cost effectiveness will be presented in a manner that will be usable for others making commissioning related decisions. Commissioning activities at every stage of the design will be presented along with the attributed benefits. Attendees will hear answers to the what, when, who, and why questions associated with commissioning of this exciting project.

  14. Interdisciplinary research in climate and energy sciences

    SciTech Connect (OSTI)

    Xu, Xiaofeng; Goswami, Santonu; Gulledge, Jay; Wullschleger, Stan D.; Thornton, Peter E.

    2015-09-12

    Due to the complex nature of climate change, interdisciplinary research approaches involving knowledge and skills from a broad range of disciplines have been adopted for studying changes in the climate system as well as strategies for mitigating climate change (i.e., greenhouse gas emissions reductions) and adapting to its impacts on society and natural systems. Harnessing of renewable energy sources to replace fossil fuels is widely regarded as a long-term mitigation strategy that requires the synthesis of knowledge from engineering, technology, and natural and social sciences. In this study, we examine how the adoption of interdisciplinary approaches has evolved over time and in different geographic regions. We conducted a comprehensive literature survey using an evaluation matrix of keywords, in combination with a word cloud analysis, to evaluate the spatiotemporal dynamics of scholarly discourse about interdisciplinary approaches to climate change and renewable energy research and development (R&D). Publications that discuss interdisciplinary approaches to climate change and renewable energy have substantially increased over the last 60 years; it appears, however, that the nature, timing, and focus of these publications vary across countries and through time. Over the most recent three decades, the country-level contribution to interdisciplinary research for climate change has become more evenly distributed, but this was not true for renewable energy research, which remained dominated by the United Sates and a few other major economies. The research topics have also evolved: Water resource management was emphasized from 1990s to 2000s, policy and adaptation were emphasized from the 2000s to 2010 – 2013, while vulnerability became prominent during the most recent years (2010 – 2013). Lastly, our analysis indicates that the rate of growth of interdisciplinary research for renewable energy lags behind that for climate change, possibly because knowledge

  15. Interdisciplinary research in climate and energy sciences

    DOE PAGES-Beta [OSTI]

    Xu, Xiaofeng; Goswami, Santonu; Gulledge, Jay; Wullschleger, Stan D.; Thornton, Peter E.

    2015-09-12

    Due to the complex nature of climate change, interdisciplinary research approaches involving knowledge and skills from a broad range of disciplines have been adopted for studying changes in the climate system as well as strategies for mitigating climate change (i.e., greenhouse gas emissions reductions) and adapting to its impacts on society and natural systems. Harnessing of renewable energy sources to replace fossil fuels is widely regarded as a long-term mitigation strategy that requires the synthesis of knowledge from engineering, technology, and natural and social sciences. In this study, we examine how the adoption of interdisciplinary approaches has evolved over timemore » and in different geographic regions. We conducted a comprehensive literature survey using an evaluation matrix of keywords, in combination with a word cloud analysis, to evaluate the spatiotemporal dynamics of scholarly discourse about interdisciplinary approaches to climate change and renewable energy research and development (R&D). Publications that discuss interdisciplinary approaches to climate change and renewable energy have substantially increased over the last 60 years; it appears, however, that the nature, timing, and focus of these publications vary across countries and through time. Over the most recent three decades, the country-level contribution to interdisciplinary research for climate change has become more evenly distributed, but this was not true for renewable energy research, which remained dominated by the United Sates and a few other major economies. The research topics have also evolved: Water resource management was emphasized from 1990s to 2000s, policy and adaptation were emphasized from the 2000s to 2010 – 2013, while vulnerability became prominent during the most recent years (2010 – 2013). Lastly, our analysis indicates that the rate of growth of interdisciplinary research for renewable energy lags behind that for climate change, possibly because knowledge

  16. DOE fundamentals handbook: Material science. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the two modules: structure of metals (bonding, common lattic types, grain structure/boundary, polymorphis, alloys, imperfections in metals) and properties of metals (stress, strain, Young modulus, stress-strain relation, physical properties, working of metals, corrosion, hydrogen embrittlement, tritium/material compatibility).

  17. Scanning Capacitance Microscopy | Materials Science | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Capacitance Microscopy Scanning capacitance microscopy is performed in an atomic force microscope with an ultra-high frequency resonant capacitance sensor connected to a grounded tip via a transmission line, which is attached to an UHF capacitance sensor. Scanning capacitance microscopy provides qualitative information on the doping of semiconductor materials, using an atomic force microscope. It features an ultra-high-frequency resonant capacitance sensor connected to a grounded tip via a

  18. UNCLASSIFIED Institute for Materials Science Sponsored Lecture

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Antonia Antoniou Georgia Institute of Technology, Atlanta, Georgia Mechanical Behavior of Hierarchical Nanoporous Metals Thursday, August 27, 2015 1:30 - 2:30pm MSL Auditorium (TA-03, Bldg. 1698, Room A103) Abstract: Nanoporous (NP) metal foams are a unique class of materials that are characterized by extremely high surface-to- volume ratios and possess such desirable properties of metals as high electrical conductivity, catalytic activity, and strength. This unusual combination of properties is

  19. UNCLASSIFIED Institute for Materials Science Sponsored Seminar

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Professor Robert L. Whetten University of Texas, San Antonio Alexander von Humboldt Senior Scientist Award recipiant Z 60 , Phantaspheraurate Thursday, September 10, 2015 3 - 4pm IMS/MPA Conference Room (TA3-0032-134) Abstract: Discovery of new substances and their underlying principles consists not so much of "new materials analyzed by established methods" but rather of ancient ones elucidated by newly developed methods. So we had better focus on the advances - new instruments and

  20. Electron Probe Microanalysis | Materials Science | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Electron Probe Microanalysis Electron Probe Microanalysis is an elemental analysis technique which uses a focused beam of high energy electrons to non-destructively ionize a solid specimen surface for inducing emission of characteristic x-rays. Electron probe microanalysis is used to map the chemical composition of the top surface layer of solid-state materials. As with scanninge electron microscopy, electron probe microanalysis (EPMA) probes the surface of a sample with high-energy electrons,

  1. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) [DOE]

    Research High Energy Physics (HEP) HEP Home About Research Science Drivers of Particle Physics Energy Frontier Intensity Frontier Cosmic Frontier Theoretical and Computational ...

  2. Division of Materials Sciences and Engineering | The Ames Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials Sciences and Engineering Ames Laboratory and the Critical Materials Institute hosted the 4th Japan-U.S. Bilateral Meeting on Rare Metals on Nov. 7. The meeting is held annually with the New Energy and Industrial Technology Development Organization (NEDO), a Japanese energy and industrial technology R&D organization. Ames Laboratory senior scientist Paul C. Canfield has been selected for the James C. McGroddy Prize for New Materials by the American Physical Society. READ MORE

  3. Transmission Electron Microscopy | Materials Science | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transmission Electron Microscopy Photo of NREL researcher using transmission electron microscope. F-20 UT Transmission Electron Microscope. Transmission electron microscopy probes properties of thin foils such as chemistry, microstructure, and crystalline defects. In the conventional transmission electron microscopy (TEM) mode, the condenser lenses of the microscope are adjusted to illuminate the sample with a parallel coherent beam of electrons, usually several µm across. Microphoto taken with

  4. Advanced Composite Materials | GE Global Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Advanced composite materials, born in the labs at GE Global Research, are being used in an increasing number of GE products where their unique combination of properties such as ...

  5. DOE Office of Science Funded Basic Research at NREL that Impacts Photovoltaic Technologies

    SciTech Connect (OSTI)

    Deb, S. K.

    2005-01-01

    The DOE Office of Science, Basic Energy Sciences, supports a number of basic research projects in materials, chemicals, and biosciences at the National Renewable Energy Laboratory (NREL) that impact several renewable energy technologies, including photovoltaics (PV). The goal of the Material Sciences projects is to study the structural, optical, electrical, and defect properties of semiconductors and related materials using state-of-the-art experimental and theoretical techniques. Specific projects involving PV include: ordering in III-V semiconductors, isoelectronic co-doping, doping bottlenecks in semiconductors, solid-state theory, and computational science. The goal of the Chemical Sciences projects is to advance the fundamental understanding of the relevant science involving materials, photochemistry, photoelectrochemistry, nanoscale chemistry, and catalysis that support solar photochemical conversion technologies. Specific projects relating to PV include: dye-sensitized TiO2 solar cells, semiconductor nanostructures, and molecular semiconductors. This presentation will give an overview of some of the major accomplishments of these projects.

  6. Science Fiction meets Science Future | GE Global Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Science Fiction meets Science Future Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Science Fiction meets Science Future What happens when you put a sci-fi writer and a real-life scientist in the same (virtual) room and ask them to imagine the future? Well, wonder no more as GE launches its newest series of science

  7. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Center (LMI-EFRC) - Jennifer Lewis RG4 Leader Jennifer Lewis Jennifer Lewis, Hansjörg Wyss Professor of Biologically Inspired Engineering Harvard University Jennifer A. Lewis joined the faculty of the School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering at Harvard University in 2013. Prior to her appointment at Harvard, she served as the Director of the Frederick Seitz Materials Research Laboratory and the Hans Thurnauer Professor of

  8. Papers by CMI Researchers | Critical Materials Institute

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Papers by CMI Researchers CMI researchers submit their research for consideration in a variety of research publications. The following research papers have been submitted, and/or published by CMI researchers. 2016 S.H. Zhou, M.J. Kramer, F.Q. Meng, R.W. McCallum and R.T. Ott "Chemical partitioning for the Co-Pr system: First-principles, experiments and energetic calculations to investigate the hard magnetic phase," Materials & Design, doi:10.1016/j.matdes.2015.11.058 M-H. Du,

  9. NETL Researchers Chosen as Science & Engineering Ambassadors | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Researchers Chosen as Science & Engineering Ambassadors NETL Researchers Chosen as Science & Engineering Ambassadors November 6, 2012 - 12:00pm Addthis Washington, DC - Four researchers at the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL) have been chosen as Science & Engineering Ambassadors, with the goal of increasing public understanding and engagement with energy issues. Science and Engineering Ambassadors (left to right): George

  10. Nine receive DOE's Office of Science Graduate Student Research Awards

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Graduate Student Research Awards Nine receive DOE's Office of Science Graduate Student Research Awards The program prepares students for careers in science, technology, engineering and math. June 14, 2016 The goal of the SCGSR program is designed to prepare graduate students for science, technology, engineering and mathematics careers, which are critically important to the DOE Office of Science mission, by providing graduate thesis research opportunities at DOE laboratories. The goal of the

  11. DOE Office of Science Graduate Student Research (SCGSR) Program Homepage |

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    U.S. DOE Office of Science (SC) SCGSR Home DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to Apply Information for Laboratory Scientists and Thesis Advisors Key Dates Frequently Asked Questions Contact WDTS Home DOE Office of Science Graduate Student Research Program The Office of Science Graduate Student Research (SCGSR) program is now accepting applications. Applications are due November 21, 2016 at 5:00PM Eastern

  12. Earth Sciences Division Research Summaries 2006-2007

    SciTech Connect (OSTI)

    DePaolo, Donald; DePaolo, Donald

    2008-07-21

    , climate systems, and environmental engineering. Building on this scientific foundation, we also perform applied earth science research and technology development to support DOE in a number of its program areas. We currently organize our efforts in the following Division Programs: Fundamental and Exploratory Research--fundamental research in geochemistry, geophysics, and hydrology to provide a basis for new and improved energy and environmental technologies; Climate and Carbon Sciences--carbon cycling in the terrestrial biosphere and oceans, and global and regional climate modeling, are the cornerstones of a major developing divisional research thrust related to understanding and mitigating the effects of increased greenhouse gas concentrations in the atmosphere; Energy Resources--collaborative projects with industry to develop or improve technologies for the exploration and production of oil, gas, and geothermal reservoirs, and for the development of bioenergy; Environmental Remediation and Water Resources--innovative technologies for locating, containing, and remediating metals, radionuclides, chlorinated solvents, and energy-related contaminants in soils and groundwaters; Geologic Carbon Sequestration--development and testing of methods for introducing carbon dioxide to subsurface geologic reservoirs, and predicting and monitoring its subsequent migration; and Nuclear Waste and Energy--theoretical, experimental, and simulation studies of the unsaturated zone at Yucca Mountain, Nevada. These programs draw from each of ESD's disciplinary departments: Climate Science, Ecology, Geochemistry, Geophysics, and Hydrogeology. Short descriptions of these departments are provided as introductory material. In this document, we present summaries of selected current research projects. While it is not a complete accounting, the projects described here are representative of the nature and breadth of the ESD research effort. We are proud of our scientific accomplishments and we hope

  13. Center for Nanophase Materials Sciences (CNMS) - Related ORNL...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    In particular, the facilities listed on this page offer a variety of capabilities for materials characterization and computational nanoscience that may enhance the research...

  14. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office...

    Office of Science (SC) [DOE]

    ... sometimes one-of-a-kind instruments providing laborites for materials science, physics, chemistry, biology, and molecular biology. Last modified: 1192015 8:59:20

  15. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office...

    Office of Science (SC) [DOE]

    sometimes one-of-a-kind instruments providing laborites for materials science, physics, chemistry, biology, and molecular biology. Last modified: 1192015 8:57:28

  16. FA 4: Crosscutting Research | Critical Materials Institute

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    4: Crosscutting Research Focus Area 4 - Lograsso, Schwegler CMI Org Chart with Hotlinks: Focus Area 4 File: Read more about CMI Org Chart with Hotlinks: Focus Area 4 CMI Org Chart with Hotlinks: Research Overview File: Read more about CMI Org Chart with Hotlinks: Research Overview CMI org chart for FA4 File: Read more about CMI org chart for FA4 CMI org chart for research with hotlinks (pdf) File: Read more about CMI org chart for research with hotlinks (pdf) Critical Materials Institute

  17. Research | Center for Energy Efficient Materials

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Research CEEM is one of 46 Energy Frontier Research Centers funded by the Department of Energy to address the energy challenge through technological advancements. The Center was launched in August 2009 and focuses on fundamental research in the three key areas of photovoltaics, thermoelectrics, and solid-state lighting. These technologies are strongly inter-related, not only through the materials they employ and physical principles upon which they operate, but also in the synergies resulting

  18. Reference Materials

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research January 5-6, 2011 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  19. DOE Science Showcase - Rare Earth Metal Research from DOE Databases...

    Office of Scientific and Technical Information (OSTI)

    DOE Science Showcase - Rare Earth Metal Research from DOE Databases Information Bridge ... electrode in Ni-MH rechargeable cells Science.gov - H.R.4866 - Rare Earths Supply-Chain ...

  20. Earth Sciences Division Research Summaries 2002-2003

    SciTech Connect (OSTI)

    Bodvarsson, G.S.

    2003-11-01

    Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climate change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4) Environmental

  1. Hoagland selected as a new Materials Research Society Fellow

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Hoagland selected as Materials Research Society Fellow Hoagland selected as a new Materials Research Society Fellow Hoagland has made notable contributions in both experimental and computational materials research. July 9, 2013 Richard G. Hoagland Richard G. Hoagland The Materials Research Society (MRS) is an organization of materials researchers that promotes the advancement of interdisciplinary materials research to improve the quality of life. Richard G. Hoagland of the Laboratory's Materials

  2. Science in St. Louis | Dr. Eric Majzoub | Photosynthetic Antenna Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Center Science in St. Louis | Dr. Eric Majzoub Science in St. Louis | Dr. Eric Majzoub The Chemistry and Physics of Energy Storage Materials at the Nanoscale November 15, 2016 - 7:00pm St. Louis County Library Natural Bridge Branch Science in St. Louis is a seminar series designed to connect people with scientists in their community. We offer informal science talks featuring local scientists and engineers discussing important scientific discoveries and breakthroughs taking place in our

  3. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1993 and research proposal for FY 1994

    SciTech Connect (OSTI)

    Birnbaum, H.K.

    1993-03-01

    The materials research laboratory program is about 30% of total Materials Science and Engineering effort on the Univ. of Illinois campus. Coordinated efforts are being carried out in areas of structural ceramics, grain boundaries, field responsive polymeric and organic materials, molecular structure of solid-liquid interfaces and its relation to corrosion, and x-ray scattering science.

  4. Computational Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Advanced Materials Laboratory Center for Integrated Nanotechnologies Combustion Research Facility Computational Science Research Institute Joint BioEnergy Institute About EC News ...

  5. Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ...15 The international prize is awarded annually to four young scientists for outstanding life science research for which ... points this week in the journal Science winning a 2015 ...

  6. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) [DOE]

    ... cost-effective facilities for carrying out the nuclear engineering science research needed to design the power extraction and tritium breeding systems for a fusion power plant. ...

  7. DOE Science Showcase - Fuel Cells Research | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    Fuel Cells Research Results in DOE Databases DOE R&D Accomplishments DOepatents DOE Green Energy Energy Science and Technology Software Center (ESTSC) Energy Citations Database and ...

  8. NERSC Role in Fusion Energy Science Research Katherine Yelick

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Fusion Energy Science Research Katherine Yelick NERSC Director Requirements Workshop NERSC ... on the design of next generation fusion experiments such as ITER. NERSC: All ...

  9. DOE Science Showcase - "PECASE: Outstanding early career research...

    Office of Scientific and Technical Information (OSTI)

    Eric D. Bauer of Los Alamos National Laboratory Find Eric Bauer's research in the Energy Citations Database Probing Correlated Electron Behavior in Uranium-235 Visit the Science ...

  10. University Research | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    University Research Universities Universities Home Interactive Grants Map SC In Your State University Science Highlights University Research News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 University Research Print Text Size: A A A Subscribe FeedbackShare Page GO 11.18.16University Research Discovering What Keeps Cellular Cargo on Track External link Michigan State University researchers, for the first time,

  11. Materials and Molecular Research Division annual report 1983

    SciTech Connect (OSTI)

    Searcy, A.W.; Muller, R.H.; Peterson, C.V.

    1984-07-01

    Progress is reported in the following fields: materials sciences (metallurgy and ceramics, solid-state physics, materials chemistry), chemical sciences (fundamental interactions, processes and techniques), actinide chemistry, fossil energy, electrochemical energy storage systems, superconducting magnets, semiconductor materials and devices, and work for others. (DLC)

  12. Tritium Related Material Research -Irradiation Effect on Isotropic...

    Office of Environmental Management (EM)

    Related Material Research -Irradiation Effect on Isotropic Graphite Utilizing Heavy Ion-Irradiation- Tritium Related Material Research -Irradiation Effect on Isotropic Graphite...

  13. Nuclear Materials Research and Technology/Los Alamos National...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... dication (nitrogen atoms in blue). 2 Nuclear Materials Research and TechnologyLos ... A. Bartsch (Texas Tech University). 3 Nuclear Materials Research and TechnologyLos ...

  14. Hoagland selected as a new Materials Research Society Fellow

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    contributions in both experimental and computational materials research. July 9, 2013 Richard G. Hoagland Richard G. Hoagland The Materials Research Society (MRS) is an...

  15. Los Alamos researchers create 'map of science'

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    bioscience, sustainable energy sources, to plasma physics ... in PLoS ONE (the Public Library of Science). "This ... Fe Institute collected usage-log data gathered from a ...

  16. Science and engineering research semester internship spring 1997 abstracts and research papers

    SciTech Connect (OSTI)

    Williams, Beverly

    1997-10-01

    This document consists of abstracts and research papers from the science and engineering research semester internship spring 1997 held at Lawrence Livermore National Laboratory.

  17. Charter for the ARM Climate Research Facility Science Board

    SciTech Connect (OSTI)

    Ferrell, W

    2013-03-08

    The objective of the ARM Science Board is to promote the Nation’s scientific enterprise by ensuring that the best quality science is conducted at the DOE’s User Facility known as the ARM Climate Research Facility. The goal of the User Facility is to serve scientific researchers by providing unique data and tools to facilitate scientific applications for improving understanding and prediction of climate science.

  18. Postdoctoral Research Fellow for Plasma Sciences | Princeton Plasma Physics

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Lab Postdoctoral Research Fellow for Plasma Sciences Department: Research Supervisor(s): Hantao Ji Staff: RM 1 Requisition Number: 1600476 The Department of Astrophysical Science and the Princeton Plasma Physics Laboratory (PPPL) of Princeton University invites applications for a postdoctoral physicist position for the plasma physics in the international cooperation program NPC (NINS-Princeton Collaboration) between the National Institutes of Natural Sciences (NINS) in Japan and Princeton

  19. AUDIT REPORT Office of Science's Bioenergy Research Centers

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bioenergy Research Centers OAI-M-16-01 October 2015 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 October 22, 2015 MEMORANDUM FOR THE ACTING DIRECTOR, OFFICE OF SCIENCE FROM: April G. Stephenson Assistant Inspector General for Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report: "Office of Science's Bioenergy Research Centers" BACKGROUND In September 2007, Office of Science's

  20. Office of Science's Management of Research Misconduct Allegations

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Management of Research Misconduct Allegations OAS-M-14-09 August 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 August 12, 2014 MEMORANDUM FOR THE ACTING DIRECTOR, OFFICE OF SCIENCE FROM: George W. Collard Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Office of Science's Management of Research Misconduct Allegations" BACKGROUND Science and

  1. Hearing Before the Science, Space, and Technology Subcommittee on Research

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Technology | Department of Energy Science, Space, and Technology Subcommittee on Research and Technology Hearing Before the Science, Space, and Technology Subcommittee on Research and Technology 6-16-16_Patricia_Dehmer FT HSST (52.98 KB) More Documents & Publications An Overview of the DOE's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Programs Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) CX-012664:

  2. Research | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Research Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW

  3. Research | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Research Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » Research Print Text Size: A A A FeedbackShare Page Our office sponsors research in many experimental and

  4. DOE Science Showcase - Neutron Science Research from DOE Databases...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Access Shull's early research records in Energy Citations Database. Energy Citations Database DOE R&D Accomplishments DOE R&D Project Summaries DOE Data Explorer DOepatents ...

  5. Neuromorphic Computing – From Materials Research to Systems Architecture Roundtable

    SciTech Connect (OSTI)

    Schuller, Ivan K.; Stevens, Rick; Pino, Robinson; Pechan, Michael

    2015-10-29

    Computation in its many forms is the engine that fuels our modern civilization. Modern computation—based on the von Neumann architecture—has allowed, until now, the development of continuous improvements, as predicted by Moore’s law. However, computation using current architectures and materials will inevitably—within the next 10 years—reach a limit because of fundamental scientific reasons. DOE convened a roundtable of experts in neuromorphic computing systems, materials science, and computer science in Washington on October 29-30, 2015 to address the following basic questions: Can brain-like (“neuromorphic”) computing devices based on new material concepts and systems be developed to dramatically outperform conventional CMOS based technology? If so, what are the basic research challenges for materials sicence and computing? The overarching answer that emerged was: The development of novel functional materials and devices incorporated into unique architectures will allow a revolutionary technological leap toward the implementation of a fully “neuromorphic” computer. To address this challenge, the following issues were considered: The main differences between neuromorphic and conventional computing as related to: signaling models, timing/clock, non-volatile memory, architecture, fault tolerance, integrated memory and compute, noise tolerance, analog vs. digital, and in situ learning New neuromorphic architectures needed to: produce lower energy consumption, potential novel nanostructured materials, and enhanced computation Device and materials properties needed to implement functions such as: hysteresis, stability, and fault tolerance Comparisons of different implementations: spin torque, memristors, resistive switching, phase change, and optical schemes for enhanced breakthroughs in performance, cost, fault tolerance, and/or manufacturability.

  6. DOE Science Showcase - Carbon Capture research in DOE Databases...

    Office of Scientific and Technical Information (OSTI)

    research in DOE Databases Information Bridge : Natural materials for carbon capture. ... ... NATCARB Interactive Maps ... Videos of experiments from ORNL's Gas Hydrate Research DOE ...

  7. Researchers measure how specific atoms move in dielectric materials...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    how atoms move in dielectric materials in order to store that charge," says Tedi-Marie Usher, a Ph.D. candidate in materials science and engineering at NC State and lead...

  8. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office of Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (SC) Nanoscale Science Research Centers (NSRCs) User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact

  9. Materials and Molecular Research Division. Annual report 1981

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    Progress is reported in the areas of materials sciences, chemical sciences, nuclear sciences, fossil energy, advanced (laser) isotope separation technology, energy storage, superconducting magnets, and nuclear waste management. Work for others included phase equilibria for coal gasification products and ..beta..-alumina electrolytes for storage batteries. (DLC)

  10. Materials and Molecular Research Division annual report 1982

    SciTech Connect (OSTI)

    Not Available

    1983-05-01

    This report is divided into: materials sciences, chemical sciences, nuclear sciences, fossil energy, advanced isotope separation technology (AISI), energy storage, magnetic fusion energy (MFE), nuclear waste management, and work for others (WFO). Separate abstracts have been prepared for all except AIST, MFE, and WFO. (DLC)

  11. UNCLASSIFIED Institute for Materials Science Distinguished Lecture Series

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Dr. Joël Mesot Director, Paul Scherrer Institute, Switzerland Probing Excitations in Strongly Correlated Electron Systems: Recent Highlights Obtained at the Large-Scale Facilities of the Paul Scherrer Institute Thursday, June 11, 2015 2 - 3 PM TA-03, Bldg. 1698, Room A103 (MSL Auditorium) Abstract: The Paul Scherrer Institute, PSI, is the largest research center for natural and engineering sciences within Switzerland. One of its main missions is to conceive, realize and run so-called

  12. Achieving Transformational Materials Performance in a New Era of Science

    ScienceCinema (OSTI)

    John Sarrao

    2016-07-12

    The inability of current materials to meet performance requirements is a key stumbling block for addressing grand challenges in energy and national security. Fortunately, materials research is on the brink of a new era - a transition from observation and validation of materials properties to prediction and control of materials performance. In this talk, I describe the nature of the current challenge, the prospects for success, and a specific facility concept, MaRIE, that will provide the needed capabilities to meet these challenges, especially for materials in extreme environments. MaRIE, for Matter-Radiation Interactions in Extremes, is Los Alamos' concept to realize this vision of 21st century materials research. This vision will be realized through enhancements to the current LANSCE accelerator, development of a fourth-generation x-ray light source co-located with the proton accelerator, and a comprehensive synthesis and characterization facility focused on controlling complex materials and the defect/structure link to materials performance.

  13. Computational Materials Sciences Awards 2016 FOA | U.S. DOE Office...

    Office of Science (SC) [DOE]

    Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding ... Award Search Public Abstracts Additional Requirements and ...

  14. Research on the Science & Engineering of Signatures (ROSES)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Careers, Jobs » Inclusion & Diversity » Research on the Science & Engineering of Signatures (ROSES) Research on the Science & Engineering of Signatures (ROSES) Research experiences for African-American students in STEM disciplines August 18, 2016 Michelle Lee (back row, center), program manager for ROSES, gathers at the entry to Los Alamos with some of the program's 2016 interns. Michelle B. Lee (back row, center), the Laboratory's program manager for ROSES, gathers at the entry to

  15. Chemistry and Materials Science, 1990--1991. [Second annual report

    SciTech Connect (OSTI)

    Sugihara, T.T.; Bruner, J.M.; McElroy, L.A.

    1991-12-31

    This 2-year (FY 1990-91) contains 49 technical articles in ten sections: research sampler, metals and alloys, energetic materials, chemistry and physics of advanced materials, bonding and reactions at surfaces and interfaces, superconductivity, energy R and D, waste processing and management, characterization and analysis, and facilities and instrumentation. Two more sections list department personnel, their publications etc., consultants, and summary of department budgets. The articles are processed separately for the data base. (DLC)

  16. Research Alliance in Math and Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Rice's Richard Tapia to receive National Medal of Science Mathematician, champion of diversity earns his second White House honor HOUSTON -- (Sept. 27, 2011) -- The White House announced today that Richard Tapia, a Rice University mathematician and longtime champion of diversity in U.S. education, will receive the National Medal of Science from President Barack Obama. The medal is the highest national honor for a U.S. scientist, but it won't be the first White House honor for Tapia. He received

  17. Research in the chemical sciences: Summaries of FY 1994

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This summary book is published annually on research supported by DOE`s Division of Chemical Sciences in the Office of Energy Research. Research in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced batteries is arranged according to national laboratories, offsite institutions, and small businesses. Goal is to add to the knowledge base on which existing and future efficient and safe energy technologies can evolve. The special facilities used in DOE laboratories are described. Indexes are provided (topics, institution, investigator).

  18. Summaries of FY 1993 research in the chemical sciences

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The summaries in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced battery technology are arranged according to national laboratories and offsite institutions. Small business innovation research projects are also listed. Special facilities supported wholly or partly by the Division of Chemical Sciences are described. Indexes are provided for selected topics of general interest, institutions, and investigators.

  19. NREL: Photovoltaics Research - Science and Technology Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    PV Manufacturing Diagnostics LaboratoryEquipment dedicated to the study of PV materials and devices including optical diagnostics, PVScan, etc., will be available in this lab. ...

  20. Summaries of FY 1980 research in the chemical sciences

    SciTech Connect (OSTI)

    1980-09-01

    Brief summaries are given of research programs being pursued by DOE laboratories and offsite facilities in the fields of photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations, analysis, and chemical engineering sciences. No actual data is given. Indexes of topics, offsite institutions, and investigators are included. (DLC)

  1. Biological Sciences

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Science Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear Science Share Your Research NERSC Citations Home Science at...

  2. GE Researcher Explores Science Behind Movie Chappie | GE Global...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    When Will We Have Robot Best Friends? A GE Researcher Explores the Science Behind Movie Magic Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new...

  3. Researchers Are Getting Kids Excited About Science | GE Global...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Researchers Are Getting Kids Excited About Science Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new ...

  4. DOE Science Showcase - Research on the "Go" with OSTI mobile...

    Office of Scientific and Technical Information (OSTI)

    the latest research, OSTI news, award-winning OSTIblog, as well as OSTI YouTube, Facebook & Twitter interface whenever & wherever you need it. Visit the Science Showcase homepage.

  5. Science Day Offers Students STEM Activities | GE Global Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and visited stations to learn about scientific concepts as diverse as the science of music, x-ray and ultrasound, and renewable energy. The event is part of Global Research's...

  6. Argonne's Materials Engineering Research Facility - Joint Center for

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Energy Storage Research August 8, 2012, Videos Argonne's Materials Engineering Research Facility Argonne's Materials Engineering Research Facility (MERF) enables the development of manufacturing processes for producing advanced battery materials in sufficient quantity for industrial testing. The research conducted in this program is known as process scale-up

  7. Los Alamos honors four for science leadership, research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Los Alamos honors four for science leadership, research Los Alamos honors four for science leadership, research John Gordon, Geoffrey Reeves, Stephen Doorn and David Jablonski are honored for achievements. January 30, 2012 Left to right: David Jablonski, John Gordon, Stephen Doorn (seated), and Geoffrey Reeves Left to right: David Jablonski, John Gordon, Stephen Doorn (seated), and Geoffrey Reeves Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email Stars in hydrogen storage,

  8. Los Alamos research published in Public Library of Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Los Alamos research published in Public Library of Science Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Los Alamos research published in Public Library of Science Scientists can now monitor and forecast diseases around the globe more effectively by analyzing views of Wikipedia articles January 1, 2015 Wikipedia searches for disease symptoms can help forecast outbreaks around the world Wikipedia searches can help

  9. International Center for Materials Research ICMR | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Name: International Center for Materials Research (ICMR) Place: Kawasaki-shi, Kanagawa, Japan Zip: 210-0855 Product: International Center for Materials Reseach is a Japanese...

  10. Nuclear Materials Research and Technology/Los Alamos National...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Crown Ether Complex 6 "Excess" Nuclear Materials Hold Keys to Medicine, ... that culminates in plutonium. 2 Nuclear Materials Research and TechnologyLos ...

  11. Critical Materials Research in DOE Video (Text Version)

    Energy.gov [DOE]

    This is a text version of the "Critical Materials Research in DOE" video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

  12. Research Update: The materials genome initiative: Data sharing...

    Office of Scientific and Technical Information (OSTI)

    materials genome initiative: Data sharing and the impact of collaborative ab initio databases Citation Details In-Document Search Title: Research Update: The materials genome ...

  13. Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid

    SciTech Connect (OSTI)

    Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

    2013-02-15

    Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

  14. Overview of DOE-NE Structural Materials Research, Materials Challenges and Operating Conditions

    SciTech Connect (OSTI)

    Maloy, Stuart A.; Busby, Jeremy T.

    2012-06-12

    This presentation summarized materials conditions for application of nanomaterials to reactor components. Material performance is essential to reactor performance, economics, and safety. A modern reactor design utilizes many different materials and material systems to achieve safe and reliable performance. Material performance in these harsh environments is very complex and many different forms of degradation may occur (often together in synergistic fashions). New materials science techniques may also help understand degradation modes and develop new manufacturing and fabrication techniques.

  15. Computational Science Research in Support of Petascale Electromagnetic Modeling

    SciTech Connect (OSTI)

    Lee, L.-Q.; Akcelik, V; Ge, L; Chen, S; Schussman, G; Candel, A; Li, Z; Xiao, L; Kabel, A; Uplenchwar, R; Ng, C; Ko, K; /SLAC

    2008-06-20

    Computational science research components were vital parts of the SciDAC-1 accelerator project and are continuing to play a critical role in newly-funded SciDAC-2 accelerator project, the Community Petascale Project for Accelerator Science and Simulation (ComPASS). Recent advances and achievements in the area of computational science research in support of petascale electromagnetic modeling for accelerator design analysis are presented, which include shape determination of superconducting RF cavities, mesh-based multilevel preconditioner in solving highly-indefinite linear systems, moving window using h- or p- refinement for time-domain short-range wakefield calculations, and improved scalable application I/O.

  16. Applied Research in Earth Sciences (ARiES) Summer School

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Center for Space and Earth Science Los Alamos National LaboratoryApplied Research in Earth Sciences Summer School NSEC » CSES » ARiES Applied Research in Earth Sciences (ARiES) Summer School June 5th - July 28th, 2017 Contacts Co-Director Elizabeth Miller Co-Director Emily Schultz-Fellenz Co-Director Aviva Sussman Administrative Assistant Winona Ortiz Email Request more information Email Application period will be opening in January 2017 - check back for more information! The 2017 Applied

  17. Collaborative Research: Fundamental Science of Low Temperature...

    Office of Scientific and Technical Information (OSTI)

    ... Thus one major contributions of this research has been the establishment of methodologies to more systematically study the interaction of plasma with bio-molecules. In particular, ...

  18. Year 1 Progress Report Computational Materials and Chemical Sciences Network Administration

    SciTech Connect (OSTI)

    Rehr, John J.

    2012-08-02

    This document reports progress on the project “Computational Materials and Chemical Sciences Network Administration,” which is supported by DOE BES Grant DE-FG02-02ER45990 MOD 08. As stated in the original proposal, the primary goal of this project is to carry out the scientific administrative responsibilities for the Computational Materials and Chemical Sciences Network (CMCSN) of the U.S. Department of Energy, Office of Basic Energy Sciences. These responsibilities include organizing meetings, publishing and maintaining CMCSN’s website, publishing a periodic newsletter, writing original material for both the website and the newsletter, maintaining CMCSN documentation, editing scientific documents, as needed, serving as liaison for the entire Network, facilitating information exchange across the network, communicating CMCSN’s success stories to the larger community and numerous other tasks outside the purview of the scientists in the CMCSN. Given the dramatic increase in computational power, advances in computational materials science can have an enormous impact in science and technology. For many of the questions that can be addressed by computation there is a choice of theoretical techniques available, yet often there is no accepted understanding of the relative strengths and effectiveness of the competing approaches. The CMCSN fosters progress in this understanding by providing modest additional funding to research groups which engage in collaborative activities to develop, compare, and test novel computational techniques. Thus, the CMCSN provides the “glue” money which enables different groups to work together, building on their existing programs and expertise while avoiding unnecessary duplication of effort. This includes travel funding, partial postdoc salaries, and funding for periodic scientific meetings. The activities supported by this grant are briefly summarized below.

  19. DOE Science Showcase - Shape-Memory Materials | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    and the international science community are taking advantage of shape-memory technology. ... SciTech Connect - reports from DOE science, technology, and engineering programs. In the ...

  20. Research Alliance in Math and Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Applying to the 2013 RAMS Program The RAMS Program: May 28 - August 16, 2013. A completed on-line application containing a research proposal is required. Students are encouraged to write the research proposal with his/her faculty advisor. Online student application Two faculty recommendations completed online are required. The faculty recommendation form can be found at https://www.ornl.gov/ccsd_registrations/rams_ref.cfm An official transcript is required. Generous stipends begin at $10.50/hour

  1. Advanced 3D Detectors for Research | U.S. DOE Office of Science...

    Office of Science (SC) [DOE]

    Advanced 3D Detectors for Research Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee ...

  2. Hydrogen Materials Advanced Research Consortium | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Materials Advanced Research Consortium Hydrogen Materials Advanced Research Consortium This presentation by Mark Allendorf of Sandia National Laboratories gives an overview of the organization and scientific activities of the Hydrogen Materials-Advanced Research Consortium (HyMARC). Hydrogen Materials Advanced Research Consortium (14.94 MB) More Documents & Publications Hydrogen Storage Lab PI Workshop: HyMARC and NREL-Led Characterization Effort Near-term Fuel Cell Applications in Japan

  3. The High Energy Materials Science Beamline (HEMS) at PETRA III

    SciTech Connect (OSTI)

    Schell, Norbert; King, Andrew; Beckmann, Felix; Ruhnau, Hans-Ulrich; Kirchhof, Rene; Kiehn, Ruediger; Mueller, Martin; Schreyer, Andreas

    2010-06-23

    The HEMS Beamline at the German high-brilliance synchrotron radiation storage ring PETRA III is fully tunable between 30 and 250 keV and optimized for sub-micrometer focusing. Approximately 70 % of the beamtime will be dedicated to Materials Research. Fundamental research will encompass metallurgy, physics and chemistry with first experiments planned for the investigation of the relationship between macroscopic and micro-structural properties of polycrystalline materials, grain-grain-interactions, and the development of smart materials or processes. For this purpose a 3D-microsctructure-mapper has been designed. Applied research for manufacturing process optimization will benefit from high flux in combination with ultra-fast detector systems allowing complex and highly dynamic in-situ studies of micro-structural transformations, e.g. during welding processes. The beamline infrastructure allows accommodation of large and heavy user provided equipment. Experiments targeting the industrial user community will be based on well established techniques with standardized evaluation, allowing full service measurements, e.g. for tomography and texture determination. The beamline consists of a five meter in-vacuum undulator, a general optics hutch, an in-house test facility and three independent experimental hutches working alternately, plus additional set-up and storage space for long-term experiments. HEMS is under commissioning as one of the first beamlines running at PETRA III.

  4. Research in the chemical sciences. Summaries of FY 1995

    SciTech Connect (OSTI)

    1995-09-01

    This summary book is published annually to provide information on research supported by the Department of Energy`s Division of Chemical Sciences, which is one of four Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries provide the scientific and technical public, as well as the legislative and executive branches of the Government, information, either generally or in some depth, about the Chemical Sciences program. Scientists interested in proposing research for support will find the publication useful for gauging the scope of the present basic research program and it`s relationship to their interests. Proposals that expand this scope may also be considered or directed to more appropriate offices. The primary goal of the research summarized here is to add significantly to the knowledge base in which existing and future efficient and safe energy technologies can evolve. As a result, scientific excellence is a major criterion applied in the selection of research supported by the Division of Chemical Sciences, but another important consideration is emphasis on science that is advancing in ways that will produce new information related to energy.

  5. Environmental Sciences Division: Summaries of research in FY 1996

    SciTech Connect (OSTI)

    1997-06-01

    This document describes the Fiscal Year 1996 activities and products of the Environmental Sciences Division, Office of Biological and Environmental Research, Office of Energy Research. The report is organized into four main sections. The introduction identifies the basic program structure, describes the programs of the Environmental Sciences Division, and provides the level of effort for each program area. The research areas and project descriptions section gives program contact information, and provides descriptions of individual research projects including: three-year funding history, research objective and approach used in each project, and results to date. Appendixes provide postal and e-mail addresses for principal investigators and define acronyms used in the text. The indexes provide indexes of principal investigators, research institutions, and keywords for easy reference. Research projects are related to climatic change and remedial action.

  6. Material Science Image Analysis using Quant-CT in ImageJ

    SciTech Connect (OSTI)

    Ushizima, Daniela M.; Bianchi, Andrea G. C.; DeBianchi, Christina; Bethel, E. Wes

    2015-01-05

    We introduce a computational analysis workflow to access properties of solid objects using nondestructive imaging techniques that rely on X-ray imaging. The goal is to process and quantify structures from material science sample cross sections. The algorithms can differentiate the porous media (high density material) from the void (background, low density media) using a Boolean classifier, so that we can extract features, such as volume, surface area, granularity spectrum, porosity, among others. Our workflow, Quant-CT, leverages several algorithms from ImageJ, such as statistical region merging and 3D object counter. It also includes schemes for bilateral filtering that use a 3D kernel, for parallel processing of sub-stacks, and for handling over-segmentation using histogram similarities. The Quant-CT supports fast user interaction, providing the ability for the user to train the algorithm via subsamples to feed its core algorithms with automated parameterization. Quant-CT plugin is currently available for testing by personnel at the Advanced Light Source and Earth Sciences Divisions and Energy Frontier Research Center (EFRC), LBNL, as part of their research on porous materials. The goal is to understand the processes in fluid-rock systems for the geologic sequestration of CO2, and to develop technology for the safe storage of CO2 in deep subsurface rock formations. We describe our implementation, and demonstrate our plugin on porous material images. This paper targets end-users, with relevant information for developers to extend its current capabilities.

  7. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Center (LMI-EFRC) - People Executive Committee Ralph G. Nuzzo Director Ralph G. Nuzzo, G. L. Clark Professor of Chemistry; Director, LMI-EFRC; Visiting Associate in Applied Physics and Materials Science, California Institute of Technology University of Illinois at Urbana-Champaign and California Institute of Technology Harry Atwater Associate Director Harry Atwater, Howard Hughes Professor and Professor of Applied Physics and Materials Science; Director, Joint Center for Artificial

  8. Higher temperature reactor materials workshop sponsored by the Department of Energy Office of Nuclear Energy, Science, and Technology (NE) and the Office of Basic Energy Sciences (BES).

    SciTech Connect (OSTI)

    Allen, T.; Bruemmer, S.; Kassner, M.; Odette, R.; Stoller, R.; Was, G.; Wolfer, W.; Zinkle, S.; Elmer, J.; Motta, A.

    2002-08-12

    On March 18-21, 2002, the Department of Energy, Office of Nuclear Energy, Science, and Technology (NE) and the Office of Basic Energy Sciences (BES) sponsored a workshop to identify needs and opportunities for materials research aimed at performance improvements of structural materials in higher temperature reactors. The workshop focused discussion around the reactor concepts proposed as part of the Generation IV Nuclear Energy System Roadmap. The goal of the Generation IV initiative is to make revolutionary improvements in nuclear energy system design in the areas of sustainability, economics, safety and reliability. The Generation IV Nuclear Energy Systems Roadmap working groups have identified operation at higher temperature as an important step in improving economic performance and providing a means for nuclear energy to support thermochemical production of hydrogen. However, the move to higher operating temperatures will require the development and qualification of advanced materials to perform in the more challenging environment. As part of the process of developing advanced materials for these reactor concepts, a fundamental understanding of materials behavior must be established and the data-base defining critical performance limitations of these materials under irradiation must be developed. This workshop reviewed potential reactor designs and operating regimes, potential materials for application in high-temperature reactor environments, anticipated degradation mechanisms, and research necessary to understand and develop reactor materials capable of satisfactory performance while subject to irradiation damage at high temperature. The workshop brought together experts from the reactor materials and fundamental materials science communities to identify research and development needs and opportunities to provide optimum high temperature nuclear energy system structural materials.

  9. Research Highlights | The Ames Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Research Highlights All Highlights Division of Chemical and Biological Sciences Highlights Division of Materials Science and Engineering Highlights

  10. Research Alliance in Math and Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    0 Research Projects Joylika Adams abstract presentation poster website Rashida Askia abstract presentation poster website Raymond Borges abstract presentation poster website Brittany Devine abstract presentation poster website Janey Duong abstract presentation poster website Fernando Fuentes abstract presentation poster website Jillian Gauld abstract presentation poster website Jarilyn Hernandez abstract presentation poster website Joaquin Hernandez abstract presentation poster website Deirdre'

  11. FWP executive summaries. Basic Energy Sciences/Materials Sciences Programs (SNL/NM)

    SciTech Connect (OSTI)

    Samara, G.A.

    1994-01-01

    This report is divided into: budget, capital equipment requests, general programmatic overview and institutional issues, DOE center of excellence for synthesis and processing of advanced materials, industrial interactions and technology transfer, and research program summaries (new proposals, existing programs). Ceramics, semiconductors, superconductors, interfaces, CVD, tailored surfaces, adhesion, growth and epitaxy, boron-rich solids, nanoclusters, etc. are covered.

  12. Materials research at selected Japanese laboratories. Based on a 1992 visit: Overview, summary of highlights, notes on laboratories and topics

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    I visited Japan from June 29 to August 1, 1992. The purpose of this visit was to assess the status of materials science research at selected governmental, university and industrial laboratories and to established acquaintances with Japanese researchers. The areas of research covered by these visits included ceramics, oxide superconductors, intermetallics alloys, superhard materials and diamond films, high-temperature materials and properties, mechanical properties, fracture, creep, fatigue, defects, materials for nuclear reactor applications and irradiation effects, high pressure synthesis, self-propagating high temperature synthesis, microanalysis, magnetic properties and magnetic facilities, and surface science.

  13. MIT Plasma Science & Fusion Center: research>alcator>research...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Plasma Technology Useful Links Collaborations at Alcator...

  14. Strategic Energy Science Plan for Research, Education, and Extension

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Agriculture Research, Education, and Economics Mission Area TRATEGIC ENERGY SCIENCE PLAN FOR RESEARCH, EDUCATION, AND EXTENSION March 2008 Role: Lead Research, Education, and Extension programs for sustainable production of agriculture-based and natural resource-based renewable energy and effi cient use and conservation of energy - for the benefit of rural communities and the Nation S Vision: "Growing a clean, efficient, sustainable energy future for America" We have a

  15. New Research Projects > Research > The Energy Materials Center...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    - Coates Research Initiative - Abrua Research Initiative - Schlom New Research Projects Transport Dynamics and Carbonation Tolerance in Solution Processable Ionomers: Enabling a...

  16. DOE-EERE/NIST Joint Workshop on Combinatorial Materials Science for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Applications in Energy | Department of Energy EERE/NIST Joint Workshop on Combinatorial Materials Science for Applications in Energy DOE-EERE/NIST Joint Workshop on Combinatorial Materials Science for Applications in Energy The Hydrogen Storage Subprogram of the U.S. Department of Energy co-hosted with the NIST (National Institute of Standards and Technology) Combinatorial Methods Center (NCMC) a workshop titled "High-Throughput/Combinatorial Material Science for Applications in

  17. Summaries of FY 1979 research in the chemical sciences

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas.

  18. Energy Materials and Processes, An EMSL Science Theme Advisory Panel Workshop

    SciTech Connect (OSTI)

    Burk, Linda H.

    2014-12-16

    The report summarizes discussions at the Energy Materials and Process EMSL Science Theme Advisory Panel Workshop held July 7-8, 2014.

  19. MaRIE: A facility for time-dependent materials science at the...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: Materials Science(36); Nuclear Physics & Radiation Physics(73); Particle Accelerators(43); Physics of Elementary Particles & Fields(72) LANL, MaRIE Word ...

  20. MaRIE: A facility for time-dependent materials science at the...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: Materials Science(36); Nuclear Physics & Radiation Physics(73); Particle Accelerators(43); Physics of Elementary ...

  1. Rajendran, N. 36 MATERIALS SCIENCE; 20 FOSSIL-FUELED POWER PLANTS...

    Office of Scientific and Technical Information (OSTI)

    ACI Committee 229 Rajendran, N. 36 MATERIALS SCIENCE; 20 FOSSIL-FUELED POWER PLANTS; 01 COAL, LIGNITE, AND PEAT; FLY ASH; WASTE PRODUCT UTILIZATION; BACKFILLING; THERMAL...

  2. Advancing Research & Technology in the Sciences (ARTS) Forum | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Advancing Research & Technology in the Sciences (ARTS) Forum Advancing Research & Technology in the Sciences (ARTS) Forum January 28, 2016 - 4:11pm Addthis VE-Suite, a virtual engineering tool developed at Ames Laboratory, displayed on a six-sided virtual reality room which helps engineers build greener, next-generation power plants faster and less expensively than ever before. VE-Suite, a virtual engineering tool developed at Ames Laboratory, displayed on a six-sided

  3. Materials Science Clean Room Facility at Tulane University (Final Technical Report)

    SciTech Connect (OSTI)

    Altiero, Nicholas

    2014-10-28

    The project involves conversion of a 3,000 sq. ft. area into a clean room facility for materials science research. It will be accomplished in phases. Phase I will involve preparation of the existing space, acquisition and installation of clean room equipped with a pulsed laser deposition (PLD) processing system, and conversion of ancillary space to facilitate the interface with the clean room. From a capital perspective, Phases II and III will involve the acquisition of additional processing, fabrication, and characterization equipment and capabilities.

  4. Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Science Science & Technology Images of Lab scientists and researchers at work. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets PHOTOS BY TOPIC Careers Community Visitors Environment History Science The Lab Click thumbnails to enlarge. Photos arranged by most recent first, horizontal formats before vertical. See Flickr for more sizes and details. Astronomical simulation in the CAVE - 1 Astronomical simulation in the CAVE - 1 Scientist sees

  5. Materials and Devices | Photovoltaic Research | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and Devices The National Center for Photovoltaics (NCPV) at NREL develops photovoltaic (PV) materials and devices to achieve higher performance and reliability at lower cost and to ...

  6. Nanoscale Material Properties | GE Global Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Symposium and Exhibition Focuses on Materials, Surfaces and Interfaces IMG0475 Innovation 247: We're Always Open a57-v-zero-liquid-discharge Reverse Osmosis (RO)...

  7. Summaries of FY 1982 research in the chemical sciences

    SciTech Connect (OSTI)

    1982-09-01

    The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energy technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The table of contents lists the following: photochemical and radiation sciences; chemical physics; atomic physics; chemical energy; separation and analysis; chemical engineering sciences; offsite contracts; equipment funds; special facilities; topical index; institutional index for offsite contracts; investigator index.

  8. CRC materials science and engineering handbook. Third edition

    SciTech Connect (OSTI)

    Shackelford, J.F.; Alexander, W.

    1999-01-01

    This definitive reference is organized in an easy-to-follow format based on materials properties. It features new and existing data verified through major professional societies in the materials fields, such as ASM International and the American Ceramic Society. The third edition has been significantly expanded, most notably by the addition of new tabular material for a wide range of nonferrous alloys and various materials. The contents include: Structure of materials; Composition of materials; Phase diagram sources; Thermodynamic and kinetic data; Thermal properties of materials; Mechanical properties of materials; Electrical properties of materials; Optical properties of materials; Chemical properties of materials.

  9. RAMS 2012 Research Projects - Research Alliance in Math and Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2012 Research Projects Rashida Askia Johannes Bachhuber abstract presentation poster website Shelby Becker abstract presentation poster website Yael M. Camacho Bonaparte abstract presentation poster website Katherine Elise Gaster abstract presentation poster website Kimberly Walker abstract presentation poster website Tiffany M. Marshall abstract presentation poster website Mariya Mohammed abstract presentation poster website Emily Reinhard abstract presentation poster website Mario Sutton

  10. RAMS 2011 Research Projects - Research Alliance in Math and Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1 Research Projects Rashida E. Askia abstract presentation poster website Raymond Charles Borges abstract presentation poster website Gloria A. D'Azevedo abstract presentation poster website Alexis Galarza abstract presentation poster website Eduardo M. Ponce Mojica abstract presentation poster website Holly B. Ray abstract presentation poster website David Cruz Rodriguez abstract presentation poster website Elizabeth M. Sherrill abstract presentation poster website James E. Slaton abstract

  11. Defense, basic, and industrial research at the Los Alamos Neutron Science Center: Proceedings

    SciTech Connect (OSTI)

    Longshore, A.; Salgado, K.

    1995-10-01

    The Workshop on Defense, Basic, and Industrial Research at the Los Alamos Neutron Science Center gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss the use of neutrons in science-based stockpile stewardship, The workshop began with presentations by government officials, senior representatives from the three weapons laboratories, and scientific opinion leaders. Workshop participants then met in breakout sessions on the following topics: materials science and engineering; polymers, complex fluids, and biomaterials; fundamental neutron physics; applied nuclear physics; condensed matter physics and chemistry; and nuclear weapons research. They concluded that neutrons can play an essential role in science-based stockpile stewardship and that there is overlap and synergy between defense and other uses of neutrons in basic, applied, and industrial research from which defense and civilian research can benefit. This proceedings is a collection of talks and papers from the plenary, technical, and breakout session presentations. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  12. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015

    SciTech Connect (OSTI)

    Wiffen, F. W.; Katoh, Yutai; Melton, Stephanie G.

    2015-12-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.

  13. 2009 > Publications > Research > The Energy Materials Center...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    sols Morgan Stefik, Surbhi Mahajan, Hiroaki Sai, Thomas H. Epps III, Frank S. Bates, Sol M. Gruner, Francis J. DiSalvo and Ulrich Wiesner Chemistry of Materials Vol.21, p....

  14. Chief Research Scientist | Critical Materials Institute

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    both scientific and general audiences. These include: Material Matters: The Rare Earth Crisis -- The SupplyDemand Situation for 2010-2015, Vol. 6, Article 2 U.S. Atomic Energy...

  15. ALS Ceramics Materials Research Advances Engine Performance

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    photo), are now studying can withstand temperatures that would melt current state-of-the-art engine material, alloy-based nickel. The heat-resistant properties of advanced ceramics...

  16. New equipment let researchers simulate industrial materials processing |

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The Ames Laboratory New equipment let researchers simulate industrial materials processing Researchers at Iowa State University and Ames Laboratory have a new tool to help understand and fine-tune the processing of materials in a variety of commercial techniques. The Gleeble 3800 thermomechanical system was purchased by Iowa State University and recently installed in Ames Laboratory's Metals Development building. It lets researchers precisely control and measure what happens to materials

  17. Critical Materials Institute Gains Ten Industrial and Research Affiliates |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Critical Materials Institute Gains Ten Industrial and Research Affiliates Critical Materials Institute Gains Ten Industrial and Research Affiliates April 12, 2016 - 10:32am Addthis News release from the Ames Laboratory, April 11, 2016. The Critical Materials Institute, a U.S. Department of Energy Innovation Hub led by the Ames Laboratory, has gained ten new affiliates to its research program, seeking ways to eliminate and reduce reliance on rare-earth metals and other

  18. Solar Energy Educational Material, Activities and Science Projects

    Office of Scientific and Technical Information (OSTI)

    DOE Documents with ActivitiesProjects: Web Pages Solar Energy Education. Renewable Energy Activities for Junior HighMiddle School Science Solar Energy Education. Renewable Energy ...

  19. Science Against Stress: Research Shows Way to Some Cellular Relief

    Office of Energy Efficiency and Renewable Energy (EERE)

    Researchers at Brookhaven National Lab (BNL) are studying a tumor-suppressor protein called p53 to further the Office of Science’s long-standing mission to understand how radioactive materials affect the human genome.

  20. NREL: Photovoltaics Research - Silicon Materials and Devices...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Our Si basic research includes: Mechanism of silicon film growth and epitaxy Hydrogen diffusion and hydrogenation of defects Transport of carriers across the a-Sic-Si ...

  1. Vehicle Technologies Office: Exploratory Battery Materials Research...

    Energy.gov (indexed) [DOE]

    for future battery chemistries. They research a number of areas that contribute to this body of knowledge: Advanced cell chemistries that promise higher energy density than...

  2. The Science of Electrode Materials for Lithium Batteries

    SciTech Connect (OSTI)

    Fultz, Brent

    2007-03-15

    Rechargeable lithium batteries continue to play the central role in power systems for portable electronics, and could play a role of increasing importance for hybrid transportation systems that use either hydrogen or fossil fuels. For example, fuel cells provide a steady supply of power, whereas batteries are superior when bursts of power are needed. The National Research Council recently concluded that for dismounted soldiers "Among all possible energy sources, hybrid systems provide the most versatile solutions for meeting the diverse needs of the Future Force Warrior. The key advantage of hybrid systems is their ability to provide power over varying levels of energy use, by combining two power sources." The relative capacities of batteries versus fuel cells in a hybrid power system will depend on the capabilities of both. In the longer term, improvements in the cost and safety of lithium batteries should lead to a substantial role for electrochemical energy storage subsystems as components in fuel cell or hybrid vehicles. We have completed a basic research program for DOE BES on anode and cathode materials for lithium batteries, extending over 6 years with a 1 year phaseout period. The emphasis was on the thermodynamics and kinetics of the lithiation reaction, and how these pertain to basic electrochemical properties that we measure experimentally — voltage and capacity in particular. In the course of this work we also studied the kinetic processes of capacity fade after cycling, with unusual results for nanostructued Si and Ge materials, and the dynamics underlying electronic and ionic transport in LiFePO4. This document is the final report for this work.

  3. Material gain: Research a step toward more efficient solar panels |

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    MIT-Harvard Center for Excitonics Material gain: Research a step toward more efficient solar panels 10.7.2014

  4. Overview and Progress of the Advanced Battery Materials Research...

    Energy.gov (indexed) [DOE]

    Overview and Progress of the Advanced Battery Materials Research (BMR) Program Tien Q. Duong BMR Program Manager Energy Storage R&D Hybrid and Electric Systems Subprogram ...

  5. Meet CMI Researcher Brian Sales | Critical Materials Institute

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Brian is internationally recognized for his research on new thermoelectric materials that convert heat directly into electricity with no moving parts. Brian is also known for his ...

  6. Agustin Mihi and Paul V. Braun Materials Research Laboratory...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Agustin Mihi and Paul V. Braun Materials Research Laboratory, University of Illinois at Urbana-Champaign Transfer of Preformed 3D Photonic Crystals onto Dye Sensitized Solar Cells...

  7. Researcher's Love for Science Starts with a Bang and Continues to Sizzle -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    News Feature | NREL Researcher's Love for Science Starts with a Bang and Continues to Sizzle April 14, 2016 Two men and a woman in goggles look at a piece of lab equipment. In this 2010 photo, Dave Ginley, along with NREL's Ke Yi and Joe Berry, view a pulsed laser that deposits material on a solar cell. Photo by Dennis Schroeder The source of Dave Ginley's passion for science is no mystery. As a 4-year-old, he was given a chemistry set. "Back in those days, chemistry sets were far more

  8. W.E. Henry Symposium compendium: The importance of magnetism in physics and material science

    SciTech Connect (OSTI)

    Carwell, H.

    1997-09-19

    This compendium contains papers presented at the W. E. Henry Symposium, The Importance of Magnetism in Physics and Material Science. The one-day symposium was conducted to recognize the achievements of Dr. Warren Elliot Henry as educator, scientist, and inventor in a career spanning almost 70 years. Dr. Henry, who is 88 years old, attended the symposium. Nobel Laureate, Dr. Glenn Seaborg, a friend and colleague for over 40 years, attended the event and shared his personal reminiscences. Dr. Seaborg is Associate Director-At-Large at the Lawrence Berkeley National Laboratory. The Compendium begins with three papers which demonstrate the ongoing importance of magnetism in physics and material science. Other contributions cover the highlights of Dr. Henry`s career as a researcher, educator, and inventor. Colleagues and former students share insights on the impact of Dr. Henry`s research in the field of magnetism, low temperature physics, and solid state physics; his influence on students as an educator; and his character, intellect and ingenuity, and passion for learning and teaching. They share a glimpse of the environment and times that molded him as a man, and the circumstances under which he made his great achievements despite the many challenges he faced.

  9. 2010 Atmospheric System Research (ASR) Science Team Meeting Summary

    SciTech Connect (OSTI)

    Dupont, DL

    2011-05-04

    This document contains the summaries of papers presented in poster format at the March 2010 Atmospheric System Research Science Team Meeting held in Bethesda, Maryland. More than 260 posters were presented during the Science Team Meeting. Posters were sorted into the following subject areas: aerosol-cloud-radiation interactions, aerosol properties, atmospheric state and surface, cloud properties, field campaigns, infrastructure and outreach, instruments, modeling, and radiation. To put these posters in context, the status of ASR at the time of the meeting is provided here.

  10. ARM Climate Research Facility | U.S. DOE Office of Science (SC)

    Office of Science (SC) [DOE]

    ARM Climate Research Facility Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Climate Model Development and Validation (CMDV) Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global

  11. Atmospheric System Research (ASR) Program | U.S. DOE Office of Science (SC)

    Office of Science (SC) [DOE]

    Atmospheric System Research (ASR) Program Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Climate Model Development and Validation (CMDV) Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional

  12. Subsurface Biogeochemical Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) [DOE]

    Subsurface Biogeochemical Research Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Climate Model Development and Validation (CMDV) Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional &

  13. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Center (LMI-EFRC) Recent Research Highlights nature materials cover advanced energy materials cover nature materials cover advanced materials cover nature materials cover Laser-Assisted Direct Ink Writing of Metallic Architectures (Jennifer Lewis group, Harvard) May 2016 Conformal Flexible Dielectric Metasurfaces (Andrei Faraon group, Caltech) April 2016 Active Thermal Extraction of Near-Field Thermal Radiation (Austin Minnich group, Caltech) March 2016 Active Mixing of Complex Fluids at the

  14. Biomolecular Materials | U.S. DOE Office of Science (SC)

    Office of Science (SC) [DOE]

    of biomimetic and bioinspired functional materials and complex structures, and materials aspects of energy conversion processes based on principles and concepts of biology. ...

  15. Reference Materials

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Fusion Energy Sciences August 3-4, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors [not available] NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion

  16. Reference Materials

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for High Energy Physics November 12-13, 2009 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  17. Instrumentation Overview ARM Climate Research Facility 18th Annual ARM Science Team Meeting

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Overview ARM Climate Research Facility 18th Annual ARM Science Team Meeting Jimmy Voyles Voyles STM.2008 Presentation Outline Voyles STM.2008 Presentation Outline * Program Science Goals and Approach Voyles STM.2008 Presentation Outline * Program Science Goals and Approach * Research Sites Voyles STM.2008 Presentation Outline * Program Science Goals and Approach * Research Sites * Instrument Strategy Voyles STM.2008 Presentation Outline * Program Science Goals and Approach * Research Sites *

  18. Meet the CMI Researchers | Critical Materials Institute

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Meet the CMI Researchers CMI researchers create new phosphors At left, Nerine Cherepy of Lawrence Livermore National Laboratory displays commercial phosphors (six samples from bottom left of semi-circle) and phosphors being developed by LLNL and collaborators as replacements (five on right). LLNL, Oak Ridge National Laboratory and GE are working to improve the efficiency of the new phosphors to replace commercial phosphors. Inset: The CMI phosphor team members include (from left) Paul Martinez,

  19. Meet CMI Researcher Ikenna Nlebedim | Critical Materials Institute

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Researcher Ikenna Nlebedim Image: left, CMI researcher Ikenna Nlebedim, and right, Summer 2015 SULI student Gavin Hester CMI researcher Ikenna Nlebedim researches magnets. His research led to a new method for recycling rare earth magnetic material from manufacturing waste. This Ames Laboratory news release describes the process. Also, in this Ames Lab 101 video file, Nlebedim describes recycling rare earths from magnet scraps on the factory floor. Nlebedim led a student researcher for one of the

  20. Research Help

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Help Research Help Find the core literature and resources in a given subject area. Questions? 505-667-5809 Email Business Chemistry Computer Science Earth & Environmental Science Engineering Global Security Health & Safety Information Science Life Sciences Materials Science Mathematics Nanotechnology Nuclear Science & Technology Physics Renewable Energy Space Sciences *Plutonium Science Research Help Looking for Library resources? How to Find can assist you in your search Need

  1. MaRIE: A facility for time-dependent materials science at the mesoscale

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: MaRIE: A facility for time-dependent materials science at the mesoscale Citation Details In-Document Search Title: MaRIE: A facility for time-dependent materials science at the mesoscale To meet new and emerging national security issues the Laboratory is stepping up to meet another grand challenge-transitioning from observing to controlling a material's performance. This challenge requires the best of experiment, modeling, simulation,

  2. Webinars Highlight CMI Research | Critical Materials Institute

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Webinars Highlight CMI Research CMI research is the topic of most of the CMI webinars, created by the CMI education/outreach team at Colorado School of Mines. Future topics are listed, and people can register for these with no charge. Archive files for past webinars are available online. November 16: Tim McIntyre, Oak Ridge National Laboratory: "Rare Earth Magnet Recovery and Reuse from Computer Hard Disk Drives (HDDs)" Link to register October 12: Ryan Ott, Ames Laboratory,

  3. 2016 Spring Materials Research Society (Phoenix, AZ) - JCAP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2016 Spring Materials Research Society (Phoenix, AZ) 2016 Spring Materials Research Society (Phoenix, AZ) Mon, Mar 28, 2016 6:00pm 18:00 Fri, Apr 1, 2016 7:00pm 19:00 Phoenix Convention Center 100 North 3rd Street Phoenix, Arizona 85004 United States Joel Ager, "Experimental Demonstrations of Solar-Driven Photoelectrochemical Water Splitting and Carbon Dioxide Reduction" John Gregoire, "High Throughput Materials Integration: Identifying Optimal Interfaces for Solar Fuels

  4. Vehicle Technologies Office: Long-Term Lightweight Materials Research

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (Magnesium and Carbon Fiber) | Department of Energy Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber) Vehicle Technologies Office: Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber) In the long term, advanced materials such as magnesium and carbon fiber reinforced composites could reduce the weight of some components by 50-75 percent. Magnesium Even though magnesium (Mg) can reduce component weight by more than 60 percent, its use is currently limited

  5. Vehicle Technologies Office: Short-Term Lightweight Materials Research

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (Advanced High-Strength Steel and Aluminum) | Department of Energy Short-Term Lightweight Materials Research (Advanced High-Strength Steel and Aluminum) Vehicle Technologies Office: Short-Term Lightweight Materials Research (Advanced High-Strength Steel and Aluminum) In the short term, replacing heavy steel components with materials such as high-strength steel, aluminum, or glass fiber-reinforced polymer composites can decrease component weight by 10-60 percent. Advanced High-Strength Steel

  6. Researcher, Los Alamos National Laboratory - Space Science and Applications

    National Nuclear Security Administration (NNSA)

    Group | National Nuclear Security Administration | (NNSA) Researcher, Los Alamos National Laboratory - Space Science and Applications Group Joaquin Birn Joaquin Birn November 2009 Los Alamos National Laboratory Fellow Six Los Alamos scientists have been designated 2009 Los Alamos National Laboratory Fellows in recognition of sustained, outstanding scientific contributions and exceptional promise for continued professional achievement. The title of Fellow is bestowed on only about 2 percent

  7. ARM - Publications: Science Team Meeting Documents: Aerosol Research at the

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Arctic Facility for Atmospheric Remote Sensing (AFARS): In Search of Indirect Cloud Effects Aerosol Research at the Arctic Facility for Atmospheric Remote Sensing (AFARS): In Search of Indirect Cloud Effects Sassen, Kenneth University of Alaska Fairbanks Tiruchirapalli, Ramaswamy Atmospheric Science Group, University of Alaska Fairbanks Daneva, Diana University of Alaska, Fairbanks Khovorostyanov, Vitaly Moscow Aerological Observatory At high latitudes, local sources of aerosols are

  8. DOE-EERE/NIST Joint Workshop on Combinatorial Materials Science...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    half-day sessions were focused on discovery of hydrogen storage materials, one half-day session on fuel cell membranes, and one half-day session on organic photovoltaic materials. ...

  9. Atomic, Molecular, and Optical Sciences | U.S. DOE Office of Science (SC)

    Office of Science (SC) [DOE]

    03 Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S.

  10. Computer Science Research Institute 2004 annual report of activities.

    SciTech Connect (OSTI)

    DeLap, Barbara J.; Womble, David Eugene; Ceballos, Deanna Rose

    2006-03-01

    This report summarizes the activities of the Computer Science Research Institute (CSRI) at Sandia National Laboratories during the period January 1, 2004 to December 31, 2004. During this period the CSRI hosted 166 visitors representing 81 universities, companies and laboratories. Of these 65 were summer students or faculty. The CSRI partially sponsored 2 workshops and also organized and was the primary host for 4 workshops. These 4 CSRI sponsored workshops had 140 participants--74 from universities, companies and laboratories, and 66 from Sandia. Finally, the CSRI sponsored 14 long-term collaborative research projects and 5 Sabbaticals.

  11. Computer Science Research Institute 2005 annual report of activities.

    SciTech Connect (OSTI)

    Watts, Bernadette M.; Collis, Samuel Scott; Ceballos, Deanna Rose; Womble, David Eugene

    2008-04-01

    This report summarizes the activities of the Computer Science Research Institute (CSRI) at Sandia National Laboratories during the period January 1, 2005 to December 31, 2005. During this period, the CSRI hosted 182 visitors representing 83 universities, companies and laboratories. Of these, 60 were summer students or faculty. The CSRI partially sponsored 2 workshops and also organized and was the primary host for 3 workshops. These 3 CSRI sponsored workshops had 105 participants, 78 from universities, companies and laboratories, and 27 from Sandia. Finally, the CSRI sponsored 12 long-term collaborative research projects and 3 Sabbaticals.

  12. Computer Science Research Institute 2003 annual report of activities.

    SciTech Connect (OSTI)

    DeLap, Barbara J.; Womble, David Eugene; Ceballos, Deanna Rose

    2006-03-01

    This report summarizes the activities of the Computer Science Research Institute (CSRI) at Sandia National Laboratories during the period January 1, 2003 to December 31, 2003. During this period the CSRI hosted 164 visitors representing 78 universities, companies and laboratories. Of these 78 were summer students or faculty members. The CSRI partially sponsored 5 workshops and also organized and was the primary host for 3 workshops. These 3 CSRI sponsored workshops had 178 participants--137 from universities, companies and laboratories, and 41 from Sandia. Finally, the CSRI sponsored 18 long-term collaborative research projects and 5 Sabbaticals.

  13. R. Bruce van Dover > ProfessorMaterials Science and Engineering...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Topical Group on Magnetism and Its Applications, a unit of the American Physical Society. Research Prof. van Dover's research is currently focused on exploring the properties of...

  14. Atmospheric Sciences Program summaries of research in FY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This document describes the activities and products of the Atmospheric Science Program of the Environmental Sciences Division, Office of Health and Environmental Research, Office of Energy Research, in FY 1993. Each description contains the project`s title; three-year funding history; the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date. Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states its goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used. This document has been indexed to aid the reader in locating research topics, participants, and research institutions in the text and the project descriptions. Comprehensive subject, principal investigator, and institution indexes are provided at the end of the text for this purpose. The comprehensive subject index includes keywords from the introduction and chapter texts in addition to those from the project descriptions.

  15. 2016 ANNUAL DOE-NE MATERIALS RESEARCH MEETING

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Reactor Materials element of the Nuclear Energy Enabling Technologies (NEET) program conducted its FY 2016 coordination meeting as a series of two web-conferences to act as a forum for the nuclear materials research community. The purpose of this meeting was to report on current and planned nuclear materials research, identify new areas of collaboration and promote greater coordination among the various Office of Nuclear Energy (NE) programs. Although each program has unique materials issues, there are opportunities to enhance coordination and collaboration. The presentations from this two part webinar series are available here.

  16. USSR report: Materials science and metallurgy, [November 7, 1986

    SciTech Connect (OSTI)

    1986-11-07

    Partial contents include: Analysis and Testing, Coatings, Corrosion, Ferrous Metals, Nonferrous Metals and Alloys ;Brazes and Solders, Nonmetallic Materials, Preparation, Treatments, Welding, Brazing and Soldering.

  17. Center for Nanophase Materials Sciences (CNMS) - 2012 CNMS User...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    on 911) Transmission Electron Microscopy for Soft Materials September 12-13, 2012 Second Photovoltaics School (Photovoltaics from Fundamentals to Applications) September 13, 2012...

  18. Panel 3 - material science (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    data. Further, the breadth of national security challenges has expanded beyond stewardship of a nuclear deterrent to a broad range of global and asymmetric threats. Materials ...

  19. Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Office of Science Office of Science * * * Office of Science Office of * * * * * Office of Science Office of Science * * * Office of Science * * * * 287 115 ...

  20. Core Research Activities and Studies of the Computer Science and Telecommunications Board

    SciTech Connect (OSTI)

    Eisenberg, Jon K.

    2015-02-11

    Lists activities of the Computer Science and Telecommunications Board and summarizes research results partly enabled by this award.

  1. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  2. UNCLASSIFIED Institute for Materials Science Distinguished Lecture Series

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Gabriel Aeppli Head of the Synchrotron and Nanotechnology Department Paul Scherrer Institute, Switzerland Accelerator-based Light Sources for the Future Wednesday, August 12, 2015 2:00 to 3:00pm MSL Auditorium (TA-03, Bldg. 1698, Room A103) Abstract: We review current and future accelerator-based light sources and their applications to science, medicine and engineering. Particular attention is given to competing technologies such as electron microscopies. Bio: Gabriel Aeppli is professor of

  3. Researchers examine behavior of amorphous materials under high strain

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Behavior of amorphous materials under high strain Researchers examine behavior of amorphous materials under high strain The findings offer a new way to monitor the onset of plastic deformation and mechanical properties of materials. February 10, 2016 Shown is simulation of a reversible avalanche in an amorphous solid under a periodic shear. Darker regions indicate where particles have been displaced more. The motion is exactly repeated during the next drive cycle. Above a critical strain, the

  4. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  5. Evaluation of Natural Gas Pipeline Materials for Hydrogen Science

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thad M. Adams Materials Technology Section Savannah River National Laboratory DOE Hydrogen Pipeline R&D Project Review Meeting January 5-6, 2005 Evaluation of Natural Gas Pipeline ...

  6. Center for Nanophase Materials Sciences - Summer Newsletter 2010

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    were recently purchased with American Recovery and Reinvestment Act funds, including new SEM and TEMSTEM capabilities for soft materials, small-angle x-ray scattering, and in the...

  7. Dual-Beam Sample Preparation | Materials Science | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Dual-Beam Sample Preparation Materials characterization is an essential strength of the focused-ion beam (FIB) platform. Material can be removed or added while observing the evolution of the surface topography features of the specimen with ion beam stimulated secondary electrons NREL's dual-beam focused-ion beam workstation for fabricating microscopy samples and nanostructures. The dual-beam focused-ion-beam (FIB) workstation consists of a FIB column and a scanning electron microscope (SEM)

  8. High-Throughput Experimental Approach Capabilities | Materials Science |

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    NREL High-Throughput Experimental Approach Capabilities An image of a triangular diagram with cobalt oxide at the top vertex, zinc oxide at the lower left vertex, and nickel oxide at the lower right vertex. Colored section in upper half indicates conductivity of materials at constant oxygen partial pressure and temperature. Highest conductivity is represented by yellow and is for materials in the upper right sector. NREL's high-throughput experimental approach is based on the extensive set

  9. Graduate Research Fellowship Program deadlines begin November...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Computer and Information Sciences and Engineering, Materials Research November 14, 2012 Mathematical Sciences, Chemistry, Physics and Astronomy November 16, 2012 Social Sciences,...

  10. Neutrino Research Supported by the DOE Office of Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Research Supported by the DOE Office of Science Raymond Davis Jr., a chemist at the U.S. Department of Energy's Brookhaven National Laboratory, will be awarded a quarter share of the 2002 Nobel Prize in Physics for detecting solar neutrinos, ghostlike particles produced in nuclear reactions that power the sun. Davis shares the prize with Masatoshi Koshiba of Japan, and Riccardo Giaconni of the U.S. Ray Davis Jr. Ray Davis Jr. December 10, 2002-The award of a share of the 2002 Nobel Prize for

  11. Center for Nanophase Materials Sciences (CNMS) - Archived News

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2009) "Researchers can precisely manipulate polarization in nanostructures," nanotechwire.com (October 23, 2009) "ORNL finding could help electronics industry enter new phase,"...

  12. Center for Nanophase Materials Sciences (CNMS) - CNMS Staff Directory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Research Laboratory Fowlkes Fuentes-Cabrera, Miguel Nanomaterials Theory Institute Fuentes-Cabrera Gai, Zheng Scanning Probe Microscopy Gai Ganesh, Panchapakesan...

  13. Center for Nanophase Materials Sciences (CNMS) - ORNL develops...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (Newswise) Turning lignin, a plant's structural "glue" and a byproduct of the paper and pulp industry, into something considerably more valuable is driving a research effort headed...

  14. Center for Nanophase Materials Sciences (CNMS) - About CNMS

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    - predominantly in the US but also internationally - with access to state-of-the-art nanoscience research capabilities, expertise, and equipment. The scientists at the...

  15. Darrell Schlom > ProfessorMaterials Science and Engineering...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Association for Crystal Growth Young Author Award in 1999, the ASM International Bradley Stoughton Award for Young Teachers in 1999, a Semiconductor Research Corporation...

  16. Center for Nanophase Materials Sciences - Summer Newsletter 2010

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Call for User Proposals: High-Impact Nanoscience Research Deadline for submission: 20th October, 2010 Successful applicants will be able to use CNMS facilities starting Feb...

  17. Sandia National Laboratories: Research: Research Foundations

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Research Foundations Bioscience Computing and Information Science Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Research Foundations Leadership in innovation Integrating unique resources and technical excellence to benefit our nation. Certain research areas are considered key to the success of Sandia's national security programs. These areas - known as research foundations - underpin Sandia's innovations

  18. Ultrafast Probes for Dirac Materials (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Los Alamos National Laboratory (LANL) Sponsoring Org: UCRP Country of Publication: United States Language: English Subject: Materials Science(36) Material Science; ...

  19. Meet CMI Researcher Anja Mudring | Critical Materials Institute

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Anja Mudring CMI researcher Anja Mudring CMI researcher Anja Mudring is a materials chemist who is harmessing the promising qualities of ionic liquids, salts in a liquid state, to optimize processes for critical materials. "Ionic liquids have a lot of useful qualities, but most useful for materials processing is that ionic liquids are made up of two parts: the cation and the anion. We can play around with the chemical identities of each of those components and that opens the doors to huge

  20. Materials Research Society (MRS) Fall Meeting (Boston, MA) - JCAP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials Research Society (MRS) Fall Meeting (Boston, MA) Materials Research Society (MRS) Fall Meeting (Boston, MA) Sun, Nov 27, 2016 9:00am 09:00 Fri, Dec 2, 2016 6:00pm 18:00 Hynes Convention Center Boston USA Monday, 28 November 2016, 10:30 AM Materials Challenges for Sustainable Photoelectrochemical Solar to Fuel Conversion J. W. Ager Monday, 28 November 2016, 11:00 AM Solar Fuels Photoanodes Prepared by Inkjet Printing of Copper Vanadates P. Newhouse, D. Boyd, A. Shinde, D. Guevarra, L.

  1. Neutron and Nuclear Science News

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    News Recent news and events related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science News Nuclear and Materials Science Research at LANSCE Nuclear science observations and opportunities at the Los Alamos Neutron Science Center Links Neutron and Nuclear Science News Media Links Profiles Events at LANSCE LAPIS (LANSCE Proposal Intake System

  2. DOE Science Showcase - Exciting Higgs Boson Research | OSTI,...

    Office of Scientific and Technical Information (OSTI)

    Unraveling the Higgs Boson Discovery - Rik Yoshida, ScienceCinema National Library of EnergyBeta DOE R&D Accomplishments SciTech Connect Database Science.gov Ciencia.Science.gov ...

  3. DOE Science Showcase - DOE Plasma Research | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    PPPL presentation, SciTech Connect Plasmas are Hot and Fusion is Cool, DOE PPPL, ScienceCinema video US ITER Moving Forward, USDOE Office of Science, ORNL, ScienceCinema video ...

  4. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... SC and LQC at Penn State acknowledge the financial support of NSF under DMR-0213623, DMR-0507146. NB acknowledges support from the Alexander von Humboldt foundation. The theory ...

  5. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    chain. Moreover, the unsaturated double bonds offer many possibilities for post-polymerization modifications, such as sulfonation. Sulfonated PCHD (sPCHD) in solution shows a...

  6. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    PS-b-P3HT Copolymers as P3HTPCBM Interfacial Compatibilizers for High Efficiency Photovoltaics Zhenzhong Sun1, Kai Xiao2, Jong Kahk Keum3, Xiang Yu2, Kunlun Hong1, Jim Browning3,...

  7. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    polymers is in a partially collapsed state in D2O, whereas it expands in toluene and methanol. SANS data also suggest that the individual polymers assume the shape of a rigid...

  8. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Alejandro Heredia,1 Vincent Meunier,2 Igor K. Bdikin,1 Jos Gracio,3 Nina Balke,4 Stephen Jesse,4 Alexander Tselev,4 Pratul Agarwal,4 Bobby G. Sumpter,4 Sergei V. Kalinin4,...

  9. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mechanism of Polarization Switching on Ferroelectric Surfaces Peter Maksymovych,1 Stephen Jesse,1 Mark Huijben,2 Ramamoorthy Ramesh,2 Anna Morozovska,3 Samrat Choudhury,4...

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Control of Electron Tunneling into Ferroelectric Surfaces Peter Maksymovych1, Stephen Jesse1, Pu Yu2, Ramamoorthy Ramesh2, Arthur P. Baddorf,1 and Sergei V. Kalinin1 1 The...

  11. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Using Neutron Reflectometry to Investigate Interactions across Polymer Thin Films David Uhrig, Jamie Messman, Jimmy Mays, and Phil Britt, CNMS J. F. Ankner, X. Tao, C. Halbert,...

  12. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and manipulation of the competing electronic phases near the Mott metal-insulator transition Tae-Hwan Kim1, M. Angst2, B. Hu3, R. Jin3, X. G. Zhang1, J. F. Wendelken1, E. W....

  13. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Environment-Dependent Oxygen Adsorption on Transition Metal Surfaces and Its Implications for Surface Reactivity Ye Xu (CNMS Staff), Rachel Getman, and William F. Schneider (CNMS...

  14. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman...

  15. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Nature produces polypeptides with complete molecular homogeneity (i.e., PDI 1), and it is our goal to mimic nature's control of molecular design. The man-made systems described ...

  16. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    M. Terrones,10 P.M. Ajayan1 1-Rice University, Houston, TX 2-Universidade de Vigo, Spain 3-Oak Ridge National Laboratory, Oak Ridge, TN. 4-Rensselaer Polytechnic Institute,...

  17. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Nature of the Pairing Interaction in the Hubbard Model of High-Temperature Superconductors Thomas A. Maier (CNMS Staff); Douglas J. Scalapino (CNMS User), University of California,...

  18. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Endstation Effort Achievement: A team led by Thomas Schulthess, including Gonzalo ... at NCCS 7. A CNMS user project led by Jihui Yang from General Motors ...

  19. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and microwires were successfully released from the hard templates via chemical etching of the porous alumina membranes. Released mesoporous carbon microwires and nanowires...

  20. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    solid. Inelastic neutron scattering measurements of Fe1-xCoxSi alloys were combined with quantum mechanics based calculations to show why the alloys exhibit unusual softening as...

  1. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    "fixed node" approximation and a manifestation of the famous Fermion sign problem in quantum mechanics. In the new method, the Fermion sign error is systematically reduced via...

  2. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Experimental measurements have always shown an essentially constant magnetoresistance as a function of barrier thickness. This is a long standing puzzle in the field of spintronics ...

  3. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    One of the challenges in the physics of spintronics is the study of spin-flip scattering ... to better exploit those properties to create spintronics-based electronics of the future. ...

  4. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    high surface area oxide to anchor the particles and isolate them from one another. Synthesis of these heterostructures progresses by a novel pathway in which a bimetallic...

  5. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    to charge transfer, structure, and spin and has recently been shown to produce spectacular behavior including interface-mediated conduction,1-3 superconductivity,4...

  6. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    respectively. The symmetry breaking in the surfaces results in the formation of non-fractal ordered structures with characteristic 100 nm length scale. These domain structures...

  7. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    the results showing a remarkable agreement with predictions. Significance This straightforward method provides a general and valuable technique to study the effects of strain...

  8. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    requires identifying structural intermediates and correlating their formation with genes and proteins involved. In T. pseudonana, distinct silica morphologies were observed...

  9. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Directed Assembly of Patterned Thin Films into Nanoparticle Ensembles Philip Rack, Yinfeng Guan (The University of Tennessee, Knoxville); Anatoli Melechko (North Carolina State...

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    we have demonstrated the formation of epitaxially ordered arrays of the conducting polymer PEDOT. The very high resolution of in situ STM imaging combined with first principles...

  11. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (OLED) layers have been integrated into the carbon nanotube-vertical field effect transistor (CN-VFET) stack to create a highly efficient light-emitting transistor dubbed a...

  12. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    outside the heating zone. (d) Schematic diagram of a back-gated SWNT field-effect transistor. (e) I-Vg curve of the transistor exhibiting ambipolar behavior. Vds 0.5 V....

  13. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Massachusetts Institute of Technology, Cambridge, Massachusetts 7-Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Fortaleza, Ceara, 60455-900,...

  14. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    uses thermal deposition to prepare Co nanodots on polymer thin films via Volmer-Weber growth. These Co nanodots form nanoscale Coorganic heterojunctions and consequently...

  15. NERSC, LBL Researchers Share Materials Science Advances at APS

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Sherri Li, Abhinav Sarje, LBNL: Beyond Petascale with the HipGISAXS Software Suite Vidvuds Ozolins, Weston Nielson, University of California, Los Angeles: Beyond the Harmonic ...

  16. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    toward molecular oxygen (attached Figure and Park et al. Phys. Rev. B, 2007). Ab initio molecular dynamics calculations show that the row of Ti interstitials, as a highly...

  17. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    equation for electron behavior. However, this approach only describes a system in its ground state at a temperature of absolute zero. By incorporating a Monte Carlo method...

  18. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    nanowires with axial or coaxial pn junctions for organic nanoelectronics and solar energy harvesting. Credit This work will be published in Journal of American Chemical...

  19. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    finite temperatures approaches will be required for handling this strongly correlated nuclear fuel. * PDOS measurements performed on polycrystalline samples have identified the...

  20. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Coating the VACNF membrane components with pPy enabled modulation of membrane permeability by physically reducing the interfiber spacing and the resultant, nanometer-scale...

  1. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Standing Friedel Waves, Standing Spin Waves, and Indirect Bandgap Optical Transition in Nanostructures Jun-Qiang Lu1, X.-G. Zhang1,2, and Sokrates T. Pantelides3 1Center for...

  2. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    molecular clusters with almost perfectly uniform size-distribution III. State-of-the-art first-principle calculations in combination with tunneling spectroscopy are used to...

  3. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Nanofibers Liang Luo,1 Christopher Wilhelm,1 Christopher N. Young,2 Clare P. Grey,1 Gary P. Halada,2 Kai Xiao,3 Ilia N. Ivanov,3 Jane Y. Howe,4 David B. Geohegan,3 and...

  4. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Zhe Yu and Barclay Morrison III, (Department of Biomedical Engineering, Columbia ... this successful demonstration of the functional interface to neuronal tissue culture. ...

  5. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Expression Optimization and Synthetic Gene Networks in Cell-free Systems David K. Karig,1 Sukanya Iyer,2,3 Michael L. Simpson,1,4,5 Mitchel J. Doktycz,1,2 1-Center for Nanophase...

  6. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Level Understanding of Surface Chemistry and Catalysis (I): Structure and Defects K. T. Park (Baylor University) and M. H. Pan, V. Meunier, and E. W. Plummer (all CNMS staff) The...

  7. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    elongation dynamics and structure of gold nanowires. For a simple Lennard-Jones solvent (propane), molecular dynamics simulation results demonstrated that below the melting point...

  8. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    growth modes for ZnO at the nanoscale. Under typical growth conditions the surface migration of adatoms across a hexagonally-faceted ZnO protrusion will lead to growth of a...

  9. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and Humberto Terrones, Instituto Potosino de Investigacion Cientifica y Tecnologica, San Luis Potosi, Mexico Novel and robust networks, tailored from nanostructures as...

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    at grain boundary in copper nanowire T-H. Kim,1 X.-G. Zhang,1 D. M. Nicholson,1 B. M. Evans,1 N. S. Kulkarni,2 B. Radhakrishnan,1 E. A. Kenrik,1 and A-P. Li1 1- Oak Ridge...

  11. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Size-based separations technologies will inevitably benefit from advances in nanotechnology. Direct-write nanofabrication provides a useful mechanism to depositetch...

  12. Materials Science and Imaging (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: 2016 Lansce User Group Meeting ; 2016-05-25 - 2016-05-25 ; Los Alamos, New Mexico, United States Research Org: Los Alamos National Laboratory (LANL) ...

  13. Center for Nanophase Materials Sciences (CNMS) - CNMS Contacts

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    More, morekl1@ornl.gov Jihua Chen, chenj1@ornl.gov Nanofabrication Research Lab Mike Simpson, simpsonml1@ornl.gov X-ray Analysis Jong Keum, keumjk@ornl.gov Bio-Inspired...

  14. Center for Nanophase Materials Sciences (CNMS) - Becoming A User

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    BECOMING A USER The CNMS user program provides access to equipment and technical expertise for nanoscale research that defines state of the art. The program is open to users from...

  15. Center for Nanophase Materials Sciences - Summer Newsletter 2010

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    in Kingsport, Tennessee as a Research Chemist where I worked in the Specialty Plastics Business. I joined the CNMS in 2007 as part of the Macromolecular Nanomaterials Group and...

  16. Sandia National Laboratories: Research: Research Foundations: Geoscience

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Geoscience Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Geoscience Geoscience photo The Geoscience Research Foundation performs recognized world-class earth and atmospheric sciences research and development to support Sandia's national security missions. Why our work matters Knowledge of the Earth's subsurface properties, structure and

  17. DOE Science Showcase - DOE's Smart Grid Research | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    DOE Technology Transfer E-print Network Science Conference Proceedings Science Open Access Journals DOE Green Energy Related links of interest DOE Office of Electricity Delivery & ...

  18. Charter for the ARM Climate Research Facility Science Board ...

    Office of Scientific and Technical Information (OSTI)

    The objective of the ARM Science Board is to promote the Nation's scientific enterprise by ... scientific applications for improving understanding and prediction of climate science. ...

  19. Data Science Makes Trains More Efficient | GE Global Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Data Science Makes Trains More Efficient Click to email this to a friend (Opens in new ... Data Science Makes Trains More Efficient In this Special Report, GE's ...

  20. Ethnic Diversity in Materials Science and Engineering. A report on the workshop on ethnic diversity in materials science and engineering.

    SciTech Connect (OSTI)

    Schwartz, Justin

    2014-06-30

    The immediate goal of the workshop was to elevate and identify issues and challenges that have impeded participation of diverse individuals in MSE. The longerterm goals are to continue forward by gathering and disseminating data, launching and tracking initiatives to mitigate the impediments, and increase the number of diverse individuals pursuing degrees and careers in MSE. The larger goal, however, is to create over time an ever-increasing number of role models in science fields who will, in turn, draw others in to contribute to the workforce of the future.